
Oracle® Fusion Middleware
Developing Fusion Web Applications with
Oracle Application Development Framework

12c (12.2.1.4.0)
E80055-02
August 2020

Oracle Fusion Middleware Developing Fusion Web Applications with Oracle Application Development
Framework, 12c (12.2.1.4.0)

E80055-02

Copyright © 2013, 2019, Oracle and/or its affiliates.

Primary Authors: Ralph Gordon (lead), Walter Egan, Patrick Keegan, Landon Ott, Kathryn Munn, Vaibhav
Gupta, Krithika Gandadhar, Sandhya Sriram

Contributors: ADF development team, Lynn Munsinger

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or “commercial computer software documentation” pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience lxvii

Documentation Accessibility lxvii

Related Documents lxvii

Conventions lxviii

Part I Getting Started with Fusion Web Applications

1 Introduction to Building Fusion Web Applications with Oracle ADF

Introduction to Oracle ADF 1-1

Oracle ADF Architecture 1-2

Overview of Building an Application with Oracle ADF 1-4

Creating an Application Workspace 1-5

Modeling with Database Object Definitions 1-8

Creating Use Cases 1-10

Designing Application Control and Navigation Using ADF Task Flows 1-10

Identifying Shared Resources 1-12

Creating a Data Model to Access Data with ADF Business Components 1-12

Creating a Layer of Business Domain Objects for Tables 1-13

Building the Business Services 1-13

Testing and Debugging Business Services with the Oracle ADF Model
Tester 1-15

Implementing the User Interface with JSF 1-15

Data Binding with ADF Model 1-15

Validation and Error Handling 1-17

Adding Security 1-18

Testing and Debugging the Web Client Application 1-18

Refactoring Application Artifacts 1-19

Deploying a Fusion Web Application 1-19

Integrating a Fusion Web Application 1-19

Working Productively in Teams 1-19

iii

Enforcing Standards 1-21

Using a Source Control System 1-21

Generation of Complete Web Tier Using Oracle JHeadstart 1-22

Other Resources for Learning Oracle ADF 1-23

2 Introduction to the ADF Sample Application

About the Summit Sample Applications for Oracle ADF 2-1

Setting Up the Summit Sample Applications for Oracle ADF 2-2

How to Download the Application Resources 2-3

How to Install the Summit ADF Schema 2-4

What Happens When You Install the Summit ADF Schema 2-7

How to Create the Database Connection for Summit Sample Applications for
Oracle ADF 2-9

Running the Core Summit ADF Sample Application in the SummitADF Workspace 2-11

How to Run the Core Summit ADF Sample Application 2-12

Taking a Look at the Sample Application in the SummitADF Workspace 2-13

Browsing the Application 2-14

The Ordering Process 2-22

Running the Standalone Samples from the SummitADF_Examples Workspace 2-27

How to Run the Summit ADF Standalone Sample Applications 2-27

Running the Standalone Sample Applications From a Java Test Client 2-28

Running the Standalone Applications Without a Test Client 2-29

Overview of the Summit ADF Standalone Sample Applications 2-31

Running the Sample Application in the SummitADF_TaskFlows Workspace 2-38

How to Run the Summit Sample Application for ADF Task Flows 2-38

Overview of the Summit Sample Application for ADF Task Flows 2-40

Running the Standalone Samples in the SummitADF_DVT Workspace 2-42

Overview of the Summit ADF DVT Standalone Samples 2-42

How to Run the Summit ADF DVT Sample Application Pages 2-43

Part II Building Your Business Services

3 Getting Started with ADF Business Components

About ADF Business Components 3-1

ADF Business Components Use Cases and Examples 3-3

Additional Functionality for ADF Business Components 3-4

Creating the ADF Business Components Data Model Project 3-4

How to Create a Data Model Project for ADF Business Components 3-5

How to Create a Data Model Project for ADF REST Web Applications 3-5

iv

How to Add an ADF Business Components Data Model Project to an Existing
Application 3-6

How to Initialize the Data Model Project With a Database Connection 3-7

How to Change the Data Model Project to Work With Offline Database Objects 3-10

What You May Need to Know About Application Server or Database
Independence 3-11

What You May Need to Know About ADF Business Components Data Types 3-12

What You May Need to Know About Displaying Numeric Values 3-13

How to Customize Model Project Properties for ADF Business Components 3-13

How to Customize ADF Business Components Preferences 3-14

Creating and Editing Business Components 3-14

How to Create New Components Using Wizards 3-14

How to Create New Components Using the Context Menu 3-16

What Happens When You Create Business Components 3-17

What You May Need to Know About the Model Project Organization 3-18

What You May Need to Know About Package Naming Conventions 3-19

What You May Need to Know About Renaming Components 3-20

How to Edit Components Using the Component Overview Editor 3-21

Testing, Refactoring, and Visualizing Business Components 3-21

How to Use the Oracle ADF Model Tester 3-22

What You May Need to Know About Obtaining Oracle ADF Source Code 3-23

How to Find Business Component Usages in the Data Model Project 3-23

How to Explorer Business Component Dependencies in the Data Model Project 3-24

How to Refactor Business Components in the Data Model Project 3-25

How to Refactor Offline Database Objects and Update Business Components 3-26

How to Display Related Business Components Using Diagrams 3-27

What You May Need to Know About Using UML Diagrams 3-29

Customizing Business Components 3-29

How to Generate Business Component Java Subclasses 3-29

How to Expose Business Component Methods to Clients 3-31

What Happens When You Generate Custom Classes 3-32

What You May Need to Know About Custom Interface Support 3-33

What You May Need to Know About Generic Versus Strongly Typed APIs 3-33

Using Groovy Scripting Language With Business Components 3-34

How to Enter Groovy Expressions on Business Components 3-35

What Happens When You Enter Expressions 3-36

What You May Need to Know About Groovy Project Settings 3-39

What You May Need to Know About Where Groovy Expressions Can Be Used 3-41

What You May Need to Know About Groovy Expression Syntax 3-43

What You May Need to Know About Referencing Business Components in
Groovy Expressions 3-43

What You May Need to Know About Untrusted Groovy Expressions 3-45

v

What You May Need to Know About Referencing Custom Business
Components Methods and Attributes in Groovy Expressions 3-46

What You May Need to Know About Manipulating Business Component
Attribute Values in Groovy Expressions 3-47

What You May Need to Know About Migrating Groovy Snippets 3-48

How to Create a Script Expression Class File 3-49

4 Creating a Business Domain Layer Using Entity Objects

About Entity Objects 4-1

Entity Object Use Cases and Examples 4-2

Additional Functionality for Entity Objects 4-2

Creating Entity Objects and Associations 4-3

How to Create Multiple Entity Objects and Associations from Existing Tables 4-3

How to Create Single Entity Objects Using the Create Entity Wizard 4-5

What Happens When You Create Entity Objects and Associations from Existing
Tables 4-6

Foreign Key Associations Generated When Entity Objects Are Derived from
Tables 4-7

Entity Object Key Generated When a Table Has No Primary Key 4-8

What Happens When You Create an Entity Object for a Synonym or View 4-8

How to Edit an Existing Entity Object or Association 4-9

How to Create Database Tables from Entity Objects 4-9

How to Synchronize an Entity with Changes to Its Database Table 4-9

Removing an Attribute Associated with a Dropped Column 4-10

Addressing a Data Type Change in the Underlying Table 4-11

How to Store Data Pertaining to a Specific Point in Time 4-11

What Happens When You Create Effective Dated Entity Objects 4-13

What You May Need to Know About Creating Entities from Tables 4-13

Creating and Configuring Associations 4-13

How to Create an Association 4-14

What Happens When You Create an Association 4-16

How to Change Entity Association Accessor Names 4-16

How to Rename and Move Associations to a Different Package 4-17

What You May Need to Know About Using a Custom View Object in an
Association 4-18

What You May Need to Know About Composition Associations 4-19

Creating a Diagram of Entity Objects for Your Business Layer 4-20

How to Show Entity Objects in a Business Components Diagram 4-20

What Happens When You Create an Entity Diagram 4-21

What You May Need to Know About the XML Component Descriptors 4-22

What You May Need to Know About Changing the Names of Components 4-22

Defining Property Sets 4-23

vi

How to Define a Property Set 4-23

How to Apply a Property Set 4-24

Defining Attribute Control Hints for Entity Objects 4-25

How to Add Attribute Control Hints 4-25

What Happens When You Add Attribute Control Hints 4-26

About Formatters and Masks 4-27

How to Define Format Masks 4-27

Working with Resource Bundles 4-28

How to Set Message Bundle Options 4-29

How to Use Multiple Resource Bundles 4-30

How to Internationalize the Date Format 4-31

Defining Business Logic Groups 4-31

How to Create a Business Logic Group 4-32

How to Create a Business Logic Unit 4-33

How to Add Logic to a Business Logic Unit 4-34

How to Override Attributes in a Business Logic Unit 4-34

What Happens When You Create a Business Logic Group 4-35

What Happens at Runtime: How Business Logic Groups Are Invoked 4-36

Configuring Runtime Behavior Declaratively 4-36

How to Configure Declarative Runtime Behavior 4-37

What Happens When You Configure Declarative Runtime Behavior 4-38

How to Use Update Batching 4-38

Setting Attribute Properties 4-39

How to Set Database and Java Data Types for an Entity Object Attribute 4-40

How to Indicate Data Type Length, Precision, and Scale 4-41

How to Control the Updatability of an Attribute 4-42

How to Make an Attribute Mandatory 4-42

How to Define the Primary Key for the Entity 4-42

How to Define a Static Default Value 4-43

How to Define a Default Value Using an Expression 4-43

What Happens When You Create a Default Value Using a Groovy expression 4-44

How to Synchronize with Trigger-Assigned Values 4-44

How to Get Trigger-Assigned Primary Key Values from a Database Sequence 4-45

What You May Need to Know About Changing the Value of Primary Keys 4-46

How to Protect Against Losing Simultaneously Updated Data 4-46

How to Protect Against Truncated Attribute Values at Runtime 4-47

How to Track Created and Modified Dates Using the History Column 4-47

How to Configure Composition Behavior 4-48

Orphan-Row Protection for New Composed Entity Objects 4-49

Ordering of Changes Saved to the Database 4-49

Cascade Update of Composed Details from Refresh-On-Insert Primary Keys 4-49

vii

Cascade Delete Support 4-49

Cascade Update of Foreign Key Attributes When Primary Key Changes 4-50

Locking of Composite Parent Entity Objects 4-50

Using Batch Update with Composition Entity Objects 4-50

Updating of Composing Parent History Attributes 4-50

How to Set the Discriminator Attribute for Entity Object Inheritance Hierarchies 4-51

How to Define Alternate Key Values 4-51

What Happens When You Define Alternate Key Values 4-52

What You May Need to Know About Alternate Key Values 4-52

Adding Transient and Calculated Attributes to an Entity Object 4-52

How to Add a Transient Attribute 4-52

What Happens When You Add a Transient Attribute 4-53

How to Base a Transient Attribute on a Groovy Expression 4-53

What Happens When You Base a Transient Attribute on a Groovy Expression 4-55

How to Add Java Code in the Entity Class to Perform Calculation 4-55

Creating Business Events 4-56

Introducing Event Definitions 4-56

Introducing Event Points 4-57

What You May Need to Know About Event Points 4-57

How to Create a Business Event 4-57

What Happens When You Create a Business Event 4-58

What You May Need to Know About Payload 4-60

How to Define a Publication Point for a Business Event 4-61

How to Subscribe to Business Events 4-61

Generating Custom Java Classes for an Entity Object 4-63

How to Generate Custom Classes 4-63

What Happens When You Generate Custom Classes 4-64

What Happens When You Generate Entity Attribute Accessors 4-64

How to Navigate to Custom Java Files 4-65

What You May Need to Know About Custom Java Classes 4-66

Framework Base Classes for an Entity Object 4-66

Safely Adding Code to the Custom Component File 4-66

Configuring Default Java Generation Preferences 4-67

Attribute Indexes and InvokeAccessor Generated Code 4-67

Programmatic Example for Comparison Using Custom Entity Class References 4-69

Working Programmatically with Entity Objects and Associations 4-72

How to Find an Entity Object by Primary Key 4-72

How to Access an Associated Entity Using the Accessor Attribute 4-73

How to Update or Remove an Existing Entity Row 4-74

How to Create a New Entity Row 4-75

Assigning the Primary Key Value Using an Oracle Sequence 4-77

viii

How to Update a Deleted Flag Instead of Deleting Rows 4-78

Updating a Deleted Flag When a Row Is Removed 4-78

Forcing an Update DML Operation Instead of a Delete 4-78

How to Control Entity Posting Order to Prevent Constraint Violations 4-79

Default Post Processing Order 4-79

Compositions and Default Post Processing Order 4-79

Overriding postChanges() to Control Post Order 4-79

Advanced Entity Association Techniques 4-84

Modifying Association SQL Clause to Implement Complex Associations 4-84

Exposing View Link Accessor Attributes at the Entity Level 4-84

What You May Need to Know About Custom Entity Object Methods 4-85

Working Programmatically with Custom Data Sources and the Framework Base
Class ProgrammaticEntityImpl 4-85

How to Create an Entity Object Class Extending ProgrammaticEntityImpl 4-86

Key Framework Methods to Override for ProgrammaticEntityImpl Based Entity
Objects 4-87

What You May Need to Know About Programmatic Entity Object Triggers 4-88

Defining Triggers for Programmatic Entity Objects 4-91

Creating Custom, Validated Data Types Using Domains 4-91

How to Create a Domain 4-92

What Happens When You Create a Domain 4-92

What You May Need to Know About Domains 4-93

Domains as Entity and View Object Attributes 4-93

DataCreationException in Custom validate() Method 4-93

String Domains and String Value Aggregation 4-94

Simple Domains and Built-In Types 4-94

Simple Domains As Immutable Java Classes 4-95

Creating Domains for Oracle Object Types When Useful 4-95

Domains Packaged in the Common JAR 4-96

Custom Domain Properties and Attributes in Entity and View Objects 4-96

Inherited Restrictive Properties of Domains in Entity and View Objects 4-96

Creating New History Types 4-97

How to Create New History Types 4-97

How to Remove a History Type 4-99

Basing an Entity Object on a PL/SQL Package API 4-99

How to Create an Entity Object Based on a View 4-100

What Happens When You Create an Entity Object Based on a View 4-101

How to Centralize Details for PL/SQL-Based Entities into a Base Class 4-101

How to Implement the Stored Procedure Calls for DML Operations 4-103

How to Add Select and Lock Handling 4-104

Updating PLSQLEntityImpl Base Class to Handle Lock and Select 4-104

Implementing Lock and Select for the Product Entity 4-105

ix

Refreshing the Entity Object After RowInconsistentException 4-108

Basing an Entity Object on a Join View or Remote DBLink 4-108

How to Disable the Use of the RETURNING Clause 4-109

What Happens at Runtime: Refresh Behavior With Disabled RETURNING
Clause 4-109

Using Inheritance in Your Business Domain Layer 4-109

Understanding When Inheritance Can Be Useful 4-110

How to Create Entity Objects in an Inheritance Hierarchy 4-111

Identifying the Discriminator Column and Distinct Values 4-112

Identifying the Subset of Attributes Relevant to Each Kind of Entity 4-112

Creating the Base Entity Object in an Inheritance Hierarchy 4-113

Creating a Subtype Entity Object in an Inheritance Hierarchy 4-114

How to Add Methods to Entity Objects in an Inheritance Hierarchy 4-115

Adding Methods Common to All Entity Objects in the Hierarchy 4-115

Overriding Common Methods in a Subtype Entity Object 4-116

Adding Methods Specific to a Subtype Entity Object 4-117

What You May Need to Know About Using Inheritance 4-118

Introducing a New Base Entity 4-118

Subtype Entity Objects and the findByPrimaryKey() Method 4-118

View Objects with Polymorphic Entity Usages 4-118

5 Defining SQL Queries Using View Objects

About View Objects 5-1

View Object Use Cases and Examples 5-3

Additional Functionality for View Objects 5-4

Populating View Object Rows from a Single Database Table 5-4

How to Create an Entity-Based View Object 5-5

Creating a View Object with All the Attributes of an Entity Object 5-6

Creating an Entity-Based View Object from a Single Table 5-7

What Happens When You Create an Entity-Based View Object 5-9

What You May Need to Know About Non-Updatable View Objects 5-10

How to Edit a View Object 5-10

Overriding the Inherited Properties from Underlying Entity Object Attributes 5-11

Customizing View Object Attribute Display in the Overview Editor 5-12

Modifying the Order of Attributes in the View Object Source File 5-14

How to Show View Objects in a Business Components Diagram 5-14

Working with View Objects in Declarative SQL Mode 5-15

How to Create Declarative SQL View Objects 5-17

How to Filter Declarative SQL-Based View Objects When Table Joins Apply 5-19

How to Filter Master-Detail Related View Objects with Declarative SQL Mode 5-20

How to Support Programmatic Execution of Declarative SQL Mode View Objects 5-21

x

Forcing Attribute Queries for All Declarative SQL Mode View Objects 5-23

Forcing Attribute Queries for Specific Declarative SQL Mode View Objects 5-23

What Happens When You Create a View Object in Declarative SQL Mode 5-24

What Happens at Runtime: Declarative SQL Mode Queries 5-25

What You May Need to Know About Working Programmatically with Declarative
SQL Mode View Objects 5-25

Creating View Objects Populated With Static Data 5-26

How to Create Static Data View Objects with Data You Enter 5-27

How to Create Static Data View Objects with Data You Import 5-27

What Happens When You Create a Static Data View Object 5-29

How to Edit Static Data View Objects 5-30

What You May Need to Know About Static Data View Objects 5-30

Adding Calculated and Transient Attributes to a View Object 5-31

How to Add a SQL-Calculated Attribute 5-31

What Happens When You Add a SQL-Calculated Attribute 5-32

What You May Need to Know About SQL-Calculated Attributes 5-33

How to Add a Transient Attribute 5-33

How to Add a Transient Attribute Defined by an Entity Object 5-35

How to Add a Validation Rule to a Transient Attribute 5-35

What Happens When You Add a Transient Attribute 5-36

What You May Need to Know About Transient Attributes and Calculated Values 5-37

What You May Need to Know About View Object Queries with Primary Keys
Defined by Transient Attributes 5-37

Limiting View Object Rows Using Effective Date Ranges 5-38

How to Create a Date-Effective View Object 5-38

How to Create New View Rows Using Date-Effective View Objects 5-40

How to Update Date-Effective View Rows 5-40

How to Delete Date-Effective View Rows 5-41

What Happens When You Create a Date-Effective View Object 5-41

What You May Need to Know About Date-Effective View Objects and View Links 5-42

Working with Multiple Tables in Join Query Results 5-43

How to Create Joins for Entity-Based View Objects 5-43

How to Modify a Default Join Clause to Be an Outer Join When Appropriate 5-47

How to Select Additional Attributes from Reference Entity Usages 5-49

How to Remove Unnecessary Key Attributes from Reference Entity Usages 5-50

How to Hide the Primary Key Attributes from Reference Entity Usages 5-51

What Happens When You Reference Multiple Entities in a View Object 5-51

What You May Need to Know About Outer Joins 5-53

What You May Need to Know About Entity Based Joins and Entity Cardinality 5-53

What You May Need to Know About Entity Based Joins and Participates in Row
Delete 5-54

What You May Need to Know About Composition Associations and Joins 5-54

xi

How to Create Joins for Read-Only View Objects 5-55

How to Test the Join View 5-56

How to Use the SQL Statement Dialog with Read-Only View Objects 5-56

Working with View Objects and Custom SQL 5-57

How to Create a Custom SQL Mode View Object 5-57

What Happens When You Create a Custom SQL View Object 5-60

How to Customize SQL Statements in Custom SQL Mode 5-61

What Happens When You Enable Custom SQL Mode 5-61

What You May Need to Know About Custom SQL Mode 5-61

Attribute Names for Calculated Expressions in Custom SQL Mode 5-61

Attribute Mapping Assistance in Custom SQL Mode 5-62

Custom Edits in Custom SQL Mode 5-63

Changes to SQL Expressions in Custom SQL Mode 5-63

SQL Calculations that Change Entity Attributes in Custom SQL Mode 5-64

Formatting of the SQL Statement in Custom SQL Mode 5-65

Query Clauses in Custom SQL Mode 5-65

Inline View Wrapping at Runtime 5-66

Custom SQL Affect on Dependent Objects 5-66

Custom SQL Affect on View Object Query Auto Refresh 5-66

SQL Types of Attributes in Custom SQL Mode 5-67

Working with Named View Criteria 5-68

How to Create Named View Criteria Declaratively 5-69

What Happens When You Create a Named View Criteria 5-75

What You May Need to Know About Bind Variables in View Criteria 5-76

What You May Need to Know About Nested View Criteria Expressions 5-77

How to Set User Interface Hints on View Criteria to Support Search Forms 5-77

How to Test View Criteria Using the Oracle ADF Model Tester 5-81

How to Use View Criteria to Filter a View Object for the Current User 5-82

How to Create View Criteria Programmatically 5-83

What Happens at Runtime: How the View Criteria Is Applied to a View Object 5-86

What You May Need to Know About the View Criteria API 5-87

Referencing Attribute Names in View Criteria 5-87

Referencing Bind Variables in View Criteria 5-87

Searching for a Row Whose Attribute Is NULL 5-87

Searching for Rows Using a Date Comparison 5-87

Searching for Rows Whose Attribute Value Matches a Value in a List 5-88

Searching Case-Insensitively 5-88

Clearing View Criteria in Effect 5-88

Altering Compound Search Conditions Using Multiple View Criteria 5-88

What You May Need to Know About Query-by-Example Criteria 5-90

Working with Bind Variables 5-90

xii

How to Add View Criteria Bind Variables to a View Object Definition 5-91

How to Add WHERE Clause Bind Variables to a View Object Definition 5-93

What Happens When You Add Named Bind Variables 5-95

How to Test Named Bind Variables 5-95

How to Add a WHERE Clause with Named Bind Variables at Runtime 5-96

How to Set Existing WHERE Clause Bind Variable Values at Runtime 5-98

What Happens at Runtime: Dynamic Read-Only View Object WHERE Clause 5-99

What You May Need to Know About Named Bind Variables 5-100

Errors Related to the Names of Bind Variables 5-100

Default Value of NULL for Bind Variables 5-101

Working with Row Finders 5-101

How to Add Row Finders to a View Object Definition 5-102

What Happens When You Define a Row Finder 5-104

What You May Need to Know About View Criteria and Row Finder Usage 5-106

Programmatically Invoking the Row Finder 5-107

Working with List of Values (LOV) in View Object Attributes 5-108

How to Define a Single LOV-Enabled View Object Attribute 5-110

How to Define Cascading Lists for LOV-Enabled View Object Attributes 5-112

Creating a Data Source View Object to Control the Cascading List 5-112

Creating a View Accessor to Filter the Cascading List 5-114

How to Specify Multiple LOVs for a Single LOV-Enabled View Object Attribute 5-116

How to Define an LOV to Display a Reference Attribute 5-118

How to Set User Interface Hints on a View Object LOV-Enabled Attribute 5-120

How to Handle Date Conversion for List Type UI Components 5-124

How to Automatically Refresh the View Object of the View Accessor 5-125

How to Test LOV-Enabled Attributes Using the Oracle ADF Model Tester 5-127

What Happens When You Define an LOV for a View Object Attribute 5-128

What Happens at Runtime: How an LOV Queries the List Data Source 5-130

What You May Need to Know About Lists 5-131

Inheritance of AttributeDef Properties from Parent View Object Attributes 5-131

Using Validators to Validate Attribute Values 5-131

Defining UI Hints for View Objects 5-131

How to Add Attribute-Specific UI Hints 5-132

How to Add View Object UI Hints 5-132

How to Access UI Hints Using EL Expressions 5-133

What Happens When You Add UI Hints 5-134

How to Define UI Category Hints 5-135

What Happens When You Assign Attributes to UI Categories 5-138

What You May Need to Know About Resource Bundles 5-140

xiii

6 Defining Master-Detail Related View Objects

About Master-Detail View Objects 6-1

Master-Detail View Object Use Cases and Examples 6-1

Additional Functionality for View Objects 6-2

Working with Multiple Tables in a Master-Detail Hierarchy 6-2

How to Create a Master-Detail Hierarchy Based on Entity Associations 6-3

How to Create a Master-Detail Hierarchy Based on View Objects Alone 6-5

What Happens When You Create Master-Detail Hierarchies Using View Links 6-8

How to Enable Active Master-Detail Coordination in the Data Model 6-8

How to Test Master-Detail Coordination 6-10

How to Access the Detail Collection Using the View Link Accessor 6-11

Accessing Attributes of Row by Name 6-11

Programmatically Accessing a Detail Collection Using the View Link
Accessor 6-11

Optimizing View Link Accessor Access to Display Master-Detail Data 6-12

What You May Need to Know About View Link Accessors Versus Data Model
View Link Instances 6-12

Enabling a Dynamic Detail Row Set with Active Master-Detail Coordination 6-12

Programmatically Accessing a Detail Row Set Using View Link Accessor
Attributes 6-13

What Happens At Runtime: When You Combine the Programmatic Access
Using View LInk Accessors 6-14

How to Create a Master-Detail Hierarchy With Multiple Masters 6-15

How to Create a Master-Detail Hierarchy for Entity Objects Consisting of
Transient-Only Attributes 6-16

How to Find Rows of a Master View Object Using Row Finders 6-17

Defining a Row Finder on the Master View Object 6-18

What Happens When You Create a Row Finder for a Master View Object 6-20

Working with a Single Table in a Recursive Master-Detail Hierarchy 6-22

How to Create a Recursive Master-Detail Hierarchy for an Entity-Based View
Object 6-22

Creating an Association-Based, Self-Referential View Link 6-23

Exposing the View Instance and Filter with a View Criteria 6-25

What Happens When You Create a Recursive Master-Detail Hierarchy 6-27

Working with Master-Detail Related View Objects in View Criteria 6-28

7 Defining Polymorphic View Objects

About Polymorphic View Objects 7-1

Polymorphic Entity Usages and Polymorphic View Rows Usages 7-2

Working with Polymorphic Entity Usages 7-3

How to Create a Subtype View Object with a Polymorphic Entity Usage 7-4

xiv

What Happens When You Create a Subtype View Object with a Polymorphic
Entity Usage 7-10

What You May Need to Know About Polymorphic Entity Usages 7-13

Your Query Must Limit Rows to Expected Entity Subtypes 7-13

Exposing Selected Entity Methods in View Rows Using Delegation 7-13

Creating New Rows With the Desired Entity Subtype 7-14

Working with Polymorphic View Rows 7-15

How to Create a View Object with Polymorphic View Rows 7-16

What Happens When You Create a View Object With Polymorphic View Rows 7-18

What You May Need to Know About Polymorphic View Rows 7-19

Selecting Subtype-Specific Attributes in Extended View Objects 7-20

Delegating to Subtype-Specific Methods After Overriding the Entity Usage 7-20

Working with Different View Row Interface Types in Client Code 7-21

What You May Need to Know About the Discriminator Attribute 7-22

Updating the Application Module to Expose Subtype Usages 7-23

How to Expose Subtype Usages on the Data Model 7-23

What Happens When You Add Subtype View Objects to the Application Module 7-25

8 Testing View Instance Queries

About View Instance Queries 8-1

View Instance Use Cases and Examples 8-1

Additional Functionality for Testing View Instances 8-1

Creating an Application Module to Test View Instances 8-2

How to Create the Application Module with Individual View Object Instances 8-2

How to Create the Application Module with Master-Detail View Object Instances 8-3

Testing View Object Instances Using the Oracle ADF Model Tester 8-6

How to Run the Oracle ADF Model Tester 8-6

How to Run the Oracle ADF Model Tester Using Configurations 8-8

How to Test Language Message Bundles and UI Hints 8-9

How to Test Entity-Based View Objects Interactively 8-10

How to Update the Oracle ADF Model Tester to Display Project Changes 8-11

What Happens When You Use the Oracle ADF Model Tester 8-12

How to Simulate End-User Interaction in the Oracle ADF Model Tester 8-13

Testing Master-Detail Coordination 8-15

Testing UI Hints 8-15

Testing Business Domain Layer Validation 8-15

Testing View Objects That Reference Entity Usages 8-15

Testing Row Creation and Default Value Generation 8-15

Testing That New Detail Rows Have Correct Foreign Keys 8-16

How to Test Multiuser Scenarios in the Oracle ADF Model Tester 8-16

How to Customize Configuration Options Before Running the Tester 8-16

xv

How to Enable ADF Business Components Debug Diagnostics 8-17

What Happens at Runtime: How View Objects and Entity Objects Cooperate 8-18

What Happens at Runtime: After a View Object Executes Its Query 8-19

What Happens at Runtime: After a View Row Attribute Is Modified 8-20

What Happens at Runtime: After a Foreign Key Attribute is Changed 8-21

What Happens at Runtime: After a Transaction is Committed 8-22

What Happens at Runtime: After a View Object Requeries Data 8-23

What You May Need to Know About Optimizing View Object Runtime
Performance 8-25

Testing View Object Instances Programmatically 8-27

ViewObject Interface Methods for Working with the View Object's Default
RowSet 8-28

The Role of the Key Object in a View Row or Entity Row 8-28

The Role of the Entity Cache in the Transaction 8-29

How to Create a Command-Line Java Test Client 8-31

Generating a Test Client with Skeleton Code 8-31

Modifying the Skeleton Code to Create the Test Client 8-32

What Happens When You Run a Test Client Program 8-34

What You May Need to Know About Running a Test Client 8-34

How to Count the Number of Rows in a Row Set 8-34

How to Access a Detail Collection Using the View Link Accessor 8-35

How to Iterate Over a Master-Detail-Detail Hierarchy 8-37

How to Find a Row and Update a Foreign Key Value 8-38

How to Create a New Row for a View Object Instance 8-40

How to Retrieve the Row Key Identifying a Row 8-41

What You May Need to Know About Using Partial Keys with findByKey() 8-43

How to Authenticate Test Users in the Test Client 8-44

9 Tuning View Object Performance

About View Object Tuning 9-1

Maintaining New Row Consistency Between View Objects Based on the Same
Entity 9-1

What Happens at Runtime: When View Link Consistency is Enabled 9-2

What You May Need to Know About Changing the Default View Link
Consistency Setting 9-2

Using RowMatch to Qualify Which New, Unposted Rows Get Added to a Row
Set 9-3

What You May Need to Know About the Dynamic WHERE Clause and View
Link Consistency 9-4

Using Bind Variables for Parameterized Queries 9-4

Use Bind Variables to Avoid Reparsing of Queries 9-4

Use Bind Variables to Prevent SQL-Injection Attacks 9-5

xvi

Log Bind Parameter Values 9-5

Working with Multiple Row Sets and Row Set Iterators 9-6

Using Entity-Based View Objects for Read-Only Data 9-7

Using SQL Tracing to Identify Ill-Performing Queries 9-9

Using the Appropriate View Object Tuning Settings 9-10

What You May Need to Know About the Retrieve from Database Options 9-11

Consider Whether Fetching One Row at a Time is Appropriate 9-12

Specify a Query Optimizer Hint if Necessary 9-13

Using Fetch Size to Limit the Maximum Number of Records Fetched for a View
Object 9-14

Using Range Size to Present and Scroll Data a Page at a Time 9-15

Using Range Paging to Efficiently Scroll Through Large Result Sets 9-16

Understanding How Oracle Supports "TOP-N" Queries 9-17

How to Enable Range Paging for a View Object 9-18

What Happens When You Enable Range Paging 9-19

What Happens When View Rows are Cached When Using Range Paging 9-19

How to Scroll to a Given Page Number Using Range Paging 9-20

How to Estimate the Number of Pages in the Row Set Using Range Paging 9-20

Understanding the Tradeoffs of Using a Range Paging Mode 9-20

Using Forward Only Mode to Avoid Caching View Rows 9-21

Using Retain Row Set to Optimize View Link Accessor Access 9-21

Using Dynamic Attributes On View Objects to Store UI State 9-22

10

Defining Validation and Business Rules Declaratively

About Declarative Validation 10-1

Declarative Validation Use Cases and Examples 10-2

Additional Functionality for Declarative Validation 10-2

Determining Where to Implement Validation 10-2

Understanding the Validation Cycle 10-3

Types of Entity Object Validation Rules 10-4

Attribute-Level Validation Rules 10-4

Entity-Level Validation Rules 10-4

Understanding Commit Processing and Validation 10-5

Understanding the Impact of Composition on Validation Order 10-5

Avoiding Infinite Validation Cycles 10-5

What Happens When Validations Fail 10-6

Understanding Entity Objects Row States 10-6

Understanding Bundled Exception Mode 10-7

Adding Validation Rules to Entity Objects and Attributes 10-8

How to Add a Validation Rule to an Entity or Attribute 10-8

How to View and Edit a Validation Rule on an Entity Object or Attribute 10-9

xvii

What Happens When You Add a Validation Rule 10-9

What You May Need to Know About Entity and Attribute Validation Rules 10-10

What You May Need to Know About List of Values and Attribute Validation Rules 10-11

Using the Built-in Declarative Validation Rules 10-11

How to Ensure That Key Values Are Unique 10-11

What Happens When You Use a Unique Key Validator 10-12

How to Validate Based on a Comparison 10-13

What Happens When You Validate Based on a Comparison 10-15

How to Validate Using a List of Values 10-15

What Happens When You Validate Using a List of Values 10-17

What You May Need to Know About the List Validator 10-18

How to Make Sure a Value Falls Within a Certain Range 10-18

What Happens When You Use a Range Validator 10-19

How to Validate Against a Number of Bytes or Characters 10-19

What Happens When You Validate Against a Number of Bytes or Characters 10-20

How to Validate Using a Regular Expression 10-20

What Happens When You Validate Using a Regular Expression 10-22

How to Use the Average, Count, or Sum to Validate a Collection 10-22

What Happens When You Use Collection Validation 10-23

How to Determine Whether a Key Exists 10-23

What Happens When You Use a Key Exists Validator 10-25

What You May Need to Know About Declarative Validators and View Accessors 10-25

Using Entity-Level Triggers 10-26

How to Implement Business Rules Using Entity-Level Triggers 10-27

What Happens When You Create an Entity-Level Trigger 10-27

Using Groovy Expressions For Business Rules and Triggers 10-28

How to Reference Entity Object Methods in Groovy Expressions 10-28

How to Validate Using a True/False Expression 10-29

What Happens When You Add a Groovy Expression 10-30

Triggering Validation Execution 10-31

How to Specify Which Attributes Fire Validation 10-32

What Happens When You Constrain Validation Execution with Triggering
Attributes 10-33

How to Set Preconditions for Validation 10-34

How to Set Transaction-Level Validation 10-34

What You May Need to Know About the Order of Validation Execution 10-35

Creating Validation Error Messages 10-35

How to Create Error Messages for Validators and Triggers 10-35

How to Localize Validation Messages 10-36

How to Conditionally Raise Error Messages Using Groovy 10-36

How to Embed a Groovy Expression in an Error Message 10-37

xviii

Setting the Severity Level for Validation Exceptions 10-38

Bulk Validation in SQL 10-38

11

Working Programmatically with View Objects

Generating Custom Java Classes for a View Object 11-1

How To Generate Custom Classes 11-2

Generating View Row Attribute Accessors 11-2

Exposing View Row Accessors to Clients 11-3

Configuring Default Java Generation Preferences 11-5

What Happens When You Generate Custom Classes 11-5

Viewing and Navigating to Custom Java Files 11-5

What You May Need to Know About Custom Classes 11-6

About the Framework Base Classes for a View Object 11-6

You Can Safely Add Code to the Custom Component File 11-6

Attribute Indexes and InvokeAccessor Generated Code 11-7

Avoid Creating Dependencies on Parent Application Module Types 11-8

Working Programmatically with Multiple Named View Criteria 11-9

Applying One or More Named View Criteria 11-9

What You May Need to Know about Applying One or More Named View Criteria 11-10

Removing All Applied Named View Criteria 11-11

Using the Named Criteria at Runtime 11-12

Performing In-Memory Sorting and Filtering of Row Sets 11-13

Understanding the View Object's SQL Mode 11-14

Sorting View Object Rows In Memory 11-14

Combining setSortBy and setQueryMode for In-Memory Sorting 11-15

Simplified In-Memory Sorting 11-17

Extensibility Points for In-Memory Sorting 11-17

Performing In-Memory Filtering with View Criteria 11-17

Performing In-Memory Filtering with RowMatch 11-19

Applying a RowMatch to a View Object 11-20

Using RowMatch to Test an Individual Row 11-22

How a RowMatch Affects Rows Fetched from the Database 11-22

Reading and Writing XML 11-22

How to Produce XML for Queried Data 11-23

What Happens When You Produce XML 11-23

What You May Need to Know About Reading and Writing XML 11-26

Controlling XML Element Names 11-26

Controlling Element Suppression for Null-Valued Attributes 11-26

Printing or Searching the Generated XML Using XPath 11-26

Using the Attribute Map For Fine Control Over Generated XML 11-27

xix

Use the Attribute Map Approach with Bi-Directional View Links 11-29

Transforming Generated XML Using an XSLT Stylesheet 11-29

Generating XML for a Single Row 11-30

How to Consume XML Documents to Apply Changes 11-30

What Happens When You Consume XML Documents 11-31

How ViewObject.readXML() Processes an XML Document 11-31

Using readXML() to Processes XML for a Single Row 11-31

Working Programmatically with Custom Data Sources and the Framework Base
Class ProgrammaticViewObjectImpl 11-34

How to Create a View Object Class Extending ProgrammaticViewObjectImpl 11-35

Key Framework Methods to Override for ProgrammaticViewObjectImpl Based
View Objects 11-36

What You May Need to Know About Programmatic View Object Triggers 11-37

Key Framework Methods to Override for ProgrammaticViewRowImpl Based
View Objects 11-39

Using Classic Style Programmatic View Objects for Alternative Data Sources 11-40

How to Create a Read-Only Programmatic View Object 11-41

How to Create an Entity-Based Programmatic View Object 11-42

Key Framework Methods to Override for Programmatic View Objects 11-42

How to Create a View Object on a REF CURSOR 11-43

The Overridden create() Method 11-44

The Overridden executeQueryForCollection() Method 11-44

The Overridden createRowFromResultSet() Method 11-45

The Overridden hasNextForCollectionMethod() 11-46

The Overridden releaseUserDataForCollection() Method 11-47

The Overridden getQueryHitCount() Method 11-47

Creating a View Object with Multiple Updatable Entities 11-47

How to Programmatically Create New Rows With Multiple Updatable Entity
Usages 11-49

What Happens at Runtime: View Row Creation 11-51

Programmatically Creating View Definitions and View Objects 11-52

What You May Need to Know About MDS Repository Configuration 11-54

What You May Need to Know About Creating View Objects at Runtime 11-55

Declaratively Preventing Insert, Update, and Delete 11-55

What You May Need to Know About Programmatic View Object Triggers 11-57

Defining Triggers for Programmatic View Objects 11-59

12

Implementing Validation and Business Rules Programmatically

About Programmatic Business Rules 12-1

Programmatic Business Rules Use Cases and Examples 12-2

Additional Functionality for Programmatic Business Rules 12-3

xx

Using Method Validators 12-3

How to Create an Attribute-Level Method Validator 12-4

What Happens When You Create an Attribute-Level Method Validator 12-5

How to Create an Entity-Level Method Validator 12-6

What Happens When You Create an Entity-Level Method Validator 12-8

What You May Need to Know About Translating Validation Rule Error Messages 12-8

Assigning Programmatically Derived Attribute Values 12-8

How to Provide Default Values for New Rows at Create Time 12-9

Choosing Between create() and initDefaultExpressionAttributes() Methods 12-9

Eagerly Defaulting an Attribute Value from a Database Sequence 12-9

How to Assign Derived Values Before Saving 12-10

How to Assign Derived Values When an Attribute Value Is Set 12-11

Undoing Pending Changes to an Entity Using the Refresh Method 12-11

How to Control What Happens to New Rows During a Refresh 12-12

How to Cascade Refresh to Composed Children Entity Rows 12-12

Using View Objects for Validation 12-12

How to Use View Accessors for Validation Against View Objects 12-13

How to Validate Conditions Related to All Entities of a Given Type 12-14

What You May Need to Know About Row Set Access with View Accessors 12-15

Accessing Related Entity Rows Using Association Accessors 12-15

How to Access Related Entity Rows 12-15

How to Access Related Entity Row Sets 12-16

Referencing Information About the Authenticated User 12-17

Accessing Original Attribute Values 12-17

Storing Information About the Current User Session 12-17

How to Store Information About the Current User Session 12-17

How to Use Groovy to Access Information About the Current User Session 12-19

Accessing the Current Date and Time 12-19

Sending Notifications Upon a Successful Commit 12-19

Conditionally Preventing an Entity Row from Being Removed 12-19

Determining Conditional Updatability for Attributes 12-20

Implementing Custom Validation Rules 12-21

How to Create a Custom Validation Rule 12-21

How to Register and Use a Custom Rule in JDeveloper 12-23

Registering a Custom Validator at the Project Level 12-23

Registering a Custom Validator at the IDE Level 12-24

13

Implementing Business Services with Application Modules

About Application Modules 13-1

Application Module Use Cases and Examples 13-2

xxi

Additional Functionality for Application Modules 13-3

Creating and Modifying an Application Module 13-4

How to Create an Application Module 13-4

What Happens When You Create an Application Module 13-5

How to Add a View Object Instance to an Application Module 13-6

Adding a View Object Instance to an Existing Application Module 13-6

Adding Master-Detail View Object Instances to an Application Module 13-7

Customizing a View Object Instance that You Add to an Application Module 13-11

What Happens When You Add a View Object Instance to an Application Module 13-13

How to Edit an Existing Application Module 13-14

How to Change the Data Control Name Before You Begin Building Pages 13-14

What You May Need to Know About Application Module Granularity 13-15

What You May Need to Know About View Object Components and View Object
Instances 13-16

Configuring Your Application Module Database Connection 13-16

How to Use a JDBC Data Source Connection Type 13-17

What Happens When You Create an Application Module Database Connection 13-18

How to Change Your Application Module's Runtime Configuration 13-19

How to Change the Database Connection for Your Project 13-20

Defining Nested Application Modules 13-21

How to Define a Nested Application Module 13-22

What You May Need to Know About Root Application Modules Versus Nested
Application Module Usages 13-23

Creating an Application Module Diagram for Your Business Service 13-24

How to Create an Application Module Diagram 13-24

What Happens When You Create an Application Module Diagram 13-25

How to Use the Diagram to Edit the Application Module 13-25

How to Control Diagram Display Options 13-26

How to Filter Method Names Displayed in the Diagram 13-27

How to Show Related Objects and Implementation Files in the Diagram 13-27

How to Publish the Application Module Diagram 13-28

How to Test the Application Module from the Diagram 13-28

Supporting Multipage Units of Work 13-28

How to Simulate State Management in the Oracle ADF Model Tester 13-29

What Happens at Runtime: How the Application Uses Application Module
Pooling and State Management 13-29

Customizing an Application Module with Service Methods 13-31

How to Generate a Custom Class for an Application Module 13-31

What Happens When You Generate a Custom Class for an Application Module 13-32

What You May Need to Know About Default Code Generation 13-32

How to Add a Custom Service Method to an Application Module 13-33

How to Test the Custom Application Module Using a Static Main Method 13-34

xxii

What You May Need to Know About Programmatic Row Set Iteration 13-36

Customizing Application Module Message Strings 13-37

How to Add a Resource Bundle File for the Application Module 13-38

What Happens When You Add a Resource Bundle to an Application Module 13-39

Publishing Custom Service Methods to UI Clients 13-39

How to Publish a Custom Method on the Application Module's Client Interface 13-39

What Happens When You Publish Custom Service Methods 13-40

How to Generate Client Interfaces for View Objects and View Rows 13-41

How to Test Custom Service Methods Using the Oracle ADF Model Tester 13-43

What You May Need to Know About Method Signatures on the Client Interface 13-45

What You May Need to Know About Passing Information from the Data Model 13-46

Working Programmatically with an Application Module's Client Interface 13-46

How to Work Programmatically with an Application Module's Client Interface 13-47

What Happens at Runtime: How the Application Module's Client Interface is
Accessed 13-48

How to Access an Application Module Client Interface in a Fusion Web
Application 13-49

Overriding Built-in Framework Methods 13-51

How to Override a Built-in Framework Method 13-51

What Happens When You Override a Built-in Framework Method 13-52

How to Override prepareSession() to Set Up an Application Module for a New
User Session 13-53

Calling a Web Service from an Application Module 13-54

How to Call an External Service Programmatically 13-54

Creating a Web Service Proxy Class to Programmatically Access the
Service 13-55

Calling the Web Service Proxy Template to Invoke the Service 13-56

Calling a Web Service Method Using the Proxy Class in an Application
Module 13-56

What Happens When You Create the Web Service Proxy 13-56

How to Create a New Web Service Connection 13-57

What Happens at Runtime: How the Web Service Proxy Handles a Web Service
Invocation 13-58

What You May Need to Know About Web Service Proxies 13-59

Using a Try-Catch Block to Handle Web Service Exceptions 13-59

Separating Application Module and Web Services Transactions 13-59

Setting Browser Proxy Information 13-60

Invoking Application Modules with a Web Service Proxy Class 13-60

14

Sharing Application Module View Instances

About Shared Application Modules 14-1

Shared Application Module Use Cases and Examples 14-1

xxiii

Additional Functionality for Shared Application Modules 14-2

Sharing an Application Module Instance 14-2

How to Create a Shared Application Module Instance 14-3

What Happens When You Define a Shared Application Module 14-4

What You May Need to Know About Design Time Scope of the Shared
Application Module 14-6

What You May Need to Know About the Design Time Scope of View Instances
of the Shared Application Module 14-6

What You May Need to Know About Managing the Number of Shared Query
Collections 14-6

What You May Need to Know About Shared Application Modules and
Connection Pooling 14-7

Defining a Base View Object for Use with Lookup Tables 14-8

How to Create a Base View Object Definition for a Lookup Table 14-9

What Happens When You Create a Base View Object 14-11

How to Define the WHERE Clause of the Lookup View Object Using View
Criteria 14-13

What Happens When You Create a View Criteria with the Editor 14-15

What Happens at Runtime: How a View Instance Accesses Lookup Data 14-16

Accessing View Instances of the Shared Service 14-16

How to Create a View Accessor for an Entity Object or View Object 14-17

How to Validate Against the Attribute Values Specified by a View Accessor 14-19

What Happens When You Define a View Accessor Validator 14-21

What You May Need to Know About Dynamic Filtering with View Accessors 14-22

How to Create an LOV Based on a Lookup Table 14-22

What Happens When You Define an LOV for a View Object Attribute 14-24

What Happens at Runtime: How the Attribute Displays the List of Values 14-25

What You May Need to Know About Displaying List of Values From a Lookup
Table 14-25

What You May Need to Know About Programmatically Invoking Database
Change Notifications 14-26

What You May Need to Know About Inheritance of AttributeDef Properties 14-27

What You May Need to Know About Using Validators 14-27

Testing View Object Instances in a Shared Application Module 14-27

How to Test the Base View Object Using the Oracle ADF Model Tester 14-27

How to Test LOV-Enabled Attributes Using the Oracle ADF Model Tester 14-29

What Happens When You Use the Oracle ADF Model Tester 14-29

What Happens at Runtime: How Another Service Accesses the Shared
Application Module Cache 14-30

xxiv

15

Creating SOAP Web Services with Application Modules

About Service-Enabled Application Modules 15-1

Service-Enabled Application Module Use Cases and Examples 15-2

Additional Functionality for Service-Enabled Application Modules 15-2

Publishing Service-Enabled Application Modules 15-2

How to Enable the Application Module Service Interface 15-3

What Happens When You Create an Application Module Service Interface 15-11

Annotations Generated in the Web Service Interface 15-13

Web Service Schema Generated in the Web Service Schema File 15-14

WSDL Generated in the Web Service Definition File 15-14

Stateless Session Bean Specified by the Service Implementation Class 15-15

Lookup Defined in the connections.xml File 15-16

What Happens When You Create an Application Module Service Interface With
Polymorphic View Objects 15-17

What You May Need to Know About Method Signatures on the ADF Web
Service Interface 15-20

What You May Need to Know About Row Finders and the ADF Web Service
Operations 15-21

How to Service-Enable Individual View Objects 15-21

How to Customize the SDO Properties of Service-Enabled View Objects 15-23

Excluding Individual SDO Properties in a Generated SDO Component 15-24

Associating Related SDO Properties Using Complex Data Types 15-24

How to Support Nested Processing in Service-Enabled Master-Detail View
Objects 15-26

What Happens When You Create SDO Classes 15-28

Property Accessors Generated in the SDO Interface 15-28

View Object Interface Implemented by SDO Class 15-28

View Object Schema Generated in the SDO Schema File 15-28

Container Object Implemented by SDO Result Class and Interface 15-29

How to Expose a Declarative Find Operation Filtered By a Required Bind
Variable 15-30

How to Expose a Custom Find Method Filtered By a Required Bind Variable 15-31

How to Generate Asynchronous ADF Web Service Methods 15-32

What Happens When You Generate Asynchronous ADF Web Service Methods 15-33

What Happens at Runtime: How the Asynchronous Call Is Made 15-34

How to Set Preferences for Generating the ADF Web Service Interface 15-35

How to Set Display Names for Service View Instances and Attributes 15-36

How to Secure the ADF Web Service for Access By SOAP Clients 15-38

How to Secure the ADF Web Service for Access By RMI Clients 15-40

Enabling Authentication for RMI Clients 15-40

Configuring Authorization for RMI Clients 15-43

How to Grant Test Users Access to the Service 15-45

xxv

How to Enable Support for Binary Attachments for SOAP Clients 15-47

How to Specify Character Encoding for ClobDomain Type Attributes 15-49

How to Test the Web Service Using Integrated WebLogic Server 15-50

How to Prevent Custom Service Methods from Timing Out 15-51

How to Deploy Web Services to Oracle WebLogic Server 15-54

Accessing Remote Data Over the Service-Enabled Application Module 15-57

How to Use Service-Enabled Entity Objects and View Objects 15-57

Creating Entity Objects Backed by SDO Services 15-58

Using Complex Data Types with Service-Backed Entity Object Attributes 15-59

Creating View Objects Backed by SDO Services 15-61

What Happens When You Create Service-Backed Business Components 15-62

How to Update the Data Model for Service-Backed Business Components 15-63

How to Configure the Service-Backed Business Components Runtime 15-65

Adding the SDO Client Library to the Classpath 15-66

Registering the ADF Business Components Service in the Consuming
Application's connections.xml for the EJB RMI Protocol 15-67

Registering the ADF Business Components Service in the Consuming
Application's connections.xml for the SOAP Protocol 15-69

Registering the ADF Business Components Service in the Consuming
Application's connections.xml for Fabric SDO Binding 15-73

How to Test the Service-Backed Components in the Oracle ADF Model Tester 15-74

How to Invoke Operations of the Service-Backed Components in the
Consuming Application 15-74

What You May Need to Know About Creating Service Data Objects in the
Consuming Application 15-75

What You May Need to Know About Invoking Built-In Service Methods in the
Consuming Application 15-76

What Happens at Runtime: How the Application Accesses the Published
Application Module 15-76

What You May Need to Know About Service-Backed Entity Objects and View
Objects 15-76

Accessing Polymorphic Collections in the Consuming Application 15-77

How to Generate Web Service Client Proxy Classes From the Service-Enabled
Application Module 15-78

How to Invoke Operations of Polymorphic View Object Using Generated Proxy
Classes 15-79

What Happens When You Generate Java Proxy Classes With the SDO Schema 15-83

What You May Need to Know About Invoking Service Methods in the Client
Application 15-84

Working with the Find Method Filter Model in the Consuming Application 15-85

How to Control Find Method Behavior Using a SOAP Request 15-88

How to Control Find Method Behavior Using a Java Client 15-90

xxvi

16

Creating ADF RESTful Web Services with Application Modules

About RESTful Web Services and ADF Business Components 16-1

RESTful Web Services Use Cases and Examples 16-3

Additional Functionality for RESTful Web Services 16-4

Creating ADF REST Resources Using the Application Module 16-5

How to Create ADF REST Resources Using the Create Business Components
from Tables Wizard 16-5

How to Create ADF REST Resources from View Object Instances 16-6

What Happens When You Create REST Resources in the ADF Business
Components Project 16-9

How to Edit the ADF REST Resource Definition 16-11

How to Expose Child Resources in the ADF REST Resource 16-13

What You May Need to Know About Optimizing Child Resource Database
Queries 16-15

How to Add and Remove Resources Based on the Same View Instance 16-15

How to Hide a Resource from the Catalog Describe 16-17

How to Rename the ADF REST Resource 16-17

What You May Need to Know About Naming ADF REST Resources 16-18

How to Hide and Expose Attributes in the ADF REST Resource 16-18

What You May Need to Know About ADF REST Attribute Hints 16-21

How to Control the ADF REST Response Payload Fields 16-22

What You May Need to Know About Response Payload When a Shape is
Defined on a Resource 16-23

What You May Need to Know About Modifying the ADF REST Resource
Structure 16-23

What You May Need to Know About ADF REST Resources and LOB Attributes 16-24

What You May Need to Know About LOV Accessors in the ADF REST Resource 16-26

What You May Need to Know About Mandatory Attributes in the ADF REST
Resource 16-26

What You May Need to Know About Case Sensitivity in Resource Collection
Query Operations 16-26

Customizing the ADF REST Resource Representation 16-27

How to Expose Canonical Resources in the ADF REST Resource 16-27

How to Support Create Operations on ADF REST Resources with LOV
Attributes 16-30

How to Enable Row Finder Keys in the ADF REST Resource 16-33

What You May Need to Know About Configuring LOV Resources for Row
Finders 16-35

What You May Need to Know About Row Finders in ADF REST Resource
Requests 16-38

How to Expose Subtype View Objects in the ADF REST Resource 16-39

How to Expose Standard HTTP Actions in the ADF REST Resource 16-41

xxvii

What You May Need to Know About Optimizing ADF REST Resource Get
Operations 16-43

How to Control Caching of ADF REST Resources 16-43

What You May Need to Know About the Cache-Control Header 16-45

How to Control the Format of the ADF REST Response 16-46

Versioning the ADF REST Resource 16-46

How to Version the ADF REST Resource 16-46

What You May Need to Know About Versioning ADF REST Resources 16-48

What Happens At Runtime: Invoking ADF REST Resource Versions 16-48

Versioning the ADF REST Runtime Framework 16-49

How to Version the ADF REST Runtime Framework 16-50

What You May Need to Know About Versioning the ADF REST Framework 16-51

What You May Need to Know About the Advanced Query Syntax in ADF REST
Framework Version 2 16-57

What Happens At Runtime: Invoking an ADF REST Framework Version 16-60

Granting Client Access to the ADF REST Resource 16-62

How to Create a Resource Grant for ADF REST Resources 16-63

Deploying the ADF REST Resource 16-64

How to Deploy the ADF REST Resource to Integrated WebLogic Server 16-65

How to Configure the ADF REST Resources Deployment Profile For Standalone
Oracle WebLogic Server Deployment 16-67

How to Deploy the ADF REST Resource to Standalone Oracle WebLogic Server 16-69

What You May Need to Know About Modifying the Target URL Used by Service
Clients 16-70

What You May Need to Know About Deploying ADF REST Resources With
MDS Customization Support 16-71

Testing the ADF REST Resources Using Integrated WebLogic Server 16-72

17

Extending Business Components Functionality

About Extending Business Components Functionality 17-1

Additional Functionality for Extending Business Components 17-2

Creating ADF Business Components Extension Classes 17-2

How To Create a Framework Extension Class 17-3

What Happens When You Create a Framework Extension Class 17-4

What You May Need to Know About Customizing Framework Extension Bases
Classes 17-5

How to Base a Business Component on a Framework Extension Class 17-5

How to Define Framework Extension Classes for All New Components 17-7

How to Define Framework Extension Classes for All New Projects 17-8

What Happens When You Base a Component on a Framework Extension Class 17-8

XML-Only Components 17-9

Components with Custom Java Classes 17-9

xxviii

What You May Need to Know About Updating the Extends Clause in Custom
Component Java Files 17-10

How to Package Your Framework Extension Layer in a JAR File 17-11

How to Create a Library Definition for Your Framework Extension JAR File 17-11

Customizing Framework Behavior with Extension Classes 17-12

How to Access Runtime Metadata For View Objects and Entity Objects 17-13

How to Implement Generic Functionality Using Runtime Metadata 17-13

How to Implement Generic Functionality Driven by Custom Properties 17-14

What You May Need to Know About the Kinds of Attributes 17-15

What You May Need to Know About Custom Properties 17-15

Creating Generic Extension Interfaces 17-15

Invoking Stored Procedures and Functions 17-18

How to Invoke Stored Procedures with No Arguments 17-19

How to Invoke Stored Procedure with Only IN Arguments 17-19

How to Invoke Stored Function with Only IN Arguments 17-20

How to Call Other Types of Stored Procedures 17-21

Accessing the Current Database Transaction 17-23

Customizing Business Components Error Messages 17-24

How to Customize Base ADF Business Components Error Messages 17-24

What Happens When You Customize Base ADF Business Components Error
Messages 17-26

How to Display Customize Error Messages as Nested Exceptions 17-26

How to Customize Error Messages for Database Constraint Violations 17-28

How to Implement a Custom Constraint Error Handling Routine 17-28

Creating a Custom Database Transaction Framework Extension Class 17-29

Configuring an Application Module to Use a Custom Database Transaction
Class 17-29

Creating Extended Components Using Inheritance 17-30

How To Create a Component That Extends Another 17-31

How To Extend a Component After Creation 17-31

What Happens When You Create a Component That Extends Another 17-32

Attributes in an Extended Component Inherited from the Parent Component 17-32

Attributes Added to the Extended Component's XML Descriptor 17-32

Java Classes Generated for an Extended Component 17-33

What You May Need to Know About Extending Components 17-33

Parent Classes and Interfaces for Extended Components 17-33

Generated Classes for Extended Components 17-36

Business Component Types 17-36

New Attributes in an Extended Component 17-36

Substituting Extended Components in a Delivered Application 17-38

How To Substitute an Extended Component 17-38

What Happens When You Substitute 17-39

xxix

How to Enable the Substituted Components in the Base Application 17-40

Part III Using the ADF Model Layer

18

Using ADF Model in a Fusion Web Application

About Using ADF Model in a Fusion Web Application 18-1

About ADF Data Controls 18-2

About JSF Data Binding 18-3

About ADF Data Binding 18-3

Additional Functionality for ADF Model Layer 18-4

Exposing Application Modules with ADF Data Controls 18-5

How an Application Module Data Control Appears in the Data Controls Panel 18-6

How the Data Model and Service Methods Appear in the Data Controls
Panel 18-8

How Transaction Control Operations Appear in the Data Controls Panel 18-8

How View Objects Appear in the Data Controls Panel 18-9

How Nested Application Modules Appear in the Data Controls Panel 18-12

How a Row Finder Appears in the Data Controls Panel 18-12

How to Open the Data Controls Panel 18-13

How to Refresh the Data Controls Panel 18-14

Packaging a Data Control for Use in Another Project 18-14

Using the Data Controls Panel 18-14

How to Use the Data Controls Panel 18-17

What Happens When You Use the Data Controls Panel 18-20

What Happens at Runtime: How the Binding Context Works 18-21

Working with the DataBindings.cpx File 18-22

How JDeveloper Creates a DataBindings.cpx File 18-23

What Happens When JDeveloper Creates a DataBindings.cpx File 18-23

Configuring the ADF Binding Filter 18-25

How JDeveloper Configures the ADF Binding Filter 18-25

What Happens When JDeveloper Configures an ADF Binding Filter 18-25

What Happens at Runtime: How the ADF Binding Filter Works 18-26

Working with Page Definition Files 18-26

How JDeveloper Creates a Page Definition File 18-27

What Happens When JDeveloper Creates a Page Definition File 18-28

Control Binding Objects Defined in the Page Definition File 18-32

Executable Binding Objects Defined in the Page Definition File 18-33

Creating ADF Data Binding EL Expressions 18-36

How to Create an ADF Data Binding EL Expression 18-37

Opening the Expression Builder from the Properties Window 18-38

xxx

Using the Expression Builder 18-39

What You May Need to Know About ADF Binding Properties 18-41

Using Simple UI First Development 18-41

How to Apply ADF Model Data Binding to Existing UI Components 18-43

What Happens When You Apply ADF Model Data Binding to UI Components 18-45

19

Using Validation in the ADF Model Layer

About ADF Model Layer Validation 19-1

ADF Model Layer Validation Use Cases and Examples 19-1

Additional Functionality for ADF Model Layer Validation 19-2

Defining Validation Rules in the ADF Model Layer 19-2

How to Add ADF Model Layer Validation 19-3

What Happens at Runtime: Model Validation Rules 19-4

What You May Need to Know About Default Error Handling 19-4

Customizing Error Handling 19-4

How to Customize the Detail Portion of a Message 19-6

How to Display an Informational Message from a Custom Error Handler 19-7

How to Write an Error Handler to Deal with Multiple Threads 19-8

20

Designing a Page Using Placeholder Data Controls

About Placeholder Data Controls 20-1

Placeholder Data Controls Use Cases and Examples 20-2

Additional Functionality for Placeholder Data Controls 20-2

Creating Placeholder Data Controls 20-3

How to Create a Placeholder Data Control 20-3

What Happens When You Create a Placeholder Data Control 20-4

Creating Placeholder Data Types 20-5

How to Create a Placeholder Data Type 20-6

How to Add Attributes and Sample Data to a Placeholder Data Type 20-8

Manually Adding Attributes to a Placeholder Data Type 20-8

Adding Sample Data Manually 20-9

How to Import Attributes and Sample Data to a Placeholder Data Type 20-10

What Happens When You Add Sample Data 20-12

What Happens When You Create a Placeholder Data Type 20-12

How to Configure a Placeholder Data Type Attribute to Be a List of Values 20-13

Configuring an Attribute to Be a Fixed LOV 20-13

Configuring an Attribute to Be a Dynamic LOV 20-15

How to Create Master-Detail Data Types 20-16

What Happens When You Create a Master-Detail Data Type 20-18

xxxi

Using Placeholder Data Controls 20-18

Limitations of Placeholder Data Controls 20-19

Creating Layout 20-19

Creating a Search Form 20-19

Binding Components 20-20

Rebinding Components 20-20

Packaging Placeholder Data Controls to ADF Library JARs 20-20

21

Creating ADF REST Data Controls from ADF RESTful Web
Services

About Data Controls for RESTful Web Services Based on Application Modules 21-1

REST Web Service Data Control Use Cases and Examples 21-2

Additional Functionality for REST Web Service Data Controls 21-2

Consuming Business Components as REST Resources with a REST Data Control 21-2

How to Create a REST Connection 21-3

What Happens When You Create a REST Connection 21-4

How to Create a Data Control From ADF REST Resources 21-4

How to Create an ADF Data Control Using the Web Service Data Control
Wizard 21-6

What Happens When You Create a Data Control Based on a REST Connection 21-7

Using REST Data Controls 21-8

Configuring REST Data Controls Published by Application Modules 21-12

How to Configure a REST Data Control 21-13

What Happens When You Edit a Data Control 21-14

What You May Need to Know About Primary Keys in REST Data Controls 21-15

22

Consuming ADF RESTful Web Services

About the ADF REST Framework 22-1

ADF REST Resource Use Cases and Examples 22-2

Additional Functionality for RESTful Web Services 22-4

About the Resource Samples in This Chapter 22-4

Sample Project Files and Data Model 22-4

Sample Project Resources and Resource Version Identifiers 22-6

Entity Object and View Object Customization 22-10

Understanding ADF Business Components Resources 22-13

Retrieving the ADF REST Catalog Describe 22-14

Retrieving the Full Catalog Describe 22-17

Retrieving a Minimal Catalog Describe 22-29

Retrieving the Catalog Describe Based on Resource Visibility Declaration 22-32

Retrieving the ADF REST Resource Describe 22-33

xxxii

Describing a Resource Collection 22-34

Describing a Resource Item 22-40

Describing a Nested Resource 22-43

Describing Multiple Resource Collections 22-50

Partially Describing a Nested Resource Collection 22-60

Describing a Resource Collection with Specified Fields 22-65

Using ETags in Describe Requests 22-73

Retrieving Resource Versions 22-75

Retrieving All Available Release Version Names 22-75

Retrieving a Resource By a Specific Version 22-80

Retrieving the ADF REST Resource 22-85

Fetching a Resource Collection 22-85

Paging a Resource Collection 22-87

Filtering a Resource Collection with Primary Key Values 22-91

Filtering a Resource Collection with a Query Parameter 22-93

Fetching a Resource Item 22-98

Fetching Nested Child Resources 22-99

Sorting a Resource Collection 22-104

Fetching a Resource with Grouped Context Information 22-108

Creating a Resource Item 22-111

Creating a Resource Item in a Collection 22-112

Creating a Child Resource Item 22-113

Updating a Resource Item 22-115

Updating or Creating Resource Items (Upsert) 22-116

Deleting a Resource Item 22-119

Checking for Data Consistency 22-120

Checking for Data Consistency When Updating ADF REST Resource Items 22-123

Checking for Data Consistency When Retrieving ADF REST Resource Items 22-126

Working with Attachments 22-129

Streaming Attachments Using a Resource Item Enclosure Link 22-131

Replacing LOB Content Using Base64 22-132

Working with LOV 22-134

Retrieving Non-Dependent LOV-Enabled Attribute Values with Framework
Versions 1 Through 4 22-134

Retrieving Dependent LOV-Enabled Attribute Values with Framework Versions 1
Through 4 22-137

Retrieving LOV-Enabled Attribute Values with Framework Version 5 and Later 22-141

Working with ADF REST Framework Versions 22-145

Retrieving ADF REST Framework Versions for Resource Versions 22-147

Executing a Request Using the Header to Specify the Framework Version 22-151

Executing Requests Using the Declared Default Framework Version 22-152

Working with Warning and Error Responses 22-153

xxxiii

Understanding the Exception Payload Error Response 22-155

Obtaining the Standard Error Message Response 22-155

Obtaining an Exception Payload Error Response 22-156

Obtaining Warning Messages in the Payload Response 22-160

Advanced Operations 22-162

Querying With Filtering Attributes (Partial Get) 22-163

Filtering a Resource Collection with a Row Finder 22-170

Returning Only Resource Data in a Payload 22-171

Returning the Estimated Count of Resource Items 22-173

Overriding the HTTP Method and Performing an Update 22-174

Making Batch Requests 22-175

ADF REST Framework Reference 22-179

ADF REST Describe links Object Structure 22-179

rel Attribute Values 22-179

href Attribute Value 22-180

cardinality Attribute Values 22-181

ADF REST API Framework Versions 22-181

ADF REST Payload Compression Support 22-184

ADF REST Media Types 22-185

ADF REST Data Types 22-186

ADF REST HTTP Codes 22-187

ADF REST HTTP Headers Support 22-188

ADF REST HTTP Method and Payload Support 22-191

GET Method Operations 22-191

POST Method Operations 22-208

PATCH Method Operations 22-209

DELETE Method 22-210

Part IV Creating ADF Task Flows

23

Getting Started with ADF Task Flows

About ADF Task Flows 23-1

About Unbounded Task Flows 23-3

About Bounded Task Flows 23-4

About Control Flows 23-9

ADF Task Flow Use Cases and Examples 23-10

Additional Functionality for ADF Task Flows 23-11

Creating a Task Flow 23-12

How to Create a Task Flow 23-12

What Happens When You Create a Task Flow 23-15

xxxiv

What You May Need to Know About the Default Activity in a Bounded Task Flow 23-16

What You May Need to Know About Memory Scope for Task Flows 23-17

What You May Need to Know About the Source Files for Task Flows 23-19

Adding Activities to a Task Flow 23-20

How to Add an Activity to a Task Flow 23-20

What Happens When You Add an Activity to a Task Flow 23-22

Adding Control Flow Rules to Task Flows 23-22

How to Add a Control Flow Rule to a Task Flow 23-23

How to Add a Wildcard Control Flow Rule 23-25

What Happens When You Create a Control Flow Rule 23-26

What Happens at Runtime: How Task Flows Evaluate Control Flow Rules 23-27

Testing Task Flows 23-28

How to Run a Bounded Task Flow That Contains Pages 23-28

How to Run a Bounded Task Flow That Uses Page Fragments 23-29

How to Run a Bounded Task Flow That Has Parameters 23-29

How to Run a JSF Page When Testing a Task Flow 23-30

How to Run an Unbounded Task Flow 23-31

How to Set a Run Configuration for a Project 23-31

What Happens at Runtime: Testing Task Flows 23-33

Refactoring to Create New Task Flows and Task Flow Templates 23-33

How to Extract a Bounded Task Flow from an Existing Task Flow 23-33

What Happens When You Extract a Bounded Task from an Existing Task Flow 23-34

How to Create a Task Flow from JSF Pages 23-34

How to Convert Bounded Task Flows 23-35

24

Working with Task Flow Activities

About Task Flow Activities 24-1

Task Flow Activities Use Cases and Examples 24-4

Additional Functionality for Task Flow Activities 24-4

Using View Activities 24-5

Passing Control Between View Activities 24-6

How to Pass Control Between View Activities 24-7

What Happens When You Pass Control Between View Activities 24-8

Bookmarking View Activities 24-8

How to Create a Bookmarkable View Activity 24-10

What Happens When You Designate a View as Bookmarkable 24-11

Specifying HTTP Redirect for a View Activity 24-11

How to Specify HTTP Redirect for a View Activity 24-11

What Happens When You Specify HTTP Redirect for a View Activity 24-12

Specifying URL Aliases for View Activities 24-12

xxxv

How to Specify a URL Alias for a View Activity 24-13

What Happens When You Specify a URL Alias for a View Activity 24-13

Using URL View Activities 24-14

How to Add a URL View Activity to a Task Flow 24-14

What Happens When You Add a URL View Activity to a Task Flow 24-15

What You May Need to Know About URL View Activities 24-15

Using Router Activities 24-16

How to Configure Control Flow Using a Router Activity 24-17

What Happens When You Configure Control Flow Using a Router Activity 24-18

Using Method Call Activities 24-19

How to Add a Method Call Activity 24-20

How to Specify Method Parameters and Return Values 24-22

What Happens When You Add a Method Call Activity 24-23

Using Task Flow Call Activities 24-24

How to Call a Bounded Task Flow Using a Task Flow Call Activity 24-25

What Happens When You Call a Bounded Task Flow Using a Task Flow Call
Activity 24-27

How to Specify Input Parameters on a Task Flow Call Activity 24-27

How to Call a Bounded Task Flow Using a URL 24-28

What Happens When You Configure a Bounded Task Flow to be Invoked by a
URL 24-30

What You May Need to Know About Calling a Bounded Task Flow Using a URL 24-31

How to Specify Before and After Listeners on a Task Flow Call Activity 24-32

What Happens When You Add a Task Flow Call Activity 24-33

What Happens at Runtime: How a Task Flow Call Activity Invokes a Task Flow 24-34

Using Task Flow Return Activities 24-35

How to Add a Task Flow Return Activity to a Bounded Task Flow 24-36

What Happens When You Add a Task Flow Return Activity to a Bounded Task
Flow 24-37

Using Task Flow Activities with Page Definition Files 24-37

How to Associate a Page Definition File with a Task Flow Activity 24-39

What Happens When You Associate a Page Definition File with a Task Flow
Activity 24-39

25

Using Parameters in Task Flows

About Using Parameters in Task Flows 25-1

Task Flow Parameters Use Cases and Examples 25-1

Additional Functionality for Task Flows Using Parameters 25-2

Passing Parameters to a View Activity 25-2

How to Pass Parameters to a View Activity 25-3

What Happens When You Pass Parameters to a View Activity 25-3

xxxvi

What You May Need to Know About Specifying Parameter Values 25-4

Passing Parameters to a Bounded Task Flow 25-4

How to Pass an Input Parameter to a Bounded Task Flow 25-5

What Happens When You Pass an Input Parameter to a Bounded Task Flow 25-7

Configuring a Return Value from a Bounded Task Flow 25-8

How to Configure a Return Value from a Bounded Task Flow 25-8

What Happens When You Configure a Return Value from a Bounded Task Flow 25-9

26

Using Task Flows as Regions

About Using Task Flows in ADF Regions 26-1

About Page Fragments and ADF Regions 26-3

About View Ports and ADF Regions 26-3

Task Flows and ADF Region Use Cases and Examples 26-4

Additional Functionality for Task Flows that Render in ADF Regions 26-5

Creating an ADF Region 26-5

How to Create an ADF Region 26-6

What Happens When You Create an ADF Region 26-7

Specifying Parameters for an ADF Region 26-8

How to Specify Parameters for an ADF Region 26-8

What Happens When You Specify Parameters for an ADF Region 26-10

Specifying Parameters for ADF Regions Using Parameter Maps 26-10

How to Create a Parameter Map to Specify Input Parameters for an ADF Region 26-11

What Happens When You Create a Parameter Map to Specify Input Parameters 26-11

Configuring an ADF Region to Refresh 26-13

How to Configure the Refresh of an ADF Region 26-13

What You May Need to Know About Configuring an ADF Region to Refresh 26-15

What You May Need to Know About Refreshing an ADF Region 26-17

Configuring Activation of an ADF Region 26-17

How to Configure Activation of an ADF Region 26-18

What Happens When You Configure Activation of an ADF Region 26-19

Navigating Outside an ADF Region's Task Flow 26-20

How to Trigger Navigation Outside of an ADF Region's Task Flow 26-21

What Happens When You Configure Navigation Outside a Task Flow 26-22

What You May Need to Know About How a Page Determines the Capabilities of
an ADF Region 26-23

Configuring Transaction Management in an ADF Region 26-23

Creating ADF Dynamic Regions 26-25

How to Create an ADF Dynamic Region 26-26

What Happens When You Create an ADF Dynamic Region 26-27

Adding Additional Task Flows to an ADF Dynamic Region 26-28

How to Create an ADF Dynamic Region Link 26-29

xxxvii

What Happens When You Create an ADF Dynamic Region 26-30

Configuring a Page To Render an Unknown Number of Regions 26-30

How to Configure a Page to Render an Unknown Number of Regions 26-32

What Happens When You Configure a Page to Render an Unknown Number of
Regions 26-33

What You May Need to Know About Configuring a Page to Render an Unknown
Number of Regions 26-33

Handling Access to Secured Task Flows by Unauthorized Users 26-34

How to Handle Access to Secured Task Flows by Unauthorized Users 26-34

What Happens When You Handle Access to Secured Task Flows by
Unauthorized Users 26-35

Creating Remote Regions in a Fusion Web Application 26-35

How to Configure an Application to Produce Task Flows for Use in Remote
Regions 26-39

What Happens When You Produce Task Flows for Use in Remote Regions 26-40

What You May Need to Know About Securing Remote Regions 26-42

How to Configure an Application to Render Remote Regions 26-43

What Happens When You Configure an Application to Render Remote Regions 26-44

What Happens at Runtime: How an Application Renders Remote Regions 26-45

How to Add Custom Error Messages for Remote Regions 26-46

What You May Need to Know About ADF Skins and Remote Regions 26-48

27

Creating Complex Task Flows

About Creating Complex Task Flows 27-1

Complex Task Flows Use Cases and Examples 27-2

Additional Functionality for Complex Task Flows 27-3

Sharing Data Controls Between Task Flows 27-4

How to Share a Data Control Between Task Flows 27-5

What Happens When You Share a Data Control Between Task Flows 27-5

What Happens at Runtime: How Task Flows Share Data Controls 27-5

Managing Transactions in Task Flows 27-6

How to Enable Transactions in a Bounded Task Flow 27-9

What Happens When You Specify Transaction Options 27-10

What You May Need to Know About Sharing Data Controls and Managing
Transactions 27-11

Creating Completely Separate Transactions 27-12

Guaranteeing a Called Bounded Task Joins an Existing Transaction 27-13

Using an Existing Transaction if Possible 27-15

What You May Need to Know About ADF Business Component Database
Connections and Task Flow Transaction Options 27-16

Reentering Bounded Task Flows 27-17

How to Set Reentry Behavior 27-17

xxxviii

How to Set Outcome-Dependent Options 27-18

What Happens When You Configure a Bounded Task Flow for Reentry 27-19

Handling Exceptions in Task Flows 27-19

How to Designate an Activity as an Exception Handler 27-21

What Happens When You Designate an Activity as an Exception Handler 27-22

How to Designate Custom Code as an Exception Handler 27-22

What Happens When You Designate Custom Code as an Exception Handler 27-23

What You May Need to Know About Handling Exceptions During Transactions 27-23

What You May Need to Know About Handling Validation Errors 27-24

Configuring Your Application to Use Save Points 27-24

How to Configure Your Fusion Web Application to Use Save Points 27-24

What Happens When You Configure a Fusion Web Application to Use Save
Points 27-25

What You May Need to Know About the Database Table for Save Points 27-26

Using Save Points in Task Flows 27-26

How to Add a Save Point to a Task Flow 27-28

What Happens When You Add Save Points to a Task Flow 27-29

How to Restore a Save Point 27-29

What Happens When You Restore a Save Point 27-30

How to Use the Save Point Restore Finalizer 27-30

What Happens When a Task Flow Invokes a Save Point Restore Finalizer 27-30

How to Enable Implicit Save Points 27-31

What You May Need to Know About Enabling Implicit Save Points 27-32

What You May Need to Know About the Time-to-Live Period for a Save Point 27-32

Minimizing the Number of Active Root View Ports in an Application 27-33

How to Minimize the Number of Active Root View Ports 27-33

What Happens When You Minimize the Number of Active Root View Ports 27-34

Using Train Components in Bounded Task Flows 27-34

Creating a Task Flow as a Train 27-36

How to Create a Train in a Bounded Task Flow 27-36

What Happens When You Create a Task Flow as a Train 27-37

Invoking a Child Bounded Task Flow from a Train Stop 27-38

How to Invoke a Child Bounded Task Flow From a Train Stop 27-38

Grouping Task Flow Activities to Execute Between Train Stops 27-39

Disabling the Sequential Behavior of Train Stops in a Train 27-41

How to Disable the Sequential Behavior of a Train 27-41

What Happens When You Disable the Sequential Behavior of a Train Stop 27-41

Changing the Label of a Train Stop 27-42

How to Change the Label of a Train Stop 27-42

What Happens When You Change the Label of a Train Stop 27-43

Configuring a Train to Skip a Train Stop 27-43

xxxix

How to Configure a Train to Skip a Train Stop 27-43

What Happens When You Configure a Train to Skip a Train Stop 27-44

Creating Task Flow Templates 27-44

How to Create a Task Flow Template 27-47

What Happens When You Create a Task Flow Template 27-47

What You May Need to Know About Task Flow Templates 27-48

Creating a Page Hierarchy Using Task Flows 27-48

How to Create a Page Hierarchy 27-50

How to Create an XMLMenuModel Metadata File 27-51

How to Create a Submenu with a Hierarchy of Group and Child Nodes 27-53

How to Attach a Menu Hierarchy to Another Menu Hierarchy 27-54

What Happens When You Create a Page Hierarchy 27-54

Reporting Incidents to the Oracle Fusion Middleware Diagnostic Framework 27-56

28

Using Dialogs in Your Application

About Using Dialogs in Your Application 28-1

Using Dialogs in Your Application Use Cases and Examples 28-1

Additional Functionality for Using Dialogs in Your Application 28-1

Running a Bounded Task Flow in a Modal Dialog 28-2

How to Run a Bounded Task Flow in a Modal Dialog 28-3

How to Return a Value From a Modal Dialog 28-4

How to Refresh a Page After a Modal Dialog Returns 28-6

What You May Need to Know About Dialogs in an Application that Uses Task
Flows 28-7

Using the ADF Faces Dialog Framework Instead of Bounded Task Flows 28-7

How to Define a JSF Navigation Rule for Opening a Dialog 28-12

How to Create the JSF Page That Opens a Dialog 28-12

How to Create the Dialog Page and Return a Dialog Value 28-14

What Happens at Runtime: How to Raise the Return Event from the Dialog 28-16

How to Pass a Value into a Dialog 28-16

What Happens at Runtime: How the LaunchEvent is Handled 28-17

How to Handle the Return Value 28-18

What Happens at Runtime: How the Launching Component Handles the
ReturnEvent 28-19

Part V Creating a Databound Web User Interface

xl

29

Getting Started with Your Web Interface

About Developing a Web Application with ADF Faces 29-1

Page Template and Managed Beans Use Cases and Examples 29-2

Additional Functionality for Page Templates and Managed Beans 29-2

Using Page Templates 29-2

How to Use ADF Data Binding in ADF Page Templates 29-5

What Happens When You Use ADF Model Layer Bindings on a Page Template 29-6

How to Add a Databound Page Template to a Page Dynamically 29-7

What Happens at Runtime: How Pages Use Templates 29-9

Creating a Web Page 29-9

How to Create a Web Page 29-10

What You May Need to Know About Creating Blank Web Pages 29-10

What You May Need to Know About Securing a Web Page 29-10

Using a Managed Bean in a Fusion Web Application 29-11

How to Use a Managed Bean to Store Information 29-13

What Happens When You Create a Managed Bean 29-15

How to Set Managed Bean Memory Scopes in a Server-Cluster Environment 29-16

30

Understanding the Fusion Page Lifecycle

About the Fusion Page Lifecycle 30-1

About the JSF and ADF Page Lifecycles 30-3

What You May Need to Know About Partial Page Rendering and Iterator
Bindings 30-8

What You May Need to Know About Task Flows and the Lifecycle 30-10

About Object Scope Lifecycles 30-12

What You May Need to Know About Object Scopes and Task Flows 30-14

Customizing the ADF Page Lifecycle 30-15

How to Create a Custom Phase Listener 30-15

How to Register a Listener Globally 30-16

What You May Need to Know About Listener Order 30-16

How to Register a Lifecycle Listener for a Single Page 30-17

31

Creating a Basic Databound Page

About Creating a Basic Databound Page 31-1

ADF Databound Form Use Cases and Examples 31-2

Additional Functionality for Databound Pages 31-3

Creating Text Fields Using Data Control Attributes 31-4

How to Create a Text Field 31-4

What Happens When You Create a Text Field 31-6

xli

Iterator Bindings Created in the Page Definition File 31-7

Value Bindings Created in the Page Definition File 31-8

Component Tags Created in JSF Page 31-8

Creating Basic Forms Using Data Control Collections 31-9

How to Create a Form Using a Data Control Collection 31-10

What Happens When You Create a Form Using a Data Control Collection 31-13

Creating Command Components Using Data Control Operations 31-14

How to Create Command Components From Operations 31-15

What Happens When You Create Command Components Using Operations 31-16

Action Bindings Created for Operations 31-16

Iterator RangeSize Attribute Defined 31-16

EL Expressions Created to Bind to Operations 31-17

What Happens at Runtime: How Action Events and Action Listeners Work 31-18

What You May Need to Know About Overriding Declarative Methods 31-18

Incorporating Range Navigation into Forms 31-19

How to Manually Insert Navigation Controls into a Form 31-20

What Happens When You Manually Add Navigation Buttons 31-20

What Happens at Runtime: Navigation Controls 31-21

What You May Need to Know About the Browser Back Button and Navigating
Through Records 31-21

What You May Need to Know About the CacheResults Property 31-22

Creating a Form to Edit an Existing Record 31-22

How to Create an Edit Form 31-22

What Happens When You Create Edit Forms 31-24

What You May Need to Know About Working With Data Controls for Stateless
Business Services 31-26

Using Parameters to Create a Form 31-26

How to Create a Form Using Parameters 31-27

What Happens When You Create a Parameter Form 31-28

What Happens at Runtime: How Parameters are Populated 31-29

Creating an Input Form 31-30

How to Create an Input Form 31-30

Creating an Input Form Using a Bounded Task Flow 31-31

Using a Commit Button Instead of a Return Activity Within a Task Flow 31-32

Creating an Input Form That Allows Multiple Entries in a Single Transaction 31-32

What Happens When You Create an Input Form 31-33

What Happens at Runtime: CreateInsert Action from the Method Activity 31-33

What You May Need to Know About Displaying Sequence Numbers 31-33

What You May Need to Know About Input Forms Backed By Stateless Services 31-34

Creating a Form with Dynamic Components 31-34

About Dynamic Components 31-34

How to Create a Dynamic Form 31-35

xlii

What Happens When You Create Dynamic Forms 31-36

Bindings Created for the Dynamic Form 31-37

Tags Created for a Dynamic Form without Grouping 31-37

Tags Created for a Dynamic Form with Grouping 31-38

What Happens at Runtime: How Attribute Values Are Dynamically Determined 31-39

How to Apply Validators and Converters to a Dynamic Component 31-39

What You May Need to Know About Mixing Dynamic Components with Static
Components 31-40

How to Programmatically Set Dynamic Component Behavior 31-41

How to Access a Dynamic Component Programmatically 31-43

How to Access a Dynamic Component's Binding Instance Programmatically 31-43

Modifying the UI Components and Bindings on a Form 31-45

How to Modify the UI Components and Bindings 31-45

What Happens When You Modify Attributes and Bindings 31-46

32

Creating ADF Databound Tables

About Creating ADF Databound Tables 32-1

ADF Databound Tables Use Cases and Examples 32-1

Additional Functionality for Databound Tables 32-2

Creating a Basic Table 32-3

How to Create a Basic Table 32-4

What Happens When You Create a Table 32-6

Iterator and Value Bindings for Tables 32-7

Code on the JSF Page for an ADF Faces Table 32-7

What You May Need to Know About Setting the Current Row in a Table 32-11

What You May Need to Know About Getting Row Data Programmatically 32-12

What You May Need to Know About Table Scrolling Behavior and Row Count 32-13

Creating an Editable Table 32-13

How to Create an Editable Table 32-15

What Happens When You Create an Editable Table 32-17

Creating an Input Table 32-17

How to Create an Input Table 32-18

What Happens When You Create an Input Table 32-19

What Happens at Runtime: How CreateInsert and Partial Page Refresh Work 32-21

What You May Need to Know About Creating a Row and Sorting Columns 32-21

What You May Need to Know About Create and CreateInsert 32-21

What You May Need to Know About Saving Multiple Rows in a JPA-Based Data
Control 32-22

Creating a List View of a Collection 32-22

How to Create a Databound List View 32-23

What Happens When You Create a Databound List View 32-24

xliii

Creating a Table with Dynamic Components 32-25

How to Create a Dynamic Table 32-26

What Happens When You Use Dynamic Components 32-27

Tags Created for a Dynamic Table without Grouping 32-27

Tags Created for a Dynamic Table with Grouping 32-28

What Happens at Runtime: How Attribute Values Are Dynamically Determined 32-29

How to Create a Dynamic Table with a detailStamp Facet 32-29

Modifying the Attributes Displayed in the Table 32-31

How to Modify the Displayed Attributes 32-31

How to Change the Binding for a Table 32-32

What Happens When You Modify Bindings or Displayed Attributes 32-32

33

Using Command Components to Invoke Functionality in the View
Layer

About Command Components 33-1

Command Component Use Cases and Examples 33-1

Additional Functionality for Command Components 33-2

Creating Command Components to Execute Methods 33-2

How to Create a Command Component Bound to a Custom Method 33-3

What Happens When You Create Command Components Using a Method 33-4

Action Bindings 33-4

Method Parameters 33-4

ADF Faces Component Code 33-5

EL Expressions Used to Bind to Methods 33-5

Using the Return Value from a Method Call 33-6

What Happens at Runtime: Command Button Method Bindings 33-6

Setting Parameter Values Using a Command Component 33-6

How to Set Parameters Using setPropertyListener Within a Command
Component 33-7

What Happens When You Set Parameters Using a setPropertyListener 33-8

What Happens at Runtime: setPropertyListener for a Command Component 33-8

Overriding Declarative Methods 33-8

How to Override a Declarative Method 33-9

What Happens When You Override a Declarative Method 33-12

34

Displaying Master-Detail Data

About Displaying Master-Detail Data 34-1

Master-Detail Tables, Forms, and Trees Use Cases and Examples 34-2

Additional Functionality for Master-Detail Tables, Forms, and Trees 34-3

Prerequisites for Master-Detail Tables, Forms, and Trees 34-4

xliv

How to Identify Master-Detail Objects on the Data Controls Panel 34-6

Using Tables and Forms to Display Master-Detail Objects 34-7

How to Display Master-Detail Objects in Tables and Forms Using Master-Detail
Widgets 34-8

How to Create Master-Detail Forms from Separate Components 34-10

What Happens When You Create Master-Detail Tables and Forms 34-10

Code Generated in a Master-Detail JSF Page 34-11

Binding Objects Defined in a Master-Detail Page Definition File 34-11

What Happens at Runtime: ADF Iterator for Master-Detail Tables and Forms 34-13

How to Display Master-Detail Components on Separate Pages 34-13

Using Trees to Display Master-Detail Objects 34-15

How to Display Master-Detail Objects in Trees 34-16

What Happens When You Create an ADF Databound Tree 34-19

Code Generated in the JSF Page 34-19

Binding Objects Defined in the Page Definition File 34-20

What Happens at Runtime: How an ADF Databound Tree Is Displayed 34-21

How to Synchronize Other Parts of a Page With a Tree Selection 34-22

Using Tree Tables to Display Master-Detail Objects 34-24

How to Display Master-Detail Objects in Tree Tables 34-25

What Happens When You Create a Databound Tree Table 34-25

Code Generated in the JSF Page 34-25

Binding Objects Defined in the Page Definition File 34-25

What Happens at Runtime: Events for Tree Tables 34-26

Using List Views to Display Master-Detail Objects 34-26

How to Display Master-Detail Objects in List Views 34-27

What Happens When You Create a Master-Detail List View 34-28

About Selection Events in Trees and Tree Tables 34-29

35

Creating Databound Selection Lists and Shuttles

About Selection Lists and Shuttles 35-1

Selection Lists and Shuttles Use Cases and Examples 35-2

Additional Functionality for Selection Lists and Shuttles 35-2

Creating List of Values (LOV) Components 35-3

How to Create an LOV 35-12

How to Configure an LOV Attribute as inputSearch 35-13

What Happens When You Create an inputSearch Component 35-14

How to Provide af:inputSearch LOV Component the REST URL 35-14

What Happens When You Create an LOV 35-15

What You May Need to Know About List Validators and LOV 35-16

What You May Need to Know About InputComboboxListOfValues and Null
Values 35-16

xlv

Creating a Selection List 35-17

How to Create a Model-Driven List 35-19

What Happens When You Create a Model-Driven Selection List 35-21

How to Create a Selection List Containing Fixed Values 35-22

What Happens When You Create a Fixed Selection List 35-23

How to Create a Selection List Containing Dynamically Generated Values 35-23

What Happens When You Create a Dynamic Selection List 35-25

What You May Need to Know About Values in a Selection List 35-26

Creating a List with Navigation List Binding 35-26

How to Create a List with Navigation List Binding 35-27

What Happens When You Create a Navigational List Binding 35-27

Creating a Databound Shuttle 35-28

How to Create a Databound Shuttle 35-30

What Happens When You Create a Databound Shuttle 35-32

36

Creating ADF Databound Search Forms

About Creating Search Forms 36-1

Implicit and Named View Criteria 36-2

List of Values (LOV) Input Fields 36-2

Search Form Use Cases and Examples 36-3

Additional Functionality for Search Forms 36-4

Creating Query Search Forms 36-4

How to Create a Query Search Form with a Results Table or Tree Table 36-13

How to Create a Query Search Form and Add a Results Component Later 36-14

How to Persist Saved Searches into MDS 36-15

What You May Need to Know About Named Bind Variables in Search Forms 36-15

What You May Need to Know about Default Search Binding Behavior 36-17

What You May Need to Know About Dependent Criterion 36-19

What Happens When You Create a Query Form 36-20

What Happens at Runtime: Search Forms 36-21

Setting Up Search Form Properties 36-21

How to Set Search Form Properties on the View Criteria 36-22

How to Set Search Form Properties on the Query Component 36-24

How to Set Timezone Control Hint for Timestamp Attribute 36-25

How to Create Custom Operators 36-26

How to Remove Standard Operators 36-27

How to Set Uniform Operator Field Width 36-28

Creating Quick Query Search Forms 36-29

How to Create a Quick Query Search Form with a Results Table or Tree Table 36-30

How to Create a Quick Query Search Form and Add a Results Component Later 36-31

xlvi

How to Set the Quick Query Layout Format 36-31

What Happens When You Create a Quick Query Search Form 36-32

What Happens at Runtime: Quick Query 36-32

Creating Standalone Filtered Search Tables from Named View Criteria 36-33

How to Create Filtered Table and Query-by-Example Searches 36-34

37

Creating Databound Calendar and Carousel Components

About Databound ADF Faces Calendar and Carousel Components 37-1

Databound ADF Faces Calendar and Carousel Components Use Cases and
Examples 37-1

Additional Functionality of Databound ADF Faces Calendar and Carousel
Components 37-2

Using the ADF Faces Calendar Component 37-2

How to Create the ADF Faces Calendar 37-4

What Happens When You Create a Calendar 37-7

What Happens at Runtime: How the Calendar Binding Works 37-9

Using the ADF Faces Carousel Component 37-9

How to Create a Databound Carousel Component 37-10

What Happens When You Create a Carousel 37-13

38

Creating Databound Chart, Picto Chart, and Gauge Components

About ADF Data Visualization Chart, Picto Chart, and Gauge Components 38-1

Data Visualization Components Use Cases and Examples 38-2

End User and Presentation Features 38-2

Additional Functionality for Data Visualization Components 38-2

Creating Databound Charts 38-3

How to Create an Area, Bar, Combination, Horizontal Bar, or Line Chart Using
Data Controls 38-6

What Happens When You Use the Data Controls Panel to Create a Chart 38-11

How to Create Databound Funnel Charts 38-12

How to Create Databound Pie Charts 38-14

Creating a Databound Spark Chart Using Data Controls 38-17

How to Create Databound Bubble and Scatter Charts 38-19

How to Create Databound Polar and Radar Charts 38-25

How to Create Databound Stock Charts 38-29

What You May Need to Know About Using Attribute Labels 38-31

Creating Databound Gauges 38-32

How to Create a Databound Dial Gauge 38-34

What Happens When You Create a Dial Gauge from a Data Control 38-37

How to Create a Databound Rating Gauge 38-37

xlvii

Including Gauges in Databound ADF Tables 38-40

How to Include a Gauge in a Databound ADF Table 38-41

What Happens When You Include a Gauge in an ADF Table 38-43

Creating Databound Picto Charts 38-44

How to Create a Databound Picto Chart 38-45

What Happens When You Create a Picto Chart from a Data Control 38-46

39

Creating Databound NBox Components

About ADF Data Visualization NBox Components 39-1

End User and Presentation Features 39-2

Data Visualization Components Use Cases and Examples 39-2

Additional Functionality for Data Visualization Components 39-2

Creating Databound NBox Components 39-3

How to Create an NBox Component Using ADF Data Controls 39-5

What Happens When You Create a Databound NBox 39-10

Bindings for NBox Components 39-10

Editing the NBox Binding 39-11

Code on the JSF page for an NBox Component 39-12

Modifying NBox Properties and Layout 39-13

40

Creating Databound Pivot Table and Pivot Filter Bar Components

About ADF Data Visualization Pivot Table and Pivot Filter Bar Components 40-1

Data Visualization Components Use Cases and Examples 40-2

End User and Presentation Features 40-2

Additional Functionality for Data Visualization Components 40-2

Creating Databound Pivot Tables 40-3

How to Create a Pivot Table Using ADF Data Controls 40-4

What Happens When You Use the Data Controls Panel to Create a Pivot Table 40-16

What You May Need to Know About Aggregating Attributes in the Pivot Table 40-18

Default Aggregation of Duplicate Data Rows 40-19

Custom Aggregation of Duplicate Rows 40-20

What You May Need to Know About Specifying an Initial Sort for a Pivot Table 40-21

What You May Need to Know About Configuring Editable Data Cells 40-22

41

Creating Databound Geographic and Thematic Map Components

About ADF Data Visualization Map Components 41-1

Use Cases and Examples 41-2

End User and Presentation Features 41-2

Additional Functionality for Data Visualization Components 41-2

xlviii

Creating Databound Geographic Maps 41-3

How to Configure a Geographic Base Map 41-4

How to Create a Geographic Map with a Point Theme 41-8

How to Create Point Style Items for a Point Theme 41-12

What Happens When You Create a Geographic Map with a Point Theme 41-14

What You May Need to Know About Adding Custom Point Style Items to a Map
Point Theme 41-15

How to Create a Geographic Map with a Color Theme 41-16

What Happens When You Add a Color Theme to a Geographic Map 41-20

What You May Need to Know About Customizing Colors in a Map Color Theme 41-21

How to Create a Geographic Map with a Pie or Bar Graph Theme 41-21

What Happens When You Add a Pie or Bar Graph Theme to a Geographic Map 41-26

Creating Databound Thematic Maps 41-27

How to Create a Thematic Map Using ADF Data Controls 41-28

What Happens When You Use Data Controls to Create a Thematic Map 41-35

How to Add Data Layers to Thematic Maps 41-38

How to Add an Area Data Layer to a Map Layer 41-38

How to Add a Point Data Layer to a Map Layer 41-40

Styling Areas, Markers and Images to Display Data 41-43

How to Style Areas to Display Data 41-43

How to Style Markers to Display Data using a Default Stamp 41-46

How to Style Markers to Display Data using Categorical Groups 41-49

What You May Need to Know About Styling Markers 41-54

What You May Need to Know About Default Style Values for Attribute
Groups 41-55

How to Use Images to Display Data 41-56

How to Use a Marker Image Source to Display Data 41-57

What You May Need to Know About Base Map Location Ids 41-59

What You May Need to Know About Configuring Master-Detail Relationships 41-60

How to Define a Custom Map Layer 41-61

How to Configure Drilling in Thematic Maps 41-66

Creating Databound Legends 41-68

42

Creating Databound Gantt Chart and Timeline Components

About ADF Data Visualization Components 42-1

Data Visualization Components Use Cases and Examples 42-2

End User and Presentation Features 42-2

Additional Functionality for Data Visualization Components 42-2

Creating Databound Gantt Charts 42-3

How to Create a Databound Project Gantt Chart 42-3

What Happens When You Create a Project Gantt Chart from a Data Control 42-8

xlix

How to Create a Databound Resource Utilization Gantt Chart 42-10

What Happens When You Create a Resource Utilization Gantt Chart 42-14

How to Create a Databound Scheduling Gantt Chart 42-16

What Happens When You Create a Scheduling Gantt Chart 42-20

What You May Need to Know About Data Change Event Handling 42-22

Creating Databound Timelines 42-23

How to Create a Timeline Using ADF Data Controls 42-25

What Happens When You Use Data Controls to Create a Timeline 42-28

What You May Need to Know About Using Data Controls to Create a Dual
Timeline 42-29

43

Creating Databound Hierarchy Viewer, Treemap, and Sunburst
Components

About ADF Data Visualization Components 43-1

End User and Presentation Features 43-2

Data Visualization Components Use Cases and Examples 43-2

Additional Functionality for Data Visualization Components 43-2

Creating Databound Hierarchy Viewers 43-3

How to Create a Hierarchy Viewer Using ADF Data Controls 43-4

What Happens When You Create a Databound Hierarchy Viewer 43-13

How to Configure an Alternate View Object for a Databound Panel Card 43-16

What Happens When You Use an Alternate View Object for a Hierarchy
Viewer Panel Card 43-20

How to Create a Databound Search in a Hierarchy Viewer 43-21

Creating Databound Treemaps and Sunbursts 43-26

How to Create Treemaps and Sunbursts Using ADF Data Controls 43-28

What Happens When You Create a Databound Treemap or Sunburst 43-37

What Happens at Runtime: How Databound Sunbursts or Treemaps Are Initially
Displayed 43-39

44

Creating Databound Diagram Components

About ADF Data Visualization Diagram Components 44-1

End User and Presentation Features 44-2

Data Visualization Components Use Cases and Examples 44-2

Additional Functionality for Data Visualization Components 44-2

Creating Databound Diagram Components 44-3

How to Create a Diagram Using ADF Data Controls 44-5

What Happens When You Create a Databound Diagram 44-15

Bindings for Diagram Components 44-16

Code on the JSF Page for a Diagram Component 44-16

l

Default Client Layout Files and Location 44-17

Modifying Diagram Properties and Layout 44-17

45

Creating Databound Tag Cloud Components

About ADF Data Visualization Tag Cloud Components 45-1

Data Visualization Components Use Cases and Examples 45-1

End User and Presentation Features 45-2

Additional Functionality for Data Visualization Components 45-2

Creating Databound Tag Cloud Components 45-2

How to Create a Databound Tag Cloud 45-3

What Happens When You Create a Databound Tag Cloud 45-5

46

Using Contextual Events

About Creating Contextual Events 46-1

Contextual Events Use Cases and Examples 46-7

Additional Functionality for Contextual Events 46-7

Creating Contextual Events Declaratively 46-8

How to Publish Contextual Events 46-8

How to Subscribe to and Consume Contextual Events 46-10

What Happens When You Create Contextual Events 46-12

How to Control Contextual Events Dispatch 46-14

What Happens at Runtime: Contextual Events 46-15

Creating Contextual Events Manually 46-15

How to Create Contextual Events Manually 46-15

Creating Contextual Events Using Managed Beans 46-17

How to Create Contextual Events Using Managed Beans 46-17

What Happens When You Create Contextual Events Using Managed Beans 46-18

How to Dynamically Create and Handle Contextual Events Using Managed
Beans 46-18

Creating Contextual Events Using Plain Java Objects (POJOs) 46-20

How to Configure a Generic Callback Message Handler for a Task Flow 46-21

Creating Contextual Events Using JavaScript 46-22

Creating the Event Map Manually 46-22

How to Create the Event Map Manually 46-22

Registering a Custom Dispatcher 46-23

How to Register a Custom Dispatcher 46-23

Part VI Completing Your Application

li

47

Enabling ADF Security in a Fusion Web Application

About ADF Security 47-1

Integration of ADF Security and Java Security 47-3

ADF Security Use Cases and Examples 47-4

Additional Functionality for ADF Security 47-6

ADF Security Process Overview 47-6

Enabling ADF Security 47-9

How to Enable ADF Security 47-10

What Happens When You Enable ADF Security 47-14

What Happens When You Generate a Default Form-Based Login Page 47-19

What You May Need to Know About the Configure ADF Security Wizard 47-19

What You May Need to Know About ADF Authentication 47-19

What You May Need to Know About the Built-In test-all Role 47-20

What You May Need to Know About the valid-users Role 47-21

Creating Application Roles 47-21

How to Create Application Roles 47-22

What Happens When You Create Application Roles 47-23

What You May Need to Know About Enterprise Roles and Application Roles 47-23

Defining ADF Security Policies 47-24

How to Make an ADF Resource Public 47-25

What Happens When You Make an ADF Resource Public 47-27

What Happens at Runtime: How the Built-in Roles Are Used 47-28

How to Define Policies for ADF Bounded Task Flows 47-28

How to Define Policies for Web Pages That Reference a Page Definition 47-32

How to Define Policies to Control User Access to ADF Methods 47-36

Creating a Resource Grant to Control Access to ADF Methods 47-37

Enforcing the Resource Grant in the User Interface 47-38

What Happens When You Define the Security Policy 47-39

What Happens at Runtime: How ADF Security Policies Are Enforced 47-40

What You May Need to Know About Defining Policies for Pages with No ADF
Bindings 47-41

How to Use Regular Expressions to Define Policies on Groups of Resources 47-42

How to Define Policies for Data 47-43

Defining Permission Maps on ADF Entity Objects 47-44

Defining Permission Maps on ADF Entity Object Attributes 47-45

Granting Permissions on ADF Entity Objects and Entity Attributes 47-46

How to Aggregate Resource Grants as Entitlement Grants 47-48

What Happens After You Create an Entitlement Grant 47-50

Creating Test Users 47-52

How to Create Test Users in JDeveloper 47-52

What Happens When You Create Test Users 47-54

lii

How to Associate Test Users with Application Roles 47-55

What Happens When You Configure Application Roles 47-56

Creating a Login Page 47-57

How to Create a Login Link Component and Add it to a Public Web Page for
Explicit Authentication 47-57

How to Create a Login Page Specifically for Explicit Authentication 47-59

Creating Login Code for the Backing Bean 47-60

Creating an ADF Faces-Based Login Page Specifically for Explicit
Authentication 47-64

Ensuring That the Login Page Is Public 47-67

How to Ensure That the Custom Login Page's Resources Are Accessible for
Explicit Authentication 47-68

How to Create a Public Welcome Page 47-68

Ensuring That the Welcome Page Is Public 47-69

Adding Login and Logout Links 47-69

Hiding Links to Secured Pages 47-70

How to Redirect a User After Authentication 47-70

How to Trigger a Custom Login Page Specifically for Implicit Authentication 47-72

How to Ensure That the Redirect Destination Page is Available 47-73

What You May Need to Know About Redirecting to a Different Host Server 47-75

What You May Need to Know About Fusion Web Application Logout and
Browser Caching 47-76

What You May Need to Know About Displaying Error Pages in Internet Explorer 47-77

Testing Security in JDeveloper 47-77

How to Configure, Deploy, and Run a Secure Application in JDeveloper 47-77

What Happens When You Configure Security Deployment Options 47-78

How to Use the Built-In test-all Application Role 47-80

What Happens at Runtime: How ADF Security Handles Authentication 47-80

What Happens at Runtime: How ADF Security Handles Authorization 47-82

Preparing the Secure Application for Deployment 47-84

How to Remove the test-all Role from the Application Policy Store 47-85

How to Remove Test Users from the Application Identity Store 47-86

How to Secure Resource Files Using a URL Constraint 47-87

Disabling ADF Security 47-88

How to Disable ADF Security 47-88

What Happens When You Disable ADF Security 47-89

Advanced Topics and Best Practices 47-89

Using Expression Language (EL) with ADF Security 47-90

How to Evaluate Policies Using EL 47-90

What Happens When You Use the Expression Builder Dialog 47-94

What You May Need to Know About Delayed Evaluation of EL 47-94

How to Protect UI Components Using OPSS Resource Permissions and EL 47-95

liii

Creating the Custom Resource Type 47-95

Creating a Resource Grant for a Custom Resource Type 47-97

Associating the Rendering of a UI Component with a Resource Grant 47-98

How to Perform Authorization Checks for Entity Object Operations 47-100

Getting Information from the ADF Security Context 47-100

How to Determine Whether Security Is Enabled 47-101

How to Determine Whether the User Is Authenticated 47-101

How to Determine the Current User Name 47-101

How to Determine Membership of a Java EE Security Role 47-102

How to Determine Permission Using Java 47-102

Best Practices for Working with ADF Security 47-103

48

Testing and Debugging ADF Components

About ADF Debugging 48-1

Correcting Simple Oracle ADF Compilation Errors 48-2

Correcting Simple Oracle ADF Runtime Errors 48-4

Reloading Oracle ADF Metadata in Integrated WebLogic Server 48-6

Validating ADF Controller Metadata 48-6

Using the ADF Logger 48-7

How to Set ADF Logging Levels 48-8

How to Create an Oracle ADF Debugging Configuration 48-10

How to Turn On Diagnostic Logging for Non-Oracle ADF Loggers 48-12

How to Use the Log Analyzer to View Log Messages 48-12

Viewing Diagnostic Messages in the Log Analyzer 48-13

Using the Log Analyzer to Analyze the ADF Request 48-16

Sorting Diagnostic Messages By ADF Events 48-19

What You May Need to Know About ADF Loggers and Log Levels 48-23

What You May Need to Know About ADF Logging and Log Output 48-24

What You May Need to Know About ADF Logging and Oracle WebLogic Server 48-25

Using the Oracle ADF Model Tester for Testing and Debugging 48-25

How to Run in Debug Mode and Test with the Oracle ADF Model Tester 48-26

How to Run the Oracle ADF Model Tester and Test with a Specific Application
Module Configuration 48-27

What Happens When You Run the Oracle ADF Model Tester in Debug Mode 48-27

How to Verify Runtime Artifacts in the Oracle ADF Model Tester 48-27

How to Refresh the Oracle ADF Model Tester with Application Changes 48-28

Using the ADF Declarative Debugger 48-28

Using ADF Source Code with the Debugger 48-30

How to Set Up the ADF Source User Library 48-31

How to Add the ADF Source Library to a Project 48-31

How to Use the EL Expression Evaluator 48-32

liv

How to View and Export Stack Trace Information 48-33

Setting ADF Declarative Breakpoints 48-35

How to Set and Use Task Flow Activity Breakpoints 48-44

How to Set and Use Page Definition Executable Breakpoints 48-45

How to Set and Use Page Definition Action Binding Breakpoints 48-47

How to Set and Use Page Definition Value Binding Breakpoints 48-48

How to Set and Use Page Definition Contextual Event Breakpoints 48-49

How to Set and Use ADF Lifecycle Phase Breakpoints 48-51

How to Use the ADF Structure Window 48-53

How to Use the ADF Data Window 48-56

What Happens When You Set an ADF Declarative Breakpoint 48-67

Setting Breakpoints in Java Code and Groovy Script 48-67

How to Set Breakpoints in Groovy Script 48-68

How to Set Java Breakpoints on Classes and Methods 48-68

How to Optimize Use of the Source Editor 48-69

How to Set Breakpoints and Debug Using ADF Source Code 48-70

How to Use Debug Libraries for Symbolic Debugging 48-70

What You May Need to Know About Setting Java Code Breakpoints 48-72

How to Edit Breakpoints for Improved Control 48-73

How to Filter Your View of Class Members 48-74

What You May Need to Know About Oracle ADF Breakpoints 48-74

Debugging Groovy Expressions in Business Components 48-75

How to Debug Groovy Expressions 48-76

How to Control Groovy Debugging 48-76

What Happens When You Debug Groovy Expressions 48-77

Regression Testing with JUnit 48-79

How to Obtain the JUnit Extension 48-80

How to Create a JUnit Test Case 48-81

How to Create a JUnit Test Fixture 48-84

How to Create a JUnit Test Suite 48-84

How to Create a Business Components Test Suite 48-85

How to a Create Business Components Test Fixture 48-87

How to Run a JUnit Test Suite as Part of an Ant Build Script 48-88

49

Refactoring a Fusion Web Application

About Refactoring a Fusion Web Application 49-1

Refactoring Use Cases and Examples 49-2

Additional Functionality for Refactoring 49-2

Renaming Files 49-2

Moving JSF Pages 49-2

lv

Refactoring pagedef.xml Bindings Objects 49-3

Refactoring ADF Business Components 49-4

Refactoring ADF Business Component Object Attributes 49-6

Refactoring Named Elements 49-7

Refactoring ADF Task Flows 49-8

Refactoring the DataBindings.cpx File 49-8

Refactoring Limitations 49-9

Moving the ADF Business Components Project Configuration File (.jpx) 49-10

50

Reusing Application Components

About Reusable Components 50-1

Creating Reusable Components 50-3

Naming Conventions 50-3

The Naming Process for the ADF Library JAR Deployment Profile 50-6

Keeping the Relevant Project 50-6

Selecting the Relevant Feature 50-6

Selecting Paths and Folders 50-6

Including Connections Within Reusable Components 50-7

Reusable ADF Components Use Cases and Examples 50-8

Additional Functionality for Reusable ADF Components 50-8

Common Functionality of Reusable ADF Components 50-8

Using Extension Libraries 50-9

Using the Resources Window 50-12

Packaging a Reusable ADF Component into an ADF Library 50-13

How to Package a Component into an ADF Library JAR 50-14

What Happens When You Package a Project to an ADF Library JAR 50-19

Application Modules Files Packaged into a JAR 50-20

Data Controls Files Packaged into a JAR 50-20

Task Flows Files Packaged into a JAR 50-20

Page Templates Files Packaged into a JAR 50-20

Declarative Components Files Packaged into a JAR 50-21

How to Place and Access JDeveloper JAR Files 50-21

Adding ADF Library Components into Projects 50-22

How to Add an ADF Library JAR into a Project using the Resources Window 50-22

How to Add an ADF Library JAR into a Project Manually 50-24

What Happens When You Add an ADF Library JAR to a Project 50-25

What You May Need to Know About Using ADF Library Components 50-28

Using Data Controls 50-28

Using Application Modules 50-28

Using Business Components 50-28

lvi

Using Task Flows 50-29

Using Page Templates 50-30

Using Declarative Components 50-30

What You May Need to Know About Differentiating ADF Library Components 50-31

What Happens at Runtime: How ADF Libraries are Added to a Project 50-31

Removing an ADF Library JAR from a Project 50-32

How to Remove an ADF Library JAR from a Project Using the Resources
Window 50-33

How to Remove an ADF Library JAR from a Project Manually 50-33

51

Customizing Applications with MDS

About Customization and MDS 51-1

Customization and Layers: Use Cases and Examples 51-2

Static and Dynamic Customization Content 51-3

Additional Functionality for Customization 51-3

Developing a Customizable Application 51-3

How to Create Customization Classes 51-4

Customization Classes 51-4

Implementing the getValue() Method in Your Customization Class 51-6

Creating a Customization Class 51-8

What You May Need to Know About Customization Classes 51-10

How to Consume Customization Classes 51-10

Making Customization Classes Available to JDeveloper at Design Time 51-10

Making Customization Classes Available to the Application at Runtime 51-11

How to Enable Seeded Customizations for User Interface Projects 51-12

How to Enable Seeded Customizations in Existing Pages 51-13

How to Enable Customizations in Resource Bundles 51-14

How to Configure the adf-config.xml File 51-14

What Happens When You Create a Customizable Application 51-16

What You May Need to Know About Customizable Objects and Applications 51-16

Customizing an Application 51-16

Introducing the Customization Developer Role 51-17

How to Switch to the Customization Developer Role in JDeveloper 51-18

Introducing the Tip Layer 51-18

How to Configure Customization Layers 51-19

Configuring Layer Values Globally 51-20

Configuring Workspace-Level Layer Values from the Studio Developer Role 51-21

Configuring Workspace-Level Layer Values from the Customization
Developer Role 51-22

How to Customize Metadata in JDeveloper 51-23

What Happens When You Customize an Application 51-25

lvii

How to Customize ADF Library Artifacts in JDeveloper 51-25

Customizing an ADF Library Artifact 51-26

Specifying a Location for ADF Library Customizations 51-27

How to View ADF Library Runtime Customizations from Exported JARs 51-27

What Happens When You Customize ADF Library Artifacts 51-28

What Happens at Runtime: How Customizations are Applied 51-30

What You May Need to Know About Customized Applications 51-30

Customization and Integrated Source Control 51-30

Editing Resource Bundles in Customized Applications 51-31

How to Package and Deploy Customized Applications 51-31

Implicitly Creating a MAR Profile 51-32

Explicitly Creating a MAR Profile 51-32

Extended Metadata Properties 51-33

How to Edit Extended Metadata Properties 51-34

How to Enable Customization for Design Time at Runtime 51-35

Editing Customization Properties in the Properties window 51-35

Using a Standalone Annotations File to Specify Type-Level Customization
Properties 51-36

Enabling Runtime Modification of Customization Configuration 51-38

52

Allowing User Customizations at Runtime

About User Customizations 52-1

Runtime User Customization Use Cases and Examples 52-8

Additional Functionality for Runtime User Customization 52-9

Enabling Runtime User Customizations for a Fusion Web Application 52-9

How to Enable User Customizations 52-9

What Happens When You Enable User Customizations 52-10

Configuring User Customizations 52-11

How to Configure Change Persistence 52-13

What Happens When You Configure Change Persistence 52-14

Controlling User Customizations in Individual JSF Pages 52-14

How to Control User Customizations on a JSF Page 52-15

What Happens at Runtime: How Changes are Persisted 52-17

What You May Need to Know About Using Change Persistence on Templates
and Regions 52-18

Implementing Custom User Customizations 52-18

What You May Need to Know About the Change Persistence Framework API 52-19

How to Create Code for Custom User Customizations 52-20

Creating Implicit Change Persistence in Custom Components 52-24

How to Set Implicit Change Persistence For Attribute Values that Use Events 52-24

lviii

How to Set Implicit Change Persistence For Other Attribute Values 52-25

53

Using the Active Data Service

About the Active Data Service 53-1

Active Data Service Use Cases and Examples 53-2

Limitations of the Active Data Service Framework 53-2

Active Data Service Framework 53-3

Data Transport Modes 53-5

Configuring the Active Data Service 53-6

How to Configure the Active Data Service 53-7

What You May Need to Know About Configuring an ADS Transport Mode 53-9

How to Configure Session Timeout for Active Data Service 53-10

Configuring Components to Use the Active Data Service 53-11

How to Configure Components to Use the Active Data Service Without the
Active Data Proxy 53-12

How to Configure Components to Use the Active Data Service with the Active
Data Proxy 53-13

What You May Need to Know About Displaying Active Data in ADF Trees 53-14

What Happens at Runtime: How Components Render When Bound to Active
Data 53-14

What You May Need to Know About Running ADS in a Google Chrome Browser 53-14

Using the Active Data Proxy 53-15

How to Use the Active Data Proxy 53-15

What You May Need to Know About Maintaining Read Consistency 53-20

Using the Active Data with a Scalar Model 53-20

How to Use the Active Data with a Scalar Model 53-21

54

Configuring High Availability for Fusion Web Applications

About Oracle ADF High Availability 54-1

Oracle ADF Scope and Session State Considerations 54-1

Oracle ADF Failover and Expected Behavior Considerations 54-2

Session Failover Requirements 54-2

Expected Behavior for Application Failover 54-2

ADF Application Module for Oracle RAC Considerations 54-2

Configuring Oracle ADF for High Availability 54-3

How to Configure Application Modules for High Availability 54-3

How to Enable Support for Replicating HTTP Session State 54-4

How to Ensure Oracle ADF Receives Notifications From Managed Bean
Changes 54-4

What You May Need to Know About Using Application Scoped Managed Beans
in a Clustered Environment 54-5

lix

How to Disable Design Time Optimizations 54-6

Troubleshooting Fusion Web Applications for High Availability 54-6

How to Test the Fusion Web Application With Failover Mode Enabled 54-6

How to Troubleshoot High Availability Issues at Design Time 54-7

How to Troubleshoot High Availability Issues After Deployment 54-7

Verifying the JRF Runtime Installation 54-7

Verifying the Success of All Application Deployments 54-8

How to Troubleshoot Oracle ADF Replication and Failover Issues 54-8

55

Deploying Fusion Web Applications

About Deploying Fusion Web Applications 55-1

Developing Applications with Integrated WebLogic Server 55-3

Developing Applications to Deploy to Standalone Application Server 55-3

Running a Fusion Web Application in Integrated WebLogic Server 55-4

How to Run an Application in Integrated WebLogic Server 55-6

How to Run an Application with Metadata in Integrated WebLogic Server 55-6

Preparing the Application 55-8

How to Create a Connection to the Target Application Server 55-8

How to Create Deployment Profiles 55-10

Creating a WAR Deployment Profile 55-11

Creating a MAR Deployment Profile 55-12

Creating an Application Level EAR Deployment Profile 55-14

Adding Customization Classes into a JAR 55-16

Delivering Customization Classes as a Shared Library 55-17

Viewing and Changing Deployment Profile Properties 55-18

How to Create and Edit Deployment Descriptors 55-18

Creating Deployment Descriptors 55-19

Viewing or Modifying Deployment Descriptor Properties 55-20

Configuring the application.xml File for Application Server Compatibility 55-20

Configuring the web.xml File for Application Server Compatibility 55-21

Enabling the Application for RUEI and Click History 55-22

How to Deploy Applications with ADF Security Enabled 55-23

Applications That Will Run Using Oracle Single Sign-On (SSO) 55-23

Configuring Security for Weblogic Server 55-24

How to Replicate Memory Scopes in a Clustered Environment 55-26

How to Enable the Application for ADF MBeans 55-26

What You May Need to Know About JDBC Data Source for Oracle WebLogic
Server 55-28

Deploying the Application 55-29

How to Deploy to the Application Server from JDeveloper 55-32

How to Create an EAR File for Deployment 55-34

lx

How to Deploy New Customizations Applied to ADF Library 55-35

Exporting Customization to a Deployed Application 55-35

Deploying Customizations to a JAR 55-36

What You May Need to Know About ADF Libraries 55-36

What You May Need to Know About EAR Files and Packaging 55-37

How to Deploy the Application Using Scripts and Ant 55-37

How to Deploy ADF Faces Library JARs with the Application 55-37

What You May Need to Know About JDeveloper Runtime Libraries 55-38

Postdeployment Configuration 55-38

How to Migrate an Application 55-38

How to Configure the Application Using ADF MBeans 55-38

Testing the Application and Verifying Deployment 55-39

56

Using State Management in a Fusion Web Application

About Fusion Web Application State Management 56-1

What You May Need to Know About Multi-Step Tasks 56-3

What You May Need to Know About the Stateless HTTP Protocol 56-4

What You May Need to Know About Session Cookies 56-4

What You May Need to Know About Using HttpSession 56-5

Managing When Passivation and Activation Occurs 56-6

How to Confirm That Fusion Web Applications Use Optimistic Locking 56-8

What You May Need to Know About Pending Changes Across HTTP Requests 56-9

What You May Need to Know About Release Levels and postChanges() Method 56-10

Testing to Ensure Your Application Module is Activation-Safe 56-10

How To Disable Application Module Pooling to Test Activation 56-10

What You May Need to Know About the jbo.ampool.doampooling Configuration
Parameter 56-11

What You May Need to Know About State Management and Data Consistency 56-12

What You May Need to Know About State Management and Subclassed Entity
Objects 56-12

Controlling Where Model State Is Saved 56-12

How to Control the Schema Where the State Management Table Resides 56-13

How to Configure the Passivation Store 56-13

What Happens at Runtime: What Model State Is Saved and When It Is Cleaned
Up 56-14

Cleaning Up the Model State 56-15

How to Clean Up Temporary Storage Tables Resulting from Passivation 56-15

What Happens at Runtime: When a Passivation Record Is Updated 56-16

What Happens at Runtime: When a Passivation Snapshot is Removed on
Unmanaged Release 56-17

What Happens at Runtime: Passivation Snapshot Retained in Failover Mode 56-17

lxi

Managing the HttpSession in Fusion Web Applications 56-17

How to Configure the Implicit Timeout Due to User Inactivity 56-18

How to Code an Explicit HttpSession Timeout 56-18

What Happens at Runtime: How Application Modules are Handled When the
HTTP Times Out 56-18

Managing Custom User-Specific Information During Passivation 56-18

How to Passivate Custom User-Specific Information 56-19

What Happens When You Passivate Custom Information 56-20

What You May Need to Know About Activating Custom Information 56-20

Managing the State of View Objects During Passivation 56-21

How to Manage the State of View Objects 56-21

What You May Need to Know About Passivating View Objects 56-22

How to Manage the State of Transient View Objects and Attributes 56-22

What You May Need to Know About Passivating Transient View Objects 56-22

How to Use Transient View Objects to Store Session-level Global Variables 56-23

57

Tuning Application Module Pools

About Application Module Pooling 57-1

Application Module Pools 57-2

Deployment Environment Scenarios and Pooling 57-2

Single Oracle WebLogic Server Domain, Single Oracle WebLogic Server
Instance, Single JVM 57-3

Multiple Oracle WebLogic Server Domains, Multiple Oracle WebLogic
Server Instance, Multiple JVMs 57-3

Setting Pool Configuration Parameters 57-4

How to Set Configuration Properties Declaratively 57-4

What Happens When You Set Configuration Properties Declaratively 57-6

How to Programmatically Set Configuration Properties 57-7

What You May Need to Know About Configuration Property Scopes 57-9

What You May Need to Know About Application Module Pool Configuration
Parameters 57-10

Pool Behavior Parameters 57-10

Pool Sizing Parameters 57-12

Pool Cleanup Parameters 57-13

What You May Need to Know About Optimizing Application Module Pooling 57-14

Initializing Database State and Pooling Considerations 57-15

How to Set Database State Per User 57-15

Part VII Appendixes

lxii

A Oracle ADF XML Files

About ADF Metadata Files A-1

ADF File Overview Diagram A-2

Oracle ADF Data Control Files A-3

Oracle ADF Data Binding Files A-3

Web Configuration Files A-3

ADF File Syntax Diagram A-4

adfm.xml A-5

modelProjectName.jpx A-6

bc4j.xcfg A-7

DataBindings.cpx A-9

DataBindings.cpx Syntax A-9

DataBindings.cpx Sample A-11

pageNamePageDef.xml A-12

PageDef.xml Syntax A-13

adfc-config.xml A-26

task-flow-definition.xml A-27

adf-config.xml A-29

adf-settings.xml A-34

web.xml A-35

logging.xml A-36

B Oracle ADF Binding Properties

C ADF Security Permission Grants

D Most Commonly Used ADF Business Components Methods

Methods for Creating Your Own Layer of Framework Base Classes D-1

Methods Used in the Client Tier D-2

ApplicationModule Interface D-2

Transaction Interface D-4

ViewObject Interface D-5

RowSet Interface D-6

RowSetIterator Interface D-7

Row Interface D-9

StructureDef Interface D-9

AttributeDef Interface D-10

AttributeHints Interface D-11

lxiii

Methods Used in the Business Service Tier D-11

Controlling Custom Java Files for Your Components D-12

ApplicationModuleImpl Class D-12

Methods You Typically Call on ApplicationModuleImpl D-13

Methods You Typically Write in Your Custom ApplicationModuleImpl
Subclass D-13

Methods You Typically Override in Your Custom ApplicationModuleImpl
Subclass D-14

DBTransactionImpl2 Class D-16

Methods You Typically Call on DBTransaction D-16

Methods You Typically Override in Your Custom DBTransactionImpl2
Subclass D-17

EntityImpl Class D-18

Methods You Typically Call on EntityImpl D-18

Methods You Typically Write in Your Custom EntityImpl Subclass D-19

Methods You Typically Override in Your Custom EntityImpl Subclass D-20

EntityDefImpl Class D-22

Methods You Typically Call on EntityDefImpl D-22

Methods You Typically Write in Your Custom EntityDefImpl Class D-23

Methods You Typically Override in Your Custom EntityDefImpl D-23

ViewObjectImpl Class D-24

Methods You Typically Call on ViewObjectImpl D-24

Methods You Typically Write in Your Custom ViewObjectImpl Subclass D-26

Methods You Typically Override in Your Custom ViewObjectImpl Subclass D-27

ViewRowImpl Class D-29

Methods You Typically Call on ViewRowImpl D-29

Methods You Typically Write in Your Custom ViewRowImpl Class D-30

Methods You Typically Override in Your Custom ViewRowImpl Subclass D-31

E ADF Business Components Java EE Design Pattern Catalog

F ADF Equivalents of Common Oracle Forms Triggers

Validation and Defaulting (Business Logic) F-1

Query Processing F-2

Database Connection F-3

Transaction "Post" Processing (Record Cache) F-3

Error Handling F-5

lxiv

G Performing Common Oracle Forms Tasks in Oracle ADF

Concepts Familiar to Oracle Forms Developers G-1

Performing Tasks Related to Data G-2

How to Retrieve Lookup Display Values for Foreign Keys G-2

How to Get the Sysdate from the Database G-3

How to Implement an Isolation Mode That Is Not Read Consistent G-3

How to Implement Calculated Fields G-3

How to Implement Mirrored Items G-4

How to Use Database Columns of Type CLOB or BLOB G-4

Performing Tasks Related to the User Interface G-4

How to Lay Out a Page G-4

How to Stack Canvases G-4

How to Implement a Master-Detail Screen G-5

How to Implement an Enter Query Screen G-5

How to Implement an Updatable Multi-Record Table G-5

How to Create a Popup List of Values G-5

How to Implement a Dropdown List as a List of Values G-6

How to Implement a Dropdown List with Values from Another Table G-6

How to Implement Immediate Locking G-6

How to Throw an Error When a Record Is Locked G-7

H Deploying ADF Applications to GlassFish

About Deploying ADF Applications to GlassFish Server H-1

Developing Applications with Integrated WebLogic Server H-1

Developing Applications to Deploy to Standalone GlassFish Server H-2

Running an ADF Application in Integrated WebLogic Server H-3

How to Run an Application in Integrated WebLogic Server H-4

Preparing the Application H-4

How to Create a Connection to the Target Application Server H-5

How to Create Deployment Profiles H-6

Creating a WAR Deployment Profile H-7

Creating an Application-Level EAR Deployment Profile H-8

Viewing and Changing Deployment Profile Properties H-9

How to Create and Edit Deployment Descriptors H-9

Creating Deployment Descriptors H-9

Viewing or Modifying Deployment Descriptor Properties H-11

Configuring the application.xml File for Application Server Compatibility H-11

Configuring the web.xml File for GlassFish Server Compatibility H-12

How to Enable JDBC Data Source for GlassFish H-12

How to Change Initial Context Factory H-13

lxv

Deploying the Application H-14

How to Deploy to the Application Server from JDeveloper H-15

What You May Need to Know About Deploying from JDeveloper H-15

How to Create an EAR File for Deployment H-16

What You May Need to Know About ADF Libraries H-16

What You May Need to Know About EAR Files and Packaging H-17

How to Deploy to the Application Server using asadmin Commands H-17

How to Deploy the Application Using Scripts and Ant H-17

Testing the Application and Verifying Deployment H-17

lxvi

Preface

Welcome to Developing Fusion Web Applications with Oracle Application
Development Framework.

Audience
This document is intended for enterprise developers who need to create and deploy
database-centric Java EE applications with a service-oriented architecture using the
Oracle Application Development Framework (Oracle ADF). This guide explains how to
build Fusion web applications using ADF Business Components, ADF Controller, ADF
Faces, and JavaServer Faces.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents:

• Understanding Oracle Application Development Framework

• Developing Web User Interfaces with Oracle ADF Faces

• Developing Applications with Oracle ADF Desktop Integration

• Developing Applications with Oracle ADF Data Controls

• Developing Applications with Oracle JDeveloper

• Developing ADF Skins

• Administering Oracle ADF Applications

• Tuning Performance

• High Availability Guide

• Installing Oracle JDeveloper

• Oracle JDeveloper Online Help

lxvii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle JDeveloper Release Notes, included with your JDeveloper installation, and
on Oracle Technology Network

• Java API Reference for Oracle ADF Model

• Java API Reference for Oracle ADF Controller

• Java API Reference for Oracle ADF Lifecycle

• Java API Reference for Oracle ADF Faces

• JavaScript API Reference for Oracle ADF Faces

• Java API Reference for Oracle ADF Data Visualization Components

• Java API Reference for Oracle ADF Share

• Java API Reference for Oracle ADF Model Tester

• Java API Reference for Oracle Generic Domains

• Java API Reference for Oracle Metadata Service (MDS)

• Java API Reference for Oracle ADF Resource Bundle

• Tag Reference for Oracle ADF Faces

• Tag Reference for Oracle ADF Faces Skin Selectors

• Tag Reference for Oracle ADF Faces Data Visualization Tools

• Tag Reference for Oracle ADF Data Visualization Tools Skin Selectors

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements (for example,
menus and menu items, buttons, tabs, dialog controls), including
options that you select.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates language and syntax elements, directory and
file names, URLs, text that appears on the screen, or text that you
enter.

Preface

lxviii

What's New in This Guide for Release 12c
(12.2.1.4.0)

The following topics introduce the new and changed features of Oracle JDeveloper
and Oracle Application Development Framework (Oracle ADF) and other significant
changes, which are described in this guide. This document in previous JDeveloper
releases had been titled Fusion Developer's Guide for Oracle Application Development
Framework.

New and Changed Features for Release 12c (12.2.1.4.0)
Oracle Fusion Middleware Release 12c (12.2.1.4.0) of Oracle JDeveloper and Oracle
Application Development Framework (Oracle ADF) includes the following new and
changed development features, which are described in this guide.

• ADF REST Framework Runtime and Design Time

– New runtime support for REST resources is provided with the addition of
four new ADF REST framework versions. By declaring a default framework
version to process requests, the REST application developer may opt into
the features introduced by a specific ADF REST framework. The default ADF
REST framework version is defined by the application in the adf-config.xml
file. In JDeveloper release 12.2.1.4.0, framework versions 4, 5, 6, and 7 were
added to existing versions 1 through 3.

* Versions 4 and later enables exception details to appear in the
response when the ADF REST request is made for either application/
vnd.oracle.adf.error+json or application/json media types. See
Obtaining an Exception Payload Error Response.

* Versions 5 and later supports filtering resources by using a row
match finder to access nested LOV resources, for example: /rest/v1/
Cities?finder=ByState;name='California'. Starting with this version,
row context LOV URLs are no longer returned in the payload or in the
describe. Only LOV resource URLs that point to top-level resources are
described and included in payloads. See Retrieving LOV-Enabled Attribute
Values with Framework Version 5 and Later.

* Versions 6 and later makes it easier to differentiate between resource
fields and item context information, such as links and headers. A new
element @context is introduced in this version and all the information
for an item is moved under @context. Version 6 also supports obtaining
warning details in the response. See Fetching a Resource with Grouped
Context Information and Obtaining Warning Messages in the Payload
Response.

* Version 7 (latest version in release 12.2.1.4.0) supports top-level LOVs,
and removes row-level LOV resource descriptions in the ADF REST
describe and removes LOV links from the resource item payload links
section. Earlier framework versions support LOV in a context of a row in
the REST resource. See What You May Need to Know About Versioning
the ADF REST Framework.

69

For an overview of the features introduced by all available framework
versions, see What You May Need to Know About Versioning the ADF REST
Framework.

– A variety of new ways to limit the ADF REST resource catalog describe
are available. The catalog describe can now be obtained by retrieving only
minimal details (a minimal describe), or by retrieving based on resource
visibility—private, public, or both (as specified on the resource at design time),
or by retrieving parent resources and optionally excluding or including nested,
child resources. See Retrieving the ADF REST Catalog Describe.

– A variety of new ways to describe ADF REST resources are available. The
resource describe can now be obtained by retrieving two or more named
resources, by using parameters filters or partialDescription to limit the
resource describe, and by retrieving resources based on ETag values as
assigned by the web server to identify specific versions of a resource. See
Retrieving the ADF REST Resource Describe.

– The ADF REST resource describe now identifies whether or not an attribute is
mandatory using the property “mandatory”. The “mandatory” property in the
resource describe is based on the view object attribute metadata specified at
design time. See What You May Need to Know About Mandatory Attributes in
the ADF REST Resource.

– A new Upsert mode on a POST method lets you merge payload content to
either update resource items that exist, or if not, create the resource items.
See Updating or Creating Resource Items (Upsert).

– The use of special characters in the query parameter string of an ADF REST
GET request is supported by the use of single quotes (in framework version 2
and later) to define literal values. See GET Method Operations.

– Case-sensitive sorting of resource items of type String is now supported by the
orderBy query string parameter of an ADF REST GET request. By default, the
orderBy clause sorts the records with uppercase letters first and then lower
case letters. To achieve case-insensitive sorting, the orderBy clause can be
combined with upper(attrName) or lower(attrName). See Sorting a Resource
Collection.

– The ADF REST framework now supports configuration options for Cache-
Control. You can specify these additional configuration options in the REST
resource source editor. When defined on the resource, the Cache-Control
header will be added in the payload of the ADF REST response. See What
You May Need to Know About the Cache-Control Header.

– The JDeveloper wizard Create Business Components from Tables combines
generating the various business components together with creating ADF
REST resources in a single end to end process. This wizard helps you
to create ADF REST resources quickly and easily. See How to Create
ADF REST Resources Using the Create Business Components from Tables
Wizard.

– Attribute hints defined in the JDeveloper overview editor for view objects can
now optionally appear as attribute properties in the REST resource describe.
See What You May Need to Know About ADF REST Attribute Hints.

• ADF Business Components

– The ADF application now supports custom script expression classes to define
a class that can be used by other script classes. A script class file allows you

New and Changed Features for Release 12c (12.2.1.4.0)

70

to maintain common Groovy script expressions that can be called from within
any business component class. See How to Create a Script Expression Class
File.

– The ADF application now allows the user to turn on/off data security of a View
Object by setting a flag EOSecurityOverride. This is a metadata level setting
on the viewdef.xml of the View Object. See What You May Need to Know
About Overriding Security for Entity Objects.

• ADF Task Flows

– The ADF application now supports EL expressions set on the optional task
flow binding property processRegionForRefresh to determine if the associated
ADF region should participate in a refresh operation. By default, the ADF
region participates in refresh operations. See How to Configure the Refresh of
an ADF Region.

• ADF Web User Interface

– The ADF application now supports creating an af:inputSearch LOV
component to fetch list data from a REST URL on LOV-enabled attributes
defined as type inputSearch. See How to Provide af:inputSearch LOV
Component the REST URL.

Other Significant Changes in this Document for Release 12c
(12.2.1.4.0)

For Release 12c (12.2.1.4.0), this document has been updated in several ways.
Following are the sections that have been added or changed.

Part II Building Your Business Services

• Removed sections related to creating custom methods for ADF REST resources.
This is no longer supported in release 12.2.1.4.0.

• Removed sections that described obsolete use cases for bind variables. The
generation of bind variables on custom view object classes is no longer an option
in the Select Java Options dialog that you open from the Java page of the view
object overview editor in JDeveloper. The recommended way to allow UI fields to
update bind parameter values is through view criteria.

Part III Using the Model Layer

• Revised the ADF REST batch requests section to remove the resource version
in the payload sample that also shows the resource version in the POST URL
to clarify that only the POST URL must provide a resource version. See Making
Batch Requests.

• Revised the ADF REST headers section to update the list of available headers for
REST requests and responses. See ADF REST HTTP Headers Support.

• Removed sections related to executing custom methods for ADF REST resources.
This feature is no longer supported in release 12.2.1.4.0.

Part IV Creating ADF Task Flows

• Revised the ADF skins style properties section
to remove the deprecated web.xml context parameter

Other Significant Changes in this Document for Release 12c (12.2.1.4.0)

71

oracle.adf.view.rich.remote.PRODUCER_STYLESHEET_DEBUG_LEVEL. See What
You May Need to Know About ADF Skins and Remote Regions.

• Revised the ADF Region refresh sections as follows:

– Revised sections to clarify that ifNeeded is recommended over a
RefreshCondition expression when choosing an option to determine region
refresh behavior. See step 3 of How to Configure the Refresh of an ADF
Region and see also What You May Need to Know About Configuring an ADF
Region to Refresh.

– Added a section to clarify the behavior of ADF regions in a page refresh.
To avoid refreshing the regions that are not visible in the active view tree,
set the oracle.adfinternal.controller.regionPruning parameter value to
true. See What You May Need to Know About Refreshing an ADF Region.

Part VI Completing Your Application

• Revised the passivating transient view objects section to note that to enable a
transient view object to passivate or activate correctly, requires a non-null key
attribute value. See What You May Need to Know About Passivating Transient
View Objects.

Part VII Appendices

• Revised the topic on EntityImpl methods to note that downcasting the return
value of an EntityImpl.getStructureDef() method invocation to EntityCache
is not supported. To obtain the instance of EntityCache invoke an existing
getEntityCache()method on the EntityImpl object. See Methods You Typically
Call on EntityImpl.

Other Significant Changes in this Document for Release 12c (12.2.1.4.0)

72

Part I
Getting Started with Fusion Web
Applications

This part describes the architecture and key functionality of Oracle Application
Development Framework (Oracle ADF) when used to build a Fusion web application
that uses ADF Business Components, ADF Model, ADF Controller, and ADF Faces
(the full Fusion technology stack).

Part I contains the following chapters:

• Introduction to Building Fusion Web Applications with Oracle ADF

• Introduction to the ADF Sample Application

1
Introduction to Building Fusion Web
Applications with Oracle ADF

This chapter describes the architecture and key functionality of Oracle Application
Development Framework (Oracle ADF) when used to build a Fusion web application
that uses ADF Business Components, ADF Model, ADF Controller, and ADF Faces, in
other words, the full Fusion technology stack. It also provides high-level development
practices.
This chapter includes the following sections:

• Introduction to Oracle ADF

• Oracle ADF Architecture

• Overview of Building an Application with Oracle ADF

• Working Productively in Teams

• Generation of Complete Web Tier Using Oracle JHeadstart

• Other Resources for Learning Oracle ADF

For definitions of unfamiliar terms found in this and other books, see the Glossary.

Introduction to Oracle ADF
Oracle ADF is a commercial Java framework for building enterprise applications.
It supports rapid application development based on ready-to-use design patterns,
metadata-driven and visual tools.

The Oracle Application Development Framework (Oracle ADF) is an end-to-end
application framework that builds on Java Platform, Enterprise Edition (Java EE)
standards and open-source technologies. You can use Oracle ADF to implement
enterprise solutions that search, display, create, modify, and validate data using web,
wireless, desktop, or web services interfaces. Because of its declarative nature, Oracle
ADF simplifies and accelerates development by allowing users to focus on the logic
of application creation rather than coding details. Used in tandem, Oracle JDeveloper
and Oracle ADF give you an environment that covers the full development lifecycle
from design to deployment, with drag and drop data binding, visual UI design, and
team development features built in.

Tip:

You can also develop ADF applications using Oracle Enterprise Pack
for Eclipse (OEPE). OEPE is a set of plug-ins designed for the Eclipse
IDE to support Java EE development. OEPE also includes support for
ADF application development, though that support is more limited than
that provided by JDeveloper. See http://www.oracle.com/technetwork/
developer-tools/eclipse/overview/index.html.

1-1

http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.htm
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.htm

You can develop Fusion web applications, which are applications built with the full
Fusion technology stack—ADF Business Components, ADF Model, ADF Controller,
and JavaServer Faces pages with ADF Faces components. As a companion to
this guide, you can download and view the Summit sample applications for Oracle
ADF, which help to illustrate the concepts and procedures in this guide (and other
Oracle Fusion Middleware developer guides). The examples in this sample application
are built using the Fusion web application technology stack. Screenshots and code
samples from this application are used throughout this guide to provide you with
real-world examples of using the Oracle ADF technologies. For information about
downloading and using the Summit ADF sample applications, see Introduction to the
ADF Sample Application.

Oracle ADF Architecture
Oracle ADF architecture is based on Model-View-Controller (MVC) design pattern that
consists of four layers – Model, View, Controller, and Business Services. Separating
applications into these layers helps in the maintenance and reusability of components
across applications.

In line with community best practices, applications you build using the Fusion web
technology stack achieve a clean separation of business logic, page navigation,
and user interface by adhering to a model-view-controller architecture. As shown in
Figure 1-1, in an MVC architecture:

• The model layer represents the data values related to the current page, along with
the model-level business rules, security, and application logic used against the
data values.

• The view layer contains the UI pages used to view or modify that data.

• The controller layer processes user input and determines page navigation.

• The business service layer handles data access and encapsulates business logic.

Figure 1-1 MVC Architecture Cleanly Separates UI, Business Logic and Page
Navigation

Chapter 1
Oracle ADF Architecture

1-2

Figure 1-2 illustrates where each ADF module fits in the Fusion web application
architecture. The core module in the framework is ADF Model, a data binding facility.
ADF Model enables a unified approach to bind any user interface to any business
service, without the need to write code. The other modules that make up a Fusion web
application technology stack are:

• ADF Business Components, which simplify building business services.

• ADF Faces, which offers a rich library of ajax-enabled UI components for web
applications built with JavaServer Faces (JSF).

• ADF Controller, which integrates JSF with ADF Model. ADF Controller extends
the standard JSF controller by providing additional functionality, such as reusable
task flows that pass control not only between JSF pages, but also between other
activities, for instance method calls or other task flows. The ADF Controller also
works with the data model to ensure the proper data is used for each request or
region.

Note:

In addition to ADF Faces, Oracle ADF also supports using the Java and
standard JSF view technologies. For information about these technologies,
see Getting Started with Developing Java Applications in Developing
Applications with Oracle JDeveloper. Oracle ADF also provides support for
using Microsoft Excel as a view layer for your application. See About ADF
Desktop Integration with Microsoft Excel in Developing Applications with
Oracle ADF Desktop Integration.

Figure 1-2 Simple Oracle ADF Architecture

Chapter 1
Oracle ADF Architecture

1-3

For information about the Oracle ADF architecture and the individual ADF
technologies, see Overview of Oracle ADF in Understanding Oracle Application
Development Framework.

Overview of Building an Application with Oracle ADF
You can build a Fusion web application with Oracle ADF using JDeveloper. Use the
step-by-step ADF application development process that minimizes the coding effort
of the developer to build an application’s infrastructure and to implement complex
business logic of the application.

Oracle ADF emphasizes the use of the declarative programming paradigm throughout
the development process to allow users to focus on the logic of application creation
without having to get into implementation details. Using JDeveloper with Oracle
ADF, you benefit from a high-productivity environment that automatically manages
your application's declarative metadata for data access, validation, page control and
navigation, user interface design, and data binding.

At a high level, the development process for a Fusion web application usually involves
the following:

• Creating an application workspace: Using a wizard, JDeveloper automatically
adds the libraries and configuration needed for the technologies you select, and
structures your application into projects with packages and directories.

• Modeling the database objects: You can create an online database or offline
replica of any database, and use JDeveloper editors and diagrammers to edit
definitions and update schemas.

• Creating use cases: Using the UML modeler, you can create use cases for your
application.

• Designing application control and navigation: You use diagrammers to visually
determine the flow of application control and navigation. JDeveloper creates the
underlying XML for you.

• Identifying shared resources: You use a resource library that allows you to view
and use imported libraries by simply dragging and dropping them into your
application.

• Creating business components to access data: From your database tables, you
create entity objects using wizards or dialogs. From those entity objects, you
create the view objects used by the pages in your application. You can implement
validation rules and other types of business logic using editors.

• Implementing the user interface with JSF: The Data Controls panel in JDeveloper
contains a representation of the view objects in your application. Creating a user
interface is as simple as dragging an object onto a page and selecting the UI
component you want to display the underlying data. For UI components that are
not databound, you use the Components window to drag and drop components.
JDeveloper creates the page code for you.

• Binding UI components to data using ADF Model: When you drag an object from
the Data Controls panel, JDeveloper automatically creates the bindings between
the page and the data model.

• Incorporating validation and error handling: Once your application is created, you
use editors to add additional validation and to define error handling.

Chapter 1
Overview of Building an Application with Oracle ADF

1-4

• Securing the application: You use editors to create roles and populate these with
users. You then use a flat file editor to define security policies for these roles and
assign them to specific resources in your application.

• Testing and debugging: JDeveloper includes an integrated application server that
allows you to fully test your application without needing to package it up and
deploy it. JDeveloper also includes the ADF Declarative Debugger, a tool that
allows you to set breakpoints and examine the data.

• Deploying the application: You use wizards and editors to create and edit
deployment descriptors, JAR files, and application server connections.

Creating an Application Workspace
The first step in building a new application is to assign it a name and to specify the
directory where its source files will be saved. When you create an application using
the application templates provided by JDeveloper, it organizes your workspace into
projects and creates and organizes many of the configuration files required by the type
of application you are creating.

One of these templates is the ADF Fusion Web Application template, which provides
the correctly configured set of projects you need to create a web application that
uses ADF Faces for the view, ADF Controller for the page flow, and ADF Business
Components for business services. When you create an application workspace using
this template, JDeveloper automatically creates the JSF and ADF configuration files
needed for the application.

One part of the application overview is the Fusion Web Application Quick Start
Checklist. This checklist provides you with the basic steps for creating a Fusion web
application. Included are links to pertinent documentation, prerequisites, and the ability
to keep track of status for each step in the checklist, as shown in Figure 1-3.

Figure 1-3 Fusion Web Application Quick Start Checklist

Chapter 1
Overview of Building an Application with Oracle ADF

1-5

JDeveloper also creates a project named Model that will contain all the source
files related to the business services in your application, and a project named
ViewController that will contain all the source files for your ADF Faces view layer
and model layer, including files for the controller.

To save you having to add the associated libraries yourself, JDeveloper automatically
adds the following libraries to the data model project, once you create a business
component:

• ADF Model Runtime

• BC4J Oracle Domains

• BC4J Runtime

• BC4J Security

• MDS Runtime

• MDS Runtime Dependencies

• Oracle JDBC

JDeveloper also adds the following libraries to the view project:

• JSP Runtime

• JSF 2.1

• JSTL 1.2

• ADF Page Flow Runtime

• ADF Controller Runtime

• ADF Controller Schema

• ADF Faces Runtime 11

• ADF Common Runtime

• ADF Web Runtime

• MDS Runtime

• MDS Runtime Dependencies

• Commons Beanutils 1.6

• Commons Logging 1.0.4

• Commons Collections 3.1

• ADF DVT Faces Runtime

• ADF DVT Faces Databinding Runtime

• ADF DVT Faces Databinding MDS Runtime

Once you add a JSF page, JDeveloper adds the Oracle JEWT library.

You can then use JDeveloper to create additional projects, and add the packages and
files needed for your application.

Chapter 1
Overview of Building an Application with Oracle ADF

1-6

Note:

If you plan to reuse artifacts in your application (for example, task
flows), then you should follow the naming guidelines presented in Reusing
Application Components in order to prevent naming conflicts.

Tip:

You can edit the default values used in application templates, as well
as create your own templates. To do so, choose Application > Manage
Templates.

Figure 1-4 shows the different projects, packages, directories, and files for the Summit
ADF sample application, as displayed in the Applications window.

Figure 1-4 Summit ADF Sample Application Projects, Packages, and
Directories

For more information, see the "Managing Applications and Projects" section of
Developing Applications with Oracle JDeveloper.

When you work with your files, you use mostly the Applications window, editor window,
the Structure window, and the Properties window, as shown in Figure 1-5. The editor
window allows you to view many of your files in a WYSIWYG environment, or you
can view a file in an overview editor where you can declaratively make changes, or
you can view the source code for the file. The Structure window shows the structure
of the currently selected file. You can select objects in this window and then edit the
properties for the selection in the Properties window.

Chapter 1
Overview of Building an Application with Oracle ADF

1-7

Figure 1-5 The JDeveloper Workspace

Modeling with Database Object Definitions
In JDeveloper, you can work with a database that is online, or, after you create your
application workspace, you can copy database objects from a database schema to an
offline database or project where they become available as offline database objects,
saved as .xml files. With either an online or offline database, you can then create
and edit database object definitions within a project. You can also compare your
offline database objects with other offline or live database schemas and generate SQL
statements (including CREATE, REPLACE, and ALTER).

For example, you can drag a table from a database connection that your application
defines onto a database diagram and JDeveloper will give you the choice to model
the database object live or offline (to create the .xml file representation of the object).
Modeling database definitions, such as tables and foreign keys, visually captures the
essential information about a schema. You can use the diagram to drag and drop
columns and keys to duplicate, move, and create foreign key relationships. Working
in offline mode, whenever you model a node on a diagram, JDeveloper creates the
underlying offline object and lists it in the Applications window. Working with a live
schema, JDeveloper updates the live database object as you amend the diagram. You
can create multiple diagrams from the same offline database objects and spread your
offline database across multiple projects.

Using a database diagram like the one shown in Figure 1-6 you can visualize the
following:

• Tables and their columns

Chapter 1
Overview of Building an Application with Oracle ADF

1-8

• Foreign key relationships between tables

• Views

• Offline sequences and synonyms

In addition to using the diagram directly to create and edit database objects, you can
work with specific database object editors. After you have finished working with the
offline database objects, you can generate new and updated database definitions to
online database schemas.

When you work with the database diagram you can customize the diagram to
change the layout, change how objects are represented and grouped, add diagram
annotations to specify dependencies or links (such as URLs), and change visual
properties, such as color and font of diagram elements.

Figure 1-6 Database Diagram for Payments Grouping

For more information about modeling database definitions with database diagrams,
see the "Creating, Editing, and Dropping Database Objects" section in Developing
Applications with Oracle JDeveloper.

Chapter 1
Overview of Building an Application with Oracle ADF

1-9

Creating Use Cases
After creating an application workspace, you may decide to begin the development
process by doing use case modeling to capture and communicate end-user
requirements for the application to be built. Figure 1-7 shows a simple diagram
for an HR administrator creating a new employee that you might design using the
UML modeler in JDeveloper. Using diagram annotations, you can capture particular
requirements about what end users might need to see on the screens that will
implement the use case. For example, in this use case, it is noted that the user will
choose to create a new employee while viewing a list of all employees.

Figure 1-7 Use Case Diagram for Viewing Order History

For more information about creating use case diagrams, see the "Developing
Applications Using Modeling" chapter of Developing Applications with Oracle
JDeveloper.

Designing Application Control and Navigation Using ADF Task Flows
By modeling the use cases, you begin to understand the kinds of user interface
pages that will be required to implement end-user requirements. At this point, you
can use these diagrams as documentation tools that will help as you begin to design
the flow of your application. In a Fusion web application, you use ADF task flows
instead of standard JSF navigation flows. Task flows provide a more modular and
transaction-aware approach to navigation and application control. Like standard JSF
navigation flows, task flows contain mostly viewable pages (or page fragments).
Aside from navigation, task flows can also have nonvisual activities that can be
chained together to affect the page flow and application behavior. For example, these
nonvisual activities can call methods on managed beans, evaluate an EL expression,
or call another task flow. This facilitates reuse, as business logic can be invoked
independently of the page being displayed.

Figure 1-8 shows a task flow for creating an employee. In this task flow, GeneralInfo
and Confirmation are view activities that represent pages, while CreateInsert is
a method call activity. When the user enters this flow, the CreateInsert activity is
invoked (because it is the entry point for the flow, as denoted by the green circle)
and the corresponding method is called. Because this is a call to a method, and the
method itself is not included in the task flow, the method can be reused elsewhere
in the application. Or, the logic in the method could be changed, without affecting the

Chapter 1
Overview of Building an Application with Oracle ADF

1-10

metadata for the page flow. From there, the flow continues to the GeneralInfo page,
and once the data is submitted, to the Confirmation page.

Figure 1-8 Task Flow to Create an Employee

ADF Controller provides a mechanism to define navigation using control flow rules.
The control flow rule information, along with other information regarding the flow, is
saved in a configuration file. Figure 1-9 shows the Structure window for the task flow.
This window shows each of the items configured in the flow, such as the control flow
rules. The Properties window (by default, located at the bottom right) allows you to set
values for the different elements in the flow.

Figure 1-9 Task Flow Elements in the Structure Window and Properties Window

Aside from pages, task flows can also coordinate page fragments. Page fragments are
JSF documents that are rendered as content in other JSF pages. You can create page
fragments and the control between them in a bounded task flow as you would create
pages, and then insert the entire task flow into another page as a region. Because it
is simply another task flow, the region can independently execute methods, evaluate
expressions, and display content, while the remaining content on the containing page
stays the same.

Regions also facilitate reuse. You can create a task flow as a region, determine the
pieces of information required by a task and the pieces of information it might return,
define those as parameters and return values of the region, then drop the region on
any page in an application. Depending on the value of the parameter, a different view
can display.

Chapter 1
Overview of Building an Application with Oracle ADF

1-11

The chapters in Creating ADF Task Flows contain information about using task flows.
For general information about task flows and creating them, see Getting Started with
ADF Task Flows . For information about task flow activities, see Working with Task
Flow Activities . If you need to pass parameters into or out of task flows, see Using
Parameters in Task Flows. For more information about regions, see Using Task Flows
as Regions . For information about advanced functionality that task flows can provide,
such as transactional capabilities and creating mandatory sequences of pages (known
as trains), see Creating Complex Task Flows . For information about using task flows
to create dialogs, see Using Dialogs in Your Application.

Identifying Shared Resources
When designing the application, you may find that some aspects of your application
can be reused throughout the application. For example, you might have one developer
that creates the business components, and another that creates the web interface.
The business component developer can then save the project and package it as a
library. The library can be sent to other developers who can add it to their resource
catalog, from which they can drag and drop it onto any page where it's needed.
Figure 1-10 shows a resources catalog in the Resources window of JDeveloper.

Figure 1-10 Resources Window in JDeveloper

Be sure to note all the tasks that can possibly become candidates for reuse. Reusing
Application Components provides more information about the ADF artifacts that can
be packaged and reused as an ADF library, along with procedures both for creating
and using the libraries.

Creating a Data Model to Access Data with ADF Business
Components

Typically, when you implement business logic as ADF Business Components, you do
the following:

• Create entity objects to represent tables that you expect your application to
perform a transaction against. The entity objects can actually be created from an
existing database schema. Add validation and business rules as needed.

• Create view objects that work with the entity objects to query the database.
These view objects will be used to make the data available for display at your
view layer. You can also create read-only view objects, which you might use to

Chapter 1
Overview of Building an Application with Oracle ADF

1-12

display static lists. Like entity objects, view objects can be created from an existing
database schema.

• Create the application module, which is the transactional component that UI
clients use to work with application data. The application module provides the
interface to the business services that a consumer of those services (such as the
UI layer of your application) will use. This application module contains view object
instances in its data model along with any custom methods that users will interact
with through the application's web pages.

• If needed, publish your services as web services for remote invocation.

The chapters contained in Building Your Business Services provide information
on creating each of these artifacts. The chapters in Completing Your Application
provide additional information, such as extending business objects, tuning, and state
management.

Creating a Layer of Business Domain Objects for Tables
Once you have an understanding of the data that will be presented and manipulated
in your application, if you haven't already done so, you can build your database (for
more information, see the "Designing Databases Within Oracle JDeveloper" chapter
of Developing Applications with Oracle JDeveloper). Once the database tables are
in place, you can create a set of entity objects that represents them and simplifies
modifying the data they contain. When you use entity objects to encapsulate data
access and validation related to the tables, any pages you build today or in the future
that work with these tables are consistently validated. Any relationships between the
tables will be reflected as associations between the corresponding entity objects.

Once the entity objects are created, you can define control and attribute hints that
simplify the display of the entities in the UI, and you can also add behaviors to the
objects. For more information, see Creating a Business Domain Layer Using Entity
Objects.

Building the Business Services
Once the reusable layer of business objects is created, you can implement the
application module's data model and service methods with which a UI client can work.

The application module's data model is composed of instances of the view object
components you create that encapsulate the necessary queries. View objects can join,
project, filter, sort, and aggregate data into the shape required by the end-user task
being represented in the user interface. When the end user needs to update the data,
your view objects reference entity objects in your reusable business domain layer.
View objects are reusable and can be used in multiple application modules. For more
information, see Defining SQL Queries Using View Objects.

Figure 1-11 shows the oracle.summit.model.view package, which contains many of
the queries needed by the application.

Chapter 1
Overview of Building an Application with Oracle ADF

1-13

Figure 1-11 View Objects in the Summit ADF Sample Application

Additionally, you may find that you need to expose functionality to external
applications. You can do this by exposing this functionality through a service interface.
For example, the ServiceAppModule application module is exposed as a web service.
This web service exposes the CustomersView and OrdersView view instances, as
shown in Figure 1-12. For more information, see Creating SOAP Web Services with
Application Modules.

Figure 1-12 The ServiceAppModule Application Module as a Web Service

Chapter 1
Overview of Building an Application with Oracle ADF

1-14

Testing and Debugging Business Services with the Oracle ADF Model Tester
While you develop your application, you can iteratively test your business services
using the Oracle ADF Model Tester. The tester allows you to test the queries, business
logic, and validation of your business services without having to use or create a user
interface or other client to test your services. Using the tester allows you to test
out the latest queries or business rules you've added, and can save you time when
you're trying to diagnose problems. For more information about developing and testing
application modules, see Implementing Business Services with Application Modules.

The tester also interacts with the ADF Declarative Debugger to allow debug your
business services. You can set breakpoints on any custom methods you create. For
more information, see Using the Oracle ADF Model Tester for Testing and Debugging.

Implementing the User Interface with JSF
From the page flows you created during the planning stages, you can double-click the
page icons to create the actual JSF files. When you create a JSF page for an ADF
Faces application, by default, you create a Facelets XHTML file that uses the .jsf
extension. Facelets is a JSF-centric XML view definition technology that provides an
alternative to using the JSP engine.

Tip:

While Facelet pages can use any well formed XML file, when you create a
Facelet page in JDeveloper, it is created as an XHTML file.

ADF Faces provides a number of components that you can use to define the overall
layout of the page. JDeveloper contains predefined quick start layouts that use these
components to provide you with an efficient way to correctly determine the layout
of your pages. You can choose from one-, two-, or three-column layouts, and then
determine how you want the columns to behave. You can also choose to apply
themes to the layouts, which adds color to some of the components for you. For
more information see the "Using Quick Start Layouts" section of Developing Web User
Interfaces with Oracle ADF Faces.

Oracle ADF also allows you to create and use your own page templates. When
creating templates, you can determine the layout of the page (either using one of
the quick layout templates or creating the layout manually), provide static content that
must appear on all pages, and create placeholder attributes that can be replaced with
valid values for each page. Each time the template is changed, for example if the
layout changes, any page that uses the template will reflect the update.

The chapters in Creating a Databound Web User Interface provide information on
creating different types of UI functionality, from basic forms to more complex search
capabilities.

Data Binding with ADF Model
In a typical JSF application, you bind the UI component attributes to properties or
methods on managed beans. The JSF runtime manages instantiating these beans on
demand when any EL expression references them for the first time. However, in an

Chapter 1
Overview of Building an Application with Oracle ADF

1-15

application that uses ADF Model, JDeveloper automatically binds the UI component
attributes to ADF Model, which uses XML configuration files that drive generic data
binding features. It implements concepts that enable decoupling the user interface
technology from the business service implementation: data controls and declarative
bindings.

Data controls use XML configuration files to describe a service. At design time, visual
tools like JDeveloper can leverage that metadata to allow you to declaratively bind
UI components to any data control operation or data collection, creating bindings. For
example, Figure 1-13 shows the BackOfficeAppModuleDataControl data control as it
appears in the Data Controls panel of JDeveloper.

Figure 1-13 BackOfficeAppModuleDataControl

Note that the collections that display in the panel represent the set of
rows returned by the query in each view object instance contained in the
BackOfficeAppModuleDataControl application module. For example, the Countries
data collection in the Data Controls panel represents the Countries view object
instance in the BackOfficeAppModuleDataControl's data model. The attributes
available in each row of the respective data collections appear as child nodes. The
data collection level Operations node contains the built-in operations that ADF Model
supports on data collections, such as previous, next, first, last, and so on.

Note:

If you create other kinds of data controls for working with web services,
XML data retrieved from a URL, JavaBeans, or EJBs, these would also
appear in the Data Controls panel with an appropriate display. When you
create one of these data controls in a project, JDeveloper creates metadata
files that contain configuration information. These additional files do not
need to be explicitly created when you are working with Oracle ADF
application modules, because application modules are already metadata-
driven components, and so contain all the information necessary to be
exposed automatically as ADF Model data controls.

Using the Data Controls panel, you can drag and drop a data collection onto a page in
the visual editor, and JDeveloper creates the necessary bindings for you. Figure 1-14
shows the Countries collection being dragged from the Data Controls panel, and
dropped as a form onto a JSF page.

Chapter 1
Overview of Building an Application with Oracle ADF

1-16

Figure 1-14 Declaratively Creating a Form Using the Data Controls Panel

The first time you drop a databound component from the Data Controls panel on a
page, JDeveloper creates an associated page definition file. This XML file describes
the group of bindings supporting the UI components on a page. ADF Model uses
this file at runtime to instantiate the page's bindings. These bindings are held in a
request-scoped map called the binding container. Each time you add components to
the page using the Data Controls panel, JDeveloper adds appropriate binding entries
into this page definition file. Additionally, as you perform drag and drop data binding
operations, JDeveloper creates the required tags representing the JSF UI components
on the JSF page. For more information about using the Data Controls panel, see
Using ADF Model in a Fusion Web Application.

Aside from forms and tables that display or update data, you can also create search
forms, and databound charts and graphs. For more information about using data
controls to create different types of pages, see the chapters contained in Creating a
Databound Web User Interface . For more information about the Data Controls panel
and how to use it to create any UI data bound component, see Using ADF Model in
a Fusion Web Application. For detailed information about ADF Model, see About ADF
Model in Developing Applications with Oracle ADF Data Controls.

Validation and Error Handling
You can add validation to your business objects declaratively using the overview
editors for entity and view objects. In the case of entities, the business rules always
reflect the data type constraints defined on the attributes.

Figure 1-15 shows the Business Rules page of the overview editor for the EmpEO entity
object.

Chapter 1
Overview of Building an Application with Oracle ADF

1-17

Figure 1-15 Setting Validation in the Overview Editor

Along with providing the validation rules, you also set the error messages to display
when validation fails. To supplement this declarative validation, you can also use
Groovy-scripted expressions. For more information about creating validation at the
service level, see Defining Validation and Business Rules Declaratively.

Additionally, ADF Faces input components have built-in validation capabilities. You set
one or more validators on a component either by setting the required attribute or
by using the prebuilt ADF Faces validators. You can also create your own custom
validators to suit your business needs. For more information, see the "Validating and
Converting Input" chapter of Developing Web User Interfaces with Oracle ADF Faces.

You can create a custom error handler to report errors that occur during execution
of an application. Once you create the error handler, you only need to register the
handler in one of the application's configuration files.

Adding Security
Oracle ADF provides a security implementation that is based on Java Authentication
and Authorization Service (JAAS). It enables applications to authenticate users and
enforce authorization. The Oracle ADF implementation of JAAS is permission-based.
You define these permissions and then grant them on application roles that you
associate with users of the application. For more information about securing your
application, see Enabling ADF Security in a Fusion Web Application.

Testing and Debugging the Web Client Application
Testing an Oracle ADF web application is similar to testing and debugging any other
Java EE application. Most errors result from simple and easy-to-fix problems in the
declarative information that the application defines or in the EL expressions that
access the runtime objects of the page's ADF binding container. In many cases,
examination of the declarative files and EL expressions resolve most problems.

Chapter 1
Overview of Building an Application with Oracle ADF

1-18

For errors not caused by the declarative files or EL expressions, you can use the
ADF Logger, which captures runtime trace messages from ADF Model API. The trace
includes runtime messages that may help you to quickly identify the origin of an
application error. You can also search the log output for specific errors.

JDeveloper also includes the ADF Declarative Debugger, a tool that allows you to
set breakpoints on declarative aspects of Oracle ADF, such as the binding layer,
taskflows and more. When a breakpoint is reached, the execution of the application
is paused and you can examine the data that the ADF binding container has to work
with, and compare it to what you expect the data to be. Testing and Debugging ADF
Components contains useful information and tips on how to successfully debug a
Fusion web application.

For testing purposes, JDeveloper provides integration with JUnit. You use a wizard
to generate regression test cases. For more information, see Regression Testing with
JUnit.

Refactoring Application Artifacts
Using JDeveloper, you can easily rename or move the different components in your
application. When you use JDeveloper to refactor the business components of your
data model project, you can rename components or move them to a different package
and JDeveloper will find and update all references to the refactored component.
Whenever possible, you should use JDeveloper's refactoring actions to avoid error-
prone manual editing of the project. For more information, see Refactoring a Fusion
Web Application .

Deploying a Fusion Web Application
You can deploy a Fusion web application to either the integrated WebLogic server
within JDeveloper or to a supported standalone instance. For more information about
deployment, see Deploying Fusion Web Applications.

Integrating a Fusion Web Application
You can build your Fusion web application so that it can easily integrate with other
applications. You can publish your application modules as services. You can also
create events that can be used for example, to initiate business processes. See
Creating SOAP Web Services with Application Modules. Your application modules can
also call other web services directly. See Calling a Web Service from an Application
Module. You can also integrate your application using task flows. For example, a task
flow can be used to initiate a business process flow.

Working Productively in Teams
Working effectively in a team is crucial for application development. It requires
effective communication, collaboration, and time management between the developers
working on developing different parts of an ADF application.

Often, applications are built in a team development environment. While a team-based
development process follows the development cycle outlined in Overview of Building
an Application with Oracle ADF ,many times developers are creating the different
parts of the application simultaneously. Working productively means team members

Chapter 1
Working Productively in Teams

1-19

divide the work, understand how to enforce standards, and manage source files with a
source control system, in order to ensure efficient application development.

Before beginning development on any large application, a design phase is typically
required to assess use cases, plan task flows and screens, and identify resources that
can be shared.

The following list shows how the work for a typical Fusion web application might be
broken up once an initial design is in place:

• Infrastructure

An administrator creates Ant scripts (or other script files) for building and deploying
the finished application. SQL scripts are developed to create the database schema
used by the application.

• Entity objects

In a large development environment, it may be that a separate development group
builds all entity objects for the application. Because the rest of the application
depends on these objects, entity objects should be one of the first steps completed
in development of the application or part of the application.

Once the entity objects are finished, they can be shared with other teams
using Oracle ADF libraries (see Packaging a Reusable ADF Component into an
ADF Library for more information). The other teams then access the objects by
adding to them to a catalog in the Resources window. In your own application
development process, you may choose not to divide the work this way. In many
applications, entity objects and view objects might be developed by the same team
(or even one person) and would be stored within one project.

• View objects

After the entity objects are created and provided either in a library or within the
project itself, view objects can be created as needed to display data (in the case
of building the UI) or supply service data objects (when data is needed by other
applications in a SOA infrastructure).

During development, you may find that two or more view objects are providing
the same functionality. In some cases, these view objects can be easily combined
by altering the query in one of the objects so that it meets the needs of each
developer's page or service. View criteria, in particular, enable developers to
easily adapt a query to distinct usages.

Once the view objects are in place, you can create the application module, data
controls, and add any needed custom methods. The process of creating view
objects, reviewing for redundancy, and then adding them to the application module
can be an iterative one.

• User interface (UI) creation

With a UI design in place, the view objects in place and the data controls created,
the UI can be built either by the team that created the view objects (as described
in the previous bullet point) or by a separate team. You can also develop using
a UI-first strategy, which would allow UI designers to create pages before the
data controls are in place. Oracle ADF provides placeholder data controls that UI
designers can use early in the development cycle. See Designing a Page Using
Placeholder Data Controls .

Chapter 1
Working Productively in Teams

1-20

Enforcing Standards
Because numerous individuals divided into separate teams will be developing the
application, you should enforce a number of standards before development begins
to ensure that all components of the application will work together efficiently. The
following are areas within an application where it is important to have standardization
in place when working in a team environment:

• Code layout style

So that more than one person can work efficiently in the code, it helps to follow
specific code styles. JDeveloper allows you to choose how the built-in code editor
behaves. While many of the settings affect how the user interacts with the code
editor (such as display settings), others affect how the code is formatted. For
example, you can select a code style that determines things like the placement of
opening brackets and the size of indents. You can also import any existing code
styles you may have, or you can create your own and export them for use by
the team. For more information, see the "How to Set Preferences for the Source
Editor" section in Developing Applications with Oracle JDeveloper.

• Package naming conventions

You should determine not only how packages should be named, but also the
granularity of how many and what kinds of objects will go into each package.

• Pages

You can create templates to be used by all developers working on the UI, as
described in Implementing the User Interface with JSF. This not only ensures that
all pages will have the same look and feel, but also allows you to make a change
in the template and have the change appear on all pages that use it. For more
information, see Using Page Templates.

Aside from using templates, you should also devise a naming standard for pages.
For example, you may want to have names reflect where the page is used in the
application. To achieve this goal, you can create subdirectories to provide a further
layer of organization.

• Connection names: Unlike most JDeveloper and Oracle ADF objects that are
created only once per project and by definition have the same name regardless
of who sees or uses them, database connection names might be created by
individual team members, even though they map to the same connection details.
Naming discrepancies may cause unnecessary conflicts. Team members should
agree in advance on common, case-sensitive connection names that should be
used by every member of the team.

Using a Source Control System
When working in a team environment, you will need to use a source control system.
By default, JDeveloper provides support for the Subversion source control system,
and others (such as CVS) are available through extensions. You can also create an
extension that allows you to work with another system in JDeveloper. For information
about using these systems within JDeveloper, see the "Versioning Applications with
Source Control" chapter of Developing Applications with Oracle JDeveloper.

Following are suggestions for using source control with a Fusion web application:

• Checking out files

Chapter 1
Working Productively in Teams

1-21

Using JDeveloper, you can create a connection to the source control server and
use the source control window to check out the source. When you work locally in
the files, the pending changes window notifies you of any changed files. You can
create a script using Apache Ant (which is integrated into JDeveloper). You can
then use the script to build all application workspaces locally. This can ensure that
the source files compile before you check the changed files into the source control
repository. To find out how to use Apache Ant to create scripts, see the "Building
with Apache Ant" section of Developing Applications with Oracle JDeveloper.

• Automating builds

Consider running a continuous integration tool. Once files are checked into the
source server, the tool can be used to recognize either that files have changed or
to check for changed files at determined intervals. At that point, the tool can run an
Ant script on the server that copies the full source (note that this should be a copy,
and not a checkout), compiles those files, and if the compilation is successful,
creates a zip file for consumers (not developers) of the application to use. The
script should then clean up the source directory. Running a continuous integration
tool will improve confidence in the quality of the code in the repository, encourage
developers to update more often, and lead to smaller updates and fewer conflicts.
Hudson (http://hudson-ci.org/) is one example of a continuous integration tool.

• Updating and committing files

When working with Subversion, updates and commits should be done at the
Working Copy level, not on individual files. If you attempt to commit and update
an individual file, there is a chance you will miss a supporting metadata file and
thereby corrupt the committed copy of the application.

• Resolving merge conflicts

When you add or remove business components in a data model project with ADF
Business Components, JDeveloper reflects it in the project file (.jpr). When you
create (or refactor) a component into a new package, JDeveloper reflects that in
the project file and in the ADF Business Components project configuration file
(.jpx). Although the XML format of these project control files has been optimized
to reduce occurrences of merge conflicts, merge conflicts may still arise and you
will need to resolve them in JDeveloper using the Resolve Conflicts option on the
context menu of each affected file.

After resolving merge conflicts in any ADF Business Components XML component
descriptor files, the project file (.jpr) for a data model project, or the
corresponding ADF Business Components project configuration file (.jpx), close
and reopen the project to ensure that you're working with latest version of the
component definitions. To do this, select the project in the Applications window,
choose File > Close from the JDeveloper main menu, and then expand the project
again in the Applications window.

Generation of Complete Web Tier Using Oracle JHeadstart
Oracle JHeadstart application generator is an additional extension for JDeveloper
that offers additional productive advantage in creating web-based, JEE business
applications. Using Oracle ADF’s built-in features, Oracle JHeadstart adds an
additional capability to iteratively generate a fully-working web tier using ADF Faces as
View layer and ADF Task Flows as Controller layer.

As you'll learn throughout the rest of this guide, JDeveloper and Oracle ADF give
you a productive, visual environment for building richly functional, database-centric

Chapter 1
Generation of Complete Web Tier Using Oracle JHeadstart

1-22

http://hudson-ci.org/

Java EE applications with a maximally declarative development experience. However,
if you are used to working with tools like Oracle Designer that offer complete user
interface generation based on a higher-level application structure definition, you may
be looking for a similar facility for your Java EE development. If so, then the Oracle
JHeadstart application generator may be of interest to you. It is an additional extension
for JDeveloper that uses Oracle ADF's built-in features to offer complete web-tier
generation for your application modules. Starting with the data model you've designed
for your ADF business service, you use the integrated editors that JHeadstart adds
to the JDeveloper environment to iteratively refine a higher-level application structure
definition. These editors control the functionality and organization of the view objects'
information in your generated web user interface. By checking boxes and choosing
various options from dropdown lists, you describe a logical hierarchy of pages that
can include multiple styles of search regions, list of values (LOVs) with validation,
shuttle controls, nested tables, and other features. These declarative choices use
terminology familiar to Oracle Forms and Designer users, further simplifying web
development. Based on the application structure definition, you generate a complete
web application that automatically implements the best practices described in this
guide, easily leveraging the most sophisticated features that Oracle ADF and JSF
have to offer.

Whenever you run the JHeadstart application generator, rather than generating code,
it creates (or regenerates) all of the declarative view and controller layer artifacts of
your Oracle ADF-based web application. These artifacts use ADF Model and work
with your ADF application module as their business service. The generated files
are the same kinds you produce when using the JDeveloper built-in visual editors.
The key difference is that JHeadstart creates them in bulk, based on a higher-level
definition that you can iteratively refine until the generated pages match your end
users' requirements as closely as possible. The generated files include:

• JSF pages with databound ADF Faces UI components

• ADF Model page definition XML files describing each page's data bindings

• JSF navigation rules to handle page flow

• Resource files containing localizable UI strings

Once you've generated a maximal amount of your application's web user interface,
you can spend your time using the productive environment of JDeveloper to tailor the
results or to concentrate your effort on additional showcase pages that need special
attention. Once you've modified a generated page, you can adjust a setting to avoid
regenerating that page on subsequent runs of the application generator. Of course,
since both the generated pages and your custom designed ones leverage the same
ADF Faces UI components, all of your pages automatically inherit a consistent look
and feel. For more information on how to get a fully functional trial of JHeadstart
for evaluation, including details on pricing, support, and additional services, see
the JHeadstart page on the Oracle Technology Network athttp://www.oracle.com/
technetwork/developer-tools/jheadstart/ overview/index.html

Other Resources for Learning Oracle ADF
To learn how to best use Oracle ADF in applications, you can take the help of
many other resources in addition to the developers guide. Some of these resources
are step-by-step tutorials, technical papers, pre-recorded sessions, books, trainings,
certifications, and so forth.

Chapter 1
Other Resources for Learning Oracle ADF

1-23

http://www.oracle.com/technetwork/developer-tools/jheadstart/%20overview/index.html
http://www.oracle.com/technetwork/developer-tools/jheadstart/%20overview/index.html

In addition to this developers guide, Oracle also offers the following resources to help
you learn how you can best use Oracle ADF in your applications:

• Tutorials: JDeveloper cue cards provide step-by-step support for the application
development process using Oracle ADF. They are designed to be used either with
the included examples and a sample schema, or with your own data. The tutorials
also include topics that provide more detailed background information, viewlets
that demonstrate how to complete the steps in the card, and code samples.
Tutorials provide a fast, easy way to become familiar with the basic features of
Oracle ADF, and to work through a simple end-to-end task.

• Technical papers, samples, and more on Oracle Technology Network, including
ADF Insider, recorded sessions that will help you get up to speed with Oracle ADF.

• Oracle Press and Packt Publishing offer a number of books on JDeveloper and
Oracle ADF. See http://www.oracle.com/technetwork/developer-tools/adf/
learnmore/index.html

• Oracle University offers training and certification for Oracle ADF. See http://
education.oracle.com.

• Other developer guides for supporting Oracle ADF technology: Oracle provides
developer guides for data controls (other than for ADF Business Components),
ADF Faces, and ADF Desktop Integration to name a few. For information about
related guides, see Related Documents, in this book's Preface.

Chapter 1
Other Resources for Learning Oracle ADF

1-24

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index.html
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index.html
http://education.oracle.com
http://education.oracle.com

2
Introduction to the ADF Sample Application

This chapter describes how to run the Summit sample applications for Oracle ADF.
These samples exist to demonstrate the use of the Fusion web application technology
stack to create transaction-based web applications. Details about the schema and
features that implement the Summit sample applications for Oracle ADF are also
provided.
Before examining the individual components and their source code in depth, you may
find it helpful to install and become familiar with the functionality of the Summit sample
applications for Oracle ADF. The demonstration application is used as an example
throughout this guide to illustrate points and provide code samples.

This chapter includes the following sections:

• About the Summit Sample Applications for Oracle ADF

• Setting Up the Summit Sample Applications for Oracle ADF

• Running the Core Summit ADF Sample Application in the SummitADF Workspace

• Running the Standalone Samples from the SummitADF_Examples Workspace

• Running the Sample Application in the SummitADF_TaskFlows Workspace

• Running the Standalone Samples in the SummitADF_DVT Workspace

About the Summit Sample Applications for Oracle ADF
Summit sample applications are a collection of end-to-end application samples
developed by Fusion Middleware Product Management. The Summit samples
demonstrate various capabilities of Oracle ADF.

The Summit sample applications for Oracle ADF are a set of applications developed
with the purpose of demonstrating common use cases in Fusion web applications,
including the integration between the components of the Oracle ADF technology stack
(ADF Business Components, ADF Faces, ADF Data Visualization Tools (DVT), ADF
Controller, and ADF Desktop Integration).

The sample applications are organized into several JDeveloper application
workspaces that focus on particular features of the ADF component functionality.
Each of the application workspaces uses the same underlying database schema. This
approach makes it very easy to access the source code, and also to experience
the runtime behavior of the samples in its workspace. Collectively, these sample
applications cover the breadth of Oracle ADF functionality for Fusion web applications
and are referred to as Summit sample applications for Oracle ADF. Chapters of this
guide describe sample code drawn from these sample applications.

The core Summit ADF sample application, supported by the underlying Summit
ADF schema, serves as a good introduction to Oracle ADF. It provides a runnable
application based on a fictional customer management website and demonstrates
many user interface design and database transaction features of Oracle ADF. For
a detailed description of the core Summit ADF sample application and the features

2-1

that it implements, see Taking a Look at the Sample Application in the SummitADF
Workspace.

A more comprehensive introduction to Oracle ADF functionality is provided by the
remaining Summit ADF sample applications, some of which are small standalone
samples, while others are extensions of the core sample application. For a list of the
Summit ADF sample application workspaces and a description of what functionality
each sample provides, see Table 2-1.

In order to view and run any of the samples from its application workspace, you need
to install Oracle JDeveloper Studio. You then need to download the ZIP archive files
containing the Summit ADF schema and sample applications for this demonstration.
Instructions to complete these tasks appear in this chapter. To begin, see Setting Up
the Summit Sample Applications for Oracle ADF.

Setting Up the Summit Sample Applications for Oracle ADF
The Summit sample ADF applications contains the database scripts needed to
install the summit schema.To set up the Summit sample applications for Oracle
ADF, download and extract the sample applications ZIP archive files from Oracle
Technology Network (OTN) web site. You will need an Oracle database and
JDeveloper, utilizing a shared “summit_adf” schema, which must be installed before
any of the samples can be run.

The Summit sample applications for Oracle ADF run using an Oracle database and
JDeveloper. The platforms supported are the same as those supported by JDeveloper.

To prepare the environment and run the sample applications, you must download the
required application resources. Included among those resources are ZIP archive files
that contain the Summit ADF sample application workspaces.

Table 2-1 identifies the sample application archive files that are available for download
on the Oracle Technology Network (OTN) website. You may choose to download
all of the sample applications in a single archive file; or, when you want to focus
on particular Oracle ADF technologies, you may select among the archive files to
download just the desired samples.

Table 2-1 The Summit Sample Application Downloadable ZIP Archive Files

Downloadable Samples ZIP Archive Description

SummitADF1221.zip Contains all the Summit sample applications for Oracle
ADF in one convenient download file. It also contains
the build file that you will need to install the Summit ADF
schema on your database.

Note: When this ZIP file is expanded, you will have a
separate application workspace for each of the sample
applications listed below.

SummitADF_Schema1221.zip Contains an application workspace that includes the
build file needed to install the Summit ADF schema on
your database. The Summit ADF schema is required to
run any Summit ADF sample application. For complete
details about installing the schema, see How to Install
the Summit ADF Schema.

Chapter 2
Setting Up the Summit Sample Applications for Oracle ADF

2-2

Table 2-1 (Cont.) The Summit Sample Application Downloadable ZIP Archive
Files

Downloadable Samples ZIP Archive Description

SummitADF_Core1221.zip Contains an application workspace that includes the
core Summit ADF sample application. This basic
application consists of a web user interface and
business service layer to demonstrate Oracle ADF
technology in Fusion web applications. For a detailed
description of this application, see Taking a Look at the
Sample Application in the SummitADF Workspace.

SummitADF_TaskFlows1221.zip Contains an application workspace that includes the
Summit sample application for ADF task flows. This
application builds on the core Summit ADF sample
application by more fully utilizing ADF task flows to
demonstrate ADF Security, contextual events, and task
flows in Fusion web applications.

SummitADF_DVT1221.zip Contains an application workspace that includes the
Summit sample application for ADF DVT components.
This application workspace consists of a set of
standalone sample pages that demonstrate creation
and configuration of ADF DVT components.

SummitADF_Examples1221.zip Contains an application workspace that includes the
Summit standalone sample applications for Oracle ADF.
This application workspace consists of small sample
applications that allow you to investigate Oracle ADF
functionality that does not appear in any of the other
sample applications.

SummitADF_DI1221.zip Contains an application workspace that includes the
Summit sample application for ADF Desktop Integration.
This sample application builds on the core Summit
sample application by more fully utilizing ADF Desktop
Integration functionality.

Note: This sample is not described in this guide.
For complete details about the Summit sample for
ADF Desktop Integration, see "Introduction to the ADF
Desktop Integration Sample Application" in Developing
Applications with Oracle ADF Desktop Integration.

How to Download the Application Resources
The Summit sample applications for Oracle ADF require an existing Oracle database
for its data. You run the sample applications using JDeveloper.

Do the following before installing the sample applications:

To download the application resources to prepare your environment:

1. Install Oracle JDeveloper Release 12c, as described in Installing Oracle
JDeveloper Studio in Installing Oracle JDeveloper.

You will need to install the Studio configuration of Oracle JDeveloper Release 12c
to view the application's projects and run the application in Integrated WebLogic
Server. You can download JDeveloper from:

Chapter 2
Setting Up the Summit Sample Applications for Oracle ADF

2-3

http://www.oracle.com/technetwork/developer-tools/jdev/overview/
index.html

Note:

When you download and install JDeveloper, ensure that it is the Studio
configuration, not the Java configuration. You can verify these details in
JDeveloper from the Help > About menu option.

2. Download the ZIP archive files for the desired Summit ADF sample application
workspaces, as identified in Table 2-1. When you want to install all available
samples, you can download the single archive file SummitADF1221.zip.

Download the desired Summit ADF sample application archive files from the
following web page on the Oracle Technology Network website.

http://www.oracle.com/pls/topic/lookup?
ctx=E26099_01&id=jdevcodesamples

3. Install an Oracle database.

The SQL scripts were written for an Oracle database, so you will need some
version of an Oracle RDBMS, such as 11g, or Oracle Database Express Edition
(Oracle Database XE). The scripts will not install into Oracle Database Lite. If you
wish to use Oracle Database Lite or some other database, then you will need to
modify the database scripts accordingly. You can download an Oracle database
from:

http://www.oracle.com/technetwork/database/enterprise-edition/
downloads/index.html

Specifically, the small footprint of Oracle Database XE is ideally suited for setting
up the database on your local machine. You can download it from:

http://www.oracle.com/technetwork/database/database-technologies/
express-edition/downloads/index.html

How to Install the Summit ADF Schema
To install the Summit ADF schema, extract the schema files, configure the database
connection, and execute the build_summit_schema.sql script in JDeveloper.

Before you begin:

It may be helpful to have an understanding of the schema that the Summit sample
applications for Oracle ADF use. For more information, see What Happens When You
Install the Summit ADF Schema.

You will need to complete these tasks:

• Install Oracle JDeveloper Studio and meet the installation prerequisites. The
Summit sample applications for Oracle ADF require an existing Oracle database.
For details, see How to Download the Application Resources.

• Download the Summit ADF archive file containing the Summit ADF schema
application workspace from the Oracle Technology Network to a local directory.
For details, see How to Download the Application Resources.

Chapter 2
Setting Up the Summit Sample Applications for Oracle ADF

2-4

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html

To install the Summit ADF schema to your database:

1. Navigate to the location where you downloaded the Summit ADF schema archive
file and unzip it.

2. Start JDeveloper and in the main menu, choose File and then Open.

3. In the Open dialog, navigate to where you expanded the ZIP file for the
SummitADF_Schema directory, select the Summit_Schema.jws application workspace
and click Open.

Note:

If you downloaded the single archive file SummitADF1221.zip, the
Summit_Schema.jws file is in the Schema folder. Double-click the Schema
folder. Select Summit_Schema.jws and click Open.

4. In the Applications window, expand the Application Resources panel.

5. Right-click Connections and choose New Connection and then Database.

6. In the Create Database Connection dialog, modify the properties shown in
Table 2-2 for your environment. For help with the dialog, press F1 or click Help.

Table 2-2 Properties Required to Install a Summit ADF Sample Application

Property Description

Connection Name Descriptive name for the connection. This name must be a
valid Java identifier, such as system_for_summit.

User Name The system user for your database. For example:

system

Password The password for the system user.

Driver The JDBC driver for the database. Select a value from
the dropdown menu. The default is thin, which is also
the default value to specify for Oracle Database XE and
any other Oracle database that is not using Oracle Call
Interface (OCI).

Host Name The name of the server running the Oracle database. Use
an IP address or a host name that can be resolved by
TCP/IP. The default value is localhost.

SID The unique system identifier (SID) of an Oracle Database
instance. The default is XE, which is also the default
value to specify if your database server is running Oracle
Database XE. If your server is running another Oracle
database, the SID is typically ORCL.

JDBC Port The port of your database. The default value is 1521.

Chapter 2
Setting Up the Summit Sample Applications for Oracle ADF

2-5

Note:

If your server resides on a remote machine, you may also need to
modify the script that builds the schema. To open the script, right-click
build_summit_schema.sql and choose Open.

Figure 2-1 shows the completed Create Database Connection dialog. In this
example, the connection is made to an Oracle Database XE instance residing
on a local machine.

Figure 2-1 Create Database Connection Dialog for Summit ADF Schema

7. Click Test Connection to verify that you have a working connection.

8. Click OK to create the connection and exit the dialog.

9. In the Applications window, in the Projects panel, expand Database and then
Resources.

10. Right-click build_summit_schema.sql and choose Run in Sql*Plus > connection
name.

The connection name displayed is the one you configured in Step 6.

11. In the SQL*Plus Connection dialog, verify that the information matches the
configuration you specified in Step 6 and click OK.

12. In the SQL*Plus Location dialog, click Browse and locate the sqlplus.exe
executable for your database.

Typically, the executable is installed in the BIN directory under $ORACLE_HOME,
where $ORACLE_HOME represents the path to your Oracle database installation.

Chapter 2
Setting Up the Summit Sample Applications for Oracle ADF

2-6

13. Click Open to select the sqlplus.exe executable and then OK to exit the dialog.

14. In the SQL*Plus window, enter the password for the system user you specified in
Step 6.

Once you enter the password, the Ant build script creates the Summit ADF sample
application users and populates the tables in the Summit ADF schema. In the
Messages - Log window, you will see a series of SQL scripts and finally:

Commit complete.

Commit complete.
SQL>

15. At the SQL prompt, enter quit to exit the SQL*Plus window.

16. In JDeveloper, in the main menu, choose Application and then Close to close the
Summit ADF schema application.

What Happens When You Install the Summit ADF Schema
Figure 2-2 shows a simplified representation of the schema for the Summit sample
applications for Oracle ADF. The green shapes in the diagram represent the seven
core tables. The other tables are shown as yellow shapes. Some of the tables use
sequences, but only those used by the core tables are shown. To minimize the number
of crossed lines, the schema is displayed in a bottom-to-top hierarchy.

Chapter 2
Setting Up the Summit Sample Applications for Oracle ADF

2-7

Figure 2-2 Schema Diagram for the Summit Sample Applications for Oracle ADF

The core tables represented by the green diagram elements include:

• S_ITEM: For each order, there may be many order items recorded. This table
stores the unit price and quantity of each order item. The order line item and its
order ID uniquely identify each order item.

• S_ORD: This table represents activity by specific customers. When an order is
created, the date of the order, the total amount of the order, the ID of the customer
who created it, and the name of the sales representative is recorded. After the
order is fulfilled, the order status and order shipped date are updated. All orders
are uniquely identified by a sequence-assigned ID.

• S_CUSTOMER: This table stores the name and address of all Summit customers.
Each customer is uniquely identified by a sequence-assigned ID. The table
also includes a foreign key that associates each customer with a Summit sales
representative.

• S_EMP: This table stores all the employees who interact with the system. The first
name, last name, email address, and address details of each user is stored. A
user is uniquely identified by an ID. Other IDs provide foreign keys to tables with

Chapter 2
Setting Up the Summit Sample Applications for Oracle ADF

2-8

title and department information, and, in the case of the employee's manager, a
self-referential association.

• S_PRODUCT: This table stores all of the products available in the store. For each
product, the name and suggested wholesale price are recorded. All products are
uniquely identified by a sequence-assigned ID. The image of the product and its
description are stored in separate tables, which each reference the product ID.

• S_WAREHOUSE: This table stores the location and manager of each warehouse that
carries stock for the Summit products. For each warehouse, the location and
manager are recorded. The warehouses are uniquely identified by a sequence-
assigned ID.

• S_INVENTORY: This table stores inventory data for the Summit products. For each
product, the amount in stock, reorder point, and maximum stock levels are
recorded for each warehouse that carries the product.

The sequences that the core tables use include:

• S_ITEM_ID: Populates the ID for each new order item.

• S_ORD_ID: Populates the ID for each new order.

• S_CUSTOMER_ID: Populates the ID for each new customer.

• S_EMP_ID: Populates the ID for each new employee.

• S_PRODUCT_ID: Populates the ID for each new product.

How to Create the Database Connection for Summit Sample
Applications for Oracle ADF

The Summit sample applications for Oracle ADF require a connection to the Summit
database for data access. By default, each application is configured to use a local
connection to an Oracle database that you must verify and modify as needed
for your environment. The steps to modify a database connection for any of the
Summit sample applications for Oracle ADF are the same for all workspaces and are
performed after you have opened the application in JDeveloper.

Before you begin:

It may be helpful to have an understanding of the Summit ADF schema. For more
information, see What Happens When You Install the Summit ADF Schema.

You will need to complete these tasks:

• Complete all steps to download the application resources to prepare your
environment. For details, see How to Download the Application Resources.

• Install the Summit ADF schema. For details, see How to Install the Summit ADF
Schema.

• Open the sample application to which you are connecting using the instructions for
the application:

– How to Run the Core Summit ADF Sample Application

– How to Run the Summit ADF Standalone Sample Applications

– How to Run the Summit Sample Application for ADF Task Flows

– How to Run the Summit ADF DVT Sample Application Pages

Chapter 2
Setting Up the Summit Sample Applications for Oracle ADF

2-9

To create the database connection for Summit sample applications for Oracle ADF:

1. In the Applications window, expand the Application Resources panel.

2. In the Application Resources panel, expand Connection and then Database.

The existing database connection is displayed. For the core Summit ADF
application, the database connection is summit_adf.

3. Right-click the database connection and choose Properties.

For example, right-click summit_adf and choose Properties.

4. In the Edit Database Connection dialog, modify the properties shown in Table 2-3
for your environment. For help with the dialog, press F1 or click Help.

Table 2-3 Properties to Create a Database Connection for a Summit ADF
Sample Application

Property Description

User Name The user name for the Summit ADF sample database.
You must use c##summit_adf for this property. Note that
Oracle Database 12c requires the user name to begin with
c##.

Password The password for the Summit ADF sample database. You
must use summit_adf for this value.

Driver The JDBC driver for the database. Select a value from the
dropdown menu. The default is thin, which is also the
default value to specify for Oracle Database XE instances
and any other Oracle database that is not using Oracle
Call Interface (OCI).

Host Name The host name for your database. For example:

localhost

JDBC Port The port for your database. For example:

1521

SID The unique system identifier (SID) of an Oracle Database
instance. The default is XE, which is also the default
value to specify if your database server is running Oracle
Database XE. If your server is running another Oracle
database, the SID is typically ORCL.

Figure 2-3 shows the completed Edit Database Connection dialog. In this
example, the connection is made to an Oracle Database XE instance residing
on a local machine.

Chapter 2
Setting Up the Summit Sample Applications for Oracle ADF

2-10

Figure 2-3 Edit Database Connection Dialog for a Summit ADF Sample
Application

5. Click Test Connection to verify that you have a working connection.

6. Click OK to create the connection and exit the dialog.

7. In the Applications window, in the Projects panel, right-click Model and choose
Rebuild Model.jpr.

Running the Core Summit ADF Sample Application in the
SummitADF Workspace

The core Summit ADF sample application demonstrates various capabilities of Oracle
ADF using a fictional scenario called Summit Sporting Goods. The purpose of the
core Summit sample application is to demonstrate common use cases in Fusion web
applications.

In the core Summit ADF sample application, sporting goods equipment is sold
to international customers by a fictional sporting goods supplier called Summit
Management. Employees of Summit Management can visit the website, and manage
customer orders by fulfilling orders for products while monitoring the status of product
inventory. The functionality in this core sample application has been intentionally
restricted to demonstrate a limited number of potential Fusion web application use
cases that are suitable for anyone new to Oracle ADF technology.

The core Summit ADF sample application consists of a web user interface and a
business service layer. Specifically, the following projects are part of the core Summit
ADF sample application:

• Model: Provides access to the customer management data and provides
transaction support to update data for customer information and orders.

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-11

• ViewController: Provides the JSF web page and JSFF page fragments that the
Summit user interacts with to browse the customers list, place orders, view order
details, check order status, and inspect product inventory.

How to Run the Core Summit ADF Sample Application
You run the core Summit ADF sample application in JDeveloper by running the
index.jspx page in the ViewController project. The ViewController project uses
JavaServer Faces (JSF) as the view technology, and relies on the ADF Model layer
to interact with ADF Business Components in the Model project. To learn more about
the core Summit ADF sample application and to understand its implementation details,
see Taking a Look at the Sample Application in the SummitADF Workspace.

Before you begin:

It may be helpful to have an understanding of the Summit ADF schema. For more
information, see What Happens When You Install the Summit ADF Schema.

You will need to complete these tasks:

• Install Oracle JDeveloper Studio and meet the installation prerequisites. The core
Summit ADF sample application requires an existing Oracle database. For details,
see How to Download the Application Resources.

• Download the Summit ADF archive file from the Oracle Technology Network to a
local directory and unzip the core Summit ADF sample application. For details, see
How to Download the Application Resources.

• Install the Summit ADF schema. For details, see How to Install the Summit ADF
Schema.

To run the sample application in the SummitADF application workspace:

1. Open the application in JDeveloper:

a. In the main menu, choose File and then Open.

b. Navigate to the location where you expanded the ZIP file for the SummitADF
directory, select the SummitADF.jws application workspace and click Open.

Figure 2-4 shows the Applications window after you open the file for the
SummitADF.jws application workspace file in JDeveloper. For a description of
each of the projects in the workspace, see Taking a Look at the Sample
Application in the SummitADF Workspace.

Figure 2-4 Projects in the SummitADF Application Workspace

2. Create a connection to the Summit database. For details, see How to Create the
Database Connection for Summit Sample Applications for Oracle ADF.

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-12

3. In the Applications window, expand ViewController, right-click index.jsf and
choose Run.

The Create Default Domain dialog appears the first time you run the application
and start a new domain in Integrated WebLogic Server. Use the dialog to define
an administrator password for the new domain. Passwords you enter can be eight
characters or more and must have a numeric character.

The index.jspx page within the ViewController project is the run target. When
you run the page, JDeveloper will launch the browser and display the Summit
Management web page of the core Summit ADF sample application.

Once the Summit Management web page appears, you can browse the website. Note
that the core Summit ADF sample application does not implement security for the
Oracle ADF application resources and login is not required.

Taking a Look at the Sample Application in the SummitADF
Workspace

Once you have opened the projects in JDeveloper, you can then begin to review
the artifacts within each project. The development environment for the core Summit
ADF sample application is divided into two projects: the Model project and the
ViewController project.

The Model project contains the classes associated with the data model that allow
the product data to be displayed in the web application. Figure 2-5 shows the Model
project and its associated directories.

Figure 2-5 The Data Model Project of the SummitADF Workspace

The ViewController project contains the following folders associated with the user
interface:

• Application Sources: Contains the files used to access the product data.
Included are the metadata files used by Oracle ADF to bind the data to the view.

• META-INF: Contains a file used in deployment.

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-13

The ViewController project contains the files for the web interface, including the
backing beans, deployment files, and JSF and JSFF files. Figure 2-6 shows the
ViewController project and its associated folders.

Figure 2-6 The ViewController Project of the SummitADF Workspace

The ViewController project contains the following directories:

• Application Sources: Contains the code used by the web client, including the
managed and backing beans, property files used for internationalization, and the
metadata used by Oracle ADF to display bound data.

• Web Content: Contains the web files, including the JSP files, images, skin files,
deployment descriptors, and libraries.

Browsing the Application
Start the core Summit ADF sample application by running the index.jspx page in
the ViewController project. For details about running the application using the default
target, index.jsf, see Running the Core Summit ADF Sample Application in the
SummitADF Workspace.

The index.jsf page is organized by an ADF page template which provides the
structure for the page and uses an af:panelTabbed component to identify the page
fragments to display in each of the tab panels.

When you enter the Summit ADF website, the site opens on the index page with three
tabs displayed: Welcome, Summit Management, and Inventory Control. Click on each
tab to view the separate page fragments referenced as regions by the index page.

The Summit Management region is the main region where you can browse the list
of customers and their orders. This region is defined by the customers.jsff page
fragment and is itself organized by ADF Faces components that provide tabbed
panels. The Browse and Search panels are one af:panelTabbed component and the
Customer, Order, and Order Dashboard panels belong to another af:panelTabbed
component.

Figure 2-7 shows the index page with an order displayed in the Summit Management
region.

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-14

Figure 2-7 Index Page with Multiple Regions

Where to Find Implementation Details

Following are the sections of Developing Fusion Web Applications with Oracle
Application Development Framework that describe how to create a databound web
page:

• Providing the structure for the web page

The index page separates features of the application into regions that are
implemented using a combination of ADF Faces templates and JavaServer Faces
(JSF) page fragments. ADF Faces templates and the fragments allow you to
add ADF databound components. For information about the steps you perform
before adding databound user interface components to a web page, see About
Developing a Web Application with ADF Faces.

• Designing the user interface using a variety of components

JDeveloper allows you to create databound components declaratively for your
JSF pages, meaning you can design most aspects of your pages without needing
to look at the code. By dragging and dropping items from the Data Controls
panel, JDeveloper declaratively binds ADF Faces UI components and ADF Data
Visualization graph components to attributes on a data control using an ADF
binding. For information about creating databound web pages with ADF Faces
components, see About Creating a Basic Databound Page.

• Managing entry points to the application

The page fragments of the index page are supported by individual ADF task
flows. In general, the Fusion web application relies on this ADF Controller feature
to define entry points to the application. When your application uses more than
one page, you define an unbounded task flow to control the entry point of the
application. JDeveloper helps you to create task flows with visual design elements
that you drag and drop from the Components window. For more information about

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-15

specifying the entry points to the application using an ADF unbounded task
flows, see About ADF Task Flows.

Browsing the Customers List
To view the list of customers, click the Browse tab and in the Customers tree, expand
a country node to view the list of customers for that country. The customers list is
layed out with collapsing nodes organized by an ADF Faces af:tree component. The
dropdown menu on the tree component lets you choose to organize the branches
by country or by sale representative. The nodes of the tree display data from the
database corresponding to the name and ID of each customer.

Figure 2-8 shows the tree expanded with a customer node selection.

Figure 2-8 Databound Tree Component Displays Customer Names and ID

Where to Find Implementation Details

Following is the section of Developing Fusion Web Applications with Oracle
Application Development Framework that describes how to develop the components
used to support browsing product details:

• Displaying data in a web page

To display data from the data model, user interface components in the web page
are bound to ADF Model layer binding objects using JSF Expression Language
(EL) expressions. For example, when the user expands a country node in the
Customers tree to display the list of customers for that country, the JSF runtime
evaluates the EL expression for the UI component and pulls the value from the

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-16

ADF Model layer. At design time, when you work with the Data Controls panel to
drag an attribute for an item of a data collection into your web page, and then
choose an ADF Faces component to display the value, JDeveloper creates all the
necessary JSF tag and binding code needed to display and update the associated
data. For more information about the Data Controls panel and the declarative
binding experience, see About Using ADF Model in a Fusion Web Application.

Searching for Customers
To search the customer list, click the Search tab in the Summit Management region.
When you click the tab, the Browse panel changes to allow you to enter a search
criteria in the query search form and view the search results in the table below. The
layout of the search panel is defined by an ADF Faces af:query component.

You use the input fields on the Search form to perform a simple keyword search
against the attributes common to all customers, such as customer names or cities.
For example, you might query the database for the list of customers that begin with a
particular letter.

Figure 2-9 shows the search results returned for the customers residing in a city that
begins with "S".

Figure 2-9 Query Search Component Filters Customer List

Where to Find Implementation Details

Following are the sections of Developing Fusion Web Applications with Oracle
Application Development Framework that describe how to define queries and create
query search forms:

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-17

• Defining the query for the search form to display

A query is associated with an ADF Business Components view object that you
create for the data model project to define a particular query against the database.
In particular, a query component is the visual representation of the view criteria
defined on that view object. If there are multiple view criteria defined, each of the
view criteria can be selected from the Saved Search dropdown list. These saved
searches are created at design time by the developer. When the query associated
with that view object is executed, both view criteria are available for selection. For
more information, see About Creating Search Forms.

• Creating a search form

You create a query search form by dropping a named view criteria item from the
Data Controls panel onto a page. You have a choice of dropping only a search
panel, dropping a search panel with a results table, or dropping a search panel
with a tree table. For more information, see Creating Query Search Forms.

• Displaying the results of a query search

Normally, you would drop a query search panel with the results table or tree table.
JDeveloper will automatically wire up the results table or tree table with the query
panel. If you drop a query panel by itself and want a separate results component,
you can set the query component's resultComponentId attribute to the relative
expression of the results component. For more information, see How to Create a
Query Search Form and Add a Results Component Later.

Viewing Customer Details
To begin browsing the orders for a customer, click the Summit Management tab and
make a selection in the expanded Customers tree from the Browse tab or Search tab.
This action changes the details displayed in the Summit Customer Management tab to
display details about the selected customer.

In the Customer details tab you can collapse and expand the panels to view various
details of the selected customer. The first three panels display input forms consisting
of individual input fields corresponding to the customer details. The customer you
select also has one or more orders displayed in the Orders panel as a table, where
each row comprises a single order and its details.

This relationship between a customer and their orders represents a business object
relationship known as master and detail. In this case, the master, or parent object,
can have many detail rows, or child objects. In turn the business objects in the core
Summit ADF sample application, correspond to the S_CUSTOMER and S_ORD tables in
the database.

The table of orders is defined by an ADF Faces af:table component. You can sort the
table rows by clicking the sort buttons in any cell of the table header.

Figure 2-10 shows the customers page fragment with the details of the customer
displayed in the top portion and the list of orders specific to the customer in the bottom
portion.

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-18

Figure 2-10 Customers Page Fragment with Orders List

Where to Find Implementation Details

Following are the sections of Developing Fusion Web Applications with Oracle
Application Development Framework that describe how to use tables and forms to
display master-detail related objects:

• Dragging and dropping master and detail components

You can create pages that display master-detail data using the Data Controls
panel. The Data Controls panel displays master-detail related objects in a
hierarchy that mirrors the one you defined in the data model for the ADF
application module, where the detail objects are children of the master objects.
All you have to do is drop the collections on the page and choose the
type of component you want to use. For example, in the core Summit ADF
sample application, the page fragment customers.jsff displays the master list
of customer categories in an af:tree component and displays the detail list of
orders in an af:table component. For more information about the data model,
see Exposing Application Modules with ADF Data Controls. For more information
about various types of pages that display master-detail related data, see About
Displaying Master-Detail Data.

• Sorting data that displays in tables

When you create an ADF Faces table component you bind the table to the
complete collection or to a range of data objects from the collection. The specific
components that display the data in the columns are then bound to the attributes
of the collection. The iterator binding handles displaying the correct data for each
object, while the table component handles displaying each object in a row. You
can set the Sort property for any column when you want the iterator to perform an
order-by query to determine the order. You can also specify an ORDER BY clause
for the query that the view object in the data model project defines. For more
information about binding table components to a collection, see About Creating
ADF Databound Tables. For more information about creating queries that sort data

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-19

in the data model, see Populating View Object Rows from a Single Database
Table.

Viewing Order Details
To update the details of an existing order, select an order from the Orders table
displayed in the Customer tab and click the Order tab. The Order tab displays the
same data that appeared in the row you selected, but organized as an edit form with
fields that you can update. To change the order status, for example, you can select a
choice from the OrderFilled radio button. The selection you make on the ADF Faces
af:selectOneRadio component updates the corresponding S_ORD table column.

Figure 2-11 shows the Order page fragment with Order 1075 selected in the Customer
details tab. Data for Order 1075 in both the order form and the Customer details tab
are coordinated by the application to reflect changes in the database. Change the
status of OrderFilled to Yes, and return to the Customer details tab to verify that the
status is consistent.

Figure 2-11 Orders Page Fragment Displays Order Details

Other types of data, such as dates and currency, can be displayed using ADF Faces
components to handle formatting of the values. Figure 2-12 shows the Order page
fragment with a system error that enforces date formats that have been defined on the
attribute underlying the Date Shipped field.

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-20

Figure 2-12 Orders Page Fragment Displays Format Mask Error

Validation rules based on Groovy calculated expressions can be defined on data
updates. Figure 2-13 shows the Order page fragment with a validation error that
calculates the customer's credit score before allowing a Payment Type of CREDIT to
be selected.

Figure 2-13 Orders Page Fragment Displays Payment Type Validation Error

Where to Find Implementation Details

Following are the sections of Developing Fusion Web Applications with Oracle
Application Development Framework that describe how to create edit forms:

• Creating a databound edit form

When you want to create a basic form that collects values from the user, instead of
having to drop individual attributes, JDeveloper allows you to drop all attributes for
an object at once as an input form. You can create forms that display values, forms
that allow users to edit values, and forms that collect values. For example, in the
core Summit ADF sample application, the page fragment Orders.jsff displays a
form to display order information. For more information, see Creating a Form to
Edit an Existing Record.

• Requiring values to complete a form

The input form displays attributes of a data collection that you drop from the Data
Controls panel. You can set the required property of individual components in
the form to control whether an attribute value is mandatory. For details about how
to customize the required property, see Creating Text Fields Using Data Control
Attributes. Alternatively, you can set a display control hint property directly on the
attribute where it is defined by an ADF Business Components entity object. The

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-21

entity object is a data model component that represents a row from a specific table
in the database and that simplifies modifying its associated attributes. For details
about using control hints to make an attribute mandatory, see Setting Attribute
Properties.

• Defining a list of values for selection lists

Input forms displayed in the user interface can utilize databound ADF Faces
selection components to display a list of values (LOV) for individual attributes
of the data collection. To facilitate this common design task, ADF Business
Components provides declarative support to specify the LOV usage for attributes
in the data model project. For example, in the core Summit ADF sample
application, the af:selectOneChoice component for the payment type field
displayed in the page fragment Orders.jsff is bound to an LOV-enabled attribute
configured for the OrdVO view object. For more information about configuring
attributes for LOV usage, see Working with List of Values (LOV) in View Object
Attributes.

• Defining format masks for forms

Format masks help ensure the user supplies attribute values in the required
format. To facilitate this task, ADF Business Components provides declarative
support known as control hints for attributes in the data model project. For
example, in the core Summit ADF sample application, the attribute for the OrdVO
view object used to specify the date shipped is configured with a format mask
hint and enforced in the page fragment Orders.jsff. For information on defining
format masks for input form components, see Defining UI Hints for View Objects.

• Defining validation rules for data updates

Validation rules help ensure the user supplies attribute values that meet particular
business needs. To facilitate this task, ADF Business Components provides
declarative validation for attributes in the data model project. For example, in the
core Summit ADF sample application, the attribute for the OrdEO entity object used
to specify the payment type is configured with a validation rule and enforced in
the page fragment Orders.jsff. For information on defining validation rules for
attributes of entity objects and view objects, see Defining Validation and Business
Rules Declaratively.

The Ordering Process
Creating a new customer order requires a database transaction that involves updating
the records of the customer's order while decreasing the quantity of products
remaining in the Summit inventory. When you click New on Customer page above
the list of orders, the application creates a new order form with only the date displayed.

Figure 2-14 shows the new order form with no products added.

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-22

Figure 2-14 Order Page Fragment Displays New Empty Order

To create the order, click New above the empty list of products. Then, next to
the ProductId field, click the Search icon. The af:inputListOfValues component
launches the popup window that you can use to search the database for the product.
To make searching easier, the popup window displays a limited number of fields from
the S_PRODUCT table, including product ID and product Name. This type of filtering
for display at runtime is performed by the ADF binding that backs the databound
af:inputListOfValues component.

Select a product in the popup window and click OK. The Order tab updates to display
the selection in the product table.

Figure 2-15 shows the Order tab with an order comprising the product order.

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-23

Figure 2-15 Order Page Fragment Displays Order Entry

To complete the order, enter the ID of a sales representative and then click the
Commit button in the top right corner of the Summit Customer Management page.
This updates the database with the new order detail and reduced product inventory.

To visualize the customer's order history, click the Orders Dashboard tab. The
dashboard displays various graphs using ADF Faces DVT components. The Shipping
Time graph is an dvt:barChart component. This component relies on information
that is calculated only when the order ship date is updated; the data to display is not
obtained from a database table since it must be determined at runtime. To display the
Shipping Time data the bar chart relies on an ADF Business Components method call
to return the number of days for shipping for each order.

Figure 2-16 shows dashboard information for three orders made by the Acme Sporting
Goods company.

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-24

Figure 2-16 Order Page Fragment Displays Dashboard Details

To visualize how orders affect the product inventory, click the Inventory Control tab,
next to the Summit Management tab. The Inventory Control page displays only those
products that are below the reorder threshold. The low stock is displayed both visually
with the af:carousel component and in table format with the af:table component.
Select an item from the low stock carousel and notice that the table updates to
make the selected item the current row. The current row in a table is the one that
is highlighted. These two components are synchronized through the ADF Model layer
with a Java method call that is executed when the carousel selection is made.

Figure 2-17 shows the inventory status of item 13 out of 26. The current row selection
in the low stock table reflects the selection displayed in the inventory carousel.

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-25

Figure 2-17 Inventory Control Page Fragment Displays Low Stock Items

Where to Find Implementation Details

Following are the sections of Developing Fusion Web Applications with Oracle
Application Development Framework that describe how to develop database forms
like the ones used to update the database in the Orders and Inventory Control page
fragments:

• Triggering data updates with command components

To support data updating, the Orders page fragment of the Summit Management
region uses command components represented as af:button components to
allow users to execute specific ADF data control operations in the declarative
ADF page definition file. The built operations of the ADF data control enable
you to declaratively handle common form functions such as navigating between
records and committing changes to a database. Most operations are available for
individual data collections in a data control. The Commit and Rollback operations
are available on the whole data control. By dragging and dropping an operation
from the Data Controls panel, you are prompted to choose what kind of command
component to create, such as a button or a link. For information about triggering
built-in operations, see Creating Command Components Using Data Control
Operations.

• Triggering backing bean method calls with command components

To support operations that may require custom logic to handle an interaction with
the database, the InventoryControl page fragment of the Summit Management
region uses the carouselSpinListener on the af:carousel components to
trigger a custom method handleCarouselSpin() defined on the backing bean
InventoryControl.java. When you select an item in the carousel, the action
listener triggers the backing bean method which updates the current row for the

Chapter 2
Running the Core Summit ADF Sample Application in the SummitADF Workspace

2-26

af:table component iterator binding. For details about executing Java code in
backing beans, see How to Create a Databound Carousel Component.

• Keeping track of transient session information and triggering business component
method calls

When you create a data model project that maps attributes to columns in an
underlying table, your ADF view objects can include transient attributes that
display calculated values (for example, using Java or Groovy expressions) or
that are value holders. For example, in the core Summit ADF sample application,
the Orders Dashboard tab on the page fragment Orders.jsff displays the value
of the TimeToShip attribute calculated by the expression defined on the OrdVO
view object. The calculateTimeToShip expression invokes a method on the
OrdVORowImpl.java client interface for the view row. For more information about
defining transient attributes in the data model project, see Adding Transient and
Calculated Attributes to an Entity Object. For more information about implementing
custom Java methods in view objects, see How to Generate Client Interfaces for
View Objects and View Rows.

Running the Standalone Samples from the
SummitADF_Examples Workspace

The standalone sample applications in theSummitADF_Examples application
workspace use programmatic test clients to demonstrate concepts related to the ADF
Business Components framework. These applications allow you to look into the ADF
functionalities that does not appear in the SummitADF workspace.

The Summit standalone sample applications for Oracle ADF include a set of sample
packages that allow you to investigate Oracle ADF functionality that does not appear
in the SummitADF workspace. Collectively, these sample packages are referred to as
Summit ADF standalone sample applications. The standalone applications appear in
the Model project of the SummitADF_Examples application workspace, located in the
SummitADF_Examples folder where you extracted the Summit ADF standalone sample
applications ZIP file.

In general, the standalone applications demonstrate concepts of ADF Business
Components and data model projects. References to these standalone applications
appear throughout the chapters contained in Building Your Business Services of
this developer's guide. As you read sections this guide, you may want to run the
corresponding standalone applications to investigate the concepts further. For a brief
description of each standalone application and links to the documentation, refer to the
table in Overview of the Summit ADF Standalone Sample Applications.

How to Run the Summit ADF Standalone Sample Applications
The approach you use in JDeveloper to run a standalone application depends on
the individual package. Some packages are set up to use the interactive testing tool
JDeveloper provides for the ADF Business Components data model project (this tool is
known as the Oracle ADF Model Tester). Other applications provide Java test clients
(with file names like TestClientAaa.java) that use the ADF Business Components
API to execute queries and display results. In the case of the Oracle ADF Model
Tester, you work entirely within the tool, which essentially provides a convenient user
interface for interacting with business components. In the case of the Java clients, the
program files output their results and print statements to the JDeveloper Log window.

Chapter 2
Running the Standalone Samples from the SummitADF_Examples Workspace

2-27

Running the Standalone Sample Applications From a Java Test Client
When the standalone application has a test client to programmatically exercise the
ADF Business Components API, you will use the test client to run the applications.

Before you begin:

It may be helpful to have an understanding of individual Summit ADF standalone
sample applications. For more information, see Overview of the Summit ADF
Standalone Sample Applications.

You will need to complete these tasks:

• Install Oracle JDeveloper Studio and meet the installation prerequisites. The
standalone applications require an existing Oracle database. For details, see How
to Download the Application Resources.

• Download the Summit ADF archive file from the Oracle Technology Network to
a local directory and unzip the Summit ADF standalone sample applications. For
details, see Setting Up the Summit Sample Applications for Oracle ADF.

• Install the Summit ADF schema. For details, see How to Install the Summit ADF
Schema.

To run a standalone application from its provided test client:

1. Open the application in JDeveloper:

a. In the main menu, choose File and then Open.

b. Navigate to the location where you expanded the ZIP file for the
SummitADF_Examples directory, select the SummitADF_Examples.jws
application workspace and then click Open.

2. Create a database connection for the standalone applications. For details, see
How to Create the Database Connection for Summit Sample Applications for
Oracle ADF.

3. Run the SQL script in JDeveloper for standalone samples that require it. Some
of the standalone applications work with a modified version of the Summit
ADF schema. For standalone applications that require schema changes, the
application's project contains a SQL script that you must run in JDeveloper. Once
you are through running a standalone application, you can use the script to back
out the schema changes

4. In the Applications window, expand the project node and locate the test client
(.java) file node. In some cases, the test client is added to a package located
under the Application Sources node. In other cases, the Resources node
contains the test client.

For example, Figure 2-18 shows the expanded inMemoryOperations node with
the Java file node TestClientRowMatch.java selected.

Chapter 2
Running the Standalone Samples from the SummitADF_Examples Workspace

2-28

Figure 2-18 Test Client Selected in Applications Window

5. Right-click the test client and choose Run.

For the names and location of the test clients provided with the standalone
applications, see the table in Overview of the Summit ADF Standalone Sample
Applications.

The Create Default Domain dialog appears the first time you run an executable
and start a new domain in Integrated WebLogic Server. Use the dialog to define an
administrator password for the new domain. Passwords you enter must be eight
characters or more and have a numeric character.

6. Examine the JDeveloper Log window for the test client's output.

Refer to the referenced documentation for details about the expected results.

Running the Standalone Applications Without a Test Client
When the standalone application does not provide a test client to programmatically
exercise the ADF Business Components API, you will use the interactive testing tool,
known as the Oracle ADF Model Tester.

Before you begin:

It may be helpful to have an understanding of individual Summit ADF standalone
sample applications. For more information, see Overview of the Summit ADF
Standalone Sample Applications.

Chapter 2
Running the Standalone Samples from the SummitADF_Examples Workspace

2-29

It also may be helpful to have an understanding of the Oracle ADF Model Tester. For
more information, see Testing View Object Instances Using the Oracle ADF Model
Tester.

You will need to complete these tasks:

• Install Oracle JDeveloper Studio and meet the installation prerequisites. The
standalone applications require an existing Oracle database. For details, see How
to Download the Application Resources.

• Download the Summit ADF archive file from the Oracle Technology Network to
a local directory and unzip the Summit ADF standalone sample applications. For
details, see How to Download the Application Resources.

• Install the Summit ADF schema. For details, see How to Install the Summit ADF
Schema.

To run a standalone application in the Oracle ADF Model Tester:

1. Open the application in JDeveloper:

a. In the main menu, choose File and then Open.

b. Navigate to the location where you expanded the ZIP file for
the SummitADF_Examples directory, select the SummitADF_Examples.jws
application workspace file and then click Open.

2. Create a database connection for the standalone applications. For details, see
How to Create the Database Connection for Summit Sample Applications for
Oracle ADF.

3. Run the SQL script in JDeveloper for standalone samples that require it. Some
of the standalone applications work with a modified version of the Summit
ADF schema. For standalone applications that require schema changes, the
application's project contains a SQL script that you must run in JDeveloper. Once
you are through running a standalone application, you can use the script to back
out the schema changes

4. In the Applications window, expand the project node and locate the application
module in a package under the Application Sources node.

For example, Figure 2-19 shows the expanded controlpostorder project with the
application module AppModule selected and a tooltip for the node displayed.

Chapter 2
Running the Standalone Samples from the SummitADF_Examples Workspace

2-30

Figure 2-19 Application Module Node Selected in Applications Window

5. Right-click the application module node and choose Run.

For the names of the runnable application modules, see the table in Overview of
the Summit ADF Standalone Sample Applications.

The Create Default Domain dialog displays the first time you run an executable
and start a new domain in Integrated WebLogic Server. Use the dialog to define an
administrator password for the new domain. Passwords you enter must be eight
characters or more and have a numeric character.

6. Use the Oracle ADF Model Tester to interact with the view instances of the
standalone application.

Refer to the referenced documentation for details about the application. For details
about using the tester to interact with the data model, see Testing View Object
Instances Using the Oracle ADF Model Tester.

Overview of the Summit ADF Standalone Sample Applications
Some of the standalone applications in the SummitADF_Examples application
workspace use programmatic test clients to demonstrate concepts related to the ADF
Business Components framework. Others demonstrate framework functionality when
you run the application in the Oracle ADF Model Tester.

Figure 2-20 shows the Applications window after you open the SummitADF_Examples
application workspace.

Chapter 2
Running the Standalone Samples from the SummitADF_Examples Workspace

2-31

Figure 2-20 Standalone Applications in the SummitADF_Examples Workspace

Note that the test clients for the standalone applications provide a good starting point
for understanding how to exercise methods of the ADF Business Components API.
They also make good samples for test clients that you may want to create to test
business component queries in a data model project. For background on working with
test clients, see Testing View Object Instances Programmatically.

Note:

The ADF Business Components API is available when you need to generate
custom classes to augment the default runtime behavior of the business
components. For background about the ADF Business Components
framework, see Getting Started with ADF Business Components.

Chapter 2
Running the Standalone Samples from the SummitADF_Examples Workspace

2-32

Table 2-4 describes the standalone applications in the SummitADF_Examples
application workspace. Examples from these applications appear throughout the
chapters contained in Building Your Business Services of this guide.

Table 2-4 Standalone Applications in the SummitADF_Examples Application Workspace

Package Name Runnable Class or Project Target Documentation

amservice Run ServiceAppModule using the
Oracle ADF Model Tester.

For information about the application
module service interface, see
Publishing Service-Enabled Application
Modules.

appmodule Run TestAM.java under the service
node.

Run TestCustomEntity.java under the
service node.

These test clients exercise custom
methods of application module's client
interface and print to the JDeveloper
Log window to indicate the results.

For details about the test client, see
How to Work Programmatically with an
Application Module's Client Interface.

For details about the methods of the
client interface, see the examples in
Working Programmatically with Entity
Objects and Associations.

buslogic Run AppModule using the Oracle ADF
Model Tester.

For information about business logic
units and groups, see Defining
Business Logic Groups.

controlpostorder Run AppModule using the Oracle ADF
Model Tester.

For information about controlling the
posting order resulting from DML
operations to save changes to a
number of related entity objects, see
How to Control Entity Posting Order to
Prevent Constraint Violations.

custommessages Run AppModule using the Oracle ADF
Model Tester.

For information about how to provide
an alternative message string for the
builtin error codes in a custom message
bundle, see Customizing Business
Components Error Messages.

declblock Run AppModule using the Oracle ADF
Model Tester.

For information about how to use
custom metadata properties to control
insert, update, or delete on a view
object, see Declaratively Preventing
Insert, Update, and Delete.

domains Run AppModule using the Oracle ADF
Model Tester.

For information about creating custom
data types, see Creating Custom,
Validated Data Types Using Domains.

extend Run TestClient.java.

This client casts the results of the
productByName.first() method to
the ProductViewRow interface so that
it can make method calls, and prints to
the JDeveloper Log window to display
the results.

For information about how to extend
business components to create a
customized versions of the original, see
Creating Extended Components Using
Inheritance.

For information about iterating over a
collection using the view row accessor
attribute, see Exposing View Row
Accessors to Clients.

Chapter 2
Running the Standalone Samples from the SummitADF_Examples Workspace

2-33

Table 2-4 (Cont.) Standalone Applications in the SummitADF_Examples Application Workspace

Package Name Runnable Class or Project Target Documentation

inMemoryOperations Run the test clients:

• TestClientFilterEntityCache.java
• TestClientFindByViewCriteria.jav

a
• TestClientRowMatch.java
• TestClientSetSortBy.java
These test clients illustrate how to
use the in-memory sorting and filtering
functionality from the client side using
methods on the interfaces in the
oracle.jbo package, and print to the
JDeveloper Log window to display the
results.

For information about how to use view
objects to perform in-memory searches
and sorting to avoid unnecessary trips
to the database, see Performing In-
Memory Sorting and Filtering of Row
Sets.

invokingstoredprocedure Run the ExampleSQLPackage.sql
script against the summit_adf
database connection to set up the
additional database objects required for
the example.

Run TestClient.java.

The test client exercises custom
methods of application module's client
interface to invoke database stored
procedures and functions, and prints to
the JDeveloper Log window to indicate
the results.

For information about how to code
custom Java classes for business
components that invoke database
stored procedures and functions,
see Invoking Stored Procedures and
Functions.

multieoupdate Run AppModule using the Oracle ADF
Model Tester.

For information about creating a view
object with multiple updatable entities
to support creating new rows, see
Creating a View Object with Multiple
Updatable Entities.

multinamedviewcriteria Run
MultiNamedViewCriteriaTestClient.jav
a.

The test client exercises custom
methods on the view object interface
and prints to the JDeveloper Log
window to display the results.

For information about how to
programmatically filter query results,
see Working Programmatically with
Multiple Named View Criteria.

polymorphic Run PolymorphicAppModule (under
the service node) using the Oracle ADF
Model Tester and display the subtype
view instances for US customers
(CountryId=4). Subtype view usages
display the subtype attribute State..

This sample demonstrates entity-based
polymorphic view objects.

For details about creating an entity
object inheritance hierarchy, see Using
Inheritance in Your Business Domain
Layer and for details about creating
view usages for those entity objects,
see Working with Polymorphic Entity
Usages.

Chapter 2
Running the Standalone Samples from the SummitADF_Examples Workspace

2-34

Table 2-4 (Cont.) Standalone Applications in the SummitADF_Examples Application Workspace

Package Name Runnable Class or Project Target Documentation

polymorphicvo Run AppModule (under the service
node) using the Oracle ADF
Model Tester and display subtype
view rows for Sales department
employees (TitleId=2). Subtype view
rows display the subtype attribute
CommissionPct.

This sample demonstrates view row-
based polymorphic view objects.

For details about creating a view
row subtypes, see Working with
Polymorphic View Rows.

PolymorphicVO_WSClient

(This is a client project of the
polymorphicvo package.)

First run AppModuleServiceImpl.java
in the polymorphicvo package of the
Model project, then run the web service
client
AppModuleServiceSoapHttpPortClien
t (under the
com.oracle.xmlns.apps.hr.service.typ
es node). The client file creates a new
salesman subtype and prints to the
JDeveloper Log.

This sample demonstrates how to work
with polymorphic collections in SOAP
web service clients.

For details about working with subtype
view objects in web services, see
Accessing Polymorphic Collections in
the Consuming Application.

processChange Run processChangeTestClient.java.

The test client exercises custom
methods on the view object interface
and prints to the JDeveloper Log
window to display the results.

For information about invoking
database change notifications, see
What You May Need to Know About
Programmatically Invoking Database
Change Notifications.

For details about the test client, see
How to Work Programmatically with an
Application Module's Client Interface.

readandwritexml Run TestClientReadXML.java under
the client node, then run
TestClientWriteXML.java.

For details about how to produce XML
from queried data, see Reading and
Writing XML.

rest_WS This package is reserved for future use. For details about creating RESTful web
services from view instances of an
application module, see Creating ADF
RESTful Web Services with Application
Modules.

Chapter 2
Running the Standalone Samples from the SummitADF_Examples Workspace

2-35

Table 2-4 (Cont.) Standalone Applications in the SummitADF_Examples Application Workspace

Package Name Runnable Class or Project Target Documentation

rowfinder Run TestClient.java to
programmatically exercise the row
finder EmpByTitleId defined on
EmpView. Row finders may be invoked
programmatically within a test client or
from the methods of exposed service
data object (SDO) operations on a
SOAP web service.

Alternatively, expand the
serviceinterface folder of
the EmpService application
module node and run
EmpServiceServiceImpl.java to test
the row finder in the HTTP Analyzer.
In the HTTP Analyzer, select the
updateEmpView1 operation and enter
1 for the TrTitleId and then enter
any First Name to update the Employee
record based on a person with the Title
Id of "1".

Row finders may be defined on view
objects to support record lookups using
any attribute without requiring the view
object's key attribute.

For information about defining a row
finder and programmatically invoking it,
see Working with Row Finders.

For information about using row finder
operations in SOAP web services, see
What You May Need to Know About
Row Finders and the ADF Web Service
Operations.

sdo This package implements service
data objects (SDO) for use with
SOAP web services that are based
on the DeptView1 and EmpView1
view instances of the HRAppModule
application module. This package
exposes a find operation on the
EmpView1 SDO. See SDO_Client and
SDO_WSClient for instruction about
running the client projects to test the
exposed find operation.

For information about how to create
SDO from an application module, see
Creating SOAP Web Services with
Application Modules.

SDO_Client Run SDOClientServlet.java SOAP
web service servlet. The test client
exercises the findEmpView1() method
implemented as a SOAP web service
view criteria find operation in the
services package of the Model project.
The servlet testFindEmps() method
creates a dynamic view criteria
passed to findEmpView1() that filters
employees by a named department and
verifies the test result. This is the servlet
version of the SDO_WSClient project.

For more information about exposing
find operations, see How to Expose
a Custom Find Method Filtered By a
Required Bind Variable.

Chapter 2
Running the Standalone Samples from the SummitADF_Examples Workspace

2-36

Table 2-4 (Cont.) Standalone Applications in the SummitADF_Examples Application Workspace

Package Name Runnable Class or Project Target Documentation

SDO_WSClient Run
HRAppModuleServiceSoapHttpPortCl
ient.java SOAP web service HTTP port
client. The test client exercises the
findEmpView1() method implemented
as a SOAP web service view criteria
find operation in the services package of
the Model project. The servlet
testFindEmps() method creates a
dynamic view criteria passed to
findEmpView1() that filters employees
by a named department and verifies the
test result. This the web service client
version of the SDO_Client project.

For more information about exposing
find operations in ADF service data
objects, see How to Expose a Custom
Find Method Filtered By a Required
Bind Variable.

TaskFlowProducer Run RemoteViewer.jsf page in the
Web Content folder of this view
controller project. The page displays a
remote invocable task flow that can be
consumed by a consumer application.

For information about creating remote
task flows, see How to Configure an
Application to Render Remote Regions.

Once you deploy this sample
application, you can consume the
remote invocable task flow, as
described in Creating Remote Regions
in a Fusion Web Application.

validation Run AppModule using the Oracle
ADF Model Tester. Click OrdersView1
and edit the Data Ordered field
to see an example of attribute
level validation using a programmatic
validation method.

For information about how to
create programmatic validators, see
Implementing Validation and Business
Rules Programmatically.

viewobjectonrefcursor Run the CreateRefCursorPackage.sql
script against the summit_adf
database connection to set up the
additional database objects required for
the example.

Run AppModule using the Oracle ADF
Model Tester.

For details about how to use PL/SQL
to open a cursor to iterate through the
results of a query, see How to Create a
View Object on a REF CURSOR.

viewobjects Run TestClient.java.

Programmatically iterates over the
customers view instance using methods
of the Business Components API
RowIterator interface and prints to the
JDeveloper Log window.

For details about iterating over a
collection, see How to Count the
Number of Rows in a Row Set.

For details about how to create
test clients, see Testing View Object
Instances Programmatically.

Run TestClient2.java.

Programmatically iterates over the
customers view instance, accesses the
detail collection of orders using a view
link accessor attribute, and prints to
the JDeveloper Log window.

For details about iterating over a detail
collection, see How to Access the
Detail Collection Using the View Link
Accessor.

For more details about the test client,
see How to Access a Detail Collection
Using the View Link Accessor.

Chapter 2
Running the Standalone Samples from the SummitADF_Examples Workspace

2-37

Table 2-4 (Cont.) Standalone Applications in the SummitADF_Examples Application Workspace

Package Name Runnable Class or Project Target Documentation

Run TestClient3.java.

Finds and updates a foreign key value
and prints to the JDeveloper Log
window.

For details, see How to Find a Row and
Update a Foreign Key Value.

Run TestClient4.java.

Finds a view instance, creates a new
row, inserts it into the row set, and prints
to the JDeveloper Log window.

For details, see How to Create a New
Row for a View Object Instance.

Run TestClient5.java.

Finds a view instance, accesses the row
set, iterates over the rows to display the
key, and prints to the JDeveloper Log
window.

For details, see How to Retrieve the
Row Key Identifying a Row.

wrapplsql Run AppModule using the Oracle ADF
Model Tester.

For details about overriding the default
DML processing event for an entity
object to invoke methods in a PL/SQL
API package that encapsulates insert,
update, and delete access to an
underlying table, see Basing an Entity
Object on a PL/SQL Package API.

Running the Sample Application in the
SummitADF_TaskFlows Workspace

The sample Summit application for task flows describes how to use activities in the
ADF task flows that you create in your Fusion web application.

The Summit sample application for ADF task flows demonstrates how you can
implement security, contextual events, and task flows in your Fusion web application.

How to Run the Summit Sample Application for ADF Task Flows
The easiest way to run the Summit ADF task flow sample application is to expand the
ViewController project and run the index.jsf page from within this project.

Before you begin:

It may be helpful to have an understanding of the schema that the Summit ADF task
flow sample application uses. For more information, see What Happens When You
Install the Summit ADF Schema.

You will need to complete these tasks:

• Install Oracle JDeveloper Studio and meet the installation prerequisites. The
Summit ADF task flow sample application requires an existing Oracle database.
For details, see How to Download the Application Resources.

Chapter 2
Running the Sample Application in the SummitADF_TaskFlows Workspace

2-38

• Download the Summit ADF archive file from the Oracle Technology Network to a
local directory and unzip the Summit sample application for ADF task flows. For
details, see How to Download the Application Resources.

• Install the Summit ADF schema. For details, see How to Install the Summit ADF
Schema.

To run the Summit sample application for ADF task flows:

1. Open the application in JDeveloper:

a. In the main menu, choose File and then Open.

b. Navigate to the location where you expanded the ZIP file for
the SummitADF_Taskflows directory, select the SummitADF_Taskflows.jws
application workspace and click Open.

Figure 2-21 shows the Applications window after you open the
SummitADF_Taskflows.jws application workspace file and expand a number
of the nodes. For a description of each of the task flows in the workspace, see
Overview of the Summit Sample Application for ADF Task Flows.

Figure 2-21 Projects in the Summit ADF TaskFlows Application
Workspace

2. Create a database connection for the Summit ADF task flow sample application.
For details, see How to Create the Database Connection for Summit Sample
Applications for Oracle ADF.

3. In the Applications window, expand the ViewController and Web Content nodes,
then right-click index.jsf and choose Run.

The Create Default Domain dialog appears the first time you run an application
and start a new domain in Integrated WebLogic Server. Use the dialog to define
an administrator password for the new domain. Passwords you enter can be eight
characters or more and must have a numeric character.

4. Once the index.jsf page renders in your browser, you can log in using one of the
user accounts listed in Table 2-5 to view the functionality that is configured for an
employee or a customer in the application.

Chapter 2
Running the Sample Application in the SummitADF_TaskFlows Workspace

2-39

Table 2-5 Supplied Users in the Summit ADF Task Flow Sample Application

Username Password Application
Role

Notes

cmagee welcome1 Application
Employee
Role

This is the only user who is
preregistered as an employee in
the Summit ADF task flow sample
application.

214 welcome1 Application
Customer
Role

This is the only user who is
preregistered as a customer in
the Summit ADF task flow sample
application. The user ID of the
customer, Ojibway Retail, serves as the
username.

Overview of the Summit Sample Application for ADF Task Flows
The application in the SummitADF_Taskflows workspace demonstrates how you can
implement security, contextual events and task flows in your Fusion web application.

The following list shows the filenames of the task flows in the SummitADF_Taskflows
workspace. Expand the Page Flows node under the ViewController project in the
Applications window to view these task flows.

| adfc-config.xml
|
\---flows
 | customers-task-flow-definition.xml
 | edit-customer-task-flow-definition.xml
 | emp-reg-task-flow-definition.xml
 | product-inventory-task-flow-definition.xml
 | show-products-task-flow-definition.xml
 |
 \---orders
 create-edit-orders-task-flow-definition.xml
 orders-select-many-items.xml

Table 2-6 briefly describes these task flows and provides references to the sections
in this guide that use these task flows to demonstrate concepts related to security,
contextual events, data rendering and data input.

Apart from these task flows, the SummitADF_Taskflows workspace also contains a
jazn-data.xml file where JDeveloper saves all policy store and identity store changes
for the application. For more information about this file and its use, see ADF Security
Process Overview.

Chapter 2
Running the Sample Application in the SummitADF_TaskFlows Workspace

2-40

Table 2-6 Task Flows in the Summit ADF Task Flow Sample Application

Task Flow Name Documentation

adfc-config.xml Every Fusion web application contains this file. It is the source file for the
unbounded task flow that JDeveloper creates by default when you create a
Fusion web application.

In the Summit ADF task flow sample application, this task flow contains
the index view activity that renders the index.jsf page end users see at
runtime.

This task flow also registers the managed bean
(oracle.summit.bean.LoginBean) that handles authentication of users
who want to access resources that require authentication. For more
information, see How to Create a Login Link Component and Add it to
a Public Web Page for Explicit Authentication.

customers-task-flow-
definition.xml

This task flow contains a router, a view and a method call activity to
navigate an authenticated customer to the row that the customer selects
within the Customer.jsff page fragment. For more information, see
Working with Task Flow Activities .

ADF Security secures this task flow so that only authenticated customers
can access the functionality it configures or the web pages it exposes. For
more information, see About ADF Security.

edit-customer-task-flow-
definition.xml

This task flow renders a number of page fragments in an ADF region that
provide controls to authenticated users to edit data. For more information,
see Task Flows and ADF Region Use Cases and Examples.

emp-reg-task-flow-
definition.xml

The Summit ADF task flow sample application renders this task flow in an
ADF dynamic region when an end user clicks the Register as Employee
link that appears in the index.jsf page at runtime. For more information,
see Creating ADF Dynamic Regions.

Unlike other task flows (for example, customers-task-flow-
definition.xml) users do not have to be authenticated to access this
task flow. For this reason, the security policy for this task flow grants view
privileges to the builtin anonymous-role application role, as described in
What Happens When You Define the Security Policy.

product-inventory-task-flow-
definition.xml

This task flow renders the showInventory.jsff page fragment that
appears in the Inventory Control tab. This tab is enabled when you log in
as an employee. The application uses contextual events to determine what
data to display in the showInventory.jsff page fragment in response to
the end user selecting data in another ADF region.

For more information about this task flow's use of contextual events, see
Using Contextual Events.

show-products-task-flow-
definition.xml

This task flow renders the showProducts.jsff page fragment that
renders an ADF Faces table component containing data about products.
At runtime, an end-user's selection of a product broadcasts a contextual
event that the product-inventory-task-flow-definition.xml task
flow consumes so that it can display the inventory for the product.

For more information about this task flow's use of contextual events, see
Using Contextual Events.

create-edit-orders-task-flow-
definition.xml

This task flow renders the Orders.jsff page fragment where an end
user can add a new product to an order. It also calls another task flow
(orders-select-many-items), as described in How to Call a Bounded
Task Flow Using a Task Flow Call Activity.

orders-select-many-items.xml This task flow renders a modal dialog, as described in Running a Bounded
Task Flow in a Modal Dialog.

Chapter 2
Running the Sample Application in the SummitADF_TaskFlows Workspace

2-41

Running the Standalone Samples in the SummitADF_DVT
Workspace

The standalone Summit sample application for ADF DVT components provide
extensive graphical and tabular capabilities for visually displaying and analyzing
business data.

The Summit sample application for ADF DVT components includes a set of standalone
sample pages that demonstrate creation and configuration of ADF DVT components
using ADF Business Components and data binding.

References to these standalone pages appear throughout the following chapters:

• Creating Databound Chart and Gauge Components

• Creating Databound Pivot Table and Pivot Filter Bar Components

• Creating Databound Geographic and Thematic Map Components

• Creating Databound Gantt Chart and Timeline Components

• Creating Databound Hierarchy Viewer, Treemap, and Sunburst Components

Overview of the Summit ADF DVT Standalone Samples
Each of the standalone pages in the Summit ADF DVT sample application uses the
Summit ADF schema to demonstrate creation and configuration of a databound Oracle
ADF Data Visualization component.

Figure 2-22 shows the Applications window after you open the SummitADF_DVT
application workspace.

Figure 2-22 Runnable Pages in the Summit ADF DVT Application Workspace

Chapter 2
Running the Standalone Samples in the SummitADF_DVT Workspace

2-42

Table 2-7 describes the standalone pages in the SummitADF_DVT application
workspace. Each page is runnable on its own.

Table 2-7 Standalone Pages in the Summit ADF DVT Application Workspace

Page Name Page Description Documentation

bubbleChartDemo.jsf Demonstrates creation of a DVT bubble
chart from a data control

How to Create Databound Bubble and
Scatter Charts

comboChartDemo,jsf Demonstrates creation of a DVT
combination char from a data control

How to Create an Area, Bar,
Combination, Horizontal Bar, or Line
Chart Using Data Controls

gaugeDemo.jsf Demonstrates creation of a DVT dial
gauge from a data control

Creating Databound Gauges

gaugeInTableDemo.jsf Demonstrates creation of a databound
ADF table that stamps a status meter
gauge in one of its columns

Including Gauges in Databound ADF
Tables

hvDemo.jsf Demonstrates creation of a databound
hierarchy viewer rendering an
organizational chart of Summit
employees

How to Create a Hierarchy Viewer
Using ADF Data Controls

hvPanelCardVODemo.jsf Demonstrates creation of a databound
hierarchy viewer using an alternate view
object for one of its panel cards

How to Configure an Alternate View
Object for a Databound Panel Card

hvSearchDemo.jsf Demonstrates hierarchy viewer search
configuration

How to Create a Databound Search in
a Hierarchy Viewer

pivotTableBarDemo.jsf Demonstrates creation of a pivot table
and pivot filter bar using data controls

How to Create a Pivot Table Using ADF
Data Controls

projectGanttDemo.jsf Demonstrates creation of a project Gantt
chart using data controls

How to Create a Databound Project
Gantt Chart

RUGGanttDemo.jsf Demonstrates creation of a resource
utilization Gantt chart using data controls

How to Create a Databound Resource
Utilization Gantt Chart

scatterChartDemo.jsf Demonstrates creation of a DVT scatter
chart from a data control

How to Create Databound Bubble and
Scatter Charts

schedGanttDemo.jsf Demonstrates creation of a scheduling
Gantt chart using data controls

How to Create a Databound Scheduling
Gantt Chart

sunburstDemo.jsf Demonstrates creation of a sunburst
using data controls

How to Create Treemaps and
Sunbursts Using ADF Data Controls

thematicMapDemo.jsf Demonstrates creation of a thematic map
using data controls

How to Create a Thematic Map Using
ADF Data Controls

timelineDemo.jsf Demonstrates creation of a timeline
component using data controls

How to Create a Timeline Using ADF
Data Controls

treemapDemo.jsf Demonstrates creation of a treemap
using data controls

How to Create Treemaps and
Sunbursts Using ADF Data Controls

How to Run the Summit ADF DVT Sample Application Pages
To run the Summit ADF DVT sample application JSF pages, open the application,
expand the View Controller project and run any of the sample.jsf files.

Before you begin:

Chapter 2
Running the Standalone Samples in the SummitADF_DVT Workspace

2-43

It may be helpful to have an understanding of the schema that the Summit ADF DVT
sample application uses. For more information, see What Happens When You Install
the Summit ADF Schema.

You will need to complete these tasks:

• Install Oracle JDeveloper Studio and meet the installation prerequisites. The
Oracle ADF DVT sample application requires an existing Oracle database. For
details, see How to Download the Application Resources.

• Download the Summit ADF archive file from the Oracle Technology Network to a
local directory and unzip the Summit sample application for ADF DVT. For details,
see How to Download the Application Resources.

• Install the Summit ADF schema. For details, see How to Install the Summit ADF
Schema.

To run the Summit ADF DVT sample application pages:

1. Open the application in JDeveloper:

a. In the main menu, choose File and then Open.

b. Navigate to the location where you expanded the ZIP file for the
SummitADF_DVT directory, select the SummitADF_DVT.jws application workspace
and click Open.

2. Create a database connection for the Summit ADF DVT sample application.
For details, see How to Create the Database Connection for Summit Sample
Applications for Oracle ADF.

3. In the Applications window, expand the ViewController and Web Content nodes.

Figure 2-22 shows the Applications window after you open the SummitADF_DVT.jws
application workspace file for the Summit ADF DVT sample application and
expand the View Controller and Web Content nodes. For a description of each
page in the application, see Table 2-7.

4. To run a page, right-click the desired .jsf page and choose Run.

The Create Default Domain dialog appears the first time you run an application
and start a new domain in Integrated WebLogic Server. Use the dialog to define
an administrator password for the new domain. Passwords you enter can be eight
characters or more and must have a numeric character.

Chapter 2
Running the Standalone Samples in the SummitADF_DVT Workspace

2-44

Part II
Building Your Business Services

This part describes the tasks developers can perform when creating the business
components of the Fusion web application.

Part II contains the following chapters:

• Getting Started with ADF Business Components

• Creating a Business Domain Layer Using Entity Objects

• Defining SQL Queries Using View Objects

• Defining Master-Detail Related View Objects

• Defining Polymorphic View Objects

• Testing View Instance Queries

• Tuning View Object Performance

• Working Programmatically with View Objects

• Defining Validation and Business Rules Declaratively

• Implementing Validation and Business Rules Programmatically

• Implementing Business Services with Application Modules

• Sharing Application Module View Instances

• Creating SOAP Web Services with Application Modules

• Creating ADF RESTful Web Services with Application Modules

• Extending Business Components Functionality

3
Getting Started with ADF Business
Components

This chapter describes getting started with the ADF Business Components in Oracle
ADF applications. It describes key features such as the design-time wizards, overview
editors, and ADF Model Tester. It also provides an overview of the process that you
follow when creating business components in the data model project.
This chapter includes the following sections:

• About ADF Business Components

• Creating the ADF Business Components Data Model Project

• Creating and Editing Business Components

• Testing, Refactoring, and Visualizing Business Components

• Customizing Business Components

• Using Groovy Scripting Language With Business Components

About ADF Business Components
ADF Business Components is a framework that supports creating the Business
Service layer of a Fusion web application in JDeveloper with a minimum of coding.
In the Fusion web application, the business service layer handles connecting to
the database, retrieving data, locking database records, and managing transactions.
Consider the following three simple examples of business service layer functionality:

• New data appears in relevant displays without requerying

A person logs into a customer management application and displays a customer
and their existing orders. Then if the person creates a new order, when he views
the inventory for the ordered product, the amount of product in stock is updated
without the need to requery the database.

• Changes caused by business domain logic automatically reflected

A back office application causes an update to the order status. Business logic
encapsulated in the Orders entity object in the business domain layer contains a
simple rule that updates the last update date whenever the order status attribute is
changed. The user interface updates to automatically reflect the last update date
that was changed by the logic in the business domain layer.

• Invocation of a business service method by the ADF Model layer binding requeries
data and sets current rows

In a tree display, the end user clicks on a specific node in a tree. This action
declaratively invokes a business service method by the ADF tree binding on your
application module that requeries master-detail information and sets the current
rows to an appropriate row in the row set. The display updates to reflect the new
master-detail data and current row displayed.

3-1

Developers save time building business services using ADF Business Components
since the JDeveloper design time makes typical development tasks entirely
declarative. In particular, JDeveloper supports declarative development with ADF
Business Components to:

• Author and test business logic in components which automatically integrate with
databases

• Reuse business logic through multiple SQL-based views of data, supporting
different application tasks

• Access and update the views from browser, desktop, mobile, and web service
clients

• Customize application functionality in layers without requiring modification of the
delivered application

ADF Business Components supports the business service layer through the following
set of cooperating business components:

• Entity object

An entity object represents a row in a database table and simplifies modifying
its data by handling all data manipulation language (DML) operations for you. It
can encapsulate business logic for the row to ensure that your business rules
are consistently enforced. You associate an entity object with others to reflect
relationships in the underlying database schema to create a layer of business
domain objects to reuse in multiple applications.

• View object

A view object represents a SQL query. You use the full power of the familiar SQL
language to join, filter, sort, and aggregate data into exactly the shape required
by the end-user task. This includes the ability to link a view object with others to
create master-detail hierarchies of any complexity. When end users modify data in
the user interface, your view objects collaborate with entity objects to consistently
validate and save the changes.

• Application module

An application module is the transactional component that UI clients use to work
with application data. It defines an updatable data model and top-level procedures
and functions (called service methods) related to a logical unit of work related to
an end-user task.

Figure 3-1 shows the overall components of the ADF Business Components and their
relationships.

Chapter 3
About ADF Business Components

3-2

Figure 3-1 Overview of ADF Business Components

ADF Business Components Use Cases and Examples
ADF Business Components provides a foundation of Java classes that allow the
business service layer of the Fusion web application to leverage the functionality
depicted in the following examples:

Simplify Data Access

• Design a data model for client displays, including only necessary data

• Include master-detail hierarchies of any complexity as part of the data model

• Implement end-user Query-by-Example data filtering without code

• Automatically coordinate data model changes with the business services layer

• Automatically validate and save any changes to the database

Enforce Business Domain Validation and Business Logic

• Declaratively enforce required fields, primary key uniqueness, data precision-
scale, and foreign key references

• Easily capture and enforce both simple and complex business rules,
programmatically or declaratively, with multilevel validation support

• Navigate relationships between business domain objects and enforce constraints
related to compound components

Support User Interfaces with Multipage Units of Work

• Automatically reflect changes made by business service application logic in the
user interface

• Retrieve reference information from related tables, and automatically maintain the
information when the end user changes foreign-key values

• Simplify multistep web-based business transactions with automatic web-tier state
management

Chapter 3
About ADF Business Components

3-3

• Handle images, video, sound, and documents without having to use code

• Synchronize pending data changes across multiple views of data

• Consistently apply prompts, tooltips, format masks, and error messages in any
application

• Define custom metadata for any business components to support metadata-
driven user interface or application functionality

• Add dynamic attributes at runtime to simplify per-row state management

Implement a Service-Oriented Architecture

• Support highly functional web service interfaces for business integration without
writing code

• Enforce best-practice interface-based programming style

• Simplify application security with automatic JAAS integration and audit
maintenance

• "Write once, run anywhere": use the same business service as plain Java class or
web service

Support Application Customization

• Extend component functionality after delivery without modifying source code

• Globally substitute delivered components with extended ones without modifying
the application

• Deliver application upgrades without losing or having to reapply downstream
customizations manually

Additional Functionality for ADF Business Components
You may find it helpful to understand related Oracle ADF features before you start
working with ADF Business Components. Following are links to other functionality that
may be of interest.

• For details about the Java EE design patterns that ADF Business Components
implements, see ADF Business Components Java EE Design Pattern Catalog.

• For details about method calls of the ADF Business Components interfaces and
classes, see Most Commonly Used ADF Business Components Methods.

• For details about common Oracle Forms tasks are implemented in Oracle ADF,
see Performing Common Oracle Forms Tasks in Oracle ADF.

• For API documentation related to the oracle.jbo package, see the following
Javadoc reference document:

– Java API Reference for Oracle ADF Model

Creating the ADF Business Components Data Model Project
JDeveloper allows you to create the data model project using ADF view objects and
encapsulate them in an ADF Application Module.
JDeveloper includes comprehensive design time support for ADF Business
Components. Collectively, these facilities let you create, edit, diagram, test, and
refactor the business components.

Chapter 3
Creating the ADF Business Components Data Model Project

3-4

How to Create a Data Model Project for ADF Business Components
JDeveloper provides an application template that aids in creating databound web
applications with Oracle ADF. When you use the ADF Fusion Web Application
template, your application will consist of one project for the data model (with ADF
Business Components) and another project for the view and controller components
(ADF Faces and ADF task flows).

Before you begin:

It may be helpful to have an understanding of the Fusion web application. See
Introduction to Building Fusion Web Applications with Oracle ADF.

You may also find it helpful to understand ADF Business Components preferences that
can be specified globally across data model projects. For more information, see How
to Customize ADF Business Components Preferences.

You may also find it helpful to understand more about the tools and features that
JDeveloper provides to create and manage applications. See Getting Started with
Developing Applications with Oracle JDeveloperin Developing Applications with Oracle
JDeveloper.

To create a data model project with the ADF Fusion Web Application template:

1. In the main menu, choose File and then Application > New.

2. In the New Gallery, in the Items list, double-click ADF Fusion Web Application.

3. In the Create ADF Fusion Web Application wizard, enter application details like the
name and directory. For help with the wizard, press F1.

The Project 1 Name page of the wizard shows the list of features needed
to complete the data model project. The project feature ADF Business
Components should appear in the list.

4. Click Finish.

How to Create a Data Model Project for ADF REST Web Applications
JDeveloper provides an application template that aids in creating databound web
applications with Oracle ADF. When you use the ADF REST Web Application
template, your application will consist of one project for the web components (REST
Web Project) and another project for the data model (ADF Business Components).

Before you begin:

It may be helpful to have an understanding of the REST web application. For more
information, see About RESTful Web Services and ADF Business Components.

You may also find it helpful to understand ADF Business Components preferences that
can be specified globally across data model projects. For more information, see How
to Customize ADF Business Components Preferences.

You may also find it helpful to understand more about the tools and features that
JDeveloper provides to create and manage applications. For more information, see
the Getting Started with Developing Applications with Oracle JDeveloper chapter in
Developing Applications with Oracle JDeveloper.

To create a data model project with the ADF REST Web Application template:

Chapter 3
Creating the ADF Business Components Data Model Project

3-5

1. In the main menu, choose File and then Application > New.

2. In the New Gallery, in the Items list, double-click ADF REST Web Application.

3. In the Create ADF REST Web Application wizard, enter application details like the
name and directory. For help with the wizard, press F1.

4. The Version page of the wizard shows the new version release name and internal
name created during the application creation process. Click Next.

5. The Project Name page of the wizard shows the list of features needed
to complete the data model project. The project feature ADF Business
Components should appear in the list. Click Next.

6. In the Project Java Settings page, enter the package name, the directory of the
Java source code in your project, and output directory where output class files will
be placed, and click Finish.

Note:

REST Web Service project is named by default as RESTWebService and
contains the web.xml file. You cannot edit this project name during the
new application setup.

7. You may proceed to create ADF REST resources using the Create Business
Components from Tables wizard. For details, see How to Create ADF REST
Resources Using the Create Business Components from Tables Wizard.

How to Add an ADF Business Components Data Model Project to an
Existing Application

Applications that you create without using a predefined technology template, may be
constructed by adding project folders from the New Gallery. When you add a project
for ADF Business Components, you will select ADF Model Project from the list in
the New Gallery. This creates a project that defines a data model for an ADF web
application that relies on ADF Business Components.

Before you begin:

It may be helpful to have an understanding of the Fusion web application. For more
information, see Introduction to Building Fusion Web Applications with Oracle ADF.

You may also find it helpful to understand more about the tools and features that
JDeveloper provides to create and manage applications. See Getting Started with
Developing Applications with Oracle JDeveloper in Developing Applications with
Oracle JDeveloper.

To add a data model project to your application:

1. In the Applications window, select any existing project and in the main menu,
choose File and then New > Project.

2. In the New Gallery, in the Items list, double-click ADF Model Project.

3. In the Create ADF Model Project wizard, enter project details like the name and
directory. For help with the wizard, press F1.

Chapter 3
Creating the ADF Business Components Data Model Project

3-6

The Project Name page of the wizard shows the list of features needed to
complete the model project. The project feature ADF Business Components
should appear in the list.

4. Click Finish.

How to Initialize the Data Model Project With a Database Connection
The first time you create a business component in your ADF Business Components
model project, you'll see the Initialize Business Components Project dialog shown in
Figure 3-2. You use this dialog to select a design time application resource connection
to use while working on your business components in this data model project or
to create a new application resource connection by copying an existing IDE-level
connection. You can specify whether the database that JDeveloper will use to create
business components will be online or offline. The dialog default specifies an online
database, for more details about working with an offline database, see How to Change
the Data Model Project to Work With Offline Database Objects.

Figure 3-2 Initialize Business Components Project Dialog

Since this dialog appears before you create your first business component, you also
use it to globally control the SQL platform that the view objects will use to formulate
SQL statements. SQL platforms that you can choose include:

• Oracle SQL platform for an Oracle database connection (the default)

• OLite for the Oracle Lite database

• SQLServer for a Microsoft SQLServer database

• DB2 for an IBM DB2 database

• SQL92 for any other supported SQL92- compliant database

Chapter 3
Creating the ADF Business Components Data Model Project

3-7

Note:

If you plan to have your application run against both Oracle and non-
Oracle databases, you should select the SQL92 SQL platform when you
begin building your application, not later. While this sacrifices some of the
Oracle-specific optimizations that are inherent in using the Oracle SQL
platform, it makes the application portable to both Oracle and non-Oracle
databases. Additionally, it is important to understand that support for running
ADF applications with multiple SQL platforms chosen at design time is
not supported by the ADF runtime. Therefore, you must ensure that ADF
applications that you plan to deploy to the same managed server all use
a single value for their chosen SQL platform. In the scenario where you
will run against both Oracle and non-Oracle databases, you must therefore
ensure that all applications have SQL92 chosen as their SQL platform. If this
requirement is not observed, SQL validation errors may result at runtime.

Additionally, the dialog lets you determine which set of data types that you want the
data model project to use. JDeveloper uses the data type selection to define the data
types of attributes when you create entity object and view objects in the data model
project. It is therefore important that you make the appropriate selection before you
save the settings in the Initialize Business Components Project dialog. The dialog
provides these options:

• Java Extended for Oracle type map is selected by default if JDeveloper detects
you are using an Oracle database driver. The Java Extended for Oracle type
map uses standard Java types and the optimized types in the oracle.jbo.domain
package for common data types.

Tip:

New Fusion web applications should use the default Java Extended for
Oracle type.

• Java type map is provided to support applications that will run on a non-Oracle
database and that you create using SQL92-compliance. In this case, you should
set the data type map to Java to globally use only the basic Java data types.

• Oracle Domains type map is provided for backward compatibility and for ADF
applications that do not use ADF Faces as the view layer technology, as explained
in What You May Need to Know About Displaying Numeric Values. Please
note that when you migrate an application developed with JDeveloper version
11.1.1.4.0 or earlier, your application will continue to use the Oracle Domains
type map and will not change to the current default type map Java Extended for
Oracle

Once you save project selections in the Initialize Business Components Project dialog,
the project is considered initialized. You will not be able to change the data type map
of the initialized project and it is not recommended to change the SQL platform after
you have created business components.

Before you begin:

Chapter 3
Creating the ADF Business Components Data Model Project

3-8

It may be helpful to have an understanding about database connections as resources
in JDeveloper. See Connecting to and Working with Databases in Developing
Applications with Oracle JDeveloper.

You will need to complete these tasks:

• Create the data model project for ADF Business Components, as described in
How to Create a Data Model Project for ADF Business Components.

• Obtain the connection credentials for the database that you will use as a data
source for the business components you will create.

To initialize the data model project:

1. In the Application window, right-click the model project in which you want to create
business components and choose New > Business Components from Tables.

You can select any other ADF Business Components option, but the option to
create business components from tables is particularly useful for generating the
first pass of business components that you anticipate needing. If you do not
see ADF Business Components options in the context menu, make sure that a
model project created for ADF Business Components appears selected in the
Applications window.

2. In the Initialize Business Components Project dialog, leave Online Database
selected and either choose an existing database resource from the dropdown list
or click the Create a New Database Connection icon.

If you are creating a database connection, enter the connection information into
the Create Database Connection dialog. For help with the dialog, press F1. You
can begin working with offline database objects at any time, as described in How
to Change the Data Model Project to Work With Offline Database Objects.

3. Select the SQL platform that your business components will use.

You can select the SQL platform in this dialog only when you first initialize your
data model project. After you initialize the project, you can override the SQL
platform in the Business Components page of the overview editor for the adf-
config.xml file, but you must do this before you add business components to the
project. You can locate the file in the Application Resources panel by expanding
the Descriptors and ADF META-INF nodes. Specifying the database type in the
adf-config.xml file supports generating SQL statements during runtime that can
require the actual database type of the deployed Fusion web application.

4. Select the data type map that your business components will use. Note that you
cannot change the data type map after you have initialized the data model project
for ADF Business Components.

For an application running against an Oracle database, you can usually accept
the default Java Extended for Oracle which uses standard Java types wherever
possible and provides custom Oracle domain types for common data types like
numbers and dates. Other supported data type maps include Oracle Domains
(provided for backward compatibility) and Java (select for use with SQL92-
compliant applications that will run on a non-Oracle database).

5. Click OK.

Chapter 3
Creating the ADF Business Components Data Model Project

3-9

How to Change the Data Model Project to Work With Offline Database
Objects

ADF Business Components supports using offline database as its database object
provider. After you have initialized the data model project to specify a database, you
can switch to working with the database in offline mode. Working with an offline
database to create business components in the model project lets you work in a
disconnected fashion and pick up database changes when are ready. This also keeps
your project independent of schema changes that might force you to make changes to
the business objects.

When you create or select an existing offline database, you still need an online
connection; this will be used for testing (using the Oracle ADF Model Tester) and
deployment. During design time, the offline database will be used. You can also
update an offline database to synchronize with the source database. A database
object compare feature lets you obtain a visual mapping that you can use to accept or
reject each difference.

Before you begin:

It may be helpful to have an understanding about offline databases in JDeveloper.
For more information, see Connecting to and Working with Databases in Developing
Applications with Oracle JDeveloper.

You will need to complete these tasks:

• Create the data model project for ADF Business Components, as described in
How to Create a Data Model Project for ADF Business Components.

• Create the database connection for use when testing business components, as
described in How to Initialize the Data Model Project With a Database Connection.

To change the data model project to work with an offline database:

1. In the Application window, right-click the data model project in which you want to
create the offline database and choose Project Properties.

2. In the Project Properties dialog, select ADF Business Components.

3. On the ADF Business Components page, select Offline Database and click the
Create a New Offline Database icon.

4. In the Create Offline Database dialog, enter the database and schema names that
you want the data model project to display, select other options to complete the
dialog, and then click OK.

The data model project is updated with a new Offline Database Sources folder and
contains an empty folder with the name of the offline database.

5. In the Connection list, choose the online database that you will connect to when
testing business components in the data model project.

The online database and offline database that you select must have the
same schema to ensure database object names and enable testing. For more
information about testing business components, see How to Use the Oracle ADF
Model Tester.

6. Click OK.

To create offline database definitions in the data model project:

Chapter 3
Creating the ADF Business Components Data Model Project

3-10

1. In the Application window, right-click the folder in which you want to create the
offline database and choose New > Offline Database Objects from Source
Database.

2. In the Reverse Engineer Database Objects wizard, on the Database page, verify
that your online database connection is displayed as the Source Database and
click Next.

3. On the Select Objects page, click Query and select one or more desired methods
from the Available list and click the Add button to shuttle them into the Selected
list.

4. Click Finish.

What You May Need to Know About Application Server or Database
Independence

Applications built using ADF Business Components can be deployed to and run on
any application server that Oracle certifies for ADF applications (such as Oracle
WebLogic Server or GlassFish). Because business components are implemented
using plain Java classes and XML files, you can use them in any runtime environment
where a Java Virtual Machine is present. This means that services built using ADF
Business Components are easy to use both inside a Java EE server — known as the
"container" of your application at runtime — and outside. For more information about
deploying ADF applications and the supported application servers, see Deploying
Fusion Web Applications.

Customers routinely use application modules in such diverse configurations as
command-line batch programs, web services, custom servlets, and JSP pages.

You can also build applications that work with non-Oracle databases, as described
in How to Initialize the Data Model Project With a Database Connection. However,
applications that target Oracle databases will find numerous optimizations built into
ADF Business Components.

Note:

Support for using multiple SQL flavors across ADF applications running on
same server is not implemented nor supported by ADF. ADF application
developers must therefore ensure that ADF applications they plan to run in
the same managed server all use a single value for their SQL flavor. At
design time, the SQL flavor can be set either at the project level using the
Initialize Business Components dialog or globally in the adf-config.xml file.
Regardless of the approach used to set the SQLBuilder property, in practice,
the value must be the same for all ADF applications running on the same
managed server. Failure to implement this requirement can result in runtime
conflicts in the binding style that ADF will use to process query statements
and this in turn will cause SQL validation errors for the applications.
Additionally, it is important to note in the scenario where an ADF application
needs to run against both Oracle and non-Oracle databases, all applications
on the same managed server must have SQL92 chosen as their SQL flavor.

Chapter 3
Creating the ADF Business Components Data Model Project

3-11

What You May Need to Know About ADF Business Components Data
Types

ADF Business Components is compatible with the built-in data types the Java
language provides, including strings, dates, and numeric data. In addition to these
Java data types, the oracle.jbo.domain packages of ADF Business Components
provides types that are optimized for the Oracle database. Table 3-2 shows the ADF
Business Components-specific types that you may use in addition to the built-in types
provided by the Java language.

Table 3-1 Basic Data Types in the oracle.jbo.domain Packages

Data Type Package Represents

DBSequence oracle.jbo.domain Sequential integer assigned by a database trigger

RowID oracle.jbo.domain Oracle database ROWID

BFileDomain oracle.jbo.domain Binary File (BFILE) object

BlobDomain oracle.jbo.domain Binary Large Object (BLOB)

ClobDomain oracle.jbo.domain Character Large Object (CLOB)

Struct oracle.jbo.domain User-defined object type

Array oracle.jbo.domain User-defined collection type (e.g. VARRAY)

For backward compatibility, ADF Business Components still provides the option to
select a set of data types in the oracle.jbo.domain packages that were available
before Java types became the standard. Table 3-2 shows the types that you may use
when backward compatibility is desired.

Table 3-2 Backward Compatible Data Types in the oracle.jbo.domain Packages

Data Type Package Represents

Number (not used
by default)

oracle.jbo.domain Any numerical data. If you receive compiler or runtime errors
related to "Number is an abstract class" it means you are using
java.lang.Number instead of oracle.jbo.domain.Number.
Adding the following line at the top of your class, after the package
line, prevents these kinds of errors:

import oracle.jbo.domain.Number;

Date oracle.jbo.domain Date with optional time

Timestamp oracle.jbo.domain Timestamp value

TimestampTZ oracle.jbo.domain Timestamp value with time zone information

Chapter 3
Creating the ADF Business Components Data Model Project

3-12

Table 3-2 (Cont.) Backward Compatible Data Types in the oracle.jbo.domain Packages

Data Type Package Represents

TimestampLTZ oracle.jbo.domain Timestamp value with local time zone information retrieved from
JavaVM or from the ADF Context when configured in the
application's adf-config.xml with an EL expression:

<user-time-zone-config xmlns=
 "http://xmlns.oracle.com/adf/usertimezone/config">
 <user-timezone expression= "EL exp" />
</user-time-zone-config>

The EL expression will be evaluated to determine the time zone of
the current end user; otherwise, the value defaults to the time zone
of the JavaVM.

What You May Need to Know About Displaying Numeric Values
The Java Extended for Oracle type map and the Oracle Domains type map handle
numeric data differently. When you create a new application the default type map
Java Extended for Oracle maps numeric data to the java.math.BigDecimal class,
which inherits from java.math.Number. The java.math.BigDecimal default matches
the way the Fusion web application view layer, consisting of ADF Faces components,
preserves alignment of numeric data (such as numeric values displayed by ADF Faces
input fields in a web page). Whereas the Oracle Domains type map, which maps
numeric data to the oracle.jbo.domain.Number class, may not display the data with
the alignment expected by certain ADF Faces components. Aside from this alignment
issue, the Oracle Domains type map remains a valid choice and applications without
ADF Faces components will function without issue.

How to Customize Model Project Properties for ADF Business
Components

Before you begin creating business components, it is a good idea to familiarize
yourself with the many project properties that are available to configure ADF Business
Components. Selections that you make in the Project Properties dialog will apply to
the data model project you are editing. You can specify a variety of properties including
suffix naming conventions for generated business components and subpackage
names for the data model project.

Before you begin:

It may be helpful to have an understanding about managing projects in JDeveloper.
See Getting Started with Developing Applications with Oracle JDeveloper in
Developing Applications with Oracle JDeveloper.

You may also find it helpful to understand preferences that can be specified globally
across data model projects. See How to Customize ADF Business Components
Preferences.

You will need to complete this task:

Create the data model project for ADF Business Components, as described in How
to Create a Data Model Project for ADF Business Components.

Chapter 3
Creating the ADF Business Components Data Model Project

3-13

To customize data model project properties:

1. In the Application window, right-click the project in which you want to create the
shared application module and choose Project Properties.

2. In the Project Properties dialog, expand ADF Business Components and select
the desired node in the tree. For help with any of the pages of the dialog, press F1.

How to Customize ADF Business Components Preferences
Many design time and runtime options that you can configure for ADF Business
Components are specified at the level of JDeveloper preferences. It is a good idea to
familiarize yourself with these preferences for ADF Business Components. Selections
that you make in the Preferences dialog will apply to each data model project you
create.

Certain preferences that you specify globally may be overridden for individual data
model projects, as described in How to Customize Model Project Properties for ADF
Business Components.

Before you begin:

You may also find it helpful to understand properties that can be specified for individual
data model projects. For more information, see How to Customize Model Project
Properties for ADF Business Components.

You will need to complete this task:

Create the data model project for ADF Business Components, as described in How
to Create a Data Model Project for ADF Business Components.

To customize ADF Business Components preferences:

1. In JDeveloper, choose Tools > Preferences.

2. In the Preferences dialog, expand ADF Business Components and select the
desired node in the tree. For help with any of the pages of the dialog, press F1.

Creating and Editing Business Components
Use JDeveloper’s design time to work with the ADF Data Model to build databound
pages and also create and edit ADF Business Components using dedicated wizards
and overview editors.
JDeveloper includes comprehensive design time support to create and customize the
business components of the data model project. These facilities let you create the
components using dedicated wizards, modify their properties with overview editors,
and view their definition files in source editors.

How to Create New Components Using Wizards
In the New Gallery, in the ADF Business Components category, JDeveloper offers a
wizard to create each kind of business component. Each wizard allows you to specify
the component name for the new component and to select the package into which
you'd like to organize the component. If the package does not yet exist, the new
component becomes the first component in that new package.

Each wizard presents a series of pages that capture the necessary information to
create the component type. When you click Finish, JDeveloper creates the new

Chapter 3
Creating and Editing Business Components

3-14

component by saving its XML document file. And, when you change the default Code
Generation option in the ADF Business Components - Options page of the Project
Properties dialog to generate custom Java class files, JDeveloper can also create
initial custom Java class files in addition to the XML document file.

The Create Business Components from Tables wizard is particularly useful in
JDeveloper because it is the only wizard that combines generating the various
business component types in a single end to end process. This wizard lets you create
a large number of business components quickly and easily. You can create entity
objects based on an online or offline database, then you can create either entity-based
view objects or query-based view objects, and an application module to contain the
view instances of the data model. Finally, the wizard gives you the option to generate
a business components diagram to display the relationships between the collaborating
business components.

After you use a wizard, you can edit any business components you create and you can
add new business components later.

Before you begin:

It may be helpful to have an understanding of the various ADF business components.
For more information, see About ADF Business Components.

You will need to complete this task:

Create the data model project that will contain the business components, as
described in How to Create a Data Model Project for ADF Business Components.

To create collaborating business components in one pass:

1. In the Applications window, right-click the project in which you want to create the
entity objects and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Business Components from Tables, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.
Complete the dialog, as described in How to Initialize the Data Model Project With
a Database Connection.

3. In the Create Business Components from Tables wizard, on the Entity Objects
page, filter the database schema to display available database objects and select
those database objects for which you want to create entity objects. Click Next.

Note that if you change a default package name, you must not use reserved words
like rest in the package name. For details about package naming, see What You
May Need to Know About Package Naming Conventions.

4. On the Entity-based View Objects page, select among the available entity objects
to create updatable view object definitions for your entity object definitions. Click
Next.

Note that the view object definitions you create in this wizard will contain a single
usage of an entity object, and will expose all the attributes in that object.

5. On the Query-based View Objects page, select among the available database
objects to create read-only view object definitions. Click Next.

6. On the Application Module page, leave the default selections unchanged, and click
Next.

Chapter 3
Creating and Editing Business Components

3-15

7. On the Diagram page, select Add to Business Components Diagram, and click
Next.

8. On the Summary page, review the list of business components that the wizard will
create, and click Finish

How to Create New Components Using the Context Menu
Once a package exists in the Applications window, you can quickly create additional
business components of any type by selecting the component from the context menu
that you display in the Applications window. To add the component, right-click the
package in the data model project where you want the component to reside and select
the component from the New menu. The components displayed in the New menu
depend on the type of project that you have selected.

Figure 3-3 shows how the Applications window context menu displays the New menu
after a right-click on a package in the data model project. Because the context menu
is displayed on an ADF Business Components data model project, the available
components are restricted to just ADF Business Components.

Figure 3-3 Context Menu Options on a Package to Create Any Kind of
Business Component

The Applications window context menu displays options that are appropriate for the
project that you right-click. If the context menu does not display ADF Business
Components options, confirm that the project you right-clicked is an ADF Business
Components model project.

Before you begin:

Chapter 3
Creating and Editing Business Components

3-16

It may be helpful to have an understanding of the various ADF business components.
For more information, see About ADF Business Components.

You will need to complete this task:

Create the data model project that will contain the business components, as
described in How to Create a Data Model Project for ADF Business Components.

To add individual business components to the data model project:

1. In the Applications window, right-click the package in the model project in which
you want to create a new business component and choose New - business
component name.

2. In the wizard for the business component, complete the pages of the wizard and
click Finish. For help with any of the pages of the wizard, press F1.

What Happens When You Create Business Components
Each kind of component in ADF Business Components comes with built-in runtime
functionality that you control through declarative settings. These settings are stored in
an XML document file with the same name as the component that it represents.

Figure 3-4 shows how the Applications window displays the XML document file for
each business component in the data model project. To view XML document files
in the Applications window, you can expand the node with the name assigned to
the business component when it was created in JDeveloper. For example, you can
expand the view object node SDeptView to view the associated XML document file
SDeptView.xml. To display the overview editor for the component, you can double-click
either the XML document file or its component node.

Figure 3-4 Applications Window Displays Component XML Files

Figure 3-5 illustrates the XML document file for an application-specific component
like an application module named YourService that you create in a package named
com.yourcompany.yourapp. The corresponding XML document resides in a ./com/

Chapter 3
Creating and Editing Business Components

3-17

yourcompany/yourapp subdirectory of the data model project's source path root
directory. That XML file records the name of the Java class it should use at runtime
to provide the application module implementation. In this case, the XML records
the name of the base oracle.jbo.server.ApplicationModuleImpl class provided by
Oracle ADF.

Figure 3-5 XML Document File for an Application Module

When used without customization, your component is completely defined by its XML
document and it will be fully functional without custom Java code or even a Java class
file for the component. If you have no need to extend the built-in functionality of a
component in ADF Business Components, and no need to write any custom code to
handle its built-in events, you can use the component in this XML-only fashion.

When you need to write custom code for a component, for example to augment
the component's behavior, you can enable an optional custom Java class for the
component in question, as described in How to Generate Business Component Java
Subclasses.

What You May Need to Know About the Model Project Organization
Since ADF Business Components is implemented in Java, its classes and interfaces
are organized into packages. Java packages are identified by dot-separated names
that developers use to arrange code into a hierarchical naming structure.

The classes and interfaces that comprise the source code provided by ADF
Business Components reside in the oracle.jbo package and numerous subpackages.
However, in day to day work with ADF Business Components, you'll work typically with
classes and interfaces in these two key packages:

• The oracle.jbo package, which contains all of the interfaces that are designed for
the business service client to work with

• The oracle.jbo.server package, which contains the classes that implement
these interfaces

Note:

The term client here refers to any code in the model, view, or controller
layers that accesses the application module component as a business
service.

Figure 3-6 shows a concrete example of the application module component. The
client interface for the application module is the ApplicationModule interface in the

Chapter 3
Creating and Editing Business Components

3-18

oracle.jbo package. This interface defines the names and signatures of methods
that clients can use while working with the application module, but it does not
include any specifics about the implementation of that functionality. The class that
implements the base functionality of the application module component resides in the
oracle.jbo.server package and is named ApplicationModuleImpl.

Figure 3-6 ADF Business Components Separate Interface and Implementation

What You May Need to Know About Package Naming Conventions
Since ADF Business Components is implemented in Java, the components of your
application (including their classes, interfaces, and metadata files) will also be
organized into packages.

To ensure that your components won't clash with reusable components from
other organizations, choose package names that begin with your organization's
name or web domain name. So, for example, the Apache organization chose
org.apache.tomcat for a package name related to its Tomcat web server, while Oracle
picked oracle.xml.parser as a package name for its XML parser. Components
you create for your own applications might reside in packages with names like
com.yourcompany.yourapp and subpackages of these.

Package names that you specify must not reference the names of objects that already
exist within the ADF Business Components project or include the names of certain
technologies, such as rest. When you attempt to modify a default package name in
an ADF Business Components wizard and use a reserved word, the wizard prevents
this with an alert dialog. For example, naming a package like adf.sample.adfbc.rest
is illegal in JDeveloper because rest is a reserved word.

As a specific example, the business components that make up the main business
service for the Summit sample application for Oracle ADF are organized into the
oracle.summit.model package and its subpackages. As shown in Figure 3-7, these
components reside in the Model project in the SummitADF workspace, and are
organized as follows:

• oracle.summit.model.diagram contains the business components diagram

• oracle.summit.model.entities contains the entity objects

• oracle.summit.model.services contains the SummitAppModule application
module

• oracle.summit.model.views contains the view objects

Chapter 3
Creating and Editing Business Components

3-19

Figure 3-7 Organization of ADF Business Components in the Core Summit
ADF Sample Application

In your own applications, you can choose any package organization that you believe
best. In particular, keep in mind that you are not constrained to organize components
of the same type into a single package.

There is no optimal number of components in a package. However, the best structure
should fall somewhere between the two extremes of placing all components in a single
package and placing each component in its own, separate package.

One thing to consider is that the project is the unit of granularity that JDeveloper
supports for reuse in other data model projects. So, you might factor this consideration
into how you choose to organize components. For more information, see Packaging a
Reusable ADF Component into an ADF Library.

What You May Need to Know About Renaming Components
JDeveloper supports component refactoring through specific refactoring actions that
help you to incorporate changes as your application evolves. When you use
JDeveloper to refactor the business components of your data model project, you
can rename components or move them to a different package and JDeveloper will
find and update all references to the refactored component. Whenever possible, you
should use JDeveloper's refactoring actions to avoid error-prone manual editing of the

Chapter 3
Creating and Editing Business Components

3-20

project. For more information about the usages and limitations of refactoring business
components in the data model project, see Refactoring a Fusion Web Application .

How to Edit Components Using the Component Overview Editor
Once a business component exists, you can edit its properties using the respective
overview editor that you access either by double-clicking the component in the
Applications window or by selecting it and choosing the Open option from the context
menu.

The overview editor presents the same editing options that you see in the wizard
but it may arrange them differently. The overview editor allows you to change any
aspect of the component. When you make a change in the component's editor,
JDeveloper updates the component's XML document file and, if necessary, any of its
related custom Java files. Because the overview editor is a JDeveloper editor window,
rather than a modal dialog, you can open and view the overview editor for as many
components as you require.

Before you begin:

It may be helpful to have an understanding of the tools available for managing
project. For more information, see the Working with Oracle JDeveloper in Developing
Applications with Oracle JDeveloper.

You will need to complete this task:

Create the business components in the data model project, as described in How to
Create New Components Using Wizards.

To edit properties of a business component in the data model project:

1. In the Applications window, right-click the business component that you want to
edit and choose Open.

2. In the overview editor for the business component, click the navigation tabs on the
left to view and edit related groups of properties. For help with any of the pages of
the overview editor, press F1.

3. In the overview editor, click the Source tab to view the changes in the XML
definition source.

4. In the overview editor, click the History tab to view the revision history and
compare the XML source of what appears in the current overview editor with a
past revision.

For details about managing the versions of files, see Versioning Applications with
Source Control in Developing Applications with Oracle JDeveloper.

5. In JDeveloper, choose File > Save to save the property changes to the business
component XML definition file.

Testing, Refactoring, and Visualizing Business Components
Use the JDeveloper design time to test, refactor and visualize ADF Business
Components.
JDeveloper includes comprehensive design time support to manage the growing
number of business components that you create in the data model project. These
facilities let you test, refactor, and visualize the business components.

Chapter 3
Testing, Refactoring, and Visualizing Business Components

3-21

How to Use the Oracle ADF Model Tester
Once you have created an application module component, you can test it interactively
using the built-in Oracle ADF Model Tester. To launch the Oracle ADF Model
Tester, select the application module in the Applications window or in the business
components diagram and choose either Run or Debug from the context menu.

Figure 3-8 Oracle ADF Model Tester

As shown in Figure 3-8, Oracle ADF Model Tester presents the view object instances
in the application module's data model and allows you to interact with them using a
dynamically generated user interface. The tool also provides a list of the application
module's client interface methods that you can test interactively by double-clicking the
application module node. This tool is invaluable for testing or debugging your business
service both before and after you create the web page view layer.

Before you begin:

It may be helpful to have an understanding of the runtime behavior of the data model
project. For more information, see Testing View Instance Queries.

You may also find it helpful to understand functionality that can be used to test Oracle
ADF applications, including ADF business components. For more information, see
Testing and Debugging ADF Components .

You will need to complete this task:

Create the business components in the data model project, as described in How to
Create New Components Using Wizards.

To test view instances in an application module configuration:

Chapter 3
Testing, Refactoring, and Visualizing Business Components

3-22

1. In the Applications window, right-click the application module that you want to test
and choose Run.

Alternatively, choose Debug when you want to run the application in the Oracle
ADF Model Tester with debugging enabled. For more information about this option,
see Using the Oracle ADF Model Tester for Testing and Debugging.

2. To execute a view instance in the Oracle ADF Model Tester, expand the data
model tree and double-click the desired view instance node.

3. Right-click a node in the data model tree to display the context menu for that node.
For example, on a view instance node you can reexecute the query if needed,
remove the view instance from the data model tree, and perform other tasks.

4. Right-click the tab of an open data viewer to display the context menu for that tab.
For example, you can close the data viewer or open it in a separate window.

5. For help with the Oracle ADF Model Tester, press F1.

What You May Need to Know About Obtaining Oracle ADF Source
Code

Since ADF Business Components is often used for business critical applications,
it's important to understand that the full source for Oracle ADF, including ADF
Business Components, is available to supported customers through Oracle Worldwide
Support. The full source code for Oracle ADF can be an important tool to assist
you in diagnosing problems, as described in Using the ADF Declarative Debugger.
Working with the full source code for Oracle ADF also helps you understand how to
correctly extend the base framework functionality to suit your needs, as described in
Customizing Framework Behavior with Extension Classes.

How to Find Business Component Usages in the Data Model Project
Before you modify the names of database objects in your offline database or the
names of ADF business components, you can view all objects that reference a
selected item. You use the Find Usages page in the Log window to display all data
model project usages of a selected item.

Before you begin:

It may be helpful to have an understanding of JDeveloper support for refactoring. See
Working with Java Code in Developing Applications with Oracle JDeveloper.

You may also find it helpful to understand the limitations of refactoring ADF business
components. For more information, see Refactoring ADF Business Component Object
Attributes.

You will need to complete this task:

Create the business components in the data model project, as described in How to
Create New Components Using Wizards.

To find an item used by ADF business components:

1. In the Application window, in the data model project expand data model project
and select the item for which you want to discover usages.

To find usages of database objects, expand the Offline Database Sources folder
and select the desired database object.

Chapter 3
Testing, Refactoring, and Visualizing Business Components

3-23

2. Right-click the item and choose Find Usages.

To find usages of database columns, display the Structure window and right-click
the column in the Structure window.

3. In the Log window, review the business components that reference the selected
item.

The Find Usages page of the Log window links the named items to editors in
JDeveloper. Optionally, click an item in the list to view its details in JDeveloper.

How to Explorer Business Component Dependencies in the Data
Model Project

The Dependency Explorer lets you visualize the usage relationships of artifacts in
the Data Model project through a diagram that you can expand. As the number
of business components in your Data Model project increases, you may want to
explore relationships between the business component and other project artifacts.
When you expand the diagram you can display artifacts that reference the selected
component and artifacts that are referenced by the selected component. In this way,
the Dependency Explorer displays more complete relationship information than the
usage information returned in the Find Usages log window.

Artifacts that the diagram displays for the Data Model project include the
various business component XML definition files (such as, view objects, entity
objects, and application module), the project configuration files (including bc4j.xml
and Model.jpx), any resource bundle files (such as ModelBundle.properties),
any Java implementation files (for example, SummitViewObjectImpl.java or
SummitEntityImpl.java), and ADF Business Component framework source files
(including the Oracle ADF Business Component type classes).

Figure 3-9 shows the Dependency Explorer focused on the CountryVO.xml file for a
view object. The nodes to the left display artifacts that reference CountryVO and the
nodes to the right are artifacts referenced by CountryVO. You can select Open from the
right-click menu to open any of these artifacts in a JDeveloper source editor and view
the detailed reference.

Figure 3-9 Dependency Explorer Displays ADF Business Component Artifacts

Before you begin:

Chapter 3
Testing, Refactoring, and Visualizing Business Components

3-24

It may be helpful to have an understanding of the common development tools provided
by JDeveloper. For more information, see the Working with Oracle JDeveloper in
Developing Applications with Oracle JDeveloper.

You will need to complete this task:

Create the business components in the data model project, as described in How to
Create New Components Using Wizards.

To examine dependencies between ADF business components and other project
artifacts:

1. In the Application window, in the data model project expand data model project
and select the business component for which you want to examine dependencies.

2. Right-click the item and choose Explore Dependencies.

3. In the Dependency Explorer, click the plus icon on a diagram node to expand the
diagram. You can expand the diagram to the left to view artifacts that reference the
selected component or you can expand to the right to view artifacts referenced by
the component.

When you expand nodes to the left of the selected component you can see where
the artifact is used in the application. These are the same items displayed in
the Find Usages page of the Log window, when you select Find Usages on the
component.

4. Click the linked numeral next to a diagram node to view the detailed list of
references, and then click a reference to open the file that contains the reference.

For more information about the Dependency Explorer, click F1.

How to Refactor Business Components in the Data Model Project
At any time, you can select a component in the Applications window and choose
Refactor > Rename from the context menu to rename the component. The Structure
window also provides a Rename context menu option for details of components,
such as view object attributes or view instances of the application module data
model, that do not display in the Applications window. You can also select one or
more components in the Applications window by using Ctrl + click and then choosing
Refactor > Move from the context menu to move the selected components to a new
package. References to the old component names or packages in the current data
model project are adjusted automatically.

Before you begin:

It may be helpful to have an understanding of JDeveloper support for refactoring. See
Working with Java Code in Developing Applications with Oracle JDeveloper.

You may also find it helpful to understand the limitations of refactoring ADF business
components. For more information, see Refactoring ADF Business Component Object
Attributes.

You will need to complete this task:

Create the business components in the data model project, as described in How to
Create New Components Using Wizards.

To refactor business components in the data model project:

Chapter 3
Testing, Refactoring, and Visualizing Business Components

3-25

1. In the Applications window, right-click the business component and choose
Refactor > Rename or Refactor > Move.

2. To delete the object, choose Delete.

If the object is used elsewhere in the application, a dialog appears with the
following options:

• Ignore: Unresolved usages will remain in the code as undefined references.

• View Usages: Display a preview of the usages of the element in the Compiler
log. You can use the log to inspect and resolve the remaining usages.

How to Refactor Offline Database Objects and Update Business
Components

If you are using offline database sources with the data model project, you can
rename the database, individual tables, and individual columns. JDeveloper supports
refactoring of these database objects in combination with the ADF business
components of the data model project, as well as the offline database itself. Changes
that you make will automatically be applied to those business components whose
definitions reference the database object. For example, if you change the name of a
database table in the offline database, any view object queries that reference that table
will be modified to use the new table name.

Before you begin:

It may be helpful to have an understanding of JDeveloper support for refactoring. For
more information, see Working with Java Code in Developing Applications with Oracle
JDeveloper.

You may also find it helpful to understand the limitations of refactoring ADF business
components. See Refactoring ADF Business Component Object Attributes.

You will need to complete these tasks:

1. Create the business components in the data model project, as described in How to
Create New Components Using Wizards.

2. Create the offline database in the data model project, as described in How to
Change the Data Model Project to Work With Offline Database Objects.

To refactor offline database table names for ADF business components:

1. In the Application window, in the data model project expand the Offline Database
Sources folder and select the database object that you want to edit.

2. In the main menu, choose Refactor > Rename.

You can also right-click the database object and choose Refactor > Rename.

3. In the Rename dialog, enter the new name and click Preview.

4. In the Log window, review the business components that reference the database
object name.

The Rename page of the Log window links the named items to editors in
JDeveloper. Optionally, click an item in the list to view its details in JDeveloper.

5. Click Refactor to apply the new names shown in the Log window.

To refactor offline database column names for ADF business components:

Chapter 3
Testing, Refactoring, and Visualizing Business Components

3-26

1. In the Application window, in the data model project expand the Offline Database
Sources folder and select the database table that contains the column that you
want to edit.

2. In the Structure window, double-click the column name.

You can also right-click the database object and choose Go to Declaration.

3. In the overview editor for the offline database table, edit the column name and
press Enter.

4. In the Log window, review the business components that reference the column
name.

The Rename page of the Log window links the named items to editors in
JDeveloper. Optionally, click an item in the list to view its details in JDeveloper.

5. Click Refactor to apply the name changes shown in the Log window.

How to Display Related Business Components Using Diagrams
As the number of business components that your project defines increases, you may
decide to refactor components to change the relationships that you originally created.
To help you understand the relationship between components in the data model
project, open any business component in the overview editor and click the Diagram
tab. The relationship diagram in the editor identifies the component you are editing
in bold text. Related components appear as link text that you can click to display the
relationship diagram for the component identified by the link.

For example, Figure 3-10 displays the Diagram tab in the editor for the view object
ProductVO. The diagram identifies the entity objects that ProductVO can access (for
example, ProductEO), the view link that defines the view object's relationship to
a related view object (for example, mousing over the link between ProductVO and
ItemVO, displays the view link ItemProductIdFkLink), and the related view object (in
this example, ItemVO) named by the view link. Each of these related components
displays as a link that you can click to open the component in the Diagram tab for its
editor. By clicking on related component links, you can use the diagrams to navigate
the component relationships that your project defines.

Chapter 3
Testing, Refactoring, and Visualizing Business Components

3-27

Figure 3-10 Relationship Diagram Displays Main Object and All Related
Components

Before you begin:

It may be helpful to have an understanding of JDeveloper support for modeling
applications with UML class diagrams. See Developing Applications Using Modeling
in Developing Applications with Oracle JDeveloper.

You will need to complete this task:

Create the business components in the data model project, as described in How to
Create New Components Using Wizards.

To view relationship diagrams for the business components of the data model project:

1. In the Applications window, right-click the business component that you want to
view and choose Open.

2. In the overview editor, click the Diagram tab to view the component you are editing
and all of its related components in a relationship diagram.

The relationship diagram identifies the component you are editing in bold text.
Related components appear as link text that you can click to display the
relationship diagram for the component identified by the link. By clicking on

Chapter 3
Testing, Refactoring, and Visualizing Business Components

3-28

related component links, you can use the diagram to navigate the component
relationships that your project defines.

What You May Need to Know About Using UML Diagrams
JDeveloper offers extensive UML diagramming support for ADF Business
Components. You can drop components that you've already created onto a business
components diagram to visualize them. You can also use the diagram to create and
modify components. The diagrams are kept in sync with changes you make in the
editors.

To create a new business components diagram, use the Business Components
Diagram item in the ADF Business Components category of the JDeveloper New
Gallery. This category is part of the Business Tier choices.

Customizing Business Components
JDeveloper allows you to extend or customize capabilities of ADF Business
Components by creating a custom Java class.
When you need to add custom code to extend the base functionality of a component
or to handle events, you must create a custom Java class for any of the key types of
ADF Business Components you create, including application modules, entity objects,
and view objects.

For example, you can add custom methods to the Java classes of the application
module when you want to perform specific business logic. This includes, but is not
limited to, code that:

• Configures view object properties to query the correct data to display

• Iterates over view object rows to return an aggregate calculation

• Performs any kind of multistep procedural logic with one or more view objects

By centralizing these implementation details in your application module, you gain the
following benefits:

• You make the intent of your code more clear to clients.

• You allow multiple client pages to easily call the same code if needed.

• You simplify regression-testing of your complete business service functionality.

• You keep the option open to improve your implementation without affecting clients.

• You enable declarative invocation of logical business functionality in your pages.

How to Generate Business Component Java Subclasses
You can specify company-level subclasses for the entity objects, view objects, and
application modules of the data model project. To enable this option so that new
business components that you generate are based on these custom classes, you must
create Java source files that extend the ADF Business Components implementation
classes (in the oracle.jbo package) to which extended functionality may eventually
be added. Doing this gives you the flexibility to later make changes to the base
framework classes that can be picked up by their subclasses in your application.
You can then choose ADF Business Components > Base Classes in the Project
Properties dialog to specify the names of your subclasses.

Chapter 3
Customizing Business Components

3-29

You can further enable the generation of custom classes that you wish to generate
for the business components for individual components. When you enable this option
on the Java page of its respective overview editor, JDeveloper creates a Java source
file for a custom class related to the component whose name follows a configurable
naming standard. This class, whose name is recorded in the component's XML
document, provides a place where you can write further custom Java code required by
that component only. Once you've enabled a custom Java class for a component, you
edit the class by expanding the component in the Applications window and double-
clicking the Java class.

Alternatively, you can change the project-level settings that control how JDeveloper
generates Java classes for each component type, choose Tools > Preferences and
open the ADF Business Components page. The settings you choose will apply to all
future business components that you create.

Best Practice:

Oracle recommends that developers getting started with ADF Business
Components consider overriding the base framework classes to enable
all generated custom Java classes to pick up customized behavior. This
practice is preferred over creating custom classes for individual entity
objects and view objects. You use the ADF Business Components > Base
Classes page of the Project Properties dialog to specify the framework
classes to override when you generate custom component.

Before you begin:

It may be helpful to have an understanding of working programmatically with business
components. For more information, see these sections:

• Working Programmatically with an Application Module's Client Interface

• Working Programmatically with Entity Objects and Associations

• Working Programmatically with Multiple Named View Criteria

You will need to complete this task:

Create the business components in the data model project, as described in How to
Create New Components Using Wizards.

To override framework business component classes with a custom class:

1. In the Application window, double-click the component for which you want to
create the custom class.

2. In the overview editor for the component, select the Java navigation tab.

3. On the Java page, click the Edit Java options icon.

4. In the Select Java Options dialog, select generate Java class options to create the
desired implementation classes:

• Generate Application Module Class: generates the application module
implementation class that may include custom methods to encapsulate
functionality that is a logical aspect of the complete business service..

Chapter 3
Customizing Business Components

3-30

• Generate Entity Object Class: generates the entity object implementation
class that may include custom methods to act on representations of each row
in the underlying database table.

• Generate View Object Class: generates the view object implementation class
that may include custom methods to act on a particular view object definition
within the application module definition.

• Generate View Row Class: generates the view row implementation class
that may include custom methods to act on representations of a single row
returned by the view object.

5. Select the options to generate methods that will support your custom code.

In the Select Java Options dialog, when you create these classes and select
Include Accessors, JDeveloper generates accessors for all attributes defined by
the business component. Because JDeveloper uses the attribute names in the
accessor method names, these attribute names will be difficult to refactor and you
should edit the generated class files to remove methods that your custom code will
not use.

6. Click OK.

7. In the Applications window, expand the business component for which you created
the class and double-click the componentNameImpl.java file.

8. If you created an entity object class or a view row class, edit the file to remove
generated accessor methods for attributes that you do not need to expose for your
business use case.

Tip:

Edit the generated class files to remove generated code that is not used
by any custom logic to improve overall performance.

How to Expose Business Component Methods to Clients
When you begin adding custom code to your ADF business components that you
want clients to be able to call, you can "publish" that functionality to clients for any
client-visible component. For each of your components that publishes at least one
custom method to clients on its client interface, JDeveloper automatically maintains
the related Java interface file. So, assuming you were working with an application
module like SummitAppModule, you could have custom interfaces like:

• Custom application module interface

SummitAppModule extends ApplicationModule

• Custom view object interface

OrderItemsInfo extends ViewObject

• Custom view row interface

OrderItemsInfoRowClient extends Row

Client code can then cast one of the generic client interfaces to the more specific one
that includes the selected set of client-accessible methods you've selected for your
particular component.

Chapter 3
Customizing Business Components

3-31

Before you begin:

You may find it helpful to have an understanding of the methods of the ADF Business
Component interfaces that you can override with custom code. For more information,
see Most Commonly Used ADF Business Components Methods.

You will need to complete this task:

Generate the implementation class for the application module or view object and
add the custom methods that you want to expose to the client, as described in How
to Generate Business Component Java Subclasses.

To expose client methods from the component implementation class:

1. In the Application window, double-click the component for which you want to
create the custom class.

2. In the overview editor for the component, select the Java navigation tab.

3. On the Java page, click the Edit client interface icon.

4. In the Edit Client Interface dialog, select one or more desired methods from the
Available list and click the Add button to shuttle them into the Selected list.

5. Click OK.

What Happens When You Generate Custom Classes
When you select one or more custom Java classes to generate, JDeveloper creates
the Java file(s) you've indicated. For example, assuming an application module
named oracle.summit.model.service.SummitAppModule, the default names for its
custom Java files will be SummitAppModuleImpl.java for the application module class
and SummitAppModuleDefImpl.java for the application module definition class. Both
files are created in the same ./oracle/summit/model/services directory as the
component's XML document file.

Note:

The examples in this guide use default settings for generated names of
custom component classes and interfaces. If you want to change these
defaults for your own applications, use the ADF Business Components:
Class Naming page of the JDeveloper Preferences dialog. Changes you
make only affect newly created components.

The Java generation options for the business components continue to be reflected
on subsequent visits to the Java page of the overview editor. Just as with the XML
definition file, JDeveloper keeps the generated code in your custom Java classes
up to date with any changes you make in the editor. If later you decide you do not
require a custom Java file, disabling the relevant options on the Java page removes
the corresponding custom Java files.

Figure 3-11 illustrates what occurs when you enable a custom Java class for the
YourService application module. A YourServiceImpl.java source code file is created
in the same source path directory as your component's XML document file. The
YourServiceImpl.xml file is updated to reflect the fact that at runtime the component

Chapter 3
Customizing Business Components

3-32

should use the com.yourcompany.yourapp.YourServiceImpl class instead of the base
ApplicationModuleImpl class.

Figure 3-11 Component with Custom Java Class

What You May Need to Know About Custom Interface Support
The Java interfaces of the oracle.jbo package provide a client-accessible API for
your business service. Your client code works with interfaces like:

• ApplicationModule, to work with the application module

• ViewObject, to work with the view objects

• Row, to work with the view rows

Only these components of the business service are visible to the client:

• Application module, representing the service itself

• View objects, representing the query components

• View rows, representing each row in a given query component's results

This package intentionally does not contain an Entity interface, or any methods
that would allow clients to directly work with entity objects. The entity objects in
the business service implementation are intentionally not designed to be referenced
directly by clients. Instead, clients work with the data queried by view objects as part
of an application module's data model. Behind the scenes, the view object cooperates
automatically with entity objects in the business services layer to coordinate validating
and saving data that the end user changes. For more information about this runtime
interaction, see What Happens at Runtime: How View Objects and Entity Objects
Cooperate.

What You May Need to Know About Generic Versus Strongly Typed
APIs

When working with application modules, view objects, and entity objects, you can
choose to use a set of generic APIs or you can have JDeveloper generate code into
a custom Java class to enable a strongly typed API for that component. For example,
when working with an view object, if you wanted to access the value of an attribute in
any row of its result, the generic API would look like this:

Row row = ordersVO.getCurrentRow();
Date shippedDate = (Date)row.getAttribute("OrderShippedDate");

Chapter 3
Customizing Business Components

3-33

Notice that using the generic APIs, you pass string names for parameters to the
accessor, and you have to cast the return type to the expected type, as with Date
shown in the example.

Alternatively, when you enable the strongly typed style of working you can write code
like this:

OrdersRow row = (OrdersRow)ordersVO.getCurrentRow();
Date shippedDate = row.getOrderShippedDate();

In this case, you work with generated method names whose return type is known at
compile time, instead of passing string names and having to cast the results. Typically,
it is necessary to use strongly typed accessors when you need to invoke the methods
from the business logic code without sacrificing compile-time safety. This can also be
useful when you are writing custom validation logic in setter methods, although in this
case, you may want to consider using Groovy expressions instead of generating entity
and view row implementation classes for Business Components. Subsequent chapters
explain how to enable this strongly typed style of working by generating Java classes
for business logic that you choose to implement using Java.

Using Groovy Scripting Language With Business
Components

Groovy is a scripting language with Java-like syntax for the Java platform. The
Groovy scripting language simplifies the authoring of code by employing dot-separated
notation, yet still supports syntax to manipulate collections, Strings, and JavaBeans.

Currently, Groovy expressions are supported on entity object and view object business
components. The user can utilize Groovy expressions in ADF Business Components
to specify runtime-determined values for view criteria, bind variables, default values
of entity or view object attributes, business rules, triggers and more. Additionally,
ADF Business Components provides a limited set of built-in keywords that can be
used in Groovy expressions. See What You May Need to Know About Where Groovy
Expressions May Be Used in the Model Project for details about what you can do
using Groovy scripting language.

Generation of the Business Components Script (.bcs) file

When you enter Groovy expressions for an entity object or view object, all of these
Groovy expressions populate into a .bcs (Business Components Script) file for this
business component. View the .bcs file for a business component as one among a
list of artifacts (such as the Java class, XML file, Operations XML file) belonging to
a particular entity object or view object. See How to Enter Groovy Expressions on
Business Component to learn how to enter Groovy expressions at various UI contexts
in JDeveloper, depending on the context and purpose. The .bcs file offers debugging
capabilities, and functions like a regular Java editor. Set breakpoints, import annotation
packages, compile the Groovy syntax, and fix errors displayed in the Log window.

Type-checking support for Groovy expressions

JDeveloper supports type-checking for Groovy expressions. Type-checking scrutinizes
the syntax of Groovy expressions that you create at design time and identifies errors
and displays these errors in the JDeveloper Log window. Rectify these errors in
your ADF Model project to successfully execute these Groovy expressions at runtime
without errors. By default, type-checking is enabled. Type-checking can be disabled.

Chapter 3
Using Groovy Scripting Language With Business Components

3-34

If type-checking is disabled, type-checking is performed only during runtime. However,
it is good practice to type-check Groovy expressions before runtime. You can enable
or disable Groovy type-checking for all projects that are created, and/or for specific
projects. See What You May Need to Know About Groovy Project Settings for details
about application-wide and project-specific Groovy type-checking settings.

Note:

In order to minimize the execution overhead of the groovy script engine,
ADF may use an optimized execution path for simple scripts that directly
return String or Boolean literals or use a path that directly return a single
attribute value. No developer intervention is required to take advantage
of this feature. However, the script developer should keep scripts simple,
whenever possible.

Script Class File Support

The application allows you to create a custom script class file. Use Script Classes to
define a class that can be used by other script classes. A script class file allows you to
maintain common Groovy script methods that can be called from within any business
component class. This is unlike a regular .bcs file that also maintains Groovy scripts
that can only be called by the component that this .bcs file is associated. See How to
Create a Script Expression Class File for details.

How to Enter Groovy Expressions on Business Components
JDeveloper allows you to define Groovy expressions for entity objects, view objects,
and view object usages (on an application module). Enter Groovy expressions in
the Edit Expression Editor dialog. You invoke this editor in various UI contexts of
the application. ADF Business Components supports the use of the Groovy scripting
language in places where access to entity object and view object attributes is useful,
including attribute validators (for entity objects), attribute default values (for either
entity objects or view objects), transient attribute value calculations (for either entity
objects or view objects), bind variable default values (in view object query statements
and view criteria filters), and placeholders for error messages (in entity object
validation rules).

Specifically, ADF Business Components provides support for the use of Groovy
language expressions to perform the following tasks:

• Add a Script Expression validator or Compare validator (see Using Groovy
Expressions For Business Rules and Triggers)

• Define error message tokens for handling validation failure (see How to Embed a
Groovy Expression in an Error Message)

• Handle conditional execution of validators (see How to Conditionally Raise Error
Messages Using Groovy)

• Set the default value of a bind variable in the view object query statement (see
Working with Bind Variables)

• Set the default value of a bind variable that specifies a criteria item in the view
criteria statement (see Working with Named View Criteria).

Chapter 3
Using Groovy Scripting Language With Business Components

3-35

• Define the default value and optional recalculate condition for an entity object
attribute (see How to Define a Static Default Value)

• Determine the value of a transient attribute of an entity object or view object
(see Adding Transient and Calculated Attributes to an Entity Object and Adding
Calculated and Transient Attributes to a View Object)

Note:

These instructions to define the default value of an attribute using Groovy
expressions serve as an example to demonstrate how to enter Groovy
expressions in the Edit Expression Editor dialog. Given this premise, there
is a mention of the Refresh Expression Value, which is defined by you also
using the Edit Expression Editor dialog. Now the Refresh Expression Value is
specific to defining the default value of an attribute. Therefore, any activity
that involves entering Groovy expressions in the Edit Expression Editor
dialog may or may not have the associated activity of defining a Refresh
Expression Value.

To define the default value of an attribute using Groovy expressions:

1. Open the XML editor view of the entity object or view object. For example, for an
entity object named Country, double-click on CountryEO.xml to open the Overview
Editor of this entity object.

2. Click the Attributes tab.

3. Navigate to the Details page of the Attributes tab and to the Default Value
section.

4. Click the Expression radio-button.

5. Click the icon beside to open the Edit Expression Editor dialog to define the
Groovy expression that calculates the default value and click OK.

6. If required, in the field immediately below the default value expression as
described in the aforementioned step, enter a Refresh Expression Value. Use the
same process in the aforementioned step to define the Refresh Expression Value.

What Happens When You Enter Expressions
When you enter Groovy expressions for a business component such as an entity
object or view object and save the project, the entered Groovy expressions populate
in the .bcs file associated with the component. Note that to ensure this happens, you
must not disable the setting that controls Groovy file generation, as described in What
You May Need to Know About Groovy Project Settings. The application provides you a
mechanism to enter Groovy expressions in various UI contexts for an entity object or
view object. View these added Groovy expressions in the .bcs file associated with the
business component.

A Groovy expression is represented as an hyperlink when you add Groovy
expressions for a business component in the following UI contexts.

• After defining a Groovy expression for an attribute’s default value and/or setting
the refresh expression value.

• After defining UI hints such as label, tooltip and so forth for an attribute.

Chapter 3
Using Groovy Scripting Language With Business Components

3-36

Figure 3-12 shows a Groovy expression added on a view object, to set the default
value of this view object’s attribute. The expression is represented as a hyperlink. The
hyperlink links to the expression script in the .bcs file. Click this hyperlink to open
the .bcs file associated with this business component.

Figure 3-12 Groovy Expression Represented as a Hyperlink

You can also view Groovy expressions added for an entity object or view object in
the component’s Structure window. Figure 3-13 shows a Groovy expression added
for the DateOrdered attribute of the OrdEO component in the Structure window in the
left-hand bottom side of the screen.

Chapter 3
Using Groovy Scripting Language With Business Components

3-37

Figure 3-13 Groovy Expression Represented in the Component’s Structure
Window

JDeveloper represents Groovy expressions in an entity object or view object XML
source (visible in the Source tab in the overview editor of the business component),
as well as the .bcs file associated with this component. In the XML source view of the
business component, XML structures define references to Groovy expressions, where
the Groovy expressions are represented as scripts in the .bcs file for this business
component. Annotations in the .bcs file provide information about the script, such as
the business component on which the Groovy expression is defined, attribute name,
and so forth. Therefore, some of the information enclosed as part of the XML definition
of a Groovy expression is utilized in the annotations. Importantly, an XML definition
of a Groovy expression uses the CodeSourceName value to identify the .bcs file where
this Groovy expression resides as a script. The CodeSourceName value is assigned the
value of the operations.xml file. The operations.xml file is another XML file that is
associated with a business component that contains the URI of the .bcs file.

Chapter 3
Using Groovy Scripting Language With Business Components

3-38

The following sample shows the resulting XML source of the DateOrdered attribute
of the OrdEO entity object that displays the XML definition referencing a Groovy
expression.

<Attribute
 Name="DateOrdered"
 ColumnName="DATE_ORDERED"
 SQLType="TIMESTAMP"
 Type="java.sql.Date"
 ColumnType="DATE"
 TableName="S_ORD">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="7"/>
 </DesignTime>
 <TransientExpression
 Name="ExpressionScript"
 CodeSourceName="OrdEORow"/>
</Attribute>

And, the following sample shows the .bcs file that displays the Groovy script definition
for the DateOrdered attribute.

@TransientValueExpression(attributeName="DateOrdered")
def DateOrdered_ExpressionScript_Expression()
{
 adf.currentDate
}

As the samples for the XML source and .bcs file show, the
name="DateOrdered in the XML source corresponds to the method
nameDateOrdered_ExpressionScript_Expression() in the annotation of the .bcs file.
These values identify the expression script method name which defines the Groovy
expression for this DateOrdered attribute. The CodeSourceName="OrdEORow" in the
XML source indicates the operations.xml file, which for the OrdEO entity object is
OrdEOOperations.xml. The operations.xml file has a URI which points to the .bcs
file.

What You May Need to Know About Groovy Project Settings
Enable Groovy type-checking to allow the application to type-check Groovy
expressions in the .bcs file. Enable Groovy file generation to allow the application
to populate all Groovy expressions for a component in its associated .bcs file. Groovy
type-checking and/or Groovy file generation can be enabled or disabled for a specific
Model project or across all projects.

Groovy Expression Type Validation

In JDeveloper from the main menu, navigate to Application > Project Properties
then select ADF Business Components from the Project Properties dialog and
then click the plus icon to expand and select Options. On the Options page, select
the Groovy Expression Type Validation checkbox to enable JDeveloper to perform
Groovy expression type validation for this Model project. To set this property for all
projects across the application, navigate to Tools > Preferences and select ADF
Business Components from the Preferences dialog box, and then click the plus icon
to expand and select General. On the General page, select Groovy Expression Type
Validation checkbox. When you compile the project, Groovy expressions in the entity
object and view object-specific Business Components Script (.bcs) files are compiled

Chapter 3
Using Groovy Scripting Language With Business Components

3-39

and errors are reported in the JDeveloper Log window. Deselect this option when
you want to prevent type validation from occurring on the Groovy expression scripts
defined in the .bcs files; type-checking is disabled for any new projects created from
this point onwards, whereas existing projects will continue to receive type-checking.
It is recommended that you leave this option enabled (default) to support debugging
Groovy expression scripts contained in the component’s .bcs files. While disabling
type checking does not disable debugging of Groovy scripts, leaving type checking
enabled does surface problems at compile time instead of at runtime, and will thus
make Groovy script debugging easier.

Note:

It is possible to disable type validation at the script level
using .bcs file annotations. In the .bcs file, enter the
annotation @TypeChecked(TypeCheckingMode.SKIP) above the Groovy
expression. In the header section of the .bcs file, these import
statements-import groovy.transform.TypeCheckingMode and import
groovy.transform.TypeChecked allow the application to comply with the
annotations you specify. When you compile Groovy expressions in the .bcs
file, type-checking is skipped or omitted for the expression for which this
annotation is supplied.

Enable Groovy File Generation

In JDeveloper from the main menu, navigate to Application > Project Properties
and select ADF Business Components from the Project Properties dialog, and
then click the plus icon to expand and select Options . In the Options page, select
the Enable Groovy File Generation checkbox to enable JDeveloper to generate
Business Components Script (.bcs) files in this Model project for the entity objects
and view objects with Groovy expressions (default). The .bcs file is created on the
component, when you define a Groovy expression in the component overview editor
(for example, when you enter a default value expression on an entity object attribute
or when you define validation rule expressions). Deselect this option when you do not
want JDeveloper to aggregate Groovy expressions in .bcs files.

If you have already entered Groovy expressions with this checkbox selected, and later
deselect the checkbox, the generated .bcs files retain all previously added Groovy
expressions, but Groovy expressions that you define going forward will not populate
in the .bcs files and will be saved in the component’s XML definition (.xml) file. It is
recommended that you leave this option enabled (default) to aggregate all expressions
into entity object and view object-specific .bcs files, where you can edit Groovy
expression scripts and compile them for errors. Also, aggregating expressions into
Business Components Script files ensures the best runtime performance.

Chapter 3
Using Groovy Scripting Language With Business Components

3-40

Note:

Users migrating ADF applications to JDeveloper release 12.2.1 and later
can retain expressions in the Model project component .xml files by clearing
this checkbox. However, it is recommended that users leave this checkbox
selected and make use of the JDeveloper-provided migration facilities
to move all Groovy expressions to .bcs files, where script editing and
compilation can be performed in the Java source editor.

What You May Need to Know About Where Groovy Expressions Can
Be Used

Table 3-3 Groovy Expression Usage in ADF Business Components

Expression Usage Component Usage XML Element/Parent XML
Element

Description

Transient Attribute Value entity object / view object TransientExpression/
Attribute

Calculates a transient
attribute value at the row
level. Scripts are defined at
the row level.

Attribute Default Value entity object / view object TransientExpression/
Attribute

Calculates the attribute
default value. Scripts are
defined at row level.

Attribute Default Value
Recalculation

entity object / view object RecalcCondition/Attribute When this value evaluates
to be true, the default value
is recalculated. Scripts are
defined at row level.

Variable Default Value entity object / view object TransientExpression/
Variable

Calculates the variable
default value. Scripts are
defined at the object level.

Expression Validator entity object / view object TransientExpression/
ExpressionValidationBean
(Attribute, ViewAttribute,
or Entity)

Executes this expression
to validate the current
contents of the individual
attribute or the whole entity.
Scripts are defined at row
level.

Compare Validator entity object / view object TransientExpression/
CompareValidationBean
(under Attribute,
ViewAttribute, Entity)

Calculates a value to
compare with the new
attribute value. Scripts are
defined at row level.

Validator OnCondition entity object / view object OnCondition/
ExpressionValidationBean,
CompareValidationBean,
etc. (under Attribute,
ViewAttribute, Entity)

Calculates a value to
compare with the new
attribute value. Scripts are
defined at row level.

Chapter 3
Using Groovy Scripting Language With Business Components

3-41

Table 3-3 (Cont.) Groovy Expression Usage in ADF Business Components

Expression Usage Component Usage XML Element/Parent XML
Element

Description

Validator Message
Parameter

entity object / view object Expression/
ResExpressions (under
all validation types)

In the validator, you can
have a text resource to
provide an error message
when the validator detects
an error. Inside the text
resource string, you can
specify the name of a
variable within curly braces
{}. This variable refers
to a Groovy expression
that calculates a value to
embed in the text resource.
Scripts are defined at row
level.

UI Hints entity object / view object TransientExpression/
LABEL

In each attribute there
are a number of
SchemaBasedProperties
that are intended to give
hints to UI developers as
to how the UI should
appear for this attribute.
Some of these are text
resources, such as LABEL
and some are just values,
such as DISPLAYWIDTH.
Any of these UI Hints could
be a Groovy expression,
calculating the value for the
UI Hint. Scripts are defined
at row level.

Entity Triggers entity object TransientExpression/
ExpressionValidationBean
(under Trigger)

The name property
under the trigger element
identifies the type of this
trigger. This expression is
fired when the trigger event
occurs. Scripts are defined
at row level.

View Accessor Parameter entity object / view object TransientExpression/PIMap
(under ParaeterMap which
is under ViewAccessor)

If the view accessor utilizes
a view criteria and inside
the view criteria an item
uses a Bind Variable; this
expression provides the
value for the Bind Variable.
Scripts are defined at the
object level.

View Usage Parameter application module TransientExpression/PIMap
(under ParaeterMap which
is under ViewUsage)

If the view usage utilizes
a view criteria and inside
the view criteria an item
uses a Bind Variable; this
expression provides the
value for the Bind Variable.
Scripts are defined at the
object level.

Chapter 3
Using Groovy Scripting Language With Business Components

3-42

Table 3-3 (Cont.) Groovy Expression Usage in ADF Business Components

Expression Usage Component Usage XML Element/Parent XML
Element

Description

RowFinder Parameter view object TransientExpression/ PIMa
p (under ParaeterMap
which is under ViewUsage)

If the rowfinder utilizes a
view criteria and inside
the view criteria an item
uses a Bind Variable; this
expression provides the
value for the Bind Variable.
Scripts are defined at the
object level.

View Criteria CompOper view object TransientExpression/
CompOper

 If the view criteria
implements a custom
operator, this expression
can be used to execute the
custom operator. Scripts
are defined at the object
level.

What You May Need to Know About Groovy Expression Syntax
The following sections provide important details about the syntax of the Groovy
expression language in ADF Model projects. Groovy expressions work interactively
with ADF Business Components to let you perform numerous activities. There’s a lot
you can do using Groovy scripts: such as, using adf.context in a Groovy expression
in order to reference the ADFContext object, invoking either custom or ADF Business
Components Java APIs, and manipulating business component attribute values using
built-in aggregate functions.

What You May Need to Know About Referencing Business Components in
Groovy Expressions

There is one top-level object named adf that allows you access to objects that the
framework makes available to the Groovy script. When you reference an Oracle ADF
object in a Groovy expression, the Oracle ADF runtime returns wrapper objects that
do not correspond to the actual concrete type of the classes. These wrapper objects
support all of the method and field types of the wrapped object. Your expressions can
use wrapped objects as if they were the actual object. Note, however, any attempt
to cast wrappered objects to its concrete type will fail with a ClassCastException. In
general, when working with the Groovy language it is not necessary to use explicit
casting, and in the case of these wrapped ADF Business Components objects, doing
so will cause an exception.

The accessible Oracle ADF objects consist of the following:

• adf.context - to reference the ADFContext object

• adf.object - to reference the object on which the expression is being applied
(which can also be referenced using the keyword object, without the adf prefix).
Other accessible member names come from the context in which the Groovy script
is applied.

Chapter 3
Using Groovy Scripting Language With Business Components

3-43

– Entity object attributes: The context is an instance of the entity implementation
class. Through this object you can reference custom methods of the custom
entity implementation class, any methods defined by the base implementation
class as specified by the Javadoc for EntityImpl, and you can reference the
attributes of the entity instance.

– Entity object script validation rules: The context is the validator object
(JboValidatorContext) merged with the entity on which the validator is
applied. For details about keywords that you can use in this context, see
Referencing Members of the Same Business Component.

– View object attributes: The context is an instance of the view row
implementation class. Through this object, you can reference custom methods
of the custom view row implementation class, any methods defined by the
base implementation class as specified by the Javadoc for ViewRowImpl, and
you can reference the attributes of the view row instance as defined by the
query row set. The

– Bind variable in view object query statements: The context is the variable
object itself not the view row. You can reference the structureDef property
to access other information as well as the viewObject property to access the
view object in which the bind variable participates. Note that access to view
object attributes through the viewObject property is not supported.

– Bind variable in view criteria: The context is the current view criteria row. The
view criteria with bind variable may be used to create a query search form
component in which a bind variable expression can provide the list of search
criteria values. You must reference the structureDef property to access the
view criteria row, and you can then reference the findAttributeDef() method
to derive values from a specified attribute. You cannot use the viewObject
property to access the view object on which the view criteria is defined.

– Bind variable in view accessors: The context is the current view row. The view
accessor with bind variable is used to create a cascading List of Value (LOV).
The view accessor can derive Groovy-driven values from the current view row
in the view accessor view object used to formulate the list of valid choices. You
must reference the structureDef property to access the view row, and you
can then reference the findAttributeDef() method to derive values from a
specified attribute. You cannot use the viewObject property to access the view
object for which the view accessor is defined.

– Transient attributes: The context is the current entity or view row. You can
reference attributes by name in the entity or view row in which the attribute
appears, as well as public methods on that entity or view row. To access
methods on the current object, you must use the object keyword to reference
the current object (for example, object.methodName()). The object keyword
is equivalent to the this keyword in Java. Without it, in transient expressions,
the method will be assumed to exist on the dynamically compiled Groovy
script object itself.

• adf.error - in validation rules, to access the error handler that allows the
validation expression to generate exceptions or warnings

• adf.userSession - returns a reference to the ADF Business Components user
session (which you can use to reference values in the userData hashmap that is
part of the session)

You can also reference the current date (time truncated) or current date and time using
the following expressions:

Chapter 3
Using Groovy Scripting Language With Business Components

3-44

• adf.currentDate

• adf.currentDateTime

What You May Need to Know About Untrusted Groovy Expressions
The ADF Groovy engine restricts Groovy access to general purpose Java APIs.
This is done to prevent illegal and/or insecure method calls and property access.
An application developer may enhance the security policy to include custom
methods defined in the application Java API with the @AllowUntrustedScriptAccess
annotation.

Custom Java may be used to access Java libraries that are not otherwise
supported in ADF scripts. For example, if one wanted to read from a file, in
order to support that case, you can create a custom Java class, mark it with the
@AllowUntrustedScriptAccess annotation, and then invoke the custom class from an
ADF script.

In the class file, you need to:

1. Import oracle.adf.share.security.AllowUntrustedScriptAccess.

2. Add the annotation @AllowUntrustedScriptAccess(methodNames={”xyz”,
“abc”}) at the top of the view object implementation class.

For example:

import oracle.adf.share.security.AllowUntrustedScriptAccess;
@AllowUntrustedScriptAccess(methodNames = {"testAccessObject"})

public class ActivityVOImpl extends CRMViewObjectImpl implements
ActivityVO
{

 public boolean testAccessObject(String objectType, Long
objectKey)
 {
 // your logic here
 return true;
 }

After you have updated the class file, you can directly access the Java method from
the VOImpl class inside the Groovy script, just as you would in any source code. For
example, to access the testAccessObject() method, you would need to invoke the
method on the object that you create, as illustrated by the following example.

def voActivity = newView('Activity')
def objectType = 'OPPTY'
def objectKey = 100010025532672
voActivity.testAccessObject(objectType, objectKey)
println('Done test');

Chapter 3
Using Groovy Scripting Language With Business Components

3-45

What You May Need to Know About Referencing Custom Business
Components Methods and Attributes in Groovy Expressions

Groovy script language simplifies the authoring of code that you might write to access
methods and attributes of your entity object and view objects.

Referencing Members of the Same Business Component
The simplest example of referencing business component members, including
methods and attributes that the entity object and view object define, is to reference
attributes that exist in the same entity object or view object as the attribute that you
apply the expression.

For example, you could define a Groovy expression to calculate the value of a
transient attribute AnnualSalary on an entity object with an attribute Sal that specifies
the employee's monthly salary:

Sal * 12

Or, with Groovy you can write a simple validation rule to compare the attributes of a
single view object using syntax like:

PromotionDate > HireDate

Using Java, this same comparison would look like:

((Date)getAttribute("PromotionDate")).compareTo((Date)getAttribute("HireDate")) > 0

Note that the current object is passed in to the script as the this object, so you can
reference an attribute in the current object by simply using the attribute name. For
example, in an attribute-level or entity-level Script Expression validator, to refer to an
attribute named "HireDate", the script can simply reference HireDate.

Similar to referencing attributes, when you define custom methods in an entity
implementation class, you can invoke those methods as part of your expression. For
example, to define an attribute default value:

adf.object.getDefaultSalaryForGrade()

A method reference requires the prefix adf.object which allows you to reference
the same entity that defines the attribute on which the expression is applied. This
same prefix also allows you to reference the methods of the base class of the
entity implementation class (EntityImpl.java) that your custom implementation class
extends.

Note that when you want to reference the method of an entity implementation class in
a validation rule, you use the source prefix:

source.getDefaultSalaryForGrade()

Use of the source prefix is necessary in validators because the object keyword
implies the validation rule object instead of the entity object (where the method is
defined).

To allow you to reference members of the validator object (JboValidatorContext), you
can use these keywords in your validation rule expression:

Chapter 3
Using Groovy Scripting Language With Business Components

3-46

• newValue: in an attribute-level validator, to access the attribute value being set

• oldValue: in an attribute-level validator, to access the current value of the attribute
being set

For example, you might use the following expression to specify a dynamic validation
rule check of the salary for a salesman.

if (Job == "SALESMAN")
{
 return newValue < source.getMaxSalaryForGrade(Job)
}
else
return true

Referencing Members of Other Business Components
You can also reference the methods and attributes that entity objects and view objects
defines in the expressions you apply to a different entity object attribute or validation
rule. This is accomplished by referencing the accessor in the entity association.

For example, if you define an entity with a master-detail association for Dept and
Emp, by default the accessor for the entity association will be named Dept and Emp,
to identity the source and destination data source. Using that accessor in a Groovy
expression to set the default value for a new employee's salary based on the location
of their department:

adf.object.getDefaultSalaryForGrade(Dept.Loc)

This expression does not reference the entity even though it has the same name
(Dept) as the accessor for the association. Instead, assuming a master-detail
relationship between departments and employees, referencing the accessor allows
the Groovy expression for the employee entity object to walk back to the master
department entity and pass in the value of Loc from that master.

What You May Need to Know About Manipulating Business Component
Attribute Values in Groovy Expressions

You can use the following built-in aggregate functions on Oracle Business
Components RowSet objects:

• rowSetAttr.sum(GroovyExpr)

• rowSetAttr.count(GroovyExpr)

• rowSetAttr.avg(GroovyExpr)

• rowSetAttr.min(GroovyExpr)

• rowSetAttr.max(GroovyExpr)

These aggregate functions accept a string-value argument that is interpreted as a
Groovy expression that is evaluated in the context of each row in the row set as the
aggregate is being computed. The Groovy expression must return a numeric value (or
number domain).

For example, in a Dept entity object you could add a transient attribute that displays
the sum of all employee salaries that is calculated by this expression:

EmployeesInDept.sum("Sal")

Chapter 3
Using Groovy Scripting Language With Business Components

3-47

To reference the employees of a specific department, the expression supplies the
name of the master-detail association's accessor for the destination Emp entity. In this
case, the accessor is EmployeesInDept and salary is interpreted for each record of the
Emp entity object.

Or, assume that you want the calculation of the salary total for specific departments to
include each employee's benefits package, which varies with job role:

EmployeesInDept.sum("Sal + adf.object.getBenefitsValue(Job)")

What You May Need to Know About Migrating Groovy Snippets
When migrating to JDeveloper 12.2.1 or later from a previous release, the application
allows you to migrate Groovy snippets to the .bcs file. In releases prior to JDeveloper
12.2.1, Groovy expressions defined on a business component, such as an entity
object or view object, reside in the XML source of this business component. From
JDeveloper 12.2.1 onwards, Groovy expressions defined on a business component
aggregate into the .bcs file associated with this business component, if Groovy file
generation is enabled. Type-checking if enabled for the current project or for all
projects, is performed by the application in the .bcs file, upon compilation. See What
You May Need to Know About Groovy Project Settings for details on how to enable/
disable Groovy type-checking and/or Groovy file generation.

Starting in JDeveloper 12.2.1, the settings that enable Groovy file generation into
the .bcs file and type-checking of Groovy expressions in the .bcs file are enabled
by default. So when you migrate an ADF application to JDeveloper 12.2.1 from a
previous release, the application displays prompts in the gutter of the XML source
of the business component. Click the prompts to display options that allow you to
move Groovy expressions into the .bcs file. Figure 3-14 displays the prompts that
JDeveloper displays for a Groovy snippet in the XML source (visible in the Source tab
of the overview editor for the business component).

Figure 3-14 Code Assist Performs Groovy Snippet Migration

Chapter 3
Using Groovy Scripting Language With Business Components

3-48

• Select Move to an external codesource to move this Groovy snippet for which
this prompt displays, into the .bcs file for this business component.

• Select Move to an external codesource with type checking turned off to
move this Groovy snippet for which this prompt displays, into the .bcs file for
this business component, with type-checking turned off.

• Select Suppress "Groovy codesource" By JDeveloper Name (Suppress
Processing Instruction) to turn-off these prompts. Once turned-off, prompts do
not display in the XML source for any other migrated business component having
Groovy expressions.

After a Groovy snippet is migrated from the XML source to the .bcs file, the
XML definition in the XML source displays a reference to the .bcs file where this
migrated Groovy snippet resides. A migrated Groovy expression (as with any Groovy
expression) has common information in the XML definition of the XML source that
overlaps with the information contained in the annotations in the .bcs file. This
common information helps identify a Groovy expression across the XML source
and .bcs file. See What Happens When You Enter Expressions for details on the
common information about a Groovy expression across the XML source and .bcs file
contexts.

Note:

JDeveloper facilitates migration capabilities with audit rules that execute
when you open the application. Audit rules are part of an audit profile —
which is a collection of audit rules. A set of pre-enabled Groovy-specific
audit rules achieve migration. To view these flags, from the main menu
of JDeveloper navigate to Tools > select Preferences. In the Preferences
dialog, select Audit. Click Manage Profiles to view the list of audit profiles.
From this list, select and expand the Application Development Framework
(ADF) audit profile to view the list of sub-rules. Select and expand ADFbc
Audit Rules to view the list of sub-rules within this rule. Select and expand
Common to view the Groovy-specific Audit rules that are pre-enabled, and
which facilitate migration of Groovy snippets. See Understanding Audit Rules
of Developing Applications with Oracle JDeveloper.

How to Create a Script Expression Class File
ADF Business Components allows you to create a script expression class file that you
use to maintain common Groovy script methods that can be called by from anywhere
within the application.

To create a script expression class file:

1. From the File menu, click New, select From Gallery, select ADF Business
Components in the Business Tier section of the New Gallery dialog and select
Script Class in the right-hand pane of this dialog.

2. In the Create Script Expression Class dialog, enter the class name of this script
expression class in the Class Name field.

3. Specify the package that this script expression class resides in the Package
Name field.

Chapter 3
Using Groovy Scripting Language With Business Components

3-49

4. Optionally, specify the script expression classes that this script expression class
extends in Extends.

5. Click OK.

The script expression class file is created and can be opened in JDeveloper from the
package it resides.

Chapter 3
Using Groovy Scripting Language With Business Components

3-50

4
Creating a Business Domain Layer Using
Entity Objects

This chapter describes how to use ADF entity objects to create a reusable business
layer of Java objects that describe the business domain in an Oracle ADF application.
This chapter includes the following sections:

• About Entity Objects

• Creating Entity Objects and Associations

• Creating and Configuring Associations

• Creating a Diagram of Entity Objects for Your Business Layer

• Defining Property Sets

• Defining Attribute Control Hints for Entity Objects

• Working with Resource Bundles

• Defining Business Logic Groups

• Configuring Runtime Behavior Declaratively

• Setting Attribute Properties

• Adding Transient and Calculated Attributes to an Entity Object

• Creating Business Events

• Generating Custom Java Classes for an Entity Object

• Working Programmatically with Entity Objects and Associations

• Working Programmatically with Custom Data Sources and the Framework Base
Class ProgrammaticEntityImpl

• Creating Custom, Validated Data Types Using Domains

• Creating New History Types

• Basing an Entity Object on a PL/SQL Package API

• Basing an Entity Object on a Join View or Remote DBLink

• Using Inheritance in Your Business Domain Layer

About Entity Objects
You use ADF entity objects to represent rows of a data source. ADF entity objects
allow you to modify row attributes, encapsulate domain business logic and implement
business policies and rules.

An entity object is the ADF business component that represents a row in the specified
data source (generally a single database table, view, or synonym) and simplifies
modifying its associated attributes. Importantly, it allows you to encapsulate domain

4-1

business logic to ensure that your business policies and rules are consistently
validated.

Entity Object Use Cases and Examples
Entity objects support numerous declarative business logic features to enforce the
validity of your data. You will typically complement declarative validation with additional
custom application logic and business rules to cleanly encapsulate a maximum
amount of domain business logic into each entity object. Your associated set of
entity objects forms a reusable business domain layer that you can exploit in multiple
applications.

The key concepts of entity objects (as illustrated in Figure 4-1) are the following:

• You define an entity object by specifying the database table whose rows it will
represent.

• You can create associations to reflect relationships between entity objects.

• At runtime, entity rows are managed by the entity definition object.

• Each entity row is identified by a related row key.

• You retrieve and modify entity rows in the context of an application module that
provides the database transaction.

Figure 4-1 Entity Object Encapsulates Business Logic for a Table

Additional Functionality for Entity Objects
You may find it helpful to understand other Oracle ADF features before you start
working with entity objects. Following are links to other functionality that may be of
interest.

• For information about using declarative validation in entity objects, see Defining
Validation and Business Rules Declaratively.

• For API documentation related to the oracle.jbo package, see the following
Javadoc reference document:

– Java API Reference for Oracle ADF Model

Chapter 4
About Entity Objects

4-2

Creating Entity Objects and Associations
Create ADF entity objects and associations from existing tables. You can also create
ADF entity objects from scratch and generate tables.

If you already have a database schema to work from, the simplest way to create
entity objects and associations is to reverse-engineer them from existing tables. When
needed, you can also create an entity object from scratch, and then generate a table
for it later.

How to Create Multiple Entity Objects and Associations from Existing
Tables

To create one or more entity objects, use the Business Components from Tables
wizard, which is available from the New Gallery.

Before you begin:

It may be helpful to have an understanding of the options you have for creating entity
objects. For more information, see Creating Entity Objects and Associations.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create one or more entity objects and associations from existing tables:

1. In the Applications window, right-click the project in which you want to create the
entity objects and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Business Components from Tables, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Initialize Business Components Project dialog, select the database
connection or click the Create a new database connection icon to create a
connection. Click OK.

4. On the Entity Objects page, do the following to create the entity objects:

• Enter the name of the package in which all of the entity objects will be created.

• Select the tables from the Available list for which you want to create entity
objects.

If the Auto-Query checkbox is selected, then the list of available tables
appears immediately. In the Name Filter field, you can optionally enter a full or
partial table name to filter the available tables list in real time. As an alternative
to the auto-query feature, click the Query button to retrieve the list based
on an optional table name filter. When no name filter is entered, JDeveloper
retrieves all table objects for the chosen schema.

• Click Filter Types if you want to see only a subset of the database objects
available. You can filter out tables, views, or synonyms.

Chapter 4
Creating Entity Objects and Associations

4-3

Once you have selected a table from the Available list, the proposed entity object
name for that table appears in the Selected list with the related table name in
parenthesis.

• Select an entity object name in the Selected list and use the Entity Name
field to change the default entity object name.

Best Practice:

Because each entity object instance represents a single row in a
particular table, name the entity objects with a singular noun (like
Address, Order, and Person), instead of their plural counterparts.
Figure 4-2 shows what the wizard page looks like after selecting the
S_COUNTRIES table in the Summit ADF schema, setting a package
name of summit.model.entities, and renaming the entity object in the
singular.

Figure 4-2 Create Business Components from Tables Wizard, Entity
Objects Page

5. When you are satisfied with the selected table objects and their corresponding
entity object names, click Finish.

The Applications window displays the entity objects in the package you specified.

Chapter 4
Creating Entity Objects and Associations

4-4

Best Practice:

After you create associations, move all of your associations to a separate
package so that you can view and manage them separately from the entity
objects. In Figure 4-3, the associations have been moved to a subpackage
(assoc) and do not appear in the entities package in the Applications
window. For more information, see How to Rename and Move Associations
to a Different Package.

Figure 4-3 New Entity Objects in Applications window

How to Create Single Entity Objects Using the Create Entity Wizard
To create a single entity object, you can use the Create Entity Object wizard, which is
available in the New Gallery.

Note:

Associations are not generated when you use the Create Entity Object
wizard. However, the Business Components from Tables wizard does
generate associations. If you use the Create Entity Object wizard to create
entity objects, you will need to create the corresponding associations
manually.

Before you begin:

It may be helpful to have an understanding of the options you have for creating entity
objects. For more information, see Creating Entity Objects and Associations.

Chapter 4
Creating Entity Objects and Associations

4-5

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create a single entity object:

1. In the Applications window, right-click the project in which you want to create the
entity object and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Entity Object, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. On the Name page, do the following to create the entity object:

• Enter a name for the entity object.

• Enter the package name in which the entity object will be created.

• Click Browse (next to the Schema Object field) to select the table for which
you want to create the entity object.

Or, if you plan to create the table later, you can enter a name of a table that
does not exist.

5. If you manually entered a table name in the Schema Object field, you will need to
define each attribute on the Attributes page of the wizard. Click Next.

You can create the table manually or generate it, as described in How to Create
Database Tables from Entity Objects.

6. When you are satisfied with the table object and its corresponding entity object
name, click Finish.

What Happens When You Create Entity Objects and Associations
from Existing Tables

When you create an entity object from an existing table, first JDeveloper interrogates
the data dictionary to infer the following information:

• The Java-friendly entity attribute names from the names of the table's columns (for
example, USER_ID -> UserId)

• The SQL and Java data types of each attribute based on those of the underlying
column

• The length and precision of each attribute

• The primary and unique key attributes

• The mandatory flag on attributes, based on NOT NULL constraints

• The relationships between the new entity object and other entities based on
foreign key constraints

Chapter 4
Creating Entity Objects and Associations

4-6

Note:

Since an entity object represents a database row, it seems natural to call it
an entity row. Alternatively, since at runtime the entity row is an instance
of a Java object that encapsulates business logic for that database row, the
more object-oriented term entity instance is also appropriate. Therefore,
these two terms are interchangeable.

JDeveloper then creates the XML document file that represents its declarative settings
and saves it in the directory that corresponds to the name of its package. For example,
when an entity named Order appears in the genericbcmodel.entities package,
JDeveloper will create the XML file genericbcmodel/entities/Order.xml under the
project's source path. This XML file contains the name of the table, the names and
data types of each entity attribute, and the column name for each attribute.

You can inspect the XML description for the entity object by opening the object in the
overview editor and clicking the Source tab.

Note:

If your IDE-level Business Components Java generation preferences so
indicate, the wizard may also create an optional custom entity object class
(for example, OrderImpl.java).

Foreign Key Associations Generated When Entity Objects Are Derived from
Tables

In addition to the entity objects, the Business Components from Tables wizard
also generates named association components that capture information about the
relationships between entity objects. For example, the database diagram in Figure 4-4
shows that JDeveloper derives default association names like SItemOrdIdFkAssoc
by converting the foreign key constraint names to a Java-friendly name and adding
the Assoc suffix. For each association created, JDeveloper creates an appropriate
XML document file and saves it in the directory that corresponds to the name of its
package.

Note:

Associations are generated when you use the Business Components from
Tables wizard. However, the Create Entity Object wizard does not generate
associations. If you use the Create Entity Object wizard to create entity
objects, you will need to create the corresponding associations manually.

By default the associations reverse-engineered from foreign keys are created in the
same package as the entities. For example, for the association SItemOrdIdFkAssoc

Chapter 4
Creating Entity Objects and Associations

4-7

with entities in the summit.model.entities package, JDeveloper creates the
association XML file named ./summit/model/entities/SItemOrdIdFkAssoc.xml.

Figure 4-4 S_ITEM and S_ORD Tables Related by Foreign Key

Entity Object Key Generated When a Table Has No Primary Key
If a table has no primary key constraint, then JDeveloper cannot infer the primary
key for the entity object. Because every entity object must have at least one attribute
marked as a primary key, the wizard marks all columns as part of the primary key for
the entity. If appropriate, you can edit the entity object later to mark a different attribute
as a primary key and remove the setting from other attributes. When you use the
Create Entity Object wizard and you have not set any other attribute as primary key,
you will be prompted to use all columns as the primary key.

What Happens When You Create an Entity Object for a Synonym or
View

When you create an entity object using the Business Components from Tables wizard
or the Create Entity Object wizard, the object can represent an underlying table,
synonym, or view. The framework can infer the primary key and related associations
for a table or synonym by inspecting database primary and foreign key constraints in
the data dictionary.

However, when your selected schema object is a database view, then neither the
primary key nor associations can be inferred since database views do not have
database constraints. In this case, if you use the Business Components from Tables
wizard, the primary key defaults to RowID. If you use the Create Entity Object wizard,
you'll need to specify the primary key manually by marking at least one of its attributes
as a primary key. For more information, see RowID Generated When a Table Has No
Primary Key.

When your selected schema object is a synonym, there are two possible outcomes. If
the synonym is a synonym for a table, then the wizard and editor behave as if you had

Chapter 4
Creating Entity Objects and Associations

4-8

specified a table. If instead the synonym refers to a database view, then they behave
as if you had specified a view.

How to Edit an Existing Entity Object or Association
After you've created a new entity object or association, you can edit any of its settings
in the overview editor. To launch the editor, choose Open from the context menu for
the entity object or association in the Applications window or double-click the object.
By clicking the different tabs of the editor, you can adjust the settings that define the
object and govern its runtime behavior.

How to Create Database Tables from Entity Objects
To create database tables based on entity objects, right-click the package in the
Applications window that contains the entity objects and choose Create Database
Objects from the context menu. A dialog appears to let you select the entities whose
tables you'd like to create. This tool can be used to generate a table for an entity object
you created from scratch, or to drop and re-create an existing table.

Caution:

This feature performs its operations directly against the database and will
drop existing tables. It does not generate a script to run later. A dialog
appears to confirm that you want to do this before proceeding. For entities
based on existing tables, use with caution.

In the overview editor for an association, the Use Database Key Constraints
checkbox on the Association Properties page controls whether the related foreign key
constraint will be generated when creating the tables for entity objects. Selecting this
option does not have any runtime implications.

How to Synchronize an Entity with Changes to Its Database Table
Inevitably you (or your DBA) might alter a table for which you've already created an
entity object. Your existing entity will not be disturbed by the presence of additional
attributes in its underlying table; however, if you want to access the new column in the
table in your Java EE application, you'll need to synchronize the entity object with the
database table.

For example, suppose you had done the following at the SQL*Plus command prompt
to add a new SECURITY_QUESTION column to the PERSONS table:

ALTER TABLE PERSONS ADD (security_question VARCHAR2(60));

Then you can use the synchronization feature to add the new column as an attribute
on the entity object.

Before you begin:

It may be helpful to have an understanding of the options you have for creating entity
objects. For more information, see Creating Entity Objects and Associations.

Chapter 4
Creating Entity Objects and Associations

4-9

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To synchronize an entity with changes to its database table:

1. In the Applications window, right-click the entity object you want to synchronize
and choose Synchronize with Database.

The Synchronize with Database dialog shows the list of the actions that can be
taken to synchronize the business logic tier with the database.

2. Select the action you want to take:

• Select one or more actions from the list, and click Synchronize to synchronize
the selected items.

• Click Synchronize All to perform all actions in the list.

• Click Write to File to save the action list to a text file. This feature helps you
keep track of the changes you make.

3. Click OK.

Removing an Attribute Associated with a Dropped Column
The synchronize feature does not handle dropped columns. When a column is
dropped from the underlying database after an entity object has been created, you
can delete the corresponding attribute from the entity object. If the attribute is used in
other parts of your application, you must remove those usages as well.

Before you begin:

It may be helpful to have an understanding of the options you have for creating entity
objects. For more information, see Creating Entity Objects and Associations.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To remove an entity attribute:

1. In the Applications window, double-click the entity object that contains the attribute
you want to remove.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, right-click the attribute and choose Delete.

If there are other usages, the Confirm Delete dialog displays the message
"Usages were found."

4. If usages were found, click Show Usages.

The dialog shows all usages of the attribute, which you can click to display the
usage in the source editor.

5. Click Preview to display usages of the attribute in the Log window, and then work
through the list to delete all usages of the entity attribute.

Chapter 4
Creating Entity Objects and Associations

4-10

Addressing a Data Type Change in the Underlying Table
The synchronize feature does not handle changed data types. For a data type change
in the underlying table (for example, precision increased), you must locate all usages
of the attribute and manually make changes, as necessary.

Before you begin:

It may be helpful to have an understanding of the options you have for creating entity
objects. For more information, see Creating Entity Objects and Associations.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To locate all usages of an entity attribute:

1. In the Applications window, double-click the entity object.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, right-click the attribute and choose Find Usages.

If there are other usages, they are displayed in the Log window.

How to Store Data Pertaining to a Specific Point in Time
Effective dated tables are used to provide a view into the data set pertaining to a
specific point in time. Effective dated tables are widely used in applications like HRMS
and Payroll to answer queries like:

• What was the tax rate for an employee on August 31st, 2005?

• What are the employee's benefits as of October 2004?

In either case, the employee's data may have changed to a different value since then.

The primary difference between the effective dated entity type and the dated entity
type is that the dated entity does not cause row splits during update and delete.

Note:

Do not use effective dating on a parent entity object in a master-detail
relationship. Because child objects can raise events on parent objects,
and effective dated entity objects cause row splits during update and delete
operations, it is possible for the child object to raise an event on the wrong
parent object if both the parent and child are updated during the same
transaction.

When you create an effective dated entity object, you identify the entity as effective
dated and specify the attributes of the entity that represent the start and end dates.
The start date and end date attributes must be of the Date type.

Additionally, you can specify an attribute that represents the sequence for the effective
dated entity and an attribute that represents a flag for the sequence. These attributes
allow for tracking of multiple changes in a single day.

Chapter 4
Creating Entity Objects and Associations

4-11

Before you begin:

It may be helpful to have an understanding of the options you have for creating entity
objects. For more information, see Creating Entity Objects and Associations.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create an effective dated entity object

1. In the Applications window, double-click the entity object on which you want
enable effective dating.

2. In the Properties window, expand the Type category.

If necessary, choose Properties from the Window menu to display the Properties
window.

If the Type category is not displayed in the Properties window, click the General
tab in the overview editor to set the proper focus.

3. From the property menu for Effective Date Type, choose Edit.

To display the property menu, click the down arrow next to the property field.

4. In the Edit Property dialog, specify the following settings:

• For Effective Date Type, select EffectiveDated.

• For Start Date Attribute, select the attribute that corresponds to the start
date.

• For End Date Attribute, select the attribute that corresponds to the end date.

5. You can optionally specify attributes that allow for tracking of multiple changes in a
single day.

• For Effective Date Sequence, select the attribute that stores the sequence of
changes.

• For Effective Date Sequence Flag, select the attribute that stores a flag
indicating the most recent change in the sequence.

Without specifying the Effective Date Sequence and Effective Date Sequence
Flag attributes, the default granularity of effective dating is one day. For this
reason, multiple changes in a single day are not allowed. An attempt to update the
entity a second time in a single day will result in an exception being thrown. After
these two attributes are specified, the framework inserts and updates their values
as necessary to track multiple changes in a single day.

6. Click OK.

Note:

You can also identify the start and end date attributes using the Properties
window for the appropriate attributes. To do so, select the appropriate
attribute in the overview editor and set the Start Date or End Date property
to true in the Properties window.

Chapter 4
Creating Entity Objects and Associations

4-12

What Happens When You Create Effective Dated Entity Objects
When you create an effective dated entity object, JDeveloper creates a transient
attribute called SysEffectiveDate to store the effective date for the row. Typically the
Insert, Update, and Delete operations modify the transient attribute while the ADF
Business Components framework decides the appropriate values for the effective
start date and the effective end date.

The following example shows some sample XML entries that are generated when
you create an effective dated entity. For more information about working with effective
dated objects, see Limiting View Object Rows Using Effective Date Ranges.

// In the effective dated entity
<Entity
 ...
 EffectiveDateType="EffectiveDated">

// In the attribute identified as the start date
 <Attribute
 ...
 IsEffectiveStartDate="true">

// In the attribute identified as the end date
 <Attribute
 ...
 IsEffectiveEndDate="true">

// The SysEffectiveDate transient attribute
 <Attribute
 Name="SysEffectiveDate"
 IsQueriable="false"
 IsPersistent="false"
 ColumnName="$none$"
 Type="oracle.jbo.domain.Date"
 ColumnType="$none$"
 SQLType="DATE"/>

What You May Need to Know About Creating Entities from Tables
The Business Components from Tables wizard makes it easy to quickly generate
many business components at the same time. In practice, this does not mean that
you should use it to immediately create entity objects for every table in your database
schema just because it is possible to do so. If your application requires all of the
tables, then that strategy might be appropriate. But because you can use the wizard
whenever needed, you should create the entity objects for the tables that you know will
be involved in the application.

Defining Nested Application Modules, describes a use case-driven design approach
for your business services that can assist you in understanding which entity objects
are required to support your application's business logic needs. You can always add
more entity objects later as necessary.

Creating and Configuring Associations
Create entity associations manually if foreign key constraints don’t exist so that
JDeveloper is able to infer associations between ADF entity objects.

Chapter 4
Creating and Configuring Associations

4-13

If your database tables have no foreign key constraints defined, JDeveloper won't
be able to infer the associations between the entity objects that you create. Since
several ADF Business Components runtime features depend on the presence of
entity associations, create them manually if the foreign key constraints don't exist.

How to Create an Association
To create an association, use the Create New Association wizard, which is available in
the New Gallery.

Before you begin:

It may be helpful to have an understanding of why you create associations. For more
information, see Creating and Configuring Associations.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create an association:

1. In the Applications window, right-click the project in which you want to create the
association and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Association, and click OK.

3. In the Create Association wizard, on the Name page, do the following:

• Enter the package name in which the association will be created.

• Enter the name of the association component.

• Click Next.

4. On the Entity Objects page, select the source and destination entity attributes:

• Select a source attribute from one of the entity objects that is involved in the
association to act as the master.

• Select a corresponding destination attribute from the other entity object
involved in the association.

For example, Figure 4-5 shows the selected Id attribute from the OrdEO entity
object as the source entity attribute. Because the ItemEO rows contain an order ID
that relates them to a specific OrdEO row, you would select this OrdId foreign key
attribute in the ItemEO entity object as the destination attribute.

Chapter 4
Creating and Configuring Associations

4-14

Figure 4-5 Create Association Wizard, Attribute Pairs That Relate Two
Entity Objects Defined

5. Click Add to add the matching attribute pair to the table of source and destination
attribute pairs below.

By default, the Bound checkbox is selected for both the source and destination
attribute. This checkbox allows you to specify whether or not the value will
be bound into the association SQL statement that is created internally when
navigating from source entity to target entity or from target entity to source entity
(depending on which side you select).

Typically, you would deselect the checkbox for an attribute in the relationship that
is a transient entity attribute whose value is a constant and therefore should not
participate in the association SQL statement to retrieve the entity.

6. If the association requires multiple attribute pairs to define it, you can repeat the
preceding steps to add additional source/target attribute pairs.

7. Finally, ensure that the Cardinality dropdown correctly reflects the cardinality of
the association. The default is a one-to-many relationship. Click Next.

For example, since the relationship between an OrdEO row and its related ItemEO
rows is one-to-many, you can leave the default setting.

8. On the Association SQL page, you can preview the association SQL predicate that
will be used at runtime to access the related destination entity objects for a given
instance of the source entity object.

9. On the Association Properties page, disable the Expose Accessor checkbox
on either the Source or the Destination entity object when you want to create
an association that represents a one-way relationship. The default, bidirectional
navigation is more convenient for writing business validation logic, so in practice,
you typically leave these default checkbox settings.

For example, Figure 4-6 shows an association that represents a bidirectional
relationship, permitting either entity object to access the related entity row(s) on
the other side when needed. In this example, this means that if you are working
with an instance of an OrdEO entity object, you can easily access the collection of

Chapter 4
Creating and Configuring Associations

4-15

its related OrderItemEO rows. With any instance of a OrderItemEO entity object,
you can also easily access the Order to which it belongs.

Figure 4-6 Association Properties Control Runtime Behavior

10. When you are satisfied with the association definition, click Finish.

What Happens When You Create an Association
When you create an association, JDeveloper creates an appropriate XML document
file and saves it in the directory that corresponds to the name of its package.
For example, if you created an association named SItemOrderIdFkAssoc in the
oracle.summit.model.entities.assoc subpackage, then the association XML file
would be created in the ./oracle/summit/model/entities/assoc directory with the
name SItemOrderIdFkAssoc.xml. At runtime, the entity object uses the association
information to automate working with related sets of entities.

How to Change Entity Association Accessor Names
You should consider the default settings for the accessor names on the Association
Properties page and decide whether changing the names to something more intuitive
is appropriate. The default settings define the names of the accessor attributes you
will use at runtime to programmatically access the entities on the other side of the
relationship. By default, the accessor names will be the names of the entity object
on the other side. Since the accessor names on an entity must be unique among
entity object attributes and other accessors, if one entity is related to another entity in
multiple ways, then the default accessor names are modified with a numeric suffix to
make the name unique.

In an existing association, you can rename the accessor using the Association
Properties dialog.

Before you begin:

Chapter 4
Creating and Configuring Associations

4-16

It may be helpful to have an understanding of why you create associations. For more
information, see Creating and Configuring Associations.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To rename the entity accessor in an association:

1. In the Applications window, double-click the association that contains the entity
accessor you want to rename.

2. In the overview editor, click the Relationships navigation tab.

3. On the Relationships page, expand the Accessors section and click the Edit icon.

The Association Properties dialog displays the current settings for the
association's accessors.

4. In the Association Properties dialog, modify the name as necessary, and click OK.

How to Rename and Move Associations to a Different Package
Since associations are a component that you typically configure at the outset of
your project and don't change frequently thereafter, you might want to move the
associations to a different package so that your entity objects are easier to see.

Both renaming components and moving them to a different package is straightforward
using JDeveloper's refactoring functionality. However, it is not advisable to rename or
move ADF Business Components objects manually, as missed references can break
your application. For more information about JDeveloper's refactoring functionality, see
Refactoring a Fusion Web Application .

Before you begin:

It may be helpful to have an understanding of why you create associations. For more
information, see Creating and Configuring Associations.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To move a set of business components to a different package:

1. In the Applications window, select the components you want to move.

2. Right-click one of the selected components, and choose Refactor > Move.

3. In the Move Business Components dialog, enter the name of the package to move
the component(s) to, or click Browse to navigate to and select the package.

4. Click OK.

If you just want to rename a component, right-click the component you want
to rename, and choose Refactor > Rename. When you refactor ADF Business
Components, JDeveloper moves the XML and Java files related to the components,
and updates any other components that might reference them.

Figure 4-7 shows what the Applications window would look like after renaming all
of the associations and moving them to the oracle.summit.model.entities.assoc
subpackage. While you can refactor the associations into any package name you
choose, picking a subpackage keeps them logically related to the entities, and allows

Chapter 4
Creating and Configuring Associations

4-17

you to collapse the package of associations to better manage which files display in the
Applications window.

Figure 4-7 Applications Window After Association Refactoring

What You May Need to Know About Using a Custom View Object in
an Association

You can associate a custom view object with the source end or destination end (or
both) of an entity association.

When you traverse entity associations in your code, if the entities are not already
in the cache, then the ADF Business Components framework performs a query to
bring the entity (or entities) into the cache. By default, the query performed to bring
an entity into the cache is the find-by-primary-key query that selects values for all
persistent entity attributes from the underlying table. If the application performs a lot
of programmatic entity association traversal, you could find that retrieving all of the
attributes might be heavy-handed for your use cases.

Entity associations support the ability to associate a custom, entity-based view object
with the source entity or destination entity in the association, or both. The primary
entity usage of the entity-based view object you supply must match the entity type of
the association end for which you use it.

Using a custom view object can be useful because the custom view object's query
can include fewer columns and it can include an ORDER BY clause. This allows you to
control how much data is retrieved when an entity is brought into the cache due to

Chapter 4
Creating and Configuring Associations

4-18

association traversal, as well as the order in which any collections of related entities
will appear.

For more information about creating a custom view object, see How to Create an
Entity-Based Programmatic View Object.

What You May Need to Know About Composition Associations
An association represents a relationship between entities, such as a Customer
referenced by an Order or an Item contained in an Order. When you create
associations, it is useful to know about the kinds of relationships you can represent,
and the various options.

Associations between entity objects can represent two styles of relationships
depending on whether the source entity:

• References the destination entity

• Contains the destination entity as a logical, nested part

Figure 4-8 depicts an application business layer that represents both styles of
relationships. For example, an OrdEO entry references a CustomerEO. This relationship
represents the first kind of association, reflecting that a CustomerEO or an OrdEO entity
object can exist independent from each other. In addition, the removal of an Order
does not imply the cascade removal of the Customer to which it was referring.

In contrast, the relationship between an OrdEO and its collection of related ItemEO
details is stronger than a simple reference. The ItemEO entries comprise a logical part
of the overall OrdEO. In other words, an OrdEO is composed of ItemEO entries. It does
not make sense for an ItemEO entity row to exist independently from an OrdEO, and
when an OrdEO is removed — assuming the removal is allowed — all of its composed
parts should be removed as well. This kind of logical containership represents the
second kind of association, called a composition. The UML diagram in Figure 4-8
illustrates the stronger composition relationship using the solid diamond shape on the
side of the association which composes the other side of the association.

Figure 4-8 OrdEO Composed of ItemEO Entries and References Both
CustomerEO and PaymentTypeEO

The Business Components from Tables Wizard creates composition associations by
default for any foreign keys that have the ON DELETE CASCADE option. You can use the
Create Association wizard or the overview editor for the association to indicate that
an association is a composition association. Select the Composition Association

Chapter 4
Creating and Configuring Associations

4-19

checkbox on either the Association Properties page of the Create Association wizard
or the Relationships page of the overview editor.

Note:

A composition association cannot be based on a transient attribute.

An entity object offers additional runtime behavior in the presence of a composition.
For the settings that control the behavior, see How to Configure Composition Behavior.

Creating a Diagram of Entity Objects for Your Business
Layer

You can use JDeveloper to create a UML diagram of business services based on ADF
Business Components. The UML diagram serves as a visualization, visual navigation,
and editing tool.

Since your layer of business domain objects represents a key reusable asset for your
team, it is often convenient to visualize the business domain layer using a UML model.
JDeveloper supports easily creating a diagram for your business domain layer that you
and your colleagues can use for reference.

The UML diagram of business components is not just a static picture that reflects the
point in time when you dropped the entity objects onto the diagram. Rather, it is a
UML-based rendering of the current component definitions, that will always reflect the
current state of affairs. What's more, the UML diagram is both a visualization aid and a
visual navigation and editing tool. To open the overview editor for any entity object in a
diagram, right-click the desired object and choose Open. You can also perform some
entity object editing tasks directly on the diagram, like renaming entity objects and
attributes, and adding or removing attributes. However, changes to the entity objects in
a business components diagram have no impact on the underlying database objects.

How to Show Entity Objects in a Business Components Diagram
To create a diagram of your entity objects, you can use the Create Business
Components Diagram dialog, which is available in the New Gallery.

Before you begin:

It may be helpful to have an understanding of how entity diagrams are used in the
application. For more information, see Creating a Diagram of Entity Objects for Your
Business Layer.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create a business components diagram that models existing entity objects:

1. In the Applications window, right-click the project in which you want to create the
entity diagram and choose New > From Gallery.

Chapter 4
Creating a Diagram of Entity Objects for Your Business Layer

4-20

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Business Components Diagram, and click OK.

3. In the dialog, do the following to create the diagram:

• Enter a name for the diagram, for example Business Domain Objects.

• Enter the package name in which the diagram will be created. For example,
you might create it in a subpackage like myproject.model.design.

4. Click OK.

5. To add existing entity objects to the diagram, select them in the Applications
window and drop them onto the diagram surface.

After you have created the diagram you can use the Properties window to adjust visual
properties of the diagram. For example you can:

• Hide or show the package name

• Change the font

• Toggle the grid and page breaks on or off

• Display association names that may otherwise be ambiguous

You can also create an image of the diagram in PNG, JPG, SVG, or compressed SVG
format, by choosing Publish Diagram from the context menu on the diagram surface.

Figure 4-9 shows a sample diagram that models various entity objects from the
business domain layer.

Figure 4-9 UML Diagram of Business Domain Layer

What Happens When You Create an Entity Diagram
When you create a business components diagram, JDeveloper creates an XML file
*.adfbc_diagram representing the diagram in a subdirectory of the project's model
path that matches the package name in which the diagram resides.

Chapter 4
Creating a Diagram of Entity Objects for Your Business Layer

4-21

By default, the Applications window unifies the display of the project contents paths so
that ADF components and Java files in the source path appear in the same package
tree as the UML model artifacts in the project model path. However, as shown in
Figure 4-10, using the Applications Window Options button in the Applications
window, you can see the distinct project content path root directories when you prefer.

Figure 4-10 Toggling the Display of Separate Content Path Directories

What You May Need to Know About the XML Component Descriptors
When you include a business component like an entity object in a UML diagram,
JDeveloper adds extra metadata to a <Data> section of the component's XML
component descriptor as shown in the following example. This additional information is
used at design time only.

<Entity Name="OrderEO" ... >
 <Data>
 <Property Name ="COMPLETE_LIBRARY" Value ="FALSE" />
 <Property Name ="ID"
 Value ="ff16fca0-0109-1000-80f2-8d9081ce706f::::EntityObject" />
 <Property Name ="IS_ABSTRACT" Value ="FALSE" />
 <Property Name ="IS_ACTIVE" Value ="FALSE" />
 <Property Name ="IS_LEAF" Value ="FALSE" />
 <Property Name ="IS_ROOT" Value ="FALSE" />
 <Property Name ="VISIBILITY" Value ="PUBLIC" />
 </Data>
 :
</Entity>

What You May Need to Know About Changing the Names of
Components

On an entity diagram, the names of entity objects, attributes, and associations can be
changed for clarity. Changing names on a diagram does not affect the underlying data
names. The name change persists for the diagram only. The new name may contain
spaces and mixed case for readability. To change the actual entity object names,

Chapter 4
Creating a Diagram of Entity Objects for Your Business Layer

4-22

attribute names, or association names, open the entity object or association in the
overview editor.

Defining Property Sets
Define ADF property sets to use them as control hints and error messages.

A property set is a named collection of properties, where a property is defined as a
name/value pair. Property sets are a convenience mechanism to group properties and
then reference them from other ADF Business Components objects. Property sets can
be used with entity objects and their attributes, view objects and their attributes, and
application modules.

Property sets can be used for a variety of functions, such as control hints and error
messages. A property set may contain control hints and other custom properties, and
you can associate them with multiple attributes of different objects.

Properties defined in a property set can be configured to be translatable, in which
case the translations are stored in a message bundle file owned by the property set.
Because property sets are schema driven, in addition to adding names, you can add
descriptions as well.

When defining property sets that contain translatable content, be sure not to overload
common terms in different contexts. Even though a term in several contexts might
be the same in the source language, a separate distinguishable term should be used
for each context. For example, the term "Name" used as a value for a field's label
might be applied to both an object and a person in one language, but then translated
into two different terms in a target language. In this case you would provide two name/
value pairs in which the value in the source language is "Name" for both. Then, when
translated into a target language with one term for an object name and a different
term for a person name, each term can be translated appropriately. You can use the
property's description to provide the distinct context for each term.

How to Define a Property Set
To define a property set, you create a new property set using a dialog and then specify
properties using the Properties window.

Before you begin:

It may be helpful to have an understanding of how property sets can be used. For
more information, see Defining Property Sets.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To define a property set:

1. In the Applications window, right-click the project in which you want to create the
property set, and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Property Set, and click OK.

Chapter 4
Defining Property Sets

4-23

Figure 4-11 Property Set in New Gallery

3. In the Create Property Set dialog, enter the name and location of the property set
and click OK.

4. From the main menu, choose Window > Properties.

5. In the Properties window, define the properties for the property set.

How to Apply a Property Set
After you have created the property set, you can apply the property set to an entity
object or attribute, and use the defined properties (or override them, if necessary).

Before you begin:

It may be helpful to have an understanding of how property sets can be used. For
more information, see Defining Property Sets.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To apply a property set to an entity object or view object:

1. In the Applications window, double-click the object (entity object or view object) to
which you want to apply a property set.

2. In the overview editor, click the General navigation tab and then click the Edit icon
for Property Set.

3. In the Select Property Set dialog, select the appropriate property set and click OK.

To apply a property set to an attribute:

1. In the Applications window, double-click the object (entity object or view object)
that contains the attribute to which you want to apply a property set.

Chapter 4
Defining Property Sets

4-24

2. In the overview editor, click the Attributes navigation tab, select the attribute you
want to edit, and then click the Details tab.

3. On the Details page, select the appropriate property set from the Property Set
dropdown list.

Defining Attribute Control Hints for Entity Objects
Control hints are inherited by ADF entity-based view objects. Use them to set label
text, tooltip and format mask hints for attributes of entity objects.

Control hints allow you to define label text, tooltip, and format mask hints for entity
object attributes. If desired, you can use a Groovy expression to calculate the value
of the UI hint. The UI hints you define on your business domain layer are inherited
by entity-based view objects as well. You can also set additional control hints on view
objects and application modules in a similar manner.

How to Add Attribute Control Hints
To add attribute control hints to an entity object, use the overview editor.

Before you begin:

It may be helpful to have an understanding of how control hints are used in an entity
object. For more information, see Defining Attribute Control Hints for Entity Objects.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To add attribute control hints to an entity object:

1. In the Applications window, double-click the entity object that contains the attribute
to which you want to add control hints.

2. In the overview editor, click the Attributes navigation tab and select the attribute
you want to edit.

3. In the Attributes page, click the UI Hints tab and specify control hints as
necessary.

For example, Figure 4-12 shows control hints defined for the attribute ExpireDate
of the PaymentOptionEO entity object. The defined hints include the following:

• Format Type of Simple Date

• Format mask of mm/yy

Chapter 4
Defining Attribute Control Hints for Entity Objects

4-25

Figure 4-12 Overview Editor, Attributes Page, UI Hints Tab

4. If you want to define the UI hint using a Groovy expression, click the arrow beside
the text box and choose Show Expression. The application displays the New
Expression Method hyperlink. Click this hyperlink to display the Edit Expression
Editor. Enter the Groovy expression in this editor and click OK.

Note:

Java defines a standard set of format masks for numbers and
dates that are different from those used by the Oracle database's
SQL and PL/SQL languages. For reference, see the Javadoc for the
java.text.DecimalFormat and java.text.SimpleDateFormat classes.

What Happens When You Add Attribute Control Hints
When you define attribute control hints for an entity object, JDeveloper creates a
resource bundle file in which to store them. The hints that you define can be used
by generated forms and tables in associated view clients. The type of file and its
granularity are determined by Resource Bundle options in the Project Properties
dialog. For more information, see Working with Resource Bundles.

Chapter 4
Defining Attribute Control Hints for Entity Objects

4-26

About Formatters and Masks
When you set the Format Type control hint (on the UI Hints tab) for an attribute (for
example, to Simple Date), you can also specify a format mask for the attribute to
customize how the UI displays the value. If the mask you want to use is not listed in
the Format dropdown list, you can simply type it into the field.

Not all formatters require format masks. Specifying a format mask is only needed if
that formatter type requires it. For example, the date formatter requires a format mask,
but the currency formatter does not. In fact, the currency formatter does not support
format mask at all.

The mask elements that you can use are defined by the associated Java format class.
For information about the mask elements for the Simple Date format type, see the
Javadoc for java.text.SimpleDateFormat. For information about the mask elements
for the Number format type, see the Javadoc for java.text.DecimalFormat.

To map a formatter to a domain for use with control hints, you can either amend
one of the default formatters provided in the oracle.jbo.format package, or create
a new formatter class by extending the oracle.jbo.format.Formatter class. The
default formatters provided with JDeveloper aggregate the formatters provided in the
java.text package.

For information on how to define a format mask to use from the UI Hints tab in
JDeveloper, see How to Define Format Masks.

How to Define Format Masks
If you have a format mask that you will continue to use on multiple occasions, you
can add it to the formatinfo.xml file, so that it is available from the Format dropdown
list on the UI Hints tab. The entries in this file define the format masks and formatter
classes for a domain class. The following example shows the format definitions for the
java.util.Date domain.

<?xml version="1.0"?><FORMATTERS>
. . .
 <DOMAIN CLASS="java.util.Date">
 <FORMATTER name="Simple Date"
class="oracle.jbo.format.DefaultDateFormatter">
 <FORMAT text="yyyy-MM-dd" />
 <FORMAT text="EEE, MMM d, ''yy" />
 <FORMAT text="dd-MM-yy" />
 <FORMAT text="dd-MMM-yyyy" />
 <FORMAT text="dd/MMM/yyyy" />
 </FORMATTER>
 </DOMAIN>
. . .
</FORMATTERS>

You can find the formatinfo.xmlfile in the BC4J subdirectory of the JDeveloper
system directory (for example, C:\Documents and Settings\username\Application
Data\JDeveloper\system##\o.BC4J\formatinfo.xml).

The definition of the format mask belongs to a formatter and a domain class, and
includes the text specification of the mask as it appears on the UI Hints tab. When

Chapter 4
Defining Attribute Control Hints for Entity Objects

4-27

you specify the Format Type (FORMATTER name) for an attribute of a given type (DOMAIN
CLASS), the masks (FORMAT text) appear in the Format dropdown list.

It is not necessary to create new domain to map a formatter. You can use an existing
domain when the business components project contains a domain of the same data
type as the formatter.

Before you begin:

It may be helpful to have an understanding of how control hints are used in an entity
object. For more information, see Defining Attribute Control Hints for Entity Objects.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To make a new format mask available in JDeveloper:

1. Open the formatinfo.xml file in a text editor.

2. Find the domain class and formatter name for which you want to add a format
mask.

3. Insert a new FORMAT entry within the FORMATTER element.

If you create a new domain for the format mask, the XML definition of the formatter
must include the new DOMAIN CLASS in addition to the FORMATTER (which includes the
name and class) and the list of FORMAT definitions the formatter class specifies.

After defining a format mask, you can select the new format mask from the Format
dropdown list on the UI Hints tab.

Working with Resource Bundles
JDeveloper stores translatable strings that you define on ADF Business Components
in project-level resource bundle files.

When you define translatable strings (such as validator error messages, or attribute
control hints for an entity object or view object), by default JDeveloper creates a
project-level resource bundle file in which to store them. For example, when you define
control hints for an entity object in the Model project, JDeveloper creates the message
bundle file named ModelBundle.xxx for the package. The hints that you define can be
used by generated forms and tables in associated view clients.

The resource bundle option that JDeveloper uses is determined by an option on
the Resource Bundle page of the Project Properties dialog. By default JDeveloper
sets the option to Properties Bundle, which produces a .properties file. For more
information on this and other resource bundle options, see How to Set Message
Bundle Options.

You can inspect the message bundle file for the entity object by selecting the object
in the Applications window and looking in the corresponding Sources node in the
Structure window. The Structure window shows the implementation files for the
component you select in the Applications window.

The following example shows a sample message bundle file where the control hint
information appears. The first entry in each String array is a message key; the second
entry is the locale-specific String value corresponding to that key.

Chapter 4
Working with Resource Bundles

4-28

oracle.summit.model.views.ItemVO.QuantityShipped_LABEL=Shipped
oracle.summit.model.views.ItemVO.ItemTotal_LABEL=Item Total
oracle.summit.model.views.ItemVO.ItemTotal_FMT_FORMATTER=oracle.jbo.format.Defaul
tCurrencyFormatter
oracle.summit.model.views.ItemVO.Price_FMT_FORMATTER=oracle.jbo.format.DefaultCur
rencyFormatter
oracle.summit.model.views.OrdVO.DateOrdered_FMT_FORMATTER=oracle.jbo.format.Defau
ltDateFormatter
oracle.summit.model.views.OrdVO.DateOrdered_FMT_FORMAT=dd-MM-yyyy
oracle.summit.model.views.OrdVO.DateShipped_FMT_FORMATTER=oracle.jbo.format.Defau
ltDateFormatter
oracle.summit.model.views.OrdVO.DateShipped_FMT_FORMAT=dd-MM-yyyy
oracle.summit.model.entities.OrdEO_Rule_0=You cannot have a shipping date that
is before the order date
oracle.summit.model.entities.OrdEO.CustomerId_Rule_0=This is an invalid
customer id
errorId=This customer must pay cash
oracle.summit.model.entities.ItemEO.ProductId_Rule_0=Invalid Product Id
oracle.summit.model.views.OrdVO.Total_LABEL=Order Total
oracle.summit.model.views.OrdVO.Total_FMT_FORMATTER=oracle.jbo.format.DefaultCurr
encyFormatter
oracle.summit.model.views.OrdVO.OrderFilled_LABEL=Order Filled
. . .

How to Set Message Bundle Options
The resource bundle option JDeveloper uses to save control hints and other
translatable strings is determined by an option on the Resource Bundle page of the
Project Properties dialog. By default, JDeveloper sets the option to Properties Bundle
which produces a .properties file.

Before you begin:

It may be helpful to have an understanding of how resource bundles are used. For
more information, see Working with Resource Bundles.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To set resource bundle options for your project:

1. In the Applications window, right-click the project for which you want to specify
resource bundle options, and choose Project Properties.

2. In the Project Properties dialog, click Resource Bundle.

3. On the Resource Bundle page, specify whether to use project or custom settings.

If you select Use Custom Settings, the settings apply only to your work with
the current project. They are preserved between sessions, but are not recorded
with the project and cannot be shared with other users. If you select Use Project
Settings, your choices are recorded with the project and can be shared with
others who use the project.

4. Specify your preference with the following options by selecting or deselecting the
option:

• Automatically Synchronize Bundle

• Warn About Hard-coded Translatable Strings

Chapter 4
Working with Resource Bundles

4-29

• Always Prompt for Description

For more information on these options, click Help to see the online help.

5. Select your choice of resource bundle granularity.

• One Bundle Per Project (default)

• One Bundle Per File

• Multiple Shared Bundles (not available for ADF Business Components)

6. Select the type of file to use.

• List Resource Bundle

The ListResourceBundle class manages resources in a name/value array.
Each ListResourceBundle class is contained within a Java class file. You can
store any locale-specific object in a ListResourceBundle class.

• Properties Bundle (default)

A text file containing translatable text in name/value pairs. Property files (like
the one described in How to Set Message Bundle Options) can contain values
only for String objects. If you need to store other types of objects, you must
use a ListResourceBundle instead.

• Xliff Resource Bundle

The XML Localization Interchange File Format (XLIFF) is an XML-based
format for exchanging localization data.

7. Click OK.

How to Use Multiple Resource Bundles
When you define translatable strings (for example, for attribute control hints), the
Select Text Resource dialog allows you to enter a new string or select one that
is already defined in the default resource bundle for the object. You can also use
a different resource bundle if necessary. This is helpful when you use a common
resource bundle that is shared between projects.

Before you begin:

It may be helpful to have an understanding of how resource bundles are used. For
more information, see Working with Resource Bundles.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To use strings in a nondefault resource bundle:

1. In the Select Text Resource dialog, select the bundle you want to use from the
Resource Bundle dropdown list.

If the desired resource bundle is not included in the Resource Bundle dropdown
list, click the Browse icon to locate and select the resource bundle you want to
use.

The dialog displays the strings that are currently defined in the selected resource
bundle.

Chapter 4
Working with Resource Bundles

4-30

2. Select an existing string and click Select, or enter a new string and click Save and
Select.

If you entered a new string it is written to the selected resource bundle.

How to Internationalize the Date Format
Internationalizing the model layer of an application built using ADF Business
Components entails producing translated versions of each component message
bundle file. For example, the Italian version of the OrdersImplMsgBundle message
bundle would be a class named OrdersImplMsgBundle_it and a more specific Swiss
Italian version would have the name OrdersImplMsgBundle_it_ch. These classes
typically extend the base message bundle class, and contain entries for the message
keys that need to be localized, together with their localized translation.

The following example shows the Italian version of an entity object message
bundle. Notice that in the Italian translation, the format masks for RequestDate
and AssignedDate have been changed to dd/MM/yyyy HH:mm. This ensures that
an Italian user will see a date value like May 3rd, 2006, as 03/05/2006 15:55,
instead of 05/03/2006 15:55, which the format mask in the default message bundle
would produce. Notice the overridden getContents() method. It returns an array of
messages with the more specific translated strings merged together with those that
are not overridden from the superclass bundle. At runtime, the appropriate message
bundles are used automatically, based on the current user's locale settings.

package oracle.summit.model;
import oracle.jbo.common.JboResourceBundle;
public class ModelImplMsgBundle_it
 extends ModelImplMsgBundle {
 static final Object[][] sMessageStrings = {
 { "AssignedDate_FMT_FORMAT", "dd/MM/yyyy HH:mm" },
 { "AssignedDate_LABEL", "Assegnato il" },
 { "AssignedTo_LABEL", "Assegnato a" },
 { "CreatedBy_LABEL", "Aperto da" },
 { "ProblemDescription_LABEL", "Problema" },
 { "RequestDate_FMT_FORMAT", "dd/MM/yyyy HH:mm" },
 { "RequestDate_LABEL", "Aperto il" },
 { "RequestDate_TOOLTIP", "La data in cui il ticket è stato aperto" },
 { "Status_LABEL", "Stato" },
 { "SvrId_LABEL", "Ticket" }
 };
 public Object[][] getContents() { return
super.getMergedArray(sMessageStrings, super.getContents()); }
}

Defining Business Logic Groups
Use Business Logic Groups to store related control hints, default values and validation
logic of ADF entity objects in a separate file for optimized performance and easy
maintenance.

Business logic groups allow you to encapsulate a set of related control hints, default
values, and validation logic. A business logic group is maintained separate from the
base entity in its own file, and can be enabled dynamically based on context values of
the current row.

Chapter 4
Defining Business Logic Groups

4-31

This is useful, for example, for an HR application that defines many locale-specific
validations (like national identifier or tax law checks) that are maintained by a
dedicated team for each locale. The business logic group eases maintenance by
storing these validations in separate files, and optimizes performance by loading them
only when they are needed.

Each business logic group contains a set of business logic units. Each unit identifies
the set of business logic that is loaded for the entity, based on the value of the attribute
associated with the business logic group.

For example, you can define a business logic group for an Employee entity object,
specifying the EmpRegion attribute as the discriminator. Then define a business logic
unit for each region, one that specifies a range validator for the employee's salary.
When the application loads a row from the Employee entity, the appropriate validator
for the EmpSalary attribute is loaded (based on the value of the EmpRegion attribute).

In another example, you might have a Orders entity object has a business logic
group called FilledOrderGroup that uses OrderFilled as the discriminator attribute.
Because this attribute has two valid values (N and Y), there are two corresponding
business logic units.

In this scenario, each business logic unit contains new or modified business logic that
pertains only to that person type:

• The Orders_FilledOrderGroup_N business logic unit contains logic that pertains
to orders that have not yet been filled. For example, the DateShipped attribute is
configured to be hidden.

• The Orders_FilledOrderGroup_Y business logic unit contains logic that pertains to
orders that have been filled. For example, the DateShipped attribute is configured
to be displayed.

How to Create a Business Logic Group
You create the business logic group for an entity object from the overview editor.

Before you begin:

It may be helpful to have an understanding of how business logic groups are used. For
more information, see Defining Business Logic Groups.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create a business logic group:

1. In the Applications window, double-click the entity for which you want to create a
business logic group.

2. In the overview editor, click the General navigation tab.

3. On the General page, expand the Business Logic Groups section and click the
Add icon.

4. In the creation dialog, select the appropriate group discriminator attribute and
specify a name for the group.

Chapter 4
Defining Business Logic Groups

4-32

Tip:

To enhance the readability of your code, you can name the group
to reflect the discriminator. For example, if the group discriminator
attribute is OrderFilled, you can name the business logic group
FilledOrderGroup.

5. Click OK.

The new business logic group is added to the table in the overview editor. After you
have created the group, you can add business logic units to it.

How to Create a Business Logic Unit
You can create a business logic unit from the New Gallery, or directly from the context
menu of the entity that contains the business logic group.

Before you begin:

It may be helpful to have an understanding of how business logic groups are used. For
more information, see Defining Business Logic Groups.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create a business logic unit:

1. In the Applications window, right-click the entity object that contains the business
logic group and choose New Entity Business Logic Unit.

2. In the Create Business Logic Unit dialog, specify the name of the base entity and
select the appropriate business logic group.

3. Enter a name for the business logic unit.

The name of each business logic unit must reflect a valid value of the group
discriminator attribute with which this business logic unit will be associated. For
example, if the group discriminator attribute is OrderFilled, the name of the
business logic unit associated with the OrderFilled value of Y must be Y.

4. Specify the package for the business logic unit.

Note:

The package for the business logic unit does not need to be the same as
the package for the base entity or the business logic group. This allows
you to develop and deliver business logic units separately from the core
application.

5. Click OK.

JDeveloper creates the business logic unit and opens it in the overview editor.
The name displayed for the business logic unit in the Applications window
contains the name of the entity object and business logic group in the format
EntityName_BusLogicGroupName_BusLogicUnitName. For example, when you create

Chapter 4
Defining Business Logic Groups

4-33

a business logic unit with the name Y in the FilledOrderGroup business logic
group of the Orders entity object, the displayed name of the business logic unit is
Orders_FilledOrderGroup_Y.

After you have created the unit, you can redefine the business logic for it.

How to Add Logic to a Business Logic Unit
After you have created a business logic unit, you can open it in the overview editor and
add business logic (such as adding an entity-level validator) just as you would in the
base entity.

Before you begin:

It may be helpful to have an understanding of how business logic groups are used. For
more information, see Defining Business Logic Groups.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To add an entity validator to a business logic unit:

1. In the Applications window, double-click the business logic unit to which you want
to add an entity validator.

2. In the overview editor, click the Business Rules navigation tab.

3. On the Business Rules page, select the Entity Validators node and click the Add
icon.

4. In the Add Validation Rule dialog, define your validation rule, and click OK.

How to Override Attributes in a Business Logic Unit
When you view the Attributes page for the business logic unit (in the overview editor),
you can see that the Extends column in the attributes table shows that the attributes
are "extended" in the business logic unit. Extended attributes are editable only in the
base entity, not in the business logic unit. To implement changes in the business
logic unit rather than the base entity, you must define attributes as overridden in the
business logic unit before you edit them.

Before you begin:

It may be helpful to have an understanding of how business logic groups are used. For
more information, see Defining Business Logic Groups.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To override attributes in a business logic unit:

1. In the Applications window, double-click the business logic unit that contains the
attributes you want to override.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the desired attribute and click the Override button.

Chapter 4
Defining Business Logic Groups

4-34

After you make an attribute overridden, you can edit the attribute as you normally
would in the tabs below the table. You will notice that in an overridden attribute, you
are limited to making modifications to only control hints, validators, and default values.

What Happens When You Create a Business Logic Group
When you create a business logic group, JDeveloper adds a reference to the group in
the base entity's XML file, as shown below.

<BusLogicGroup
 Name="FilledOrderGroup"
 DiscrAttrName="OrderFilled"/>

When you create a business logic unit, JDeveloper generates an XML file similar to
that of an entity object. The following example shows XML code for a business logic
unit.

Note:

The package for the business logic unit does not need to be the same as the
package for the base entity or the business logic group. This allows you to
develop and deliver business logic units separately from the core application.

<Entity
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="Orders_FilledOrderGroup_N"
 Version="12.1.2.66.11"
 Extends="oracle.summit.model.buslogic.Orders"
 InheritPersonalization="merge"
 DBObjectType="table"
 DBObjectName="S_ORD"
 BindingStyle="OracleName"
 BusLogicGroupName="FilledOrderGroup"
 BusLogicUnitName="N">
 <Attribute
 Name="Total"
 Precision="11"
 Scale="2"
 ColumnName="TOTAL"
 SQLType="NUMERIC"
 Type="java.math.BigDecimal"
 ColumnType="NUMBER"
 TableName="S_ORD">
 <DesignTime>
 <Attr Name="_OverrideAttr" Value="true"/>
 </DesignTime>
 <Properties>
 <SchemaBasedProperties>
 <LABEL

ResId="oracle.summit.model.buslogic.Orders_FilledOrderGroup_N.Total_LABEL"/>
 </SchemaBasedProperties>
 </Properties>
 </Attribute>
 <Attribute
 Name="DateShipped"

Chapter 4
Defining Business Logic Groups

4-35

 ColumnName="DATE_SHIPPED"
 SQLType="DATE"
 Type="java.sql.Date"
 ColumnType="DATE"
 TableName="S_ORD">
 <DesignTime>
 <Attr Name="_OverrideAttr" Value="true"/>
 </DesignTime>
 <Properties>
 <SchemaBasedProperties>
 <DISPLAYHINT
 Value="Hide"/>
 </SchemaBasedProperties>
 </Properties>
 </Attribute>
 <ResourceBundle>
 <PropertiesBundle
 PropertiesFile="oracle.summit.model.ModelBundle"/>
 </ResourceBundle>
</Entity>

What Happens at Runtime: How Business Logic Groups Are Invoked
When a row is loaded in the application at runtime, the entity object decides which
business logic units to apply to it.

The base entity maintains a list of business logic groups. Each group references the
value of an attribute on the entity, and this value determines which business logic unit
to load for that group. This evaluation is performed for each row that is loaded.

If the logic for determining which business logic unit to load is more complex than just
a simple attribute value, you can create a transient attribute on the entity object, and
use a Groovy expression to determine the value of the transient attribute.

Configuring Runtime Behavior Declaratively
Use ADF entity objects to implement business logic and validation rules for the
business layer using its declarative runtime features.

Entity objects offer numerous declarative features to simplify implementing typical
enterprise business applications. Depending on the task, sometimes the declarative
facilities alone may satisfy your needs. The declarative runtime features that describe
the basic persistence features of an entity object are covered in this section, while
declarative validation and business rules are covered in Defining Validation and
Business Rules Declaratively.

Note:

It is possible to go beyond the declarative behavior to implement more
complex business logic or validation rules for your business domain
layer when needed. In Implementing Validation and Business Rules
Programmatically, you'll see some of the most typical ways that you extend
entity objects with custom code.

Chapter 4
Configuring Runtime Behavior Declaratively

4-36

Also, it is important to note as you develop your application that the business logic
you implement, either programmatically or declaratively, should not assume that the
attributes of an entity object or view row will be set in a particular order. This will cause
problems if the end user enters values for the attributes in an order other than the
assumed one.

How to Configure Declarative Runtime Behavior
To configure the declarative runtime behavior of an entity object, use the overview
editor.

Before you begin:

It may be helpful to have an understanding of declarative configuration of runtime
behavior. For more information, see Configuring Runtime Behavior Declaratively.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To configure the declarative runtime behavior of an entity object:

1. In the Applications window, double-click an entity object.

2. In the overview editor, click the General navigation tab to view the name and
package of the entity object, and configure aspects of the object at the entity level,
such as its associated schema, alternative keys, custom properties, and security.

• The Alternate Keys section allows you to select entity object attributes
mapped to the database that can serve as an alternative primary key. For
information on alternative keys, see How to Define Alternate Key Values.

• The Tuning section allows you to set options to make database operations
more efficient when you create, modify, or delete multiple entities of the same
type in a single transaction. For more information, see How to Use Update
Batching.

• The Custom Properties section allows you to define custom metadata that
you can access at runtime on the entity.

• The Security section allows you to define role-based updatability permissions
for the entity. For more information, see Enabling ADF Security in a Fusion
Web Application.

• The Business Logic Groups section allows you to add and edit business
logic groups. For more information, see Defining Business Logic Groups.

3. Click the Attributes navigation tab to create or delete attributes that represent the
data relevant to an entity object, and configure aspects of the attribute, such as
validation rules, custom properties, and security.

Select an attribute and click the Edit icon to access the properties of the attribute.
For information on how to set these properties, see Setting Attribute Properties.

Chapter 4
Configuring Runtime Behavior Declaratively

4-37

Note:

If your entity has a long list of attribute names, there's a quick way to find
the one you're looking for. In the Structure window with the Attributes
node expanded, you can begin to type the letters of the attribute name
and JDeveloper performs an incremental search to take you to its name
in the tree.

4. Click the Business Rules navigation tab to define declarative validators for the
entity object and its attributes. The script box allows you to view and edit Groovy
script for your business rules, and set breakpoints for debugging. For more
information, see Defining Validation and Business Rules Declaratively.

5. Click the Java navigation tab to select the classes you generate for custom
Java implementation. You can use the Java classes for such things as defining
programmatic business rules, as in Implementing Validation and Business Rules
Programmatically.

6. Click the Business Events navigation tab to define events that your entity object
can use to notify others of interesting changes in its state, optionally including
some or all of the entity object's attributes in the delivered event. For more
information about business events, see Creating Business Events.

7. Click the View Accessors navigation tab to create and manage view accessors.
For more information, see How to Create a View Accessor for an Entity Object or
View Object.

What Happens When You Configure Declarative Runtime Behavior
The declarative settings that describe and control an entity object's runtime behavior
are stored in its XML document file. When you use the overview editor to modify
settings of your entity, JDeveloper updates the component's XML definition file and
optional custom Java files.

How to Use Update Batching
You can use update batching to reduce the number of DML statements issued with
multiple entity modifications.

By default, the ADF Business Components framework performs a single DML
statement (DELETE, INSERT, UPDATE) for each modified entity of a given entity definition
type. For example, say you have an Employee entity object type for which multiple
instances are modified during typical use of the application. If two instances were
created, three existing instances modified, and four existing instances deleted, then
at transaction commit time the framework issues nine DML statements (4 DELETEs, 2
INSERTs, and 3 UPDATEs) to save these changes.

If you will frequently be updating more than one entity of a given type in a transaction,
consider using the update batching feature for that entity definition type. In the
example, update batching (with a threshold of 1) causes the framework to issue just
three DML statements: one bulk DELETE statement processing four deletes, one bulk
INSERT statement processing two inserts, and one bulk UPDATE statement processing
three updates.

Chapter 4
Configuring Runtime Behavior Declaratively

4-38

The threshold value indicates the number of modified entity rows for a given operation
that will be processed individually. When the number of modified entity rows exceeds
the threshold value, batch processing will be used for that operation. In this example,
if the threshold is 3, DELETE will perform batch update (because there are 4 DELETEs),
but INSERTs and UPDATEs will not use batch (because there are only 2 INSERTs and 3
UPDATEs).

Note:

When update batching is used in entity objects with a composition
relationship, all composed child objects must define a threshold value greater
than 1 if the parent object defines a threshold value greater than 1.

The batch update feature is disabled if any of following conditions are present:

• The entity object has attributes of BLOB or CLOB type. Batch DML with streaming
data types is not supported.

• The entity object has attributes that are set to Refresh After Insert or Refresh
After Update. There is no method to bulk-return all of the trigger-assigned values
in a single round trip, so retrieving and updating attributes doesn't work with batch
DML.

• The entity object was created from a table that did not have a primary key. If an
entity object is reverse-engineered from a table that does not have a primary key,
a ROWID-valued attribute is created and assigned as the primary key instead. The
ROWID value is managed as a Retrieve-on-Insert value, so it will not work with
batch DML.

Before you begin:

It may be helpful to have an understanding of the declarative configuration of runtime
behavior. For more information, see Configuring Runtime Behavior Declaratively.

You may also find it useful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To enable update batching for an entity

1. In the Applications window, double-click the entity for which you want to enable
update batching.

2. In the overview editor, click the General navigation tab.

3. On the General page, expand the Tuning section, select the Use Update
Batching checkbox, and specify the appropriate threshold.

This establishes a batch processing threshold beyond which Oracle ADF will process
the modifications in a bulk DML operation.

Setting Attribute Properties
Use the declarative framework to set attribute properties on the Attributes page of the
overview editor of ADF Business Components.

Chapter 4
Setting Attribute Properties

4-39

The declarative framework helps you set attribute properties easily. In all cases, you
set these properties on the Attributes page of the overview editor.

How to Set Database and Java Data Types for an Entity Object
Attribute

The Persistent property controls whether the attribute value corresponds to a column
in the underlying table, or whether it is just a transient value. If the attribute is
persistent, the Database Column area lets you change the name of the underlying
column that corresponds to the attribute and indicate its column type with precision
and scale information (for example, VARCHAR2(40) or NUMBER(4,2)). Based on this
information, at runtime the entity object enforces the maximum length or precision and
scale of the attribute value, and throws an exception if a value does not meet the
requirements.

Both the Business Components from Tables wizard and the Create Entity Object
wizard infer the Java type of each entity object attribute from the SQL type of the
database column type of the column to which it is related.

Note:

The project's Type Map setting also plays a role in determining the Java data
type. You specify the Type Map setting when you initialize your business
components project, before any business components are created. For more
information, see How to Initialize the Data Model Project With a Database
Connection.

The Type field (on the Details tab) allows you to change the Java type of the entity
attribute to any type you might need. The Column Type field reflects the SQL type
of the underlying database column to which the attribute is mapped. The value of the
Column Name field controls the column to which the attribute is mapped.

Your entity object can handle tables with various column types, as listed in
Table 4-1. The default Java attribute types are in the oracle.jbo.domain and various
java packages, and support efficiently working with Oracle database data of the
corresponding type. The dropdown list for the Type field includes a number of other
common Java types that are also supported.

Table 4-1 Default Entity Object Attribute Type Mappings

Oracle Column Type Entity Column Type Entity Java Type

NVARCHAR2(n),
VARCHAR2(n), NCHAR
VARYING(n), VARCHAR(n)

VARCHAR2 java.lang.String

NUMBER NUMBER oracle.jbo.domain.Number
java.math.BigDecimal
java.math.BigInteger
java.lang.Integer
java.lang.Long

DATE DATE java.sql.Timestamp

Chapter 4
Setting Attribute Properties

4-40

Table 4-1 (Cont.) Default Entity Object Attribute Type Mappings

Oracle Column Type Entity Column Type Entity Java Type

TIMESTAMP(n),
TIMESTAMP(n) WITH TIME
ZONE, TIMESTAMP(n) WITH
LOCAL TIME ZONE

TIMESTAMP java.sql.Timestamp

LONG LONG java.lang.String

RAW(n) RAW oracle.jbo.domain.Raw

LONG RAW LONG RAW oracle.jbo.domain.Raw

ROWID ROWID oracle.jbo.domain.RowID

NCHAR, CHAR CHAR oracle.jbo.domain.Char

CLOB CLOB oracle.jbo.domain.ClobDomain

NCLOB NCLOB oracle.jbo.domain.NClobDomain

BLOB BLOB oracle.jbo.domain.BlobDomain

BFILE BFILE oracle.jbo.domain.BFileDomain

Note:

In addition to the types mentioned here, you can use any Java object
type as an entity object attribute's type, provided it implements the
oracle.jbo.domain.DomainInterface interface.

How to Indicate Data Type Length, Precision, and Scale
When working with types that support defining a maximum length like VARCHAR2(n),
the Column Type field (on the Details tab) includes the maximum attribute length
as part of the value. For example, an attribute based on a VARCHAR2(10) column in
the database will initially reflect the maximum length of 10 characters by showing
VARCHAR2(10) as the database column type. If for some reason you want to restrict the
maximum length of the String-valued attribute to fewer characters than the underlying
column will allow, just change the maximum length of the Column Type value.

For example, if the EMAIL column in the PERSONS table is VARCHAR2(50), then by default
the Email attribute in the Persons entity object defaults to the same. But if you know
that the actual email addresses are always 8 characters or fewer, you can update the
database column type for the Email attribute to be VARCHAR2(8) to enforce a maximum
length of 8 characters at the entity object level.

The same holds for attributes related to database column types that support defining a
precision and scale like NUMBER(p[,s]). For example, to restrict an attribute based on
a NUMBER(7,2) column in the database to instead have a precision of 5 and a scale of
1, just update the value of the Column Type field to be NUMBER(5,1).

Chapter 4
Setting Attribute Properties

4-41

Note:

Use this feature judiciously. If other applications can access this database
column, then you cannot be sure that the other applications will respect the
more restrictive constraints.

How to Control the Updatability of an Attribute
The Updatable property controls when the value of a given attribute can be updated.
You can select the following values:

• Always, the attribute is always updatable

• Never, the attribute is read-only

• While New, the attribute can be set during the transaction that creates the entity
row for the first time, but after being successfully committed to the database the
attribute is read-only

Note:

In addition to the static declaration of updatability, you can also add custom
code in the isAttributeUpdateable() method of the entity to determine the
updatability of an attribute at runtime.

How to Make an Attribute Mandatory
Select the Mandatory checkbox if the field is required. The mandatory property is
enforced during entity-level validation at runtime (and not when the attribute validators
are run).

How to Define the Primary Key for the Entity
The Primary Key property indicates whether the attribute is part of the key that
uniquely identifies the entity. Typically, you use a single attribute for the primary key,
but multiattribute primary keys are fully supported.

At runtime, when you access the related Key object for any entity row using the
getKey() method, this Key object contains the value of the primary key attribute for
the entity object. If your entity object has multiple primary key attributes, the Key object
contains each of their values. It is important to understand that these values appear in
the same relative sequential order as the corresponding primary key attributes in the
entity object definition.

For example, if the ItemEO entity object has multiple primary key attributes OrdId and
ItemId. On the Attribute page of the overview editor, OrdId is first, and ItemId is
second. An array of values encapsulated by the Key object for an entity row of type
ItemEO will have these two attribute values in exactly this order.

Chapter 4
Setting Attribute Properties

4-42

It is crucial to be aware of the order in which multiple primary key attributes appear on
the Entity Attributes page. If you try to use findByPrimaryKey() to find an entity with a
multiattribute primary key, and the Key object you construct has these multiple primary
key attributes in the wrong order, the entity row will not be found as expected.

In addition, to populate the primary key in new rows, you might want to use a trigger
to assign the value from the database. For more information, see How to Get Trigger-
Assigned Primary Key Values from a Database Sequence

How to Define a Static Default Value
The value field on the Details tab allows you to specify a static default value for the
attribute when the value type is set to Literal. For example, you can set the default
value of the ServiceRequest entity object's Status attribute to Open, or set the default
value of the User entity object's UserRole attribute to user.

Note:

When more than one attribute is defaulted for an entity object, the attributes
are defaulted in the order in which they appear in the entity object's XML file.

How to Define a Default Value Using an Expression
You can use a Groovy expression or SQL statement to define a default value for an
attribute. This approach is useful if you want to be able to dynamically define default
values at runtime, but if the default value is always the same, the value is easier to see
and maintain using a value field with the Literal type (on the Details tab). For general
information about using Groovy, see Using Groovy Scripting Language with Business
Components.

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For
more information, see Setting Attribute Properties.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To define a default value using an expression:

1. In the Applications window, double-click the entity object that contains the attribute
for which you want to define a default value.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to edit, and then click the
Details tab.

4. In the Details page, select the value type, and click the Edit icon for the Value
field.

• To use a Groovy expression, select Expression.

• To use a SELECT statement, select SQL.

Chapter 4
Setting Attribute Properties

4-43

5. To enter:

• SQL statement, enter the statement in the field provided and click OK. Note
that you can enter an SQL statement only for transient attributes.

• Groovy expression, click the icon beside to open the Edit Expression
Editor dialog. In the Edit Expression Editor dialog, enter an expression in the
field provided. Attributes that you reference can include any attribute that the
business component defines. Specify the attributes on which this attribute is
dependent by moving these attributes from Available to Selected. Click OK
to save the expression

What Happens When You Create a Default Value Using a Groovy
expression

When you define a default value using a Groovy expression, a
<TransientExpression> tag is added to this business object's XML file within
the appropriate attribute. The following example shows XML code for a Groovy
expression that has been added for the ID attribute of the CountryVO view object.
The XML definition informs you that the .bcs file where this Groovy expression
script resides in is pointed to by the operations.xml file, which in this example is
CodeSourceName=”CountryVOOperations.xml”. The operations.xml file has an URI
which points the user to the .bcs file.

<View Attribute
 Name="Id"
 IsNotNull="true"
 PrecisionRule="true"
 EntityAttrName="Id"
 EntityUsage="CountryEO"
 AliasName="ID">
 <TransientExpression
 Name="ExpressionScript"
 trustMode="untrusted"
 CodeSourceName="CountryVORow"/>

</ViewAttribute>

Note:

If Groovy file generation is enabled for this Model project or application-wide,
then the Groovy expression displays as a hyperlink in Overview Editor
page of this business component under the Default Value section. Click this
hyperlink to open the .bcs file associated with this business component.
Refer the topic What You May Need to Know About Groovy Project Settings
to read more about project settings. Refer this topic What Happens When
You Enter Expressions to read about how the application manages Groovy
expressions when you enter them.

How to Synchronize with Trigger-Assigned Values
If you know that the underlying column value will be updated by a database trigger
during insert or update operations, you can enable the respective Refresh on Insert
or Refresh on Update checkboxes on the Details tab to ensure that the framework

Chapter 4
Setting Attribute Properties

4-44

automatically retrieves the modified value and keeps the entity object and database
row in sync. The entity object will use the Oracle SQL RETURNING INTO feature, while
performing the INSERT or UPDATE to return the modified column back to your application
in a single database roundtrip.

Note:

If you create an entity object for a synonym that resolves to a remote table
over a DBLINK, use of this feature will give an error at runtime like:

JBO-26041: Failed to post data to database during "Update"
Detail 0
ORA-22816: unsupported feature with RETURNING clause

Basing an Entity Object on a Join View or Remote DBLink describes a
technique to circumvent this database limitation.

How to Get Trigger-Assigned Primary Key Values from a Database
Sequence

One common case for refreshing an attribute after insert occurs when a primary key
attribute value is assigned by a BEFORE INSERT FOR EACH ROW trigger. Often the trigger
assigns the primary key from a database sequence using PL/SQL logic, as shown in
the following example.

CREATE OR REPLACE TRIGGER ASSIGN_SVR_ID
BEFORE INSERT ON SERVICE_REQUESTS FOR EACH ROW
BEGIN
 IF :NEW.SVR_ID IS NULL OR :NEW.SVR_ID < 0 THEN
 SELECT SERVICE_REQUESTS_SEQ.NEXTVAL
 INTO :NEW.SVR_ID
 FROM DUAL;
 END IF;
END;

Note:

You can create a trigger in a live database or, as an alternative, create it in
an offline database and subsequently import the trigger to the live database.
For more information about working with offline database objects, see the
"Creating, Editing, and Dropping Database Objects" section in Developing
Applications with Oracle JDeveloper.

On the Details tab (on the Attributes page of the overview editor), you can set the
value of the Type field to the built-in data type named DBSequence, and the primary
key will be assigned automatically by the database sequence. Setting this data type
automatically selects the Refresh on Insert checkbox.

Chapter 4
Setting Attribute Properties

4-45

Note:

The sequence name shown on the Sequence tab is used only at design
time when you use the Create Database Tables feature described in How
to Create Database Tables from Entity Objects. The sequence indicated here
will be created along with the table on which the entity object is based.

When you create a new entity row whose primary key is a DBSequence, a unique
negative number is assigned as its temporary value. This value acts as the primary
key for the duration of the transaction in which it is created. If you are creating a set
of interrelated entities in the same transaction, you can assign this temporary value as
a foreign key value on other new, related entity rows. At transaction commit time, the
entity object issues its INSERT operation using the RETURNING INTO clause to retrieve
the actual database trigger-assigned primary key value. In a composition relationship,
any related new entities that previously used the temporary negative value as a foreign
key will get that value updated to reflect the actual new primary key of the master.

You will typically also set the Updatable property of a DBSequence-valued primary
key to Never. The entity object assigns the temporary ID, and then refreshes it with
the actual ID value after the INSERT operation. The end user never needs to update
this value.

For information on how to implement this functionality for an association that is not a
composition, see Associations Based on DBSequence-Valued Primary Keys.

Note:

For a metadata-driven alternative to the DBSequence approach, see
Assigning the Primary Key Value Using an Oracle Sequence.

What You May Need to Know About Changing the Value of Primary
Keys

The updating of primary key values through the user interface is not supported by
ADF Business Components. You can, however, update a primary key value using
DBSequence, as described in How to Get Trigger-Assigned Primary Key Values from
a Database Sequence or programmatically, as described in Assigning the Primary Key
Value Using an Oracle Sequence. In some cases, this kind of user interface behavior
can be implemented using a surrogate key rather than allowing the user to change the
primary key.

How to Protect Against Losing Simultaneously Updated Data
At runtime, the framework provides "lost update" detection for entity objects to ensure
that a user cannot unknowingly modify data that another user has updated and
committed in the meantime. Typically, this check is performed by comparing the
original values of each persistent entity attribute against the corresponding current
column values in the database at the time the underlying row is locked. Before
updating a row, the entity object verifies that the row to be updated is still consistent

Chapter 4
Setting Attribute Properties

4-46

with the current state of the database. If the row and database state are inconsistent,
then the entity object raises the RowInconsistentException.

You can make the lost update detection more efficient by identifying any attributes of
your entity whose values you know will be updated whenever the entity is modified.
Typical candidates include a version number column or an updated date column in
the row. The change-indicator attribute's value might be assigned by a database
trigger you've written and refreshed in the entity object, because you selected the
Refresh on Insert or Refresh on Update option (on the Details tab). Alternatively,
you can indicate that the entity object should manage updating the change-indicator
attribute's value using the history attribute feature described in How to Track Created
and Modified Dates Using the History Column.

To detect, in the most efficient way, whether an entity row has been modified
since the user queried it, select the Change Indicator option to compare only the
change-indicator attribute values. Entity objects without a change-indicator attribute
may perform less efficiently because values in all attributes will be used in data
consistency checks. Entity objects without a change-indicator attribute are also subject
to a loss of data consistency when the a user session loses affinity with its application
module (when application module pooling is used). For more information, see What
You May Need to Know About State Management and Data Consistency. For more
information about application module pooling, see Tuning Application Module Pools.

How to Protect Against Truncated Attribute Values at Runtime
In rare situations, at runtime during application module passivation, string values may
not be preserved correctly. For example, whitespace may get truncated. You may
define a custom property on the entity object attribute to encapsulate your string value
in CDATA section.

To define the XML_CDATA custom property and preserve whitespace formatting of an
entity object attribute's default value:

1. In the overview editor for the entity object, select the Attribute page and then
select the attribute and click the Custom Properties tab.

2. In the Custom Properties tab, add the property with the name XML_CDATA and set
the value to true.

JDeveloper adds the custom property to the entity object XML definition, as the
following example for an attribute CategoryCode shows.

<Attribute
 Name="CategoryCode"
 ...
 <Properties>
 <CustomProperties>
 <Property
 Name="XML_CDATA"
 ResId="model.Departments.LocationId.XML_CDATA_VALUE"/>
 </CustomProperties>
 </Properties>
</Attribute>

How to Track Created and Modified Dates Using the History Column
If you need to keep track of historical information in your entity object, such as when
an entity was created or modified and by whom, or the number of times the entity

Chapter 4
Setting Attribute Properties

4-47

has been modified, you specify an attribute with the Track Change History option
selected (on the Details tab).

If an attribute's data type is Number, String, or Date, and if it is not part of the primary
key, then you can enable this property to have your entity automatically maintain
the attribute's value for historical auditing. How the framework handles the attribute
depends which type of history attribute you indicate:

• Created On: This attribute is populated with the time stamp of when the row was
created. The time stamp is obtained from the database.

• Created By: The attribute is populated with the name of the user who created the
row. The user name is obtained using the getUserPrincipalName() method on the
Session object.

• Modified On: This attribute is populated with the time stamp whenever the row is
updated/created.

• Modified By: This attribute is populated with the name of the user who creates or
updates the row.

• Version Number: This attribute is populated with a long value that is incremented
whenever a row is created or updated.

How to Configure Composition Behavior
An entity object exhibits composition behavior when it creates (or composes) other
entities, such as an OrdEO entity creating an ItemEO entity. This additional runtime
behavior determines its role as a logical container of other nested entity object parts.
Because of this relationship, a composition association cannot be based on a transient
attribute.

Note:

Composition also affects the order in which entities are validated. For more
information, see Understanding the Impact of Composition on Validation
Order.

The features that are always enabled for composing entity objects are described in the
following sections:

• Orphan-Row Protection for New Composed Entity Objects

• Ordering of Changes Saved to the Database

• Cascade Update of Composed Details from Refresh-On-Insert Primary Keys

The additional features, and the properties that affect their behavior, are described in
the following sections:

• Cascade Delete Support

• Cascade Update of Foreign Key Attributes When Primary Key Changes

• Locking of Composite Parent Entity Objects

• Using Batch Update with Composition Entity Objects

• Updating of Composing Parent History Attributes

Chapter 4
Setting Attribute Properties

4-48

Orphan-Row Protection for New Composed Entity Objects
When a composed entity object is created, it performs an existence check on the
value of its foreign key attribute to ensure that it identifies an existing entity as
its owning parent entity. At create time, if no foreign key is found or else a value
that does not identify an existing entity object is found, the entity object throws an
InvalidOwnerException instead of allowing an orphaned child row to be created
without a well-identified parent entity.

Note:

The existence check finds new pending entities in the current transaction, as
well as existing ones in the database if necessary.

Ordering of Changes Saved to the Database
Composition behavior ensures that the sequence of data manipulation language
(DML) operations performed in a transaction involving both composing and composed
entity objects is performed in the correct order. For example, an INSERT statement for
a new composing parent entity object will be performed before the DML operations
related to any composed children.

Cascade Update of Composed Details from Refresh-On-Insert Primary Keys
When a new entity row having a primary key configured to refresh on insert is saved,
then after its trigger-assigned primary value is retrieved, any composed entities will
have their foreign key attribute values updated to reflect the new primary key value.

There are a number of additional composition related features that you can control
through settings on the Association Properties page of the Create Association
wizard or the overview editor. Figure 4-13 shows the Relationships page for the
SItemOrdIdFkAssoc association between two entity objects: ItemEO and OrdEO.

Cascade Delete Support
You can either enable or prevent the deletion of a composing parent while composed
children entities exist. When the Implement Cascade Delete option (see Figure 4-13)
is deselected, the removal of the composing entity object is prevented if it contains any
composed children.

Chapter 4
Setting Attribute Properties

4-49

Figure 4-13 Behavior Settings on Relationship Page of Overview Editor for
Associations

When selected, this option allows the composing entity object to be removed
unconditionally together with any composed children entities. If the related Optimize
for Database Cascade Delete option is deselected, then the composed entity
objects perform their normal DELETE statement at transaction commit time to make
the changes permanent. If the option is selected, then the composed entities do
not perform the DELETE statement on the assumption that the database ON DELETE
CASCADE constraint will handle the deletion of the corresponding rows.

Cascade Update of Foreign Key Attributes When Primary Key Changes
Select the Cascade Update Key Attributes option (see Figure 4-13) to enable the
automatic update of the foreign key attribute values in composed entities when the
primary key value of the composing entity is changed.

Locking of Composite Parent Entity Objects
Select the Lock Top-Level Container option (see Figure 4-13) to control whether
adding, removing, or modifying a composed detail entity row should attempt to lock the
composing entity before allowing the changes to be saved.

Using Batch Update with Composition Entity Objects
When update batching is used in entity objects with a composition relationship, all
composed child objects must define a threshold value greater than 1 if the parent
object defines a threshold value greater than 1.

Updating of Composing Parent History Attributes
Select the Update Top-Level History Columns option (see Figure 4-13) to control
whether adding, removing, or modifying a composed detail entity object should update
the Modified By and Modified On history attributes of the composing parent entity.

Chapter 4
Setting Attribute Properties

4-50

How to Set the Discriminator Attribute for Entity Object Inheritance
Hierarchies

Sometimes a single database table stores information about several different kinds of
logically related objects. For example, a payroll application might work with hourly,
salaried, and contract employees all stored in a single EMPLOYEES table with an
EMPLOYEE_TYPE column. In this case, the value of the EMPLOYEE_TYPE column contains
values like H, S, or C to indicate respectively whether a given row represents an
hourly, salaried, or contract employee. And while it is possible that many attributes and
behavior are the same for all employees, certain properties and business logic may
also depend on the type of employee.

In situations where common information exists across related objects, it may be
convenient to represent these different types of entity objects using an inheritance
hierarchy. For example, attributes and methods common to all employees can be part
of a base Employee entity object, while subtype entity objects like HourlyEmployee,
SalariedEmployee, and ContractEmployee extend the base Employee object and add
additional properties and behavior. The Discriminator attribute setting is used to
indicate which attribute's value distinguishes the type of row. Using Inheritance in Your
Business Domain Layer, explains how to set up and use inheritance.

How to Define Alternate Key Values
Database primary keys are often generated from a sequence and may not be data you
want to expose to the user for a variety of reasons. For this reason, it's often helpful to
have alternate key values that are unique. For example, you might want to enforce that
every customer have a unique email address. Because a customer may change their
email address, you won't want to use that value as a primary key, but you still want the
user to have a unique field they can use for login or other purposes.

Alternate keys are useful for direct row lookups via the findByKey class of methods.
Alternate keys are frequently used for efficient uniqueness checks in the middle tier.
For information on how to find out if a value is unique, see How to Ensure That Key
Values Are Unique.

To define an alternate key, you use the Create Entity Constraint wizard.

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For
more information, see Setting Attribute Properties.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To define alternate key values:

1. In the Applications window, right-click the entity object for which you want to define
an alternate key and choose New Entity Constraint.

2. Follow the steps in the Create Entity Constraint wizard to name your constraint
and select the attribute or attributes that participate in the key.

3. On the Properties page, select Alternate Key and choose the appropriate Key
Properties options.

Chapter 4
Setting Attribute Properties

4-51

For more information about the Key Properties options, press the F1 key or click
Help.

What Happens When You Define Alternate Key Values
When you define alternate key values, a hash map is created for fast access to entities
that are already in memory.

What You May Need to Know About Alternate Key Values
The Unique key constraint is used only for forward generation of UNIQUE constraints in
the database, not for alternate key values.

Adding Transient and Calculated Attributes to an Entity
Object

Add transient attributes in ADF entity objects based on one-to-many columns. Use an
entity object’s Java class or use a Groovy expression to define a calculated attribute of
a transient attribute.

In addition to having attributes that map to columns in an underlying table, your entity
objects can include transient attributes that display values calculated (for example,
using Java or Groovy) or that are value holders. For example, a transient attribute you
create, such as FullName, could be calculated based on the concatenated values of
FirstName and LastName attributes.

Once you create the transient attribute, you can perform a calculation in the entity
object Java class, or use a Groovy expression in the attribute definition to specify a
default value.

If you want to be able to change the way the value is calculated at runtime, you can
use a Groovy expression. If the way the value is calculated is not likely to change (for
example, if it's a sum of the line items), you can perform the calculation directly in the
entity object Java class.

How to Add a Transient Attribute
Use the Attributes page of the overview editor to create a transient attribute.

Before you begin:

It may be helpful to have an understanding of the use of transient and calculated
attributes. For more information, see Adding Transient and Calculated Attributes to an
Entity Object.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To add a transient attribute to an entity object:

1. In the Applications window, double-click the entity object to which you want to add
a transient attribute.

Chapter 4
Adding Transient and Calculated Attributes to an Entity Object

4-52

2. In the overview editor, click the Attributes navigation tab, and then click the New
icon and choose New Attribute.

3. In the New Entity Attribute dialog, enter a name for the attribute, select the Java
attribute type from the Type dropdown list, and click OK.

4. On the Attributes page of the overview editor, click the Details tab and select the
Transient radio button.

5. If the value will be calculated, select Never from the Updatable dropdown list.

What Happens When You Add a Transient Attribute
When you add a transient attribute, JDeveloper updates the XML document for the
entity object to reflect the new attribute. The <Attribute> tag of a transient attribute
has no TableName or ColumnName, as shown in the following example.

<Attribute
 Name="FullName"
 IsUpdateable="false"
 IsQueriable="false"
 IsPersistent="false"
 Type="java.lang.String"
 SQLType="VARCHAR" >
</Attribute>

In contrast, a persistent entity attribute has both a TableName and a ColumnName, as
shown in the following example.

<Attribute
 Name="FirstName"
 IsNotNull="true"
 Precision="30"
 ColumnName="FIRST_NAME"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 SQLType="VARCHAR"
 TableName="USERS" >
</Attribute>

How to Base a Transient Attribute on a Groovy Expression
When creating a transient attribute, you can use a Groovy expression to provide the
default value.

Before you begin:

It may be helpful to have an understanding of transient and calculated attributes. For
more information, see Adding Transient and Calculated Attributes to an Entity Object.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create a transient attribute based on a Groovy expression:

1. In the Applications window, double-click the entity object to which you want to add
a transient attribute.

Chapter 4
Adding Transient and Calculated Attributes to an Entity Object

4-53

2. In the overview editor, click the Attributes navigation tab, and then click the New
icon and choose New Attribute.

3. In the New Entity Attribute dialog, enter a name for the attribute, select the Java
attribute type from the Type dropdown list, and click OK.

4. On the Attributes page of the overview editor, click the Details tab and select the
Transient option.

5. If the value will be calculated, select Never from the Updatable dropdown list.

6. Select Expression checkbox under Default Value and click the icon beside to
open the Edit Expression Editor dialog.

Expressions that you define are evaluated using the Groovy scripting language, as
described in Using Groovy Scripting Language with Business Components. Use
the Groovy programming language to insert expressions and variables into strings.
The expression is saved as part of the entity object definition.

7. In the Edit Expression Editor dialog, enter an expression in the field provided.

Attributes that you reference can include any attribute that the entity object
defines. For attributes not defined by the entity object, use the appropriate context
object to reference these attributes in the expression.

Figure 4-14 Edit Expression Editor

8. Specify the attributes on which this attribute is dependent. Move these attributes
from Available to Selected.

9. Click OK to save the expression.

Chapter 4
Adding Transient and Calculated Attributes to an Entity Object

4-54

10. If required, apply a recalculation expression that if evaluates to be true,
recalculates the default expression. In the Refresh Expression Value field, click
the icon beside to open the Edit Expression Editor dialog. Use the same procedure
that you used to define a default expression to define the recalculation expression
as well.

For example, the following expression defined using the Edit Expression Editor
dialog for the Refresh Expression Value field causes the attribute to be
recalculated when either the QuantityShipped attribute or the Price attributes are
changed:

return (adf.object.isAttributeChanged("QuantityShipped") ||
adf.object.isAttributeChanged("Price"));

Note:

If either the value expression or the optional recalculate expression that
you define references an attribute from the base entity object, you must
define this as a dependency. If you didn't provide dependencies in the Edit
Expression Editor dialog when you defined the expression, you can do so on
the Dependencies tab (on the Attributes page). On the Dependencies tab,
locate the attributes in the Available list and shuttle each to the Selected
list.

What Happens When You Base a Transient Attribute on a Groovy
Expression

When you base a transient attribute on a Groovy expression, a
<TransientExpression> tag is added to the entity object's XML file within the
appropriate attribute, as shown in the following example.

 <Attribute
 Name="QuantityTotal"
 ColumnName="QUANTITY_TOTAL"
 ...
 <TransientExpression
 Name="ExpressionScript"
 trustMode="untrusted"
 CodeSourceName="ItemEORow"/>
 <Dependencies>
 <Item
 Value="Price"/>
 <Item
 Value="QuantityShipped"/>
 </Dependencies>
 </Attribute>

How to Add Java Code in the Entity Class to Perform Calculation
A transient attribute is a placeholder for a data value. If you change the Updatable
property of the transient attribute to While New or Always, then the end user can
enter a value for the attribute. If you want the transient attribute to display a calculated
value, then you'll typically leave the Updatable property set to Never and write custom
Java code that calculates the value.

Chapter 4
Adding Transient and Calculated Attributes to an Entity Object

4-55

After adding a transient attribute to the entity object, to make it a calculated attribute
you need to:

• Enable a custom entity object class on the Java page of the overview editor,
choosing to generate accessor methods

• Write Java code inside the accessor method for the transient attribute to return the
calculated value

• Specify each dependent attribute for the transient attribute on the Dependencies
tab of the Attributes page

For example, after generating the view row class, the Java code to return the transient
attribute's calculated value would reside in the getter method for the attribute (such as
FullName), as shown in the following example.

// Getter method for FullName calculated attribute in UserImpl.java
public String getFullName() {
 // Commented out original line since we'll always calculate the value
 // return (String)getAttributeInternal(FULLNAME);
 return getFirstName()+" "+getLastName();
}

To ensure that the transient attribute is reevaluated whenever the attributes to be
concatenated (such as LastName and FirstName) might be changed by the end user,
specify the dependent attributes for the transient attribute. Even though you perform
the computation in the code, the dependencies are needed to fire the appropriate
events that cause the UI to refresh when any of the dependent attribute values
change. To specify dependent attributes, on the Dependencies tab of the Attributes
page, locate the attributes in the Available list and shuttle each to the Selected list.

Creating Business Events
You can define and publish business events from the ADF Model layer and
synchronize them with external systems by way of Oracle Mediator.

Business events raised from the model layer are useful for launching business
processes and triggering external systems synchronization.

You declaratively define business events at the entity level. You may also specify
conditions under which those events should be raised. Business events that meet the
specified criteria are raised upon successful commit of the changed data. A business
event is raised to the Mediator on a successful create, update, or delete of an entity
object.

To implement a business event, you perform the following tasks:

1. Create an event definition, as described in How to Create a Business Event.

2. Map the event definition to an event point and publish the event definition, as
described in How to Define a Publication Point for a Business Event.

Introducing Event Definitions
An event definition describes an event that will be published and raised with an event
system Mediator. An event definition is stored in an entity object's XML file with the
elements shown in Table 4-2.

Chapter 4
Creating Business Events

4-56

Table 4-2 Event Definition Elements for Entity Objects

Element Description

Event Name Name of the event, for example, OrderUpdated

Payload A list of attributes sent to the subscriber. Attributes marked as optional
appear on payload only if changed.

Introducing Event Points
An event point is a place from which an event can be raised. On a successful commit,
one of the event points shown in Table 4-3 can be raised to the Mediator for each
entity in a transaction.

Table 4-3 Example Event Points Raised to the Mediator

DML Type Event Name Event Description

CREATE EntityCreated A new Entity has been created.

UPDATE EntityUpdated An existing Entity has been updated.

DELETE EntityDeleted An existing Entity has been deleted.

Note that no events are raised by default; all events are custom. When you create the
event, you can specify the name and DML operation appropriately.

For each event point, you must specify which event definitions should be raised on a
particular event point. In other words, you must declaratively map each event definition
to an event point.

What You May Need to Know About Event Points
Event delivery occurs outside the current database transaction, and is asynchronous.
Therefore, the following are not supported:

• Transactional event delivery, where event delivery is part of the transaction, is
not supported by the framework.

• Synchronous events, where the publisher waits for further processing until the
subscriber has confirmed event reception, is not supported by the framework.

How to Create a Business Event
To create a business event, use the Business Events page of the overview editor.

Before you begin:

It may be helpful to have an understanding of how business events work. For more
information, see Creating Business Events.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create a business event:

Chapter 4
Creating Business Events

4-57

1. In the Applications window, double-click the entity object for which you want to
define a business event.

2. In the overview editor, click the Business Events navigation tab.

3. On the Business Events page, expand the Event Definitions section and click the
New icon.

4. In the Create Business Event Definition dialog, provide a name that describes this
event, such as EmployeeContactInfoChanged.

5. In the payload table, click New and Delete to select the appropriate attributes for
this event.

Alternatively, you can double-click the cell and pick the attributes you want.

Note:

Only attributes of supported types are displayed in the Entity Attribute
column. While ClobDomain attributes are supported, very large clob data
can impact performance.

6. In the Value Sent field, choose whether the value should Always be sent, or Only
if changed.

The Only if changed option provides the best performance because the attribute
will be considered optional for the payload. If you leave the default Always, the
payload will require the attribute whether or not the value has changed. For more
details about payload efficiency, see What You May Need to Know About Payload.

7. Use the arrow buttons to rearrange the order of attributes.

The order that the attributes appear in defines their order in the generated XSD.
Since you'll be using the XSD to build your Fabric mediator and BPEL process,
you might want the most frequently accessed attributes at the top.

8. Click OK.

Repeat the procedure for each business event that you want to define. To publish an
event, see How to Define a Publication Point for a Business Event.

What Happens When You Create a Business Event
When you create a business event, the entity object's XML file is updated with the
event definition, as shown in the following example.

<EventDef
 Name="CustBusEvent1">
 <Payload>
 <PayloadItem
 AttrName="Id"/>
 <PayloadItem
 AttrName="PaymentOptionId"/>
 <PayloadItem
 AttrName="PaymentTypeEO.Id"
 SendOnlyIfChanged="true"/>
 </Payload>
 </EventDef>

Chapter 4
Creating Business Events

4-58

JDeveloper also generates an associated XSD file for the event schema and an event
definition (EDL) file for the entity object. The EDL file provides an event definition, as
shown in the following example.

<definitions
 targetNamespace="http://oracle/summit/model/entities/events/edl/OrdEO"
 xmlns:ns0="http://oracle/summit/model/entities/events/schema/OrdEO"
 xmlns="http://schemas.oracle.com/events/edl">
 <schema-import
 namespace="http://oracle/summit/model/entities/events/schema/OrdEO"
 location="OrdEO.xsd"/>
 <event-definition name="CustBusEvent1">
 <content element="ns0:CustBusEvent1Info"/>
 </event-definition>
</definitions>

The XSD file allows specification of required attributes and optional attributes.
Required attributes correspond to Value Sent - Always in the Create Business Event
Definition dialog, whereas optional attributes are those for which you changed Value
Sent to Only if changed.

The following example shows an XSD event schema for a business event.

<?xml version = '1.0' encoding = 'UTF-8'?>
<xs:schema targetNamespace="http://oracle/summit/model/entities/events/schema/
OrdEO" xmlns="http://oracle/summit/model/entities/events/schema/OrdEO"
 elementFormDefault="qualified"
attributeFormDefault="unqualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CustBusEvent1Info">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Id" type="DecimalValuePair" minOccurs="1"/>
 <xs:element name="PaymentOptionId" type="IntValuePair"
minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="ValuePair" abstract="true"/>
 <xs:complexType name="IntValuePair">
 <xs:complexContent>
 <xs:extension base="ValuePair">
 <xs:sequence>
 <xs:element name="newValue" minOccurs="0">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:anyType">
 <xs:attribute name="value" type="xs:int"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="oldValue" minOccurs="0">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:anyType">
 <xs:attribute name="value" type="xs:int"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

Chapter 4
Creating Business Events

4-59

 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="DecimalValuePair">
 <xs:complexContent>
 <xs:extension base="ValuePair">
 <xs:sequence>
 <xs:element name="newValue" minOccurs="0">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:anyType">
 <xs:attribute name="value" type="xs:decimal"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="oldValue" minOccurs="0">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:anyType">
 <xs:attribute name="value" type="xs:decimal"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

What You May Need to Know About Payload
The attributes of the associated entity object constitute the payload of a business
event. The payload attributes for a business event are defined by the creator of the
event. It isn't automatically optimized. When the event is defined, an attribute can be
marked as sent Always or Only if changed. For events fired during creation, only
new values are sent. For events fired during an update or delete, the new and old
values are sent for only the attributes that should be sent, based on the Value Sent
setting. For best performance, you should include only the primary key attribute for
delete events.

To support composition scenarios (such as a purchase order with line items), a child
entity can raise events defined on the parent entity, and events defined on the child
entity can include attributes from the parent entity. When a child entity raises an event
on a parent entity, only a single event is raised for a particular top-level entity per
transaction, regardless of how many times the child entity raises it.

In the case of entity subtypes (for example, a Staff entity object is a subtype of
the Persons entity), ADF Business Components does not support the overriding of
business events. Because the subscriber to a business event listens to the event
using the event name, overriding of events could cause the event subscriber to receive
payload data unintended for that subscriber. Therefore, this capability is not supported.

When defining business events, remember that while ClobDomain attributes are
supported, very large clob data can have performance implications.

Chapter 4
Creating Business Events

4-60

How to Define a Publication Point for a Business Event
To define a publication point for a business event, use the Business Events page of
the entity object overview editor.

Before you begin:

It may be helpful to have an understanding of how business events are used in the
application. For more information, see Creating Business Events.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

You need to have already created the event definition, as described in How to Create a
Business Event, before you can publish it.

To define a publication point for a business event:

1. In the Applications window, double-click the entity object that contains the
business event you want to publish.

2. In the overview editor, click the Business Events navigation tab.

3. On the Business Events page, expand the Event Publication section and click
the Edit event publications icon.

4. In the Edit Event Publications dialog, click New to create a new event.

5. Click the new cell in Event column, and select the appropriate event.

6. Click the corresponding cell in Event Point column, and select the appropriate
event point action.

7. You can optionally define conditions for raising the event using the Raise
Conditions table.

8. Click OK.

How to Subscribe to Business Events
After you have created a business event, you can subscribe and respond to the event.

Note:

To subscribe to business events or create and deploy SOA composite
applications and projects in JDeveloper, you must install the Oracle SOA
Suite extension. For instructions on installing this extension for JDeveloper,
see Enabling Oracle JDeveloper Extensions in Installing Oracle JDeveloper.
For more information about the capabilities of Oracle SOA Suite, see
Introduction to Building Applications with Oracle SOA Suite in Developing
SOA Applications with Oracle SOA Suite.

Before you begin:

Chapter 4
Creating Business Events

4-61

It may be helpful to have an understanding of business events. For more information,
see Creating Business Events.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

You will also need to complete the following task:

• Publish the business event, as described in How to Define a Publication Point for a
Business Event.

To subscribe to a business event:

1. Using the file system, copy the XSD and event definition files for the business
event into your SCA project's source path.

2. In JDeveloper, open the SCA project that will subscribe to the business event.

3. In the Applications window, right-click the SCA project that will subscribe to the
business event, and choose New > From Gallery.

4. In the New Gallery, expand SOA Tier, select Service Components and then
Mediator, and click OK.

5. In the Create Mediator dialog, select the Subscribe to Events template, as shown
in Figure 4-15.

Figure 4-15 Create Mediator Dialog, Subscribe to Events

6. Click the Add icon to add an event.

7. In the Event Chooser dialog, click the Browse icon to navigate to and select the
event's definition file, and then click OK.

8. In the Create Mediator dialog, you can optionally change the Consistency option
and specify a Filter for the event.

9. Click OK to generate the mediator.

The resulting mediator (.mplan file) is displayed in the overview editor.

Chapter 4
Creating Business Events

4-62

10. In the overview editor, click the Add icon in the Routing Rules section to add a
rule for how to respond to the event.

Generating Custom Java Classes for an Entity Object
Enable custom Java generation for an ADF entity object to implement custom
business logic that cannot be achieved using its declarative runtime functionality.

As described in this chapter, all of the database interaction and a large amount of
declarative runtime functionality of an entity object can be achieved without using
custom Java code. When you need to go beyond the declarative features to implement
custom business logic for your entities, you'll need to enable custom Java generation
for the entities that require custom code. Most Commonly Used ADF Business
Components Methods, provides a quick reference to the most common code that you
will typically write, use, and override in your custom entity object and entity definition
classes.

Best Practice:

Oracle recommends that developers getting started with ADF Business
Components consider overriding the base framework classes to enable
all generated custom Java classes to pick up customized behavior. This
practice is preferred over creating custom classes for individual entity
objects and view objects. You use the ADF Business Components > Base
Classes page of the Project Properties dialog to specify the framework
classes to override when you generate custom component. See Extending
Business Components Functionality.

How to Generate Custom Classes
To enable the generation of custom Java classes for an entity object, use the Java
page of the overview editor.

Before you begin:

It may be helpful to have an understanding of custom Java classes. For more
information, see Generating Custom Java Classes for an Entity Object.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To generate a custom Java class for an entity object:

1. In the Applications window, double-click the entity object for which you want to
generate a custom Java class.

2. In the overview editor, click the Java navigation tab, and then click the Edit Java
options icon.

3. In the Select Java Options dialog, select the types of Java classes you want to
generate.

• Entity Object Class — the most frequently customized, it represents each row
in the underlying database table.

Chapter 4
Generating Custom Java Classes for an Entity Object

4-63

• Entity Collection Class — rarely customized.

• Entity Definition Class — less frequently customized, it represents the related
class that manages entity rows and defines their structure.

4. Click OK.

What Happens When You Generate Custom Classes
When you select one or more custom Java classes to generate, JDeveloper creates
the Java file(s) you've indicated. For example, assuming an entity object named
summit.model.entities.OrdEO, the default names for its custom Java files will be
OrdEOImpl.java for the entity object class and OrdEODefImpl.java for the entity
definition class. Both files are created in the same ./summit/model/entities directory
as the component's XML document file.

The Java generation options for the entity object continue to be reflected on
subsequent visits to the Java page of the overview editor. Just as with the XML
definition file, JDeveloper keeps the generated code in your custom Java classes up
to date with any changes you make in the editor. If later you decide you didn't require
a custom Java file for any reason, disabling the relevant options on the Java page
causes the custom Java files to be removed.

What Happens When You Generate Entity Attribute Accessors
When you enable the generation of a custom entity object class, if you also enable
the Accessors option, then JDeveloper generates getter and setter methods for each
attribute in the entity object.

Caution:

Because the resulting hard-coded method names impose limitations on
optimizations or customizations for entity and view rows, you should
generate an accessor method only if there is a business need for it (such
as, having to expose the view row as a Java interface to a client).

For example, an OrdEO entity object that has the corresponding custom
OrdEOImpl.java class might have methods like those shown in the following example.

public DBSequence getId() { ... }
public void setId(DBSequence value) { ... }

public Date getDateOrdered() { ... }
public void setDateOrdered(Date value) { ... }

public Integer getPaymentTypeId() { ... }
public void setPaymentTypeId(Integer value) { ... }

public Number getCustomerId() { ... }
public void setCustomerId(Number value) { ... }

public String getOrderFilled() { ... }
public void setOrderFilled(String value) { ... }

Chapter 4
Generating Custom Java Classes for an Entity Object

4-64

These methods allow you to work with the row data with compile-time checking of the
correct data type usage. That is, instead of writing a line like this to get the value of the
CustomerId attribute:

Number customerId = (Number)order.getAttribute("CustomerId");

you can write the code like:

Number customerId = order.getCustomerId();

You can see that with the latter approach, the Java compiler would catch a
typographical error had you accidentally typed CustomerCode instead of CustomerId:

// spelling name wrong gives compile error
Number customerId = order.getCustomerCode();

Without the generated entity object accessor methods, an incorrect line of code like
the following cannot be caught by the compiler:

// Both attribute name and type cast are wrong, but compiler cannot catch it
String customerId = (String)order.getAttribute("CustomerCode");

It contains both an incorrectly spelled attribute name, as well as an incorrectly typed
cast of the getAttribute() return value. When you use the generic APIs on the
Row interface, which the base EntityImpl class implements, errors of this kind raise
exceptions at runtime instead of being caught at compile time.

How to Navigate to Custom Java Files
As shown in Figure 4-16, when you've enabled generation of custom Java classes,
they also appear as child nodes under the Application Sources node for the
entity object. As with all ADF components, when you select an entity object in the
Applications window, the Structure window provides a structural view of the entity.
When you need to see or work with the source code for a custom Java file, there are
multiple ways to open the file in the source editor:

• You can right-click the Java file, and choose Open, as shown in Figure 4-16.

• You can right-click an item in a node in the Structure window, and choose Go To
Source.

• You can click the link on the Java page of the overview editor.

Chapter 4
Generating Custom Java Classes for an Entity Object

4-65

Figure 4-16 Seeing and Navigating to Custom Java Classes for an Entity
Object

What You May Need to Know About Custom Java Classes
The custom Java classes generated by JDeveloper extend the base classes for
your entity object, and allow you the flexibility to implement custom code while
maintaining the integrity of the generated code. The following sections provide
additional information about custom Java classes.

Framework Base Classes for an Entity Object
When you use an XML-only entity object, at runtime its functionality is provided by the
default ADF Business Components implementation classes. Each custom Java class
that is generated extends the appropriate ADF Business Components base class so
that your code inherits the default behavior and you can easily add to or customize
it. An entity object class will extend EntityImpl, while the entity definition class will
extend EntityDefImpl and the entity collection class will extend EntityCache. These
base classes are in the oracle.jbo.server package.

Safely Adding Code to the Custom Component File
Some developers are hesitant to add their own code to generated Java source files.
Each custom Java source code file that JDeveloper creates and maintains for you
includes the following comment at the top of the file to clarify that it is safe for you to
add your own custom code to this file.

// ---
// --- File generated by ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---

Chapter 4
Generating Custom Java Classes for an Entity Object

4-66

JDeveloper does not blindly regenerate the file when you click OK or Apply in an edit
dialog. Instead, it performs a smart update to the methods that it needs to maintain,
leaving your own custom code intact.

Configuring Default Java Generation Preferences
You can generate custom Java classes for your view objects when you need to
customize their runtime behavior or when you simply prefer to have strongly typed
access to bind variables or view row attributes.

To configure the default settings for ADF Business Components custom Java
generation, you can choose Tools >Preferences from the main menu and open
the Business Components page to set your preferences to be used for business
components created in the future. Developers getting started with ADF Business
Components should set their preference to generate no custom Java classes (the
default setting). As you run into a specific need for custom Java code, you can enable
just the bit of custom Java you need for that one component. Over time, you'll discover
which set of defaults works best for you.

Attribute Indexes and InvokeAccessor Generated Code
The entity object is designed to function based on XML only or as an XML document
combined with a custom Java class. To support this design choice, attribute values
are not stored in private member fields of an entity's class (a file that is not present
in the XML-only situation). By default, reflection is used at runtime to assign attribute
enumerations and invoke attribute accessors.

When reflection is turned off for the project, attributes are assigned a name and a
numerical index in the entity's XML document based on the zero-based, sequential
order of the <Attribute> and association-related <AccessorAttribute> tags in that
file. At runtime, attribute values in an entity row are stored in a sparse array structure
managed by the base EntityImpl class, indexed by the attribute's numerical position
in the entity's attribute list.

Note:

To disable reflection, deselect Use reflection to invoke attribute accessors
on the Options page (under ADF Business Components) in the Project
Properties dialog.

For the most part, this private implementation detail is unimportant, since as
a developer using entity objects, you are shielded from having to understand
this. However, when you enable a custom Java class for your entity object, this
implementation detail relates to some of the generated code that JDeveloper
maintains in your entity object class. It is sensible to understand what that code
is used for. For example, in the custom Java class for an Orders entity object,
each attribute or accessor attribute has a corresponding generated integer enum.
JDeveloper ensures that the values of these enums correctly reflect the ordering of the
attributes in the XML document.

You'll also notice that the automatically maintained, strongly typed getter and setter
methods in the entity object class use these attribute enums, as shown in the following
example.

Chapter 4
Generating Custom Java Classes for an Entity Object

4-67

// In oracle.summit.model.appmodule.OrdersImpl class
 /**
 * Gets the attribute value for DateOrdered, using the alias name DateOrdered.
 * @return the value of DateOrdered
 */
 public Date getDateOrdered() {
 return (Date)getAttributeInternal(DATEORDERED);
 }
 /**
 * Sets <code>value</code> as the attribute value for DateOrdered.
 * @param value to set the DateOrdered
 */
 public void setDateOrdered(Date value) {
 setAttributeInternal(DATEORDERED, value);
 }

Another aspect of the maintained code related to entity attribute enums is the
getAttrInvokeAccessor() and setAttrInvokeAccessor() methods. These methods
optimize the performance of attribute access by numerical index, which is how generic
code in the EntityImpl base class typically accesses attribute values when performing
generic processing. An example of the getAttrInvokeAccessor() method is shown
in the following example. The companion setAttrInvokeAccessor() method looks
similar.

// In oracle.summit.model.appmodule.OrdersImpl class
 /**
 * getAttrInvokeAccessor: generated method. Do not modify.
 * @param index the index identifying the attribute
 * @param attrDef the attribute
 * @return the attribute value
 * @throws Exception
 */

protected Object getAttrInvokeAccessor(int index, AttributeDefImpl attrDef)
 throws Exception {
 if ((index >= AttributesEnum.firstIndex()) && (index < AttributesEnum.count())) {
 return AttributesEnum.staticValues()[index - AttributesEnum.firstIndex()].get(this);
 }
 return super.getAttrInvokeAccessor(index, attrDef);
}

The rules of thumb to remember about this generated attribute index-related code are
the following.

The Do's

• Add custom code if needed inside the strongly typed attribute getter and setter
methods.

• Use the overview editor to change the order or type of entity object attributes.

JDeveloper changes the Java signature of getter and setter methods, as well as
the related XML document for you.

The Don'ts

• Don't modify the getAttrInvokeAccessor() and setAttrInvokeAccessor()
methods.

• Don't change the values of the attribute index numbers manually.

Chapter 4
Generating Custom Java Classes for an Entity Object

4-68

Note:

If you need to manually edit the generated attribute enums because of
source control merge conflicts or other reasons, you must ensure that the
zero-based ordering reflects the sequential ordering of the <Attribute>
and <AccessorAttribute> tags in the corresponding entity object XML
document.

Programmatic Example for Comparison Using Custom Entity Class
References

To better evaluate the difference between using strongly typed entity references
to custom entity classes and working with the generic entity references, consider
the following example. The following example shows a version of strongly typed
entity references in a custom application module class (AppModuleImpl.java). Some
important differences to notice are:

• Attribute access is performed using strongly typed attribute accessors.

• Association accessor attributes return the strongly typed entity class on the other
side of the association.

• Using the getDefinitionObject() method in your custom entity class allows you
to avoid working with fully qualified entity definition names as strings.

• The createPrimaryKey() method in your custom entity class simplifies creating
the Key object for an entity.

package oracle.summit.model.appmodule.service;

import oracle.jbo.ApplicationModule;
import oracle.jbo.JboException;
import oracle.jbo.Key;
import oracle.jbo.Row;
import oracle.jbo.RowSetIterator;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.domain.DBSequence;
import oracle.jbo.domain.Number;
import oracle.jbo.server.EntityDefImpl;
import oracle.jbo.server.EntityImpl;
import oracle.jbo.server.ViewLinkImpl;

import oracle.summit.base.SummitApplicationModuleImpl;
import oracle.summit.base.SummitViewObjectImpl;
import oracle.summit.model.appmodule.CustomerImpl;
import oracle.summit.model.appmodule.OrdersImpl;
import oracle.summit.model.appmodule.service.common.AppModule;

// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---
public class AppModuleImpl extends SummitApplicationModuleImpl
 implements AppModule {

Chapter 4
Generating Custom Java Classes for an Entity Object

4-69

 /* This is the default constructor (do not remove). */
 public AppModuleImpl() {
 }

 private OrdersImpl retrieveOrderById(long orderId) {
 EntityDefImpl orderDef = OrdersImpl.getDefinitionObject();
 Key orderKey = OrdersImpl.createPrimaryKey(new DBSequence(orderId));
 return (OrdersImpl)orderDef.findByPrimaryKey(getDBTransaction(),orderKey);
 }

 public String findOrderAndCustomer(long orderId) {
 OrdersImpl order = retrieveOrderById(orderId);
 if (order != null) {
 CustomerImpl cust = order.getCustomer();
 if (cust != null) {
 return "Customer: " + cust.getName() + ", Location: " + cust.getCity();
 }
 else {
 return "Unassigned";
 }
 }
 else {
 return null;
 }
 }

 /* Find an Order by Id */
 public String findOrderTotal(long orderId) {
 OrdersImpl order = retrieveOrderById(orderId);
 if (order != null) {
 return order.getTotal().toString();
 }
 return null;
 }

 /* Update the status of an existing order */
 public void updateOrderStatus(long orderId, String newStatus) {
 OrdersImpl order = retrieveOrderById(orderId);
 if (order != null) {
 order.setOrderFilled(newStatus);
 try {
 getDBTransaction().commit();
 }
 catch (JboException ex) {
 getDBTransaction().rollback();
 throw ex;
 }
 }
 }

 /* Create a new Customer and Return the new id */
 public long createCustomer(String name, String city, Integer countryId) {
 EntityDefImpl customerDef = CustomerImpl.getDefinitionObject();
 CustomerImpl newCustomer =
(CustomerImpl)customerDef.createInstance2(getDBTransaction(),null);
 newCustomer.setName(name);
 newCustomer.setCity(city);
 newCustomer.setCountryId(countryId);
 try {
 getDBTransaction().commit();
 }

Chapter 4
Generating Custom Java Classes for an Entity Object

4-70

 catch (JboException ex) {
 getDBTransaction().rollback();
 throw ex;
 }
 DBSequence newIdAssigned = newCustomer.getId();
 return newIdAssigned.getSequenceNumber().longValue();
 }

 /* Custom method in an application module implementation class */
 public void doSomeCustomProcessing() {
 ViewObject vo = getCustomerView1();
 // create secondary row set iterator with system-assigned name
 RowSetIterator iter = vo.createRowSetIterator(null);
 while (iter.hasNext()) {
 Row r = iter.next();
 // Do something with the current row.
 Integer custId = (Integer)r.getAttribute("Id");
 String name = (String)r.getAttribute("Name");
 System.out.println(custId + " " + name);
 }
 // close secondary row set iterator
 iter.closeRowSetIterator();
 }

 /* Container's getter for CustomerView1.
 * @return CustomerView1 */
 public SummitViewObjectImpl getCustomerView1() {
 return (SummitViewObjectImpl) findViewObject("CustomerView1");
 }

 /* Container's getter for ItemView1.
 * @return ItemView1 */
 public SummitViewObjectImpl getItemView1() {
 return (SummitViewObjectImpl) findViewObject("ItemView1");
 }

 /* Container's getter for OrderView1.
 * @return OrderView1 */
 public SummitViewObjectImpl getOrderView1() {
 return (SummitViewObjectImpl) findViewObject("OrderView1");
 }

 /* Container's getter for ItemView2.
 * @return ItemView2 */
 public SummitViewObjectImpl getItemView2() {
 return (SummitViewObjectImpl) findViewObject("ItemView2");
 }

 /* Container's getter for OrderView2.
 * @return OrderView2 */
 public SummitViewObjectImpl getOrderView2() {
 return (SummitViewObjectImpl) findViewObject("OrderView2");
 }

 /*Container's getter for SItemOrdIdFkLink1.
 * @return SItemOrdIdFkLink1 */
 public ViewLinkImpl getSItemOrdIdFkLink1() {
 return (ViewLinkImpl) findViewLink("SItemOrdIdFkLink1");
 }

 /* Container's getter for SOrdCustomerIdFkLink1.

Chapter 4
Generating Custom Java Classes for an Entity Object

4-71

 * @return SOrdCustomerIdFkLink1 */
 public ViewLinkImpl getSOrdCustomerIdFkLink1() {
 return (ViewLinkImpl) findViewLink("SOrdCustomerIdFkLink1");
 }
}

Working Programmatically with Entity Objects and
Associations

JDeveloper allows you to access an ADF application module and work directly in the
ADF data model using an external client program.

You may not always need or want UI-based or programmatic clients to work directly
with entity objects. Sometimes, you may just want to use an external client program
to access an application module and work directly with the view objects in its data
model. Defining SQL Queries Using View Objects describes how to easily combine
the flexible SQL-querying of view objects with the business logic enforcement and
automatic database interaction of entity objects to build powerful applications. The
combination enables a fully updatable application module data model, designed to
meet the needs of the current end-user tasks at hand, that shares the centralized
business logic in your reusable domain business object layer.

However, it is important first to understand how view objects and entity objects can
be used on their own before learning to harness their combined power. By learning
about these objects in greater detail, you will have a better understanding of when you
should use them alone and when to combine them in your own applications.

Since clients don't work directly with entity objects, any code you write that works
programmatically with entity objects will typically be custom code in a custom
application module class or in the custom class of another entity object.

How to Find an Entity Object by Primary Key
To access an entity row, you use a related object called the entity definition. At
runtime, each entity object has a corresponding entity definition object that describes
the structure of the entity and manages the instances of the entity object it describes.
After creating an application module and enabling a custom Java class for it, imagine
you wanted to write a method to return a specific order. It might look like the
retrieveOrderById() method shown in the sample code below.

Before you begin:

It may be helpful to have an understanding of when to use a programmatic approach
for working with entity objects and associations. For more information, see Working
Programmatically with Entity Objects and Associations.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To find an entity object by primary key:

1. Find the entity definition.

You obtain the entity definition for an entity object (for example, Orders) by
passing its fully qualified name to the static getDefinitionObject() method

Chapter 4
Working Programmatically with Entity Objects and Associations

4-72

imported from the EntityDefImpl class. The EntityDefImpl class in the
oracle.jbo.server package implements the entity definition for each entity
object.

2. Construct a key.

You build a Key object containing the primary key attribute that you want to look
up. For example, for the Orders entity object you create a key containing the
single orderId value passed into the method as an argument.

3. Find the entity object using the key.

You use the entity definition's findByPrimaryKey() method to find the entity object
by key, passing in the current transaction object, which you can obtain from the
application module using its getDBTransaction() method. The concrete class that
represents an entity object row is the oracle.jbo.server.EntityImpl class.

4. Return the object or some of its data to the caller.

The following example code shows a retrieveOrderById() method developed using
this basic procedure.

/* Helper method to return an Order by Id */
private OrdersImpl retrieveOrderById(long orderId) {
 EntityDefImpl orderDef = OrdersImpl.getDefinitionObject();
 Key orderKey = OrdersImpl.createPrimaryKey(new DBSequence(orderId));
 return (OrdersImpl)orderDef.findByPrimaryKey(getDBTransaction(),orderKey);
}

Note:

The oracle.jbo.Key object constructor can also take an Object array to
support creating multi-attribute keys, in addition to the more typical single-
attribute value keys.

How to Access an Associated Entity Using the Accessor Attribute
You can create a method to access an associated entity based on an
accessor attribute that requires no SQL code. For example, the method
findOrderAndCustomer() might find an order, then access the associated Customer
entity object representing the customer assigned to the order. For an explanation of
how associations enable easy access from one entity object to another, see Creating
and Configuring Associations.

To prevent a conflict with an existing method in the application module that finds
the same associated entity using the same accessor attribute, you can refactor this
functionality into a helper method that you can then reuse anywhere in the application
module it is required. For example, you might create a retrieveOrderById() method
to refactor the functionality that finds an order, as the shown in the sample code below.

Before you begin:

It may be helpful to have an understanding of when to use a programmatic approach
for working with entity objects and associations. For more information, see Working
Programmatically with Entity Objects and Associations.

Chapter 4
Working Programmatically with Entity Objects and Associations

4-73

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To access an associated entity object using the accessor attribute:

1. Find the associated entity by the accessor attribute.

For example, the findOrderAndCustomer() method uses the
retrieveOrderById() helper method to retrieve the Orders entity object by ID.

2. Access the associated entity using the accessor attribute.

Using the attribute getter method, you can pass in the name of an association
accessor and get back the entity object on the other side of the relationship. (Note
that How to Change Entity Association Accessor Names, explains that renaming
the association accessor allows it to have a more intuitive name.)

3. Return some of its data to the caller.

For example, the findOrderAndCustomer() method uses the getter methods on
the returned Customer entity to return the assigned customer's name and location.

Notice that you did not need to write any SQL to access the related Customer entity.
The relationship information captured in the ADF association between the Orders and
Customer entity objects is enough to allow the common task of data navigation to be
automated.

The following example shows the code for findOrderCustomer() that uses the helper
method.

/* Access an associated Customer entity from the Order entity */
public String findOrderAndCustomer(long orderId) {
 OrdersImpl order = retrieveOrderById(orderId);
 if (order != null) {
 CustomerImpl cust = order.getCustomer();
 if (cust != null) {
 return "Customer: " + cust.getName() + ", Location: " + cust.getCity();
 }
 else {
 return "Unassigned";
 }
 }
 else {
 return null;
 }
}

How to Update or Remove an Existing Entity Row
Once you've got an entity row in hand, it's simple to update it or remove it. For
example, you could add a method like updateOrderStatus() shown in the sample
code below to perform the task.

Before you begin:

It may be helpful to have an understanding of when to use a programmatic approach
for working with entity objects and associations. For more information, see Working
Programmatically with Entity Objects and Associations.

Chapter 4
Working Programmatically with Entity Objects and Associations

4-74

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To update an entity row:

1. Find the order by ID.

Using the retrieveOrderById() helper method, the updateOrderStatus()
method retrieves the Orders entity object by Id.

2. Set one or more attributes to new values.

Using the EntityImpl class' setAttribute() method, the updateOrderStatus()
method updates the value of the OrderFilled attribute to the new value passed in.

3. Commit the transaction.

You will then need to use the application module's getDBTransaction() method to
access the current transaction object and calls its commit() method to commit the
transaction.

/* Update the status of an existing order */
public void updateOrderStatus(long orderId, String newStatus) {
 OrdersImpl order = retrieveOrderById(orderId);
 if (order != null) {
 order.setOrderFilled(newStatus);
 }
}

The code for removing an entity row would be the same, except that after finding the
existing entity, you would use the following line to remove the entity before committing
the transaction:

// Remove the entity instead
order.remove();

How to Create a New Entity Row
In addition to using the entity definition to find existing entity rows, you can also
use it to create new ones. In the case of customer entities, you could write a
createCustomer() method like the one shown in the following example to accept the
name and description of a new customer, and return the new customer ID assigned
to it. This example assumes that the Id attribute of the Customer entity object has
been updated to have the DBSequence type (see How to Get Trigger-Assigned Primary
Key Values from a Database Sequence). This setting ensures that the attribute value
is refreshed to reflect the value of the trigger from the corresponding database table,
assigned to it from the table's sequence in the application schema.

/* Create a new Customer and Return the new id */
public long createCustomer(String name, String city, Integer countryId) {
 EntityDefImpl customerDef = CustomerImpl.getDefinitionObject();
 CustomerImpl newCustomer =
(CustomerImpl)customerDef.createInstance2(getDBTransaction(),null);
 newCustomer.setName(name);
 newCustomer.setCity(city);
 newCustomer.setCountryId(countryId);
 try {
 getDBTransaction().commit();
 }
 catch (JboException ex) {

Chapter 4
Working Programmatically with Entity Objects and Associations

4-75

 getDBTransaction().rollback();
 throw ex;
 }
 DBSequence newIdAssigned = newCustomer.getId();
 return newIdAssigned.getSequenceNumber().longValue();
}

Before you begin:

It may be helpful to have an understanding of when to use a programmatic approach
for working with entity objects and associations. For more information, see Working
Programmatically with Entity Objects and Associations.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create an entity row:

1. Find the entity definition.

Using the getDefinitionObject() method, the createCustomer() method finds
the entity definition for the Customer entity.

2. Create a new instance.

Using the createInstance2() method on the entity definition, the
createCustomer() method creates a new instance of the entity object.

Note:

The method name has a 2 at the end. The regular createInstance()
method has protected access and is designed to be customized as
described EntityImpl Class of Most Commonly Used ADF Business
Components Methods. The second argument of type AttributeList is
used to supply attribute values that must be supplied at create time; it
is not used to initialize the values of all attributes found in the list. For
example, when creating a new instance of a composed child entity row
using this API, you must supply the value of a composing parent entity's
foreign key attribute in the AttributeList object passed as the second
argument. Failure to do so results in an InvalidOwnerException.

3. Set attribute values.

Using the attribute setter methods on the entity object, the createCustomer()
method assigns values for the Name, City, and other attributes in the new entity
row.

4. Commit the transaction.

Calling commit() on the current transaction object, the createCustomer() method
commits the transaction.

5. Return the trigger-assigned customer ID to the caller.

Using the attribute getter method to retrieve the value of the Id attribute
as a DBSequence, and then calling getSequenceNumber().longValue(), the
createCustomer() method returns the sequence number as a long value to the
caller.

Chapter 4
Working Programmatically with Entity Objects and Associations

4-76

Assigning the Primary Key Value Using an Oracle Sequence
As an alternative to using a trigger-assigned value (as described in How to Get
Trigger-Assigned Primary Key Values from a Database Sequence), you can assign
the value to a primary key when creating a new row using an Oracle sequence. This
metadata-driven approach allows you to centralize the code to retrieve the primary key
into a single Java file that can be reused by multiple entity objects.

The following example shows a simple CustomEntityImpl framework extension class
on which the entity objects are based. Its overridden create() method tests for
the presence of a custom attribute-level metadata property named SequenceName
and if detected, populates the attribute's default value from the next number in that
sequence.

Before you begin:

It may be helpful to have an understanding of when to use a programmatic approach
for working with entity objects and associations. For more information, see Working
Programmatically with Entity Objects and Associations.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To assign the primary key value using an Oracle sequence:

1. Create the CustomEntityImpl.java file in your project, and insert the code shown
in the sample below.

2. In the Applications window, double-click the entity you want to edit.

3. In the overview editor, click the Attributes navigation tab, and select the attribute
you want to edit.

4. Click the Details tab and select Number from the Type dropdown list.

5. Click the Custom Properties tab, and click the Add icon.

6. Create a custom property with SequenceName for the name, and the name of the
database sequence for the value.

For example, for a Dept entity, you could define the custom property SequenceName
on its Deptno attribute with the value DEPT_TABLE_SEQ.

package sample;

import oracle.jbo.AttributeDef;
import oracle.jbo.AttributeList;
import oracle.jbo.server.EntityImpl;
import oracle.jbo.server.SequenceImpl;

public class CustomEntityImpl extends EntityImpl {
 protected void create(AttributeList attributeList) {
 super.create(attributeList);
 for (AttributeDef def : getEntityDef().getAttributeDefs()) {
 String sequenceName = (String)def.getProperty("SequenceName");
 if (sequenceName != null) {
 SequenceImpl s = new
SequenceImpl(sequenceName,getDBTransaction());
 setAttribute(def.getIndex(),s.getSequenceNumber());

Chapter 4
Working Programmatically with Entity Objects and Associations

4-77

 }
 }
 }
}

How to Update a Deleted Flag Instead of Deleting Rows
For auditing purposes, once a row is added to a table, sometimes your requirements
may demand that rows never be physically deleted from the table. Instead, when the
end user deletes the row in the user interface, the value of a DELETED column should
be updated from "N" to "Y" to mark it as deleted. You can use two method overrides to
alter an entity object's default behavior to achieve this effect.

To accomplish this, you need to perform the following tasks:

• Update a deleted flag when a row is removed, as described in Updating a Deleted
Flag When a Row Is Removed.

• Force the entity object to be updated instead of deleted, as described in Forcing
an Update DML Operation Instead of a Delete.

Updating a Deleted Flag When a Row Is Removed
To update a deleted flag when a row is removed, enable a custom Java class for
your entity object and override the remove() method to set the deleted flag before
calling the super.remove() method. The following example shows what this would
look like in the custom Java class of an entity object. It is important to set the attribute
before calling super.remove() since an attempt to set the attribute of a deleted row
will encounter the DeadEntityAccessException.

This example presumes that you've altered the table to have an additional DELETED
column, and synchronized the entity object with the database to add the corresponding
Deleted attribute.

The row will still be removed from the row set, but it will have the value of its Deleted
flag modified to "Y" in the entity cache. The second part of implementing this behavior
involves forcing the entity to perform an UPDATE instead of an DELETE when it is
asked to perform its DML operation. You need to implement both parts for a complete
solution.

// In your custom Java entity class
public void remove() {
 setDeleted("Y");
 super.remove();
}

Forcing an Update DML Operation Instead of a Delete
To force an entity object to be updated instead of deleted, override the doDML()
method and write code that conditionally changes the operation flag. When the
operation flag equals DML_DELETE, your code will change it to DML_UPDATE instead.
The following example shows what this would look like in the custom Java class of an
entity object.

This example presumes that you've altered the table to have an additional DELETED
column, and synchronized the entity object with the database to add the corresponding
Deleted attribute.

Chapter 4
Working Programmatically with Entity Objects and Associations

4-78

With this overridden doDML() method in place to complement the overridden remove()
method described in Updating a Deleted Flag When a Row Is Removed, any attempt
to remove an entity through any view object with a corresponding entity usage will
update the DELETED column instead of physically deleting the row. Of course, in order
to prevent "deleted" products from appearing in your view object query results, you
will need to appropriately modify their WHERE clauses to include only products WHERE
DELETED = 'N'.

// In your custom Java entity class
protected void doDML(int operation, TransactionEvent e) {
 if (operation == DML_DELETE) {
 operation = DML_UPDATE;
 }
 super.doDML(operation, e);
 }

How to Control Entity Posting Order to Prevent Constraint Violations
Due to database constraints, when you perform DML operations to save changes to
a number of related entity objects in the same transaction, the order in which the
operations are performed can be significant. If you try to insert a new row containing
foreign key references before inserting the row being referenced, the database can
complain with a constraint violation. You must understand what the default order for
the processing of entity objects is during commit time and how to programmatically
influence that order when necessary.

Note:

The example in this section refers to the
oracle.summit.model.controlpostorder package in the
SummitADF_Examples application workspace.

Default Post Processing Order
By default, when you commit the transaction the entity objects in the pending changes
list are processed in chronological order, in other words, the order in which the entities
were added to the list. This means that, for example, if you create a new employee
(EmpEO entity object) and then a new department (DeptEO entity object) related to that
product, the new EmpEO will be inserted first and the new DeptEO second.

Compositions and Default Post Processing Order
When two entity objects are related by a composition, the strict chronological ordering
is modified automatically to ensure that composed parent and child entity rows are
saved in an order that prevents violating any constraints. This means, for example,
that a new parent entity row is inserted before any new composed children entity rows.

Overriding postChanges() to Control Post Order
If your related entities are associated but not composed, then you need to write a bit of
code to ensure that the related entities get saved in the appropriate order.

Chapter 4
Working Programmatically with Entity Objects and Associations

4-79

Observing the Post Ordering Problem First Hand
Consider the newEmployeeForNewDepartment() custom method from the AppModule
application module in the following example. It accepts a set of parameters and:

1. Creates a new employee.

2. Creates a new department.

3. Sets the department ID to which the employee pertains.

4. Commits the transaction.

5. Constructs a Result Java bean to hold new employee ID and department ID.

6. Returns the result.

Note:

The code makes the assumption that both EmpEO.Id and DeptEO.Id have
been set to have DBSequence data type to populate their primary keys based
on a sequence.

// In AppModuleImpl.java
public Result newEmployeeForNewDepartment(String deptName,
 Number regionId,
 String lastName,
 String firstName,
 Number salary) {

 oracle.jbo.domain.Date today = new Date(Date.getCurrentDate());
 Number objectId = new Number(0);

 // 1. Create a new employee
 EmpEOImpl newEmp = createNewEmp();
 // 2. Create a new department
 DeptEOImpl newDept = createNewDept();
 newDept.setName(deptName);
 newDept.setRegionId(regionId);
 // 3. Set the department id to which the employee pertains
 newEmp.setDeptId(newDept.getId().getSequenceNumber());
 newEmp.setLastName(lastName);
 newEmp.setFirstName(firstName);
 newEmp.setUserid((firstName + "." + lastName).substring(8));
 newEmp.setSalary(salary);
 // 4. Commit the transaction
 getDBTransaction().commit();
 // 5. Construct a bean to hold new department id and employee id
 Result result = new Result();
 result.setEmpId(newEmp.getId().getSequenceNumber());
 result.setDeptId(newDept.getId().getSequenceNumber());
 // 6. Return the result
 return result;
}
private DeptEOImpl createNewDept(){
 EntityDefImpl deptDef = DeptEOImpl.getDefinitionObject();
 return (DeptEOImpl) deptDef.createInstance2(getDBTransaction(), null);
}

Chapter 4
Working Programmatically with Entity Objects and Associations

4-80

private EmpEOImpl createNewEmp(){
 EntityDefImpl empDef = EmpEOImpl.getDefinitionObject();
 return (EmpEOImpl) empDef.createInstance2(getDBTransaction(), null);
}

If you add this method to the application module's client interface and test it from a test
client program, you get an error:

oracle.jbo.DMLConstraintException: JBO-26048:
Constraint "S_EMP_DEPT_ID_FK" is violated during post operation
"Insert" using SQL statement
"BEGIN INSERT INTO S_EMP(ID,LAST_NAME,FIRST_NAME,USERID,DEPT_ID,SALARY)
 VALUES (:1,:2,:3,:4,:5,:6) RETURNING ID INTO :7; END;".
: ORA-02291: integrity constraint (SUMMIT_ADF.S_EMP_DEPT_ID_FK)
violated - parent key not found

When the S_EMP row is inserted, the database complains that the value of its DEPT_ID
foreign key doesn't correspond to any row in the S_DEPT table. This occurred because:

• The code created the employee before the department.

• The EmpEO and DeptEO entity objects are associated but not composed.

• The DML operations to save the new entity rows is done in chronological order, so
the new EmpEO gets inserted before the new DeptEO.

Forcing the Department to Post Before the Employee
To remedy the problem of attempting to add an employee with a not-yet-valid
department ID, you could reorder the lines of code in the example to create the DeptEO
first, then the EmpEO. While this would address the immediate problem, it still leaves the
chance that another application developer could create things in an incorrect order.

The better solution is to make the entity objects themselves handle the posting order
so the posting will work correctly regardless of the order of creation. To do this, you
need to override the postChanges() method in the entity that contains the foreign
key attribute referencing the associated entity object and write code as shown in the
following example. In this example, since it is the EmpEO that contains the foreign key
to the DeptEO entity, you need to update the EmpEO to conditionally force a related, new
DeptEO to post before the employee posts itself.

The code tests whether the entity being posted is in the STATUS_NEW or
STATUS_MODIFIED state. If it is, it retrieves the related product using the getDeptEO()
association accessor. If the related DeptEO also has a post-state of STATUS_NEW,
then first it calls postChanges() on the related parent row before calling
super.postChanges() to perform its own DML.

If you were to run this example, you would see that without changing the creation
order in the newEmployeeForNewDepartment() method's code, entities now post in the
correct order — first new DeptEO, then new EmpEO. Yet, there is still a problem. The
constraint violation still appears, but now for a different reason.

If the primary key for the DeptEO entity object were user-assigned, then the code in the
following example would be all that is required to address the constraint violation by
correcting the post ordering. In this example, however, the DeptEO.Id is assigned from
a database sequence, and not user-assigned. So when a new DeptEO entity row gets
posted, its Id attribute is refreshed to reflect the database-assigned sequence value.
The foreign key value in the EmpEO.DeptId attribute referencing the new supplier
is "orphaned" by this refreshing of the supplier's ID value. When the product's row

Chapter 4
Working Programmatically with Entity Objects and Associations

4-81

is saved, its S_DEPT_ID value still doesn't match a row in the S_DEPT table, and
the constraint violation occurs again. The next two sections discuss the solution to
address this "orphaning" problem.

// In EmpEOImpl.java
public void postChanges(TransactionEvent transactionEvent) {
 /* If current entity is new or modified */
 if (getPostState() == STATUS_NEW ||
 getPostState() == STATUS_MODIFIED) {
 /* Get the associated dept for the employee */
 DeptEOImpl dept = getDeptEO();
 /* If there is an associated dept */
 if (dept != null) {
 /* And if it's post-status is NEW */
 if (dept.getPostState() == STATUS_NEW) {
 /*
 * Post the department first, before posting this
 * entity by calling super below
 */
 dept.postChanges(transactionEvent);
 }
 }
 }
 super.postChanges(transactionEvent);
}

Note:

An alternative to the programmatic technique discussed here, which solves
the problem at the Java EE application layer, is the use of deferrable
constraints at the database layer. If you have control over your database
schema, consider defining (or altering) your foreign key constraints to
be DEFERRABLE INITIALLY DEFERRED. This database setting causes the
database to defer checking the constraint until transaction commit time.
When this is done, the application can perform DML operations in any order,
provided that by COMMIT time all appropriate related rows have been saved
and would alleviate the parent/child ordering. However, you would still need
to write the code to cascade-update the foreign key values if the parent's
primary key is assigned from a sequence, as described in Associations
Based on DBSequence-Valued Primary Keys, and Refreshing References
to DBSequence-Assigned Foreign Keys.

Associations Based on DBSequence-Valued Primary Keys
Recall from How to Get Trigger-Assigned Primary Key Values from a Database
Sequence, that when an entity object's primary key attribute is of DBSequence
type, during the transaction in which it is created, its numerical value is a unique,
temporary negative number. If you create a number of associated entities in the same
transaction, the relationships between them are based on this temporary negative key
value. When the entity objects with DBSequence-value primary keys are posted, their
primary key is refreshed to reflect the correct database-assigned sequence number,
leaving the associated entities that are still holding onto the temporary negative foreign
key value "orphaned."

Chapter 4
Working Programmatically with Entity Objects and Associations

4-82

For entity objects based on a composition, when the parent entity object's DBSequence-
valued primary key is refreshed, the composed children entity rows automatically have
their temporary negative foreign key value updated to reflect the owning parent's
refreshed, database-assigned primary key. This means that for composed entities, the
"orphaning" problem does not occur.

However, when entity objects are related by an association that is not a composition,
you need to write a little code to insure that related entity rows referencing the
temporary negative number get updated to have the refreshed, database-assigned
primary key value. The next section outlines the code required.

Refreshing References to DBSequence-Assigned Foreign Keys
When an entity like DeptEO in this example has a DBSequence-valued primary key, and
it is referenced as a foreign key by other entities that are associated with (but not
composed by) it, you need to override the postChanges() method as shown in the
sample code below to save a reference to the row set of entity rows that might be
referencing this new DeptEO row.

If the status of the current DeptEO row is New, then the code assigns the RowSet-valued
return of the getEmp() association accessor to the newEmployeesBeforePost member
field before calling super.postChanges().

This saved RowSet object is then used by the overridden
refreshFKInNewContainees() method shown in the following example. It gets called
to allow a new entity row to cascade-update its refreshed primary key value to any
other entity rows that were referencing it before the call to postChanges(). It iterates
over the EmpEOImpl rows in the newEmployeesBeforePost row set (if non-null) and sets
the new department ID value of each one to the new sequence-assigned supplier
value of the newly posted DeptEO entity.

// In DeptEOImpl.java
protected void refreshFKInNewContainees() {
 if (newEmployeesBeforePost != null) {
 Number newDeptId = getId().getSequenceNumber();
 /*
 * Process the rowset of employees that referenced
 * the new department prior to posting, and update their
 * Id attribute to reflect the refreshed Id value
 * that was assigned by a database sequence during posting.
 */
 while (newEmployeesBeforePost.hasNext()){
 EmpEOImpl emp =
 (EmpEOImpl)newEmployeesBeforePost.next();
 emp.setDeptId(newDeptId);
 }
 closeNewProductRowSet();
 }
}

After implementing this change, the sample in Observing the Post Ordering Problem
First Hand runs without encountering any database constraint violations.

// In DeptEOImpl.java
RowSet newEmployeesBeforePost = null;
public void postChanges(TransactionEvent transactionEvent) {
 /* Only bother to update references if Department is a NEW one */
 if (getPostState() == STATUS_NEW) {
 /*

Chapter 4
Working Programmatically with Entity Objects and Associations

4-83

 * Get a rowset of employees related
 * to this new department before calling super
 */
 newEmployeesBeforePost = (RowSet)getEmpEO();
 }
 super.postChanges(transactionEvent);
}

Advanced Entity Association Techniques
This section describes several advanced techniques for working with associations
between entity objects.

Modifying Association SQL Clause to Implement Complex Associations
When you need to represent a more complex relationship between entities than one
based only on the equality of matching attributes, you can modify the association's
SQL clause to include more complex criteria. For example, sometimes the relationship
between two entities depends on effective dates. A Product may be related to
a Supplier, but if the name of the supplier changes over time, each row in
the SUPPLIERS table might include additional EFFECTIVE_FROM and EFFECTIVE_UNTIL
columns that track the range of dates in which that product row is (or was) in use.
The relationship between a Product and the Supplier with which it is associated
might then be described by a combination of the matching SupplierId attributes and a
condition that the product's RequestDate lie between the supplier's EffectiveFrom and
EffectiveUntil dates.

You can set up this more complex relationship in the overview editor for the
association. First, add any additional necessary attribute pairs on the Relationship
page, which in this example would include one (EffectiveFrom, RequestDate) pair and
one (EffectiveUntil, RequestDate) pair. Then, on the Query page you can edit the
Where field to change the WHERE clause to be:

(:Bind_SupplierId = Product.SUPPLIER_ID) AND
(Product.REQUEST_DATE BETWEEN :Bind_EffectiveFrom
 AND :Bind_EffectiveUntil)

For more information about creating associations, see Creating and Configuring
Associations.

Exposing View Link Accessor Attributes at the Entity Level
When you create a view link between two entity-based view objects, on the View
Link Properties page, you have the option to expose view link accessor attributes
both at the view object level as well as at the entity object level. By default, a
view link accessor is exposed only at the view object level of the destination view
object. By selecting the appropriate In Entity Object: SourceEntityName or In Entity
Object:DestinationEntityName checkbox, you can opt to have JDeveloper include
a view link attribute in either or both of the source or destination entity objects. This
can provide a handy way for an entity object to access a set of related view rows,
especially when the query to produce the rows depends only on attributes of the
current row.

Chapter 4
Working Programmatically with Entity Objects and Associations

4-84

What You May Need to Know About Custom Entity Object Methods
Custom methods that you implement in the entity object class must not be dependent
on the return type of an application module. At runtime, in specific cases, methods
that execute with such a dependency may throw a ClassCastException because
the returned application module does not match the expected type. It is therefore
recommended that custom methods that you implement should not have code to get
a specific application module implementation or view object implementation as shown
below.

((MyAM)getTransaction().getRootApplicationModule()).getMyVO

Specifically, the above code fails with a ClassCastException in the following
scenarios:

• When your code uses the entity object in the context of a different view object,
other that the view object that you reference in the method. Because your
application may map more than one view object definition to the same same entity
object, the ADF Business Components runtime does not guarantee that methods
with dependencies on the view object will execute consistently.

• When you manually nest an application module under a root application module.
In this case, the nested application modules share the same Transaction object
and there is no guarantee that the expected application module type is returned
with the above code.

• When the ADF Business Components framework implementation changes with
releases. For example, in previous releases, the framework created an internal
root application module in order to control declarative transactions that the
application defined using ADF task flows.

Working Programmatically with Custom Data Sources and
the Framework Base Class ProgrammaticEntityImpl

ADF Business Components supports programmatic entity objects that you can create
to interact with a custom data source.

The framework base class oracle.jbo.server.ProgrammaticEntityImpl lets you
take control of performing create/delete/update/lock/rollback operations for each row
in a custom data source when you generate an EntityObjectImpl class for the entity
object in your ADF Model project. At different phases of the entity populate, commit,
or rollback lifecycle, the framework will call these hook points and the framework
base implementation class gives the application developer control to interact with the
custom data source and perform these operations.

Chapter 4
Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticEntityImpl

4-85

Note:

Prior to the ProgrammaticEntityImpl base class, applications extended from
the base class oracle.jbo.server.EntityImpl and overrode a number of
lifecycle methods for custom behavior. Using the programmatic entity base
class means integration with a custom data source is accomplished by
the application developer without needing to understand the entire entity
lifecycle.

To work with programmatic entity objects in the ADF Model project, you select the
Programmatic option in the Create Entity Object wizard. Then entity object Java
classes that you generate in the wizard will by default extend from the framework
base class oracle.jbo.server.ProgrammaticEntityImpl instead of extending from
the classic style framework class oracle.jbo.server.EntityImpl.

Note:

In order to ensure this behavior when creating an entity object, you must de-
select the feature in the ADF Business Components Preferences dialog that
enables extending from the base class oracle.jbo.server.EntityImpl. The
option in the ADF Business Components-View Objects page of the Tools-
Preferences dialog is Classic Programmatic View (de-select to enable
extending from ProgrammaticEntityImpl).

How to Create an Entity Object Class Extending
ProgrammaticEntityImpl

To create a programmatic entity object that extends
oracle.jbo.server.ProgrammaticEntityImpl, you use the Create Entity Object
wizard and select the Programmatic data source option.

Before you begin:

You must disable classic style programmatic entity object generation. In the
Tools-Preferences dialog, de-select the option Classic Programmatic View on
the ADF Business Components-View Objects page. If you leave this option
selected (default), JDeveloper will generate entity object Java classes that extend
oracle.jbo.server.EntityImpl. For details about classic mode, see Using Classic
Style Programmatic View Objects for Alternative Data Sources.

To create programmatic entity objects extending ProgrammaticEntityImpl:

1. In the Applications window, right-click the project in which you want to create the
entity object and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Entity Object, and click OK.

3. In the Create Entity Object wizard, in the Name page, provide a name and
package for the entity object. For the data source, select Programmatic.

Chapter 4
Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticEntityImpl

4-86

4. In the Attributes page, click New one or more times to define the entity object
attributes your programmatic entity object requires.

5. In the Attribute Settings page, adjust any setting you may need to for the attributes
you defined.

6. In the Java page, select Generate Entity Object Class to enable a custom entity
object class (ProgrammaticEntityImpl) to contain your code.

7. Click Finish to create the entity object.

In your entity object’s custom Java class, override the methods described in Key
Framework Methods to Override for ProgrammaticEntityImpl Based Entity Objects
to implement your custom data retrieval strategy.

Key Framework Methods to Override for ProgrammaticEntityImpl
Based Entity Objects

The generated EntityObjectImpl.java that you generate for a programmatic entity
object has the following methods that you must override.

• postDataProvider(int operationType , ArrayList retAttrNames)

This method will be called during doDML execution. By default, the framework
throws an Exception from the base implementation. Possible values of
operationType argument are EntityImpl.DML_INSERT ,EntityImpl.DML_UPDATE
or EntityImpl.DML_DELETE. Based on the operation type, applications should
insert/update/delete the row from custom data source (or secondary cache, if
maintaining). The retAttrNames argument contains the list of attribute names
whose value the application should return back after row has been updated/
inserted.

• getRowFromDataSource(HashMap[String , Object] origPrimaryKeyMap)

Applications should override this API to return the latest row data from custom
data source. During entity fault-in, commit or re-populate, the framework needs
to know the current row data to handle a multiple user access use case. The
origPrimaryKeyMap argument will contain the original primary key information,
even if the application has modified any of the key attributes.

• lockDataProvider(boolean lock)

Applications should override this API to lock/unlock the corresponding row in
custom data source. Similar to the database behavior, the framework will try to
ensure the locking of custom row DataProvider to avoid multiple users committing
simultaneously. In case the row is already locked, the application should throw
oracle.jbo.AlreadyLockedException exception.

• rollbackDataProvider()

If custom DataSource is also maintaining intermediate caching, applications can
override this API to perform a rollback. The framework will invoke this API if any
Exception occurs during the commit/postChanges phase.

• commitDataProvider(ProgrammaticEntityImpl.CommitActionType
commitActionType)

If custom DataSource is also maintaining intermediate caching, applications should
merge the cache with original data by overriding this API. Possible values for
commitActionType argument are:

Chapter 4
Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticEntityImpl

4-87

– CommitActionType.DELETE - Delete the row from cache and original custom
DS

– CommitActionType.MERGE - Merge the row from cache to original custom DS

– CommitActionType.IGNORE - Ignore this cached row and perform NO action for
original row

Other Useful Protected APIs

• getPrimaryKeyMap(boolean orig)

Based on orig argument, this API returns the values map of the Primary key. If
orig is TRUE, it will return the primary key values as read from the data source,
else the current primary key values.

• getChangedAttributeMap()

This API return the HashMap of all the changed attributes.

What You May Need to Know About Programmatic Entity Object
Triggers

You can use triggers defined in the Groovy scripting language in place of overridden
methods of ProgrammaticEntityObjectImpl.java to perform CUD operations on the
custom datasource. Triggers can be called from various programmatic entity object
lifecycle points.

The application allows you to call triggers that are defined in Groovy script in place
of Java hook points. These triggers interact with a custom data source and perform
operations such as creation, updation and deletion of data. They can be called
from the various programmatic entity object lifecycle points. Although the option of
subclassing the framework class, namely ProgrammaticEntityImpl and overriding
certain methods to define implementations specific to a custom datasource remains,
in order for the trigger to execute, the Java hook points should not be defined.
Alternatively, if Java hook points are defined, then the triggers shouldn’t exist for the
Java hook points to execute. Note that if Java hook points as well as triggers are
defined, then the triggers will not execute.

Specifically, the programmatic entity object triggers are:

InsertData

This trigger is used to create a new record in the custom datasource. It is invoked
in place of the postDataProvider() method of ProgrammaticEntityObjectImpl.java
during an insert operation. Use this trigger to optionally retrieve a map of attribute
names and their associated values after performing the insert operation. Use this
trigger to perform the insert operation in the custom data source and subsequently
populate attribute values in the entity object.

The following code sample illustrates the usage of this trigger. The code sample
utilizes these context specific keywords:

• dmlFilter.key — Returns an oracle.jbo.Key containing the key values of the
object to be inserted.

• dmlFilter.changeMap – Returns a map containing the name and value pairs of
attributes that were changed during the insert operation.

Chapter 4
Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticEntityImpl

4-88

• returnMap - The map that is to be populated with attribute values from the data
source after performing the insert operation. The map is pre-populated with keys
corresponding to attribute names marked with RetrievedOnInsert=true.

@TriggerExpression(triggerType="InsertData", name="InsertData_Rule_0")
def InsertData_Rule_0_ValidationRuleScript_Trigger()
{
 def keyValue = dmlFilter.key.keyValues[0]
 def newEmp = new model.data.EmpObject()
 if (dmlFilter.changeMap.size() > 0)
 {
 def mapIter = dmlFilter.changeMap.keySet().iterator()
 while(mapIter.hasNext())
 {
 def attrName = mapIter.next()
 newEmp.setAttribute(attrName, dmlFilter.changeMap.get(attrName))
 }
 }
 model.data.DataCenter.getInstance().getEmpData().add(newEmp)

 if(returnMap.size() > 0)
 {
 def retMapIter = returnMap.keySet().iterator()
 while (retMapIter.hasNext())
 {
 String attrName = retMapIter.next()
 returnMap.put(attrName, newEmp.getAttribute(attrName))
 }
 }
}

UpdateData

This trigger is used to update an existing record in the custom datasource. It is invoked
in place of the postDataProvider() method of ProgrammaticEntityObjectImpl.java
during an update operation. You can optionally use this trigger to retrieve a map of
name and value pairs of attributes after performing the update operation. This trigger
populates the entity object with the returned name and value pairs of these attributes.

The following code sample illustrates the usage of this trigger. The code sample
utilizes these context specific keywords:

• dmlFilter.key - Returns an oracle.jbo.Key containing the key values of the
object to be updated.

• dmlFilter.changeMap - Returns a map containing the names and values of the
attributes that were changed during the update operation.

• returnMap - The map that is to be populated with attribute values from the
datasource after performing the update operation. The map is pre-populated with
keys corresponding to attribute names marked with RetrievedOnUpdate=true

@TriggerExpression(triggerType="UpdateData", name="UpdateData_Rule_0")
def UpdateData_Rule_0_ValidationRuleScript_Trigger()
{
 def keyValue = dmlFilter.key.keyValues[0]
 def empData = model.data.DataCenter.getInstance().getEmpData()
 model.data.EmpObject empToUpdate = null
 for (emp in empData)
 {
 if (emp.empno.equals(keyValue))

Chapter 4
Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticEntityImpl

4-89

 {
 //Found the EmpObject to update.
 empToUpdate = emp
 break
 }
 }
 if (dmlFilter.changeMap.size() > 0)
 {
 def mapIter = dmlFilter.changeMap.keySet().iterator()
 while(mapIter.hasNext())
 {
 def attrName = mapIter.next()
 empToUpdate.setAttribute(attrName, dmlFilter.changeMap.get(attrName))
 }
 }

 if(returnMap.size() > 0)
 {
 def retMapIter = returnMap.keySet().iterator()
 while (retMapIter.hasNext())
 {
 String attrName = retMapIter.next()
 returnMap.put(attrName, empToUpdate.getAttribute(attrName))
 }
 }
}

DeleteData

This trigger is used to delete an existing record in the custom
datasource. It is invoked in place of the postDataProvider() method of the
ProgrammaticEntityObjectImpl.java class during a delete operation.

The following code sample illustrates the usage of this trigger. This code utilizes this
context specific keyword:

• dmlFilter.key - Returns an oracle.jbo.Key containing the key values of object
to be deleted.

@TriggerExpression(triggerType="DeleteData", name="DeleteData_Rule_0")
def DeleteData_Rule_0_ValidationRuleScript_Trigger()
{
 def keyValue = dmlFilter.key.keyValues[0]
 def empData = model.data.DataCenter.getInstance().getEmpData()
 def iter = empData.iterator()
 while (iter.hasNext())
 {
 def emp = iter.next();
 if (emp.empno.equals(keyValue))
 {
 //Found the EmpObject to delete
 iter.remove()
 break;
 }
 }
}

Chapter 4
Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticEntityImpl

4-90

Defining Triggers for Programmatic Entity Objects
ADF Business Components allows you to define and apply triggers in a programmatic
entity object’s lifecycle. This process is similar to the process to define triggers in
normal entity objects. You can use Groovy script to implement business rules that are
executed in response to entity-level triggers.

To add a trigger for a programmatic entity object:

1. In the Applications Navigator, double-click the entity object you want to add a
trigger to.

2. In the overview editor, click the Business Rules navigation tab.

3. On the Business Rules page, select the Entity-Level Triggers node, and click
the Create New Trigger icon.

4. Select the appropriate trigger point from the Type dropdown list.

5. Enter a Groovy expression.

When you create a trigger, a <trigger> tag is added to the entity object's XML file,
and the .bcs file associated with the view object is populated .

Creating Custom, Validated Data Types Using Domains
Encapsulate common validation logic in custom data types, called as ADF Domains,
which simplifies application maintenance and puts validation in a single place.

When you find yourself repeating the same sanity-checking validations on the values
of similar attributes across multiple entity objects, you can save yourself time and effort
by creating your own data types that encapsulate this validation. For example, imagine
that across your business domain layer there are numerous entity object attributes that
store strings that represent email addresses. One technique you could use to ensure
that end users always enter a valid email address everywhere one appears in your
business domain layer is to:

• Use a basic String data type for each of these attributes

• Add an attribute-level method validator with Java code that ensures that the
String value has the format of a valid email address for each attribute

However, these approaches can become tedious quickly in a large application.
Fortunately, ADF Business Components offers an alternative that allows you to create
your own EmailAddress data type that represents an email address. After centralizing
all of the sanity-checking regarding email address values into this new custom data
type, you can use the EmailAddress as the type of every attribute in your application
that represents an email address. By doing this, you make the intention of the attribute
values more clear to other developers and simplify application maintenance by putting
the validation in a single place. ADF Business Components calls these developer-
created data types domains.

Domains are Java classes that extend the basic data types like String, Number,
and Date to add constructor-time validation to ensure the candidate value passes
relevant sanity checks. They offer you a way to define custom data types with cross-
cutting behavior such as basic data type validation, formatting, and custom metadata
properties in a way that is inherited by any entity objects or view objects that use the
domain as the Java type of any of their attributes.

Chapter 4
Creating Custom, Validated Data Types Using Domains

4-91

Note:

The example in this section refers to the oracle.summit.model.domains
package in the SummitADF_Examples application workspace.

How to Create a Domain
To create a domain, use the Create Domain wizard. This wizard is available from the
New Gallery in the ADF Business Components category.

Before you begin:

It may be helpful to have an understanding of using domains. For more information,
see Creating Custom, Validated Data Types Using Domains.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create a domain:

1. In the Applications window, right-click the project for which you want to create a
domain and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Domain, and click OK.

3. In the Create Domain wizard, on the Name page, specify a name for the domain
and a package in which it will reside. To create a domain based on a simple Java
type, leave Domain for an Oracle Object Type unselected.

4. Click Next.

5. On the Settings page, indicate the base type for the domain and the database
column type to which it will map.

For example, if you were creating a domain called ShortEmailAddress to hold
eight-character short email addresses, you would set the base type to String and
the Database Column Type to VARCHAR2(8). You can set other common attribute
settings on this panel as well.

6. Click Finish.

What Happens When You Create a Domain
When you create a domain, JDeveloper creates its XML document in the subdirectory
of your project's source path that corresponds to the package name you chose. For
example, if you created the ShortEmailAddress domain in the summit.model.domains
package, JDeveloper would create the ShortEmailAddress.xml file in the ./summit/
model/domains subdirectory. A domain always has a corresponding Java class,
which JDeveloper creates in the common subpackage of the package where the
domain resides. This means it would create the ShortEmailAddress.java class in the
summit.model.domains.common package. The domain's Java class is generated with
the appropriate code to behave in a way that is identical to one of the built-in data
types.

Chapter 4
Creating Custom, Validated Data Types Using Domains

4-92

What You May Need to Know About Domains
Domains can be created as a variety of different types, and have different
characteristics than standard attributes. The sections that follow describe some of the
things you may need to know about when working with domains.

Domains as Entity and View Object Attributes
After you've created a domain in a project, it appears among the list of available data
types in the Attribute Type dropdown list in the entity object and view object wizards
and dialogs. To use the domain as the type of a given attribute, just pick it from the list.

Note:

The entity-mapped attributes in an entity-based view object inherit their data
type from their corresponding underlying entity object attribute. Therefore, if
the entity attribute uses a domain type, the matching view object attribute will
as well. For transient or SQL-derived view object attributes, you can directly
set the type to use a domain since it is not inherited from any underlying
entity.

DataCreationException in Custom validate() Method
Typically, the only coding task you need to do for a domain is to write custom code
inside the generated validate() method. Your implementation of the validate()
method should perform your sanity checks on the candidate value being constructed,
and throw a DataCreationException in the oracle.jbo package if the validation fails.

In order to throw an exception message that is translatable, you can create a message
bundle class similar to the one shown in the following example. Create it in the same
package as your domain classes themselves. The message bundle returns an array of
{MessageKeyString,TranslatableMessageString} pairs.

Note:

There are additional formats available for resource bundles, such as XLIFF.
For more information, see Working with Resource Bundles.

package oracle.summit.model.domains;

import java.util.ListResourceBundle;

public class ErrorMessages extends ListResourceBundle {
 public static final String INVALID_SHORTEMAIL = "30002";
 public static final String INVALID_EVENNUMBER = "30003";
 private static final Object[][] sMessageStrings = new String[][] {
 { INVALID_SHORTEMAIL,
 "A valid short email address has no @-sign or dot."},
 { INVALID_EVENNUMBER,

Chapter 4
Creating Custom, Validated Data Types Using Domains

4-93

 "Number must be even."}
 };

 /**
 * Return String Identifiers and corresponding Messages
 * in a two-dimensional array.
 */
 protected Object[][] getContents() {
 return sMessageStrings;
 }
}

String Domains and String Value Aggregation
Since String is a base JDK type, a domain based on a String aggregates a private
mData String member field to hold the value that the domain represents. Then, the
class implements the DomainInterface expected by the ADF runtime, as well as the
Serializable interface, so the domain can be used in method arguments or return
types of the custom client interfaces of Oracle ADF components.

The following example shows the validate() method for a simple ShortEmailAddress
domain class. It tests to make sure that the mData value does not contains an at-sign
or a dot, and if it does, then the method throws DataCreationException referencing
an appropriate message bundle and message key for the translatable error message.

public class ShortEmailAddress implements DomainInterface, Serializable {
 private String mData;
 // . . .
 protected void validate() {
 /**Implements domain validation logic and throws a JboException on error. */
 int atpos = mData.indexOf('@');
 int dotpos = mData.lastIndexOf('.');
 if (atpos > -1 || dotpos > -1) {
 throw new DataCreationException(ErrorMessages.class,
 ErrorMessages.INVALID_SHORTEMAIL,null,null);
 }
 }
 // . . .
}

Simple Domains and Built-In Types
Other simple domains based on a built-in type in the oracle.jbo.domain package
extend the base type, as shown in the following example. It illustrates the validate()
method for a simple Number-based domain called EvenNumber that represents even
numbers.

public class EvenNumber extends Number {
 // . . .
 /**
 * Validates that value is an even number, otherwise
 * throws a DataCreationException with a custom
 * error message.
 */
 protected void validate() {
 if (getValue() % 2 == 1) {
 throw new DataCreationException(ErrorMessages.class,
 ErrorMessages.INVALID_EVENNUMBER,null,null);
 }

Chapter 4
Creating Custom, Validated Data Types Using Domains

4-94

 }
 // . . .
}

Simple Domains As Immutable Java Classes
When you create a simple domain based on one of the basic data types, it is an
immutable class. That means that once you've constructed a new instance of it like
this:

ShortEmailAddress email = new ShortEmailAddress("emailaddress1");

You cannot change its value. If you want to reference a different short email address,
you just construct another one:

ShortEmailAddress email = new ShortEmailAddress("emailaddress2");

This is not a new concept because it's the same way that String, Number, and Date
classes behave, among others.

Creating Domains for Oracle Object Types When Useful
Oracle Database supports the ability to create user-defined types in the database.
For example, you could create a type called POINT_TYPE using the following DDL
statement:

create type point_type as object (
 x_coord number,
 y_coord number
);

If you use user-defined types like POINT_TYPE, you can create domains based on
them, or you can reverse-engineer tables containing columns of object type to have
JDeveloper create the domain for you. You can use the Create Domain wizard to
create Oracle object type domains manually.

To manually create an Oracle object type domain:

1. In the Applications window, right-click the project for which you want to create a
domain and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Domain, and click OK.

3. In the Create Domain wizard, on the Name page, select the Domain for an
Oracle Object Type checkbox, then select the object type for which you want to
create a domain from the Available Types list.

4. Click Next.

5. On the Settings page, use the Attribute dropdown list to switch between the
multiple domain properties to adjust the settings as appropriate.

6. Click Finish.

To reverse-engineer an Oracle object type domain:

In addition to manually creating object type domains, when you use the Business
Components from Tables wizard and select a table containing columns of an Oracle
object type, JDeveloper creates domains for those object types as part of the reverse-

Chapter 4
Creating Custom, Validated Data Types Using Domains

4-95

engineering process. For example, imagine you created a table like this with a column
of type POINT_TYPE:

create table interesting_points(
 id number primary key,
 coordinates point_type,
 description varchar2(20)
);

If you create an entity object for the INTERESTING_POINTS table in the Business
Components from Tables wizard, then you get both an InterestingPoints entity
object and a PointType domain. The latter is generated, based on the POINT_TYPE
object type, because it was required as the data type of the Coordinates attribute of
the InterestingPoints entity object.

Unlike simple domains, object type domains are mutable. JDeveloper generates getter
and setter methods into the domain class for each of the elements in the object type's
structure. After changing any domain properties, when you set that domain as the
value of a view object or entity object attribute, it is treated as a single unit. Oracle
ADF does not track which domain properties have changed, only that a domain-valued
attribute value has changed.

Note:

Domains based on Oracle object types are useful for working
programmatically with data whose underlying type is an oracle object type.
They can also simplify passing and receiving structure information to stored
procedures. However, support for working with object type domains in the
ADF binding layer is not complete, so it is not straightforward to use object
domain-valued attributes in declaratively databound user interfaces.

Domains Packaged in the Common JAR
When you create an ADF Library JAR for your business components, as described
in How to Package a Component into an ADF Library JAR, the domain classes and
message bundle files in the *.common subdirectories of your project's source path
get packaged into the *CSCommon.jar. They are classes that are common to both
the middle-tier application server and to an eventual remote client you might need to
support.

Custom Domain Properties and Attributes in Entity and View Objects
You can define custom metadata properties on a domain. Any entity object or view
object attribute based on that domain inherits those custom properties as if they had
been defined on the attribute itself. If the entity object or view object attribute defines
the same custom property, its setting takes precedence over the value inherited from
the domain.

Inherited Restrictive Properties of Domains in Entity and View Objects
JDeveloper enforces the declarative settings you impose at the domain definition level:
they cannot be made less restrictive for the entity object or view object for an attribute
based on the domain type. For example, if you define a domain to have its Updatable

Chapter 4
Creating Custom, Validated Data Types Using Domains

4-96

property set to While New, then when you use your domain as the Java type of
an entity object attribute, you can set Updatable to be Never (more restrictive) but
you cannot set it to be Always. Similarly, if you define a domain to be Persistent,
you cannot make it transient later. When sensible for your application, set declarative
properties for a domain to be as lenient as possible, so you can later make them more
restrictive as needed.

Creating New History Types
Use history types to track time-specific data. JDeveloper provides out-of-the-box ADF
history types and also allows you to create custom history types.

History types are used to track data specific to a point in time. JDeveloper ships with
a number of history types, but you can also create your own. For information on the
standard history types and how to use them, see How to Track Created and Modified
Dates Using the History Column.

How to Create New History Types
You are not limited to the history types provided: you can add or remove custom
history types using the History Types page in the Preferences dialog, and then write
custom Java code to implement the desired behavior. The code to handle custom
history types should be written in your application-wide entity base class for reuse.

Figure 4-17 shows a custom type called last update login with type ID of 11.
Assume that last_update_login is a foreign key in the FND_LOGINS table.

Figure 4-17 New History Types in the Overview Editor

Before you begin:

It may be helpful to have an understanding of history types. For more information, see
Creating New History Types.

Chapter 4
Creating New History Types

4-97

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create a custom history type:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand ADF Business Components and click History
Types.

3. In the Preferences dialog, on the History Types page, click New.

4. In the New History Type dialog, enter a string value for the name (spaces are
allowed) and a numerical ID.

The Type Id must be an integer between 11 and 126. The numerical values 0-10
are reserved for internal use. The display string is displayed in the Track Change
History dropdown list the next time you use the overview editor. Figure 4-18
shows the new history type in the Preferences dialog.

Figure 4-18 Custom History Type in Preferences

5. Open the entity object's Java class file (or the extension class on which it is based)
and add a definition similar to the following.

private static final byte LASTUPDATELOGIN_HISTORY_TYPE = 11;

6. Override the getHistoryContextForAttribute(AttributeDefImpl attr) method
from the EntityImpl base class with code similar the following.

@Override
protected Object getHistoryContextForAttribute(AttributeDefImpl attr) {
 if (attr.getHistoryKind() == LASTUPDATELOGIN_HISTORY_TYPE) {
 // Custom History type logic goes here
 }
 else {
 return super.getHistoryContextForAttribute(attr);

Chapter 4
Creating New History Types

4-98

 }
}

How to Remove a History Type
Because they are typically used for auditing values over the life of an application, it is
rare that you would want to remove a history type. However, in the event that you need
to do so, perform the following tasks:

1. Remove the history type from the JDeveloper history types list in the Preferences
dialog.

2. Remove any custom code you implemented to support the history type in the
getHistoryContextForAttribute method in the entity object's Java class file (or
the extension class on which it is based).

3. Remove all usages of the history type in the entity attribute metadata. Any attribute
that you have defined to use this history type must be edited.

Before you begin:

It may be helpful to have an understanding of history types. For more information, see
Creating New History Types.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To remove a history type from the JDeveloper history types list:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand ADF Business Components and click History
Types.

3. In the Preferences dialog, on the History Types page, select the history type that
you want to remove and click Delete.

Basing an Entity Object on a PL/SQL Package API
The ADF framework allows you to use the PL/SQL API in combination with a database
view. It allows client programs to read using the database view and write to the table
using the PL/SQL API.

If you have a PL/SQL package that encapsulates insert, update, and delete access to
an underlying table, you can override the default DML processing event for the entity
object that represents that table to invoke the procedures in your PL/SQL API instead.
Often, such PL/SQL packages are used in combination with a companion database
view. Client programs read data from the underlying table using the database view,
and "write" data back to the table using the procedures in the PL/SQL package.

For example, say you want to create a Product entity object based on such a
combination of a view and a package.

Given the S_PRODUCT table in the Summit ADF schema, consider a database view
named PRODUCT_V, created using the following DDL statement:

create or replace view product_v
as select id,name,image_id,short_desc from s_product;

Chapter 4
Basing an Entity Object on a PL/SQL Package API

4-99

In addition, consider the simple PRODUCTS_API package shown below that
encapsulates insert, update, and delete access to the underlying S_PRODUCT table.

create or replace PACKAGE PRODUCTS_API as
 procedure insert_product(p_id number,
 p_name varchar2,
 p_short_desc varchar2,
 p_longtext_id number,
 p_image_id number,
 p_suggested_whlsl_price number,
 p_whlsl_units varchar2);
 procedure update_product(p_id number,
 p_name varchar2,
 p_short_desc varchar2,
 p_longtext_id number,
 p_image_id number,
 p_suggested_whlsl_price number,
 p_whlsl_units varchar2);
 procedure delete_product(p_id number);
end products_api;

To create an entity object based on this combination of database view and PL/SQL
package, you would perform the following tasks:

1. Create a view-based entity object, as described in How to Create an Entity Object
Based on a View.

2. Create a base class for the entity object, as described in How to Centralize Details
for PL/SQL-Based Entities into a Base Class.

3. Implement the appropriate stored procedure calls, as described in How to
Implement the Stored Procedure Calls for DML Operations.

4. Handle selecting and locking functionality, if necessary, as described in How to
Add Select and Lock Handling.

Note:

The example in these sections refers to the
oracle.summit.model.wrapplsql package in the SummitADF_Examples
application workspace.

Although the example uses an table-based entity object rather than a view-
based entity object, the configuration details are congruent.

How to Create an Entity Object Based on a View
To create an entity object based on a view, you use the Create Entity Object wizard.

Before you begin:

It may be helpful to have an understanding of how entity objects can use the PS/SQL
API. For more information, see Basing an Entity Object on a PL/SQL Package API.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

Chapter 4
Basing an Entity Object on a PL/SQL Package API

4-100

You will need to launch the Create Entity Object wizard as described in How to Create
Single Entity Objects Using the Create Entity Wizard, and proceed through the wizard
with the exceptions noted in the following procedure.

To create an entity object based on a view:

1. On the Name page, give the entity a name.

2. In the Select Schema Object dialog, in the Object Type section, select the Views
checkbox.

This enables the display of the available database views in the current schema in
when you click Query.

3. In the Available Objects list, select the desired database view.

4. On the Attribute Settings page, use the Select Attribute dropdown list to choose
the attribute that will act as the primary key, and then select the Primary Key
checkbox for that attribute.

Note:

When defining the entity based on a view, JDeveloper cannot
automatically determine the primary key attribute since database views
do not have related constraints in the database data dictionary.

What Happens When You Create an Entity Object Based on a View
By default, an entity object based on a view performs all of the following directly
against the underlying database view:

• SELECT statement (for findByPrimaryKey())

• SELECT FOR UPDATE statement (for lock()), and

• INSERT, UPDATE, DELETE statements (for doDML())

To use stored procedure calls, you will need to override the doDML() operations (as
described in How to Centralize Details for PL/SQL-Based Entities into a Base Class),
and possibly override the lock() and findByPrimaryKey() handling (as described in
How to Implement the Stored Procedure Calls for DML Operations).

How to Centralize Details for PL/SQL-Based Entities into a Base Class
If you plan to have more than one entity object based on a PL/SQL API, it's a
smart idea to abstract the generic details into a base framework extension class. In
doing this, you'll be using several of the concepts described in Extending Business
Components Functionality. Start by creating a PLSQLEntityImpl class that extends the
base EntityImpl class that each one of your PL/SQL-based entities can use as their
base class.

Chapter 4
Basing an Entity Object on a PL/SQL Package API

4-101

Note:

If you are already using an extended entity implementation class for your
entity, you can extend it further with the PLSQLEntityImpl class. For
example, if you have a framework extension class named zzEntityImpl,
you would create a PLSQLEntityImpl class that extends the zzEntityImpl
class.

As shown below, you'll override the doDML() method of the base class to invoke a
different helper method based on the operation.

// In PLSQLEntityImpl.java
protected void doDML(int operation, TransactionEvent e) {
 // super.doDML(operation, e);
 if (operation == DML_INSERT)
 callInsertProcedure(e);
 else if (operation == DML_UPDATE)
 callUpdateProcedure(e);
 else if (operation == DML_DELETE)
 callDeleteProcedure(e);
}

In the PLSQLEntityImpl.java base class, you can write the helper methods so that
they perform the default processing like this:

// In PLSQLEntityImpl.java
/* Override in a subclass to perform nondefault processing */
protected void callInsertProcedure(TransactionEvent e) {
 super.doDML(DML_INSERT, e);
}
/* Override in a subclass to perform nondefault processing */
protected void callUpdateProcedure(TransactionEvent e) {
 super.doDML(DML_UPDATE, e);
}
/* Override in a subclass to perform nondefault processing */
protected void callDeleteProcedure(TransactionEvent e) {
 super.doDML(DML_DELETE, e);
}

After putting this infrastructure in place, when you base an entity object on
the PLSQLEntityImpl class, you can use the Source > Override Methods
menu item to override the callInsertProcedure(), callUpdateProcedure(), and
callDeleteProcedure() helper methods and perform the appropriate stored
procedure calls for that particular entity.

Note:

If you do not override these helper methods in a subclass, they will perform
the default processing as defined in the superclass. You only need to
override the operations in the doDML() method that you want to provide
alternative processing for.

Chapter 4
Basing an Entity Object on a PL/SQL Package API

4-102

To simplify the task of implementing these calls, you could add the
callStoredProcedure() helper method (described in Invoking Stored Procedures and
Functions) to the PLSQLEntityImpl class as well. This way, any PL/SQL-based entity
objects that extend this class can leverage the helper method.

How to Implement the Stored Procedure Calls for DML Operations
To implement the stored procedure calls for DML operations, you will need to create a
custom Java class for the entity object and override the operations in it.

Before you begin:

It may be helpful to have an understanding of entity objects that are based on a
PL/SQL package API. For more information, see Basing an Entity Object on a PL/SQL
Package API.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To create the custom Java class with the override methods:

1. In the Applications window, double-click the entity object.

2. In the overview editor, click the Java navigation tab, and then click the Edit Java
options icon.

3. In the Select Java Options dialog, click Classes Extend.

4. In the Override Base Classes dialog, in the Row field, enter the package and class
of the PLSQLEntityImpl class, or click Browse to search and select it.

5. Select Generate Entity Object Class, and click OK.

6. In the Applications window, double-click the generated entity object class.

7. From the main menu, choose Source > Override Methods.

8. In the Override Methods dialog, select the callInsertProcedure(),
callUpdateProcedure(), and callDeleteProcedure() methods, and click OK.

9. In the source editor, enter the necessary code to override these procedures.

The following example shows some sample code that you would write in these
overridden helper methods to invoke insert, update, and delete procedures.

// In ProductImpl.java
protected void callInsertProcedure(TransactionEvent e) {
 callStoredProcedure("products_api.insert_product(?,?,?,?,?,?,?)",
 new Object[] { getId(), getName(), getShortDesc(), getLongtextId(),
 getImageId(), getSuggestedWhlslPrice(), getWhlslUnits() });
}
protected void callUpdateProcedure(TransactionEvent e) {
 callStoredProcedure("products_api.update_product(?,?,?,?,?,?)",
 new Object[] { getId(), getName(), getShortDesc(), getLongtextId(),
 getImageId(), getSuggestedWhlslPrice(), getWhlslUnits() });
}
protected void callDeleteProcedure(TransactionEvent e) {
 callStoredProcedure("products_api.delete_product(?)",
 new Object[] { getId() });
}

Chapter 4
Basing an Entity Object on a PL/SQL Package API

4-103

At this point, if you create a default entity-based view object called ProductView for
the Product entity object and add an instance of it to a AppModule application module
you can quickly test inserting, updating, and deleting rows from the ProductView view
object instance in the Oracle ADF Model Tester.

Often, overriding just the insert, update, and delete operations will be enough. The
default behavior that performs the SELECT statement for findByPrimaryKey() and the
SELECT FOR UPDATE statement for the lock() against the database view works for
most basic kinds of views.

However, if the view is complex and does not support SELECT FOR UPDATE or if you
need to perform the findByPrimaryKey() and lock() functionality using additional
stored procedures APIs, then you can use the technique described in How to Add
Select and Lock Handling.

How to Add Select and Lock Handling
You can handle the lock() and findByPrimaryKey() functionality of an entity object
by invoking stored procedures if necessary. Imagine that the PRODUCTS_API package
were updated to contain the two additional procedures shown here.

/* Added to PRODUCTS_API package */
procedure lock_product(p_id number,
 p_name OUT varchar2,
 p_short_desc OUT varchar2,
 p_longtext_id OUT number,
 p_image_id OUT number,
 p_suggested_whlsl_price OUT number,
 p_whlsl_units OUT varchar2);
procedure select_product(p_id number,
 p_name OUT varchar2,
 p_short_desc OUT varchar2,
 p_longtext_id OUT number,
 p_image_id OUT number,
 p_suggested_whlsl_price OUT number,
 p_whlsl_units OUT varchar2);

Both the lock_product and select_product procedures accept a primary key attribute
as an IN parameter and return values for the remaining attributes using OUT
parameters.

To add select and lock handling, you will need to perform the following tasks:

1. Update the base class to handle lock and select, as described in Updating
PLSQLEntityImpl Base Class to Handle Lock and Select.

2. Update the entity object implementation class to implement the lock and select
behaviors, as described in Implementing Lock and Select for the Product Entity.

3. Override the lock() method in the entity object implementation class to refresh
the entity object after a RowInconsistentException has occurred, as described in
Refreshing the Entity Object After RowInconsistentException.

Updating PLSQLEntityImpl Base Class to Handle Lock and Select
You can extend the PLSQLEntityImpl base class to handle the lock() and
findByPrimaryKey() overrides using helper methods similar to the ones you added
for insert, update, delete. At runtime, both the lock() and findByPrimaryKey()

Chapter 4
Basing an Entity Object on a PL/SQL Package API

4-104

operations invoke the lower-level entity object method called doSelect(boolean
lock). The lock() operation calls doSelect() with a true value for the parameter,
while the findByPrimaryKey() operation calls it passing false instead.

The following example shows the overridden doSelect() method in PLSQLEntityImpl
to delegate as appropriate to two helper methods that subclasses can override as
necessary.

// In PLSQLEntityImpl.java
protected void doSelect(boolean lock) {
 if (lock) {
 callLockProcedureAndCheckForRowInconsistency();
 } else {
 callSelectProcedure();
 }
}

The two helper methods are written to just perform the default functionality in the base
PLSQLEntityImpl class:

// In PLSQLEntityImpl.java
/* Override in a subclass to perform nondefault processing */
protected void callLockProcedureAndCheckForRowInconsistency() {
 super.doSelect(true);
}
/* Override in a subclass to perform nondefault processing */
protected void callSelectProcedure() {
 super.doSelect(false);
}

Notice that the helper method that performs locking has the name
callLockProcedureAndCheckForRowInconsistency(). This reminds you that you need
to perform a check to detect at the time of locking the row whether the newly selected
row values are the same as the ones the entity object in the entity cache believes are
the current database values.

To assist subclasses in performing this old-value versus new-value attribute
comparison, you can add one final helper method to the PLSQLEntityImpl class like
this:

// In PLSQLEntityImpl
protected void compareOldAttrTo(int attrIndex, Object newVal) {
 if ((getPostedAttribute(attrIndex) == null && newVal != null) ||
 (getPostedAttribute(attrIndex) != null && newVal == null) ||
 (getPostedAttribute(attrIndex) != null && newVal != null &&
 !getPostedAttribute(attrIndex).equals(newVal))) {
 throw new RowInconsistentException(getKey());
 }
}

Implementing Lock and Select for the Product Entity
With the additional infrastructure in place in the base
PLSQLEntityImpl class, you can override the callSelectProcedure() and
callLockProcedureAndCheckForRowInconsistency() helper methods in the entity
object implementation class (for example, ProductImpl). Because the select_product
and lock_product procedures have OUT arguments, as described in How to Call Other
Types of Stored Procedures, you need to use a JDBC CallableStatement object to
perform these invocations.

Chapter 4
Basing an Entity Object on a PL/SQL Package API

4-105

The example below shows the code you would use to invoke the select_product
procedure for the ProductImpl entity object implementation class to select a row by
primary key. It's performing the following basic steps:

1. Creating a CallableStatement for the PLSQL block to invoke.

2. Registering the OUT parameters and types, by one-based bind variable position.

3. Setting the IN parameter value.

4. Executing the statement.

5. Retrieving the possibly updated column values.

6. Populating the possibly updated attribute values in the row.

7. Closing the statement.

// In ProductImpl.java
protected void callSelectProcedure() {
 String stmt = "begin products_api.select_product(?,?,?,?,?,?,?);end;";
 // 1. Create a CallableStatement for the PLSQL block to invoke
 CallableStatement st = getDBTransaction().createCallableStatement(stmt, 0);
 try {
 // 2. Register the OUT parameters and types
 st.registerOutParameter(2, VARCHAR2);
 st.registerOutParameter(3, VARCHAR2);
 st.registerOutParameter(4, NUMBER);
 st.registerOutParameter(5, NUMBER);
 st.registerOutParameter(6, NUMBER);
 st.registerOutParameter(7, VARCHAR2);
 // 3. Set the IN parameter value
 st.setObject(1, getId());
 // 4. Execute the statement
 st.executeUpdate();
 // 5. Retrieve the possibly updated column values
 String possiblyUpdatedName = st.getString(2);
 String possiblyUpdatedShortDesc = st.getString(3);
 String possiblyUpdatedLongTextId = st.getString(4);
 String possiblyUpdatedImageId = st.getString(5);
 String possiblyUpdatedSuggestedPrice = st.getString(6);
 String possiblyUpdatedWhlslUnits = st.getString(7);
 // 6. Populate the possibly updated attribute values in the row
 populateAttribute(NAME, possiblyUpdatedName, true, false,
 false);
 populateAttribute(SHORTDESC, possiblyUpdatedShortDesc, true,
 false, false);
 populateAttribute(LONGTEXTID, possiblyUpdatedLongTextId, true,
 false, false);
 populateAttribute(IMAGEID, possiblyUpdatedImageId, true, false,
 false);
 populateAttribute(SUGGESTEDWHLSLPRICE, possiblyUpdatedSuggestedPrice,
 true, false, false);
 populateAttribute(WHLSLUNITS, possiblyUpdatedWhlslUnits, true,
 false, false);
 } catch (SQLException e) {
 throw new JboException(e);
 } finally {
 if (st != null) {
 try {
 // 7. Closing the statement
 st.close();
 } catch (SQLException e) {

Chapter 4
Basing an Entity Object on a PL/SQL Package API

4-106

 }
 }
 }
}

The following example shows the code to invoke the lock_product procedure. It's
doing basically the same steps as those above, with just the following two interesting
differences:

• After retrieving the possibly updated column values from the OUT parameters, it
uses the compareOldAttrTo() helper method inherited from the PLSQLEntityImpl
to detect whether or not a RowInconsistentException should be thrown as a
result of the row lock attempt.

• In the catch (SQLException e) block, it is testing to see whether the database
has thrown the error:

ORA-00054: resource busy and acquire with NOWAIT specified

and if so, it again throws the ADF Business Components
AlreadyLockedException just as the default entity object implementation of the
lock() functionality would do in this situation.

With these methods in place, you have and entity object that wraps the PL/SQL
package (in this case, a Product entity object with the PRODUCTS_API package) for
all of its database operations. Due to the clean separation of the data querying
functionality of view objects and the data validation and saving functionality of entity
objects, you can now leverage this entity object in any way you would use a normal
entity object. You can build as many different view objects as necessary that use this
entity object as their entity usage.

// In ProductsImpl.java
protected void callLockProcedureAndCheckForRowInconsistency() {
 String stmt = "begin products_api.lock_product(?,?,?,?,?,?,?);end;";
 CallableStatement st =
 getDBTransaction().createCallableStatement(stmt, 0);
 try {
 st.registerOutParameter(2, VARCHAR2);
 st.registerOutParameter(3, VARCHAR2);
 st.registerOutParameter(4, NUMBER);
 st.registerOutParameter(5, NUMBER);
 st.registerOutParameter(6, NUMBER);
 st.registerOutParameter(7, VARCHAR2);
 st.setObject(1, getId());
 st.executeUpdate();
 String possiblyUpdatedName = st.getString(2);
 String possiblyUpdatedShortDesc = st.getString(3);
 String possiblyUpdatedLongTextId = st.getString(4);
 String possiblyUpdatedImageId = st.getString(5);
 String possiblyUpdatedSuggestedPrice = st.getString(6);
 String possiblyUpdatedWlhslUnits = st.getString(7);
 compareOldAttrTo(NAME, possiblyUpdatedName);
 compareOldAttrTo(SHORTDESC, possiblyUpdatedShortDesc);
 compareOldAttrTo(LONGTEXTID, possiblyUpdatedLongTextId);
 compareOldAttrTo(IMAGEID, possiblyUpdatedImageId);
 compareOldAttrTo(SUGGESTEDWHLSLPRICE, possiblyUpdatedSuggestedPrice);
 compareOldAttrTo(WHLSLUNITS, possiblyUpdatedWlhslUnits);
 } catch (SQLException e) {
 if (Math.abs(e.getErrorCode()) == 54) {
 throw new AlreadyLockedException(e);
 } else {

Chapter 4
Basing an Entity Object on a PL/SQL Package API

4-107

 throw new JboException(e);
 }
 } finally {
 if (st != null) {
 try {
 st.close();
 } catch (SQLException e) {
 }
 }
 }
}

Refreshing the Entity Object After RowInconsistentException
You can override the lock() method to refresh the entity object after a
RowInconsistentException has occurred. The following example shows code
that can be added to the entity object implementation class to catch the
RowInconsistentException and refresh the entity object.

// In the entity object implementation class
@Override
public void lock() {
 try {
 super.lock();
 }
 catch (RowInconsistentException ex) {
 this.refresh(REFRESH_UNDO_CHANGES);
 throw ex;
 }
}

Basing an Entity Object on a Join View or Remote DBLink
Some types of schema do not support the RETURNING clause. So disable this clause
in the ADF entity object. The entity object then implements Refresh on Insertand
Refresh on Update.

If you need to create an entity object based on either of the following:

• Synonym that resolves to a remote table over a DBLINK

• View with INSTEAD OF triggers

Then you will encounter the following error if any of its attributes are marked as
Refresh on Insert or Refresh on Update:

JBO-26041: Failed to post data to database during "Update"
Detail 0
ORA-22816: unsupported feature with RETURNING clause

These types of schema objects do not support the RETURNING clause, which by default
the entity object uses to more efficiently return the refreshed values in the same
database roundtrip in which the INSERT or UPDATE operation was executed.

Chapter 4
Basing an Entity Object on a Join View or Remote DBLink

4-108

How to Disable the Use of the RETURNING Clause
Because some types of schema objects do not support the RETURNING clause, you
might need to disable the RETURNING clause in your entity object. The following
procedures explains how to do that.

Before you begin:

It may be helpful to have an understanding of the types of schema objects don't
support the RETURNING clause. For more information, see Basing an Entity Object on a
Join View or Remote DBLink.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

To disable the use of the RETURNING clause for an entity object of this type:

1. Enable a custom entity definition class for the entity object.

2. In the custom entity definition class, override the createDef() method to call
setUseReturningClause(false).

3. If the Refresh on Insert attribute is the primary key of the entity object, you must
specify some other attribute in the entity as an alternate unique key by setting the
Unique Key property on it.

What Happens at Runtime: Refresh Behavior With Disabled
RETURNING Clause

At runtime, when you have disabled the use of the RETURNING clause as described
in How to Disable the Use of the RETURNING Clause,, the entity object implements
the Refresh on Insert and Refresh on Update behavior using a separate SELECT
statement to retrieve the values to refresh after insert or update as appropriate.

Using Inheritance in Your Business Domain Layer
ADF Business Components supports inheritance to allow you to create new
components by extending existing ones.

Inheritance is a powerful feature of object-oriented development that can simplify
development and maintenance when used appropriately. As shown in Creating
Extended Components Using Inheritance, ADF Business Components supports using
inheritance to create new components that extend existing ones in order to add
additional properties or behavior or modify the behavior of the parent component.
Inheritance can be useful in modeling the different kinds of entities in your reusable
business domain layer.

Chapter 4
Using Inheritance in Your Business Domain Layer

4-109

Note:

The example in this section is an extension of the
oracle.summit.model.polymorphic package in the SummitADF_Examples
workspace.

Understanding When Inheritance Can Be Useful
Your application's database schema might contain tables where different logical kinds
of business information are stored in rows of the same table. These tables will typically
have one column whose value determines the kind of information stored in each row.
For example, an application's S_CUSTOMER table stores information about both domestic
and international customers in the same table. It contains a CUSTOMER_TYPE_CODE
column whose value determines what kind of S_CUSTOMER the row represents.

While the Summit ADF sample application implementation doesn't contain this
differentiation, it's reasonable to assume that revisions of the application might require:

• Managing additional database-backed attributes that are specific to domestic
customers or specific to international customers

• Implementing common behavior for all users that is different for domestic or
international customers

• Implementing new functionality that is specific to only domestic or only
international customers

Figure 4-19 shows what the business domain layer would look like if you
created distinct Customers, Domestics, and Internationals entity objects to allow
distinguishing the different kinds of business information in a more formal way inside
your application. Since domestic and international are special kinds of customers, their
corresponding entity objects would extend the base Customers entity object. This base
Customers entity object would contain all of the attributes and methods common to all
types of users. The performCustomerFunction() method in the figure represents one
of these common methods.

Then, for the Domestics and Internationals entity objects you can add specific
additional attributes and methods that are unique to that kind of user. For example,
Domestics has an additional State attribute of type String to track the state in
which the domestic customer is located. There is also a performDomesticFunction()
method that is specific to domestic customers. Similarly, the Internationals entity
object has an additional Language attribute to track whether the customer speaks
English. The performInternationalFunction() is a method that is specific to
international customers.

Chapter 4
Using Inheritance in Your Business Domain Layer

4-110

Figure 4-19 Distinguishing Customers, Domestics, and Internationals Using
Inheritance

By modeling these different kinds of customers as distinct entity objects in an
inheritance hierarchy in your domain business layer, you can simplify having them
share common data and behavior and implement the aspects of the application that
make them distinct.

How to Create Entity Objects in an Inheritance Hierarchy
To create entity objects in an inheritance hierarchy, you use the Create Entity Object
wizard to create each entity.

To create entity objects in an inheritance hierarchy, you will perform the following
tasks:

1. Identify the discriminator column and values, as described in Identifying the
Discriminator Column and Distinct Values.

2. Identify the subset of attributes for each entity object, as described in Identifying
the Subset of Attributes Relevant to Each Kind of Entity.

3. Create the base entity object, as described in Creating the Base Entity Object in
an Inheritance Hierarchy.

4. Create the subtype entity objects, as described in Creating a Subtype Entity
Object in an Inheritance Hierarchy.

Chapter 4
Using Inheritance in Your Business Domain Layer

4-111

Identifying the Discriminator Column and Distinct Values
Before creating entity objects in an inheritance hierarchy based on a table containing
different kinds of information, you should first identify which column in the table is used
to distinguish which kind of row it is.

For example, in a S_CUSTOMER table, this might be a CUSTOMER_TYPE_CODE column.
Since it helps partition or "discriminate" the rows in the table into separate groups, this
column is known as the discriminator column.

Next, determine the valid values that the discriminator column takes on in your table.
You might know this, or you could execute a simple SQL statement in the JDeveloper
SQL Worksheet to determine the answer. To access the worksheet:

1. With the application open in JDeveloper, choose Window > Database >
Databases from the main menu.

2. Expand the workspace node, and select the connection.

3. Right-click the database connection, and choose Open SQL Worksheet.

Figure 4-20 shows the results of performing a SELECT DISTINCT query in the SQL
Worksheet on the CUSTOMER_TYPE_CODE column in the S_CUSTOMER table. It confirms
that the rows are partitioned into two groups based on the CUSTOMER_TYPE_CODE
discriminator values: DOMESTIC and INTERNATIONAL.

Figure 4-20 Using the SQL Worksheet to Find Distinct Discriminator Column
Values

Identifying the Subset of Attributes Relevant to Each Kind of Entity
Once you know how many different kinds of business entities are stored in the table,
you will also know how many entity objects to create to model these distinct items.
You'll typically create one entity object per kind of item. Then, to help determine which
entity should act as the base of the hierarchy, you need to determine which subset of
attributes is relevant to each kind of item.

For example, assume you determine that all of the attributes except State and
Language are relevant to all users, and that:

• State is specific to domestic customers

Chapter 4
Using Inheritance in Your Business Domain Layer

4-112

• Language is specific to international customers.

This information leads you to determine that the Customers entity object should be
the base of the hierarchy, with the Domestics and Internationals entity objects each
extending Customers to add their specific attributes.

Creating the Base Entity Object in an Inheritance Hierarchy
To create the base entity object in an inheritance hierarchy, you use the Create Entity
Object wizard.

Before you begin:

It may be helpful to have an understanding of entity objects in an inheritance hierarchy.
For more information, see Using Inheritance in Your Business Domain Layer.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

You will also need to determine the discriminator column and values, as described in
Identifying the Discriminator Column and Distinct Values, and determine the attributes
for each entity object, as described in Identifying the Subset of Attributes Relevant to
Each Kind of Entity.

To create the base entity object

1. In the Applications window, right-click the project to which you want to add the
entity object and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Entity Object, and click OK.

3. In the Create Entity Object wizard, on the Name Page, provide a name and
package for the entity, and select the schema object on which the entity will be
based.

In this example, name the entity object Customers and base it on the S_CUSTOMER
table.

4. On the Attributes page, select the attributes in the Entity Attributes list that are
not relevant to the base entity object (if any) and click Remove to remove them.

In this example, you would remove the State and Language attributes from the list.

5. On the Attribute Settings page, use the Select Attribute dropdown list to choose
the attribute that will act as the discriminator for the family of inherited entity
objects and select the Discriminator checkbox to identify it as such. Importantly,
you must also supply a Default Value for this discriminator attribute to identify
rows of this base entity type.

In this example, you would select the CustomerTypeCode attribute, mark it as a
discriminator attribute, and set its Default Value to the value "CUSTOMER".

Chapter 4
Using Inheritance in Your Business Domain Layer

4-113

Note:

Leaving the Default Value blank for a discriminator attribute is legal. A
blank default value means that a row with the discriminator column value
IS NULL will be treated as this base entity type.

6. Then click Finish.

Creating a Subtype Entity Object in an Inheritance Hierarchy
To create a subtype entity object in an inheritance hierarchy, you use the Create Entity
Object wizard.

Before you begin:

It may be helpful to have an understanding of entity objects in an inheritance hierarchy.
For more information, see Using Inheritance in Your Business Domain Layer.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

You will also need to perform the following tasks:

1. Determine the discriminator column and values, as described in Identifying the
Discriminator Column and Distinct Values.

2. Determine the attributes for each entity object, as described in Identifying the
Subset of Attributes Relevant to Each Kind of Entity.

3. Create the parent entity object from which your new entity object will extend, as
described in Creating the Base Entity Object in an Inheritance Hierarchy.

4. Make sure that the parent entity has a discriminator attribute already identified.

If it does not, use the overview editor to set the Discriminator property on the
appropriate attribute of the parent entity before creating the inherited child.

To create the new subtype entity object in the hierarchy:

1. In the Applications window, right-click the project to which you want to add the
entity object and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Entity Object, and click OK.

3. In the Create Entity Object wizard, on the Name Page, provide a name and
package for the entity, and click the Browse button next to the Extends field to
select the parent entity from which the entity being created will extend.

In this example, you would name the new entity Domestics and select the
Customers entity object in the Extends field.

4. On the Attributes page, the Entity Attributes list displays the attributes from the
underlying table that are not included in the base entity object. Select the attributes
you do not want to include in this entity object and click Remove.

In this example, because you are creating the Domestics entity you would remove
the Language attribute and leave the State attribute.

Chapter 4
Using Inheritance in Your Business Domain Layer

4-114

5. Click Override to select the discriminator attribute so that you can customize
the attribute metadata to supply a distinct Default Value for the Domestics entity
subtype.

In this example, you would override the CustomerTypeCode attribute.

6. On the Attribute Settings page, use the Select Attribute dropdown list to select
the discriminator attribute. Change the Default Value field to supply a distinct
default value for the discriminator attribute that defines the entity subtype being
created.

In this example, you would select the CustomerTypeCode attribute and change its
Default Value to the value "DOMESTIC".

7. Click Finish.

Note:

You can repeat the same steps to define the Internationals entity
object that extends Customers to add the additional Language attribute and
overrides the Default Value of the CustomerTypeCode discriminator attribute
to have the value "INTERNATIONAL".

How to Add Methods to Entity Objects in an Inheritance Hierarchy
To add methods to entity objects in an inheritance hierarchy, enable the custom Java
class for the entity object and use the source editor to add the method. Methods that
are common to all entity objects in the hierarchy are added to the base entity, while
subtype-specific methods are added to the subtype. You can also override methods
from the base entity object in the subtypes as necessary.

Adding Methods Common to All Entity Objects in the Hierarchy
To add a method that is common to all entity objects in the hierarchy, you add the
method to the implementation class of the base entity object.

Before you begin:

It may be helpful to have an understanding of entity objects in an inheritance hierarchy.
For more information, see Using Inheritance in Your Business Domain Layer.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

You will also need to perform the following tasks:

1. Create the base entity object and subtypes in the hierarchy, as described in How
to Create Entity Objects in an Inheritance Hierarchy.

2. Create a custom Java implementation class for the base entity object, as
described in Generating Custom Java Classes for an Entity Object.

To add a method common to all entity objects in a hierarchy:

Chapter 4
Using Inheritance in Your Business Domain Layer

4-115

1. In the Applications window, double-click the base entity object implementation
class (for example, CustomersImpl.java).

2. In the source editor, add the method.

For example, you could add the following method to the CustomersImpl class for
the base Customers entity object:

// In CustomersImpl.java
public void performCustomerFunction() {
 System.out.println("## performCustomerFunction as Customer");
}

Because this is the base entity object class, the methods you implement here are
inherited by all subtype entity objects in the hierarchy.

Overriding Common Methods in a Subtype Entity Object
To override a method in a subtype entity object that is common to all entity objects in
the hierarchy, you modify the common method inherited from the base entity object in
the implementation class of the subtype entity object.

Before you begin:

It may be helpful to have an understanding of entity objects in an inheritance hierarchy.
For more information, see Using Inheritance in Your Business Domain Layer.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

You will also need to perform the following tasks:

1. Create the base entity object and subtypes in the hierarchy, as described in How
to Create Entity Objects in an Inheritance Hierarchy.

2. Create the common method in the base entity object, which your subtype entity
object will override, as described in Adding Methods Common to All Entity Objects
in the Hierarchy.

3. Create a a custom Java implementation class for the subtype entity object, as
described in Generating Custom Java Classes for an Entity Object.

To override a method in a subtype entity object:

1. In the Applications window, double-click the subtype entity object implementation
class (for example, DomesticsImpl.java).

2. With the subtype entity object implementation class open in the source editor,
choose Source > Override Methods from the main menu.

3. In the Override Methods dialog, select the method you want to override (for
example, the performCustomerFunction() method), and click OK.

4. In the source editor, customize the overridden method's implementation.

For example, you could override the performCustomerFunction() method in the
DomesticsImpl class for the Domestics subtype entity object and change the
implementation to look like this:

// In DomesticsImpl.java
public void performCustomerFunction() {

Chapter 4
Using Inheritance in Your Business Domain Layer

4-116

 System.out.println("## performCustomerFunction as Domestics");
}

When working with instances of entity objects in a subtype hierarchy, sometimes
you will process instances of multiple different subtypes. Because the Domestics and
Internationals entity objects are special kinds of Customers, you can write code that
works with all of them using the more generic CustomersImpl type that they all have in
common. When doing this generic kind of processing of classes that might be one of a
family of subtypes in a hierarchy, Java will always invoke the most specific override of
a method available.

This means that invoking the performCustomerFunction() method on an instance of
CustomersImpl that happens to really be the more specific DomesticsImpl subtype,
will the result in printing out the following:

performCustomerFunction as Domestics

instead of the default result that regular CustomersImpl instances would get:

performCustomerFunction as Customer

Adding Methods Specific to a Subtype Entity Object
To add a method that is specific to a subtype entity object in the hierarchy, you simply
add the method in the implementation class of the subtype using the source editor.

Before you begin:

It may be helpful to have an understanding of entity objects in an inheritance hierarchy.
For more information, see Using Inheritance in Your Business Domain Layer.

You may also find it helpful to understand additional functionality that can be added
using other entity object features. For more information, see Additional Functionality
for Entity Objects.

You will also need to perform the following tasks:

1. Create the base entity object and subtypes in the hierarchy, as described in How
to Create Entity Objects in an Inheritance Hierarchy.

2. Create a custom Java implementation class for the subtype entity object, as
described in Generating Custom Java Classes for an Entity Object.

To add a method specific to a subtype entity object:

1. In the Applications window, double-click the subtype entity object implementation
class (for example, InternationalsImpl.java).

2. In the source editor, add the method.

For example, you could add a performInternationalFunction() method to the
InternationalsImpl class for the subtype Internationals entity object:

// In InternationalsImpl.java
public void performInternationalFunction() {
 System.out.println("## performInternationalFunction called");
}

Chapter 4
Using Inheritance in Your Business Domain Layer

4-117

What You May Need to Know About Using Inheritance
When using inheritance, you can also introduce a new base entity, find subtype entities
using a primary key, and create view objects with polymorphic entity usages.

Introducing a New Base Entity
For example, where the Customers entity object corresponds to a concrete kind of row
in the S_CUSTOMERS table, it also plays the role of the base entity in the inheritance
hierarchy. In other words, all of its attributes were common to all entity objects in the
hierarchy. A situation might arise, however, where the Customers entity object required
a property that was specific to customers, but not common to domestic or international
customers.

In this case, you can introduce a new entity object (for example, BaseCustomers) to
act as the base entity in the hierarchy. It would have all of the attributes common
to all Customers, Domestics, and Internationals entity objects. Then each of the
three entities that correspond to concrete rows that appear in the table could have
some attributes that are inherited from BaseCustomers and some that are specific
to the individual subtype. In the BaseCustomers type, so long as you mark the
CustomerTypeCode attribute as a discriminator attribute, you can just leave the Default
Value blank (or some other value that does not occur in the CUSTOMER_TYPE_CODE
column in the table). Because you will not use instances of the BaseCustomers entity in
the application, it doesn't matter what its discriminator default value is.

Subtype Entity Objects and the findByPrimaryKey() Method
When you use the findByPrimaryKey() method on an entity definition, it only
searches the entity cache for the entity object type on which you call it. For example,
this means that if you call CustomersImpl.getDefinitionObject() to access the entity
definition for the Customers entity object when you call findByPrimaryKey() on it, you
will only find entities in the cache that happen to be customers. Sometimes this is
exactly the behavior you want.

However, if you want to find an entity object by primary key allowing the possibility
that it might be a subtype in an inheritance hierarchy, then you can use the
findByPKExtended() method from the EntityDefImpl class instead.

For example, if you have created subtypes of the Customers entity object, this
alternative finder method would find an entity object by primary key whether it is a
customer, domestic, or international. You can then use the Java instanceof operator
to test which type you found, and then cast the CustomersImpl object to the more
specific entity object type to work with features specific to that subtype.

View Objects with Polymorphic Entity Usages
When you create an entity-based view object with an entity usage corresponding to
a base entity object in an inheritance hierarchy, you can configure the view object to
query rows corresponding to multiple different subtypes in the base entity's subtype
hierarchy. Each row in the view object will use the appropriate subtype entity object
as the entity row part, based on matching the value of the discriminator attribute. See
How to Create a Subtype View Object with a Polymorphic Entity Usage, for specific
instructions on setting up and using these view objects.

Chapter 4
Using Inheritance in Your Business Domain Layer

4-118

5
Defining SQL Queries Using View Objects

This chapter describes how to create ADF view objects to create SQL queries that
join, filter, sort, and aggregate data for use in an Oracle ADF application. It describes
how view objects map their SQL-derived attributes to database table columns and
static data sources, such as a flat file.
This chapter includes the following sections:

• About View Objects

• Populating View Object Rows from a Single Database Table

• Working with View Objects in Declarative SQL Mode

• Creating View Objects Populated With Static Data

• Adding Calculated and Transient Attributes to a View Object

• Limiting View Object Rows Using Effective Date Ranges

• Working with Multiple Tables in Join Query Results

• Working with View Objects and Custom SQL

• Working with Named View Criteria

• Working with Bind Variables

• Working with Row Finders

• Working with List of Values (LOV) in View Object Attributes

• Defining UI Hints for View Objects

About View Objects
Use Oracle ADF view objects to encapsulate SQL queries and build data models of
ADF application modules.

A view object is an Oracle Application Development Framework (Oracle ADF)
component that encapsulates a SQL query and simplifies working with its results.
There are several types of view objects that you can create in your data model project:

• Entity-based view objects when data updates will be performed or just to read data

• Non-entity backed view objects for cases not supported by entity objects (view
objects with no entity usage definition are always read-only)

• Static data view objects for data defined by the view object itself

• Programmatically populated view objects (see Using Programmatic View Objects
for Alternative Data Sources)

An entity-based view object can be configured to support updatable rows when you
create view objects that map their attributes to the attributes of one or more existing
entity objects. The mapped entity object is saved as an entity usage in the view object
definition. In this way, entity-based view objects cooperate automatically with entity
objects to enable a fully updatable data model. The entity-based view object usage

5-1

queries just the data needed for the client-facing task and relies on its mapped entity
objects and their entity cache of rows to automatically validate and save changes
made to its view rows. An entity-based view object encapsulates a SQL query, it can
be linked into master-detail hierarchies, and it can be used in the data model of an
application module. The backing entity cache manages updates to the queried data
so that every view object usage based on the same entity object points to the entity
cache of rows rather than store duplicate data in the view object usage.

In contrast to entity-based view objects, entity-less view objects require you to write
the query using the SQL query language. Non-entity backed view objects do not
pick up entity-derived default values, they do not reflect pending changes, and they
do not reflect updated reference information. The Create View Object wizard and
overview editor for entity-based view objects, on the other hand, simplify this task
by helping you to construct the SQL query declaratively. In addition, because entity-
based view objects manage queried data using the entity cache, they have better
performance over view objects with no entity usage which require special runtime
handling of updates to their view object row cache. For these reasons, it is almost
always preferable to create an entity-mapped view object, even when you want to
create a view object just to read data.

There remain a few situations where it is still preferable to create a non-entity-mapped
view object to read data, including SQL-based validation, Unions, and Group By
queries. In this case, it is worth noting, that view objects with no entity usage definition
are always read-only.

As an alternative to creating view objects that specify a SQL statement at design
time, you can create entity-based view objects that contain no SQL statements. This
capability of the ADF Business Components design time and runtime is known
as declarative SQL mode. The business component developer who works with the
wizard or editor for a view object in declarative SQL mode, requires no knowledge of
SQL. In declarative SQL mode, the runtime query statement is based solely on the
usage of attributes in the databound UI component.

When a view object has one or more underlying entity usages, you can create new
rows, and modify or remove queried rows. The entity-based view object coordinates
with underlying entity objects to enforce business rules and to permanently save
the changes to the database. In addition, entity-based view objects provide these
capabilities that do not exist with entity-less view objects:

• Changes in cache (updates, inserts, deletes) managed by entities survive the view
object's execution boundary.

• Changes made to relevant entity object attributes through other view objects in the
same transaction are immediately reflected.

• Attribute values of new rows are initialized to the values from the underlying entity
object attributes.

• Changes to foreign key attribute values cause reference information to get
updated.

• Validation for row (entity) level is supported.

• Composition features, including validation, locking, ordered-updates are
supported.

• Support for effective dating, change indicator, and business events.

Chapter 5
About View Objects

5-2

View Object Use Cases and Examples
This chapter helps you understand these view object concepts as illustrated in
Figure 5-1:

• You define a view object by providing a SQL query (either defined explicitly or
declaratively).

• You use view object instances in the context of an application module that
provides the database transaction for their queries.

• You can link a view object to one or more others to create master-detail
hierarchies.

• At runtime, the view object executes your query and produces a set of rows
(represented by a RowSet object).

• Each row is identified by a corresponding row key.

• You iterate through the rows in a row set using a row set iterator.

• You can filter the row set a view object produces by applying a set of Query-by-
Example criteria rows.

Figure 5-1 A View Object Defines a Query and Produces a Row Set of Rows

This chapter explains how instances of entity-based view objects contained in the
data model of your application module enable clients to search for, update, insert,
and delete business services layer information in a way that combines the full
data shaping power of SQL with the clean, object-oriented encapsulation of reusable
domain business objects. And all without requiring a line of code.This chapter helps
you to understand these entity-based view object concepts as illustrated in Figure 5-2:

• You define an updatable view object by referencing attributes from one or more
entity objects.

• You can use multiple, associated entity objects to simplify working with reference
information.

• You can a define view link based on underlying entity associations.

• You use your entity-based view objects in the context of an application module that
provides the transaction.

Chapter 5
About View Objects

5-3

• At runtime, the view row delegates the storage and validation of its attributes to
underlying entity objects.

Figure 5-2 View Objects and Entity Objects Collaborate to Enable an Updatable
Data Model

Additional Functionality for View Objects
You may find it helpful to understand other Oracle ADF features before you start
working with view objects. Following are links to other functionality that may be of
interest.

• For additional information about using Groovy script wherever expressions are
supported in view object definitions, see Using Groovy Scripting Language with
Business Components.

• For details about using the interactive Oracle ADF Model Tester to validate view
object query results, see Testing View Instance Queries.

• For details about the role of the entity cache plays in a transaction involving
entity-based view objects, see What Happens at Runtime: How View Objects and
Entity Objects Cooperate.

• For details about creating a data model consisting of view object instances, see
Implementing Business Services with Application Modules.

• For a quick reference to the most common code that you will typically write, use,
and override in your custom view object classes, see Most Commonly Used ADF
Business Components Methods.

• For API documentation related to the oracle.jbo package, see the following
Javadoc reference document:

– Java API Reference for Oracle ADF Model

Populating View Object Rows from a Single Database Table
ADF Business Components view objects are utilized to retrieve data from a data
source such as a database table using SQL queries.

View objects provide the means to retrieve data from a data source. In the majority of
cases, the data source will be a database and the mechanism to retrieve data is the

Chapter 5
Populating View Object Rows from a Single Database Table

5-4

SQL query. ADF Business Components can work with JDBC to pass this query to the
database and retrieve the result.

When view objects use a SQL query, query columns map to view object attributes
in the view object. The definition of these attributes, saved in the view object's
XML definition file, reflect the properties of these columns, including data types and
precision and scale specifications.

Performance Tip:

If the query associated with the view object contains query parameters
whose values change from execution to execution, use bind variables. Using
bind variables in the query allows the query to reexecute without needing to
reparse the query on the database. You can add bind variables to the view
object in the Query page of the overview editor for the view object. For more
information, see See Working with Bind Variables.

Using the same Create View Object wizard, you can create view objects that either
map to the attributes of existing entity objects or not. Only entity-based view objects
automatically coordinate with mapped entity objects to enforce business rules and to
permanently save data model changes. Additionally, you can disable the Updatable
feature for entity-based view objects and work entirely declaratively to query read-only
data. Alternatively, you can use the wizard or editor's custom SQL mode to work
directly with the SQL query language, but the view object you create will not support
the transaction features of the entity-based view object.

When you create entity-based view objects, you have the option to keep the view
object definition entirely declarative and maintain a customizable view object. Or, you
may switch to custom SQL query editing to create queries that entity objects alone
cannot express, including Unions and Group By queries. Additionally, custom SQL
view objects are useful in SQL-based validation queries used by the view object-based
Key Exists validator. It is worth noting that, by definition, using custom SQL mode to
define a SQL query means the view object is read only.

For information about the differences between entity-based view objects and entity-
less view objects, see About View Objects.

How to Create an Entity-Based View Object
Creating an entity-based view object is the simplest way to create a view object. It is
even easier than creating a custom SQL view object, since you don't have to type in
the SQL statement yourself. An entity-based view object also offers significantly more
runtime functionality than its custom SQL counterpart.

In an entity-based view object, the view object and entity object play cleanly separated
roles:

• The view object is the data source: it retrieves the data using SQL.

• The entity object is the data sink: it handles validating and saving data changes.

Because view objects and entity objects have cleanly separated roles, you can build
different view objects — projecting, filtering, joining, sorting the data in whatever way
your user interfaces require, application after application — without any changes to
the reusable entity object. In fact, it is possible that the development team responsible

Chapter 5
Populating View Object Rows from a Single Database Table

5-5

for the core business services layer of entity objects might be completely separate
from another team responsible for the specific application modules and view objects
needed to support the end-user environment. This relationship is enabled by metadata
that the entity-based view object encapsulates. The metadata specifies how the
SELECT list columns are related to the attributes of one or more underlying entity
objects.

Your entity-based view object may be based on more than one database table. To
use database joins to add multiple tables to the view object, see Working with Multiple
Tables in Join Query Results.

Creating a View Object with All the Attributes of an Entity Object
When you want to allow the client to work with all of the attributes of an underlying
entity object, you can use the Create Default View Object dialog to quickly create the
view object from an entity object that you select in the Applications window. To create
the default view object, select the entity object, right-click and choose New Default
View Object. When you do not want the view object to contain all the attributes, you
can use the Create View Object wizard and select only the attributes that you need, as
described in Creating an Entity-Based View Object from a Single Table.

Before you begin:

It may be helpful to have an understanding of entity-based view objects. For more
information, see How to Create an Entity-Based View Object.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Either create the desired entity objects yourself, as described in How to Create
Multiple Entity Objects and Associations from Existing Tables or consult the
developer responsible for creating entity objects and let them know the data that
you expect to query.

To create a default entity-based view object:

1. In the Applications window, right-click the entity object and choose New Default
View Object.

This context menu option lets you create a view object based on a single entity
object that you select. If you need to add additional entity objects to the view
object definition, you can use the Entity Objects page of the view object overview
editor after you create the view object.

2. In the Create Default View Object dialog, provide a package and component name
for the new view object.

In the Create Default View Object dialog you can click Browse to select
the package name from the list of existing packages. For example, in
Figure 5-3, clicking Browse locates oracle.summit.model.entities package on
the classpath for the Model project of the application.

Chapter 5
Populating View Object Rows from a Single Database Table

5-6

Figure 5-3 Shortcut to Creating a Default View Object for an Entity Object

The new entity-based view object created will be identical to one you could have
created with the Create View Object wizard. By default, it will have a single entity
usage referencing the entity object you selected in the Applications window, and will
include all of its attributes. It will initially have neither a WHERE nor ORDER BY clause, and
you may want to use the overview editor for the view object to:

• Remove unneeded attributes

• Refine its selection with a WHERE clause

• Order its results with an ORDER BY clause

• Customize any of the view object properties

Creating an Entity-Based View Object from a Single Table
To create an entity-based view object, use the Create View Object wizard, which is
available from the New Gallery.

Before you begin:

It may be helpful to have an understanding of entity-based view objects. See, see How
to Create an Entity-Based View Object.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. See, see Additional Functionality for View Objects.

You will need to complete this task:

Create the desired entity objects, as described in How to Create Multiple Entity
Objects and Associations from Existing Tables.

To create an entity-based view object from a single table:

1. In the Applications window, right-click the package of the data model project in
which you want to create the view object and choose New and then View Object.

2. In the Create View Object wizard, on the Name page, enter a package name and
a view object name. Keep the default setting Entity selected to indicate that you
want this view object to manage data with its base entity object. Click Next.

3. On the Entity Objects page, select an entity object whose data you want to use in
the view object. Click Next.

An entry in this list is known as an entity usage, since it records the entity
objects that the view object will be using. Each entry could also be thought of as
an entity reference, since the view object references attributes from that entity.
For information about working table joins to create additional entity usages, see
Working with Multiple Tables in Join Query Results.

Chapter 5
Populating View Object Rows from a Single Database Table

5-7

For example, Figure 5-4 shows the result after shuttling the ProductEO entity
object into the Selected list.

Figure 5-4 Create View Object Wizard, Entity Objects Page

4. On the Attributes page, select the attributes you want to include from each entity
usage in the Available list and shuttle them to the Selected list. Click Next.

For example, Figure 5-5 shows the attributes have been selected from the
ProductEO.

Figure 5-5 Create View Object Wizard, Attributes Page

Chapter 5
Populating View Object Rows from a Single Database Table

5-8

5. On the Attribute Settings page, optionally, use the Select Attribute dropdown list
to switch between the view object attributes in order to change their names or any
of their initial settings.

See about any of the attribute settings, press F1 or click Help.

6. On the Query page, deselect Calculate Optimized Query at Runtime . Optionally
add a WHERE clause and use the Sort By panel to shuffle entries from Available
to Selected to add a sort criteria. JDeveloper automatically generates the SELECT
statement based on the entity attributes you've selected.

Do not include the WHERE keywords in the Where field values. The view object
adds those keywords at runtime when it executes the query.

For example, Figure 5-6 shows the Sort By clause, where the entries in the
Selected column indicate the sort criteria.

Figure 5-6 Create View Object Wizard, Query Page

7. Click Finish.

What Happens When You Create an Entity-Based View Object
When you create a view object, JDeveloper creates the XML document file that
represents the view object's declarative settings and saves it in the directory that
corresponds to the name of its package. For example, the view object ProductVO,
added to the views package, will have the XML file ./views/ProductVO.xml created in
the project's source path.

To view the view object settings, select the desired view object in the Applications
window and open the Structure window. The Structure window displays the list of XML
definitions, including the SQL query, the name of the entity usage, and the properties
of each attribute. To open the XML definition in the editor, right-click the corresponding
node and choose Go to Source.

Chapter 5
Populating View Object Rows from a Single Database Table

5-9

Note:

If you configure JDeveloper preferences to generate default Java classes for
ADF Business Components, the wizard will also create an optional custom
view object class (for example, ProductVOImpl.java) and/or a custom view
row class (for example, ProductVORowImpl.java). For details about setting
preferences, see How to Customize Model Project Properties for ADF
Business Components.

Figure 5-7 depicts the entity-based view object ProductVO and the singe entity usage
referenced in its query statement. The dotted lines represent the metadata captured
in the entity-based view object's XML document that map SELECT list columns in the
query to attributes of the entity objects used in the view object.

Figure 5-7 View Object Encapsulates a SQL Query and Entity Attribute
Mapping Metadata

What You May Need to Know About Non-Updatable View Objects
When you use the Create View Object wizard to create an entity-based view object,
by default the attributes of the view object will be updatable. When you want to make
all the attributes of the view object read-only, you can deselect Updatable when you
add the entity object in the wizard. Later you may decide to convert the view object
to one that permits updates to its SQL-mapped table columns. However, this cannot
be accomplished by merely changing the attribute's Updatable property. You must
delete the read-only view object and recreate the entity-based view object so that the
intended attributes are updatable.

How to Edit a View Object
After you've created a view object, you can edit any of its settings in the overview
editor for the view object.

Chapter 5
Populating View Object Rows from a Single Database Table

5-10

Performance Tip:

How you configure the view object to fetch data plays a large role in the
runtime performance of the view object. For information about the tuning
parameters that you can edit to optimize performance, see What You May
Need to Know About Optimizing View Object Runtime Performance.

Before you begin:

It may be helpful to have an understanding of view objects. For more information, see
Populating View Object Rows from a Single Database Table.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

To edit a view object definition:

1. In the Applications window, double-click the view object that you want to edit.

2. In the overview editor, click the desired navigation tab.

The pages of the view object overview editor let you adjust the SQL query, change
the attribute names, add named bind variables, add UI controls hints, control Java
generation options, and edit other settings.

Overriding the Inherited Properties from Underlying Entity Object Attributes
One interesting aspect of entity-based view objects is that each attribute that relates
to an underlying entity object attribute inherits that attribute's properties. Figure 5-8
shows the Details section of the view object editor's Attributes page with an inherited
attribute selected. You can see that fields like the Java attribute type and the query
column type are disabled and their values are inherited from the related attribute of the
underlying entity object to which this view object is related. Some properties like the
attribute's data type are inherited and cannot be changed at the view object level.

Other properties like Queryable and Updatable are inherited but can be overridden as
long as their overridden settings are more restrictive than the inherited settings. For
example, the attribute from underlying entity object might have an Updatable setting
of Always. As shown Figure 5-8, the Details section of the Attributes page of the
view object overview editor allows you to set the corresponding view object attribute
to a more restrictive setting like While New or Never. However, if the attribute in the
underlying entity object had instead an Updatable setting of Never, then the editor
would not allow the view object's related attribute to have a less restrictive setting like
Always.

Chapter 5
Populating View Object Rows from a Single Database Table

5-11

Figure 5-8 View Object Attribute Properties Inherited from Underlying Entity
Object

Customizing View Object Attribute Display in the Overview Editor
When you edit view objects in the overview editor, you can customize the Attributes
page of the overview editor to make better use of the attributes table displayed for the
view object.

Customization choices that you make for the attributes table include the list of attribute
properties to display as columns in the attributes table, the order that the columns
appear (from left to right) in the attributes table, the sorting order of the columns,
and the width of the columns. The full list of columns that you can choose to display
correspond to the properties that you can edit for the attribute.

For example, you can add the Updatable property as a column to display in the
attributes table when you want to quickly determine which attributes of your view
object are updatable. Or, you can add the attributes' Label property as a column and
see the same description as the end user. Or, you might want to view the list of
attributes based on their entity usages. In this case, you can display the Entity Usage
column and sort the entire attributes table on this column.

When you have set up the attributes table with the list of columns that you find most
useful, you can apply the same set of columns to the attributes table displayed for
other view objects by right-clicking the attributes table and choose Apply to All View
Objects.

Before you begin:

It may be helpful to have an understanding of view objects. For more information, see
Populating View Object Rows from a Single Database Table.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

To customize the attributes table display:

Chapter 5
Populating View Object Rows from a Single Database Table

5-12

1. In the Applications window, double-click the view object for which you want to
customize the attributes table display.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, click the dropdown menu icon to the right of the attribute
column headers (just below the attributes table's button bar) and choose Select
Columns.

Figure 5-9 Changing the Attribute Columns to DIsplay in the Overview
Editor

4. In the Select Columns dialog, perform any of the following actions:

a. Click the left/right shuttle buttons to change the list of visible columns in the
attributes table of the overview editor. The overview editor displays only those
columns corresponding to the attribute properties that appear the Selected
list.

b. Click one of the Move Selection buttons to change the position of the
columns in the attributes table of the overview editor. The overview editor
displays the attribute properties arranged from left to right starting with the
property at the top of the Selected list.

5. Click OK.

6. On the Attributes page of the overview editor, perform any of the following actions:

a. Select any column header and drag to change the position of the column in
the attributes table of the overview editor.

b. Click any column header to sort all columns in the attributes table by the
selected column.

This feature is particularly useful when you want to focus on a particular
column. For example, in the case of an entity-based view object, you can click
the Entity Usage column header to group attributes in the attributes table by
their underlying entity objects.

c. Click any column header border and drag to adjust the width of the attributes
table's column.

d. Click the dropdown list to the right of the column headers and select among
the list of displayed columns to change the visibility of a column in the current
attributes table display.

This feature lets you easily hide columns when you want to simplify the
attributes table display in the current view object overview editor.

7. To extend the changes in the columns (including column list, column order, column
sorting, and column width) to all other view object overview editors, click the

Chapter 5
Populating View Object Rows from a Single Database Table

5-13

dropdown menu to the right of the column headers and choose Apply to All View
Objects.

This feature allows you to easily compare the same attributes across view objects.
The overview editor will apply the column selections (and order) that you make
in the Select Columns dialog and the current attributes table's column sorting and
column widths to all view objects that you edit. View objects that are currently
displayed in an open overview editor are not updated with these settings; you must
close the open view object overview editor and then reopen the view object to see
these settings applied.

Modifying the Order of Attributes in the View Object Source File
After you create a view object definition, you may decide to change the order of the
attributes queried by the view object. This view object editing feature allows you to
easily change the order that the attributes will appear in the attributes table displayed
on the Attributes page of the view object overview editor. Because this feature acts on
specific attributes and alters the XML definition of the current view object, it does not
apply to other view objects that you may edit. Alternatively, you can sort the display of
attributes on the Attribute page of the view object overview editor without affecting the
source file by clicking any column header in the overview editor's attributes table.

Before you begin:

It may be helpful to have an understanding of view objects. For more information, see
Populating View Object Rows from a Single Database Table.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

To modify the order of attributes in the view object source file:

1. In the Applications window, double-click the view object that you want to modify.

2. In the overview editor, click the Attributes navigation tab and then click Set
Source Order.

3. In the Set Source Order dialog, select the attribute you want to reposition and click
one of the Move Selection buttons.

4. Click OK.

This feature has no affect on other view objects that you may edit; it only affects
the current view object.

How to Show View Objects in a Business Components Diagram
JDeveloper's UML diagramming lets you create a Business Components diagram
to visualize your business services layer. In addition to supporting entity objects,
JDeveloper's UML diagramming allows you to drop view objects onto diagrams as
well to visualize their structure and entity usages. For example, if you create a new
Business Components Diagram in the oracle.summit.model package, and drag the
CustomerAddressVO view object from the Applications window onto the diagram, its
entity usages would display, as shown in Figure 5-10. When viewed as an expanded
node, the diagram shows a compartment containing the view objects entity usages.

Chapter 5
Populating View Object Rows from a Single Database Table

5-14

Figure 5-10 View Object and Its Entity Usages in a Business Components
Diagram

Before you begin:

It may be helpful to have an understanding of view objects. For more information, see
Populating View Object Rows from a Single Database Table.

You may also find it helpful to understand how to create an entity diagram, see
Creating a Diagram of Entity Objects for Your Business Layer.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

To create a business components diagram that models existing view objects:

1. In the Applications window, right-click the package in the data model project in
which you want to create the business component diagram and choose New and
then Business Components Diagram.

2. In the Create Business Components Diagram dialog, enter the name of the
diagram and enter the package name in which the diagram will be created. Select
any additional diagram features.

3. Click OK.

4. To add existing view objects to the diagram, select them in the Applications
window and drop them onto the diagram surface.

Working with View Objects in Declarative SQL Mode
Create entity-based view objects as a no-SQL alternative and utilize ADF Business
Components’ declarative SQL mode in design time and runtime.

At runtime, when ADF Business Components works with JDBC to pass a query to
the database and retrieve the result, the mechanism to retrieve the data is the SQL
query. As an alternative to creating view objects that specify a SQL statement at
design time, you can create entity-based view objects that contain no SQL statements.
This capability of the ADF Business Components design time and runtime is known
as declarative SQL mode. When the data model developer works with the wizard

Chapter 5
Working with View Objects in Declarative SQL Mode

5-15

or editor for a view object in declarative SQL mode, they require no knowledge of
SQL. In declarative SQL mode, the ADF Business Components runtime generates the
SQL query statements based on metadata that you must define for the view object, as
follows:

• Generates SELECT and FROM lists based on the rendered web page's databound UI
components' usage of one or more entity objects' attributes

Specifying the runtime query statement based solely on databound UI component
attribute usage is an optimization that you control at the level of each view object
attribute by changing the attribute's IsSelected property setting. By default, the
property setting is IsSelected=true for each attribute that you add to the view
object in declarative SQL mode. The default setting specifies the added attribute
will be selected in the SQL statement regardless of whether or not the attribute
is exposed in the UI by a databound component. For details about changing
the property setting to optimize the runtime query statement, see How to Create
Declarative SQL View Objects.

• In the case of ADF RESTful web services, generates a SELECT clause based on
the list of attributes specified using the URL query parameter fields.

SQL SELECT statements executed by the ADF REST resource’s backing view
object are based at runtime on how the view object was created. Only view
objects that you create with declarative SQL mode enabled support optimized
SQL SELECT statements formed exclusively by the list of attributes named by
the query parameter fields. The SELECT statement executed by non-declarative
view objects will contain all attributes of the view object definition. To gain this
runtime optimization, it is therefore recommended that ADF Business Components
developers create view objects for ADF REST resources using only declarative
SQL mode.

• Generates a WHERE clause based on a view criteria that you add to the view object
definition

• Generates an ORDERBY clause based on a sort criteria that you add to the view
object definition.

• Augments the WHERE clause to support table joins based on named view criteria
that you add to the view object definition

• Augments the WHERE clause to support master-detail view filtering based on a view
criteria that you add to either the source or destination of a view link definition

Additionally, the SQL statement that a declarative SQL mode view object generates at
runtime will be determined by the SQL platform specified in the Business Components
page of the Project Properties dialog.

Note:

Currently, the supported platforms for runtime SQL generation are SQL92
(ANSI) style and Oracle style. For information about setting the SQL platform
for your project, see How to Initialize the Data Model Project With a
Database Connection.

Declarative SQL mode selection is supported in JDeveloper as the default setting for
all view objects that you create in the Create View Object wizard. The wizard allows

Chapter 5
Working with View Objects in Declarative SQL Mode

5-16

you to override the declarative SQL mode setting for any view object you create when
you want to create custom SQL at design time.

When you work with custom SQL, the view object definitions you create at design
time always contain the entire SQL statement based on the SQL platform required
by your application module's defined database connection. Thus the capability of SQL
independence does not apply to view objects that you create in custom SQL mode.
For information about using the wizard and editor to customize view objects when SQL
is desired at design time, see Populating View Object Rows from a Single Database
Table.

How to Create Declarative SQL View Objects
All view objects that you create in JDeveloper rely on the same design time wizard
and editor. However, when you enable declarative SQL mode, the wizard and editor
change to support customizing the view object definition without requiring you to
display or enter any SQL. For example, the Query page of the Create View Object
wizard with declarative SQL mode enabled lacks the Generated SQL field present in
normal mode.

Additionally, in declarative SQL mode, since the wizard and editor do not allow you to
enter the WHERE clause, you provide equivalent functionality by defining a view criteria
and sort criteria (using the Sort By panel) respectively. In declarative SQL mode, these
criteria appear in the view object metadata definition and will be converted at runtime
to their corresponding SQL clause. When the databound UI component has no need
to display filtered or sorted data, you may omit the view criteria or sort criteria from the
view object definition.

Otherwise, after you enable declarative SQL mode, the basic procedure to create
a view object with ensured SQL independence is the same as you would follow to
create any entity-based view object. For example, you must still ensure that your view
object encapsulates the desired entity object metadata to support the intended runtime
query. As with any entity-based view object, the columns of the runtime-generated
FROM list must relate to the attributes of one or more of the view object's underlying
entity objects. In declarative SQL mode, you automatically fulfill this requirement when
working with the wizard or editor when you add or remove the attributes of the entity
objects on the view object definition.

If you prefer to optimize the declarative SQL query so that the SELECT and FROM
clauses of the SQL query statement are based solely on whether or not the attributes
you add to the view object are rendered at runtime by a databound UI component,
then you must disable the Selected in Query checkbox (sets IsSelected=false for
the view object definition) for all added attributes. By default, the IsSelected property
is true for any attribute that you add to the view object in declarative SQL mode.
The default setting means the added attribute will be selected in the SQL statement
regardless of whether or not the attribute is exposed by a databound UI component.
When you create a new view object in declarative SQL mode, you can use the
Attribute Settings page of the Create View Object wizard to change the setting for
each attribute. If you need to alter this setting after you generate the view object, you
can use the Properties window to change the Selected in Query setting for one or
more attributes that you select in the Attributes page of the view object editor.

Chapter 5
Working with View Objects in Declarative SQL Mode

5-17

Performance Tip:

A view object instance configured to generate SQL statements dynamically
will requery the database during page navigation if a subset of all attributes
with the same list of key entity objects is used in the subsequent page
navigation. Thus performance can be improved by activating a superset of all
the required attributes to eliminate a subsequent query execution.

Before you begin:

It may be helpful to have an understanding of declarative SQL mode. For more
information, see How to Create Declarative SQL View Objects.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

To create declarative SQL-based view objects:

1. In the Applications window, right-click the package in the data model project in
which you want to create the view objects and choose New and then View Object.

2. In the Create View Object wizard, on the Name page, enter a package name and
a view object name. Keep the default setting Entity selected to indicate that you
want this view object to manage data with its base entity object. Click Next.

Any other choice for the data selection will disable declarative SQL mode in the
Create View Object wizard.

3. On the Entity Objects page, select the entity object whose data you want to use in
the view object. Click Next.

When you want to create a view object that joins entity objects, you can add
secondary entity objects to the list. To create more complex entity-based view
objects, see How to Create Joins for Entity-Based View Objects.

4. On the Attributes page, select at least one attribute from the entity usage in the
Available list and shuttle it to the Selected list. Attributes you do not select will not
be eligible for use in view criteria and sort criteria. Click Next.

You should select any attribute that you intend to customize (in the Attribute
Settings page) or any attribute that you intend to use in a view criteria or sort
criteria (in the Query page). Additionally, the tables that appear in the FROM list
of the runtime-generated query will be limited to the tables corresponding to the
attributes of the entity objects you select.

5. On the Attribute Settings page, use the Select Attribute dropdown list to switch
between the view object attributes and deselect Selected in Query for each
attribute that you want to defer adding to the SQL statement until runtime.

By default, the Selected in Query checkbox is enabled for all view object
attributes that you add in declarative SQL mode. This default setting will generate
a SQL statement with all added attributes selected. When you deselect the
checkbox for an attribute, the IsSelected property is set to false and whether
or not the attribute is selected will be determined at runtime by the databound UI
component's usage of the attribute.

6. Optionally, change the attribute names or any of their initial settings. Click Next.

Chapter 5
Working with View Objects in Declarative SQL Mode

5-18

7. On the Query page, select Calculate Optimized Query at Runtime if it is not
already displayed. The wizard changes to declarative SQL mode.

The Create View Object wizard enables declarative SQL mode by default. The
default mode allows you to create entity-based view objects that rely on no SQL
in the design time. Declarative SQL mode is an alternative to custom SQL mode,
which lets you create SQL statements directly in the Create View Object wizard.
Deselecting Calculate Optimized Query at Runtime enables custom SQL mode.

8. Optionally, define Where and Sort By criteria (Using the Sort Panel) to filter and
sort the data as required. At runtime, ADF Business Components automatically
generates the corresponding SQL statements based on the criteria you create.

Click Edit next to the Where field to define the view criteria you will use to filter
the data. The view criteria you enter will be converted at runtime to a WHERE clause
that will be enforced on the query statement. For information about specifying view
criteria, see Working with Named View Criteria.

In the Sort By panel select the desired attribute in the Available list and shuttle
it to the Selected list. Add additional attributes to the Selected list when you
want the results to be sorted by more than one column. Arrange the selected
attributes in the list according to their sort precedence. Then for each sort attribute,
assign whether the sort should be performed in ascending or descending order by
selecting Ascending or Descending in Sort Order. Assigning the sort order to
each attribute ensures that attributes ignored by the UI component still follow the
intended sort order.

9. Click Finish.

How to Filter Declarative SQL-Based View Objects When Table Joins
Apply

When you create an entity-based view object you can reference more than one
entity object in the view object definition. In the case of view objects you create in
declarative SQL mode, whether the base entity objects are activated from the view
object definition will depend on the requirements of the databound UI component at
runtime. If the UI component displays attribute values from multiple entity objects, then
the SQL generated at runtime will contain a JOIN operation to query the appropriate
tables.

Just as with any view object that you create, it is possible to filter the results from table
joins by applying named view criteria. In the case of normal mode view objects, all
entity objects and their attributes will be referenced by the view object definition and
therefore will be automatically included in the view object's SQL statement. However,
by delaying the SQL generation until runtime with declarative SQL mode, there is no
way to know whether the view criteria should be applied.

Note:

In declarative SQL mode, you can define a view criteria to specify the WHERE
clause (optional) when you create the view object definition. This type of view
criteria when it exists by default will be applied at runtime. For a description
of this usage of the view criteria, see How to Create Declarative SQL View
Objects.

Chapter 5
Working with View Objects in Declarative SQL Mode

5-19

Because the UI component may not display sufficient attributes to cause a SQL JOIN
for a view object with multiple entity objects defined in declarative SQL mode, named
view criteria that you define to filter query results should be applied conditionally at
runtime. In other words, named view criteria that you create for declarative SQL-based
view objects need not be applied as required, automatic filters. To support declarative
SQL mode, named view criteria that you apply to a view object created in declarative
SQL mode can be set to apply only on the condition that the UI component is bound
to the attributes referenced by the view criteria. The named view criteria once applied
will, however, support the UI component's need to display a filtered result set.

Before you begin:

It may be helpful to have an understanding of SQL independence at runtime. For more
information, see Working with View Objects in Declarative SQL Mode.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete these tasks:

• Create the view object with declarative SQL mode enabled, as described in How
to Create Declarative SQL View Objects.

• Create a view criteria to filter the results from table joins, as described in How to
Create Named View Criteria Declaratively.

You will use the Edit View Criteria dialog to create the named view criteria by
selecting one or more attributes from the joined entity objects. You then enable its
conditional usage by setting AppliedIfJoinSatisfied in the Properties window.

To define a view criteria to filter only when the join is satisfied:

1. In the Applications window, double-click the declarative SQL view object that
supports table joins.

2. In the overview editor, click the View Criteria navigation tab.

3. In View Criteria page, select the view criteria you created to filter the declarative
SQL view object.

The join view criteria must refer only to attributes from the joined entity objects.

4. In the Properties window, when you have selected one or more attributes from the
joined entity objects, select true from the AppliedIfJoinSatisfied dropdown list.

The property value true means you want the view criteria to be applied only on
the condition that the UI component requires the attributes referenced by the view
criteria. The default value false means that the view criteria will automatically be
applied at runtime. In the case of declarative SQL mode-based view objects, the
value true ensures that the query filter will be appropriate to needs of the view
object's databound UI component.

How to Filter Master-Detail Related View Objects with Declarative SQL
Mode

Just as with normal mode view objects, you can link view objects that you create
in declarative SQL mode to other view objects to form master-detail hierarchies of
any complexity. The steps to create the view links are the same as with any other
entity-based view object, as described in How to Create a Master-Detail Hierarchy

Chapter 5
Working with View Objects in Declarative SQL Mode

5-20

Based on Entity Associations. However, in the case of view objects that you create
in declarative SQL mode, you can further refine the view object results in the Source
SQL or Destination SQL dialog for the view link by selecting a previously defined view
criteria in the Create View Link wizard or the overview editor for the view link.

Before you begin:

It may be helpful to have an understanding of SQL independence at runtime. For more
information, see Working with View Objects in Declarative SQL Mode.

You may also find it helpful to understand functionality that can be added using
other view object features. For more information, see Additional Functionality for View
Objects.

You will need to complete these tasks:

1. Create the master and detail view objects with declarative SQL mode enabled, as
described in How to Create Declarative SQL View Objects.

2. Define the desired view criteria for either the source (master) view object or the
destination (detail) view object, as described in How to Filter Declarative SQL-
Based View Objects When Table Joins Apply.

3. Create the view link, as described in How to Create a Master-Detail Hierarchy
Based on Entity Associations.

To filter a view link source or view link destination:

1. In the Applications window, double-click the view link you created to form the
master-detail hierarchy.

2. In the overview editor, click the Query navigation tab.

3. In the Query page, expand the Source or Destination section and from the View
Criteria dropdown list, select the desired view criteria.

The dropdown list will be empty if no view criteria exist for the view object.

Tip:

If the overview editor does not display a dropdown list for view criteria
selection, then the view objects you selected for the view link were not
created in declarative SQL mode. For view objects created in normal or
custom SQL mode, you must edit the WHERE clause to filter the data as
required.

How to Support Programmatic Execution of Declarative SQL Mode
View Objects

Typically, when you define a declarative SQL mode view object, the attributes that
get queried at runtime will be determined by the requirements of the databound UI
component as it is rendered in the web page. This is the runtime-generation capability
that makes view objects independent of the design time database's SQL platform.
However, you may also need to execute the view object programmatically without
exposing it to an ADF binding in the UI. In this case, you can enable the Include
all attributes in runtime-generated query option to ensure that a programmatically

Chapter 5
Working with View Objects in Declarative SQL Mode

5-21

executed view object has access to all of the entity attributes. Figure 5-11 shows the
global preference Include all attributes in runtime-generated query set to enabled.

Figure 5-11 Preferences Dialog with Declarative SQL Mode Enabled

Note:

Be careful to limit the use of the Include all attributes in runtime-
generated query option to programmatically executed view objects. If
you expose the view object with this setting enabled to a databound UI
component, the runtime query will include all attributes.

The Include all attributes in runtime-generated query option can be specified as a
global preference setting or as a setting on individual view objects. Both settings may
be used in these combinations:

• Enable the global preference so that every view object you create includes all
attributes in the runtime query statement.

• Enable the global preference, but disable the setting on view objects that will not
be executed programmatically and therefore should not include all attributes in the
runtime query statement.

• Disable the global preference (default), but enable the setting on view objects that
will be executed programmatically and therefore should include all attributes in the
runtime query statement.

Chapter 5
Working with View Objects in Declarative SQL Mode

5-22

Forcing Attribute Queries for All Declarative SQL Mode View Objects
You can enable the global preference to force attribute queries for all declarative SQL
mode view objects as the default mode, or you can leave the option disabled and
enable the option directly in the overview editor for a specific view object.

Before you begin:

It may be helpful to have an understanding of how the Include all attributes in
runtime-generated query option supports programmatic execution of declarative
SQL mode view objects. For more information, see How to Support Programmatic
Execution of Declarative SQL Mode View Objects.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

To set the global preference to include all attributes in the query:

1. In the main menu, choose Tools and then Preferences.

2. In the Preferences dialog, expand ADF Business Components and select View
Objects.

3. Select Include all attributes in runtime-generated query to force all attributes of
the view object's underlying entity objects to participate in the query and click OK.

Enabling this option sets a flag in the view object definition but you will still need to
add entity object selections and entity object attribute selections to the view object
definition.

Forcing Attribute Queries for Specific Declarative SQL Mode View Objects
When you want to force all attributes for a specific view object to participate in the
view object query, you can specify this in the Tuning section of the General page of
the overview editor. The overview editor only displays the Include all attributes in
runtime-generated query option if you have created the view object in declarative
SQL mode.

Before you begin:

It may be helpful to have an understanding of how the Include all attributes in
runtime-generated query option supports programmatic execution of declarative
SQL mode view objects. For more information, see How to Support Programmatic
Execution of Declarative SQL Mode View Objects.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the view object in the Create View Object wizard and be sure that you have
enabled declarative SQL mode, as described in How to Create Declarative SQL
View Objects.

To set the view object-specific preference to include all attributes in the query:

1. In the Applications window, double-click the declarative SQL view object.

Chapter 5
Working with View Objects in Declarative SQL Mode

5-23

2. In the overview editor, click the General navigation tab.

You can verify that the view object was created in declarative SQL mode in
the overview editor. In the overview editor, click the Query navigation tab and
then in the Query page, verify that the Mode dropdown list shows the selection
Declarative.

3. In the General page, expand the Tuning section and select Include all attributes
in runtime-generated query.

Enabling this option forces all attributes of the view object's underlying entity
objects to participate in the query. When enabled, it sets a flag in the view object
definition but you will still need to add entity object selections and entity object
attribute selections to the view object definition.

What Happens When You Create a View Object in Declarative SQL
Mode

When you create the view object in declarative SQL mode, three properties get added
to the view object's metadata: SelectListFlags, FromListFlags, and WhereFlags.
Properties that are absent in declarative SQL mode are the normal mode view object's
SelectList, FromList, and Where properties, which contain the actual SQL statement
(or, for custom SQL mode, the SQLQuery element). The following example shows the
three view object metadata flags that get enabled in declarative SQL mode to ensure
that SQL will be generated at runtime instead of specified as metadata in the view
object's definition.

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="CustomerCardStatus"
 SelectListFlags="1"
 FromListFlags="1"
 WhereFlags="1"
 ...

Similar to view objects that you create in either normal or custom SQL mode, the view
object metadata also includes a ViewAttribute element for each attribute that you
select in the Attribute page of the Create View Object wizard. However, in declarative
SQL mode, when you "select" attributes in the wizard (or add an attribute in the
overview editor), you are not creating a FROM or SELECT list in the design time. The
attribute definitions that appear in the view object metadata only determine the list of
potential entities and attributes that will appear in the runtime-generated statements.
For information about how ADF Business Components generates these SQL lists, see
What Happens at Runtime: Declarative SQL Mode Queries.

The following example shows the additional features of declarative SQL mode view
objects, including the optional declarative WHERE clause (DeclarativeWhereClause
element) and the optional declarative ORDERBY clause (SortCriteria element).

<DeclarativeWhereClause>
 <ViewCriteria
 Name="CustomerStatusWhereCriteria"
 ViewObjectName="oracle.summit.model.views.CustomerCardStatus"
 Conjunction="AND"
 Mode="3"
 AppliedIfJoinSatisfied="false">
 <ViewCriteriaRow
 Name="vcrow60">

Chapter 5
Working with View Objects in Declarative SQL Mode

5-24

 <ViewCriteriaItem
 Name="CardTypeCode"
 ViewAttribute="CardTypeCode"
 Operator="STARTSWITH"
 Conjunction="AND"
 Required="Optional">
 <ViewCriteriaItemValue
 Value=":cardtype"
 IsBindVarValue="true"/>
 </ViewCriteriaItem>
 </ViewCriteriaRow>
 </ViewCriteria>
 </DeclarativeWhereClause>
 <SortCriteria>
 <Sort
 Attribute="CustomerId"/>
 <Sort
 Attribute="CardTypeCode"/>
 </SortCriteria>

What Happens at Runtime: Declarative SQL Mode Queries
At runtime, when a declarative SQL mode query is generated, ADF Business
Components determines which attributes were defined from the metadata
ViewCriteria element and SortCriteria element. It then uses these attributes to
generate the WHERE and Sort By clauses. Next, the runtime generates the FROM list
based on the tables corresponding to the entity usages defined by the metadata
ViewAttribute elements. Finally, the runtime builds the SELECT statement based on
the attribute selection choices the end user makes in the UI. As a result, the view
object in declarative SQL mode generates all SQL clauses entirely at runtime. The
runtime-generated SQL statements will be based on the platform that appears in the
project properties setting. Currently, the runtime supports SQL92 (ANSI) style and
Oracle style platforms.

Note that the binding style of SQL queries will be determined by the SQL flavor chosen
for the application. In practice, all queries must use the same binding style (named
or positional) or SQL validation errors may result. To avoid this issue, application
developers must ensure that all ADF applications that they deploy to the same
managed server all use a single value for their chosen SQL platform. For more
information, see How to Initialize the Data Model Project With a Database Connection.

What You May Need to Know About Working Programmatically with
Declarative SQL Mode View Objects

As a convenience to developers, the view object implementation API allows individual
attributes to be selected and deselected programmatically. This API may be useful
in combination with the view objects you create in declarative SQL mode and
intend to execute programmatically. The following example shows how to call
selectAttributeDefs() on the view object when you want to add a subset of
attributes to those already configured with SQL mode enabled.

ApplicationModule am = Configuration.createRootApplicationModule(amDef, config);
ViewObjectImpl vo = (ViewObjectImpl) am.findViewObject("CustomerVO");
vo.resetSelectedAttributeDefs(false);
vo.selectAttributeDefs(new String[] {"FirstName, "LastName"});
vo.executeQuery();

Chapter 5
Working with View Objects in Declarative SQL Mode

5-25

The call to selectAttributeDefs() adds the attributes in the array to a private
member variable of ViewObjectImpl. A call to executeQuery() transfers the attributes
in the private member variable to the actual select list. It is important to understand
that these ViewObjectImpl attribute calls are not applicable to the client layer and are
only accessible inside the Impl class of the view object on the middle tier.

Additionally, you might call unselectAttributeDefs() on the view object when
you want to deselect a small subset of attributes after enabling the Include
all attributes in runtime-generated query option. Alternatively, you can call
selectAttributeDefs() on the view object to select a small subset of attributes after
disabling the Include all attributes in runtime-generated query option.

Caution:

Be careful not to expose a declarative SQL mode view object executed
with this API to the UI since only the value of the Include all attributes in
runtime-generated query option will be honored.

Creating View Objects Populated With Static Data
Create ADF Business Components static data view objects to access a small set of
static data, and avoid unnecessary querying of the database.

ADF Business Components lets you create view objects in your data model project
with rows that you populate at design time. Typically, you create static data view
objects when you have a small amount of data to maintain and you do not expect
that data to change frequently. The decision whether to use a lookup table from the
database or whether to use a static data view object based on a list of hardcoded
values depends on the size and nature of the data. The static data view object is
useful when you have no more than 100 entries to list. Any larger number of rows
should be read from the database with a conventional table-based view object. The
static data view object has the advantage of being easily translatable since attribute
values are stored in a resource bundle. However, all of the rows of a static data view
object will be retrieved at once and therefore, using no more than 100 entries yields
the best performance.

Best Practice:

When you need to create a view object to access a small list of static data,
you should use the static data view object rather than query the database.
The static data view object is ideal for lists not exceeding 100 rows of
data. Because the Create View Object wizard saves the data in a resource
message file, these data are easily translatable.

Static data view objects are useful as an LOV data source when it is not desirable to
query the database to supply the list of values. Suppose your order has the following
statuses: open, closed, pending. You can create a static data view object with these
values and define an LOV on the static data view object's status attribute. Because the
wizard stores the values of the status view object in a translatable resource file, the UI

Chapter 5
Creating View Objects Populated With Static Data

5-26

will display the status values using the resource file corresponding to the application's
current locale.

How to Create Static Data View Objects with Data You Enter
You use the Create View Object wizard to create static data view objects. The wizard
lets you define the desired attributes (columns) and enter as many rows of data as
necessary. The wizard displays the static data table as you create it.

Note:

Because the data in a static data view object does not originate in database
tables, the view object will be read-only.

You can also use the Create View Object wizard to create the attributes based on data
from a comma-separated value (CSV) file format like a spreadsheet file.

Before you begin:

It may be helpful to have an understanding of static data view objects. For more
information, see Creating View Objects Populated With Static Data.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

To manually create attributes for a static data view object:

1. In the Applications window, right-click the package in the data model project in
which you want to create the static data view object and choose New and then
View Object.

2. In the Create View Object wizard, on the Name page, enter a package name and
a view object name. Select Static list to indicate that you want to supply static
data for this view object. Click Next.

3. On the Attributes page, click New to add an attribute that corresponds to the
columns in the static list table. In the New View Object Attribute dialog, enter a
name and select the attribute type. Click OK to return to the wizard, and click
Next.

4. On the Attribute Settings page, do nothing and click Next.

5. On the Static List page, click the Add button to enter the data directly into the
wizard page. The attributes you defined will appear as the columns for the static
data table.

6. On the Application Module pages, do nothing and click Next.

7. On the Summary page, click Finish.

How to Create Static Data View Objects with Data You Import
Using the Import feature of the Create View Object wizard, you can create a static
data view object with attributes based on data from a comma-separated value (CSV)
file format like a spreadsheet file. The wizard will use the first row of a CSV flat file

Chapter 5
Creating View Objects Populated With Static Data

5-27

to identify the attributes and will use the subsequent rows of the CSV file for the
data for each attribute. For example, if your application needs to display choices for
international currency, you might define the columns Symbol, Country, and Description
in the first row and then add rows to define the data for each currency type, as shown
in Figure 5-12.

Figure 5-12 Sample Data Ready to Import from CSV Flat File

Before you begin:

It may be helpful to have an understanding of static data view objects. For more
information, see Creating View Objects Populated With Static Data.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

To create attributes of a static data view object based on a flat file:

1. In the Applications window, right-click the project in which you want to create the
static data view object and choose New and then View Object.

2. In the Create View Object wizard, on the Name page, enter a package name and
a view object name. Select Static list to indicate that you want to supply static
data for this view object. Click Next.

3. On the Attributes page, if the CSV flat file does not define column names in the
first row of the file, click New to add an attribute that corresponds to the column
names in the static data table. In the New View Object Attribute dialog, enter a
name and select the attribute type. Click OK to return to the wizard, and click
Next.

The attributes you add must match the order of the data columns defined by the
flat file. If you create fewer attributes than columns, the wizard will ignore extra
columns during import. Conversely, if you create more attributes than columns, the
wizard will define extra attributes with value null.

4. On the Attribute Settings page, do nothing and click Next.

5. On the Static List page, click Import to locate the CSV file and display the data in
the wizard. Verify the data and edit the values as needed.

If you created the attribute names yourself and the first row of the CSV file
displays the column names in the first row, the column names will be displayed
in the wizard as data and should be deleted. To edit an attribute value, double-click
in the value field.

6. Optionally, click the Add button or Remove button to change the number of rows
of data. Click Next.

To enter values for the attributes of a new row, double-click in the value field.

7. On the Application Module page, do nothing and click Next.

Chapter 5
Creating View Objects Populated With Static Data

5-28

8. On the Summary page, click Finish.

What Happens When You Create a Static Data View Object
When you create a static data view object, the overview editor for the view object
displays the rows of data that you defined in the wizard. You can use the editor to
define additional data, as shown in Figure 5-13.

Figure 5-13 Static Values Page Displays Data

The generated XML definition for the static data view object contains one transient
attribute for each column of data. For example, if you import a CSV file with data that
describes international currency, your static data view object might contain a transient
attribute for Symbol, Country, and Description, as shown in the following example.

<ViewObject
...
<!-- Transient attribute for first column -->
 <ViewAttribute
 Name="Symbol"
 IsUpdateable="false"
 IsSelected="false"
 IsPersistent="false"
 PrecisionRule="true"
 Precision="255"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 AliasName="Symbol"
 SQLType="VARCHAR"/>
<!-- Transient attribute for second column -->
 <ViewAttribute
 Name="Country"
 IsUpdateable="false"
 IsPersistent="false"
 PrecisionRule="true"
 Precision="255"
 Type="java.lang.String"
 ColumnType="VARCHAR"
 AliasName="Country"
 SQLType="VARCHAR"/>
<!-- Transient attribute for third column -->
 <ViewAttribute
 Name="Description"
 IsUpdateable="false"
 IsPersistent="false"
 PrecisionRule="true"
 Precision="255"

Chapter 5
Creating View Objects Populated With Static Data

5-29

 Type="java.lang.String"
 ColumnType="VARCHAR"
 AliasName="Description"
 SQLType="VARCHAR"/>
 <StaticList
 Rows="4"
 Columns="3"/>
<!-- Reference to file that contains static data -->
 <ResourceBundle>
 <PropertiesBundle
 PropertiesFile="model.ModelBundle"/>
 </ResourceBundle>
</ViewObject>

Because the data is static, the overview editor displays no Query page and
the generated XML definition for the static data view object contains no query
statement. Instead, the <ResourceBundle> element in the XML definition references
a resource bundle file. The following example shows the reference to the file as
PropertiesFile="model.ModelBundle". The resource bundle file describes the rows
of data and also lets you localize the data. When the default resource bundle type is
used, the file ModelBundle.properties appears in the data model project, as shown in
the following example.

model.ViewObj.SL_0_0=USD
model.ViewObj.SL_0_1=United States of America
model.ViewObj.SL_0_2=Dollars
model.ViewObj.SL_1_0=CNY
model.ViewObj.SL_1_1=P.R. China
model.ViewObj.SL_1_2=Yuan Renminbi
model.ViewObj.SL_2_0=EUR
model.ViewObj.SL_2_1=Europe
model.ViewObj.SL_2_2=Euro
model.ViewObj.SL_3_0=JPY
model.ViewObj.SL_3_1=Japan
model.ViewObj.SL_3_2=Yen

How to Edit Static Data View Objects
When you need to make changes to the static list table, double-click the view object in
the Applications window to open the overview editor for the view object. You can add
and delete attributes (columns in the static list table), add or delete rows (data in the
static list table), sort individual rows, and modify individual attribute values. The editor
will update the view object definition file and save the modified attribute values in the
message bundle file. For information about localizing message bundles, see Working
with Resource Bundles.

What You May Need to Know About Static Data View Objects
The static data view object has a limited purpose in the application module's data
model. Unlike entity-based view objects, static data view objects will not be updatable.
You use the static data view object when you want to display read-only data to the end
user and you do not want to create a database table for the small amount of data the
static list table contains.

Chapter 5
Creating View Objects Populated With Static Data

5-30

Adding Calculated and Transient Attributes to a View Object
ADF Business Components view objects can include SQL-calculated attributes and
transient attributes that do not map to any entity object attributes.

In addition to having attributes that map to underlying entity objects, your view objects
can include calculated attributes that don't map to any entity object attribute value. The
two kinds of calculated attributes are known as:

• SQL-calculated attributes, when their value is retrieved as an expression in the
SQL query's SELECT list

• Transient attributes, when their value is not retrieved as part of the query

A view object can include an entity-mapped attribute which itself is a transient attribute
at the entity object level.

How to Add a SQL-Calculated Attribute
You use the overview editor for the view object to add a SQL-calculated attribute.

Before you begin:

It may be helpful to have an understanding of calculated attributes. For more
information, see Adding Calculated and Transient Attributes to a View Object.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

To add a SQL-calculated attribute to a view object:

1. In the Applications window, double-click the view object for which you want to
define a SQL-calculated attribute.

2. In the overview editor, click the Attributes navigation tab and then click the Create
new attribute button.

3. In the New View Object Attribute dialog, enter a name for the attribute.

4. In the overview editor, in the Attributes page, select the new attribute.

5. Click the Details tab, set the Java type to an appropriate value.

For example, a calculated attribute that concatenates a first name and a last name
would have the type String, as shown in Figure 5-14.

6. In the Default Value section, select SQL and provide a SQL expression in the
expression field.

For example, to change the order of first name and last name, you could write the
expression LAST_NAME||', '||FIRST_NAME, as shown in Figure 5-14.

Chapter 5
Adding Calculated and Transient Attributes to a View Object

5-31

Figure 5-14 New SQL-Calculated Attribute

7. Consider changing the SQL column alias to match the name of the attribute.

8. Verify the database query column type and adjust the length (or precision/scale)
as appropriate.

What Happens When You Add a SQL-Calculated Attribute
When you add a SQL-calculated attribute in the overview editor for the view object,
JDeveloper updates the XML document for the view object to reflect the new attribute.
The entity-mapped attribute's <ViewAttribute> tag looks like the sample shown in the
following example. The entity-mapped attribute inherits most of it properties from the
underlying entity attribute to which it is mapped.

<ViewAttribute
 Name="LastName"
 IsNotNull="true"
 EntityAttrName="LastName"
 EntityUsage="EmpEO"
 AliasName="LAST_NAME" >
</ViewAttribute>

Whereas, in contrast, a SQL-calculated attribute's <ViewAttribute> tag looks like
sample shown in the following example. As expected, the tag has no EntityUsage
or EntityAttrName property, and includes datatype information along with the SQL
expression.

<ViewAttribute
 Name="LastCommaFirst"
 IsUpdatable="false"
 IsPersistent="false"
 PrecisionRule="true"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 AliasName="FULL_NAME"
 SQLType="VARCHAR" >
 Precision="62"
 Expression="LAST_NAME||', '||FIRST_NAME">
</ViewAttribute>

Chapter 5
Adding Calculated and Transient Attributes to a View Object

5-32

What You May Need to Know About SQL-Calculated Attributes
The view object includes the SQL expression for your SQL-calculated attribute in
the SELECT list of its query at runtime. The database is the one that evaluates the
expression, and it returns the result as the value of that column in the query. The value
is reevaluated each time you execute the query.

How to Add a Transient Attribute
Transient attributes are often used to provide subtotals or other calculated expressions
that are not stored in the database.

Before you begin:

It may be helpful to have an understanding of transient attributes. For more
information, see Adding Calculated and Transient Attributes to a View Object.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

Transient attributes that you define may be evaluated using the Groovy Expression
Language. Groovy lets you insert expressions and variables into strings. The
expression is saved as part of the view object definition. For more information, see
Using Groovy Scripting Language With Business Components.

You should be familiar with the limitations of using transient attributes. For more
information, see What You May Need to Know About View Object Queries with
Primary Keys Defined by Transient Attributes.

You will need to complete this task:

Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

To add a transient attribute to a view object:

1. In the Applications window, double-click the view object for which you want to
define a transient attribute.

2. In the overview editor, click the Attributes navigation tab and then click the Create
new attribute button.

3. In the New View Object Attribute dialog, enter a name for the attribute and select
the Java attribute type from the Type dropdown, then click OK.

4. On the Attributes page of the overview editor, click the Details tab and select the
Transient option.

5. If the transient attribute's default value is to be calculated by an expression, under
Default Value, select Expression checkbox and click the icon beside to open the
Edit Expression Editor dialog.

6. In the Edit Expression Editor dialog, enter a default value expression that
calculates the default value of the attribute.

Transient attribute expressions may derive the value from persistent attributes that
are defined by the view object. If you need to refer to an entity attribute, that
attribute must be added to the view object definition.

Chapter 5
Adding Calculated and Transient Attributes to a View Object

5-33

Figure 5-15 Edit Expression Editor

7. Specify the attributes on which this attribute is dependent. Move these attributes
from Available to Selected.

8. Click OK to save the expression that you entered in the Edit Expression Editor
dialog.

9. You can optionally provide a condition for when to recalculate the expression
in the Refresh Expression Value field. The procedure to define the recalculation
expression is the same as the procedure to define the default value expression.
The recalculation expression if evaluated as true, recalculates the default value
expression.

For example, the following Refresh Expression Value Groovy expression causes
the attribute to be recalculated when either the Country attribute or the RegionId
attribute are changed:

return (adf.object.isAttributeChanged("Country") ||
adf.object.isAttributeChanged("RegionId"));

Note:

When either the value expression or the optional recalculate expression
that you define references an attribute from the base entity object, you
must define this as a dependency in the Edit Expression Editor dialog.
Locate each attribute in the Available list and shuttle it to the Selected
list.

Chapter 5
Adding Calculated and Transient Attributes to a View Object

5-34

How to Add a Transient Attribute Defined by an Entity Object
A view object can include an entity-mapped attribute which itself is a transient attribute
at the entity object level.

Before you begin:

It may be helpful to have an understanding of transient attributes. For more
information, see Adding Calculated and Transient Attributes to a View Object.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

To add a transient attribute from an entity object to an entity-based view object:

1. In the Applications window, double-click the view object for which you want to add
a transient attribute based on an entity usage.

2. In the overview editor, click the Attributes navigation tab and then click the Create
new attribute button and choose Add Attribute from Entity to view the list of
available entity-derived attributes.

3. In the Attributes dialog, move the desired transient attribute from the Available list
into the Selected list.

4. Click OK.

How to Add a Validation Rule to a Transient Attribute
Attribute-level validation rules are triggered for a particular view object transient
attribute when either the end user or the program code attempts to modify the
attribute's value. Since you cannot determine the order in which attributes will be set,
attribute-level validation rules should be used only when the success or failure of the
rule depends exclusively on the candidate value of that single attribute.

The process for adding a validation rule to a view object transient attribute is similar
to the way you create any declarative validation rule, and is done using the Add
Validation Rule dialog. You can open this dialog from the overview editor for the view
object by clicking the Add Validation Rule button in the Validation Rules section of the
Attributes page. You must first select the transient attribute from the attributes list and
the transient attribute must be defined as updatable. Validation rules cannot be defined
for read-only transient attributes.

Before you begin:

It may be helpful to have an understanding of attribute UI hints. For more information,
see Defining UI Hints for View Objects.

You may also find it helpful to understand the different types of validation rules you can
define. For more information, see Using the Built-in Declarative Validation Rules.

Chapter 5
Adding Calculated and Transient Attributes to a View Object

5-35

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

To add a validation rule for a transient attribute:

1. In the Applications window, double-click the desired view object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the transient attribute, and then click the Details tab
and verify that Updatable displays Always.

Validation rules for transient attributes must be updatable. The value Never
specifies a read-only attribute.

4. In the Attributes page, click the Validation Rules tab and then click the Add
Validation Rule icon.

5. In the Add Validation Rule dialog, select the type of validation rule desired from the
Type dropdown list.

6. In the Rule Definition tab, use the dialog settings to configure the new rule.

The controls will change depending on the kind of validation rule you select.
For more information about the different validation rules, see Using the Built-in
Declarative Validation Rules.

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Creating
Validation Error Messages.

8. Click OK.

What Happens When You Add a Transient Attribute
When you add a transient attribute in the overview editor for a view object, JDeveloper
updates the XML document for the view object to reflect the new attribute. A transient
attribute's <ViewAttribute> tag in the XML is similar to the SQL-calculated one, but it
lacks an Expression property.

When you base a transient attribute on a Groovy expression, a
<TransientExpression> tag is created within the appropriate attribute. The following
example shows XML code for a Groovy expression. The Groovy expression is
added for the SalesRepName attribute of the OrdVO view object. The XML definition
shows that the .bcs file where this Groovy expression script resides in is part
of this XML definition: CodeSourceName=”OrdVORow”. Therefore, the .bcs file name
is OrdVORow.bcs. There is also an operations.xml file, which in this example is
OrdVOOperations.xml; this operations.xml file has an URI which points the user to
the .bcs file.

<ViewAttribute
 Name="SalesRepName"
 IsUpdateable="false"
 IsSelected="false"
 IsPersistent="false"

Chapter 5
Adding Calculated and Transient Attributes to a View Object

5-36

 PrecisionRule="true"
 Type="java.lang.String"
 ColumnType="CHAR"
 AliasName="VIEW_ATTR"
 SQLType="VARCHAR">
 <TransientExpression
 Name="ExpressionScript"
 trustMode="untrusted"
 CodeSourceName="OrdVORow"/>
 </ViewAttribute>

What You May Need to Know About Transient Attributes and
Calculated Values

A transient attribute is a placeholder for a data value. If you change the Updatable
property of the transient attribute to Always, the end user can enter a value for the
attribute. If you want the transient attribute to display a calculated value, then you'll
typically leave the Updatable property set to Never and write a Groovy Language
expression on the Attribute page of the overview editor for the view object.

Alternatively, if you want to write Java code to calculate the transient attribute, you
need to enable a custom view row class and choose to generate accessor methods,
in the Java dialog that you open by clicking the Edit button on the Java page of
the overview editor for the view object. Then you would write Java code inside the
accessor method for the transient attribute to return the calculated value. The following
example shows the CustomerVORowImpl.java view row class contains the Java code
to return a calculated value in the getFirstDotLast() method.

// In CustomerVORowImpl.java
public String getFirstDotLast() {
 // Commented out this original line since we're not storing the value
 // return (String) getAttributeInternal(FIRSTDOTLAST);
 return getFirstName().substring(0,1)+". "+getLastName();
}

What You May Need to Know About View Object Queries with Primary
Keys Defined by Transient Attributes

In general, because a transient attribute will force reevaluation of the primary key
attribute with each access, defining the primary key with a transient attribute may not
be suitable for all use cases. In particular, Oracle recommends that you avoid using
a transient attribute to define the primary key of any view object that will be bound to
an ADF Faces component that may produce multiple queries, such as an ADF Tree
component. In such situations, the performance of the application will be degraded by
the need to reevaluate the transient attribute as the primary key.

Additionally, you should be aware that when your programmatic view object query
relies on transient attributes for it primary key, it is possible for the user to receive
a null pointer exception when they scroll the UI out of the view object's cached
rows. In this case, since the view object query is not generated from a database
table, your view object implementation must override the ViewObjectImpl classes'
retrieveByKey() method to return the rows (or return an empty array when no rows
are found).

Chapter 5
Adding Calculated and Transient Attributes to a View Object

5-37

Overriding this method will allow ADF Business Components to execute
findByKey() to first find the requested rows from the cache. When that fails (because
the primary key is a transient attribute), ADF Business Components will execute your
retrieveByKey() override to perform the operations you defined to retrieve the rows
that match the key coming in. The default implementation of this method tries to issue
a database query to get the row(s) from the database:

protected Row[] retrieveByKey(ViewRowSetImpl rs, Key key,
 int maxNumOfRows, boolean skipWhere)

The method has these arguments:

maxNumOfRows is the maxNumOfRows you passed into the call to findByKey(). It may be
1 .. n or -1. n means that it's looking for n many rows whose key matches the one that
got passed in. -1 means match all rows. Note that it is possible for the view object to
have more than one row that matches the key when the key is a partial key and the
view object is based on multiple entity objects.

skipWhere controls whether findByKey() should apply the same WHERE clause as
the base view object. If the base view object has a WHERE clause DEPTNO = 10, if
skipWhere is false, you're supposed to apply the same WHERE clause when looking
for the row(s) from the backing store. If skipWhere is true, then don't bother with the
WHERE clause from the base view object.

Limiting View Object Rows Using Effective Date Ranges
You can define an ADF view object to query data in a particular date range and limit
view rows to fall in the purview of this date range.

Applications that need to query data over a specific date range can generate date-
effective row sets. To define a date-effective view object you must create an entity-
based view object that is based on an date-effective entity object. User control over
the view object's effective date usage is supported by metadata on the view object at
design time. At runtime, ADF Business Components generates the query filter that will
limit the view rows to an effective date.

How to Create a Date-Effective View Object
Whether or not the query filter for an effective date will be generated depends on the
value of the Effective Dated property displayed in the Properties window for the view
object (to view the property, click the General tab in the overview editor for the view
object and expand the Name section in the Properties window).

The overview editor for the view object does not display the date-effective query
clause in the WHERE clause. You can use the Test Query dialog to view the clause. A
typical query filter for effective dates looks like this:

(:Bind_SysEffectiveDate BETWEEN CustomerVO.EFFECTIVE_START_DATE AND
CustomerVO.EFFECTIVE_END_DATE)

At runtime, the bind value for the query can be obtained from a property of the root
application module or can be assigned directly to the view object. In order to set the
effective date for a transaction, use code similar to the following snippet:

am.setProperty(ApplicationModule.EFF_DT_PROPERTY_STR, new
Date("2008-10-01));

Chapter 5
Limiting View Object Rows Using Effective Date Ranges

5-38

If you do not set EFF_DT_PROPERTY_STR on the application module, the current date is
used in the query filter, and the view object returns the effective rows filtered by the
current date.

The view object has its own transient attribute, SysEffectiveDate, that you can use
to set the effective date for view rows. This transient attribute is generated in the view
object by JDeveloper when you set the view object to be date-effective. Otherwise, the
SysEffectiveDate attribute value for new rows and defaulted rows is derived from the
application module. ADF Business Components propagates the effective date from the
view row to the entity object during DML operations only.

Before you begin:

It may be helpful to have an understanding of data-effective row sets. For more
information, see Limiting View Object Rows Using Effective Date Ranges.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete these tasks:

1. Create an effective dated entity object, as described in How to Store Data
Pertaining to a Specific Point in Time.

2. Use the Create View Object wizard to create the entity-based view object, as
described in How to Create an Entity-Based View Object.

The view object you create should be based on the effective dated entity object
you created. In the Attributes page of the wizard, be sure to add the date-effective
attributes that specify the start date and end date on the entity object to the
Selected list for the view object.

To enable effective dates for a view object using the SysEffectiveDate attribute:

1. In the Applications window, double-click the view object you created based on the
effective dated entity object.

2. In the overview editor, click the General navigation tab.

3. In the Properties window, expand the Name section, and verify that the Effective
Dated dropdown menu displays True.

If the Name section is not displayed in the Properties window, click the General
navigation tab in the overview editor to set the proper focus.

4. In the overview editor, click the Attributes navigation tab and select the attribute
for the start date, and then click the Details tab and verify that Effective Date is
enabled and that Start is selected, as shown in Figure 5-16.

Verify that the attribute for the end date is also enabled correctly, as shown in the
figure. Note that these fields appear grayed out to indicate that they cannot be
edited for the view object.

Figure 5-16 View Object Overview Editor Displays Effective Date Setting

Chapter 5
Limiting View Object Rows Using Effective Date Ranges

5-39

No additional steps are required once you have confirmed that the view object has
inherited the desired attributes from the date-effective entity object.

How to Create New View Rows Using Date-Effective View Objects
Creating (inserting) date-effective rows is similar to creating or inserting ordinary view
rows. The start date and end date can be specified as follows:

• The user specifies the effective date on the application module. The start date is
set to the effective date, and the end date is set to end of time.

End of time is defined for ADF Business Components as December 31st, 4712.

• The user specifies values for the start date and the end date (advanced).

In either case, during entity validation, the new row is checked to ensure that it does
not introduce any gaps or overlaps. During post time, ADF Business Components will
acquire a lock on the previous row to ensure that the gap or overlaps are not created
upon the row insert.

How to Update Date-Effective View Rows
Date-effective rows are updated just as non date-effective rows are updated, using
a Row.setAttribute() call. However, for the desired operation to take effect, an
effective date mode must be set on the row before the update. ADF Business
Components supports various modes to initiate the row update.

To set the update mode, invoke the Row.setEffectiveDateMode(int mode) method
with one of the following mode constants defined by the oracle.jbo.Row class.

• CORRECTION (Correction Mode)

The effective start date and effective end dates remain unchanged. The values of
the other attributes may change. This is the standard row update behavior.

• UPDATE (Update Mode)

The effective end date of the latest row will be set to the effective date. All user
modifications to the row values are reverted on this row. A new row with the
modified values is created. The effective start date of the new row is set to the
effective date plus one day, and the effective end date is set to end of time. The
new row will appear after the transaction is posted to the database.

• OVERRIDE (Update Override Mode)

The effective end date of the modified row will be set to the effective date. The
effective start date of the next row is set to effective date plus one day and the
effective end date of the next row is set to end of time.

• CHANGE_INSERT (Change Insert Mode)

Similar to update mode, but change insert mode operates on a past row not the
latest row. The effective end date of the modified row should be set to the effective
date. All user modifications to the row values are reverted on this row. A new row
with the modified values will be created. The effective start date of the new row is
set to effective date plus one day, and the effective end date is set to effective start
date of the next row minus one day. The new row will appear after the transaction
is posted to the database.

Chapter 5
Limiting View Object Rows Using Effective Date Ranges

5-40

How to Delete Date-Effective View Rows
ADF Business Components supports various modes to initiate the row deletion. You
can mark view rows for deletion by using API calls like RowSet.removeCurrentRow() or
Row.remove().

To set the deletion mode, invoke the Row.setEffectiveDateMode(int mode) method
with one of the following mode constants defined by the oracle.jbo.Row class.

• DELETE (Delete Mode)

The effective end date of the row is set to the effective date. The operation for
this row is changed from delete to update. All rows with the same noneffective
date key values and with an effective start date greater than the effective date are
deleted.

• NEXT_CHANGE (Delete Next Change Mode)

The effective end date of the row is set to the effective end date of the next row
with the same noneffective date key values. The operation for this row is changed
from delete to update. The next row is deleted.

• FUTURE_CHANGE (Delete Future Change Mode)

The effective end date of the row is set to the end of time. The operation for this
row is changed from delete to update. All future rows with the same noneffective
date key values are deleted.

• ZAP (Zap Mode)

All rows with the same non-effective date key values are deleted.

The effective date mode constants are defined on the row interface as well.

What Happens When You Create a Date-Effective View Object
When you create a date-effective view object, the view object inherits the transient
attribute SysEffectiveDate from the entity object to store the effective date for the
row. Typically, the insert/update/delete operations modify the transient attribute while
Oracle ADF decides the appropriate values for effective start date and effective end
date.

The query displayed in the overview editor for the date-effective view object does not
display the WHERE clause needed to filter the effective date range. To view the full query
for the date-effective view object, including the WHERE clause, edit the query and click
Test and Explain in the Query page of the overview editor. The following sample
shows a typical query and query filter for effective dates:

SELECT OrdersVO.ORDER_ID, OrdersVO.CREATION_DATE,
 OrdersVO.LAST_UPDATE_DATE
FROM ORDERS OrdersVO
WHERE (:Bind_SysEffectiveDate BETWEEN OrdersVO.CREATION_DATE AND
 OrdersVO.LAST_UPDATE_DATE)

The following example shows sample XML entries that are generated when you create
an date-effective view object.

<ViewObject
...

Chapter 5
Limiting View Object Rows Using Effective Date Ranges

5-41

<!-- Property that enables date-effective view object. -->
 IsEffectiveDated="true">
 <EntityUsage
 Name="Orders1"
 Entity="model.OrdersDatedEO"
 JoinType="INNER JOIN"/>
<!-- Attribute identified as the start date -->
 <ViewAttribute
 Name="CreationDate"
 IsNotNull="true"
 PrecisionRule="true"
 IsEffectiveStartDate="true"
 EntityAttrName="CreationDate"
 EntityUsage="Orders1"
 AliasName="CREATION_DATE"/>
<!-- Attribute identified as the end date -->
 <ViewAttribute
 Name="LastUpdateDate"
 IsNotNull="true"
 PrecisionRule="true"
 IsEffectiveEndDate="true"
 EntityAttrName="LastUpdateDate"
 EntityUsage="Orders1"
 AliasName="LAST_UPDATE_DATE"/>
<!-- The SysEffectiveDate transient attribute -->
 <ViewAttribute
 Name="SysEffectiveDate"
 IsPersistent="false"
 PrecisionRule="true" Type="oracle.jbo.domain.Date"
 ColumnType="VARCHAR2"
 AliasName="SysEffectiveDate"
 Passivate="true"
 SQLType="DATE"/>
</ViewObject>

What You May Need to Know About Date-Effective View Objects and
View Links

Effective dated associations and view links allow queries to be generated that take the
effective date into account. The effective date of the driving row is passed in as a bind
parameter during the query execution.

While it is possible to create a noneffective dated association between two entities
when using the Create Association wizard or Create View Link wizard, JDeveloper
will by default make the association or link effective dated if one of the ends is
effective dated. However, when the association or view link exists between an effective
dated and a noneffective dated object, then at runtime ADF Business Components
will inspect the effective dated nature of the view object or entity object before
generating the query clause and binding the effective date. The effective date is
first obtained from the driving row. If it is not available, then it is obtained from
the property EFF_DT_PROPERTY_STR of the root application module. If you do not set
EFF_DT_PROPERTY_STR for the application module, the current date is used in the query
filter on the driving row and applied to the other side of the association or view link.

Chapter 5
Limiting View Object Rows Using Effective Date Ranges

5-42

Working with Multiple Tables in Join Query Results
Use the Create View Object Wizard to define join queries declaratively that involves
multiple tables.

Many queries you will work with will involve multiple tables that are related by foreign
keys. In this scenario, you join the tables in a single view object query to show
additional descriptive information in each row of the main query result. You use the
Create View Object wizard to define the query using declarative options. Whether your
view object is read-only or entity-based determines how you can define the join:

• When you work with entity-based view objects, the Create View Object wizard
uses an existing association defined between the entities to automatically build the
view object's join WHERE clause. You can declaratively specify the type of join you
want to result from the entity objects. Inner join (equijoin) and outer joins are both
supported.

• When you work with non-entity based view objects, you can use the SQL Builder
dialog to build the view object's join WHERE clause. In this case, you must select the
columns from the tables that you want to join.

Figure 5-17 illustrates the rows resulting from two tables queried by a view object that
defines a join query. The join is a single flattened result.

Figure 5-17 Join Query Result

How to Create Joins for Entity-Based View Objects
It is extremely common in business applications to supplement information from a
primary business domain object with secondary reference information to help the end
user understand what foreign key attributes represent. Take the example of the ItemEO
entity object. It contains foreign key attribute of type Number like:

• ItemId, representing the product to which the order item pertains

Showing an end user exclusively these "raw" numerical values is not very helpful.
Ideally, reference information from the view object's related entity objects should
be displayed to improve the application's usability. One typical solution involves
performing a join query that retrieves the combination of the primary and reference
information. This is equivalent to populating "dummy" fields in each queried row with
reference information based on extra queries against the lookup tables.

When the end user can change the foreign key values by editing the data, this
presents an additional challenge. Luckily, entity-based view objects support easily
including reference information that's always up to date. The key requirement to
leverage this feature is the presence of associations between the entity object that

Chapter 5
Working with Multiple Tables in Join Query Results

5-43

act as the view object's primary entity usage and the entity objects that contribute
reference information.

To include reference entities in a join view object, use the Create View Object wizard.
The Create View Object wizard lets you specify the type of join:

• Inner Join

Select when you want the view object to return all rows between two or more
entity objects, where each entity defines the same primary key column. The inner
join view object will not return rows when a primary key value is missing from the
joined entities.

• Outer Join

Select when you want the view object to return all rows that exist in one entity
object, even though corresponding rows do not exist in the joined entity object.
Both left and right outer join types are supported. The left and right designation
refers to the source (left) and destination (right) entity object named in an
association. For details about changing the default inner join to an outer join, see
How to Modify a Default Join Clause to Be an Outer Join When Appropriate. For
details about cases where a matching outer entity row is not found (none exists),
see What You May Need to Know About Outer Joins.

Both inner joins and outer joins are supported with the following options:

• Reference

Select when you want the data from the entity object to be treated as reference
information for the view object. Automatic lookup of the data is supported
and attribute values will be dynamically fetched from the entity cache when a
controlling key attribute changes. For details about how this setting affects runtime
behavior, see What Happens at Runtime: View Row Creation.

• Updatable

Deselect when you want to prevent the view object from modifying any entity
attributes in the entity object. By default, the first entity object (primary) in the
Selected list is updatable and subsequent entity objects (secondary) are not
updatable. To understand how to create a join view object with multiple updatable
entity usages, see How to Create a Subtype View Object with a Polymorphic Entity
Usage.

• Participate in row delete

Select when you have defined the entity as updatable and you want the action
of removing rows in the UI to delete the participating reference entity object.
This option is disabled for the primary entity and is used mainly on the outer
joined entity. For example, while it may be possible to delete an order item, it
should not be possible to delete the order when a remove row is called from the
join view object. For details about how this setting affects view row deletion for
various join types, see What You May Need to Know About Entity Based Joins and
Participates in Row Delete and What You May Need to Know About Composition
Associations and Joins.

Before you begin:

It may be helpful to have an understanding of how the type of view object effects joins.
For more information, see Working with Multiple Tables in Join Query Results.

Chapter 5
Working with Multiple Tables in Join Query Results

5-44

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You may also find it helpful to understand Oracle Database features related to join
queries. See the SQL Queries and Subqueries in the Oracle Database SQL Language
Reference.

You will need to complete this task:

Create the desired entity objects, as described in How to Create Multiple Entity
Objects and Associations from Existing Tables.

To create a view object that joins entity objects:

1. In the Applications window, right-click the package in the data model project in
which you want to create the view object and choose New and then View Object.

2. In the Create View Object wizard, on the Name page, enter a package name and
a view object name. Keep the default setting Entity enabled to indicate that you
want this view object to manage data with its base entity object. Click Next.

3. In the Entity Objects page, the first entity usage in the Selected list is known as
the primary entity usage for the view object. Select the primary entity object from
the Available list and shuttle it to the Selected list.

The list is not limited to a single, primary entity usage.

4. To add additional, secondary entity objects to the view object, select them in the
Available list and shuttle them to the Selected list.

The Association dropdown list shows you the name of the association that relates
the selected secondary entity usage to the primary one. For example, Figure 5-18
shows the result of adding one secondary reference entity usage, ProductEO, in
addition to the primary ItemEO entity usage. The association that relates to this
secondary entity usage is SItemProductIdFkAssoc.ProductEO.

Figure 5-18 Create View Object Wizard, Entity Objects Page

Chapter 5
Working with Multiple Tables in Join Query Results

5-45

5. Optionally, use the Entity Usage field to give a more meaningful name to the
entity usage when the default name is not clear.

6. If you add multiple entity usages for the same entity, use the Association
dropdown list to select which association represents that usage's relationship to
the primary entity usage. Click Next.

For each secondary entity usage, the Reference option is enabled to indicate
that the entity provides reference information and that it is not the primary entity.
The Updatable option is disabled. This combination represents the typical usage.
However, when you want to create a join view object with multiple, updatable
entity usages, see How to Create a Subtype View Object with a Polymorphic Entity
Usage.

Secondary entity usages that are updatable can also have the Participate in row
delete option enabled. This will allow secondary entity attributes to appear NULL
when the primary entity is displayed.

7. On the Attributes page, select the attributes you want each entity object usage to
contribute to the view object. Click Next.

8. On the Attribute Settings page, you can rename an attribute when the names are
not as clear as they ought to be.

The same attribute name often results when the reference and secondary entity
objects derive from the same table. Figure 5-19 shows the attribute Id in the
Select Attribute dropdown list, which has been renamed to ProductId in the
Name field.

Figure 5-19 Create View Object Wizard, Attribute Settings Page

9. Click Finish.

Chapter 5
Working with Multiple Tables in Join Query Results

5-46

How to Modify a Default Join Clause to Be an Outer Join When
Appropriate

When you add a secondary entity usage to a view object, the entity usage is related
to an entity usage that precedes it in the list of selected entities. This relationship
is established by an entity association displayed in the Association dropdown list
in the Entity Objects page of the overview editor for the view object. You use the
Association dropdown list in the editor to select the entity association that relates the
secondary entity usage to the desired preceding entity usage in the Selected list. The
name of the preceding entity usage is identified in the Source Usage dropdown list.

When JDeveloper creates the WHERE clause for the join between the table for the
primary entity usage and the tables for related secondary entity usages, by default it
always creates inner joins. You can modify the default inner join clause to be a left or
right outer join when appropriate. The left designation refers to the source entity object
named in the selected association. This is the entity identified in the Source Usage
dropdown list. The right designation refers to the current secondary entity usage that
you have selected in the Selected list.

In the left outer join, you will include all rows from the left table (related to the entity
object named in the Source Usage list) in the join, even if there is no matching row
from the right table (related to the current secondary entity object selection). The right
outer join specifies the reverse scenario: you will include all rows from the right table
(related to the entity object named in the Selected list) in the join, even if there is
no matching row from the left table (related to the current secondary entity object
selection).

For example, assume that a person is not yet assigned a membership status. In
this case, the MembershipId attribute will be NULL. The default inner join condition
will not retrieve these persons from the MEMBERSHIPS_BASE table. Assuming that you
want persons without membership status to be viewable and updatable through
the MembershipDiscountsVO view object, you can use the Entity Objects page in
the overview editor for the view object to change the query into an left outer
join to the MEMBERSHIPS_BASE table for the possibly null MEMBERSHIP_ID column
value. When you add the person entity to the view object, you would select
the left outer join as the join type. As shown in Figure 5-20, the association
PersonsMembershipsBaseFkAssoc identifies a source usage MembershipBaseEO on the
left side of the join and the selected PersonEO entity usage on the right side. The view
object MembershipDiscountsVO joins the rows related to both of these entity objects
and defines a left outer join for PersonEO to allow the view object to return rows from
the table related to MembershipBaseEO even if they do not have a match in the table
related to PersonEO.

Chapter 5
Working with Multiple Tables in Join Query Results

5-47

Figure 5-20 Setting an Outer Join to Return NULL Rows from Joined Entities

The view object's updated WHERE clause includes the addition (+) operator on the right
side of the equals sign for the related table whose data is allowed to be missing in the
left outer join:

PersonEO.MEMBERSHIP_ID = MembershipBaseEO.MEMBERSHIP_ID(+)

Before you begin:

It may be helpful to have an understanding of how the type of view object effects joins.
For more information, see Working with Multiple Tables in Join Query Results.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the desired entity objects, as described in How to Create Multiple Entity
Objects and Associations from Existing Tables.

To change an inner join type to an outer join:

1. In the Applications window, double-click the view object that you want to modify.

2. In the overview editor, click the Entity Objects navigation tab.

The entity object you select represents the table on the right side of the join.

3. In the Entity Objects page, in the Selected list, select the entity object that you
want to change the join type for.

The entity object you select represents the table on the right side of the join.

4. In the Association dropdown list, if only one association is defined, leave it
selected; otherwise, select among the list of entity object associations that relate
the secondary entity object to the desired entity object.

The entity usage that represents the joined table will be displayed in the Source
Usage dropdown list. The entity object in the Source Usage dropdown list that

Chapter 5
Working with Multiple Tables in Join Query Results

5-48

you choose through the association selection represents the table on the left side
of the join.

5. In the Join Type dropdown list, decide how you want the view object to return
rows from the joined entity objects:

• left outer join will include rows from the left table in the join, even if there is
no matching row from the right table.

• right outer join will include rows from the right table in the join, even if there is
no matching row from the left table.

The Source Usage dropdown list is the left side of the join and the current entity
usage in the Selected list is the right side.

How to Select Additional Attributes from Reference Entity Usages
After adding secondary entity usages, you can use the overview editor for the view
object to select the specific, additional attributes from these new usages that you want
to include in the view object.

Tip:

The overview editor lets you sort attributes displayed in the Attributes page
by their entity usages. By default, the attributes table displays attributes in
the order they appear in the underlying entity object. To sort the attributes by
entity usage, click the header for the Entity Usage column of the attributes
table. If the Entity Usage column does not appear in the attributes table,
click the dropdown menu on the top-right corner of the table (below the
button bar) and choose Select Columns to add the column to the Selected
list.

Before you begin:

It may be helpful to have an understanding of how the type of view object effects joins.
For more information, see Working with Multiple Tables in Join Query Results.

You may also find it helpful to understand Oracle Database features related to join
queries. For more information, see the SQL Queries and Subqueries in the Oracle
Database SQL Language Reference.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the desired entity objects, as described in How to Create Multiple Entity
Objects and Associations from Existing Tables.

To select attributes from a secondary entity usage:

1. In the Applications window, double-click the entity-based view object that you want
to modify.

Chapter 5
Working with Multiple Tables in Join Query Results

5-49

2. In the overview editor, click the Attributes navigation tab and then click the Create
new attribute button and choose Add Attribute from Entity to view the list of
available entity-derived attributes.

3. In the Attributes dialog, select the desired attribute and add it to the Selected list.

Note that even if you didn't intend to include them, JDeveloper automatically
verifies that the primary key attribute from each entity usage is part of the
Selected list. If it's not already present in the list, JDeveloper adds it for you.
When you are finished, the overview editor Query page shows that JDeveloper
has included the new columns in the SELECT statement.

4. Click OK.

How to Remove Unnecessary Key Attributes from Reference Entity
Usages

The view object attribute corresponding to the primary key attribute of the primary
entity usage acts as the primary key for identifying the view row. When you add
secondary entity usages, JDeveloper marks the view object attributes corresponding
to their primary key attributes as part of the view row key as well. When your view
object consists of a single updatable primary entity usage and a number of reference
entity usages, the primary key attribute from the primary entity usage is enough to
uniquely identify the view row. Further key attributes contributed by secondary entity
usages are not necessary and you should disable their Key Attribute settings.

For example, based on the view object with primary entity usage ShippingOptionEO,
you could disable the Key Attribute property for the ShippingOptionTranslationEO
entity usage so that this property is no longer selected for this additional key attribute:
ShippingTranslationsId.

However, when your view object consists of multiple updatable primary entity usages,
then the primary key to identify the view row must consist at the minimum of all the key
attributes of all updatable entity usages included in the view object.

Before you begin:

It may be helpful to have an understanding of how the type of view object effects joins.
For more information, see Working with Multiple Tables in Join Query Results.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the desired entity objects, as described in How to Create Multiple Entity
Objects and Associations from Existing Tables.

To remove unnecessary key attributes:

1. In the Applications window, double-click the entity-based view object that you want
to modify.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, in the attributes table, select the key attribute (identified by
the key icon in the Name column), and then click the Details tab and deselect the
Key Attribute property.

Chapter 5
Working with Multiple Tables in Join Query Results

5-50

How to Hide the Primary Key Attributes from Reference Entity Usages
Since you generally won't want to display the primary key attributes that were
automatically added to the view object, you can set the attribute's Display Hint
property to Hide.

Before you begin:

It may be helpful to have an understanding of how the type of view object effects joins.
For more information, see Working with Multiple Tables in Join Query Results.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the desired entity objects, as described in How to Create Multiple Entity
Objects and Associations from Existing Tables.

To hide the primary key attribute:

1. In the Applications window, double-click the entity-based view object that you want
to modify.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the primary key attribute (identified by the key icon in
the Name column), and then click the UI Hints tab and select Hide for the Display
type.

What Happens When You Reference Multiple Entities in a View Object
Figure 5-7 depicts the entity-based view object ItemVO and the two entity usages
referenced in its query statement. The dotted lines represent the metadata captured
in the entity-based view object's XML document that map SELECT list columns in the
query to attributes of the entity objects used in the view object. The query of the
entity-based view object joins data from a primary entity usage (ItemEO) with that from
the secondary reference entity usage (ProductEO).

Chapter 5
Working with Multiple Tables in Join Query Results

5-51

Figure 5-21 View Object Maps Attributes of Multiple Entity Objects

When you create a join view object to include one or more secondary entity usages by
reference, JDeveloper updates the view object's XML document to include information
about the additional entity usages. For example, the ItemVO.xml file for the view object
includes an additional reference entity usage. You will see this information recorded in
the multiple <EntityUsage> elements. For example, Figure 5-5 shows an entity usage
entry that defines the primary entity usage.

<EntityUsage
 Name="ItemEO"
 Entity="oracle.summit.model.entities.ItemEO"/>

The secondary reference entity usages will have a slightly different entry, including
information about the association that relates it to the primary entity usage, like the
entity usage shown in the following example.

<EntityUsage
 Name="ProductEO"
 Entity="oracle.summit.model.entities.ProductEO"
 Association="oracle.summit.model.entities.assoc.SItemProductIdFkAssoc"
 AssociationEnd="oracle.summit.model.entities.assoc.
 SItemProductIdFkAssoc.ProductEO"
 SourceUsage="oracle.summit.model.views.ItemVO.ItemEO"
 ReadOnly="true"
 Reference="true"
 Participant="false"
 JoinType="INNER JOIN/>

Each attribute entry in the XML file indicates which entity usage it references. For
example, the entry for the OrdId attribute in the following example shows that it's
related to the ItemEO entity usage, while the Name attribute is related to the ProductEO
entity usage.

 <ViewAttribute
 Name="OrdId"
 IsNotNull="true"

Chapter 5
Working with Multiple Tables in Join Query Results

5-52

 EntityAttrName="OrdId"
 EntityUsage="ItemEO"
 AliasName="ORD_ID" >
 </ViewAttribute>
...
 <ViewAttribute
 Name="Name"
 IsUpdatable="true"
 IsNotNull="true"
 EntityAttrName="Name"
 EntityUsage="ProductEO"
 AliasName="NAME" >
 </ViewAttribute>

The Create View Object wizard uses this association information at design time to
automatically build the view object's join WHERE clause. It uses the information at
runtime to enable keeping the reference information up to date when the end user
changes foreign key attribute values.

What You May Need to Know About Outer Joins
If you specify an outer join and no matching outer entity row is found, the database
return null for that portion of the query. For example, if you join Dept entity and Emp
entity through DeptEmpView with an outer join and Dept 40 has no employees. Then,
when the row for Dept 40 is reached, database returns [40, null] and ADF Business
Components will create an entity row for Dept 40 and an blank Emp entity row. If the
Emp entity in the view object is set as Updatable, you can set attribute values into this
blank entity row. Later if you commit the transaction, a new entity row will be inserted.

What You May Need to Know About Entity Based Joins and Entity
Cardinality

Suppose you have Customer and Order entity objects and you create view object joins
based on the entity association CustOrderIdFKAssoc, where Customer has cardinality
many and Order has cardinality 1.

If you were to create a 1-many join OrderCustVO view object that joins Order entity (the
primary entity with cardinality of 1) to Customer entity (secondary entity with cardinality
of many), the application may return the same Customer entity row for many Order
rows.

If you were to create a many-1 join CustOrderVO view object that joins Customer
(primary, many) to Order (secondary, one), the application may return the same
Customer entity row with many Order entity rows.

In the OrderCustVO (1-many) case, where Customer is a reference entity, when the
end user deletes a row, the application only deletes the Order entity row and Customer
is unaffected. Similarly, in the CustOrderView (m-1 case), where Order is a reference
entity, when the end user deletes a row, the application only deletes the Customer
entity row and Order is unaffected.

But, in the CustOrderVO (many-1) case, when the end user deletes one row, the
application may remove multiple rows from the join view instance. For example,
suppose you have three orders (A, B, C) for customer 10. If the end user deletes
the first of these joined view rows [10, A], the application will actually remove three

Chapter 5
Working with Multiple Tables in Join Query Results

5-53

view rows: [10, A], [10, B], and [10, C]. At the entity level, only Customer 10 entity row
is removed because Order is a reference entity.

What You May Need to Know About Entity Based Joins and
Participates in Row Delete

Suppose you create a 1-many join (like OrderCustVO view object) and a many-1 join
(like CustOrderVO view object) where the secondary entity object has Participate in
Row Delete enabled (and Customer 10 has Orders A, B, C).

If you were to create a 1-many join OrderCustVO and the Customer entity object has
Participate in Row Delete enabled, when the end user deletes [A, 10], the application
will delete Order A entity row first, followed by the Customer 10 entity row. When this
Customer 10 is deleted, the application actually remove all view rows that refer to that
entity row. This mean [A, 20] and [A, 30] will also be removed (3 view rows in total).

If you were to create a many-1 join CustOrderVO and the Order entity object has
Participate in Row Delete enabled, when the end user deletes [10, A], the application
will delete Customer 10 entity row first. The application will then remove all view rows
that refer to that entity row. This means [20, A] and [30, A] will be removed from the
view. Then, the application will delete the Order A entity row.

What You May Need to Know About Composition Associations and
Joins

Suppose the association between entity objects Order and OrderItem is a composition
association and you create a view object joins based on these entities, where Order A
contains Items 1, 2, 3.

In the ItemOrdVO view object case, where Order (secondary) is a reference entity,
when the end user deletes [1, A], the application will only delete the 1 OrderItem
entity row and there will be no issue. However, when the Order entity object has
Participate in Row Delete enabled, when the end user deletes [1, A], the application
will also attempt to delete the Item 1 entity row, followed by deleting Order A.
However, due to the composition relationship, this will fail and the application will throw
RemoveWithDetailsException because Order A still has OrderItem 2 and OrderItem 3
that belong to Order A.

In the OrdItemVO view object case, where Item (secondary) entity is a reference
entity, when the end user deletes [A, 1], the application will also attempt to delete
the Order A entity row. However, due to the composition relationship, this will fail and
the application will throw RemoveWithDetailsException because Order A still has Item
1, Item 2, and Item 3 that belong to Order A.

If the Item (secondary) entity object has Participate in Row Delete enabled, removing
[A, 1] will produce the same exception since Order A has child rows.

The situation is different if the entity association has Implement Cascade Delete
under Composition Association enabled.

In the ItemOrderVO view object case, where Order is a reference entity, when the
end user deletes [1, A], the application only deletes the Item A entity row (with no
exception thrown). If the Order entity object has Participate in Row Delete enabled,
when the end user deletes [1, A], the application will delete Item A first, followed by

Chapter 5
Working with Multiple Tables in Join Query Results

5-54

deletion of Order A. Because cascade delete is enabled, deletion of Order A will delete
all the remaining children of Order A, including Item 2 and Item 3. This will result in
removal of view rows [2, A] and [3, A] from the view instance.

Similarly, in the OrderItemVO view object case, where Item is a reference entity, when
the end user deletes [A, 1], the application deletes Order A. Because Implement
Cascade Delete is enabled, the application will also delete all the children of Order A,
including Item 1, 2, and 3. This will result in the removal of view rows [A, 2], [A, 2], and
[A, 3] from the view instance.

If the Item entity object has Participate in Row Delete enabled, the same behavior is
produced: all three view rows are removed.

How to Create Joins for Read-Only View Objects
To create a read-only view object joining two tables, use the Create View Object
wizard.

Before you begin:

It may be helpful to have an understanding of how the type of view object effects joins.
For more information, see Working with Multiple Tables in Join Query Results.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

To create a read-only view object joining two tables:

1. In the Applications window, right-click the project in which you want to create the
view object and choose New and then View Object.

2. If you have not yet created a database connection for the data model project, in
the Initialize Business Components Project dialog, select the database connection
or choose New to create a connection. Click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Create View Object wizard, on the Name page, enter a package name and
a view object name. Select Custom SQL query to indicate that you want this view
object to manage data with read-only access. Click Next.

4. On the Query page, use one of the following techniques to create the SQL query
statement that joins the desired tables:

• Type or paste any valid SQL statement into the Select box.

• Click Query Builder to open the SQL Statement dialog and build the query
statement, as described in How to Use the SQL Statement Dialog with Read-
Only View Objects.

5. After entering or building the query statement, click Next.

6. On the Bind Variables page, do one of the following:

• If the query does not reference any bind variables, click Next to skip Step 3.

• To add a bind variable and work with it in the query, see How to Add WHERE
Clause Bind Variables to a View Object Definition.

7. Click Next on the Attribute Mappings page and the Attribute page.

Chapter 5
Working with Multiple Tables in Join Query Results

5-55

8. On the Attribute Settings page, click Finish.

How to Test the Join View
To test the new view object, edit the application module and on the Data Model page
add an instance of the new view object to the data model. Then, use the Oracle ADF
Model Tester to verify that the join query is working as expected. For details about
editing the data model and running the Oracle ADF Model Tester, see Testing View
Object Instances Using the Oracle ADF Model Tester.

How to Use the SQL Statement Dialog with Read-Only View Objects
The Quick-pick objects page of the SQL Statement dialog lets you view the tables in
your schema, including the foreign keys that relate them to other tables. To include
columns in the select list of the query, shuttle the desired columns from the Available
list to the Selected list. For example, Figure 5-22 shows the result of selecting the ID,
NAME, and SUGGESTED_WHLSL_PRICE columns from the S_PRODUCT table, along with the
CATEGORY column from the S_PRODUCT_CATEGORIES table. The column from the second
table appears, beneath the S_PRODUCT_CATEGORY_ID_FK foreign key in the Available
list. When you select columns from tables joined by a foreign key, the SQL Statement
dialog automatically determines the required join clause for you.

Figure 5-22 View Object SQL Statement Dialog to Define a Join

Optionally, use the WHERE clause page of the SQL Statement dialog to define the
expression. To finish creating the query, click OK in the SQL Statement dialog. The
Query page of the overview editor will show a query like the one shown in the following
example.

SELECT
 S_PRODUCT.ID ID,
 S_PRODUCT.NAME NAME,

Chapter 5
Working with Multiple Tables in Join Query Results

5-56

 S_PRODUCT.SUGGESTED_WHLSL_PRICE SUGGESTED_WHLSL_PRICE,
 S_PRODUCT_CATEGORIES.CATEGORY CATEGORY
FROM
 S_PRODUCT JOIN S_PRODUCT_CATEGORIES ON S_PRODUCT.CATEGORY_ID =
 S_PRODUCT_CATEGORIES.ID

You can use the Attributes page of the Create View Object wizard to rename the
view object attribute directly as part of the creation process. Renaming the view object
here saves you from having to edit the view object again, when you already know
the attribute names that you'd like to use. As an alternative, you can also alter the
default Java-friendly name of the view object attributes by assigning a column alias, as
described in Attribute Names for Calculated Expressions in Custom SQL Mode.

Working with View Objects and Custom SQL
You can define entity objects in the Normal mode and custom SQL mode depending
on whether you require full control over the SELECT or FROM query clause.

When defining entity-based view objects in Normal mode, you can fully specify the
WHERE and SORT BY clauses, whereas, by default, the FROM clause and SELECT list
are automatically derived. The names of the tables related to the participating entity
usages determine the FROM clause, while the SELECT list is based on the:

• Underlying column names of participating entity-mapped attributes

• SQL expressions of SQL-calculated attributes

When you require full control over the SELECT or FROM clause in a query, you can
enable custom SQL mode.

Tip:

The view object editors and wizard in the JDeveloper provide full support for
generating SQL from choices that you make. For example, two such options
allow you to declaratively define outer joins and work in declarative SQL
mode (where no SQL is generated until runtime).

How to Create a Custom SQL Mode View Object
When you need full control over the SQL statement, the Create View Object wizard
lets you specify this using custom SQL mode. Primarily, the custom SQL view object
that you create will be useful when you need to write Unions or Group By queries.
Additionally, you can create a custom SQL view object if you need to create SQL-
based validation queries used by the view object-based Key Exists validator, provided
that you have marked a key attribute.

See about the tradeoffs between working with entity-based view objects and custom
SQL view objects that are not based on entity objects, see Using Entity-Based View
Objects for Read-Only Data.

To create a custom SQL view object, use the Create View Object wizard, which is
available from the New Gallery.

Before you begin:

Chapter 5
Working with View Objects and Custom SQL

5-57

It may be helpful to have an understanding of view objects. See, see Populating View
Object Rows from a Single Database Table.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. See, see Additional Functionality for View Objects.

To create a custom SQL view object:

1. In the Applications window, right-click the package in which you want to create the
view object and choose New and then View Object.

2. If you have not yet created a database connection for the data model project, in
the Initialize Business Components Project dialog, select the database connection
or choose New to create a connection. Click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Create View Object wizard, on the Name page, enter a package name and
a view object name. Select Custom SQL query to indicate that you want this view
object to manage data without the benefit of entity objects. Click Next.

4. On the Query page, use one of the following techniques:

• Type or paste any valid SQL statement into the Select text box. The query
statement can use a WHERE clause and an Order By clause. For example,
Figure 5-23shows a query statement that uses a WHERE clause and an Order
By clause.

• Click Query Builder to open the SQL Statement dialog and build the query
statement.

Figure 5-23 Create View Object Wizard, Query Page

Chapter 5
Working with View Objects and Custom SQL

5-58

Note:

If the Entity Objects page displays instead of the Query page,
go back to Step 1 of the wizard and ensure that you've selected
Custom SQL query.

5. After entering or building the query statement, click Next.

6. On the Bind Variables page, do one of the following:

• If the query does not reference any bind variables, click Next to skip this page.

• To add a bind variable and work with it in the query, see How to Add WHERE
Clause Bind Variables to a View Object Definition.

7. On the Attribute Settings page, from the Select Attribute dropdown, select the
attribute that corresponds to the primary key of the queried table and confirm that
the Key Attribute checkbox is selected.

The Create View Object wizard auto-detects key attributes from the database
and enables the Key Attribute checkbox, as shown in Figure 5-24. Failure to
define the key attribute can result in unexpected runtime behavior for ADF Faces
components with a data control based on the view object collection.

Figure 5-24 Create View Object Wizard, Attribute Settings Page

8. Click Finish.

Chapter 5
Working with View Objects and Custom SQL

5-59

Note:

In the ADF Business Components wizards and editors, the default
convention is to use camel-capped attribute names, beginning with a capital
letter and using uppercase letters in the middle of the name to improve
readability when the name comprises multiple words.

What Happens When You Create a Custom SQL View Object
When you create a view object using custom SQL mode, JDeveloper first parses the
query to infer the following from the columns in the SELECT list:

• The Java-friendly view attribute names (for example, CountryName instead of
COUNTRY_NAME)

By default, the wizard creates Java-friendly view object attribute names that
correspond to the SELECT list column names, as shown in Figure 5-25.

For information about using view object attribute names to access the data from
any row in the view object's result set by name, see Testing View Object Instances
Programmatically.

• The SQL and Java data types of each attribute

Figure 5-25 Create View Object Wizard, Attribute Mappings Page

Each part of an underscore-separated column name like SOME_COLUMN_NAME is turned
into a camel-capped word (like SomeColumnName) in the attribute name. While the view
object attribute names correspond to the underlying query columns in the SELECT list,
the attribute names at the view object level need not match necessarily.

Chapter 5
Working with View Objects and Custom SQL

5-60

Tip:

You can rename the view object attributes to any names that might be more
appropriate without changing the underlying query.

JDeveloper then creates the XML document file that represents the view object's
declarative settings and saves it in the directory that corresponds to the name of its
package. For example, the XML file created for a view object named CountriesVO in
the lookups package is ./lookups/CountriesVO.xml under the project's source path.

To view the view object settings, select the desired view object in the Applications
window and open the Structure window. The Structure window displays the list of
XML definitions, including the SQL query and the list of attributes. To open the XML
definition in the editor, right-click the corresponding node and choose Go to Source.

How to Customize SQL Statements in Custom SQL Mode
To enable custom SQL mode, select Write Custom SQL on the Query page of the
Create View Object wizard. You can also modify the SQL statement of an existing
entity-based view object in the view object overview editor. In the overview editor,
navigate to the Query page and select Write Custom SQL.

What Happens When You Enable Custom SQL Mode
When you enable custom SQL mode, the Select text box in the Query page of the
overview editor or wizard becomes fully editable, displaying the full SQL statement.
Using this text box, you can change every aspect of the SQL query.

While you can add the ORDER BY clause directly to the Select text box when you
are in custom SQL mode, it is still useful to keep the ORDER BY portion of the clause
separate, since the runtime engine might need to append additional WHERE clauses
to the query. Keeping the ORDER BY clauses separated will ensure they are applied
correctly.

What You May Need to Know About Custom SQL Mode
When you define a SQL query using custom SQL mode, you type a SQL language
statement directly into the editor. Using this mode places some responsibility on
the Business Components developer to understand how the view object handles
the metadata resulting from the query definition. Review the following information to
familiarize yourself with the behavior of editing queries that you create in custom SQL
mode.

Attribute Names for Calculated Expressions in Custom SQL Mode
If your SQL query includes a calculated expression, use a SQL alias to assist the
Create View Object wizard in naming the column with a Java-friendly name. The
following example shows a SQL query that includes a calculated expression.

select CUSTOMER_ID, EMAIL,
 SUBSTR(FIRST_NAME,1,1)||'. '||LAST_NAME

Chapter 5
Working with View Objects and Custom SQL

5-61

from CUSTOMERS
order by EMAIL

The following example uses a SQL alias USER_SHORT_NAME to assist the Create View
Object wizard in naming the column with a Java-friendly name. The wizard will display
UserShortName as the name of the attribute derived from this calculated expression.

select CUSTOMER_ID, EMAIL,
 SUBSTR(FIRST_NAME,1,1)||'. '||LAST_NAME AS USER_SHORT_NAME
from CUSTOMERS
order by EMAIL

Attribute Mapping Assistance in Custom SQL Mode
The automatic cooperation of a view object with its underlying entity objects depends
on correct attribute-mapping metadata saved in the XML document. This information
relates the view object attributes to corresponding attributes from participating entity
usages. JDeveloper maintains this attribute mapping information in a fully automatic
way for normal entity-based view objects. However, when you decide to use custom
SQL mode with a view object, you need to pay attention to the changes you make to
the SELECT list. That is the part of the SQL query that directly relates to the attribute
mapping. Even in custom SQL mode, JDeveloper continues to offer some assistance
in maintaining the attribute mapping metadata when you do the following to the SELECT
list:

• Reorder an expression without changing its column alias

JDeveloper reorders the corresponding view object attribute and maintains the
attribute mapping.

• Add a new expression

JDeveloper adds a new SQL-calculated view object attribute with a corresponding
camel-capped name based on the column alias of the new expression.

• Remove an expression

JDeveloper converts the corresponding SQL-calculated or entity-mapped attribute
related to that expression to a transient attribute.

However, if you rename a column alias in the SELECT list, JDeveloper has no way to
detect this, so it is treated as if you removed the old column expression and added a
new one of a different name.

After making any changes to the SELECT list of the query, visit the Attribute Mappings
page of the overview editor to ensure that the attribute-mapping metadata is correct.
The table on this page, which is disabled for view objects in normal mode, becomes
enabled for custom SQL mode view objects. For each view object attribute, you will
see its corresponding SQL column alias in the table. By clicking into a cell in the
View Attributes column, you can use the dropdown list that appears to select the
appropriate entity object attribute to which any entity-mapped view attributes should
correspond.

Chapter 5
Working with View Objects and Custom SQL

5-62

Note:

If the view attribute is SQL-calculated or transient, a corresponding attribute
with a "SQL" icon appears in the View Attributes column to represent it.
Since neither of these type of attributes are related to underlying entity
objects, no entity attribute related information is required for them.

Custom Edits in Custom SQL Mode
When you disable custom SQL mode for a view object, it will return to having its
SELECT and FROM clause be derived again. JDeveloper warns you that doing this might
cause your custom edits to the SQL statement to be lost. If this is what you want, after
acknowledging the alert, your view object's SQL query reverts back to the default.

Changes to SQL Expressions in Custom SQL Mode
Consider a Products view object with a SQL-calculated attribute named Shortens
whose SQL expression you defined as SUBSTR(NAME,1,10). If you switch this view
object to custom SQL mode, the Select text box will show a SQL query similar to the
one shown in the following example.

SELECT Products.PROD_ID,
 Products.NAME,
 Products.IMAGE,
 Products.DESCRIPTION,
 SUBSTR(NAME,1,10) AS SHORT_NAME
FROM PRODUCTS Products

If you go back to the attribute definition for the Shortens attribute and change the SQL
Expression field from SUBSTR(NAME,1,10) to SUBSTR(NAME,1,15), then the change
will be saved in the view object's XML document. Note, however, that the SQL query
in the Select text box will remain as the original expression. This occurs because
JDeveloper never tries to modify the text of a custom SQL statement. In custom SQL
mode, the developer is in full control. JDeveloper attempts to adjust metadata as a
result of some kinds of changes you make yourself to the custom SQL statement, but
it does not perform the reverse. Therefore, if you change view object metadata, the
custom SQL statement is not updated to reflect it.

Therefore, you need to update the expression in the custom SQL statement itself. To
be completely thorough, you should make the change both in the attribute metadata
and in the custom SQL statement. This would ensure — if you (or another developer
on your team) ever decides to toggle custom SQL mode off at a later point in time
— that the automatically derived SELECT list would contain the correct SQL-derived
expression.

Chapter 5
Working with View Objects and Custom SQL

5-63

Note:

If you find you had to make numerous changes to the view object metadata
of a custom SQL mode view object, you can avoid having to manually
translate any effects to the SQL statement by copying the text of your
customized query to a temporary backup file. Then, you can disable custom
SQL mode for the view object and acknowledge the warning that you
will lose your changes. At this point JDeveloper will rederive the correct
generated SQL statement based on all the new metadata changes you've
made. Finally, you can enable custom SQL mode once again and reapply
your SQL customizations.

SQL Calculations that Change Entity Attributes in Custom SQL Mode
If you need to present altered versions of entity-mapped attribute data, you must
introduce a new SQL-calculated attribute with the appropriate expression to handle the
task. In custom SQL mode, when editing the SELECT list expression that corresponds
to entity-mapped attributes, you must not introduce SQL calculations into SQL
statements that change the value of the attribute when retrieving the data.

To illustrate the problem that will occur if you introduce SQL calculations into SQL
statements, consider the query for a simple entity-based view object named Products
shown in the following example.

SELECT Products.PROD_ID,
 Products.NAME,
 Products.IMAGE,
 Products.DESCRIPTION
FROM PRODUCTS Products

Imagine that you wanted to limit the name column to display only the first ten
characters of the name of a product query. The correct way to do that would be
to introduce a new SQL-calculated field, such as ShortName with an expression like
SUBSTR(Products.NAME,1,10). One way you should avoid doing this is to switch the
view object to custom SQL mode and change the SELECT list expression for the entity-
mapped NAME column to the include the SQL-calculate expression, as shown in the
following example.

SELECT Products.PROD_ID,
 SUBSTR(Products.NAME,1,10) AS NAME,
 Products.IMAGE,
 Products.DESCRIPTION
FROM PRODUCTS Products

This alternative strategy would initially appear to work. At runtime, you see the
truncated value of the name as you are expecting. However, if you modify the row,
when the underlying entity object attempts to lock the row it does the following:

• Issues a SELECT FOR UPDATE statement, retrieving all columns as it tries to lock the
row.

• If the entity object successfully locks the row, it compares the original values of
all the persistent attributes in the entity cache as they were last retrieved from
the database with the values of those attributes just retrieved from the database
during the lock operation.

Chapter 5
Working with View Objects and Custom SQL

5-64

• If any of the values differs, then the following error is thrown:

(oracle.jbo.RowInconsistentException)
JBO-25014: Another user has changed the row with primary key [...]

If you see an error like this at runtime even though you are the only user testing
the system, it is most likely due to your inadvertently introducing a SQL function in
your custom SQL view object that changed the selected value of an entity-mapped
attribute. In the above example, the SUBSTR(Products.NAME,1,10) function introduced
causes the original selected value of the Name attribute to be truncated. When the
row-lock SQL statement selects the value of the NAME column, it will select the entire
value. This will cause the comparison shown in the above example to fail, producing
the "phantom" error that another user has changed the row.

The same thing would happen with NUMBER-valued or DATE-valued attributes if you
inadvertently apply SQL functions in custom SQL mode to truncate or alter their
retrieved values for entity-mapped attributes.

Formatting of the SQL Statement in Custom SQL Mode
When you change a view object to custom SQL mode, its XML document changes
from storing parts of the query in separate XML attributes, to saving the entire query
in a single <SQLQuery> element. The query is wrapped in an XML CDATA section to
preserve the line formatting you may have done to make a complex query be easier to
understand.

Query Clauses in Custom SQL Mode
If your custom SQL view object:

• Contains a ORDERBY clause specified in the Order By field of the Query page of the
overview editor at design time, or

• Has a dynamic WHERE clause or ORDERBY clause applied at runtime using
setWhereClause() or setOrderByClause()

Then its query gets nested into an inline view before applying these clauses. For
example, suppose your custom SQL query was defined like the one shown in the
following example.

select CUSTOMER_ID, EMAIL, FIRST_NAME, LAST_NAME
from CUSTOMERS
union all
select CUSTOMER_ID, EMAIL, FIRST_NAME, LAST_NAME
from INACTIVE_CUSTOMERS

Then, at runtime, when you set an additional WHERE clause like email
= :TheUserEmail, the view object nests its original query into an inline view like the
one shown in the following example.

SELECT * FROM(
select CUSTOMER_ID, EMAIL, FIRST_NAME, LAST_NAME
from CUSTOMERS
union all
select CUSTOMER_ID, EMAIL, FIRST_NAME, LAST_NAME
from INACTIVE_CUSTOMERS) QRSLT

And, the view object adds the dynamic WHERE clause predicate at the end, so that the
final query the database sees looks like the one shown in the following example.

Chapter 5
Working with View Objects and Custom SQL

5-65

SELECT * FROM(
select CUSTOMER_ID, EMAIL, FIRST_NAME, LAST_NAME
from CUSTOMERS
union all
select CUSTOMER_ID, EMAIL, FIRST_NAME, LAST_NAME
from INACTIVE_CUSTOMERS) QRSLT
WHERE email = :TheUserEmail

This query "wrapping" is necessary in general for custom SQL queries, because the
original query could be arbitrarily complex, including SQL UNION, INTERSECT, MINUS,
or other operators that combine multiple queries into a single result. In those cases,
simply "gluing" the additional runtime WHERE clause onto the end of the query text could
produce unexpected results. For example, the clause might apply only to the last of
several UNION'ed statements. By nesting the original query verbatim into an inline view,
the view object guarantees that your additional WHERE clause is correctly used to filter
the results of the original query, regardless of how complex it is.

Inline View Wrapping at Runtime
Inline view wrapping of custom SQL view objects, limits a dynamically added WHERE
clause to refer only to columns in the SELECT list of the original query. To avoid this
limitation, when necessary you can disable the use of the inline view wrapping by
calling setNestedSelectForFullSql(false).

Custom SQL Affect on Dependent Objects
When you modify a view object query to be in custom SQL mode after you have
already created the view links that involve that view object or after you created other
view objects that extend the view object, JDeveloper will warn you with the alert
shown in Figure 5-26. The alert reminds you that you should revisit these dependent
components to ensure their SQL statements still reflect the correct query.

Figure 5-26 Proactive Reminder to Revisit Dependent Components

For example, if you were to modify the OrdersVO view object to use custom SQL
mode, because the OrdersByStatusVO view object extends it, you need to revisit the
extended component to ensure that its query still logically reflects an extension of the
modified parent component.

Custom SQL Affect on View Object Query Auto Refresh
When you create a view object query statement in custom SQL mode and you wish
to enable automatic query updates using Oracle Database change notification, you will
need to test the query statement for compatibility with query result change notification.
You can test the query in the Test Query dialog by clicking the Test and Explain

Chapter 5
Working with View Objects and Custom SQL

5-66

button in the Query page of the view object overview editor. The Change Notification
tab in the Test Query dialog will confirm whether the query can be registered for
change notification. If the query statement is not compatible, you will need to revise
the query as required by Oracle Database query result change notification registration
requirements. For more information, see How to Automatically Refresh the View
Object of the View Accessor.

SQL Types of Attributes in Custom SQL Mode
JDeveloper tries to infer the SQL type of the mapped column for view object attributes
that you create in custom SQL mode automatically. The Type property of the attribute
records the SQL type of the column, including the length information for VARCHAR2
columns and the precision and scale information for NUMBER columns. However, for
some SQL expressions the inferred value might default to VARCHAR2(255).

You can update the Type value for this type of attribute to reflect the correct length
if you know it. For example, VARCHAR2(20) which shows as the Type for the State
attribute in Figure 5-27 means that it has a maximum length of 20 characters. For a
NUMBER column, you would indicate a Type of NUMBER(7,2) for an attribute that you
want to have a precision of 7 digits and a scale of 2 digits after the decimal.

Performance Tip:

Your SQL expression can control how long the describe from the database
says the column is. Use the SUBSTR() function around the existing
expression. For example, if you specify SUBSTR(yourexpression, 1, 15),
then the describe from the database will inform JDeveloper that the column
has a maximum length of 15 characters.

Figure 5-27 Custom Attribute Settings in the Details Section of SQL-Derived
Attributes

Chapter 5
Working with View Objects and Custom SQL

5-67

In the case of entity-based view objects, you must edit the Type property in the Details
section of the Attributes page of the overview editor that you display for the entity
object, as described in How to Indicate Data Type, Length, Precision, and Scale.

Working with Named View Criteria
You can define ADF view criteria to filter data from view object rows. You can create
specific usages of the view object by defining different named view criteria.

A view criteria lets you specify filter information for the rows of a view object collection.
The view criteria object is a row set of one or more view criteria groups, whose
attributes mirror those in the view object. The view criteria definition comprises query
conditions that augment the WHERE clause of the target view object. However, unlike
the WHERE clause defined by the view object query statement, which applies to all
instances of the view object, the view criteria query condition is added to specific view
object instances. This allows you to create specific usages of the target view object
definition using query conditions that apply to the individual attributes of the target view
object.

View criteria definitions support Query-by-Example operators and therefore allows the
user to enter conditions such as "OrderId > 304", for example.

The Edit View Criteria dialog lets you create view criteria and save them as part of the
view object's definition, where they appear as named view criteria. You use the View
Criteria page of the overview editor to define view criteria for specific view objects.
View criteria that you define at design time can participate in these scenarios where
filtering results is desired at runtime:

• Supporting Query-by-Example search forms that allow the end user to supply
values for attributes of the target view object.

For example, the end user might input the value of a customer name and the date
to filter the results in a web page that displays the rows of the CustomerOrders
view object. The web page designer will see the named view criteria in the
JDeveloper Data Controls panel as well as ADF Business Components data
control, and, from them, easily create a search form. For more information about
the utilizing the named view criteria in the Data Controls panel, see Creating
Query Search Forms.

• Supporting row finder operations that the application may use to perform row look
ups using any non-key attribute.

For example, it is usually preferable to allow the end user to make row updates
without the need to know the row key value (often an ID). In this case, a row finder
that you apply to a view criteria supports locating a row using easily identifiable
attribute values, such as by user name and user email address. See Working with
Row Finders.

• Filtering the list of values (LOV) components that allow the end user may select
from one attribute list (displayed in the UI as an LOV component).

The web page designer will see the attributes of the view object in the JDeveloper
Data Controls panel and, from them, easily create LOV controls. For information
about utilizing LOV-enabled attributes in the Data Controls panel, see Creating a
Selection List.

• Validating attribute values using a view accessor with a view criteria applied to
filter the view accessor results.

Chapter 5
Working with Named View Criteria

5-68

For information about create view accessor validators, see How to Validate
Against the Attribute Values Specified by a View Accessor.

• Creating the application module's data model from a single view object definition
with a unique view criteria applied for each view instance.

The single view object query modified by view criteria is useful with look up data
that must be shared across the application. In this case, a base view object
definition queries the lookup table in the database and the view criteria set the
lookup table's TYPE column to define application-specific views. To define view
instances in the data model using the view criteria you create for a base view
object definition, see How to Define the WHERE Clause of the Lookup View
Object Using View Criteria.

Additionally, view criteria have full API support, and it is therefore possible to create
and apply view criteria to view objects programmatically.

How to Create Named View Criteria Declaratively
View criteria have a number of uses in addition to applying them to declarative queries
at runtime. In all usages, the named view criteria definition consists of a set of attribute
requirements that you specify to filter individual view object results. The features of the
view criteria definition that you can use will depend on its intended usage.

To define view criteria for the view object you wish to filter, you open the view object
in the overview editor and click the Create button in the View Criteria page. A
dedicated editor (the Create View Criteria dialog) helps you to build a WHERE clause
using attribute names instead of the target view object's corresponding SQL column
names. You may define multiple named view criteria for each view object.

Before you work with the Create View Criteria dialog to create named view criteria,
familiarize yourself with the usages described in Working with Named View Criteria.
The chapter references provide additional details that will help you to anticipate using
the appropriate features of the Create View Criteria dialog. For example, when you
create a view criteria to specify the searchable attributes of a search form, the view
criteria condition defines a simple list of attributes (a subset of the view object's
attributes) to be presented to the user, but then the view criteria definition requires
that you specify UI hints (model-level properties) to control the behavior of those
attributes in the search form. The Create View Criteria dialog displays all the UI hints in
a separate tabbed page that you select for the view criteria you are defining. Whereas,
when your view criteria is intended to specify view instances in the data model, you
can define arbitrarily complex query filter conditions, but you can ignore the UI hints
features displayed by the Create View Criteria dialog.

Each view criteria definition consists of the following elements:

• An arbitrary number of view criteria groups or an arbitrary number of references to
another named view criteria already defined for the current view object.

• An arbitrary number of view criteria items (grouped by view criteria groups)
consisting of an attribute name, an attribute-appropriate operator, and an operand.
Operands can be a literal value when the filter value is defined or a bind variable
that can optionally utilize a scripting expression that includes dot notation access
to attribute property values.

Expressions are based on the Groovy scripting language, as described in Using
Groovy Scripting Language with Business Components.

Chapter 5
Working with Named View Criteria

5-69

When you define a view criteria, you control the source of the filtered results. You can
limit the results of the filtered view object to:

• Just the database query results.

• Just the in-memory results of the view object query. For example, new rows added
by the user.

• Both the database and the in-memory results of the view object query.

Filtering on both database tables and the view object's in-memory results allows you to
filter rows that were created in the transaction but not yet committed to the database.

View criteria expressions you construct in the Edit View Criteria dialog use logical
conjunctions to specify how to join the selected criteria item or criteria group with the
previous item or group in the expression:

• AND conjunctions specify that the query results meet both joined conditions. This is
the default for each view criteria item you add.

• OR conjunctions specify that the query results meet either or both joined conditions.
This is the default for view criteria groups.

Additionally, you may create nested view criteria when you want to filter rows in the
current view object based on criteria applied to view-linked detail views. A nested
view criteria group consists of an arbitrary number of nested view criteria items.
You can use nested view criteria when you want to have more controls over the
logical conjunctions among the various view criteria items. The nested criteria place
restrictions on the rows that satisfy the criteria under the nested criteria's parent view
criteria group. For example, you might want to query both a list of employees with
(Salary > 3000) and belonging to (DeptNo = 10 or DeptNo = 20). You can define a
view criteria with the first group with one item for (Salary > 3000) and a nested view
criteria with the second group with two items DeptNo = 10 and DeptNo =20.

Before you begin:

It may be helpful to have an understanding of the ways you can use view criteria. The
usage you intend will affect the best practices for creating named view criteria. For
more information about the supported usages, see Working with Named View Criteria.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete these tasks:

• Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

• If the view criteria will use a bind variable in the operand, create the bind variable,
as described in How to Add View Criteria Bind Variables to a View Object
Definition.

To define a named view criteria:

1. In the Applications window, double-click the view object for which you want to
create the named view criteria.

2. In the overview editor, click the View Criteria navigation tab and then click the
Create New View Criteria button.

Chapter 5
Working with Named View Criteria

5-70

3. In the Create View Criteria dialog, enter the name of the view criteria to identify its
usage in your application.

4. In the Query Execution Mode dropdown list, decide how you want the view
criteria to filter the view object query results.

You can limit the view criteria to filter the database table specified by the view
object query, the in memory row set produced by the query, or both the database
table and the in-memory results.

Choosing Both may be appropriate for situations where you want to include rows
created as a result of enforced view link consistency. In this case, in-memory
filtering is performed after the initial fetch. For details about view link consistency,
see Maintaining New Row Consistency Between View Objects Based on the
Same Entity.

5. In the Criteria Definition tab, click one of these Add buttons to define the view
criteria.

• Add Item to add a single criteria item. The editor will add the item to the
hierarchy beneath the current group or view criteria selection. By default each
time you add an item, the editor will choose the next attribute to define the
criteria item. You can change the attribute to any attribute that the view object
query defines.

• Add Group to add a new group that will compose criteria items that you intend
to add to it. When you add a new group, the editor inserts the OR conjunction
into the hierarchy. You can change the conjunction as desired.

• Add Criteria to add a view criteria that you intend to define. This selection
is an alternative to adding a named criteria that already exists in the view
object definition. When you add a new view criteria, the editor inserts the AND
conjunction into the hierarchy. You can change the conjunction as desired.
Each time you add another view criteria, the editor nests the new view criteria
beneath the current view criteria selection in the hierarchy. The root node of
the hierarchy defines the named view criteria that you are currently editing.

Search forms that the UI designer will create from view criteria are not able to
use directly nested view criteria. For more information about defining nested
expressions for use with search forms, see What You May Need to Know
About Nested View Criteria Expressions.

• Add Named Criteria to add a view criteria that the view object defines. The
named criteria must appear in the overview editor for the view object you are
defining the view criteria.

6. Select a view criteria item node in the view criteria hierarchy and define the added
node in the Criteria Item section.

• Choose the desired Attribute for the criteria item. By default the editor adds
the first one in the list.

Optionally, you can add a nested view criteria inline when a view link exists for
the current view object you are editing. The destination view object name will
appear in the Attribute dropdown list. Selecting a view object lets you filter the
view criteria based on view criteria items for the nested view criteria based on
a view link relationship. For example, EmpVO is linked to the PaymentOptionsVO
and a view criteria definition for PaymentOptionsVO will display the destination
view object AddressVO. You could define the nested view criteria to filter
payment options based on the CountryId attribute of the current customer,
as specified by the CustomerId criteria item, as shown in Figure 5-28.

Chapter 5
Working with Named View Criteria

5-71

Figure 5-28 Edit View Criteria Dialog with Nested View Criteria
Specified

• Choose the desired Operator.

The list displays only the operators that are appropriate for the selected
attribute or view object. In the case of a view object selection, the exists
operator applies to a view criteria that you will define (or reference) as an
operand. In the case of String and Date type attributes, the Between and Not
between operators require you to supply two operand values to define the
range. In the case of Date type attributes, you can select operators that test for
a date or date range (with date values entered in the format YYYY-MM-DD).
For example, for December 16th, 2010, enter 2010-12-16.

JDeveloper does not support the IN operator. However, you can create a view
criteria with the IN operator using the API, as described in How to Create View
Criteria Programmatically.

7. Choose the desired Operand for the view criteria item selection.

• Select Literal when you want to supply a value for the attribute or when you
want to define a default value for a user-specified search field for a Query-by-
Example search form. When the view criteria defines a query search form for
the user interface, you may leave the Value field empty. In this case, the user
will supply the value. You may also provide a value that will act as a search
field default value that the user will be able to override. The value you supply
in the Value field can include wildcard characters * or %.

• Select Bind Variable when you want the value to be determined at runtime
using a bind variable. If the variable was already defined for the view criteria,
select it from the Parameter dropdown list. Otherwise, click New to display

Chapter 5
Working with Named View Criteria

5-72

the New Variable dialog that lets you name a new bind variable on the view
criteria.

When you select an existing bind variable from the dropdown list for use by
the view criteria, you will be able to select bind variables that have been
defined for the view object query or for the view criteria. The difference
between these two sets of bind variables is that query bind variables (ones
that you define in the Query page of the overview editor) are typically
used within the view object query statement and therefore support different
validation use cases than view criteria-defined bind variables. For view criteria,
typically you always select a bind variable that is defined in the View Criteria
page of the overview editor.

For further discussion about view criteria use cases for bind variables and
literals, see What You May Need to Know About Bind Variables in View
Criteria.

8. For each item, group, or nested view criteria that you define, optionally change the
default conjunction to specify how the selection should be joined.

• AND conjunction specifies that the query results meet both joined conditions.
This is the default for each view criteria item or view nested view criteria that
you add.

• OR conjunction specifies that the query results meet either or both joined
conditions. This is the default for view criteria groups.

9. Verify that the view criteria definition is valid by doing one of the following:

• Click Explain Plan to visually inspect the view criteria's generated WHERE
clause.

• Click Test to allow JDeveloper to verify that the WHERE clause is valid.

10. To disable case-sensitive filtering of the attribute based on the case of the runtime-
supplied value, leave Ignore Case selected.

The criteria item can be a literal value that you define or a runtime parameter that
the end user supplies. This option is supported for attributes of type String only.
The default disables case sensitive searches.

11. In the Validation dropdown list, decide whether the view criteria item is a required
or an optional part of the attribute value comparison in the generated WHERE
clause.

• Selectively Required means that the WHERE clause will ignore the view criteria
item at runtime if no value is supplied and there exists at least one criteria
item in the same view criteria group that has a criteria value. Otherwise, an
exception is thrown.

• Optional means the view criteria (or search field) is added to the WHERE clause
only if the value is non-NULL. The default Optional for each new view criteria
item means no exception will be generated for null values.

• Required means that the WHERE clause will fail to execute and an exception
will be thrown when no value is supplied for the criteria item.

12. If the view criteria uses a bind variable as the operand, decide whether the IS
NULL condition is the generated in the WHERE clause. This field is enabled only if
you have selected Optional for the validation of the bind variable.

• Leave Ignore Null Values selected (default) when you want to permit the view
criteria to return a result even when the bind variable value is not supplied

Chapter 5
Working with Named View Criteria

5-73

at runtime. For example, suppose you define a view criteria to allow users
to display a cascading list of countries and states (or provinces) through a
bind variable that takes the countryID as the child list's controlling attribute.
In this case, the default behavior for the view criteria execution returns
the list of all states if the user makes no selection in the parent LOV (an
empty countryId field). The generated WHERE clause would look similar to
(((CountryEO.COUNTRY_ID =:bvCountryId) OR (:bvCountryId IS NULL))),
where the test for a null value guarantees that the child list displays a result
even when the bind variable is not set. When validation is set to Required or
Selectively Required, the view criteria expects to receive a value and thus
this option to ignore null values is disabled.

• Deselect Ignore Null Values when you expect the view criteria to return a null
result when the bind variable value is not supplied at runtime. In the example
of the cascading lists, the view criteria execution returns no states if the user
makes no selection with an empty countryID field. In this case, the generated
WHERE clause would look similar to ((CountryEO.COUNTRY_ID=:bvCountryId)),
where the test for null is not performed, which means the query is expected to
function correctly with a null value bind variable. Note that the combination of
optional validation with null values is only possible for bind variables that are
required. Required bind variables are those defined in the Query page of the
overview editor and used in the query WHERE clause.

Note that the validation settings Required or Selectively Required also
remove the null value condition but can be used in combination with a
deselected Ignore Null Values setting to support a different use case. For
more details about the interaction of these settings, see What You May Need
to Know About Bind Variables in View Criteria.

13. Click OK.

14. If any of the view criteria conditions you defined reference a bind variable, then
in the View Criteria page, select the bind variable and then in the Details section,
click the Value tab and optionally specify a default value for the bind variable:

• When you want the value to be determined at runtime using an expression,
enter a Groovy scripting language expression, select the Expression value
type and enter the expression in the Value field.

• When you want to define a default value, select the Literal value type and
enter the literal value in the Value field.

15. Leave Updatable selected when you want the bind variable value to be defined
through the user interface.

The Updatable checkbox controls whether the end user will be allowed to change
the bind variable value through the user interface. If a bind variable is not
updatable (it may not be changed either programmatically or by the end user),
deselect Updatable.

16. In the View Criteria page, click the UI Hints tab and specify hints like Label,
Format Type, Format mask, and others.

The view layer will use bind variable UI hints when you build user interfaces like
search pages that allow the user to enter values for the named bind variables.
Note that formats are only supported for bind variables defined by the Date type or
any numeric data type.

17. If you created bind variables that you do not intend to reference in the view criteria
definition, select the bind variable and click the Delete button.

Chapter 5
Working with Named View Criteria

5-74

Confirm that your bind variable has been named in the view criteria by moving
your cursor over the bind variable name field, as shown in Figure 5-29. JDeveloper
identifies unreferenced bind variables by displaying the name field with an orange
border.

Figure 5-29 Orange Border Reminds to Reference the Bind Variable

What Happens When You Create a Named View Criteria
The Create View Criteria dialog in JDeveloper lets you easily create view criteria and
save them as named definitions. These named view criteria definitions add metadata
to the XML document file that represents the target view object's declarative settings.
Once defined, named view criteria appear by name in the View Criteria page of the
overview editor for the view object.

To view the view criteria, expand the desired view object in the Applications window,
select the XML file under the expanded view object, open the Structure window, and
expand the View Criteria node. Each view criteria definition for a view object contains
one or more <ViewCriteriaRow> elements corresponding to the number of groups
that you define in the Create View Criteria dialog. The following example shows the
ProductsVO.xml file with the <ViewCriteria> definition FindByProductNameCriteria
and a single <ViewCriteriaRow> that defines a developer-defined search form for
products using the bind variable :bvProductName. Any UI hints that you selected
to customize the behavior of a developer-defined search from will appear in the
<ViewCriteria> definition as attributes of the <CustomProperties> element. For
details about specific UI hints for view criteria, see How to Set User Interface Hints
on View Criteria to Support Search Forms.

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="ProductsVO"
 ... >
 <SQLQuery>
 ...
 </SQLQuery>
 ...
 <ViewCriteria
 Name="FindByProductNameCriteria"
 ViewObjectName="oracle.summit.model.views.ProductsVO"
 Conjunction="AND">
 <Properties>
 <CustomProperties>
 <Property
 Name="mode"
 Value="Basic"/>
 <Property
 Name="autoExecute"
 Value="false"/>
 <Property
 Name="showInList"
 Value="true"/>
 <Property
 Name="displayName"

Chapter 5
Working with Named View Criteria

5-75

 Value="Find Products By Name"/>
 <Property
 Name="displayOperators"
 Value="InAdvancedMode"/>
 <Property
 Name="allowConjunctionOverride"
 Value="true"/>
 </CustomProperties>
 </Properties>
 <ViewCriteriaRow
 Name="vcrow87">
 <ViewCriteriaItem
 Name="ProductName"
 ViewAttribute="ProductName"
 Operator="CONTAINS"
 Conjunction="AND"
 Value=":bvProductName"
 UpperColumns="1"
 IsBindVarValue="true"
 Required="Optional"/>
 </ViewCriteriaRow>
 </ViewCriteria>
 ...
</ViewObject>

Additionally, when you create view objects and specify them as instances in an
application module, JDeveloper automatically creates a data control to encapsulate
the collections (view instances) that the application module contains. JDeveloper then
populates the Data Controls panel with these collections and any view criteria that you
have defined, as shown in How View Objects Appear in the Data Controls Panel.

What You May Need to Know About Bind Variables in View Criteria
The view criteria filter that you define using a bind variable expects to obtain its value
at runtime. This can be helpful in a variety of user interface scenarios. To support a
particular use case, familiarize yourself with the combination of the Validation and
Ignore Null Values settings shown in Table 5-1.

Table 5-1 Use Cases for Bind Variable Options in View Criteria

Validation Ignore Null
Values

Use Cases Notes

Optional True
(Default)

Configure
cascading List
of Values (LOV)
where the
parent LOV
value is
optional.

Generate an
optional search
field in a search
form.

This combination generates the SQL
query (ProductName = :bind) OR
(:bind IS NULL).

When used for cascading LOVs, no
selection in the parent LOV returns all
rows in the child LOV.

To ensure that all rows are not returned
prior to executing a search, a view criteria
item with a literal operand (not a bind
variable) type is preferred. When a bind
variable on a view criteria with optional
validation usage is not resolved, the result
will be all rows returned.

Chapter 5
Working with Named View Criteria

5-76

Table 5-1 (Cont.) Use Cases for Bind Variable Options in View Criteria

Validation Ignore Null
Values

Use Cases Notes

Optional False (must
select a
required bind
variable that
has been
defined in a
query WHERE
clause to
achieve this
combination)

Configure
cascading LOVs
where the
parent LOV
value is
required.

This combination generates the SQL
query (ProductName = :bind).

When used for cascading LOVs, no
selection in the parent LOV returns no
rows in the child LOV.

Avoid this combination for search forms,
because when the user leaves the search
field blank the search will attempt to find
rows where this field is explicitly NULL. A
better way to achieve this is for the user to
explicitly select the "IS NULL" operator in
advanced search mode.

Required False
(default and
cannot be
modified for
this
combination)

Generate a
required search
field in a search
form.

This combination generates the SQL
query ProductName = :bind.

Avoid this setting for cascading LOVs,
because no selection in the parent LOV
will cause a validation error.

To ensure that a non-NULL search result
exists prior to executing a search, a view
criteria item with a literal operand (not
a bind variable) type is preferred. When
a bind variable on a view criteria with
required validation usage is not resolved,
the result will be no rows returned.

What You May Need to Know About Nested View Criteria Expressions
Search forms that the UI designer will create from view criteria are not able to
work with all types of nested expressions. Specifically, search forms do not support
expressions with directly nested view criteria. This type of nested expression defines
one view criteria as a direct child of another view criteria. Query search forms do
support nested expressions where you nest the view criteria as a child of a criteria
item which is itself a child of a view criteria. For more information about using view
criteria to create search forms, see Implicit and Named View Criteria.

How to Set User Interface Hints on View Criteria to Support Search
Forms

Named view criteria that you create for view object collections can be used by the
web page designer to create Query-by-Example search forms. Web page designers
select your named view criteria from the JDeveloper Data Controls panel to create
search forms for the Fusion web application. In the web page, the search form utilizes
an ADF Faces query search component that will be bound initially to the named
view criteria selected in the Data Controls panel. At runtime, the end user may select
among all other named view criteria that appear in the Data Controls panel. Named
view criteria that the end user can select in a search form are known as developer-
defined system searches. The query component automatically displays these system
searches in its Saved Search dropdown list. For more information about creating

Chapter 5
Working with Named View Criteria

5-77

search forms and using the ADF query search component, see Creating Query Search
Forms.

Note:

By default, any named view criteria you create in the Edit View Criteria
dialog will appear in the Data Controls panel. As long as the Show In List
option appears selected in the UI Hints page of the Edit View Criteria dialog,
JDeveloper assumes that the named view criteria should be available as a
developer-defined system search. When you want to create a named view
criteria that you do not want the end user to see in search forms, deselect
the Show In List option in the dialog. For example, you might create a
named view criteria only for an LOV-enabled attribute and so you would need
to deselect Show In List.

Because developer-defined system searches are created in the data model project,
the UI Hints page of the Edit View Criteria dialog lets you specify the default properties
for the query component's runtime usage of individual named view criteria. At runtime,
the query component's behavior will conform to the selections you make for the
following system search properties:

Search Region Mode: Select the mode that you want the query component to display
the system search as. The Basic mode has all features of Advanced mode, except
that it does not allow the end user to dynamically modify the displayed search criteria
fields. The default is Basic mode for a view criteria you define in the Edit View Criteria
dialog.

Query Automatically: Select when you want the query associated with the named
view criteria to be executed and the results displayed in the web page. Any developer-
defined system search with this option enabled will automatically be executed when
the end user selects it from the query component's Saved Search list. Deselect when
the web page designer prefers not to update the previously displayed results until the
end user submits the search criteria values on the form. Additionally, when a search
form is invoked from a task flow, the search form will appear empty when this option is
deselected and populated when enabled. By default, this option is disabled for a view
criteria you define in the Edit View Criteria dialog.

Show Operators: Determine how you want the query component to display the
operator selection field for the view criteria items to the end user. Note that the
operators displayed by the query component when the users changes the mode of
the query component from advanced to basic may change depending upon how you
have configured Show Operators. The query component will only preserve the user’s
selection between modes when you set Show Operators to Always to allow the full
list of operators in both modes. However, if you set Show Operators to In Advanced
Mode to only show the full list of operators in advanced mode, then after the user
makes their selections and switches to basic mode, the operators will default to the
ones defined by the view criteria and for this reason the user’s selections may appear
to change. Select Never when you want the view criteria to be executed using ONLY
the operators it defines (where the full list of operators will not be exposed in either
basic or advance modes). Note that although search forms display any bind variables
used in the query WHERE clause as search criteria, the Show Operators setting does
not support displaying the operators associated with these bind variable expressions.

Chapter 5
Working with Named View Criteria

5-78

Show Match All and Match Any: Select to allow the query component to display the
Match All and Match Any radio selection buttons to the end user. When these buttons
are present, the end user can use them to modify the search to return matches for
all view criteria items or any one view criteria item. This is equivalent to enforcing AND
(match all) or OR (match any) conjunctions between view criteria items. Deselect when
you want the view criteria to be executed using the view criteria item conjunctions it
defines. In this case, the query component will not display the radio selection buttons.

Rendered Mode: Select individual view criteria items from the view criteria tree
component and choose whether you want the selected item to appear in the search
form when the end user toggles the query component between basic mode and
advanced mode. The default for every view criteria item is All. The default mode
permits the query component to render an item in either basic or advanced mode.
By changing the Rendered Mode setting for individual view criteria items, you can
customize the search form's appearance at runtime. For example, you may want basic
mode to display a simplified search form to the end user, reserving advanced mode for
displaying a search form with the full set of view criteria items. In this case, you would
select Advanced for the view criteria item that you do not want displayed in the query
component's basic mode. In contrast, when you want the selected view criteria item to
be rendered only in basic mode, select Basic. Set any item that you do not want the
search form to render in either basic or advanced mode to Never.

Note:

When your view criteria includes an item that should not be exposed to the
user, use the Rendered Mode setting Never to prevent it from appearing in
the search form. For example, a view criteria may be created to search for
products in the logged-in customer's cart; however, you may want to prevent
the user from changing the customer ID to display another customer's
cart contents. In this scenario, the view criteria item corresponding to the
customer ID would be set to the current customer ID using a named bind
variable. Although the bind variable definition might specify the variable as
not required and not updatable, with the UI hint property Display set to Hide,
only the Rendered Mode setting determines whether or not the search form
displays the value.

Support Multiple Value Selection: Select when you want to allow the end user
to make multiple selections for an individual criteria item that the query component
displays. This option is only enabled when the view object attribute specified by the
view criteria item has a List of Values (LOV) defined. Additionally, multiple selections
will only be supported by the query component when the end user selects the
operator equal to or not equal to. For example, if the criteria item names an attribute
CountryId and this attribute derives its values from a list of country IDs accessed by
the attribute's associated LOV, then selecting this option would allow the end user to
submit the query with multiple country selections. At runtime, the query component will
generate the appropriate query clause based on the end user's operator selection.

Display Width: Enter the character width to be used by the control that displays this
criteria item in the query component. The value you enter will override the display
width control hint defined for the criteria item's corresponding view object attribute.
For example, in an edit form the attribute control hint may allow text of 1024 length, but
in the search form you might want to limit the field for the criteria item to 20 character
length.

Chapter 5
Working with Named View Criteria

5-79

Show In List: Select to ensure that the view criteria is defined as a developer-seeded
query. Deselect when the named view criteria you are defining is not to be used by the
query search component to display a search form. Your selection determines whether
the named view criteria will appear in the query search component's Saved Search
dropdown list of available system searches. By default, this option is enabled for a
view criteria you define in the Edit View Criteria dialog.

Display Name: Enter the name of the system search that you want to appear in the
query component's Saved Search dropdown list or click the ... button (to the right of
the edit field) to select a message string from the resource bundle associated with
the view object. The display name will be the name by which the end user identifies
the system search. When you select a message string from the resource bundle,
JDeveloper saves the string's corresponding message key in the view object definition
file. At runtime, the UI locates the string to display based on the end user's locale
setting and the message key in the localized resource bundle. When you do not
specify a display name, the view criteria name displayed in the Edit View Criteria
dialog will be used by default.

To create a system search for use by the ADF query search component, you select
Show In List in the UI Hints page of the Edit View Criteria dialog. You deselect Show
In List when you do not want the end user to see the view criteria in their search form.

Before you begin:

It may be helpful to have an understanding of view criteria. See Working with Named
View Criteria.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. See Additional Functionality for View Objects.

You will need to complete these tasks:

• Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

• Create the view criteria, as described in How to Create Named View Criteria
Declaratively.

For information abou defining UI hints for view object attributes, see How to Add
Attribute-Specific UI Hints.

To customize a named view criteria for the user interface:

1. In the Applications window, double-click the view object that defines the named
view criteria you want to use as a system search.

2. In the overview editor, click the View Criteria navigation tab and select the named
view criteria that you want to allow in system searches and then click the Edit
Selected View Criteria button.

3. In Edit View Criteria dialog, click the UI Hints tab and ensure that Show In List is
selected.

This selection determines whether or not the query component will display the
system search in its Saved Search dropdown list.

4. Enter a user-friendly display name for the system search to be added to the query
component's Saved Search dropdown list.

When left empty, the view criteria name displayed in the Edit View Criteria dialog
will be used by the query component.

Chapter 5
Working with Named View Criteria

5-80

5. Optionally, enable Query Automatically when you want the query component to
automatically display the search results whenever the end user selects the system
search from the Saved Search dropdown list.

By default, no search results will be displayed.

6. Optionally, apply Criteria Item UI Hints to customize whether the query
component renders individual criteria items when the end user toggles the search
from between basic and advanced mode.

By default, all view criteria items defined by the system search will be displayed in
either mode.

If a rendered criteria item is of type Date, you must also define UI hints for the
corresponding view object attribute. Set the view object attribute's Format Type
hint to Simple Date and set the Format Mask to an appropriate value. This will
allow the search form to accept date values.

7. Click OK.

How to Test View Criteria Using the Oracle ADF Model Tester
To test the view criteria you added to a view object, use the Oracle ADF Model Tester,
which is accessible from the Applications window.

The Oracle ADF Model Tester, for any view object instance that you browse, lets you
bring up the View Criteria dialog, as shown in Figure 5-30. The dialog allows you to
create a view criteria comprising one or more view criteria groups.

To apply criteria attributes from a single view criteria group, click the Specify View
Criteria toolbar button in the browser and enter Query-by-Example criteria in the
desired fields, then click Find.

To test view criteria using the Oracle ADF Model Tester:

1. In the Applications window, expand the project containing the desired application
module and view objects.

2. Right-click the application module and choose Run.

3. In the Oracle ADF Model Tester, double-click the view instance you want to filter,
and then right-click the view instance and choose Find.

Alternatively, after you double-click a view instance, you can click the Specify
View Criteria toolbar button to test the view criteria.

4. In the View Criteria dialog, perform one of the following tasks:

• To test a view criteria that you added to the view object in your project, select
from the list and click Find. Any additional criteria that you enter in the ad hoc
Criteria panel will be added to the filter.

• To test ad hoc criteria attributes from a single view criteria group, enter the
desired values for the view criteria and click Find. For example, Figure 5-30
shows the filter to return all customers whose names begins with "S" and who
live in CA.

• To test additional ad hoc view criteria groups, click the OR tab and use the
additional tabs that appear to switch between pages, each representing a
distinct view criteria group. When you click Find, the Oracle ADF Model Tester
will create and apply the view criteria to filter the result.

Chapter 5
Working with Named View Criteria

5-81

Figure 5-30 View Criteria Dialog in Oracle ADF Model Tester

How to Use View Criteria to Filter a View Object for the Current User
You can use the Groovy expression
adf.context.getSecurityContext().getUserName() to set the default value for the
named bind variable that you use to provide the current user in a view instance
filter. Specifically, you can use the bind variable in a named view criteria that you
define to filter a view object instance in the data model for the project. For example,
the named bind variable UserPrincipal is defined in the View Criteria page of the
overview editor, as shown in Figure 5-31. Note that you can write Groovy expressions
on business components to access the security context using expressions similar
to adf.context.getSecurityContext()methodName(). For example, from the security
context you can access information about the current user like their user name or
whether they belong to a particular role. For more information about the ADF security
context, see Getting Information from the ADF Security Context.

Chapter 5
Working with Named View Criteria

5-82

Figure 5-31 Groovy Expression Used to Set UserPrincipal Bind Variable

The CustomerVO view object also defines the
AuthenticatedUserByPrincipalCriteria view criteria. This view criteria defines
a filter for the PrincipalName attribute of the PersonsVO with the bind variable
userPrincipal providing the value. In this example, the bind variable userPrincipal
is defined with Updatable enabled. This ensures that the view criteria is able to set
the value obtained at runtime from the ADF security context. Since the bind variable is
not used in the SQL WHERE clause for the PersonsVO view object, the Required field is
unselected. This ensures that the value is optional and that no runtime exception will
be thrown if the bind variable is not resolved.

Then in the data model, where the CustomerVO specifies the view definition for the
usage AuthenticatedUser, the view criteria AuthenticatedUserByPrincipalCriteria
with the named bind variable is defined as the view usage's runtime filter. For details
about creating view instances for your project's data model, see Customizing a View
Object Instance that You Add to an Application Module.

How to Create View Criteria Programmatically
The following example shows the main() method finds the CustomerList view object
instance to be filtered, creates a view criteria for the attributes of this view object, and
applies the view criteria to the view object.

To create a view criteria programmatically, follow these basic
steps (as illustrated in the following example from the
oracle.summit.model.viewobjects.ProgrammaticVOCriteria.java example in the
SummitADF_Examples workspace):

1. Find the view object instance to be filtered.

2. Create a view criteria row set for the view object.

3. Use the view criteria to create one or more empty view criteria groups

4. Set attribute values to filter on the appropriate view criteria groups.

Chapter 5
Working with Named View Criteria

5-83

You use the ensureCriteriaItem(), setOperator(), and setSearchValue()
methods on the view criteria groups to set attribute name, comparison operator,
and value to filter on individually.

5. Add the view criteria groups to the view criteria row set.Apply the view criteria to
the view object.

6. Execute the query.

The last step to execute the query is important, since a newly applied view criteria is
applied to the view object's SQL query only at its next execution.

public class ProgrammaticVOCriteria {
 public static void main(String[] args) {

 // get the application module
 String amDef = "oracle.summit.model.viewobjects.AppModule";
 String config = "AppModuleLocal";
 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef, config);

 // 1. Find the View Object you want to filter
 ViewObject customerList = am.findViewObject("SCustomerView1");

 // Work with your appmodule and view object here

 // iterate through all the rows first, just to see to full VO results
 customerList.executeQuery();
 while (customerList.hasNext()) {
 Row customer = customerList.next();
 System.out.println("Customer: " + customer.getAttribute("Name") + "
 State: " + customer.getAttribute("State"));

 System.out.println("********* Set View Criteria and requery *********");

 // 2. Create a view criteria row set for this view object
 ViewCriteria vc = customerList.createViewCriteria();

 // 3. Use view criteria row set to create at least one view criteria group
 ViewCriteriaRow vcr1 = vc.createViewCriteriaRow();

 // 4. Set attribute values to filter on
 ViewCriteriaItem vci = vcr1.ensureCriteriaItem("State");
 vci.setOperator("=");
 vci.setSearchValue("TX");

 // 5. Add the view criteria group to the view criteria row set
 vc.add(vcr1);

 // 6. Apply the view criteria to the view object
 customerList.applyViewCriteria(vc, true);

 // 7. Execute the query
 customerList.executeQuery();

 // Iterate throught the rows to see the new results
 while (customerList.hasNext()) {
 Row customer = customerList.next();
 System.out.println("Customer: " + customer.getAttribute("Name") + "
 State: " + customer.getAttribute("State"));
 }

Chapter 5
Working with Named View Criteria

5-84

 System.out.println("********* Set View Criteria and requery *********");

 // set the attribute to a different value
 vci.setSearchValue("CA")

 // Execute the query
 customerList.executeQuery();

 // iterate throught the rows to see the new results
 while (customerList.hasNext()) {
 Row customer = customerList.next();
 System.out.println("Customer: " + customer.getAttribute("Name") + "
 State: " + customer.getAttribute("State"));
 }

 Configuration.releaseRootApplicationModule(am, true);
 }
}

Running the ProgrammaticVOCriteria.java test client produces one set of records
each time the query is executed. The first query is with no criteria applied (shows all
records), the second query is with one criteria set (shows records for TX only), and the
third query is with the criteria changed (shows records for CA only).

Customer: Great Gear State: TX
Customer: Acme Outfitters State: TX
Customer: Athena's Closet State: TX
Customer: Big John's Sports Emporium State: CA
Customer: Perfect Purchase State: CA
Customer: Father Gym's State: CA
...
********* Set View Criteria and requery *********
Customer: Great Gear State: TX
Customer: Acme Outfitters State: TX
Customer: Athena's Closet State: TX
...
********* Set View Criteria and requery *********
Customer: Big John's Sports Emporium State: CA
Customer: Perfect Purchase State: CA
Customer: Father Gym's State: CA
...

View criteria can also be created using buildCriteria().

 public class ProgrammaticVOCriteria {
 public static void main(String[] args) {
 ProgrammaticVOCriteria pc = new ProgrammaticVOCriteria();
 // get the application module
 String amDef = "model.AppModule";
 String config = "AppModuleLocal";
 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef, config);
 ViewObjectImpl deptvo = (ViewObjectImpl)
am.findViewObject("DeptView1");
 }
 pc.testExpr("DeptViewCriteria", deptvo, "Deptno in (20, 30, 40)");
 Configuration.releaseRootApplicationModule(am, true);
 }
 public void testExpr(String vcName, ViewObjectImpl vo, String expr){
 System.out.println("Expression = " + expr);

Chapter 5
Working with Named View Criteria

5-85

 ViewCriteria vc = vo.buildViewCriteria(vcName, expr);
 System.out.println("VC: " + vc);
 vo.applyViewCriteria(vc);
 vo.executeQuery();
 while(vo.hasNext()){
 Row r = vo.next();
 System.out.println("Dept : " + r.getAttribute("Deptno") + "/" +
r.getAttribute("Dname"));
 }
 }
}

What Happens at Runtime: How the View Criteria Is Applied to a View
Object

When you apply a view criteria containing one or more view criteria groups to a view
object, the next time it is executed it augments its SQL query with an additional WHERE
clause predicate corresponding to the Query-by-Example criteria that you've populated
in the view criteria groups. As shown in Figure 5-32, when you apply a view criteria
containing multiple view criteria groups, the view object augments its design time
WHERE clause by adding an additional runtime WHERE clause based on the non-null
example criteria attributes in each view criteria group.

A corollary of the view criteria feature is that each time you apply a new view criteria
(or remove an existing one), the text of the view object's SQL query is effectively
changed. Changing the SQL query causes the database to reparse the statement the
next time it is executed. You can eliminate the reparsing and improve the performance
of a view criteria, as described in What You May Need to Know About Query-by-
Example Criteria.

Figure 5-32 View Object Automatically Translates View Criteria Groups into
Additional Runtime WHERE Filter

Chapter 5
Working with Named View Criteria

5-86

What You May Need to Know About the View Criteria API
When you need to perform tasks that the Edit View Criteria dialog does not support,
review the View Criteria API. For example, programmatically, you can alter compound
search conditions using multiple view criteria groups, search for a row whose attribute
value is NULL, search case insensitively, and clear view criteria in effect.

Referencing Attribute Names in View Criteria
The setWhereClause() method allows you to add a dynamic WHERE clause to a view
object, as described in ViewObject Interface Methods for Working with the View
Object's Default RowSet. You can also use setWhereClause() to pass a string that
contains literal database column names like this:

vo.setWhereClause("LAST_NAME LIKE UPPER(:NameToFind)");

In contrast, when you use the view criteria mechanism, described in How to Create
View Criteria Programmatically, you must reference the view object attribute name
instead, like this:

 ViewCriteriaItem vc_item1 = vc_row1.ensureCriteriaItem("UserId");
 vc_item1.setOperator(">");
 vc_item1.setValue("304");

Note that method calls like vcr.setAttribute("UserId", "> 304") as documented in
a past release must not be used to set the attribute values for the view criteria.

The view criteria groups are then translated by the view object into corresponding
WHERE clause predicates that reference the corresponding column names. The
programmatically set WHERE clause is AND-ed with the WHERE clauses of any view criteria
that have been defined for the view object at design time.

Referencing Bind Variables in View Criteria
When you want to set the value of a view criteria item to a bind variable, use
setIsBindVarValue(true), like this:

 ViewCriteriaItem vc_item1 = vc_row1.ensureCriteriaItem("UserId");
 vc_item1.setIsBindVarValue(true);
 vc_item1.setValue(":VariableName");

Searching for a Row Whose Attribute Is NULL
To search for a row containing NULL in a column, populate a
corresponding view criteria group attribute with the value "IS NULL" or use
ViewCriteriaItem.setOperator("ISBLANK").

Searching for Rows Using a Date Comparison
When you want to perform a comparison of date values in a view criteria item, use the
following predefined operators:

• BEFORE

• AFTER

Chapter 5
Working with Named View Criteria

5-87

• ONORBEFORE

• ONORAFTER

For example, to search for rows that contain a DATE type attribute whose value is after
a given date, you would use ViewCriteriaItem.setOperator("AFTER").

Do not use operators like <, >, <=, and >= because these operators perform string
comparisons that yield inaccurate results for date values.

Searching for Rows Whose Attribute Value Matches a Value in a List
To search for all rows with a value in a column that matches any value in a list of
values that you specify, populate a corresponding view criteria group attribute with the
comma-separated list of values and use the IN operator. For example, to filter the list
of persons by IDs that match 204 and 206, set:

ViewCriteriaItem vci = vcr.ensureCriteriaItem("CustomerId");
vci.setOperator("IN");
vci.setValue(0, 204);
vci.setValue(1, 206);

Searching Case-Insensitively
To search case-insensitively, call setUpperColumns(true) on the view criteria group to
which you want the case-insensitivity to apply. This affects the WHERE clause predicate
generated for String-valued attributes in the view object to use UPPER(COLUMN_NAME)
instead of COLUMN_NAME in the predicate. Note that the value of the supplied view
criteria group attributes for these String-valued attributes must be uppercase or the
predicate won't match. In addition to the predicate, it also possible to use UPPER() on
the value. For example, you can set UPPER(ename) = UPPER("scott").

Clearing View Criteria in Effect
To clear any view criteria in effect, you can call getViewCriteria() on a view object
and then delete all the view criteria groups from it using the remove() method, passing
the zero-based index of the criteria row you want to remove. If you don't plan to add
back other view criteria groups, you can also clear the entire view criteria in effect
by simply calling removeApplyViewCriteriaName("namedViewCriteria") on the view
object with the name of the view criteria passed in.

Altering Compound Search Conditions Using Multiple View Criteria
When you add multiple view criteria, you can call the setConjunction() method on a
view criteria to alter the conjunction used between the predicate corresponding to that
view criteria and the one for the previous view criteria. The legal constants to pass as
an argument are:

• ViewCriteriaComponent.VC_CONJ_AND

• ViewCriteriaComponent.VC_CONJ_NOT

• ViewCriteriaComponent.VC_CONJ_UNION

• ViewCriteriaComponent.VC_CONJ_OR (default)

The NOT value can be combined with AND or OR to create filter criteria like:

Chapter 5
Working with Named View Criteria

5-88

(PredicateForViewCriteria1) AND (NOT (PredicateForViewCriteria2))

or

(PredicateForViewCriteria1) OR (NOT (PredicateForViewCriteria2))

The syntax to achieve compound search conditions requires using Java's bitwise OR
operator like this:

vc2.setConjunction(ViewCriteriaComponent.VC_CONJ_AND |
 ViewCriteriaComponent.VC_CONJ_NOT);

Performance Tip:

Use the UNION value instead of an OR clause when the UNION query can make
use of indices. For example, if the view criteria searches for sal > 2000 or
job = 'CLERK' this query may turn into a full table scan. Whereas if you
specify the query as the union of two inner view criteria, and the database
table has an index on sal and an index on job, then the query can take
advantage of these indices and the query performance will be significantly
better for a large data set.

The limitation for the UNION clause is that it must be defined over one view object. This
means that the SELECT and the FROM list will be the same for inner queries of the UNION
clause. To specify a UNION query, call setConjunction() on the outer view criteria like
this:

vc.setConjunction(ViewCriteriaComponent.VC_CONJ_UNION);

The outer view criteria should contain inner queries whose results will be the union.
For example, suppose you want to specify the union of these two view criteria:

• A view criteria named MyEmpJob, which searches for Job = 'SALESMAN'.

• A view criteria named MyEmpSalary, which searches for Sal = 1500.

To create the UNION query for these two view criteria, you would make the calls shown
in the following example.

vcu = voEmp.createViewCriteria();
vcm = voEmp.getViewCriteriaManager();

vcu.setConjunction(ViewCriteria.VC_CONJ_UNION);
vcu.add(vcm.getViewCriteria("MyEmpJob"));
vcu.add(vcm.getViewCriteria("MyEmpSal"));

voEmp.applyViewCriteria(vcu);

When this view criteria is applied, it will return rows where Job is SALESMAN or Sal is
greater than 1500.

When you use a UNION view criteria, be sure that only one of the applied view criteria
has the UNION conjunction. Other view criteria that you apply will be applied to each
inner query of the UNION query.

Chapter 5
Working with Named View Criteria

5-89

What You May Need to Know About Query-by-Example Criteria
For performance reasons, you want to avoid setting a bind variable as the value of a
view criteria item in these two cases:

• In the specialized case where the value of a view criteria item is defined as
selectively required and the value changes from non-NULL to NULL.

In this case, the SQL statement for the view criteria will be regenerated each time
the value changes from non-NULL to NULL.

• In the case where the value of the view criteria item is optional and that item
references an attribute for an indexed column.

In the case of optional view criteria items, an additional SQL clause OR
(:Variable IS NULL) is generated, and the clause does not support using column
indices.

In either of these cases, you will get better performance by using a view object whose
WHERE clause contains the named bind variables, as described in How to Add WHERE
Clause Bind Variables to a View Object Definition.

Working with Bind Variables
You can define bind variables to supply runtime attribute values to the ADF view object
or view criteria.

Bind variables provide you with the means to supply attribute values at runtime to the
view object or view criteria. All bind variables are defined at the level of the view object
and used in one of the following ways:

• You can select the bind variable from a selection list to define the attribute value
for a view criteria in the Edit View Criteria dialog you open on the view object.
In this case, the bind variables allow you to change the values for attributes you
will use to filter the view object row set. For more information about filtering view
object row sets, see Working with Named View Criteria.

If the view criteria is to be used in a UI developer-defined search form, you
have the option of making the bind variable updatable by the end user. With this
updatable option, end users will be expected to enter the value in a search form
corresponding to the view object query.

• You can type the bind variable directly into the WHERE clause of your view object's
query to include values that might change from execution to execution. In this
case, bind variables serve as placeholders in the SQL string whose value you can
easily change at runtime without altering the text of the SQL string itself. Since
the query doesn't change, the database can efficiently reuse the same parsed
representation of the query across multiple executions, which leads to higher
runtime performance of your application.

In contrast, to query WHERE clause bind variables that are needed anytime the view
object is executed, bind variables that you define for view criteria are needed only
when the view criteria is applied.

Chapter 5
Working with Bind Variables

5-90

Note:

Oracle recommends that your application use view criteria to filter view
objects rather than hardcoding the filter in the query WHERE clause. When
you use view criteria you can change the values of the search criteria without
changing the text of the view object's SQL statement each time those values
change.

You can define a default value for the bind variable or write scripting expressions
for the bind variable that includes dot notation access to attribute property values.
Expressions are based on the Groovy scripting language, as described in Using
Groovy Scripting Language With Business Components.

How to Add View Criteria Bind Variables to a View Object Definition
Bind variable usages that you specify in a view criteria also require that you add the
bind variable to the view object definition. If you add a bind variable usage to the
view criteria definition and the view object does not have a bind variable definition,
a runtime exception will result when the view criteria is applied. To create the bind
variable definition, you use the View Criteria page in the overview editor for the view
object. When you define the variable in the editor, the bind variable will receive a value
at runtime, which when left undefined will be null. The default value of null may be
suitable in some scenarios but not in others. When a non-null value is required, you
can specify a default value for the bind variable definition, or you may let the end user
supply the value at runtime (for example, through search criteria in the case of query
search forms).

To add a view criteria bind variable to a view object, use the View Criteria page of the
overview editor for the view object.

Before you begin:

It may be helpful to have an understanding of the support for bind variables at the level
of view objects. For more information, see Working with Bind Variables.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

To define a named bind variable for the view criteria:

1. In the Applications window, double-click the view object.

2. In the overview editor, click the View Criteria navigation tab.

3. In the Query page, in the Bind Variables section, click the Create New Bind
Variable button.

4. In the New Variable dialog, enter the name of bind variable and select the data
type. Click OK.

Chapter 5
Working with Bind Variables

5-91

Because the bind variables share the same namespace as view object attributes,
specify names that don't conflict with existing view object attribute names. As with
view objects attributes, by convention bind variable names are created with an
initial capital letter, but you can rename it as desired.

5. Optionally, in the View Criteria page, in the Details section, click the Value tab and
specify a default value for the bind variable:

• When you want the value to be determined at runtime using an expression,
enter a Groovy scripting language expression, select the Expression value
type and enter the expression in the Value field. For example, you might want
to define a bind variable to filter view instances based on the current user, as
described in How to Use View Criteria to Filter a View Object for the Current
User.

• When you want to define a default value, select the Literal value type and
enter the literal value in the Value field.

• If you do not supply a default value for your named bind variable, it defaults to
NULL at runtime and the view criteria will return no rows.

6. Leave Updatable selected when you want the bind variable value to be defined
through the user interface.

The Updatable checkbox controls whether the end user will be allowed to change
the bind variable value through the user interface. If a bind variable is not
updatable (it may not be changed either programmatically or by the end user),
deselect Updatable.

7. In the View Criteria page, click the UI Hints tab and specify hints like Label,
Format Type, Format mask, and others.

The view layer will use bind variable UI hints when you build user interfaces like
search forms that allow the user to enter values for the named bind variables. Note
that formats are only supported for bind variables defined by the Date type or any
numeric data type.

8. Reference the bind variables you defined in the view criteria of the view object.

You must either reference the bind variable at runtime or use it in the view object
query definition. Unreferenced bind variables that you configure in the overview
editor will result in a runtime error, as described in Errors Related to the Names of
Bind Variables.

9. If you created bind variables that you do not intend to name in your view criteria or
reference programmatically, select the bind variable and click the Delete button.

Confirm that your bind variable has been named in the view criteria by moving
your cursor over the bind variable name field, as shown in Figure 5-34. JDeveloper
identifies unreferenced bind variables by displaying the name field with an orange
border.

Figure 5-33 Orange Border Reminds to Reference the Bind Variable

Chapter 5
Working with Bind Variables

5-92

How to Add WHERE Clause Bind Variables to a View Object Definition
Bind variable usages that you specify in a query WHERE clause also require that you
add the bind variable to the view object definition. If you add a bind variable usage
to the query statement and the view object does not have a bind variable definition, a
runtime exception will result. To create the bind variable definition, you use the Query
page in the overview editor for the view object. When you define the variable in the
editor, the bind variable will receive a value at runtime, which when left undefined will
be null. The default value of null may be suitable in some scenarios but not in others.
When a non-null value is required, you can specify a default value for the bind variable
definition, or you set the value at runtime, as described in How to Set Existing WHERE
Clause Bind Variable Values at Runtime.

To add a WHERE clause bind variable to a view object, use the Query page of the
overview editor for the view object. You can define as many bind variables as you
need.

Caution:

Unreferenced bind variables that you configure in the overview editor will
result in a runtime error, as described in Errors Related to the Names
of Bind Variables. Delete all bind variables definitions from the overview
editor unless you name it in the view object definition or reference it
programmatically.

Before you begin:

It may be helpful to have an understanding of the support for bind variables at the level
of view objects. For more information, see Working with Bind Variables.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

To define a named bind variable for the WHERE clause:

1. In the Applications window, double-click the view object.

2. In the overview editor, click the Query navigation tab.

3. In the Query page, in the Bind Variables section, click the Create New Bind
Variable button.

4. In the New Variable dialog, enter the name of bind variable and select the data
type. Click OK.

Because the bind variables share the same namespace as view object attributes,
specify names that don't conflict with existing view object attribute names. As with
view objects attributes, by convention bind variable names are created with an
initial capital letter, but you can rename it as desired.

Chapter 5
Working with Bind Variables

5-93

5. Optionally, in the Query page, in the Details section, click the Value tab and
specify a default value for the bind variable:

• When you want the value to be determined at runtime using an expression,
enter a Groovy scripting language expression, select the Expression value
type and enter the expression in the Value field.

• When you want to define a default value, select the Literal value type and
enter the literal value in the Value field.

• If you do not supply a default value for your named bind variable, it defaults to
NULL at runtime and the query will return no rows. If this makes sense for your
application, you might want to leverage SQL functions to handle this situation,
as described in Default Value of NULL for Bind Variables.

6. Leave Updatable selected when you want the bind variable value to be defined
through the user interface.

The Updatable checkbox controls whether the end user will be allowed to change
the bind variable value through the user interface. If a bind variable is not
updatable (it may not be changed programmatically or by the end user), deselect
Updatable.

7. In the Query page, click the UI Hints tab and specify hints like Label, Format
Type, Format mask, and others.

The view layer will use bind variable UI hints when you build user interfaces like
search pages that allow the user to enter values for the named bind variables.
Note that formats are only supported for bind variables defined by the Date type or
any numeric data type.

8. Reference the bind variables you defined in the SQL statement of the view object.

You must either reference the bind variable at runtime or use it in the view object
query definition. Unreferenced bind variables that you configure in the overview
editor will result in a runtime error, as described in Errors Related to the Names of
Bind Variables.

While SQL syntax allows bind variables to appear both in the SELECT list and in the
WHERE clause, you'll typically use them in the latter context, as part of your WHERE
clause. For example, the following sample shows the bind variables LowUserId
and HighUserId introduced into a SQL statement created using the Query page in
the overview editor for the view object.

select CUSTOMER_ID, EMAIL, FIRST_NAME, LAST_NAME
from CUSTOMERS
where (upper(FIRST_NAME) like upper(:TheName)||'%'
 or upper(LAST_NAME) like upper(:TheName)||'%')
 and CUSTOMER_ID between :LowUserId and :HighUserId
order by EMAIL

Notice that you reference the bind variables in the SQL statement by prefixing
their name with a colon like :TheName or :LowUserId. You can reference the bind
variables in any order and repeat them as many times as needed within the SQL
statement.

9. If you created bind variables that you do not intend to name in your view object
SQL query or reference programmatically, select the bind variable and click the
Delete button.

Confirm that your bind variable has been named in the view object query by
moving your cursor over the bind variable name field, as shown in Figure 5-34.

Chapter 5
Working with Bind Variables

5-94

JDeveloper identifies unreferenced bind variables by displaying the name field with
an orange border.

Figure 5-34 Orange Border Reminds to Reference the Bind Variable

What Happens When You Add Named Bind Variables
Once you've added one or more named bind variables to a view object, you gain the
ability to easily see and set the values of these variables at runtime. Information about
the name, type, and default value of each bind variable is saved in the view object's
XML document file. If you have defined UI hints for the bind variables, this information
is saved in the view object's component message bundle file along with other UI hints
for the view object.

Note that the overview editor displays an orange warning box around the bind variable
name for any bind variable that you define but do not use in the view object query.
Be sure to delete bind variables that the query statement or view criteria definition
does not reference. A runtime error will result when the view object query is executed
and one or more bind variable definitions remain unreferenced, as described in Errors
Related to the Names of Bind Variables.

How to Test Named Bind Variables
The Oracle ADF Model Tester allows you to interactively inspect and change
the values of the named bind variables for any view object, which can really
simplify experimenting with your application module's data model when named bind
parameters are involved. For more information about editing the data model and
running the Oracle ADF Model Tester, see Testing View Object Instances Using the
Oracle ADF Model Tester.

The first time you execute a view object in the Oracle ADF Model Tester to display
the results in the data view page, a Bind Variables dialog will appear, as shown in
Figure 5-35.

The Bind Variables dialog lets you:

• View the name, as well as the default and current values, of the particular bind
variable you select from the list

• Change the value of any bind variable by updating its corresponding Value field
before clicking OK to set the bind variable values and execute the query

• Inspect and set the bind variables for the view object in the current data view
page, using the Edit Bind Parameters button in the toolbar — whose icon looks
like ":id"

• Verify UI hints are correctly set up by showing the label text hint in the Bind
Variables list and by formatting the Value attribute using the respective format
mask

Chapter 5
Working with Bind Variables

5-95

Figure 5-35 Setting Bind Variables in the Oracle ADF Model Tester

If you defined the bind variable in the Bind Variables dialog with the Required
checkbox deselected, you will be able to test view criteria and supply the bind variable
with values as needed. Otherwise, if you left the Required checkbox selected (the
default), then you must supply a value for the bind variable in the Oracle ADF Model
Tester. The Oracle ADF Model Tester will throw the same exception seen at runtime
for any view object whose SQL statement use bind variables that do not resolve with a
supplied value.

How to Add a WHERE Clause with Named Bind Variables at Runtime
Using the view object's setWhereClause() method, you can add an additional filtering
clause at runtime. This runtime-added WHERE clause predicate does not replace the
design-time generated predicate, but rather further narrows the query result by adding
to the existing design time WHERE clause. Whenever the dynamically added clause
refers to a value that might change during the life of the application, you should use
a named bind variable instead of concatenating the literal value into the WHERE clause
predicate.

For example, assume you want to further filter the CustomerList view object at
runtime based on the value of the CUSTOMER_TYPE_CODE column in the table. Also
assume that you plan to search sometimes for rows where CUSTOMER_TYPE_CODE
= 'CUST' and other times for rows where CUSTOMER_TYPE_CODE = 'SUPP'. While it
contains slightly fewer lines of code, the following example is not desirable because
it changes the WHERE clause twice just to query two different values of the same
CUSTOMER_TYPE_CODE column.

// Don't use literal strings if you plan to change the value!
vo.setWhereClause("customer_type_code = 'CUST'");
// execute the query and process the results, and then later...
vo.setWhereClause("customer_type_code = 'SUPP'");

Instead, you should add a WHERE clause predicate that references named bind
variables that you define at runtime as shown in the following example.

Chapter 5
Working with Bind Variables

5-96

vo.setWhereClause("customer_type_code = :TheCustomerType");
vo.defineNamedWhereClauseParam("TheCustomerType", null, null);
vo.setNamedWhereClauseParam("TheCustomerType","CUST");
// execute the query and process the results, and then later...
vo.setNamedWhereClauseParam("TheCustomerType","SUPP");

This allows the text of the SQL statement to stay the same, regardless of the value
of CUSTOMER_TYPE_CODE you need to query on. When the query text stays the same
across multiple executions, the database will return the results without having to
reparse the query.

An updated test client class illustrating these techniques would look like what you
see in the following example. In this case, the functionality that loops over the results
several times has been refactored into a separate executeAndShowResults() method.
The program first adds an additional WHERE clause of customer_id = :TheCustomerId
and then later replaces it with a second clause of customer_type_code
= :TheCustomerType.

package devguide.examples.readonlyvo.client;

import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

public class TestClientBindVars {
 public static void main(String[] args) {
 String amDef = "devguide.examples.readonlyvo.CustomerService";
 String config = "CustomerServiceLocal";
 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef,config);
 ViewObject vo = am.findViewObject("CustomerList");
 // Set the two design time named bind variables
 vo.setNamedWhereClauseParam("TheName","shelli%");
 vo.setNamedWhereClauseParam("HighUserId", 215);
 executeAndShowResults(vo);
 // Add an extra where clause with a new named bind variable
 vo.setWhereClause("customer_type_code = :TheCustomerId");
 vo.defineNamedWhereClauseParam("TheCustomerId", null, null);
 vo.setNamedWhereClauseParam("TheCustomerId",116);
 executeAndShowResults(vo);
 vo.removeNamedWhereClauseParam("TheCustomerId");
 // Add an extra where clause with a new named bind variable
 vo.setWhereClause("customer_type_code = :TheCustomerType");
 vo.defineNamedWhereClauseParam("TheCustomerType", null, null);
 vo.setNamedWhereClauseParam("TheCustomerType","SUPP");
 // Show results when :TheCustomerType = 'SUPP'
 executeAndShowResults(vo);
 vo.setNamedWhereClauseParam("TheCustomerType","CUST");
 // Show results when :TheCustomerType = 'CUST'
 executeAndShowResults(vo);
 Configuration.releaseRootApplicationModule(am,true);
 }
 private static void executeAndShowResults(ViewObject vo) {
 System.out.println("---");
 vo.executeQuery();
 while (vo.hasNext()) {
 Row curUser = vo.next();
 System.out.println(curUser.getAttribute("CustomerId")+" "+
 curUser.getAttribute("ShortName"));

Chapter 5
Working with Bind Variables

5-97

 }
 }
}

However, if you run this test program, you may actually get a runtime error like the one
shown in the following example.

oracle.jbo.SQLStmtException: JBO-27122: SQL error during statement preparation.
Statement:
SELECT * FROM (select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS
where (upper(FIRST_NAME) like upper(:TheName)||'%'
 or upper(LAST_NAME) like upper(:TheName)||'%')
 and PERSON_ID between :LowUserId and :HighUserId
order by EMAIL) QRSLT WHERE (person_type_code = :TheCustomerType)
Detail 0
java.sql.SQLException: ORA-00904: "PERSON_TYPE": invalid identifier

The root cause, which appears after the ## Detail 0 ## in the stack trace, is a
SQL parsing error from the database reporting that PERSON_TYPE_CODE column does
not exist even though the PERSONS table definitely has a PERSON_TYPE_CODE column.
The problem occurs due to the mechanism that view objects use by default to
apply additional runtime WHERE clauses on top of read-only queries. What Happens
at Runtime: Dynamic Read-Only View Object WHERE Clause, explains a resolution
for this issue.

How to Set Existing WHERE Clause Bind Variable Values at Runtime
To set named bind variables at runtime, use the setNamedWhereClauseParam() method
on the ViewObject interface. In JDeveloper, you can choose Refactor > Duplicate
in the main menu to create a new TestClientBindVars class based on the existing
TestClient.java class as shown in How to Create a Command-Line Java Test Client.
In the test client class, you can set the values of the bind variables using a few
additional lines of code. For example, the setNamedWhereClauseParam() might take
as arguments the bind variables HighUserId and TheName as shown in the following
example.

// changed lines in TestClient class
ViewObject vo = am.findViewObject("CustomerList");
vo.setNamedWhereClauseParam("TheName","alex%");
vo.setNamedWhereClauseParam("HighUserId", 315);
vo.executeQuery();
// etc.

Running the test client class shows that your bind variables are filtering the data. For
example, the resulting rows for the setNamedWhereClauseParam() method shown in
example above may produce only two matches based on the name alex as shown in
the following results.

303 ahunold
315 akhoo

Whenever a view object's query is executed, you can view the actual bind variable
values in the runtime debug diagnostics, as the following results example illustrates.

[256] Bind params for ViewObject: CustomerList
[257] Binding param "LowUserId": 0

Chapter 5
Working with Bind Variables

5-98

[258] Binding param "HighUserId": 315
[259] Binding param "TheName": alex%

This information that can be invaluable when debugging your applications. Notice that
since the code did not set the value of the LowUserId bind variable, it took on the
default value of 0 (zero) specified at design time. Also notice that the use of the
UPPER() function in the WHERE clause and around the bind variable ensured that the
match using the bind variable value for TheName was performed case-insensitively.
The sample code set the bind variable value to "alex%" with a lowercase "a", and the
results show that it matched Alexander.

What Happens at Runtime: Dynamic Read-Only View Object WHERE
Clause

If you dynamically add an additional WHERE clause at runtime to a read-only view
object, its query gets nested into an inline view before applying the additional WHERE
clause.

For example, suppose your query was defined as shown in the following example.

select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS
where (upper(FIRST_NAME) like upper(:TheName)||'%'
 or upper(LAST_NAME) like upper(:TheName)||'%')
 and PERSON_ID between :LowUserId and :HighUserId
order by EMAIL

At runtime, when you set an additional WHERE clause like person_type_code
= :TheCustomerType as the test program in How to Add a WHERE Clause with
Named Bind Variables at Runtime illustrates, the framework nests the original query
into an inline view like the following example.

SELECT * FROM(
select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS
where (upper(FIRST_NAME) like upper(:TheName)||'%'
 or upper(LAST_NAME) like upper(:TheName)||'%')
 and PERSON_ID between :LowUserId and :HighUserId
order by EMAIL) QRSLT

Then the framework adds the dynamic WHERE clause predicate at the end, so that the
final query the database sees is like the following example.

SELECT * FROM(
select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS
where (upper(FIRST_NAME) like upper(:TheName)||'%'
 or upper(LAST_NAME) like upper(:TheName)||'%')
 and PERSON_ID between :LowUserId and :HighUserId
order by EMAIL) QRSLT
WHERE person_type_code = :TheCustomerType

This query "wrapping" is necessary in the general case since the original query could
be arbitrarily complex, including SQL UNION, INTERSECT, MINUS, or other operators
that combine multiple queries into a single result. In those cases, simply "gluing"
the additional runtime WHERE clause onto the end of the query text could produce
unexpected results because, for example, it might apply only to the last of several

Chapter 5
Working with Bind Variables

5-99

UNION'ed statements. By nesting the original query verbatim into an inline view, the
view object guarantees that your additional WHERE clause is correctly used to filter the
results of the original query, regardless of how complex it is. The consequence (that
results in an ORA-00904 error) is that the dynamically added WHERE clause can refer
only to columns that have been selected in the original query.

The simplest solution is to add the dynamic query column names to the end of the
query's SELECT list in the Query page of the overview editor for the view object. Just
adding the new column name at the end of the existing SELECT list — of course,
preceded by a comma — is enough to prevent the ORA-00904 error: JDeveloper
will automatically keep your view object's attribute list synchronized with the query
statement. Alternatively, Inline View Wrapping at Runtime explains how to disable this
query nesting when you don't require it.

The test client program described in How to Add a WHERE Clause with Named Bind
Variables at Runtime now produces the following results.

116 S. Baida

116 S. Baida

116 S. Baida

What You May Need to Know About Named Bind Variables
There are several things you may need to know about named bind variables, including
the runtime errors that are displayed when bind variables have mismatched names
and the default value for bind variables.

Errors Related to the Names of Bind Variables
You need to ensure that the list of named bind variables that you reference in your
SQL statement matches the list of named bind variables that you've defined in the
Bind Variables section of the Query page for the view object overview editor. Failure
to have these two agree correctly can result in one of the following two errors at
runtime.

If you use a named bind variable in your SQL statement but have not defined it, you'll
receive an error like this:

(oracle.jbo.SQLStmtException) JBO-27122: SQL error during statement preparation.
Detail 0
(java.sql.SQLException) Missing IN or OUT parameter at index:: 1

On the other hand, if you have defined a named bind variable, but then forgotten to
reference it or mistyped its name in the SQL, then you will see an error like this:

oracle.jbo.SQLStmtException: JBO-27122: SQL error during statement preparation.
Detail 0
java.sql.SQLException: Attempt to set a parameter name that does not occur in the
 SQL: LowUserId

To resolve either of these errors, double-check that the list of named bind variables in
the SQL matches the list of named bind variables in the Bind Variables section of the
Query page for the overview editor.

Chapter 5
Working with Bind Variables

5-100

Default Value of NULL for Bind Variables
If you do not supply a default value for your named bind variable, it defaults to NULL at
runtime. This means that if you have a WHERE clause like:

PERSON_ID = :TheCustomerId

and you do not provide a default value for the TheCustomerId bind variable, it will
default to NULL and cause the query to return no rows. Where it makes sense for your
application, you can leverage SQL functions like NVL(), CASE, DECODE(), or others to
handle the situation as you require. For example, the following WHERE clause fragment
allows the view object query to match any name if the value of :TheName is null.

upper(FIRST_NAME) like upper(:TheName)||'%'

Working with Row Finders
You use row finders using ADF view criteria to retrieve specific rows within a row set.
You can use a bind variable in the view criteria statement, where the bind variable’s
value is value of the filter parameter.

Row finders are objects that the application may use to locate specific rows within a
row set using a view criteria. You can define a row finder when you need to perform
row lookup operations on the row set and you do not want the application to use row
key attributes to specify the row lookup.

Currently, row finders that you define at design time can participate in these scenarios
where non-row key attribute lookup is desired at runtime:

• When you expose the row finder in an ADF Business Components web service,
the end user may initiate row updates on the specific rows of the service view
instance that match one or more row-finder mapped, non-key attribute values. For
information about this use case, see What You May Need to Know About View
Criteria and Row Finder Usage.

• Programmatically in the application when you want to obtain a set of rows that
match one or more row-finder mapped, non-key attribute values. For information
about this use case, see Programmatically Invoking the Row Finder.

You can specify the row finder to locate all row matches or a specified number of row
matches. If the row finder locates more rows than the fetch limit you specify, you can
enable the row finder to throw an exception.

The view object definition with row finder includes the following elements.

1. A specified view criteria that applies one or more view criteria items to filter the
owning view object. View criteria items are defined on the owning view object
attributes that determine the row match and must be defined by bind variables to
allow the row finder to supply the values at runtime.

2. A mapping between view criteria bind variables and the source of the value: either
an attribute of the view object or an attribute value expression that need not
necessarily map to attributes on the owning view object.

Use an expression row finder in use cases where you need to filter by one or more
attributes that are not mapped to the owning view object and use an attribute row

Chapter 5
Working with Row Finders

5-101

finder in use cases where you need to lookup a row with an attribute key value
from the owning view object.

For example, where EmpVO has an attribute email, an EmpVO row finder may locate
a specific employee row using a view criteria defined on the EmpVO and the email
address of the employee. The view criteria for the EmpVO might look similar to the one
shown in the following example. In this example, the view criteria statement uses a
bind variable EmailBindVar to set the value of the email attribute on the owning view
object EmpVO.

 ((UPPER(EmpEO.EMAIL) = UPPER(:EmailBindVar)))

The application may invoke the row finder by applying values to the mapped view
criteria bind variables in a variety of ways:

• An ADF Business Components web service that makes uses of a single row in
an upsert or merge operation. The application must invoke the row finder on the
owning view object by using bind variables that map to locator attributes of the
owning view object.

• A search field that filters a set of master rows with a value from the child
records. The application must invoke the row finder on the master view object
that participates in a master-detail relationship by using bind variables that map to
a WHERE clause type expression containing one or more attributes of the child
view object.

• An ADF Business Components web service that makes use of an update
operation may display a form with input fields that are bound to view object
attributes that the row finder maps to view criteria bind variables.

For details about enabling operations of Business Components web services, see
How to Enable the Application Module Service Interface.

• The application may invoke the row finder on the view object and programmatically
set the value of the mapped view object attributes to the view criteria bind
variables. See Programmatically Invoking the Row Finder.

How to Add Row Finders to a View Object Definition
You use the Row Finders page of the view object's overview editor to define the row
finder. In the editor, you define a value source for each bind variable of the view criteria
that you select. Attributes of the view object or attribute value expressions are both
valid sources for bind variables defined by the row finder.

The row finder that you define can map any number of view criteria bind variables to
a valid value source. Mapping additional variables in the row finder definition will result
in more restrictive row matches. In this regard, row finders are similar to query search
operations that do not alter the row set. Using an appropriately defined row finder, the
application can locate a single, specific row and the allow the end user to perform row
updates on the row.

As a rule of thumb, use an attribute expression row finder in use cases that map to
filtering the results with a WHERE clause and use an attribute row finder to lookup a
row with a key value.

Figure 5-36 shows the overview editor with a row finder that maps the view criteria
bind variable EmailBindVar specified in the findEmpByEmpEmail view criteria to the
attribute Email defined by the view object EmpVO as its value source.

Chapter 5
Working with Row Finders

5-102

Figure 5-36 View Object Overview Editor with Row Finder

Note:

You can define row finders on view objects in a master-detail hierarchy when
you want to filter the master by attributes of the detail view object. In this
scenario, use map the bind variable to an expression that contains attributes
of the child view object.

Before you begin:

It may be helpful to have an understanding of the row finder. For more information, see
Working with Row Finders.

It may be helpful to have an understanding of view criteria. For more information, see
Working with Named View Criteria.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete these tasks:

• Create the desired view objects, as described in Populating View Object Rows
from a Single Database Table or Working with Multiple Tables in Join Query
Results.

• Define a view criteria on the view object, as described in How to Create Named
View Criteria Declaratively.

• Optionally, add updatable transient attributes to the view object, as described
in How to Add a Transient Attribute. The transient attribute may be set
programmatically by the application or exposed in an ADF Business Components

Chapter 5
Working with Row Finders

5-103

web service payload to solicit the value from an end user. The transient attributes
must be defined as updatable to receive the criteria lookup value.

To create a row finder for a view object:

1. In the Applications window, double-click the view object for which you want to
create the row finder.

2. In the overview editor, click the Row Finders navigation tab and then click the
Add Row Finder button.

3. In the Name field, rename the row finder.

For example, a row finder that you define to locate an employee by their email
address, might be named EmpByEmailRowFinder.

4. Select the new row finder in the Row Finders list and then, in the View Criteria
dropdown, select the view criteria that filters the view object row set.

The desired row finder should appear highlighted, as shown in Figure 5-36. The
view criteria list will be empty unless you have created a view criteria for the row
finder to use.

5. When you want the end user of an ADF Business Components web service to
supply a value, leave Attribute selected, select the bind variable from the list,
and then, in the Attribute dropdown, select the attribute from the view object that
supplies the bind variable value at runtime.

6. When you want to filter the results in affect by using a WHERE clause, select
Filter Expression, select the bind variable from the list, and then, click New
expression method to enter the attribute value expression and click OK.

7. Deselect Fetch All when you want to specify the number of rows that the row
finder is allowed to match.

When you enter a number of rows for Fetch Limit, you can also select Error
Exceeding Limit to enable Oracle ADF to throw an exception when more
matching rows exist in the database than the number you specify for Fetch Limit.

8. Leave Exposed selected when you want to associate previously defined UI hints
with the current bind variable. If you know that the bind variable will not be utilized
by the user interface, you can deselect Exposed.

9. You can choose whether you want to make the value of a named bind variable
required, optional, or selectively required for the row finder that references the bind
variable as a view criteria item.

Press F1 to view the JDeveloper Help Center topic for details on the Required
dropdown options.

What Happens When You Define a Row Finder
When you create a view object row finder, the view object definition contains all the
metadata required by the row finder, including the row finder definition itself. As the
following example shows, the metadata for a row finder RowFinder includes a bind
variable EmailBindVar in the <Variable> element, a transient attribute TrEmpEmail in
the <ViewAttribute> element, a view criteria findEmpByEmpEmail and a view criteria
row EmpVOCriteria_Row0 in the <ViewCriteria> element, and finally the row finder
EmpByEmailRowFinder in the <RowFinders> element of the view object definition.

Chapter 5
Working with Row Finders

5-104

The row finder <VarAttributeMapping> subelement maps the view criteria bind
variable EmailBindVar to the transient attribute TrEmpEmail of the view object, which
allows the end user to supply a value at runtime and allows the application to invoke
the row finder with the required criteria attribute. The <ViewCriteriaItem> subelement
sets the criteria attribute Email to the value of the bind variable EmailBindVar.

At runtime, when the row finder is invoked on the view object, the transient attribute
values passed to one or more criteria attributes identify the matching rows in the row
set. In this example, the email address of the employee is used to match the employee
record from the EMPLOYEE table. The row finder locates the record for the employee
without the need to pass a row key value.

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="EmpVO"
 SelectList="EmpEO.ID,
 EmpEO.LAST_NAME,
 EmpEO.FIRST_NAME"
 EmpEO.USERID"
 EmpEO.DEPT_ID"
 EmpEO.EMAIL"
 FromList="S_EMP EmpEO"
 ...
 <Variable
 Name="EmailBindVar"
 Kind="viewcriteria"
 Type="java.lang.String"/>
 <EntityUsage
 Name="EmpEO"
 Entity="model.entities.EmpEO"/>
 ...
 <ViewAttribute
 Name="TrEmpEmail"
 IsUpdateable="false"
 IsSelected="false"
 IsPersistent="false"
 PrecisionRule="true"
 Type="java.lang.String"
 ColumnType="CHAR"
 AliasName="VIEW_ATTR"
 SQLType="VARCHAR"/>
 ...
 <ViewCriteria
 Name="findEmpByEmpEmail"
 ViewObjectName="model.views.EmpVO"
 Conjunction="AND">
 ...
 <ViewCriteriaRow
 Name="EmpVOCriteria_row_0"
 UpperColumns="1">
 <ViewCriteriaItem
 Name="Email"
 ViewAttribute="Email"
 Operator="="
 Conjunction="AND"
 Value=":EmailBindVar"
 IsBindVarValue="true"
 Required="Optional"/>
 </ViewCriteriaRow>
 </ViewCriteria>

Chapter 5
Working with Row Finders

5-105

 ...
 <RowFinders>
 <AttrValueRowFinder
 Name="EmpByEmailRowFinder"
 FetchLimit="1"
 ErrorOnExceedingLimit="true">
 <ViewCriteriaUsage
 Name="findEmpByEmpEmail"
 FullName="model.views.EmpVO.findEmpByEmpEmail"/>
 <VarAttributeMap>
 <VariableAttributeMapping
 Variable="EmailBindVar"
 Attribute="TrEmpEmail"/>
 </VarAttributeMap>
 </AttrValueRowFinder>
 </RowFinders>
</ViewObject>

What You May Need to Know About View Criteria and Row Finder
Usage

Row finders and view criteria can both be used either programmatically or
declaratively to filter a view object row set. The row finder differs from the view criteria
because it defines a map between transient attributes that you define on the view
object and view criteria attribute bind variables. Ultimately, the row finder matches one
or more rows on the view object by applying the view criteria to the view object with
the bind variable defined by a transient attribute value that is resolved at runtime.

The transient attribute mapped by the row finder allows the row finder to be used in
application use cases that would not be suitable for view criteria alone. In particular,
row finders are most useful when ADF Business Components web services enable
CRUD operations. In this case, the row finder gives the ADF Business Components
web services developer the ability to expose CRUD operations without needing
obscure row key values.

Fusion web application developers can create a web service data control to expose
the view objects of an ADF Business Components web service in the JDeveloper Data
Controls panel. The exposed row-finder mapped transient attributes of the view object
can then be used to design an input form that allows the end user to make the desired
updates. For example, an end user may supply the value of a familiar attribute, such
as a person's email address, to match a particular person row and then initiate an
update operation on any attribute of that row, such as the one that would allow a name
change.

For details about row finder support in ADF web services, see What You May Need
to Know About Row Finders and the ADF Web Service Operations. For details about
creating data controls based on ADF web services, see Using ADF Data Controls in
Developing Applications with Oracle ADF Data Controls.

Note that the capability of row finders to match rows using non-key attributes extends
to master-detail related view objects, as described in How to Find Rows of a Master
View Object Using Row Finders.

Chapter 5
Working with Row Finders

5-106

Programmatically Invoking the Row Finder
When you define a row finder you invoke the row finder on the view object. If
the row finder definition specifies a row limit, the executed row finder will throw a
RowFinderFetchLimitExceededException exception.

To invoke a row finder that you define on a view object, follow these basic steps (as
illustrated in the following example):

1. Find the view object that defines the row finder.

2. Find the row finder from the view object.

3. Create a name value pair for each row finder bind variable mapping.

4. Set each bind variable using a row-finder mapped transient attribute.

5. Invoke the row finder on the desired view object.

6. Throw an exception when the number of matching rows exceeds the row finder
fetch limit.

At runtime, when the row finder is invoked on the view object, row-finder mapped
transient attribute values populated by setAttribute() are set on criteria attributes to
identify the matching rows in the row set. In the following example, the email address
of the employee is used to match the employee record on the EmpView view object.
The row finder EmpByEmailRowFinder locates the record for the employee using the
transient attribute TrEmpEmail to specify the criteria attribute without the need to pass
a row key value.

package model;

import oracle.jbo.*;
import oracle.jbo.client.Configuration;
import oracle.jbo.server.RowFinder;
import oracle.jbo.server.ViewObjectImpl;

public class TestClient
{
 public TestClient()
 {
 super();
 }

 public static void main(String[] args)
 {
 TestClient testClient = new TestClient();
 String amDef = "model.AppModule";
 String config = "AppModuleLocal";
 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef, config);

 // 1. Find the view object with the row finder
 ViewObjectImpl vo = (ViewObjectImpl)am.findViewObject("EmpView1");
 Row r;
 RowIterator ri;

 // 2. Find the row finder
 RowFinder finder = vo.lookupRowFinder("EmpByEmailRowFinder");
 // 3. Create name value pairs for the row finder
 NameValuePairs nvp = new NameValuePairs();

Chapter 5
Working with Row Finders

5-107

 // 4. Set the row-finder mapped transient attribute
 nvp.setAttribute("TrEmpEmail", "cee.mague@company.com");
 // 5. Invoke the row finder
 try
 {
 ri = finder.execute(nvp, vo);
 }
 // 6. Throw an exception when row match exceeds specified limit
 catch(RowFinderFetchLimitExceededException e)
 {
 System.out.println("Warning: more than one row match exists.");
 }

 while (ri.hasNext())
 {
 r = ri.next();
 System.out.println("Find emp row by email finder: " +
 r.getAttribute("FirstName") + "/" + r.getAttribute("LastName"));
 }

 Configuration.releaseRootApplicationModule(am, true);
 }
}

Working with List of Values (LOV) in View Object Attributes
You can define an attribute of a view object in the ADF Model project as a LOV
attribute and make it available on the user interface for user input based on selection.

Edit forms displayed in the user interface portion of your application can utilize LOV-
enabled attributes that you define in the data model project to predetermine a list
of values for individual input fields. For example, the edit form may display a list of
countries to populate the corresponding address field in the edit form. To facilitate
this common design task, ADF Business Components provides declarative support to
specify the LOV usage in the user interface.

Defining an LOV for attributes of a view object in the data model project greatly
simplifies the task of working with list controls in the user interface. Because you
define the LOV on the individual attributes of the view object, you can customize the
LOV usage for an attribute once and expect to see the list component in the form
wherever the attribute appears.

Note:

In order for the LOV to appear in the UI, the LOV usage must exist before the
user interface designer creates the databound form. Defining an LOV usage
for an attribute referenced by an existing form will not change the component
that the form displays to an LOV.

You can define an LOV for any view object attribute that you anticipate the user
interface will display as a selection list. The characteristics of the attribute's LOV
definition depend on the requirements of the user interface. The information you
gather from the user interface designer will determine the best solution. For example,
you might define LOV attributes in the following cases:

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-108

• When you need to display attribute values resulting from a view object query
against a business domain object.

For example, define LOV attributes to display the list of suppliers in a purchase
order form.

• When you want to display attribute values resulting from a view object query that
you wish to filter using a parameter value from any attribute of the LOV attribute's
current row.

For example, define LOV attributes to display the list of supplier addresses in a
purchase order form but limit the addresses list based on the current supplier.

If you wish, you can enable a second LOV to drive the value of the parameter
based on a user selection. For example, you can let the user select the current
supplier to drive the supplier addresses list. In this case, the two LOVs are known
as a cascading list.

Before you can define the LOV attribute, you must create a data source view object
in your data model project that queries the eligible rows for the attribute value you
want the LOV to display. After this, you work entirely on the base view object to define
the LOV. The base view object is the one that contains the primary data for display
in the user interface. The LOV usage will define the following additional view object
metadata:

• A view accessor to access the data source for the LOV attribute. The view
accessor is the ADF Business Components mechanism that lets you obtain the
full list of possible values from the row set of the data source view object.

• Optionally, supplemental values that the data source may return to attributes of the
base view object other than the data source attribute for which the list is defined.

• User interface hints, including the type of list component to display, attributes to
display from the current row when multiple display attributes are desirable, and a
few options specific to the choice list component.

Note:

The LOV feature does not support the use of attribute validation to validate
the display list. Any validation rules that may have been defined on data
source attributes (including supplemental ones) will be suppressed when the
list is displayed and will therefore not limit the LOV list. Developers must
ensure that the list of values returned from the data source view object
contains only desired, valid values.

The general process for defining the LOV-enabled attribute relies on the Create List of
Values dialog that you display for the base view object attribute.

To define the LOV-enabled attribute, follow this general process:

1. Open the Create List of Values dialog for the base attribute.

2. Create a new view accessor definition to point to the data source view object or
select an existing view accessor that the base view object already defines.

Always create a new view accessor for each use case that your wish to support.
Oracle recommends that you do not reuse a view accessor to define multiple LOV

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-109

lists that happen to rely on the same data source. Reusing a view accessor can
produce unintended results at runtime.

3. Optionally, you can filter the view accessor by creating a view criteria using a bind
variable that obtains its value from any attribute of the base view object's current
row.

If you create a view criteria to filter the data source view object, you may also
set a prerequisite LOV on the attribute of the base view object that you use to
supply the value for the view criteria bind variable. LOV lists that cooperate in this
manner, are known as cascading LOV lists. You set cascading LOV lists when you
want the user's selection of one attribute to drive the options displayed in a second
attribute's list.

4. Select the list attribute from the view accessor's data source view object.

This maps the attribute you select to the current attribute of the base view object.

5. Optionally, select list return values to map any supplemental values that your list
returns to the base view object.

6. Select user interface hints to specify the list's display features.

7. Save the attribute changes.

Once you create the LOV-enabled attribute, the user interface designer can create
the list component in the web page by dragging the LOV-enabled attribute's collection
from the Data Controls panel. For further information about creating a web page that
display the list, see Creating Databound Selection Lists and Shuttles . Specifically, for
information about working with LOV-enabled attributes in the web page, see How to
Create a Model-Driven List.

How to Define a Single LOV-Enabled View Object Attribute
When an edit form needs to display a list values that is not dependent on another
selection in the edit form, you can define a view accessor to point to the list data
source. For example, assume that a purchase order form contains a field that requires
the user to select the order item's supplier. In this example, you would first create
a view accessor that points to the data source view object (SuppliersView). You
would then set the LOV on the SupplierDesc attribute of the base view object
(PurchaseOrdersView). Finally, you would reference that view accessor from the LOV-
enabled attribute (SupplierDesc) of the base view object and select the data source
attribute (SupplierDesc).

You will use the Create List of Values dialog to define an LOV-enabled attribute for the
base view object. The dialog lets you select an existing view accessor or create a new
one to save with the LOV-attribute definition.

Before you begin:

It may be helpful to have an understanding of LOV-enabled attributes. For more
information, see Working with List of Values (LOV) in View Object Attributes.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-110

Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

To define an LOV that displays values from a view object attribute:

1. In the Applications window, double-click the view object that contains the attribute
you wish to enable as an LOV.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute that is to display the LOV, and then click
the List of Values tab and click the Add list of values button.

Use the Create List of Values dialog to create the LOV on the attribute you have
currently selected in the attribute list of the overview editor. JDeveloper assigns
a unique name to identify the LOV usage. For example, the metadata for the
attribute SupplierDesc will specify the name SupplierDescLOV to indicate that the
attribute is LOV enabled.

4. In the Create List of Values dialog, on the Configuration tab, click the Create new
view accessor button to add a view accessor to the view object you are currently
editing.

Alternatively, you can expand List Data Source and select among the existing
view accessors. The dropdown list displays all view accessors that you have
added to the view object you are editing.

5. In the View Accessors dialog, select the view object definition or shared view
instance that defines the data source for the attribute and shuttle it to the view
accessors list.

By default, the view accessor you create will display the same name as the view
object. You can edit the accessor name to supply a unique name. For example,
assign the name SuppliersViewAccessor for the SuppliersView view object.

The view instance is a view object usage that you have defined in the data model
of a shared application module. For more information about using shared view
instances in an LOV, see How to Create an LOV Based on a Lookup Table.

6. Click OK to save the view accessor definition for the view object.

7. In the Create List of Values dialog, expand List Data Source and select the view
accessor you created for the base view object to use as the data source. Then
select the same attribute from this view accessor that will provide the list data for
the LOV-enabled attribute.

The editor creates a default mapping between the list data source attribute and
the LOV-enabled attribute. For example, the attribute SuppliersDesc from the
PurchaseOrdersView view object would map to the attribute SuppliersDesc from
the SuppliersViewAccessor view accessor.

The editor does not allow you to remove the default attribute mapping for the
attribute for which the list is defined.

8. If you want to specify supplemental values that your list returns to the base view
object, click the Create return attribute map button in the List Return Values
section and map the desired base view object attributes with attributes accessed
by the view accessor.

Supplemental attribute return values are useful when you do not require the user
to make a list selection for the attributes, yet you want those values, as determined
by the current row, to participate in the update. For example, to map the attribute

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-111

SupplierAddress from the PurchaseOrdersView view object, you would choose
the attribute SupplierAddress from the SuppliersViewAccessor view accessor.

9. Click OK.

How to Define Cascading Lists for LOV-Enabled View Object
Attributes

When the application user interface requires a list of values in one input field to be
dependent on the user's entry in another field, you can create attributes that will
display as cascading lists in the user interface. In this case, the list of possible values
for the LOV-enabled attributes might be different for each row. As the user changes
the current row, the LOV values vary based on the value of one or more controlling
attribute values in the LOV-enabled attribute's view row. To apply the controlling
attribute to the LOV-enabled attribute, you will create a view accessor to access the
data source view object with the additional requirement that the accessor filters the list
of possible values based on the current value of the controlling attribute. To filter the
LOV-enabled attribute, you can edit the view accessor to add a named view criteria
with a bind variable to obtain the user's selection.

For example, assume that a purchase order form contains a field that requires the
user to select the supplier's specific site and that the available sites will depend on
the order's already specified supplier. To implement this requirement, you would first
create a view accessor that points to the data source view object. The data source
view object will be specific to the LOV usage, because it must perform a query that
filters the available supplier sites based on the user's supplier selection. You might
name this data source view object definition SupplierIdsForCurrentSupplierSite
to help distinguish it from the SupplierSitesView view object that the data
model already contains. The data source view object will use a named view
criteria (SupplierCriteria) with a single view criteria item set by a bind
variable (TheSupplierId) to obtain the user's selection for the controlling attribute
(SupplierId).

You would then set the LOV on the SupplierSiteId attribute of the base
view object (PurchaseOrdersView). You can then reference the view accessor
that points to the data source view object from the LOV-enabled attribute
(PurchaseOrdersView.SupplierSiteId) of the base view object. Finally, you must
edit the LOV-enabled attribute's view accessor definition to specify the corresponding
attribute (SupplierIdsForCurrentSupplierSite.SupplierSiteId) from the view
object as the data source and, importantly, source the value of the bind variable from
the view row's result using the attribute SupplierId.

To define cascading lists for LOV-enabled view object attributes:

1. Create a data source view object to control the cascading list.

2. Create a view accessor to filter the cascading list.

Creating a Data Source View Object to Control the Cascading List
The data source view object defines the controlling attribute for the LOV-enabled
attribute. To make the controlling attribute accessible to the LOV-enabled attribute of
the base view object, you must define a named view criteria to filter the data source
attribute based on the value of another attribute. Because the value of the controlling

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-112

attribute is expected to change at runtime, the view criteria uses a bind variable to set
the controlling attribute.

Before you begin:

It may be helpful to have an understanding of cascading LOV-enabled attributes. For
more information, see How to Define Cascading Lists for LOV-Enabled View Object
Attributes.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

To define the view criteria for the data source to be referenced by the LOV-enabled
attribute:

1. In the Applications window, double-click the view object that you created to query
the list of all possible values for the controlling attribute.

For example, if the LOV-enabled attribute SupplierSiteId depends on the
controlling attribute SupplierId value, you might have created the data source
view object SupplierIdsForCurrentSupplierSite to query the list of all supplier
sites.

2. In the overview editor, click the Query navigation tab.

3. In the Query page, in the Bind Variables section, click the Create New Bind
Variable button to add a bind variable to the data source view object.

For example, for a data source view object SupplierIdsForCurrentSupplierSite
used to query the list of all supplier sites, you would create the bind variable
TheSupplierId, since it will be the controlling attribute for the LOV-enabled
attribute.

4. In the New Variable dialog, enter the name and select the type of the bind variable
and click OK.

By default, the view accessor you create will display the same name as the
view object instance. You can edit the accessor name to supply a unique
name. For example, assign the name CurrencyLookupViewAccessor for the
CurrencyLookupView view object instance.

5. In the overview editor, click the View Criteria navigation tab and click the Create
New View Criteria button to add the view criteria to the data source view object
you are currently editing.

6. In the Create View Criteria dialog, click Add Group and define a single Criteria
Item for the group as follows:

• Enter a Criteria Name to identify the view criteria. For
example, you might enter the name SupplierCriteria for the
SupplierIdsForCurrentSupplierSite.

• Select the controlling attribute from the Attributes list. For
example, you would select the SupplierSiteId attribute from the
SupplierIdsForCurrentSupplierSite.

• Select equal to from the view criteria Operator list.

• Select Bind Variable from the view criteria Operand list.

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-113

• Select the name of the previously defined bind variable from the Parameter
list.

• Select among the following bind variable configuration options to determine
whether or not the value is required by the parent LOV:

Optional from the Validation menu and deselect Ignore Null Values when
you want to configure cascading LOVs where the parent LOV value is
required. This combination supports the cascading LOV use case where
no selection in the parent LOV returns no rows in the child LOV. The
WHERE clause shown in the Edit View Criteria dialog should look similar to
((SupplierIdsForCurrentSupplierSite.SUPPLIER_ID = :TheSupplierId)).

Optional from the Validation menu and leave Ignore Null Values selected
(default) when you want to configure cascading LOVs where the parent LOV
value is optional. This combination supports the cascading LOV use case
where no selection in the parent LOV returns all rows in the child LOV. The
WHERE clause shown in the Edit View Criteria dialog should look similar to
(((SupplierIdsForCurrentSupplierSite.SUPPLIER_ID = :TheSupplierId)
OR (:TheSupplierId IS NULL))).

For more details about these settings, see What You May Need to Know
About Bind Variables in View Criteria. Do not select Required for the
Validation option for cascading LOVs, because no selection in the parent LOV
will cause a validation error.

7. Click OK.

Creating a View Accessor to Filter the Cascading List
To populate the cascading LOV-enabled attribute, you must first set up a named view
criteria on a data source view object. To make the LOV-enabled attribute of the base
view object dependent on the controlling attribute of the data source view object, you
then add a view accessor to the LOV-enabled attribute of the base view object and
reference the previously defined data source view object's named view criteria.

Before you begin:

It may be helpful to have an understanding of cascading LOV-enabled attributes. For
more information, see How to Define Cascading Lists for LOV-Enabled View Object
Attributes.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the data source view object and named view criteria, as described in
Creating a Data Source View Object to Control the Cascading List.

To create a view accessor that filters display values for an LOV-enabled attribute
based on the value of another attribute in the same view row:

1. In the Applications window, double-click the base view object that contains the
attribute you want to use the filtered view accessor as the list data source.

For example, the base view object PurchaseOrdersView might contain the
attribute SupplierSiteId that will depend on the value of the controlling attribute
SupplierId.

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-114

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute that is to filter the cascading LOV, and
then click the List of Values tab and click the Add List of Values button.

4. In the Create List of Values dialog, click the Create New View Accessor button to
add a view accessor to the view object you are currently editing.

Alternatively, you can expand List Data Source and select among the existing
view accessors. The dropdown list displays all view accessors that you have
added to the view object you are editing.

5. In the View Accessors dialog, select the view object instance name that you
created for the data source view object and shuttle it to the view accessors list.

6. With the new view accessor selected in the dialog, click Edit.

7. In the Edit View Accessor dialog, apply the previously defined view criteria to the
view accessor and provide a value for the bind variable as follows:

• Click the data source view object's view criteria in the Available list and add it
to the Selected list. For example, you would select SupplierCriteria from the
SupplierIdsForCurrentSupplierSite view object definition.

• Set the value for the bind variable to the name of the controlling attribute. The
attribute name must be identical to the base view object's controlling attribute.
For example, if the base view object PurchaseOrdersView contains the LOV-
enabled attribute SupplierSiteId that depends on the value of the controlling
attribute SupplierId, you would enter SupplierId for the bind variable value.

• Select the name of the previously defined bind variable from the Parameter
list.

• Select Required from the Usage dropdown list.

8. Click OK to save the view accessor definition for the base view object.

9. In the Attributes page of the overview editor, select the attribute that is to display
the LOV, and then click the List of Values tab and click the Add list of values
button.

10. In the Create List of Values dialog, expand List Data Source and select the view
accessor you created for the data source view object instance to use as the data
source. Then select the controlling attribute from this view accessor that will serve
to filter the attribute you are currently editing.

The editor creates a default mapping between the view object attribute and
the LOV-enabled attribute. You use separate attributes in order to allow the
bind variable (set by the user's controlling attribute selection) to filter the LOV-
enabled attribute. For example, the LOV-enabled attribute SupplierId from
the PurchaseOrdersView view object would map to the controlling attribute
SupplierSiteId for the SupplierIdsForCurrentSupplierSiteViewAccessor. The
runtime automatically supports these two cascading LOVs where the row set and
the base row attribute differ.

11. Click OK.

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-115

How to Specify Multiple LOVs for a Single LOV-Enabled View Object
Attribute

Another way to vary the list of values that your application user interface can display
is to define multiple list of values for a single LOV-enabled view object attribute. In
contrast to a cascading list, which varies the list contents based on a dependent LOV
list selection, an LOV-enabled switcher attribute with multiple LOVs lets you vary the
entire LOV itself. The LOV choice to display is controlled at runtime by the value of an
attribute that you have defined specifically to resolve to the name of the LOV to apply.

For example, you might want to define one LOV to apply in a create or edit form
and another LOV to apply for a search component. In the first case, the LOV-enabled
attribute that the form can use is likely to be an entity-based view accessor that is
shared across all the view objects that reference the entity. The entity-based view
accessor is useful for user interface forms because a single accessor definition can
apply to each instance of the same LOV in the forms. However, in the case of
the search component, LOV definitions based on view accessors derived from an
underlying entity will not work. The LOV definitions for search components must be
based on view accessors defined in the view object. Note that when the user initiates
a search, the values in the criteria row will be converted into WHERE clause parameters.
Unlike a regular view row displayed in create or edit type forms, the criteria row is not
backed by an entity. In this scenario, one LOV uses the entity-based accessor as a
data source and a second LOV uses the view object-based accessor as a data source.

To address this requirement to define multiple LOV lists that access the same attribute,
you add a switcher attribute to the base view object. For example, you might add
a ShipperLOVSwitcher attribute for the Orders view object that resolves through an
expression to the name of the LOV to display. Such an expression can specify two
LOVs that may apply to the ShipperID attribute:

(adf.isCriteriaRow) ? "LOV_ShipperID_ForSearch" : "LOV_ShipperID"

This expression would appear in the Value field of the switcher attribute. At runtime, in
the case of the search component, the expression resolves to the value that identifies
the view object-based accessor LOV. In the case of the create or edit form, the
expression resolves to the value that identifies the entity-based accessor LOV.

You will use the Create List of Values dialog to add multiple LOV lists to an attribute of
the base view object. You will also use the List of Values section in the Attributes page
of the overview editor for the base view object to define the default LOV to display and
the switcher attribute to apply.

Before you begin:

It may be helpful to have an understanding of LOV-enabled attributes. For more
information, see Working with List of Values (LOV) in View Object Attributes.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

• Create the first LOV list for the attribute, as described in How to Define a Single
LOV-Enabled View Object Attribute.

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-116

Note that the switcher attribute scenario requires that you create unique view
accessors. You must not reuse a view accessor to define multiple LOV lists.
Reusing a view accessor across various use cases can produce unintended
results at runtime.

To specify additional LOV lists for a view object attribute with an existing LOV:

1. In the Applications window, double-click the view object that contains the attribute
for which you want to specify multiple LOV lists.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the desired attribute, and then click the List of
Values tab and click the Add list of values button.

4. In the Create List of Values dialog, define the first LOV, as described in How to
Define a Single LOV-Enabled View Object Attribute.

When you define the LOV, change the name of the LOV to match the value
returned by the attribute that you will use to determine which LOV your application
applies to the LOV-enabled attribute.

5. After you define the first LOV, return to the List of Values tab of the Attributes
page of the overview editor and, with the original attribute selected, click the Add
List of Values button.

If you have selected the correct attribute from the Attributes page of the overview
editor, the List of Values section should display your previously defined LOV.

6. In the Create List of Values dialog, repeat the procedure described in How to
Define a Single LOV-Enabled View Object Attribute to define each subsequent
LOV.

The name of each LOV must correspond to a unique value returned by the
attribute that determines which LOV to apply to the LOV-enabled attribute.

You must define the second LOV using a unique view accessor, but you may use
any attribute. There are no restrictions on the type of LOV lists that you can add to
an attribute with multiple LOV lists specified.

After you finish defining the second LOV, the List of Values section in the view
object overview editor changes to display additional features that you will use to
control the selection of the LOV.

7. In the Attributes page of the overview editor, click the List of Values tab and use
the List of Values Switcher dropdown list to select the attribute that will return the
name of the List of Value to use.

The dropdown list displays the attributes of the base view object. If you want your
application to dynamically apply the LOV from the LOVs you have defined, your
view object must define an attribute whose values resolve to the names of the
LOVs you defined. If you have not added this attribute to the view object, be sure
that the dropdown list displays <None Specified>. In this case, at runtime your
application will display the LOV-enabled attribute with the default LOV and it will
not be possible to apply a different LOV.

8. To change the default LOV to apply at runtime, choose the Default radio button
corresponding to the desired LOV definition.

The default LOV selection determines which list of values your application
will display when the List of Values Switcher dropdown list displays <None
Specified>. Initially, the first LOV in the overview editor List of Values section is
the default.

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-117

9. To change the component that your application will use to display the various LOV
lists, select from desired component from the List Type UI Hint dropdown list.

The component you select will apply to all LOV lists. For a description of the
available components, see How to Set User Interface Hints on a View Object
LOV-Enabled Attribute.

How to Define an LOV to Display a Reference Attribute
Reference attributes that your view objects define are often desirable attributes to use
as the source for LOV lists. Reference attributes belong to secondary entity usages
that you have added to the view object to provide meaningful information beyond the
entity usage's primary key attribute. For example, when you create an OrderInfo view
object, the view object may define a secondary entity usage for PaymentOptionsEO to
include billing information for the order, including the list of credit cards the end user
has added to their account.

An LOV that you define for the secondary entity object needs to be able to update the
primary attribute value, but to be meaningful to the end user, you typically hide the
primary attribute in the list and display one or more reference attributes instead. In this
case, your LOV might display the list of credit cards by institution name, but hide the
payment option ID value that gets updated by the end user's selection. Figure 5-37
shows the LOV defined on the reference attribute InstitutionName. The List Return
Values section of the Create List of Values dialog lists the reference attribute and then
lists the primary key attribute PaymentOptionId to provide supplemental values.

Figure 5-37 Create View Criteria Dialog with Reference Attribute Specified

Before you begin:

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-118

It may be helpful to have an understanding of reference attributes in secondary entity
usages. For more information, see Working with List of Values (LOV) in View Object
Attributes.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the entity-based view object and add a secondary entity usage that defines
the desired LOV attributes, as described in How to Define a Single LOV-Enabled
View Object Attribute. By default, the secondary entity usage will include the
primary key attribute that you want the LOV to update.

To define reference attributes for an LOV:

1. In the Applications window, double-click the view object that contains the
secondary entity usage attribute you wish to enable as an LOV.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the desired reference attribute that is to display the
LOV, click the List of Values tab, and then click the Add List of Values button.

Use the Create List of Values dialog to create the LOV on the attribute you have
currently selected in the attribute list of the overview editor. JDeveloper assigns
a unique name to identify the LOV usage. For example, the metadata for the
attribute SupplierDesc will specify the name SupplierDescLOV to indicate that the
attribute is LOV-enabled.

4. In the Create List of Values dialog, click the Create new view accessor button to
add a view accessor to the view object you are currently editing.

Alternatively, you can expand List Data Source and select among the existing
view accessors. The dropdown list displays all the view accessors that you have
added to the view object you are editing.

5. In the View Accessors dialog, select the view object definition or shared view
instance that defines the data source for the attribute and shuttle it to the view
accessors list.

By default, the view accessor you create will display the same name as the view
object. You can edit the accessor name to supply a unique name. For example,
assign the name SuppliersViewAccessor for the SuppliersView view object.

6. Click OK to save the view accessor definition for the view object.

7. In the Create List of Values dialog, expand List Data Source and select the view
accessor you created for the base view object to use as the data source. Then
select the same attribute from this view accessor that will provide the list data for
the LOV-enabled attribute.

The editor creates a default mapping between the list data source attribute and
the LOV-enabled attribute. For example, the attribute SuppliersDesc from the
PurchaseOrdersView view object would map to the attribute SuppliersDesc from
the SuppliersViewAccessor view accessor.

The editor does not allow you to remove the default attribute mapping for the
attribute for which the list is defined.

8. If you want to specify supplemental values that your list returns to the base view
object, click the Create return attribute map button in the List Return Values

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-119

section and map the desired base view object attributes with attributes accessed
by the view accessor.

Supplemental attribute return values are useful when you do not require the user
to make a list selection for the attributes, yet you want those values, as determined
by the current row, to participate in the update. For example, to map the attribute
SupplierAddress from the PurchaseOrdersView view object, you would choose
the attribute SupplierAddress from the SuppliersViewAccessor view accessor.

9. Click OK.

How to Set User Interface Hints on a View Object LOV-Enabled
Attribute

When you know how the view object attribute that you define as an LOV should
appear in the user interface, you can specify additional properties of the LOV to
determine its display characteristics. These properties, or UI hints, augment the
attribute hint properties that ADF Business Components lets you set on any view
object attribute. Among the LOV UI hints for the LOV-enabled attribute is the type
of component the user interface will use to display the list. For a description of the
available components, see Table 5-2. (Not all ADF Faces components support the
default list types, as noted in the Table 5-2.)

Table 5-2 List Component Types for List Type UI Hint

LOV List Component Type Usage

Choice List This component does not allow the user to
type in text, only select from the dropdown list.

Combo Box This component allows the user to type text or
select from the dropdown list. This component
sometimes supports auto-complete as the
user types.

This component is not supported for ADF
Faces.

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-120

Table 5-2 (Cont.) List Component Types for List Type UI Hint

LOV List Component Type Usage

Combo Box with List of Values This component is the same the as the combo
box, except that the last entry (More...) opens
a List of Values lookup dialog that supports
query with filtering when enabled for the LOV
attribute in its UI hints. The default UI hint
enables queries on all attributes.

Note that when the LOV attribute appears in a
table component, the list type changes to an
Input Text with List of Values component.

Input Text with List of Values This component displays an input text field
with an LOV button next to it. The List of
Values lookup dialog opens when the user
clicks the button or enters an invalid value into
the text field. The List of Values lookup dialog
for this component supports query with filtering
when enabled in the UI hints for the LOV
attribute. The default UI hint enables queries
on all attributes.

This component may also support auto-
complete when a unique match exists.

List Box This component takes up a fixed amount of
real estate on the screen and is scrollable (as
opposed to the choice list, which takes up a
single line until the user clicks on it).

Radio Group This component displays a radio button group
with the selection choices determined by the
LOV attribute values. This component is most
useful for very short, fixed lists.

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-121

Before you begin:

It may be helpful to have an understanding of LOV-enabled attributes. See Working
with List of Values (LOV) in View Object Attributes.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. See Additional Functionality for View Objects.

You will need to complete this task:

Create the LOV list for the attribute, as described in How to Define a Single LOV-
Enabled View Object Attribute.

To set view object attribute UI hints for an LOV-enabled attribute:

1. In the Applications window, double-click the view object that contains the attribute
that you want to customize.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the desired attribute and then click the List of Values
tab.

4. In the List of Values page, select the LOV list that you want to customize and click
the Edit list of values button.

5. In the Edit List of Values dialog, click the UI Hints tab.

6. In the UI Hints page, select a default list type as the type of component to display
the list.

For a description of the available components, see Table 5-2.

The list component displayed by the web page and the view object's default list
type must match at runtime or a method-not-found runtime exception results.
To avoid this error, confirm the desired list component with the user interface
designer. You can also edit the default list type to match, so that, should the user
interface designer subsequently change the component used in the web page, the
two stay in sync.

7. Optionally, select additional display attributes to add values to the display.

The list of additional attributes is derived from the LOV-enabled attribute's view
row. The additional attribute values can help the end user select an item from the
list.

8. If you selected the Combo Box with List of Values type component, by default,
the dropdown list for the component will display the first 10 records from the data
source. This limit also serves to keep the view object fetch size small. To change
the number of records the dropdown list of a Combo Box with List of Values
component can display, enter the number of records for Query Limit.

When you want the user to be able to view the full set of records, do not use
Query Limit for this purpose. Because Query Limit also controls the number of
rows the view object will fetch (it sets the view object definition ListRangeSize
property), the value should be keep small for optimal performance. The end user
who needs access to the full set of records should click on the component's lookup
icon to open an LOV lookup dialog and view the records there.

Query Limit is disabled for all other component types and those components
place no restriction on the number of rows that the LOV will access.

For details about the ListRangeSize property, see What Happens at Runtime:
How an LOV Queries the List Data Source.

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-122

9. If you selected a component type that allows the user to open a List of Values
lookup dialog to select a list value (this includes either the Combo Box with List
of Values type component or Input Text with List of Values type component),
by default, the lookup dialog will display a search form that will allow the user to
search on all queryable attributes of the data source view object (the one defined
by the LOV-enabled attribute's view accessor). Decide how you want to customize
these components.

a. When you select the Combo Box with List of Values type component and
you have added a large number of attributes to the Selected list, use Show
in Combo Box to improve the readability of the dropdown list portion of the
component. To limit the attribute columns to display in the dropdown list that
the Combo Box with List of Values component displays, choose First from
Show in Combo Box and enter a number corresponding to the number of
attributes from the top of the Selected list that you want the dropdown list
to display (this combination means you are specifying the "first" x number
of attributes to display from the Create List of Values dialog's Selected
list). Limiting the number of attribute columns to display in the dropdown list
ensures that the user does not have to horizontally scroll to view the full list,
but it does not limit the number of attribute columns to display in the List
of Values lookup dialog. This option is disabled for all list component types
except Combo Box with List of Values.

b. You can limit the attributes to display in the List of Values lookup dialog by
selecting a view criteria from the Include Search Region dropdown list. To
appear in the dropdown list, the view criteria must already have been defined
on the data source view object (the one that the LOV-enabled attribute's
view accessor defines). Click the Edit View Criteria button to set search
form properties for the selected view criteria. For more information about
customizing view criteria for search forms, see How to Set User Interface Hints
on View Criteria to Support Search Forms.

c. You can prepopulate the results table of the List of Values lookup dialog by
selecting Query List Automatically. The List of Values lookup dialog will
display the results of the query when the user opens the dialog. If you leave
this option deselected, no results will be displayed until the user submits the
search form.

10. Alternatively, if you prefer not to display a search region in the List of Values
lookup dialog, select <No Search> from the Include Search Region dropdown
list. In this case, the List of Values lookup dialog will display only attributes you add
to the Display Attributes list.

11. If you selected a choice type component to display the list, you can specify a Most
Recently Used Count as an alternative to displaying all possible values.

For example, your form might display a choice list of SupplierId values to drive
a purchase order form. In this case, you can allow the user to select from a list
of their most recently viewed suppliers, where the number of supplier choices is
determined by the count you enter. The default count 0 (zero) for the choice list
displays all values for the attribute.

12. If you selected a Combo Box with List of Values type component to display the
list, you can select a view criteria from the Filter Combo Box Using dropdown list
to limit the list of valid values the LOV will display.

When you enable Filter Combo Box Using, the dropdown list displays the
existing view criteria from the view object definition related to the LOV's view
accessor. If the dropdown list displays no view criteria, then the data source view

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-123

object defines no view criteria. When you do not enable this feature, the Combo
Box with List of Values component derives its values from the full row set returned
by the view accessor. The filtered Combo Box with List of Values is a useful
feature when you want to support the use of an LOV with popup search dialog or
LOV with a dropdown list that has a limited set of valid choices. For details about
using the Combo Box with List of Values component in user interfaces, see List of
Values (LOV) Input Fields.

13. Decide how you want the list component to handle a null value choice to display
in the list component. This option is not enabled for every list component type that
you can select.

If you enable Include "No Selection" Item, you can also determine how the null
value selection should appear in the list by making a selection from the dropdown
list. For example, when you select Labeled Item, you can enter the desired label
in the edit field to the right of the dropdown list or you can click the ... button (to
the right of the edit field) to select a message string from the resource bundle
associated with the view object. When you select a message string from the
resource bundle, JDeveloper saves the string's corresponding message key in the
view object definition file. At runtime, the UI locates the string to display based on
the current user's locale setting and the message key in the localized resource
bundle.

14. Click OK.

How to Handle Date Conversion for List Type UI Components
When the LOV-enabled attribute of the view object is bound to date information (such
as the attribute OrderShippedDate), by default Oracle ADF assumes a format for
the field like yyyy-MM-dd hh:mm:ss, which combines date and time. This combined
date-time format is specified by the ADF Business Components Date domain class
(jbo.domain.Date) and creates a conversion issue for the ADF Faces component
when the user selects a date supplied by the LOV-enable attribute. When the ADF
Faces component is unable to convert the domain type to the Date type, the user
interface invalidates the input field and displays the message Error: The date is
not in the correct format.

To avoid this potential conversion error, configure a UI hint setting for the date value
attribute of the view object that you want to enable for an LOV. The UI hint you specify
will define a date-only mask, such as yyyy-MM-dd. Subsequently, any ADF Faces
component that references the attribute will perform the conversion based on a pattern
specified by its EL value-binding expression (such as #{bindings.Hiredate.format)
and will reference the UI hint format instead of the ADF Business Components domain
date-time. The conversion error happens when the EL expression evaluates to null
because no format mask has been specified.

Before you begin:

It may be helpful to have an understanding of LOV-enabled attributes. For more
information, see Working with List of Values (LOV) in View Object Attributes.

You may also find it helpful to understand support for UI hints at the level of view
objects. For more information about UI hints, see Defining UI Hints for View Objects.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-124

You will need to complete this task:

Create the LOV list for the attribute, as described in How to Define a Single LOV-
Enabled View Object Attribute.

To set a UI hint to match the date format for the LOV-enable attribute:

1. In the Applications window, double-click the view object that contains the LOV-
enabled attribute.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the date-value attribute that you want to customize
with UI hints, and then click the UI Hints tab.

4. In the UI Hints page, select Simple Date for the Format Type and choose the
format with the date-only mask.

Mapping of the ADF Business Components domain type to
its available formatters is provided in the formatinfo.xml file
in the BC4J subdirectory of the JDeveloper system directory
(for example, C:\Documents and Settings\<username>\Application
Data\JDeveloper\system<version#>\o.BC4J.\formatinfo.xml).

How to Automatically Refresh the View Object of the View Accessor
If you need to ensure that your view accessor always queries the latest data from
the database table, you can set the Auto Refresh property on the data source view
object. This property allows the view object instance to refresh itself after a change in
the database. You can enable this feature for any read-only view instance that your
application modules define. Once you enable this property on a view object, it ensures
that the changes a user commits to a database table will become available to any
other user working with the same database table. A typical use case is to enable
auto refresh for the data source view object when you define a view accessor for an
LOV-enabled view object attribute.

Because the auto-refresh feature relies on Oracle Database change notification
feature, observe these restrictions when enabling auto-refresh for your view object:

• Ensure the view objects query only read-only tables, and as few tables as
possible. This will ensure the best performance and prevent the database
invalidation queue from becoming too large.

• Configure the application module that contains updatable, auto-refresh view
instances to be shared and to lock rows during updates.

• Ensure the database user has database notification privileges. For example, to
accomplish this with a SQL*Plus command use grant change notification to
<user name>.

• Test the query for compatibility with query result change notification before you
enable auto refresh on the view object. Not all query definitions satisfy the
requirements for query result change notification.

When you enable auto refresh for the view object and observe these restrictions, the
refresh is accomplished through the Oracle database change notification feature. At
runtime, prior to executing the view object query, the framework will use the JDBC
API to register the view object query to receive database change notifications for
underlying data changes. When the view object receives a notification (because its
underlying data has changed), the row sets of the view object are marked as dirty

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-125

and the framework will refresh the row set on the next server trip from the client to
the middle tier. At that point, the dirty collections will be discarded and the request for
the updated data will trigger a new query execution by the view object. Because the
application module waits until the next checkout, the row set currency of the current
transaction is maintained and the end user is not hampered by the update.

For example, assume that a user can create or edit a calendar entry but cannot edit
calendar entries added by other users. When the user creates and commits a new
entry, then in the same server trip the calendar entries that other users modified or
entered will be updated. But when another user creates a calendar entry, the view
object receives a notification and waits for the next server trip before it refreshes itself;
the delay to perform the update prevents contention among various users to read the
same data.

In another example, say an LOV displays a list of postal codes that is managed in
read-only fashion by a database administrator. After the administrator adds a new
postal code as a row to the database, the application module detects a time when
there are no outstanding requests and determines that a pending notification exists for
the view instance that accesses the list of postal codes; at that point, the view object
refreshes the data and all future requests will see the new postal code.

Note:

Use optimistic row locking for web applications. Optimistic locking, the
default configuration setting, assumes that multiple transactions can
complete without affecting each other. Optimistic locking therefore allows
auto-refresh to proceed without locking the rows being refreshed. Pessimistic
row locking prevents the row set refresh and causes the framework to
throw an exception anytime the row set has a transaction pending (for
example, a user may be in the process of adding a new row). To ensure
that the application module configuration uses optimistic row locking, open
the Business Components page of the adf-config.xml overview editor
and confirm that Locking Mode (corresponding to the jbo.locking.mode
property) is set to optimistic, as described in How to Confirm That Fusion
Web Applications Use Optimistic Locking.

Before you begin:

It may be helpful to have an understanding of LOV-enabled attributes. See Working
with List of Values (LOV) in View Object Attributes.

It may be helpful to understand the query definition requirements for registering a
query for query result change notification. See Using Continuous Query Notification in
the Oracle Database Advanced Application Developer’s Guide.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will also need to complete this task:

• Create the view accessor, as described in How to Create a View Accessor for an
Entity Object or View Object.

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-126

For information about queries see Using Continuous Query Notification in the Oracle
Database Advanced Application Developer’s Guide.

To register a view object to receive data change notifications:

1. In the Applications window, double-click the view object that you want to receive
database change notifications.

2. In the overview editor, click the Query navigation tab.

3. In the Query page, click Test and Explain.

4. In the Test Query dialog, click the Change Notification tab to validate the query is
compatible with Oracle Database change notification.

If the Test Query dialog shows the query does not pass change notification
compatibility, you can not enable auto refresh on the view object. Not all query
definitions satisfy the requirements for query result change notification.

5. If the query is compatible with change notification, in the overview editor, click the
General navigation tab.

6. In the Properties window, expand the Tuning section, and select True from the
Auto Refresh dropdown list.

If the Tuning section is not displayed in the Properties window, click the General
navigation tab in the overview editor to set the proper focus.

How to Test LOV-Enabled Attributes Using the Oracle ADF Model
Tester

To test the LOV you created for a view object attribute, use the Oracle ADF Model
Tester, which is accessible from the Applications window.

The Oracle ADF Model Tester, for any view object instance that you browse, will
display any LOV-enabled attributes using one of two component types you can select
in the UI Hints page of the List of Values dialog. Currently, only a Choice List
component type and Input Text with List of Values component type are supported.
Otherwise, the Oracle ADF Model Tester uses the default choice list type to display the
LOV-enabled attribute.

Before you begin:

It may be helpful to have an understanding of LOV-enabled attributes. For more
information, see Working with List of Values (LOV) in View Object Attributes.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

To test an LOV using the Oracle ADF Model Tester:

1. In the Applications window, expand the project containing the desired application
module and view objects.

2. Right-click the application module and choose Run.

3. In the Oracle ADF Model Tester, select the desired view object from the section on
the left. The Oracle ADF Model Tester displays the LOV-enabled attribute values in
a dropdown list unless you specified the component type as an Input Text with List
of Value, UI hint.

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-127

Figure 5-38 shows an LOV-enabled attribute, SalesRepId for the CustomerVO, that
specifies an input text field and List of Values dialog as the UI hint list type. The
Input Text with List of Values component is useful when you want to display the
choices in a separate LOV dialog. Other list types are not supported by the Oracle
ADF Model Tester.

Figure 5-38 Displaying LOV-Enabled Attributes in the Oracle ADF Model Tester

What Happens When You Define an LOV for a View Object Attribute
When you define an LOV for a view object attribute, the view object metadata
defines the following additional information, as shown in the following example for
the CustomerVO.SalesRepId attribute.

• The <ViewAttribute> element names the attribute, points to the list binding
element that defines the LOV behavior, and specifies the component type to
display in the web page. For example, the LOV-enabled attribute SalesRepId
points to the list binding named LOV_SalesRepId and defines the CONTROLTYPE
input text field with list (input_text_lov) to display the LOV data.

When the user interface designer creates the web page using the Data
Controls panel, the <CONTROLTYPE Value="namedType"/> definition determines the
component that JDeveloper will add to the web page. When the component type
definition in the data model project does not match the component type displayed
in the web page, a runtime exception will result. For more information, see What
Happens at Runtime: How an LOV Queries the List Data Source.

• The <ListBinding> element defines the behavior of the LOV. It also identifies
a view accessor to access the data source for the LOV-enabled attribute. The
view accessor is the ADF Business Components mechanism that lets you obtain
the full list of possible values from the row set of the data source view object.
For example, ListVOName="EmpVO1" points to the EmpVO1 view accessor, which
accesses the view object EmpVO.

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-128

• The <ListBinding> element maps the list data source attribute to the LOV-
enabled attribute. For example, the ListAttrNames item Id is mapped to the
LOV-enabled attribute SalesRepId.

• The <ListBinding> element also identifies one or more attributes to display from
the current row and provides a few options that are specific to the choice list
type component. For example, the ListDisplayAttrNames item FirstName and
LastName are extra attributes displayed by the LOV-enabled attribute SalesRepId.
In this example, the value none for NullValueFlag means the user cannot select a
blank item from the list.

<ViewAttribute
 Name="SalesRepId"
 LOVName="LOV_SalesRepId"
 PrecisionRule="true"
 EntityAttrName="SalesRepId"
 EntityUsage="CustomerEO"
 AliasName="SALES_REP_ID">
 <Properties>
 <SchemaBasedProperties>
 <LABEL
 ResId="oracle.summit.model.views.CustomerVO.SalesRepId_LABEL"/>
 <CONTROLTYPE
 Value="input_text_lov"/>
 </SchemaBasedProperties>
 </Properties>
</ViewAttribute>
. . .
<ListBinding
 Name="LOV_SalesRepId"
 ListVOName="EmpVO1"
 ListRangeSize="10"
 NullValueFlag="none"
 MRUCount="0">
 <AttrArray Name="AttrNames">
 <Item Value="SalesRepId"/>
 </AttrArray>
 <AttrArray Name="ListAttrNames">
 <Item Value="Id"/>
 </AttrArray>
 <AttrArray Name="ListDisplayAttrNames">
 <Item Value="Id"/>
 <Item Value="FirstName"/>
 <Item Value="LastName"/>
 </AttrArray>
 <DisplayCriteria
 Hint="hide"/>
</ListBinding>
. . .
<ViewAccessor
 Name="EmpVO1"
 ViewObjectName="oracle.summit.model.views.EmpVO"
 OrderBy="EmpEO.LAST_NAME">
 <ViewCriteriaUsage
 Name="FilterByTitleIdVC"
 FullName="oracle.summit.model.views.EmpVO.FilterByTitleIdVC"/>
 <ParameterMap>
 <PIMap Variable="TitleIdBind">
 <TransientExpression><![CDATA[2]]></TransientExpression>
 </PIMap>

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-129

 </ParameterMap>
 </ViewAccessor>

What Happens at Runtime: How an LOV Queries the List Data Source
The ADF Business Components runtime adds view accessors in the attribute setters
of the view row and entity object to facilitate the LOV-enabled attribute behavior.
In order to display the LOV-enabled attribute values in the user interface, the LOV
facility fetches the data source, and finds the relevant row attributes and mapped
target attributes. The databound list component's default AutoSubmit property setting
of false ensures the browser makes a server roundtrip only when the end user selects
a value. As a result of the roundtrip, all list bindings in the ADF Model layer that are
derived from the same LOV-enabled attribute get updated and the end-user selection
is reflected in the corresponding list components of the user interface.

The number of data objects that the LOV facility fetches is determined in part by the
ListRangeSize setting in the LOV-enabled attribute's list binding definition, which is
specified in the Edit List of Values dialog that you display on the attribute from the
view object overview editor. By default, the number of fetched records for LOV queries
is not truncated for all types of list components (including LOV and non-LOV type list
components). The default value -1 specified by ListRangeSize means that the user
will be able to view all the data objects from the data source. However, if the number
of records fetched is very large and you want to truncate the values available to the
list component used to display the records, then on ListRangeSize you can specify
a discrete value for the number of records to fetch. The ListRangeSize value has no
effect on the records that the end user can search on in the lookup dialog displayed for
the two LOV type components. For more information about how each list component
displays values, see How to Set User Interface Hints on a View Object LOV-Enabled
Attribute.

Note that although you can alter the ListRangeSize value in the metadata definition
for the <ListBinding> element, setting the value to a discrete number of records (for
example, ListRangeSize="5") most likely will not provide the user with the desired
selection choices. Instead, if the value is -1 (default for list components), then no
restrictions are made to the number of records the list component will display, and the
user will have access to the full set of values.

Performance Tip:

To limit the set of values an LOV displays, use a view accessor to filter the
LOV binding, as described in How to Define a Single LOV-Enabled View
Object Attribute. Additionally, in the case of component types that display a
choice list, you can change the Most Recently Used Count setting to limit
the list to display the user's previous selections, as described in How to Set
User Interface Hints on a View Object LOV-Enabled Attribute.

Note, a runtime exception will occur when a web page displays a UI component for
an LOV-enabled attribute that does not match the view object's CONTROLTYPE definition.
When the user interface designer creates the page in JDeveloper using the Data
Controls panel, JDeveloper automatically inserts the list component identified by the
Default List Type selection you made for the view object's LOV-enabled attribute in
the List UI Hint dialog. However, if the user interface designer changes the list type

Chapter 5
Working with List of Values (LOV) in View Object Attributes

5-130

subsequent to creating the web page, you will need to edit the selection in the List UI
Hint dialog to match.

What You May Need to Know About Lists
There are several things you may need to know about LOVs that you define for
attributes of view objects, including how to propagate LOV-enabled attributes from
parent view objects to child view objects (by extending an existing view object) and
when to use validators instead of an LOV to manage a list of values.

Inheritance of AttributeDef Properties from Parent View Object Attributes
When a view object extends another view object, you can create the LOV-enabled
attribute on the base object. Then when you define the child view object in the
overview editor, the LOV definition will be visible on the corresponding view object
attribute. This inheritance mechanism allows you to define an LOV-enabled attribute
once and later apply it across multiple view objects instances for the same attribute.

You can also use the overview editor to extend the inherited LOV definition. For
example, you may add extra attributes already defined by the base view object's query
to display in selection list. Alternatively, you can define a view object that uses a
custom WHERE clause to query the supplemental attributes not already queried by the
based view object. For information about customizing entity-based view objects, see
Working with Bind Variables.

Using Validators to Validate Attribute Values
If you have created an LOV-enabled attribute for a view object, there is no need to
validate the attribute using a List Validator. You only use an attribute validator when
you do not want the list to display in the user interface, but still need to restrict the
list of valid values. List validation may be a simple static data or it may be a list of
possible values obtained through a view accessor you define. Alternatively, you might
prefer to use Key Exists validation when the attribute displayed in the UI is one that
references a key value (such as a primary, foreign, or alternate key). For information
about declarative validation in ADF Business Components, see Defining Validation and
Business Rules Declaratively.

Defining UI Hints for View Objects
You define UI Hints on an ADF view object attributes to display context-sensitive UI
information to the end user.

One of the built-in features of ADF Business Components is the ability to define
UI hints on view objects and attributes of view objects. UI hints are settings that
the view layer can use to automatically display the queried information to the user
in a consistent, locale-sensitive way. For example, in web pages, a UI developer
may access UI hint values by entering EL expressions utility methods defined on the
bindings name space and specified for ADF binding instance names.

JDeveloper stores the hints in resource bundle files that you can easily localize for
multilingual applications.

Chapter 5
Defining UI Hints for View Objects

5-131

How to Add Attribute-Specific UI Hints
To create UI hints for attributes of a view object, use the overview editor for the view
object, which is accessible from the Applications window. You can also display and edit
UI hints using the Properties window that you display for an attribute.

Before you begin:

It may be helpful to have an understanding of attribute UI hints. For more information,
see Defining UI Hints for View Objects.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

To customize view object attribute with UI hints:

1. In the Applications window, double-click the view object that you want to customize
with UI hints.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute that you want to customize with UI hints,
and then click the UI Hints tab and define the desired hints.

For example, for an attribute UserId, you might enter a value for its Label Text
hint like "Id" or set the Format Type to Number, and enter a Format mask of
00000.

Note:

Java defines a standard set of format masks for numbers and
dates that are different from those used by the Oracle database's
SQL and PL/SQL languages. For reference, see the Javadoc for the
java.text.DecimalFormat and java.text.SimpleDateFormat classes.

How to Add View Object UI Hints
To create UI hints for a view object, use the overview editor for the view object, which
is accessible from the Applications window. You can also display and edit several
additional UI hints using the Properties window that you display for the view object.

Before you begin:

It may be helpful to have an understanding of UI hints. For more information, see
Defining UI Hints for View Objects.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

Chapter 5
Defining UI Hints for View Objects

5-132

You will need to complete this task:

Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

To customize view objects with UI hints:

1. In the Applications window, double-click the view object that you want to customize
with UI hints.

2. In the overview editor, click the General navigation tab.

3. In the General page, enter a Display Name to define an EL accessible hint for the
view object name.

For example, for a view object OrdersVO, you might enter a value for its Display
Name hint like "Order".

4. With the General page displayed in the overview editor, open the Properties
window for the view object and expand the UI Hints section, and then enter
additional hints as needed.

For example, for a view object OrdersVO, you might enter a value for the Display
Name (Plural) hint like "Orders" and, for the Description hint, you might enter a
value like "customer orders".

How to Access UI Hints Using EL Expressions
A UI developer can access UI hints using EL expressions and display the hint values
as data in a web page. The UI developer may access UI hints through the ADF binding
instances that they create after dropping databound components into their web pages.

In the case of the view object hints, the UI developer accesses the view object hints
through the collection binding defined for the view object. For example, assume that
you have configured the view object UI hints as follows.

• OrdersVO view object Display Name hint = Order

• OrdersVO view object Display Name (Plural) hint = Orders

• OrdersVO view object Description hint = customer orders

The UI developer might display a header that makes use of these hints like this:

Showing customer orders number 10 of 51 Orders.

The following example shows that the EL expression that produces the above
text. In this EL expression the collection binding OrdersVO1 provides access to
the view object hints. The names of the EL expression utility methods match the
property names defined in the view object XML definition file for the UI hints. For
example, the view object property name labelPlural, which defines the Display
Name (Plural) hint, corresponds to the utility method name used in the expression
bindings.OrdersVO1.hints.labelPlural.

<af:panelHeader id="ph1"
 text="Showing #{bindings.OrdersVO1.hints.description} number
 #{bindings.OrdersVO1.Orderno.inputValue} of
 #{bindings.OrdersVO1.estimatedRowCount}
 #{bindings.OrdersVO1.hints.labelPlural}.">

Chapter 5
Defining UI Hints for View Objects

5-133

What Happens When You Add UI Hints
When you define attribute UI hints for a view object or view object attributes, by default
JDeveloper stores them in a resource bundle file. This allows the hints that you define
to be localized for the generated forms and tables of the user interface.

The type of resource bundle file that JDeveloper uses and the granularity of the file
are determined by settings on the Resource Bundle page of the Project Properties
dialog. By default, JDeveloper sets the option to Properties Bundle and generates
one .properties file for the entire data model project. For example, when you define
UI hints for a view object in the Model project, JDeveloper creates the bundle file
named ModelBundle.properties for the package.

Alternatively, if you select the option in the Project Properties dialog to generate
one resource bundle per file, you can inspect the message bundle file for any view
object by selecting the object in the Applications window and looking under the
corresponding Sources node in the Structure window. The Structure window shows
the implementation files for the component you select in the Applications window.
You can inspect the resource bundle file for the view object by expanding the parent
package of the view object in the Applications window, as shown in Figure 5-39.

Figure 5-39 Resource Bundle File in Applications Window

For more information on the resource bundle options you can select, see How to Set
Message Bundle Options.

The following example shows a sample message bundle file where the UI hint
information appears. The first entry in each String array is a message key; the second
entry is the locale-specific String value corresponding to that key.

oracle.summit.model.views.CustomerVO.Id_FMT_FORMATTER=
 oracle.jbo.format.DefaultNumberFormatter
oracle.summit.model.views.CustomerVO.Id_FMT_FORMAT=00000
oracle.summit.model.views.CustomerVO.Id_LABEL=Id
oracle.summit.model.views.CustomerVO.Email_LABEL=Email Address
oracle.summit.model.views.CustomerVO.LastName_LABEL=Surname
oracle.summit.model.views.CustomerVO.FirstName_LABEL=Given Name

Chapter 5
Defining UI Hints for View Objects

5-134

How to Define UI Category Hints
UI categories provide the means to group attributes that a view object defines. The
category names that you create are identifiers to be used by the dynamic rendering
user interface to group attributes for display. The user interface will render the attribute
with other attributes of the same category. You can use the category hint to aid the
user interface to separate a large list of view object attributes into smaller groups
related by categories.

Additionally, you can specify the field order hint to reorder how the user interface will
render the attribute values within its category. For example, if a view object defines
four attributes attributeA, attributeB, attributeC, and attributeD and you specify
the field order 4, 3, 2, and 1 respectively for each attribute, then wherever the user
interface renders the category, the attributes of that category will appear in the order
attributeD, attributeC, attributeB, and attributeA.

Note:

Use the UI Categories page in the overview editor for the view object to
change the order of the attributes listed within a category you've created.
JDeveloper automatically assigns and maintains the field order values of the
attributes based on their order in the list, and you do not need to edit numeric
values to define the field order hint.

The category and field order hints will be utilized by any dynamic rendering user
interface that displays the attribute, including dynamic forms and search forms:

• In the case of dynamic forms, the attributes from each category will appear in a
separate tab.

• In the case of search forms, the order of the form's individual view criteria is
determined by the field order and category assigned to the attribute upon which
the view criteria items are based.

To create UI categories for attributes of a view object, use the overview editor for the
view object, which is accessible from the Applications window. You can create and
edit categories for the entire view object using the UI Categories page, as shown in
Figure 5-40.

Chapter 5
Defining UI Hints for View Objects

5-135

Figure 5-40 Attribute UI Categories in View Object Overview Editor

When you assign a view object attribute to a category that you create in the UI
Categories page, the order of the attributes displayed in the category list determines
its numeric field order. The UI Categories page lets you change the field order of the
attributes you've assigned to a category by dragging and dropping attributes within
the list. When you drag and drop the attributes into the category lists, JDeveloper
automatically maintains the correct sequence of the field order hints within the
category and displays the field order value of individual attributes in the Attribute
UI Hints list of the UI Categories page. Other attribute-level UI hints displayed in the
UI Categories page are synchronized with settings in the UI Hints tab of the Attributes
page of the view object editor.

Each category can have a label and tooltip text string resource to be utilized by
the user interface when the category is rendered. You can localize these resource
strings in the resource bundle file that you select to store the entries. For example,
Figure 5-41 shows the attributes LastName and CreditRatingId with labels Sales Rep
Name and Credit Rating in a category with the label Personal Information.

Chapter 5
Defining UI Hints for View Objects

5-136

Figure 5-41 UI Categories Displayed in Oracle ADF Model Tester

Before you begin:

It may be helpful to have an understanding of UI hints. For more information, see
Defining UI Hints for View Objects.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete these tasks:

• Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

• Optionally, specify attribute UI hints, as described in How to Add Attribute-Specific
UI Hints. Attribute UI hints are displayed read-only in the UI Categories page of the
view object editor.

To create user interface categories and reorder the attributes for display:

1. In the Applications window, double-click the view object that you want to customize
with user interface categories.

2. In the overview editor, click the UI Categories navigation tab.

3. In the UI Categories page, click the Create New Category button to create the
category and then right-click the new category and choose Rename.

4. In the Rename dialog, enter the name of the category.

5. In the overview editor, in the UI Hints section, enter the user interface Label Text
and Tooltip Text for the category.

Chapter 5
Defining UI Hints for View Objects

5-137

The text that you enter will be added to the default resource bundle file for the
project, as described in What Happens When You Add UI Hints. To select a
different resource bundle file to store the label and tooltip strings, click the browse
(. . .) button beside the text field.

6. In the Categories list, expand the Uncategorized list and scroll the list of
attributes to locate the attribute you want to add to a category.

The Uncategorized list displays all the attributes that the view object you are
editing defines. This list is displayed by the overview editor as a selection list for
the creation of UI Category hints. Attributes that you leave in the Uncategorized
list will appear by default above the attribute categories displayed in the user
interface.

7. Select the desired attribute and drag it into the new category you created. If the
category contains more than one attribute, the position of the attribute that you
drop into the list will determine its field order value.

Developer automatically assigns a numeric value to the field order hint based on
the sequence of the attributes that appear within a UI Category list. The attribute
you place at the top of a category list will be rendered by the user interface first,
the attribute second in the list will be rendered second, and so on. The field order
hint appears in the Attribute UI Hints list of the UI Categories page and is not
editable. The hint value is also visible in the source for the view object definition
and should not be edited in the source.

What Happens When You Assign Attributes to UI Categories
When you define attribute UI categories for a view object, JDeveloper updates the
view object's XML document file. JDeveloper adds the CATEGORY and the FIELDORDER
UI hints in the <SchemaBasedProperties> element of the <ViewAttribute> element.
The definition of the categories appears in a new <Category> element.

The metadata in the following example shows that the CustomerId attribute's CATEGORY
hint refers to the AccountInformation category and the FirstName attribute's
CATEGORY hint refers to the UserInformation category. The definition for both
categories appears in <Category> elements. The FIELDORDER hint for each attribute
specifies a numeric value, which JDeveloper assigns and maintains based on the
order of the attributes in the UI categories lists you create in the overview editor. As
shown in the following example, the FIELDORDER hint is a decimal value. A decimal
value is used by JDeveloper to allow you to insert new attributes into a category
without requiring JDeveloper to change all the existing attribute values and still be able
to maintain the correct order.

Note that the default field order value for the first attribute in a category is assigned by
JDeveloper as 0.0. The field order value can be changed to any number to sort the
category list, and it is not an index. The field order numeric values do not need to be
contiguous.

<Category
 Name="AccountInformation">
 <Properties>
 <SchemaBasedProperties>
 <LABEL
 ResId="CUSTOMER_DETAILS"/>
 <TOOLTIP
 ResId="AccountInformation_TOOLTIP"/>
 </SchemaBasedProperties>

Chapter 5
Defining UI Hints for View Objects

5-138

 </Properties>
</Category>
<Category
 Name="UserInformation">
 <Properties>
 <SchemaBasedProperties>
 <TOOLTIP
 ResId="UserInformation_TOOLTIP"/>
 <LABEL
 ResId="CUSTOMER_DETAILS"/>
 </SchemaBasedProperties>
 </Properties>
</Category>
...
<ViewAttribute
 Name="CustomerId"
 IsNotNull="true"
 PrecisionRule="true"
 EntityAttrName="CustomerId"
 EntityUsage="CustomerEO"
 AliasName="CUSTOMER_ID">
 <Data>
 <Property
 Name="OWNER_SCOPE"
 Value="INSTANCE"/>
 ...
 </Data>
 <Properties>
 <SchemaBasedProperties>
 <CATEGORY
 Value="AccountInformation"/>
 <FIELDORDER
 Value="0.0"/>
 </SchemaBasedProperties>
 </Properties>
 </ViewAttribute>
...
<ViewAttribute
 Name="FirstName"
 PrecisionRule="true"
 EntityAttrName="FirstName"
 EntityUsage="CustomerEO"
 AliasName="FIRST_NAME">
 <Data>
 <Property
 Name="OWNER_SCOPE"
 Value="INSTANCE"/>
 ...
 </Data>
 <Properties>
 <SchemaBasedProperties>
 <CATEGORY
 Value="UserInformation"/>
 <FIELDORDER
 Value="0.0"/>
 </SchemaBasedProperties>
 </Properties>
</ViewAttribute>

Chapter 5
Defining UI Hints for View Objects

5-139

What You May Need to Know About Resource Bundles
Internationalizing the model layer of an application built using ADF
Business Components entails producing translated versions of each
component's resource bundle file. For example, the Italian version of
the QueryDataWithViewObjectsBundle.properties file would be a file named
QueryDataWithViewObjectsBundle_it.properties, and a more specific Swiss Italian
version would have the name QueryDataWithViewObjectsBundle_it_ch.properties.

Resource bundle files contain entries for the message keys that need to be localized,
together with their localized translation. For example, assuming you didn't want to
translate the number format mask for the Italian locale, the Italian version of the
QueryDataWithViewoObjects view object message keys would look like what you see
in the following example. At runtime, the resource bundles are used automatically,
based on the current user's locale settings.

oracle.summit.model.views.CustomerVO.Id_FMT_FORMATTER=

oracle.jbo.format.DefaultNumberFormatter
oracle.summit.model.views.CustomerVO.Id_FMT_FORMAT=00000
oracle.summit.model.views.CustomerVO.Id_LABEL=Codice Utente
oracle.summit.model.views.CustomerVO.Email_LABEL=Indirizzo Email
oracle.summit.model.views.CustomerVO.LastName_LABEL=Cognome
oracle.summit.model.views.CustomerVO.FirstName_LABEL=Nome

The resource bundles of the model project contribute one aspect of internationalizing
the Fusion web application. Internationalization for specific locales also requires
localizing the ADF Faces pages of the user interface. For more information about
how to localize ADF Faces pages, see the "Internationalizing and Localizing Pages"
chapter in Developing Web User Interfaces with Oracle ADF Faces.

Chapter 5
Defining UI Hints for View Objects

5-140

6
Defining Master-Detail Related View
Objects

This chapter describes how to link ADF view objects to other view objects to form
master-detail hierarchies of any complexity in an Oracle ADF application.
This chapter includes the following sections:

• About Master-Detail View Objects

• Working with Multiple Tables in a Master-Detail Hierarchy

• Working with a Single Table in a Recursive Master-Detail Hierarchy

• Working with Master-Detail Related View Objects in View Criteria

About Master-Detail View Objects
You can create a link between an ADF view object to a single view object or multiple
view objects to create master-detail hierarchies.

A master-detail relationship is established when a view link is created to associate
two view object instances. A view link represents the relationship between two view
objects, which is usually, but not necessarily, based on a foreign-key relationship
between the underlying data tables. The view link associates a row of one view object
instance (the master object) with one or more rows of another view object instance
(the detail object).

Master-Detail View Object Use Cases and Examples
This chapter helps you understand these view object concepts as illustrated in
Figure 6-1:

• You can link a view object to one or more others to create master-detail
hierarchies of any complexity.

• You can arrange parent-child view object instances in the context of an
application module such that at runtime the detail view instance is actively
coordinated with the current row of the master view instance.

• At design time, you can define a view link accessor that specifies an accessor
attribute that the master collection uses at runtime to return the detail collection
row set.

• You can programmatically access the detail collection row set using the view link
accessor attribute that you specify for the master view object in the master-detail
relationship.

• You can tune master-detail collection queries, by caching the row set of the detail
view instance and support UI components, like the ADF Faces tree component,
where data for each master node in a tree needs to retain its distinct set of detail
rows.

6-1

• You can create row finder conditions using view criteria to locate specific rows
within the master view object.

• You can define a self-referential master and detail hierarchy such that the source
and destination view link attributes derive from a single table.

• You can define an inline view criteria to filter the row set of the master view object
using attribute values specified by attributes of the detail view object.

Figure 6-1 A View Object Defines a Query and Produces a Row Set of Rows

Additional Functionality for View Objects
You may find it helpful to understand other Oracle ADF features before you start
working with view objects. Following are links to other functionality that may be of
interest.

• For details about using the interactive Oracle ADF Model Tester to validate view
object query results, see Testing View Instance Queries.

• For details about creating a data model consisting of view object instances, see
Implementing Business Services with Application Modules.

• For a quick reference to the most common code that you will typically write, use,
and override in your custom view object classes, see Most Commonly Used ADF
Business Components Methods.

• For API documentation related to the oracle.jbo package, see the following
Javadoc reference document:

– Java API Reference for Oracle ADF Model

Working with Multiple Tables in a Master-Detail Hierarchy
JDeveloper allows you to create source and target view objects in a master-detail
hierarchy when there are many queries involving multiple tables related by foreign
keys.

Many queries you will work with will involve multiple tables that are related by foreign
keys. In this scenario, you can create separate view objects that query the related
information and link a "source" view object to one or more "target" view objects to form
a master-detail hierarchy.

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-2

There are two ways you might handle this situation. You can either:

• Create a view link based on an association between entity objects when the
source and target view objects are based on the underlying entity objects'
association.

• Create a view link that defines how the source and target view objects relate.

Whether or not an association exists is determined when entity objects are created. By
default, the entity object associations model the hierarchical relationships of the data
source. For example, entity objects based on database tables related by foreign keys
will capture these relationships in entity associations. If you do base the view link on
an existing entity association, there is no performance penalty over defining the view
link on the view objects alone. In either case, you use the Create View Link wizard to
define the master-detail relationship.

Note:

A view link defines a basic master-detail relationship between two view
objects. However, by creating more view links you can achieve master-detail
hierarchies of any complexity, including:

• Multilevel master-detail-detail

• Master with multiple (peer) details

• Detail with multiple masters

The steps to define these more complex hierarchies are the same whether
you create the relationships based on view objects alone or view objects with
entity associations. In either case, you just need to create each additional
hierarchy, one view link at time.

Figure 6-2 illustrates the multilevel result that master-detail linked queries produce.

Figure 6-2 Linked Master-Detail Queries

How to Create a Master-Detail Hierarchy Based on Entity Associations
When you want to show the user a set of master rows, and for each master row a
set of coordinated detail rows, then you can create view links to define how you want
the master and detail view objects to relate. For example, you could link the DeptVO
view object to the EmpVO view object to create a master-detail hierarchy of departments
and the set of employees they define. When these view objects are backed by entity

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-3

objects related by an existing association, you can select the association to define the
master-detail view link.

To create an association-based view link, you use the Create View Link wizard.

Before you begin:

It may be helpful to have an understanding of the ways to create a master-detail
hierarchy. For more information, see Working with Multiple Tables in a Master-Detail
Hierarchy.

You may also find it helpful to understand how entity associations are created.
For more information, see What Happens When You Create Entity Objects and
Associations from Existing Tables.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the desired entity-based view objects, as described in How to Create an
Entity-Based View Object.

To create an association-based view link

1. In the Applications window, right-click the package node of the project in which you
want to create the view object and choose New and then View Link.

2. In the Create View Link wizard, on the Name page, supply a package and a
component name.

For example, given the purpose of the view link, a name like DeptToEmpFkLink is
a valid name to identify the link between a department list and its employees when
the link is based on a foreign key.

3. On the View Objects page, in the Select Source Attribute tree expand the source
view object in the desired package. In the Select Destination Attribute tree,
expand the destination view object.

For entity-based view objects, notice that in addition to the view object attributes,
relevant associations also appear in the list.

4. Select the same association in both Source and Destination trees. Then click
Add to add the association to the table below.

For example, Figure 6-3 shows the same SEmpDeptIdFkAssoc association in both
Source and Destination trees selected.

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-4

Figure 6-3 Master and Detail Related by an Association Selection

5. Click Finish.

How to Create a Master-Detail Hierarchy Based on View Objects
Alone

Just as with association-based view links, you can directly link view objects to other
view objects to form master-detail hierarchies of any complexity. The only difference in
the creation steps, involves the case when both the master and detail view objects are
not related by an existing association. In this situation, because there is no association
to capture the set of source and destination attribute pairs that relate them, you create
the view link by indicating which view object attributes it should be based on.

To create the view link, use the Create View Link wizard.

Before you begin:

It may be helpful to have an understanding of the ways to create a master-detail
hierarchy. For more information, see Working with Multiple Tables in a Master-Detail
Hierarchy.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

Create the desired read-only view objects, as described in How to Create a Custom
SQL Mode View Object.

To create a view link between view objects:

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-5

1. In the Applications window, right-click the package node of the project in which you
want to create the view object and choose New and then View Link.

2. In the Create View Link wizard, on the Name page, enter a package name and a
view link name. Click Next.

For example, given the purpose of the view link, a name like OrdersPlacedBy is a
valid name to identify the link between a customer list and their orders.

3. On the View Objects page, select a "source" attribute from the view object that will
act as the master.

For example, Figure 6-4 shows the Id attribute selected from the CustomerVO view
object to perform this role. Click Next.

4. On the View Objects page, select a corresponding destination attribute from the
view object that will act as the detail.

For example, if you want the detail query to show orders that were placed by the
currently selected customer, select the Id attribute in the OrdersVO to perform this
role.

5. Click Add to add the matching attribute pair to the table of source and destination
attribute pairs below. When you are finished defining master and detail link, click
Next.

Figure 6-4 shows just one (CustomerVO.Id, OrderVO.Id) pair. However, if you
require multiple attribute pairs to define the link between master and detail, repeat
the steps for the View Objects page to add additional source-target attribute pairs.

Figure 6-4 Defining Source/Target Attribute Pairs While Creating a View
Link

6. On the View Link Properties page, you can use the Accessor Name field to
change the default name of the accessor that lets you programmatically access
the destination view object.

By default, the accessor name will match the name of the destination view
object. For example, you might change the default accessor name OrdersVO1 to

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-6

CustomerOrders to better describe the master-detail relationship that the accessor
defines.

7. Also on the View Link Properties page, you control whether the view link
represents a one-way relationship or a bidirectional one.

By default, a view link is a one-way relationship that allows the current row of the
source (master) to access a set of related rows in the destination (detail) view
object. Leave the default settings unchanged for Generate Accessor when you
want to enable support for hierarchical UI components, such as databound trees
which require a view link accessor with accessor generated in the master view
object.

For example, in Figure 6-5, the checkbox settings indicate that you'll be able to
access a detail collection of rows from OrdersVO for the current row in CustomerVO,
but not vice versa. In this case, this behavior is specified by the checkbox setting
in the Destination Accessor group box for OrdersVO (the Generate Accessor In
View Object: CustomerVO box is selected) and checkbox setting in the Source
Accessor group box for CustomerVO (the Generate Accessor In View Object:
OrdersVO box is not selected).

Figure 6-5 View Link Properties Control Name and Direction of Accessors

8. On the Edit Source Query page, preview the view link SQL predicate that will be
used at runtime to access the master row in the source view object and click Next.

9. On the Edit Destination Query page, preview the view link SQL predicate that will
be used at runtime to access the correlated detail rows from the destination view
object for the current row in the source view object and click Next.

10. On the Application Module page, add the view link to the data model for the
desired application module and click Finish.

By default the view link will not be added to the application module's data model.
Later you can add the view link to the data model using the overview editor for the
application module.

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-7

What Happens When You Create Master-Detail Hierarchies Using
View Links

When you create a view link or an association-based view link, JDeveloper creates
the XML document file that represents its declarative settings and saves it in the
directory that corresponds to the name of its package. For example, if the view link is
named DeptToEmpFkLink and it appears in the views.links package, then the XML
file created will be ./views/links/DeptToEmpFkLink.xml under the project's source
path. This XML file contains the declarative information about the source and target
attribute pairs you've specified and, in the case of an association-based view link,
contains the declarative information about the association that relates the source and
target view objects you've specified.

In addition to saving the view link component definition itself, JDeveloper also
updates the XML definition of the source view object in the view link relationship
to add information about the view link accessors that you may have defined. As a
confirmation of this, you can select the source view object in the Applications window
and inspect its details in the Structure window. As shown in Figure 6-6, you can
see the default destination accessor EmpVOAccessor under the ViewLink Accessors
node for the DeptVO source view object that accesses the destination EmpVO view
object. This allows the source view object, using the view link accessor, to traverse
the destination side of the view link. In addition to the view link accessor definition
for the source view object, you can directly customize the view link to define a view
link accessor on the destination view object, which provides access to row set of the
source view object.

Figure 6-6 View Object with View Link Accessor in the Structure Window

How to Enable Active Master-Detail Coordination in the Data Model
When you enable programmatic navigation to a row set of correlated details by
defining a view link, as described in How to Create a Master-Detail Hierarchy
Based on Entity Associations, the view link plays a passive role, simply defining
the information necessary to retrieve the coordinated detail row set when your
code requests it. The view link accessor attribute is present and programmatically
accessible in any result rows from any instance of the view link's source view object. In
other words, programmatic access does not require modifying the application module's
data model.

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-8

However, since master-detail user interfaces are such a frequent occurrence in
enterprise applications, the view link can be also used in a more active fashion so
you can avoid needing to coordinate master-detail screen programmatically. You opt to
have this active master-detail coordination performed by explicitly adding an instance
of a view-linked view object to your application module's data model.

To enable active master-detail coordination, open the application module in the
overview editor and select the Data Model page.

Before you begin:

It may be helpful to have an understanding of the ways to create a master-detail
hierarchy. For more information, see Working with Multiple Tables in a Master-Detail
Hierarchy.

You may also find it helpful to understand the role of the application module. For more
information, see About Application Modules.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete these tasks:

• Create the desired view objects, as described in How to Create an Entity-Based
View Object and How to Create a Custom SQL Mode View Object.

• Create an application module, as described in How to Create an Application
Module.

To add a detail instance of a view object:

1. In the Applications window, double-click the application module for which you
define a new view instance.

2. In the overview editor, click the Data Model navigation tab.

3. In the Data Model page, expand the View Object Instances section and, in the
Available View Objects list, select the detail view object node that is indented
beneath the master view object.

Note that the list shows the detail view object twice: once on its own, and once
as a detail view object via the view link. For example, in Figure 6-7 you would
select the detail view object EmpVO via DeptToEmpFkLink instead of the view
object labeled as EmpVO (which, in this case, appears beneath the highlighted view
object).

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-9

Figure 6-7 Detail View Object Selection from Available View Objects

4. In the Name View Instance field below the Available View Objects list, enter a
name for the detail instance you're about to create.

For example, Figure 6-7 shows the name EmpDetailsVO for the instance of the
EmpVO view object that is a detail view.

5. In the Data Model list, select the instance of the view object that you want to be
the actively coordinating master.

6. Click Add Instance to add the detail instance to the currently selected master
instance in the data model, with the name you've chosen.

For example, in Figure 6-8, the Data Model list shows a master-detail hierarchy of
view object instances with EmpDetailsVO as the detail view object.

Figure 6-8 Data Model with View Linked View Object

How to Test Master-Detail Coordination
To test active master-detail coordination, launch the Oracle ADF Model Tester on
the application module by choosing Run from its context menu in the Applications
window. The Oracle ADF Model Tester data model tree shows the view link instance
that is actively coordinating the detail view object instance with the master view object
instance. You can double-click the view link instance node in the tree to open a
master-detail data view page in the Oracle ADF Model Tester. Then, when you use
the toolbar buttons to navigate in the master view object — changing the view object's

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-10

current row as a result — the coordinated set of details is automatically refreshed and
the user interface stays in sync.

If you double-click another view object that is not defined as a master and detail, a
second tab will open to show its data; in that case, since it is not actively coordinated
by a view link, its query is not constrained by the current row in the master view object.

For information about editing the data model and running the Oracle ADF Model
Tester, see Testing View Object Instances Using the Oracle ADF Model Tester.

How to Access the Detail Collection Using the View Link Accessor
To work with view links effectively, you should also understand that view link accessor
attributes return a RowSet object and that you can access a detail collection using the
view link accessor programmatically.

Accessing Attributes of Row by Name
At runtime, the getAttribute() method on a Row object allows you to access the
value of any attribute of that row in the view object's result set by name. The view
link accessor behaves like an additional attribute in the current row of the source view
object, so you can use the same getAttribute() method to retrieve its value. The
only practical difference between a regular view attribute and a view link accessor
attribute is its data type. Whereas a regular view attribute typically has a scalar data
type with a value like 303 or ngreenbe, the value of a view link accessor attribute is a
row set of zero or more correlated detail rows. Assuming that curUser is a Row object
from some instance of the Orders view object, you can write a line of code to retrieve
the detail row set of order items:

RowSet items = (RowSet)curUser.getAttribute("OrderItems");

Note:

If you generate the custom Java class for your view row, the type of the
view link accessor will be RowIterator. Since at runtime the return value will
always be a RowSet object, it is safe to cast the view link attribute value to
RowSet.

Programmatically Accessing a Detail Collection Using the View Link Accessor
Once you have retrieved the RowSet object of detail rows using a view link accessor,
you can loop over the rows it contains just as you would loop over a view object's row
set of results, as shown in the following example.

while (items.hasNext()) {
 Row curItem = items.next();
 System.out.println("--> (" + curItem.getAttribute("LineItemId") + ") " +
 curItem.getAttribute("LineItemTotal"));
}

For information about creating a test client, see How to Access a Detail Collection
Using the View Link Accessor.

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-11

Optimizing View Link Accessor Access to Display Master-Detail Data
You can enable caching of the view link accessor row set when you do not want the
application to incur the small amount of overhead associated with reexecuting queries
to create new detail row sets. For example, because view accessor row sets remain
stable as long as the master row view accessor attribute remains unchanged, it would
not be necessary to re-create a new row set for UI components, like the ADF Faces
tree component, where data for each master node in a tree needs to retain its distinct
set of detail rows.

You can enable retention of the view link accessor row set using the overview editor
for the view object that is the source for the view link accessor. Select the Retain Row
Set flag in the View Accessors page of the overview editor for the source view object.

Performance Tip:

When you expect user interface developers will use the view link to create
databound master-detail components where the detail collections are stable,
such as an ADF Faces tree component, enable the Retain Row Set flag.
At runtime, this setting ensures the accessors for each detail collection will
be executed once. The compromise for this improvement in performance is
that accessed collections may occupy more memory space as compared to
accessing the detail collections without the flag enabled.

To enable retention of the view link accessor row set:

1. In the Applications window, double-click the source view object that defines the
view link.

2. In the overview editor, click the View Accessors navigation tab.

3. In the View Accessors page, expand the View Link Accessors section and select
the Retain Row Set checkbox.

What You May Need to Know About View Link Accessors Versus Data
Model View Link Instances

View objects support two different styles of master-detail coordination:

• View link instances for data model master-detail coordination, as described in
Enabling a Dynamic Detail Row Set with Active Master-Detail Coordination.

• View link accessor attributes for programmatically accessing detail row sets on
demand, as described in Programmatically Accessing a Detail Row Set Using
View Link Accessor Attributes.

• You can combine both styles, as described in What Happens At Runtime: When
You Combine the Programmatic Access Using View LInk Accessors.

Enabling a Dynamic Detail Row Set with Active Master-Detail Coordination
When you add a view link instance to your application module's data model, you
connect two specific view object instances. The use of the view link instance

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-12

indicates that you want active master-detail coordination between the two. At runtime
the view link instance in the data model facilitates the eventing that enables this
coordination. Whenever the current row is changed on the master view object
instance, an event causes the detail view object to be refreshed by automatically
invoking executeQuery() with a new set of bind parameters for the new current row in
the master view object.

A key feature of this data model master-detail is that the master and detail view object
instances are stable objects to which client user interfaces can establish bindings.
When the current row changes in the master — instead of producing a new detail view
object instance — the existing detail view object instance updates its default row set
to contain the set of rows related to the new current master row. In addition, the user
interface binding objects receive events that allow the display to update to show the
detail view object's refreshed row set.

Another key feature that is exclusive to data model hierarchy is that a detail view
object instance can have multiple master view object instances. For example, an
PaymentOptions view object instance may be a detail of both a Customers and a
Orders view object instance. Whenever the current row in either the Customers or
Orders view object instance changes, the default row set of the detail PaymentOptions
view object instance is refreshed to include the row of payment information for the
current customer and the current order. See How to Create a Master-Detail Hierarchy
With Multiple Masters for details on setting up a detail view object instance with
multiple-masters.

Programmatically Accessing a Detail Row Set Using View Link Accessor
Attributes

When you need to programmatically access the detail row set related to a view object
row by virtue of a view link, you can use the view link accessor attribute. You specify
the finder name of the view link accessor attribute from the overview editor for the view
link. Click the Edit icon in the Accessors section of the Relationship page and in the
Edit View Link Properties dialog, edit the name of the view link accessor attribute.

The following example shows the XML for the view link that defines the _findername
value of the <Attr> element.

<ViewLinkDefEnd
 Name="Orders"
 Cardinality="1"
 Owner="devguide.advanced.multiplemasters.Orders"
 Source="true">
 <AttrArray Name="Attributes">
 <Item Value="devguide.advanced.multiplemasters.Orders.PaymentOptionId"/>
 </AttrArray>
 <DesignTime>
 <Attr Name="_minCardinality" Value="1"/>
 <Attr Name="_isUpdateable" Value="true"/>
 <Attr Name="_finderName" Value="Orders"/>
 </DesignTime>
</ViewLinkDefEnd>

Assuming you've named your accessor attribute AccessorAttrName, you can access
the detail row set using the generic getAttribute() API like:

RowSet detail = (RowSet)currentRow.getAttribute("AccessorAttrName");

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-13

If you've generated a custom view row class for the master view object and exposed
the getter method for the view link accessor attribute on the client view row interface,
you can write strongly typed code to access the detail row set like this:

RowSet detail = (RowSet)currentRow.getAccessorAttrName();

Unlike the data model master-detail, programmatic access of view link accessor
attributes does not require a detail view object instance in the application module's
data model. Each time you invoke the view link accessor attribute, it returns a RowSet
containing the set of detail rows related to the master row on which you invoke it.

Using the view link accessor attribute, the detail data rows are stable. As long as
the attribute value(s) involved in the view link definition in the master row remain
unchanged, the detail data rows will not change. Changing of the current row in the
master does not affect the detail row set which is "attached" to a given master row. For
this reason, in addition to being useful for general programmatic access of detail rows,
view link accessor attributes are appropriate for UI objects like the tree control, where
data for each master node in a tree needs to retain its distinct set of detail rows.

What Happens At Runtime: When You Combine the Programmatic Access
Using View LInk Accessors

Oracle ADF needs to distinguish between the data model master-detail and view
link accessor row sets. When you combine the use of data model master-detail with
programmatic access of detail row sets using view link accessor, it is important to
understand that they are distinct mechanisms. For example, imagine that you:

• Define PersonsVO and OrdersVO view objects

• Define a view link between them, naming the view link accessor PersonsToOrders

• Add instances of them to an application module's data model named master (of
type PersonsVO) and detail (of type OrdersVO) coordinated actively by a view link
instance.

If you find a person in the master view object instance, the detail view object instance
updates as expected to show the corresponding orders. At this point, if you invoke
a custom method that programmatically accesses the PersonsToOrders view link
accessor attribute of the current PersonsVO row, you get a RowSet containing the set of
OrdersVO rows. You might reasonably expect this programmatically accessed RowSet
to have come from the detail view object instance in the data model, but this is not
the case.

The RowSet returned by a view link accessor always originates from an internally
created view object instance, not one you that added to the data model. This internal
view object instance is created as needed and added with a system-defined name to
the root application module.

The principal reason a distinct, internally created view object instance is used is to
guarantee that it remains unaffected by developer-related changes to their own view
objects instances in the data model. For example, if the view row were to use the
detail view object in the data model for view link accessor RowSet, the resulting row set
could be inadvertently affected when the developer dynamically:

1. Adds a WHERE clause with new named bind parameters

If such a view object instance were used for the view link accessor result,
unexpected results or an error could ensue because the dynamically added WHERE

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-14

clause bind parameter values have not been supplied for the view link accessor's
RowSet: they were only supplied for the default row set of the detail view object
instance in the data model.

2. Adds an additional master view object instance for the detail view object instance
in the data model.

In this scenario, the semantics of the accessor would be changed. Instead of the
accessor returning OrdersVO rows for the current PersonsVO row, it could all of a
sudden start returning only the OrdersVO rows for the current PersonsVO that were
created by a current logged in customer, for example.

3. Removes the detail view object instance or its containing application module
instance.

In this scenario, all rows in the programmatically accessed detail RowSet would
become invalid.

Furthermore, Oracle ADF needs to distinguish between the data model master-detail
and view link accessor row sets for certain operations. For example, when you create
a new row in a detail view object, the framework automatically populates the attributes
involved in the view link with corresponding values of the master. In the data model
master-detail case, it gets these values from the current row(s) of the possibly multiple
master view object instances in the data model. In the case of creating a new row in a
RowSet returned by a view link accessor, it populates these values from the master row
on which the accessor was called.

How to Create a Master-Detail Hierarchy With Multiple Masters
When useful, you can set up your data model to have multiple master view object
instances for the same detail view object instance. Consider view objects named
Customers, Orders, and PaymentOptions with view links defined between:

• Customers and PaymentOptions

• Orders and PaymentOptions

Figure 6-9 shows what the data model panel looks like when you've configured
both Customers and Orders view object instances to be masters of the same
PaymentOptions view object instance.

Figure 6-9 Multiple Master View Object Instances for the Same Detail

To set up the data model as shown in Figure 6-9 you use the overview editor for the
application module and use the Data Model page.

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-15

Before you begin:

It may be helpful to have an understanding of view objects. For more information, see
About View Objects.

To create a view instance with multiple master view objects:

1. Add an instance of the first master view object to the data model.

Assume you name it Customers.

2. Add an instance of the second master view object to the data model.

Assume you name it Orders.

3. Select the first master view object instance in the Data Model list

4. In the Available View Objects list, select the detail view object indented beneath
the first master view object and enter the view object instance name in the New
Instance Name field. Click > to shuttle it into data model as a detail of the existing
Customers view object instance.

5. Select the second master view object instance in the Data Model list

6. In the Available View Objects list, select the detail view object indented beneath
the second master view object and the New Instance Name field, enter the same
view object instance name as the previously entered detail view object. Click > to
shuttle it into data model as a detail of the existing Orders view object instance.

An alert will appear: An instance of a View Object with the name
PaymentOptionsVO has already been used in the data model. Would you
like to use the same instance?

7. Click Yes to confirm you want the detail view object instance to also be the detail
of the second view object instance.

How to Create a Master-Detail Hierarchy for Entity Objects Consisting
of Transient-Only Attributes

When you link entity-based view objects to form master-detail hierarchies, the view
objects and their respective entity usages are typically related by an association. At
runtime, the association constructs an internal association view object that enables a
query to be executed to enable the master-detail coordination. An exception to this
scenario occurs when the entity object that participates in an association consists
exclusively of nonpersistent attributes. This may occur when you define an entity
object with transient attributes that you wish to populate programmatically at runtime.
In this case, you can use the association overview editor that links the nonpersistent
entity object to select an association view object to perform the query.

Before you begin:

It may be helpful to have an understanding of associations. For more information,
see What Happens When You Create Entity Objects and Associations from Existing
Tables.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete these tasks:

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-16

• Create the entity-based view object for the nonpersistent entity object, as
described in How to Create an Entity-Based View Object.

• Use the Create Association wizard to create an association between the
nonpersistent entity object and a database-derived entity object. For details about
creating an association, see Creating and Configuring Associations.

To customize an association for nonpersistent entity objects:

1. In the Applications window, double-click the association that you want to
customize.

2. In the overview editor, click the Tuning navigation tab and then click the Edit
accessors icon for the Custom View Objects section.

3. In the Custom Views dialog, select Use Custom View Object for the
nonpersistent entity object.

4. In the Select View Object list, select the view object that you created based on
the nonpersistent entity-object.

5. Click OK.

How to Find Rows of a Master View Object Using Row Finders
Row finders are objects that the application may use to locate specific rows within a
row set using a view criteria. The row finder may be invoked on the master row set to
match one or more criteria attributes supplied by the detail row set.

Currently, row finders that you define at design time can participate in these master-
detail scenarios where non-row key attribute lookup is desired at runtime:

• When you expose the row finder in an ADF Business Components web service,
the end user may initiate row updates on the specific rows of the master service
view instance that match one or more row-finder mapped attribute values on the
detail service view instance. For more information about this use case, see What
You May Need to Know About View Criteria and Row Finder Usage.

• Programmatically, in the application, when you want to obtain a set of master
view rows that match one or more row-finder mapped, non-key attribute values
in the detail view instance. For more information about this use case, see
Programmatically Invoking the Row Finder.

Note:

Row finders that you define on view objects are not currently supported
by the ADF Business Components data control for use in a view project.
Therefore row-finder mapped attributes of a view object that the application
exposes as a collection in the Data Controls panel will not participate in row
finder lookup operations.

The view criteria attributes defined by the view criteria can be any attribute that
the detail view object defines and specifically need not be a row key attribute. For
example, in a master-detail relationship, where PersonVO is the master view object and
AddressVO is the detail view object, the attribute EmailAddress will locate the person
row that matches the email address of the person in the AddressVO row set.

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-17

To create a row finder to locate rows of the master view object using criteria attributes
supplied by the detail view object, perform the following steps:

1. Define an inline view criteria on the master view object to reference the detail view
object and specify the criteria attributes as a view criteria items defined by bind
variables.

2. Define an updatable transient attribute on the master view object to receive the
value of each criteria attribute. At runtime, the transient attribute may be set
programmatically or exposed in a web service payload to allow an end user to
supply the criteria attribute value (for example, an email address).

3. Define the row finder on the master view object by selecting the view criteria and
setting each criteria attribute's bind variable to a corresponding transient attribute
from the master view object.

Defining a Row Finder on the Master View Object
Row finders that you define to filter the row set of a master view object are defined
entirely on the master view object. The row finder matches the criteria attributes
that you specified in the inline view criteria with values obtained at runtime. In order
to receive the criteria attribute values, the master view object may define transient
attributes that the application can set programmatically using row finder methods
on the view object or that a web service payload may expose to receive end user-
supplied values.

You use the Row Finders page of the master view object's overview editor to define
the row finder. In the editor, you define a value source for each bind variable of the
view criteria that you select. Attributes of the view object or attribute-value expressions
are both valid sources for bind variables defined by the row finder.

Figure 6-10 shows the overview editor with a row finder that maps the view criteria
bind variable EmailBindVar specified in the findPersonByEmail view criteria to the
transient attribute TrEmailAddress defined by the master view object PersonVO as its
value source.

Figure 6-10 View Object Overview Editor with Row Finder

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-18

Note:

You can also define row finders on view objects that do not participate in a
master-detail hierarchy, as described in Working with Row Finders.

Before you begin:

It may be helpful to have an understanding of the row finder for master-detail view
objects. For more information, see How to Find Rows of a Master View Object Using
Row Finders.

It may be helpful to have an understanding of master-detail view objects. For more
information, see About Master-Detail View Objects.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete these tasks:

• Create the desired master-detail view objects, as described in How to Create a
Master-Detail Hierarchy Based on Entity Associations or How to Create a Master-
Detail Hierarchy Based on View Objects Alone.

• Define an inline view criteria on the master view object, as described in Working
with Master-Detail Related View Objects in View Criteria. The inline view criteria
references the detail view object and specifies one or more detail attributes as
view criteria items.

• Optionally, add updatable transient attributes to the master view object, as
described in Adding Calculated and Transient Attributes to a View Object. The
transient attribute may be set programmatically by the application or exposed in an
ADF Business Components web service payload to solicit the value from an end
user. The transient attributes must be defined as updatable to receive the criteria
lookup value.

To create a row finder for a master view object:

1. In the Applications window, double-click the master view object that you want to
customize with a new row finder.

2. In the overview editor, click the Row Finders navigation tab and then click the
Add Row Finder button.

3. In the Name field, rename the row finder.

For example, a row finder that you define to locate a person record by their email
address, might be named PersonByEmailFinder.

4. Select the new row finder in the Row Finders list and then, in the View Criteria
dropdown, select the view criteria that filters the view object row set.

The desired row finder should appear highlighted, as shown in Figure 6-10. The
view criteria list will be empty unless you have created a view criteria for the row
finder to use.

5. When you want the end user of an ADF Business Components web service to
supply a value, leave Attribute selected, select the bind variable from the list, and

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-19

then, in the Attribute dropdown, select the transient attribute from the master view
object that supplies the bind variable value at runtime.

The transient attribute that you select will be used by the row finder to supply the
criteria attribute value. For example, a PersonVO master view object that matches
rows based on the email address in the AddressVO, might include a transient
attribute that you define named TrEmailAddress.

Note: When you create the transient attribute in the overview editor for the view
object, be sure to define the transient attribute as Updatable so it can receive the
criteria lookup value.

6. Deselect FetchAll when you want to specify the number of rows that the row
finder is allowed to match.

When you enter a number of rows for Fetch Limit, you can also select Error
Exceeding Limit to enable Oracle ADF to throw an exception when more
matching rows exist in the database than the number you specify for Fetch Limit.

What Happens When You Create a Row Finder for a Master View Object
When you create a master view object row finder, the view object definition contains
all the metadata required by the row finder, including the row finder definition itself.
As the following example shows, the metadata for a row finder PersonByEmailFinder
includes a bind variable EmailBindVar in the <Variable> element, a transient attribute
TrEmailAddress in the <ViewAttribute> element, a view criteria findPersonByEmail
and an inline view criteria AddressVONestedCriteria in the <ViewCriteria> element,
and finally the row finder PersonByEmailFinder in the <RowFinders> element of the
view object definition.

The row finder <VarAttributeMapping> subelement maps the view criteria bind
variable EmailBindVar to the transient attribute TrEmailAddress of the master view
object, which allows the end user to supply a value at runtime and allows the
application to invoke the row finder with the required criteria attribute. The inline
<ViewCriteriaItem> subelement sets the criteria attribute EmailAddress on the detail
view object to the value of the bind variable.

At runtime, when the row finder is invoked on the master view object, one or more
detail criteria attributes identify the matching rows in the master row set. In this
example, the email address is used to match the person to which the email address
belongs. The row finder locates the person record without the need to pass a row key
value.

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="PersonVO"
 SelectList="PersonEO.ID,
 PersonEO.FIRST_NAME
 PersonEO.LAST_NAME"
 FromList="PERSON PersonEO"
 ...
 <Variable
 Name="EmailBindVar"
 Kind="viewcriteria"
 Type="java.lang.String"/>
 <EntityUsage
 Name="PersonEO"
 Entity="model.entities.PersonEO"/>
 ...

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-20

 <ViewAttribute
 Name="TrEmailAddress"
 IsUpdateable="false"
 IsSelected="false"
 IsPersistent="false"
 PrecisionRule="true"
 Type="java.lang.String"
 ColumnType="CHAR"
 AliasName="VIEW_ATTR"
 SQLType="VARCHAR"/>
 <ViewCriteria
 Name="findPersonByEmail"
 ViewObjectName="model.views.PersonVO"
 Conjunction="AND">
 ...
 <ViewCriteriaRow
 Name="PersonVOCriteria_row_0"
 UpperColumns="1">
 <ViewCriteriaItem
 Name="PersonVOCriteria_PersonVOCriteria_row_0_AddressVO"
 ViewAttribute="AddressVO"
 Operator="EXISTS"
 Conjunction="AND"
 IsNestedCriteria="true"
 Required="Optional">
 <ViewCriteria
 Name="AddressVONestedCriteria"
 ViewObjectName="model.views.AddressVO"
 Conjunction="AND">
 <ViewCriteriaRow
 Name="AddressVONestedCriteria_row_0"
 UpperColumns="1">
 <ViewCriteriaItem
 Name="AddressVONestedCriteria_row_0_EmailAddress"
 ViewAttribute="EmailAddress"
 Operator="="
 Conjunction="AND"
 Value=":EmailBindVar"
 IsBindVarValue="true"
 Required="Optional"/>
 </ViewCriteriaRow>
 </ViewCriteria>
 </ViewCriteriaItem>
 </ViewCriteriaRow>
 </ViewCriteria>
 ...
 <RowFinders>
 <AttrValueRowFinder
 Name="PersonByEmailFinder"
 FetchLimit="1">
 <ViewCriteriaUsage
 Name="findPersonByEmail"
 FullName="model.views.PersonVO.findPersonByEmail"/>
 <VarAttributeMap>
 <VariableAttributeMapping
 Variable="EmailBindVar"
 Attribute="TrEmailAddress"/>
 </VarAttributeMap>
 </AttrValueRowFinder>
 </RowFinders>
</ViewObject>

Chapter 6
Working with Multiple Tables in a Master-Detail Hierarchy

6-21

Working with a Single Table in a Recursive Master-Detail
Hierarchy

JDeveloper allows you to create a master-detail hierarchy based on a single view
object when the source and target attribute exist in one table.

A recursive data model is one that utilizes a query that names source and destination
attributes in a master-detail relationship based on a single table. In a typical master-
detail relationship, the source attribute is supplied by the primary key attribute of the
master view object and the destination attribute is supplied by foreign key attribute in
the detail view object. For example, a typical master-detail relationship might relate the
DepartmentId attribute on the DEPARTMENT table and the corresponding DepartmentId
attribute on the EMPLOYEE table. However, in a recursive data model, the source
attribute EmployeeId and the target attribute ManagerId both exist in the EMPLOYEE
table. The query for this relationship therefore involves only a single view object. In this
scenario, you create the view object for a single base entity object that specifies both
attributes and then you define a self-referential view link to configure this view object
as both the "source" and the "target" view object to form a master-detail hierarchy.

After you create the view link, there are two ways you can handle the recursive
master-detail hierarchy in the data model project. You can either:

• Create a data model that exposes two instances of the same view object, one
playing the role as master and the other playing the role as detail, actively
coordinated by a view link instance. This can be useful when you anticipate
needing to show a single level of master rows and detail rows at a time in two
separate tables.

• Create a data model that exposes only a single instance of the view object, and
use the view link accessor attribute in each row to access a row set of details.
This is the more typical use case of the two because it allows you to display (or
programmatically work with) the recursive master-detail hierarchy to any number
of levels that exist in the data. For example, to show the recursive hierarchy in a
tree or treeTable component, you would use this approach, as described in How
to Display Master-Detail Objects in Trees.

How to Create a Recursive Master-Detail Hierarchy for an Entity-
Based View Object

In a recursive master-detail hierarchy, the attributes of the view object that you select
for the source and destination in the view link will typically be the same pair of
attributes that define the self-referential association between the underlying entity
object, if this association exists. While this underlying association is not required to
create the view link, it does simplify the creation of the view link, so you will first create
a foreign key association for the base entity object of the view object.

To create the recursive master-detail hierarchy:

1. Create an self-referential view link using the base entity object of the view object.

2. Expose the view object with a view criteria that will filter the view instance's results
to include only those rows you want to see at the "root" of the hierarchy.

Chapter 6
Working with a Single Table in a Recursive Master-Detail Hierarchy

6-22

Creating an Association-Based, Self-Referential View Link
To create an association, you use the Create Association wizard. Then the association
will appear as a selection choice when you use the Create View Link wizard. The view
link will be self-referential because the association you select for the source and the
destination view object names the same entity object, which is derived from a single
database table.

Before you begin:

It may be helpful to have an understanding of the recursive data model. For more
information, see Working with a Single Table in a Recursive Master-Detail Hierarchy.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

• When you create the view link JDeveloper won't be able to infer the association
between the source and destination attributes of the entity object. To support
the recursive hierarchy, you can use the Create Association wizard to create an
association between the source attribute and the destination attribute. On the
Entity Objects page, select the same entity object to specify the source and
destination attributes and leave all other default selections unchanged in the
wizard. For details about creating an association, see Creating and Configuring
Associations.

For example, assume the recursive master-detail hierarchy displays a list of
employees based on their management hierarchy. In this scenario, you would
create the association based on the Employees entity object. On the Entity Objects
page of the Create Association wizard, you would select Employees.EmployeeId
as the source attribute and Employee.ManagerId as the destination attribute. The
entity object Employees supplies both attributes to ensure the association is self-
referential.

To create an association-based, self-referential view link:

1. In the Applications window, right-click the project in which you want to create the
view object and choose New.

To avoid having to type in the package name in the Create View Link wizard, you
can choose New and then View Link on the context menu of the links package
node in the Applications window.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then View Link, and click OK.

3. In the Create View Link wizard, on the Name page, supply a package and a
component name.

4. On the View Objects page, in the Select Source Attribute tree expand the source
view object in the desired package. In the Select Destination Attribute tree
expand the destination view object.

For entity-based view objects, notice that in addition to the view object attributes,
relevant associations also appear in the list.

5. Select the same association in both Source and Destination trees. Then click
Add to add the association to the table below.

Chapter 6
Working with a Single Table in a Recursive Master-Detail Hierarchy

6-23

For example, Figure 6-11 shows the same EmpManagersFkAssoc association in
both Source and Destination trees selected. The view link is self-referential
because the definition of the association names the source and destination
attribute on the same entity object (in this case, Employees).

Figure 6-11 Master and Detail Related by a Self-Referential Association
Selection

6. On the View Link Properties page, leave the default selections unchanged, but edit
the accessor name of the destination accessor to provide a meaningful name.

For example, Figure 6-12 shows the destination accessor has been renamed from
EmployeesView to StaffList. This name will be exposed in the binding editor
when the user interface developer populates the ADF Faces tree component by
selecting this accessor. The name you provide will make clear to the UI developer
the purpose of the accessor; in this case, to generate a list of employees
associated with each manager.

Chapter 6
Working with a Single Table in a Recursive Master-Detail Hierarchy

6-24

Figure 6-12 Renamed Destination Accessor in View LInk

7. Click Finish.

Exposing the View Instance and Filter with a View Criteria
When you are ready to expose the view object in your project's data model, you
will configure the view instance in the data model to use a view criteria to filter the
initial value in the root of the tree. For example, assume the recursive master-detail
hierarchy displays a list of employees based on their management hierarchy. In this
scenario, you'll configure the view criteria's bind variable to specify the employee ID of
the employee that you want to be the root value of the entire hierarchy. In this case,
the root value of the recursive hierarchy of managers and employees would be the
employee ID of the highest level manager in the organization.

Before you begin:

It may be helpful to have an understanding of the recursive data model. For more
information, see Working with a Single Table in a Recursive Master-Detail Hierarchy.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for View
Objects.

You will need to complete this task:

• Create the entity-based view object and create a view criteria that will filter the
view instance's results to include only those rows you want to see at the "root" of
the hierarchy. To create a view criteria that uses a bind variable to filter the view
object, see Working with Named View Criteria.

For example, in a recursive hierarchy of managers and employees, you would
create the entity-based view object EmployeesView. After you create the view
object in the Create View Object wizard, you can use the Query page of the
overview editor to create a bind variable and view criteria which allow you to
identify the employee or employees that will be seen at the top of the hierarchy.

Chapter 6
Working with a Single Table in a Recursive Master-Detail Hierarchy

6-25

If only a single employee should appear at the root of the hierarchy, then the
view criteria in this scenario will filter the employees using a bind variable for the
employee ID (corresponding to the source attribute) and the WHERE clause shown
in the Create View Criteria dialog would look like ((Employees.EMPLOYEE_ID
= :TheEmployeeId)) , where TheEmployeeId is the bind variable name. For more
information on creating a view criteria that uses a bind variable to filter the view
object, see Creating a Data Source View Object to Control the Cascading List.

To define the view object instance in an existing application module:

1. In the Applications window, double-click the application module for which you want
to define a new view instance.

2. In the overview editor, click the Data Model navigation tab.

3. In the Data Model page, expand the View Object Instances section and, in the
Available View Objects list, select the view object definition that you defined the
view criteria to filter.

The New View Instance field below the list shows the name that will be used to
identify the next instance of that view object that you add to the data model.

4. To change the name before adding it, enter a different name in the New View
Instance field.

5. With the desired view object selected, shuttle the view object to the Data Model
list.

Figure 6-13 shows the view object EmployeesView has been renamed to
Employees before it was shuttled to the Data Model list.

Figure 6-13 Data Model Displays Added View Object Instance

6. To filter the view object instance so that you specify the root value of the hierarchy,
select the view object instance you added and click Edit.

7. In the Edit View Instance dialog, shuttle the view criteria you created to the
Selected list and enter the bind parameter value that corresponds to the root
of the hierarchy.

Chapter 6
Working with a Single Table in a Recursive Master-Detail Hierarchy

6-26

Figure 6-14 shows the view object ByEmployeeId view criteria with the bind
parameter TheEmployeeId set to the value 100 corresponding to the employee
that is at the highest level of the hierarchy.

Figure 6-14 View Criteria Filters View Instance

8. Click OK.

What Happens When You Create a Recursive Master-Detail Hierarchy
When you create an self-referential view link, JDeveloper creates the XML document
file that represents its declarative settings and saves it in the directory that
corresponds to the name of its package. This XML file contains the declarative
information about the source and target attribute pairs that the association you
selected specifies and contains the declarative information about the association that
relates the source and target view object you selected.

The following example shows the EmpManagerFkLink defines the same view object
EmployeesView for the source and destination in its XML document file.

<ViewLink
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="EmpManagerFkLink"
 EntityAssociation="test.model.EmpManagerFkAssoc">
 <ViewLinkDefEnd
 Name="EmployeesView1"
 Cardinality="1"
 Owner="test.model.EmployeesView"
 Source="true">
 <DesignTime>
 <Attr Name="_finderName" Value="ManagerIdEmployeesView"/>
 <Attr Name="_isUpdateable" Value="true"/>
 </DesignTime>
 <AttrArray Name="Attributes">
 <Item Value="test.model.EmployeesView.EmployeeId"/>
 </AttrArray>

Chapter 6
Working with a Single Table in a Recursive Master-Detail Hierarchy

6-27

 </ViewLinkDefEnd>
 <ViewLinkDefEnd
 Name="EmployeesView2"
 Cardinality="-1"
 Owner="test.model.EmployeesView">
 <DesignTime>
 <Attr Name="_finderName" Value="StaffList"/>
 <Attr Name="_isUpdateable" Value="true"/>
 </DesignTime>
 <AttrArray Name="Attributes">
 <Item Value="test.model.EmployeesView.ManagerId"/>
 </AttrArray>
 </ViewLinkDefEnd>
</ViewLink>

In addition to saving the view link component definition itself, JDeveloper also updates
the XML definition of the view object to add information about the view link accessor
you've defined. As a confirmation of this, you can select the view object in the
Applications window and inspect its details in the Structure window. As shown in
Figure 6-15, you can see the defined accessor under the ViewLink Accessors node
for the EmployeesView view object of the EmpManagerFkLink view link.

Figure 6-15 View Object with View Link Accessor in the Structure Window

Working with Master-Detail Related View Objects in View
Criteria

The ADF Business Components framework allows you to apply view criteria filters on
master view objects using attributes of detail view objects.

View criteria provide a declarative way to define view object query filters that apply to
the view object's own query. In certain cases you may need to filter the master view
object using attributes of the detail view object. View criteria that involve master and
detail view objects rely on the EXISTS operator and an inline view criteria to define the
query filter. The EXISTS operator allows the inline view criteria to reference a detail
view object and apply attributes that you select as criteria items. For example, a view
criteria used in combination with a row finder can filter the master row set and locate
specific rows in the row set using view criteria items from the detail view object.

Chapter 6
Working with Master-Detail Related View Objects in View Criteria

6-28

You use the View Criteria page of the view object overview editor to define the view
criteria on the master view object. For example, a view criteria findPersonByEmail
that filters the rows in the master PersonVO using the EmailAddress attribute of the
detail AddressVO might look similar to the one shown in the following example. In this
example, the view criteria statement uses a bind variable EmailBindVar to obtain the
value of the email attribute on the detail view object AddressVO at runtime.

((EXISTS(SELECT 1 FROM ADDRESS AddressEONQ1 WHERE
 (UPPER(AddressEONQ1.EMAIL_ADDRESS LIKE UPPER (:EmailBindVar || '%')))
 AND
 (PersonEO.PERSON_ID = AddressEONQ1.PERSON_ID))))

Before you begin:

It may be helpful to have an understanding of the row finder that operates on a master
view object. See How to Find Rows of a Master View Object Using Row Finders.

It may be helpful to have an understanding of view criteria. See Working with Named
View Criteria.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. See Additional Functionality for View Objects.

You will need to complete this task:

Create the desired master-detail view objects, as described in How to Create a
Master-Detail Hierarchy Based on Entity Associations or How to Create a Master-
Detail Hierarchy Based on View Objects Alone.

To create an inline view criteria:

1. In the Applications window, double-click the master view object for which you want
to customize with a new inline view criteria.

The view object that you create the inline view criteria on must be a master view
object in a master-detail hierarchy.

2. In the overview editor, click the View Criteria navigation tab and click the Create
New View Criteria button.

3. In the Create View Criteria dialog, enter the name of the view criteria to identify its
usage in your application.

For example, to filter the person row set by an employee's email, you might specify
a view criteria name like findPersonByEmail.

4. In the Query Execution Mode dropdown list, leave the default Database
selected.

The default mode allows the view criteria to filter the database table specified by
the view object query.

5. In the Criteria Definition tab, click Add Item to define the view criteria.

6. In the view criteria hierarchy, select the unassigned view criteria item node
beneath Group and, in the Criteria Item section, select the Attribute dropdown
and select the detail view object from the list.

When a view link exists for the current view object you are editing, you may
select a detail view object to create a view criteria with a nested view criteria
inline. The detail view object name will appear in the Attribute dropdown list. For
example, PersonVO is linked to the AddressVO and a view criteria definition for

Chapter 6
Working with Master-Detail Related View Objects in View Criteria

6-29

findPersonByEmail filters the master view object PersonVO by attributes of the
detail view object AddressVO, as shown in Figure 6-16.

Figure 6-16 Edit View Criteria Dialog with Inline View Criteria Specified

7. Leave the default Operator and Operand selections unchanged.

When you create an inline view criteria with a view object criteria item, the editor
specifies the Exists operator and Inline View Criteria operand as the default
choices. At runtime, the EXISTS operator tests for the presence of the attribute
value in the detail view object and filter the rows in the master view object, as
described in Working with Master-Detail Related View Objects in View Criteria.

8. In the view criteria hierarchy, select the new view criteria item node beneath
Group and, in the Criteria Item section, enter the following:

• In the Attribute dropdown, select the attribute from the detail view object that
you want to filter by.

The detail attribute is the attribute that will be used to filter the master view
object. The value of this attribute can be supplied by the end user when a bind
variable is defined for the criteria item.

• In the Operator dropdown, select the desired filter operator.

• In the Operand dropdown, select Bind Variable to specify the name of the
bind variable for the detail attribute. If the variable was already defined for the
view criteria, select it from the Parameter dropdown list. Otherwise, click New
to display the New Variable dialog that lets you name a new bind variable on
the view criteria.

Note: When you select an existing bind variable from the dropdown list for use
by the view criteria, do not select a bind variable that has been defined for
the view object query (these will appear on the Query page of the overview
editor). Select only bind variables that you define in the View Criteria page of
the overview editor.

Chapter 6
Working with Master-Detail Related View Objects in View Criteria

6-30

9. To disable case-sensitive filtering of the attribute based on the case of the runtime-
supplied value, leave Ignore Case selected.

This option is supported for attributes of type String only. The default disables case
sensitive searches.

10. In the Validation dropdown list, leave the default Optional selected.

Optional means the view criteria (or search field) is added to the WHERE clause
only if the value is non-NULL. The default Optional for each new view criteria
item means no exception will be generated for null values. For example, a
findPersonByEmail view criteria definition filters the master view object PersonVO
by the Email attribute of the detail view object AddressVO, and the value may be
null, as shown in Figure 6-17.

Figure 6-17 Edit View Criteria Dialog with Bind Variable Criteria Item
Specified

11. Click OK.

12. In the View Criteria page of the overview editor, select the bind variable and in the
Details section, leave the default settings unchanged:

• Leave Literal selected but do not supply a default value. The value will be
obtained from the end user at runtime.

• Leave Updatable selected to allow the bind variable value to be defined
through the user interface.

13. In the View Criteria page, click the UI Hints tab and specify hints like Label,
Format Type, Format mask, and others.

The view layer will use bind variable UI hints when you build user interfaces like
search pages that allow the user to enter values for the named bind variables.

Chapter 6
Working with Master-Detail Related View Objects in View Criteria

6-31

Note that formats are only supported for bind variables defined by the Date type or
any numeric data type.

Chapter 6
Working with Master-Detail Related View Objects in View Criteria

6-32

7
Defining Polymorphic View Objects

This chapter describes how to use inheritance in ADF Business Components to
create an ADF view object that exposes multiple view row types in an Oracle
ADF application. As an alternative to working with entity object inheritance, this
chapter also describes how to define a view object inheritance hierarchy to generate
heterogeneous view rows.
This chapter includes the following sections:

• About Polymorphic View Objects

• Working with Polymorphic Entity Usages

• Working with Polymorphic View Rows

• What You May Need to Know About the Discriminator Attribute

• Updating the Application Module to Expose Subtype Usages

About Polymorphic View Objects
ADF Business Components allows you to work with polymorphic view objects that
are based on entity objects with inherited attributes from an inheritance hierarchy. A
polymorphic view object has a heterogeneous row set.

The view object lets you create a table represented by its base entity object.
Typically, when you create the entity-based view object, you create it to work with
entity rows of a single type like Domestics, which perhaps include specific attributes
that pertain to domestic customers. At other times you may want to query and
update rows based on an entity object inheritance hierarchy in the same row set.
For example, in the same row set, you might work with attributes that are common
to the inheritance hierarchy of Customers, Domestics, and Internationals entity
objects, where Domestics and Internationals are subtype entity objects of the parent
Customers entity object. Such a view object is called a polymorphic view object. For
a client to properly use the polymorphic view object, the view object must know which
entity object to delegate to for each row in its heterogeneous row set. To identify the
row type, the polymorphic view object relies on a discriminator attribute to identify each
row's corresponding table.

ADF Business Component supports these types of polymorphism:

• The entity object defines polymorphic subtypes, but the view object does not.

This is useful when the backend business logic needs to be aware of the different
types but the presentation layer needs to treat view instances as a single type. In
this case, the view instance will contain the common set of attributes defined by
the entity subtypes.

• Both the entity object and the view object usages define polymorphic subtypes.

In this case, both the backend business logic and the presentation layer need to
distinguish between the various subtypes.

7-1

• The entity object does not define polymorphic subtypes, but the view object
usages do define polymorphic subtypes.

In this case, the presentation layer needs to distinguish between the view
subtypes, but the backend business logic is not unique.

When you create polymorphic view object based on inheritance of entity subtypes, the
various entity subtypes are not exposed to the client. As far as the client is concerned,
every row in the view object's result set has the same set of attributes and the same
row type. This is accomplished because ADF Business Components ensures that the
correct entity object row subtype is created based on the value of the discriminator
attribute. In other words, with a polymorphic entity usage, only the entity row parts of a
view row can change type, while the view row type is constant.

Whereas, when you create polymorphic view object based on the inheritance defined
by a view object hierarchy (not entity subtypes), you configure the application module
to allow one or more view row subtypes in the result. Only polymorphic view rows
produce different subtypes of client-visible view row types. And, unlike view objects
derived from polymorphic entity usages, only polymorphic view rows allow you to
expose view row subtypes to the client with additional attributes.

Note:

To experiment with the examples that demonstrate the concept in this
chapter, use the SummitADF_Examples workspace, as described in Running
the Standalone Samples from the SummitADF_Examples Workspace. For
information about how to obtain and install the Summit ADF standalone
sample applications, see Setting Up the Summit Sample Applications for
Oracle ADF.

Polymorphic Entity Usages and Polymorphic View Rows Usages
You can work with either type of polymorphism, or you can combine the two.

While often even more useful when used together, the view row polymorphism and
the polymorphic entity usage features are distinct and can be used separately. In
particular, the view row polymorphism feature can be used for read-only view objects,
as well as for entity-based view objects. When you combine both mechanisms, you
can have both the entity row part being polymorphic, as well as the view row type.

Note to use view row polymorphism with either view objects or entity objects, you must
configure the discriminator attribute property separately for each. This is necessary
because read-only view objects contain no related entity usages from which to infer
the discriminator information.

A limitation exists when defining polymorphic view objects that requires view objects
with discriminator attributes to be defined no more than one level deep. Your project
may define a polymorphic view object with discriminator attributes to specify the row
subtypes, but using another view object to specify further subrows based on the
first polymorphic view object will cause the display of subrows to fail. When creating
polymorphic view objects, limit the discriminator attribute definition to one level.

In summary, to create a view object with a polymorphic entity usage:

Chapter 7
About Polymorphic View Objects

7-2

1. Configure an attribute to be the discriminator at the entity object level in the root
entity object in an inheritance hierarchy.

2. Define a hierarchy of inherited entity objects, each of which overrides and
provides a distinct value for the Subtype Value property of that entity object level
discriminator attribute.

3. List the subclassed entity objects in a view object's list of subtypes.

4. Update the application module to expose the entity-based subtype view objects in
this hierarchy in the application module's list of subtypes.

Whereas, to work with view row polymorphism:

1. Configure an attribute to be the discriminator at the view object level in the base
view object in an inheritance hierarchy.

2. Define a hierarchy of inherited view objects each of which provides a distinct value
for the Subtype Value property of that discriminator attribute at the view object
level (identified as DefaultValue for the attribute in the view object definition file).

3. Update the application module to expose the subclassed view objects in this
hierarchy in the application module's list of subtypes.

Working with Polymorphic Entity Usages
You can use an ADF view object with a polymorphic entity usage to create a
heterogeneous row set based on a base entity object and its subtypes as well.

A polymorphic entity usage is one that references a base entity object in an
inheritance hierarchy and is configured to handle subtypes of that entity as well.
Figure 7-1 shows the results of using a view object with a polymorphic entity usage.
The entity-based CustomerList view object has the Customers entity object as its
primary entity usage. The view object partitions each row retrieved from the database
into an entity row with attributes specific to the various subtypes of Customers. It
creates the appropriate entity row subtype based on consulting the value of the
discriminator attribute. For example, if the CustomerList query retrieves one row
for domestic company ABC Company and one row for international company Simms
Athletics, the underlying entity rows would be as shown in the figure.

Figure 7-1 View Object with a Polymorphic Entity Usage Handles Entity
Subtypes

Chapter 7
Working with Polymorphic Entity Usages

7-3

Note:

The example in this section refers to the oracle.summit.model.polymorphic
package in the SummitADF_Examples application workspace.

How to Create a Subtype View Object with a Polymorphic Entity
Usage

The view object that you create with a polymorphic entity usage may inherit one or
more of the attributes of the base entity object and the entity subtypes. Attributes
that you select from the entity objects will be overridden by the view object attribute
definitions. When an entity-based view object references an entity object with a
discriminator attribute, then Oracle ADF enforces that the discriminator attribute is
included in the query (in addition to the primary key attribute).

Before you begin:

It may be helpful to have an understanding of polymorphic view objects (also called in
this section, subtype view objects). For more information, see About Polymorphic View
Objects.

You will need to complete these tasks:

1. Create the base entity object and entity subtypes upon which the view objects will
be based. For details about creating base entity objects and entity subtypes, see
How to Create Entity Objects in an Inheritance Hierarchy.

2. Create an entity-based view object from the base entity object and select the
attributes that are common to the subtype view objects. The base view object
must contain the superset of attributes represented by each subtype view object.
For details about creating an entity-based view object, see How to Create an
Entity-Based View Object.

3. In the base view object that you create, select the entity subtype corresponding to
each subtype view object that you will create. JDeveloper limits the subtype view
objects that you may create to the polymorphic entity usage selections you make.

To select entity subtypes in the base view object:

a. Open the base view object in the overview editor and click the Entity Objects
navigation tab.

b. In the Entity Objects page, click Subtypes and in the Select Subtypes dialog,
add the entity subtypes to the Selected list.

For example, as Figure 7-2 shows, the entity subtype Domestics and
Internationals have been selected to anticipate creating subtype view objects
for each.

Chapter 7
Working with Polymorphic Entity Usages

7-4

Figure 7-2 Entity Subtypes Define Possible Subtype View Objects

To create a subtype view object with a polymorphic entity usage:

1. In the Applications window, right-click your data model project and choose New
and then View Object.

2. In the Create View Object wizard, name the subtype view object and then next to
the Extends field, click Browse.

For example, you might name the subtype view object DomesticList or
InternationalList when the subtype view object extends a base view object
CustomerList. In this case, the data model project would define a base Customers
entity object in order to support the creation of subtype view objects with
polymorphic entity usages for the Domestics and Internationals subtype entity
objects.

3. In the Select Parent dialog, select the entity-based view object that you wish to
extend and click OK.

The view object you select is the base view object which defines the superset
of attributes and is the view object that the subtype view object extends. For
example, you select the base view object CustomerList to extend when you want
to create the subtype view object DomesticList, as shown in Figure 7-3.

Chapter 7
Working with Polymorphic Entity Usages

7-5

Figure 7-3 Subtype View Object Extends Base View Object

4. In the Create View Object wizard, make sure that Entity is selected as the data
source and click Next.

5. In the Entity Objects page, in the Available list, locate the entity subtype that you
want to define as the polymorphic entity usage for the subtype view object and
click Add.

The list of available entity subtypes is defined in the inheritance hierarchy of
the base entity object, as explained in the prerequisites for this procedure. For
example, when you create the subtype view object DomesticList for the base
view object CustomerList, you would add Domestics as the entity subtype from
the Available list, as shown in Figure 7-4.

Chapter 7
Working with Polymorphic Entity Usages

7-6

Figure 7-4 Subtype View Object with a Polymorphic Entity Usage Selection

6. In the Business Components dialog, click Yes to override the entity usage for your
subtype view object with the desired polymorphic entity usage.

The Business Components dialog warns you that you will override the attributes of
the base entity usage with the entity subtype, as shown in Figure 7-5.

Note that clicking No in the dialog will add an additional usage without overriding
the attributes of the base entity usage. Normally, you click Yes to override the
base entity usage with the desired entity subtype.

Figure 7-5 Polymorphic Entity Usage Overrides Subtype View Object

Chapter 7
Working with Polymorphic Entity Usages

7-7

7. In the Selected list, select the overridden entity usage and click Subtypes.

8. In the Select Subtypes dialog, use the shuttle buttons to leave only the desired
polymorphic entity subtype in the Selected list and click OK.

The Select Subtypes dialog lets you specify the entity subtype to be referenced by
the usages you have defined in the Entity Objects page of the Create View Object
wizard. The list of available entity subtypes is defined by the base view object, as
explained in the prerequisites for this procedure. Normally, you will pick the same
entity subtype as the one you choose to override (as shown in Figure 7-5).

For example, when you create the subtype view object DomesticList, you would
select Domestics as the single entity subtype of the base entity object Customers
(and deselect Internationals from the Selected list), as shown in Figure 7-6.

Figure 7-6 Subtype View Object with a Single Polymorphic Entity Usage
Applied

9. In the Create View Object wizard, in the Entity Objects page, click Next and on the
Attributes page of the wizard, shuttle the desired attributes from the entity subtype
to the Selected list.

For example, for the DomesticList view object you would select the State
attribute from the entity subtype Domestics, as shown in Figure 7-7.

Chapter 7
Working with Polymorphic Entity Usages

7-8

Figure 7-7 View Object with a Entity Subtype Attribute Addition

10. In the Attributes page, remove the primary key attribute so the extended view
object defines a single primary key attribute and then select the discriminator
attribute and click Override and click Next.

For example, for the DomesticList view object you would remove the CountryId
attribute from the subtype view object's selected list and override the CountryId
attribute, as shown in Figure 7-8.

Figure 7-8 View Object with the Overridden Discriminator Attribute

11. In the Attributes Settings page, select the discriminator attribute from the
dropdown and enter the Default Value that defines the subtype and click Finish to
complete the wizard.

Chapter 7
Working with Polymorphic Entity Usages

7-9

For example, for the DomesticList view object you would enter DOMESTIC, as
shown in Figure 7-9.

Figure 7-9 View Object with the Overridden Discriminator Attribute

12. Repeat this procedure to create additional subtype view objects with unique
polymorphic entity usages.

For example, the InternationalList view object is a second subtype
that extends CustomerList. It supplies the value INTERNATIONAL for the
CustomerTypeCode discriminator attribute.

After creating the subtype view object, you must define the list of subtypes that
participate in the view object polymorphism, as described in Updating the Application
Module to Expose Subtype Usages. For example, the CustomersModule application
module with view instance CustomerList1 must be configured to name the subtype
view objects DomesticList and InternationalList.

What Happens When You Create a Subtype View Object with a
Polymorphic Entity Usage

The Entity Objects page of the overview editor identifies the selected entity object with
the entity usage override. For example, the overview editor for the DomesticList view
object identifies the overridden entity usage Customers (Domestics): overridden
with the overriding subtype in parenthesis, as shown in Figure 7-10.

Chapter 7
Working with Polymorphic Entity Usages

7-10

Figure 7-10 View Object Editor Shows Entity Usage is Overridden

When you create an entity-based view object with a polymorphic entity usage,
JDeveloper adds information about the allowed entity subtypes to the base view
object's XML document. For example, when creating the CustomerList view object,
the names of the allowed subtype entity objects are recorded in an <AttrArray> tag.
The XML property DiscrColumn identifies CountryTypeCode as the base view object's
polymorphic discriminator attribute like this:

<ViewObject Name="CustomerList" ... >
 <EntityUsage
 Name="Customers"
 Entity="oracle.summit.model.polymorphics.entities.Customers" >
 </EntityUsage>
 <AttrArray Name="EntityImports">
 <Item Value="oracle.summit.model.polymorphic.entities.Domestics" />
 <Item Value="oracle.summit.model.polymorphic.entities.Internationals" />
 </AttrArray>
...
 <ViewAttribute
 Name="CountryTypeCode"
 PrecisionRule="true"
 EntityAttrName="CountryTypeCode"
 EntityUsage="Customers"
 AliasName="COUNTRY_TYPE_CODE"
 DiscrColumn="true">
 </ViewAttribute>
 ...
</ViewObject>

Then, when you create a subtype view object with a polymorphic entity usage,
JDeveloper adds information about the base view object to the subtype view object's
XML document. For example, The following example shows the DomesticList subtype
view object with the name of the base view object recorded in the Extends property.
The XML property DiscrColumn identifies the overridden CountryTypeCode attribute as
the polymorphic discriminator attribute, with a subtype value of DOMESTIC. Only the
additional attribute State, specific to the subtype view object, appears in the XML
document.

<ViewObject
 Name="DomesticList"

Chapter 7
Working with Polymorphic Entity Usages

7-11

 Extends="oracle.summit.model.polymorphic.views.CustomerList"
 ...>
 <EntityUsage
 Name="Customers"
 Entity="oracle.summit.model.polymorphic.entities.Domestics"/>
 <AttrArray Name="EntityImports">
 <Item Value="oracle.summit.model.polymorphicsample.Domestics"/>
 </AttrArray>
 <ViewAttribute
 Name="CountryTypeCode"
 PrecisionRule="true"
 DiscrColumn="true"
 EntityAttrName="CountryTypeCode"
 EntityUsage="Customers"
 AliasName="COUNTRY_TYPE_CODE"
 DefaultValue="DOMESTIC">
 <DesignTime>
 <Attr Name="_OverrideAttr" Value="true"/>
 </DesignTime>
 </ViewAttribute>
 <ViewAttribute
 Name="State"
 PrecisionRule="true"
 EntityAttrName="State"
 EntityUsage="Customers"
 AliasName="STATE"/>
</ViewObject>

Similarly, the XML document for the InternationalList subtype view object names
the same CustomerList base view object in the Extends property of its XML
document, but defines the polymorphic discriminator attribute with a subtype value
of INTERNATIONAL and the additional attribute Language specific to its subtype like this:

<ViewObject
 Name="InternationalList"
 Extends="oracle.summit.model.polymorphic.views.CustomerList"
 ... >
 <EntityUsage
 Name="Customers"
 Entity="oracle.summit.model.polymorphic.entities.Internationals"/>
 <AttrArray Name="EntityImports">
 <Item Value="oracle.summit.model.polymorphicsample.Internationals"/>
 </AttrArray>
 <ViewAttribute
 Name="CountryTypeCode"
 PrecisionRule="true"
 DiscrColumn="true"
 EntityAttrName="CountryTypeCode"
 EntityUsage="Customers"
 AliasName="COUNTRY_TYPE_CODE"
 DefaultValue="INTERNATIONAL">
 <DesignTime>
 <Attr Name="_OverrideAttr" Value="true"/>
 </DesignTime>
 </ViewAttribute>
 <ViewAttribute
 Name="Language"
 PrecisionRule="true"
 EntityAttrName="Language"
 EntityUsage="Customers"

Chapter 7
Working with Polymorphic Entity Usages

7-12

 AliasName="LANGUAGE"/>
</ViewObject>

Note the <AttrArray> tag in the subtype view object definition identifies the allowed
entity object for each subtype. Each subtype view object should therefore name a
single subtype entity object. If the <AttrArray> tag of a subtype view object definition
names more than one entity object, you may remove the unused one. This situation
arises when using the Create View Object wizard to create the subtype view object but
not reducing the list of default subtype entity objects in the Select Subtypes dialog, as
shown in Figure 7-6. By default the dialog makes all subtype entity objects selected.

What You May Need to Know About Polymorphic Entity Usages
When you derive view objects from polymorphic entity usages, you will want to follow
these best practices to allow the discriminator attribute to filter the query to only
contain the expected subtypes.

Your Query Must Limit Rows to Expected Entity Subtypes
If your view object expects to work with only a subset of the available entity subtypes
in a hierarchy, you need to include an appropriate WHERE clause that limits the query
to only return rows whose discriminator column matches the expected entity type.
You should not rely solely on the discriminator attribute to perform subtype filtering
in the query. Without the addition of attributes to limit the query, the view object will
effectively query all rows and cause the client to discard rows that do not match any
discriminator values.

Exposing Selected Entity Methods in View Rows Using Delegation
By design, clients do not work directly with entity objects. Instead, they work indirectly
with entity objects through the view rows of an appropriate view object that presents
a relevant set of information related to the task as hand. Just as a view object can
expose a particular set of the underlying attributes of one or more entity objects related
to the task at hand, it can also expose a selected set of methods from those entities.
You accomplish this by enabling a custom view row Java class and writing a method in
the view row class that:

• Accesses the appropriate underlying entity row using the generated entity
accessor in the view row, and

• Invokes a method on it

For example, assume that the Customers entity object contains a
performCustomerFeature() method in its CustomersImpl class. To expose this
method to clients on the CustomerList view row, you can enable a custom view row
Java class and write the method, as shown in the following example.

// In CustomerListRowImpl.java
public void performCustomerFeature() {
 getTheCustomer().performCustomerFeature();
}

JDeveloper generates an entity accessor method in the view row class for each
participating entity usage based on the entity usage alias name. Since the alias for
the Customers entity in the CustomerList view object is "TheCustomer", it generates a
getTheCustomer() method to return the entity row part related to that entity usage.

Chapter 7
Working with Polymorphic Entity Usages

7-13

The code in the view row's performCustomerFeature() method uses this
getTheCustomer() method to access the underlying CustomersImpl entity row class
and then invokes its performCustomerFeature() method. This style of coding is
known as delegation, where a view row method delegates the implementation of
one of its methods to a corresponding method on an underlying entity object. When
delegation is used in a view row with a polymorphic entity usage, the delegated
method call is handled by appropriate underlying entity row subtype. This means that
if the CustomersImpl, DomesticsImpl, and InternationalsImpl classes implement the
performCustomerFeature() method in a different way, the appropriate implementation
is used depending on the entity subtype for the current row.

After exposing this method on the client row interface, client programs can use
the custom row interface to invoke custom business functionality on a particular
view row. The following example shows the interesting lines of code from a
TestEntityPolymorphism class. It iterates over all the rows in the CustomerList view
object instance, casts each one to the custom CustomerListRow interface, and invokes
the performCustomerFeature() method.

CustomerList customerlist = (CustomerList)am.findViewObject("CustomerList");
customerlist.executeQuery();
while (customerlist.hasNext()) {
 CustomerListRow customer = (CustomerListRow)customerlist.next();
 System.out.print(customer.getEmail()+"->");
 customer.performCustomerFeature();
}

Running the client code in the previous example produces the following output:

austin->## performCustomerFeature as Domestics
hbaer->## performCustomerFeature as Internationals
:
sking->## performCustomerFeature as Domestic
:

Rows related to Customers entities display a message confirming that the
performCustomerFeature() method in the CustomersImpl class was used. Rows
related to Domestics and Internationals entities display a different message,
highlighting the different implementations that the respective DomesticsImpl and
InternationalsImpl classes have for the inherited performCustomerFeature()
method.

Creating New Rows With the Desired Entity Subtype
In a view object with a polymorphic entity usage, when you create a new view row it
contains a new entity row part whose type matches the base entity usage. To create
a new view row with one of the entity subtypes instead, use the createAndInitRow()
method.

The following example shows two custom methods in the CustomerList view
object's Java class that use createAndInitRow() to allow a client to create new
rows having entity rows either of Domestics or Internationals subtypes. To use
the createAndInitRow(), as shown in the example, create an instance of the
NameValuePairs object and set it to have an appropriate value for the discriminator
attribute. Then, pass that NameValuePairs to the createAndInitRow() method to
create a new view row with the appropriate entity row subtype, based on the value
of the discriminator attribute you passed in.

Chapter 7
Working with Polymorphic Entity Usages

7-14

// In CustomerListImpl.java
public CustomerListRow createCustomersRow() {
 NameValuePairs nvp = new NameValuePairs();
 nvp.setAttribute("CustomerTypeCode","DOMESTIC");
 return (CustomerListRow)createAndInitRow(nvp);
}
public CustomerListRow createInternationalsRow() {
 NameValuePairs nvp = new NameValuePairs();
 nvp.setAttribute("CustomerTypeCode","INTERNATIONAL");
 return (CusotmersListRow)createAndInitRow(nvp);
}

If you expose methods like this on the view object's custom interface, then
at runtime, a client can call them to create new view rows with appropriate
entity subtypes. The following example shows the interesting lines relevant to this
functionality from a TestEntityPolymorphism class. First, it uses the createRow(),
createDomesticsRow(), and createInternationalsRow() methods to create three
new view rows. Then, it invokes the performCustomerFeature() method from the
CustomerListRow custom interface on each of the new rows.

// In TestEntityPolymorphism.java
CustomerListRow newCustomer = (CustomerListRow)CustomerList.createRow();
CustomerListRow newDomestic = Customerlist.createDomesticsRow();
CustomerListRow newInternational = Customerlist.createInternationalsRow();
newCustomer.performCustomerFeature();
newDomestic.performCustomerFeature();
newInternational.performCustomerFeature();

As expected, each row handles the method in a way that is specific to the subtype of
entity row related to it, producing the results:

performCustomerFeature as Customer
performCustomerFeature as Domestic
performCustomerFeature as International

Working with Polymorphic View Rows
ADF Business Components allows you to configure a view object to have polymorphic
view rows. This allows the client to access different view row types with specific view
row interfaces.

In the example shown in Working with Polymorphic Entity Usages, the polymorphism
occurs "behind the scenes" at the entity object level. Since the client code works with
all view rows using the same CustomerListRow interface, it cannot distinguish between
rows based on a Domestics entity object from those based on a Customers entity
object. The code works with all view rows using the same set of view row attributes
and methods common to all types of underlying entity subtypes.

If you configure a view object to support polymorphic view rows, then the client can
work with different types of view rows using a view row interface specific to the type
of row it is. By doing this, the client can access view attributes or invoke view row
methods that are specific to a given subtype as needed. Figure 7-11 illustrates the
hierarchy of view objects that enables this feature for the CustomerList example
considered above. DomesticList and InternationalList are child view objects that
extend the base (or parent) CustomerList view object. Notice that each one includes
an additional attribute specific to the subtype of Customers they have as their entity
usage. DomesticList includes an additional State attribute, while InternationalList
excludes the State attribute and includes the Language attribute. When configured for

Chapter 7
Working with Polymorphic View Rows

7-15

view row polymorphism, a client can work with the results of the CustomerList view
object using:

• CustomerListRow interface for view rows related to customers

• DomesticListRow interface for view rows related to domestic customers

• InternationalListRow interface for view rows related to international customers

As you'll see, this allows the client to access the additional attributes and view row
methods that are specific to a given subtype of view row.

Figure 7-11 Hierarchy of View Object Subtypes Enables View Row
Polymorphism

Note:

The example in this section refers to the
oracle.summit.model.polymorphicvo package in the SummitADF_Examples
application workspace.

How to Create a View Object with Polymorphic View Rows
The view object that you create with polymorphic view rows may inherit one or more of
the attributes from a hierarchy of view objects, each with their own base entity object.
Attributes that you select from the extended view objects will be overridden by the
polymorphic view row definitions in the parent view object.

To create a view object with polymorphic view rows:

1. In the Application Navigator, double-click the view object that you want to be the
base view object in the inheritance hierarchy.

For example, the CustomerList view object is the base for DomesticList view
object.

Chapter 7
Working with Polymorphic View Rows

7-16

2. In the overview editor for the view object, click the Attributes navigation tab and
select the discriminator attribute that distinguishes which view row interface to use
for the view row, and then click the Edit selected attribute(s) button.

For example, the CustomerTypeCode is the discriminator attribute for
CustomerList.

3. In the Edit Attribute dialog, select the Discriminator checkbox, enter a Default
Value, and click OK.

You must supply a value for the Default Value field that matches the attribute
value for which you expect the base view object's view row interface to be
used. For example, in the CustomerList view object, you would mark the
CustomerTypeCode attribute as the discriminator attribute and supply a default
value of CUSTOMER.

4. In the overview editor for the view object, in the Attributes page, delete all
attributes that are specific to the subtype view object.

For example, the attribute States would be removed from the base view object
since it is used exclusively by the DomesticList subtype view object.

5. In the overview editor, click the Java navigation tab, and enable a custom view
row class for the base view object, and expose at least one method on the client
row interface. This can be one or all of the view row attribute accessor methods,
as well as any custom view row methods.

6. Create the subtype new view object that extends the base view object:

a. In the Application Navigator, right-click the base view object and choose
New Extended Object, and in the Create Extended Object dialog, name the
subtype view object.

In this example, the CustomerList view object is the base and the subtype
view object is named DomesticList.

b. In the overview editor for the subtype view object, click the Attributes
navigation tab and choose Add Attribute From Entity from the Add button
dropdown, and then, in the Attributes dialog, add the attributes that are
specific to the subtype view object and click OK.

In this example, the subtype DomesticList defines the additional attribute
State.

c. In the Attributes page of the overview editor, select the discriminator attribute
for the view row, and click Override and then click the Edit selected
attribute(s) button.

d. In the Edit Attribute dialog, give the discriminator attribute a distinct Default
Value to define the subtype of the extended view object and click OK.

For example, the DomesticList view object provides the value DOMESTIC for
the CustomerTypeCode discriminator attribute.

e. In the overview editor, click the Java navigation tab, and enable a custom view
row class for the extended view object.

If appropriate, add additional custom view row methods or override custom
view row methods inherited from the parent view object's row class.

f. Repeat to add additional extended view objects as needed.

Chapter 7
Working with Polymorphic View Rows

7-17

For example, the InternationalList view object is a second one that extends
CustomerList. It supplies the value INTERNATIONAL for the CustomerTypeCode
discriminator attribute.

After setting up the view object hierarchy, you must define the list of view object
subtypes that participate in the view row polymorphism, as described in Updating the
Application Module to Expose Subtype Usages. For example, the CustomersModule
application module with view instance CustomerList1 must be configured to name the
subtype view objects DomesticList and InternationalList.

What Happens When You Create a View Object With Polymorphic
View Rows

When you create the base view object that you use to define child view objects with
polymorphic view row definitions, JDeveloper adds information about the discriminator
attribute to the base view object's XML document. For example, when creating the
CustomerList view object, the XML property DiscrColumn identifies CountryTypeCode
as the base view object's polymorphic discriminator attribute, with a subtype value of
CUSTOMER like this:

<ViewObject
 Name="CustomerList" ... >
 <EntityUsage
 Name="Customers"
 Entity="oracle.summit.model.polymorphics.entities.Customers" >
 </EntityUsage>
...
 <ViewAttribute
 Name="CountryTypeCode"
 PrecisionRule="true"
 EntityAttrName="CountryTypeCode"
 EntityUsage="Customers"
 AliasName="COUNTRY_TYPE_CODE"
 DiscrColumn="true"
 DefaultValue="CUSTOMER">
 </ViewAttribute>
 ...
</ViewObject>

Then, when you create a child view object with a polymorphic view row definition,
JDeveloper adds information about the view row definition to the child view object's
XML document. For example, The following example shows the DomesticList child
view object with the name of the base view object recorded in the Extends property.
The XML property DiscrColumn identifies the overridden CountryTypeCode attribute as
the polymorphic discriminator attribute, with a subtype value of DOMESTIC. Only the
additional attribute State, specific to the subtype, appears in the XML document of the
child view object.

<ViewObject
 Name="DomesticList"
 Extends="oracle.summit.model.polymorphic.views.CustomerList"
 ...>
 <ViewAttribute
 Name="CountryTypeCode"
 PrecisionRule="true"
 DiscrColumn="true"
 EntityAttrName="CountryTypeCode"

Chapter 7
Working with Polymorphic View Rows

7-18

 EntityUsage="Customers"
 AliasName="COUNTRY_TYPE_CODE"
 DefaultValue="DOMESTIC">
 <DesignTime>
 <Attr Name="_OverrideAttr" Value="true"/>
 </DesignTime>
 </ViewAttribute>
 <ViewAttribute
 Name="State"
 PrecisionRule="true"
 EntityAttrName="State"
 EntityUsage="Customers"
 AliasName="STATE"/>
</ViewObject>

Similarly, the XML document for the InternationalList child view object names the
same base view object in the Extends property of its XML document, but defines the
polymorphic discriminator attribute with a subtype value of INTERNATIONAL and the
additional attribute Language specific to its subtype like this:

<ViewObject
 Name="InternationalList"
 Extends="oracle.summit.model.polymorphic.views.CustomerList"
 ... >
 <ViewAttribute
 Name="CountryTypeCode"
 PrecisionRule="true"
 DiscrColumn="true"
 EntityAttrName="CountryTypeCode"
 EntityUsage="Customers"
 AliasName="COUNTRY_TYPE_CODE"
 DefaultValue="INTERNATIONAL">
 <DesignTime>
 <Attr Name="_OverrideAttr" Value="true"/>
 </DesignTime>
 </ViewAttribute>
 <ViewAttribute
 Name="Language"
 PrecisionRule="true"
 EntityAttrName="Language"
 EntityUsage="Customers"
 AliasName="LANGUAGE"/>
</ViewObject>

Note that unlike the polymorphic entity usage example described in What Happens
When You Create a Subtype View Object with a Polymorphic Entity Usage, view
instances with polymorphic view rows use inheritance and overriding attributes to
distinguish, for example, between rows based on a Domestics entity object from those
based on a Customers entity object. Thus, the definition of allowed subtype entity
objects is absent from the XML document of the view objects in the polymorphic view
row case (but defined in <AttrArray> tags in the polymorphic entity usage case).

What You May Need to Know About Polymorphic View Rows
When you work with polymorphic view rows, you can interact with the row types to
customize the attributes to display or to delegate to methods specific to the entity
subtypes of the view rows.

Chapter 7
Working with Polymorphic View Rows

7-19

Selecting Subtype-Specific Attributes in Extended View Objects
When you create an extended view object, it inherits the entity usage of its parent.
If the parent view object's entity usage is based on an entity object with subtypes in
your domain layer, you may want your extended view object to work with one of these
subtypes instead of the inherited parent entity usage type. Two reasons you might
want to do this are:

• To select attributes that are specific to the entity subtype

• To be able to write view row methods that delegate to methods specific to the
entity subtype

In order to do this, you need to override the inherited entity usage to refer to the
desired entity subtype. To do this, perform these steps in the overview editor for your
extended view object.

To override the entity usage for the view object:

1. In the Applications window, double-click the view object that contains the entity
usage that you want to override.

2. In the overview editor, click the Entity Objects navigation tab and verify that you
are working with an extended entity usage.

For example, when creating the DomesticList view object that extends the
DomesticList view object, the entity usage with the alias TheCustomer will initially
display in the Selected list as: TheCustomer(Customers): extended. The type of
the entity usage is in parenthesis, and the "extended" label confirms that the entity
usage is currently inherited from its parent.

3. Select the desired entity subtype in the Available list that you want to override the
inherited one. It must be a subtype entity of the existing entity usage's type.

For example, you would select the Domestics entity object in the Available list to
override the inherited entity usage based on the Customers entity type.

4. Click > to shuttle it to the Selected list

5. Acknowledge the alert that appears, confirming that you want to override the
existing, inherited entity usage.

When you have performed these steps, the Selected list updates to reflect the
overridden entity usage. For example, for the DomesticList view object, after
overriding the Customers-based entity usage with the Domestics entity subtype, it
updates to show: TheCustomer (Domestics): overridden.

After overriding the entity usage to be related to an entity subtype, you can then use
the Attributes tab of the editor to select additional attributes that are specific to the
subtype. For example, the DomesticsList view object includes the additional attribute
named State that is specific to the Domestics entity object.

Delegating to Subtype-Specific Methods After Overriding the Entity Usage
After overriding the entity usage in an extended view object to reference a subtype
entity, you can write view row methods that delegate to methods specific to the
subtype entity class.

Chapter 7
Working with Polymorphic View Rows

7-20

The following example shows the code for a performInternationalFeature() method
in the custom view row class for the InternationalList view object. It casts
the return value from the getTheCustomer() entity row accessor to the subtype
InternationalsImpl, and then invokes the performInternationalFeature() method
that is specific to Internationals entity objects.

// In InternationalListRowImpl.java
public void performInternationalFeature() {
 InternationalsImpl international = (InternationalsImpl)getTheCustomer();
 international.performInternationalFeature();
}

Note:

You need to perform the explicit cast to the entity subtype here because
JDeveloper does not yet take advantage of the JDK feature called covariant
return types that would allow a subclass like InternationalListRowImpl to
override a method like getTheCustomer() and change its return type.

Working with Different View Row Interface Types in Client Code
The following example shows the interesting lines of code from a
TestViewRowPolymorphism class that performs the following steps:

1. Iterates over the rows in the CustomerList view object.

For each row in the loop, it uses Java's instanceof operator to test whether the
current row is an instance of the DomesticListRow or the InternationalListRow.

2. If the row is a DomesticListRow, then cast it to this more specific type and:

• Call the performDomesticFeature() method specific to the DomesticListRow
interface, and

• Access the value of the State attribute that is specific to the DomesticList
view object.

3. If the row is a InternationalListRow, then cast it to this more specific type and:

• Call the performInternationalFeature() method specific to the
InternationalListRow interface, and

• Access the value of the Language attribute that is specific to the
InternationalList view object.

4. Otherwise, just call a method on the CustomerListRow

// In TestViewRowPolymorphism.java
ViewObject vo = am.findViewObject("CustomerList");
vo.executeQuery();
// 1. Iterate over the rows in the CustomerList view object
while (vo.hasNext()) {
 CustomerListRow Customer = (CustomerListRow)vo.next();
 System.out.print(Customer.getEmail()+"->");
 if (Customer instanceof DomesticListRow) {
 // 2. If the row is a DomesticListRow, cast it
 DomesticListRow mgr = (DomesticListRow)Customer;
 mgr.performDomesticFeature();

Chapter 7
Working with Polymorphic View Rows

7-21

 System.out.println("State: "+domestic.getState());
 }
 else if (Customer instanceof InternationalListRow) {
 // 3. If the row is an InternationalListRow, cast it
 InternationalListRow international = (InternationalListRow)Customer;
 international.performInternationalFeature();
 System.out.println("Speaks English: "+international.getLanguage());
 }
 else {
 // 4. Otherwise, just call a method on the CustomerListRow
 Customer.performCustomerFeature();
 }
}

Running the code in the previous example produces the following output:

daustin->## performInternationalFeature called
English spoken: Yes
hbaer->## performCustomerFeature as Customer
:
sking->## performDomesticFeature called
State: CA
:

This illustrates that by using the view row polymorphism feature the client was able to
distinguish between view rows of different types and access methods and attributes
specific to each subtype of view row.

What You May Need to Know About the Discriminator
Attribute

You can choose to include or exclude a discriminator attribute in the query that an ADF
view object uses to reference an entity object.

When a view object references an entity object with a discriminator attribute, you can
decide whether or not that discriminator attribute should be included in the query (in
addition to the primary key attribute) by selecting the Polymorphic Discriminator
checkbox for the inherited discriminator attribute in the Details tab on the Attributes
page of the overview editor for the view object.

When you decide to enable the checkbox, you can then use the Polymorphic
Discriminator options in the Details tab to configure whether or not the view object is
defined as a subtype view object:

• Enabling the option View means you want to enable polymorphic view rows.

• Enabling the option Entity means you want to ignore the discriminator capability of
the view row and will instead instantiate the attribute with a default value.

The Entity option is useful in situations where a discriminator attribute is inherited
by an entity-based view object with multiple backing entity objects and yet
polymorphic view rows are not desired.

Figure 7-12 shows the Details tab for the DomesticList view object enables its
CustomerTypeCode discriminator attribute inherited from the Customers entity object.
The View selection indicates that this discriminator attribute participates in view object
polymorphism and the value DOMESTIC determines the subtype view object's row type.

Chapter 7
What You May Need to Know About the Discriminator Attribute

7-22

Figure 7-12 Discriminator Attribute Selection Enables View Row Polymorphism

Updating the Application Module to Expose Subtype Usages
You can specify the list of view object subtypes for the base view object instance in an
ADF application module definition.

After creating the view object hierarchy using either view row polymorphism or
entity object polymorphism, you need to define the list of view object subtypes that
participate in the view object polymorphism at runtime. To accomplish this, you update
the application module definition to specify the subtype view objects for the base view
instance. At runtime, ADF creates polymorphic view rows based on the definitions of
the invoked view instance's named subtypes.

How to Expose Subtype Usages on the Data Model
After creating the view object hierarchy using either view row polymorphism or
entity object polymorphism, you need to define the list of view object subtypes that
participate in the view object polymorphism. To accomplish this, you update the
application module definition to specify the subtype view objects for the base view
instance.

As Figure 7-13 shows, the data model that exposes the base view object usage
CustomerList1 remains unchanged, while the Select Subtypes dialog is used to define
the possible polymorphic view object usages of the base view object.

Chapter 7
Updating the Application Module to Expose Subtype Usages

7-23

Figure 7-13 Updating the Application Module Definition with Subtype View Objects

Before you begin:

It may be helpful to have an understanding of polymorphic view objects. For more
information, see Working with Polymorphic View Rows.

When you want to create subtype view objects based on polymorphic entity usages,
which the view objects derive from the inheritance of the entity subtypes, create
the subtype view objects that extend the base entity-based view object. For more
information, see Working with Polymorphic Entity Usages.

When you want to create subtype view objects based on polymorphic view rows,
which derive from a view object hierarchy that you define, create the subtype view
objects with polymorphic discriminator attribute. For more information, see Working
with Polymorphic View Rows.

To add subtype view objects to the application module definition:

1. In the overview editor for the application module, click the Data Model navigation
tab and add an instance of the base view object to the data model of an
application module.

For example, when the CustomerList view object supports two subtypes:
DomesticList and InternationalList view objects, the AppModule application
module will have base view instance CustomerList1.

2. In the Data Model page, expand the View Object Instances section and in the
Data Model list, click the Subtypes button.

Chapter 7
Updating the Application Module to Expose Subtype Usages

7-24

You do not need to make a view instance selection in Data Model list to click the
button.

3. In the Subtypes dialog, shuttle the desired view object subtypes of the base view
instance from the Available to the Selected list, and click OK.

For example, for the CustomerList1 view instance with subtype view objects
DomesticList and InternationalList, you would shuttle both view objects to the
Selected list, as shown in Figure 7-13.

What Happens When You Add Subtype View Objects to the
Application Module

When you add a subtype view object to the application module, JDeveloper adds
information about the allowed view subtypes to the application module's XML
document. For example, when defining a view instance CustomerList1 with two
possible subtype usages, the names of the allowed subtype view objects are recorded
in an <AttrArray> tag like this:

<AppModule
 ...
 <ViewUsage
 Name="CustomerList1"
 ViewObjectName="oracle.summit.model.polymorphicsample.CustomerList"/>
 <AttrArray Name="ViewImports">
 <Item Value="oracle.summit.model.polymorphicsample.DomesticList"/>
 <Item Value="oracle.summit.model.polymorphicsample.InternationalList"/>
 </AttrArray>
</AppModule>

Chapter 7
Updating the Application Module to Expose Subtype Usages

7-25

8
Testing View Instance Queries

This chapter describes how to interactively test ADF view objects query results using
the Oracle ADF Model Tester provided in JDeveloper. This chapter also explains how
to use the ADF Business Components API to access view object instances in a test
client outside of JDeveloper.
This chapter includes the following sections:

• About View Instance Queries

• Creating an Application Module to Test View Instances

• Testing View Object Instances Using the Oracle ADF Model Tester

• Testing View Object Instances Programmatically

About View Instance Queries
Use the Oracle ADF Model Tester to achieve interactive ADF application module
testing of the data model.

JDeveloper includes an interactive application module testing tool that you can use
to test all aspects of its data model without having to use your application user
interface or write a test client program. Running the Oracle ADF Model Tester can
often be the quickest way of exercising the data functionality of your business service
during development.

Note:

When you want to test an application module programmatically, you can
write a test client. See How to Create a Command-Line Java Test Client.

View Instance Use Cases and Examples
Using the Oracle ADF Model Tester, you can simulate an end user interacting with
your application module data model before you have started to build any custom
user interface of your own. Even after you have your UI pages constructed, you
will come to appreciate using the Oracle ADF Model Tester to assist in diagnosing
problems when they arise. You can reproduce the issues in the Oracle ADF Model
Tester to discover if the issue lies in the view or controller layers of the application, or
is instead a problem in the business service layer application module itself.

Additional Functionality for Testing View Instances
You may find it helpful to understand other Oracle ADF features before you start
working with view instances. Following are links to other functionality that may be of
interest.

8-1

• For details about using debugging tools when you run the Oracle ADF Model
Tester, see Using the Oracle ADF Model Tester for Testing and Debugging.

• For details about creating a data model consisting of view object instances, see
Implementing Business Services with Application Modules.

• For a quick reference to the most common code that you will typically write, use,
and override in your custom ADF Business Components classes, see Most
Commonly Used ADF Business Components Methods.

• For API documentation related to the oracle.jbo package, see the following
Javadoc reference document:

– Java API Reference for Oracle ADF Model

Creating an Application Module to Test View Instances
Define an ADF application module and build a data model using view object instances.
Use the Oracle ADF Model Tester to test the application module if required.

Before you can test view objects that you create in your data model project, you must
create an application module where you will define instances of the view objects you
want to test. The application module is the transactional component that the Oracle
ADF Model Tester (or UI client) will use to work with application data. The set of view
objects used by an application module defines its data model, in other words, the set
of data that a client can display and manipulate through a user interface.

To test the view objects you added to an application module, use the Oracle ADF
Model Tester, which is accessible from the Applications window. For details about
using the Oracle ADF Model Tester, see Testing View Object Instances Using the
Oracle ADF Model Tester.

How to Create the Application Module with Individual View Object
Instances

To create an application module that will define instances of individual view objects,
use the Create Application Module wizard, which is available in the New Gallery.

Before you begin:

It may be helpful to have an understanding of application modules. For more
information, see Creating an Application Module to Test View Instances.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Testing
View Instances.

You will need to complete this task:

Create the desired view objects, as described in How to Create an Entity-Based
View Object and How to Create a Custom SQL Mode View Object.

To create an application module to test individual view object instances:

1. In the Applications window, right-click the project in which you want to create the
application module and choose New and then Application Module.

2. In the Create Application Module wizard, in the Name page, provide a package
name and an application module name. Click Next.

Chapter 8
Creating an Application Module to Test View Instances

8-2

3. On the Data Model page, include instances of the view objects you have
previously defined and edit the view object instance names to be exactly what
you want clients to see. Then click Finish.

Instead of accepting the default instance name shown in the Data Model page,
you can change the instance name to something more meaningful (for example,
instead of the default name OrderItems1 you can rename it to AllOrderItems).

How to Create the Application Module with Master-Detail View Object
Instances

You can also use the Create Application Module wizard to create a hierarchy of view
objects for an application module, based on a master-detail relationship that the
view objects represent.

Before you begin:

It may be helpful to have an understanding of application modules. For more
information, see Creating an Application Module to Test View Instances.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Testing
View Instances.

You will need to complete this task:

Create hierarchical relationships between view objects, as described in Working
with Multiple Tables in a Master-Detail Hierarchy.

To create an application module based on view object relationships:

1. In the Applications window, right-click the project in which you want to create the
application module and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Application Module, and click OK.

3. In the Create Application Module wizard, select the Data Model node.

4. In the Available View Objects list, select the instance of the view object that you
want to be the actively coordinating master.

The master view object will appear with a plus sign in the list indicating the
available view links for this view object. The view link must exist to define a
master-detail hierarchy.

For example, Figure 8-1 shows PersonsVO selected and renamed
AuthenticatedUser in the New View Instance field.

Chapter 8
Creating an Application Module to Test View Instances

8-3

Figure 8-1 Master View Object Selected

5. Shuttle the selected master view object to the Data Model list

For example, Figure 8-2 shows the newly created master view instance
AuthenticatedUser in the Data Model list after you add it to the list.

Figure 8-2 Master View Instance Created

6. In the Data Model list, leave the newly created master view instance selected, so
that it appears highlighted. This will be the target of the detail view instance you
will add. Then locate and select the detail view object beneath the master view
object in the Available View Objects list.

For example, Figure 8-3 shows the detail OrdersVO indented beneath master
PersonsVO with the name OrdersVO via PersonsToOrders. The name identifies
the view link PersonsToOrders, which defines the master-detail hierarchy between
PersonsVO and OrdersVO. The detail view instance is renamed to MyOrders.

Chapter 8
Creating an Application Module to Test View Instances

8-4

Figure 8-3 Detail View Object Selected

7. To add the detail instance to the previously added master instance, shuttle the
detail view object to the Data Model list below the selected master view instance.

Figure 8-4 shows the newly created detail view instance MyOrders is a detail of the
AuthenticatedUser in the data model.

Figure 8-4 Master View Instance Created

8. To add another level of hierarchy, select the newly added detail in the Data Model
list, then shuttle over the new detail which itself has a master-detail relationship
with the previously added detail instance.

Your data model can contain as many levels of hierarchy as your view object
relationships support. For example, Figure 8-5 shows the Data Model list with
instance AuthenticatedUser (renamed for PersonsVO) as the master of MyOrders
(renamed for OrdersVO via PersonsToOrders), which in turn is a master for
MyOrderItems (renamed from OrderItemsVO via OrdersToOrderItems). The
detail view object MyOrderItems is the last level of the hierarchy possible because
this view object is itself not a master for another view object.

Chapter 8
Creating an Application Module to Test View Instances

8-5

Figure 8-5 Master-Detail-Detail Hierarchy Created

Testing View Object Instances Using the Oracle ADF Model
Tester

Use Oracle ADF Model Tester to test and diagnose the ADF application module using
simulated end user interaction before building a custom user interface.

Using the Oracle ADF Model Tester, you can simulate an end user interacting with
your application module data model before you have started to build any custom
user interface of your own. Even after you have your UI pages constructed, you
will come to appreciate using the Oracle ADF Model Tester to assist in diagnosing
problems when they arise. You can reproduce the issues in the Oracle ADF Model
Tester to discover whether the problem lies in the view or controller layers of the
application, or whether there is instead a problem in the business service layer
application module itself.

How to Run the Oracle ADF Model Tester
To test the view objects you added to an application module, use the Oracle ADF
Model Tester, which is accessible from the Applications window. When you run the
tester from the Applications window, the default application module configuration is
used to connect to the database.

Before you begin:

It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Testing View Object Instances Using the Oracle ADF Model Tester.

You may also find it helpful to understand how to use debugging tools when you run
the tester. For more information, see Using the Oracle ADF Model Tester for Testing
and Debugging.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Testing
View Instances.

To test view objects using an application module configuration:

1. In the Applications window, right-click the application module that you want to run
and choose Run.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-6

Alternatively, choose Debug when you want to run the application in the Oracle
ADF Model Tester with debugging enabled. JDeveloper opens the debugger
process panel in the Log window and the various debugger windows. For
example, when debugging using the Oracle ADF Model Tester, you can view
status message and exceptions, step in and out of source code, and manage
breakpoints.

For information about receiving diagnostic messages specific to ADF Business
Component debugging, see How to Enable ADF Business Components Debug
Diagnostics.

2. In the Oracle ADF Model Tester, to execute a view object, expand the data model
tree and double-click the desired view object node.

Note that the view object instance may already appear executed in the testing
session. In this case, the Oracle ADF Model Tester data view page on the right
already displays query results for the view object instance. The fields in the Oracle
ADF Model Tester data view page of a read-only view object will always appear
disabled since the data it represents is not editable. For example, in Figure 8-6,
data for the view instance Products appears in the tester. Fields like Product Id,
Language, and Category appear disabled because the attributes themselves are
not editable.

Figure 8-6 Testing the Data Model in the Oracle ADF Model Tester

3. Right-click a node in the data model tree to display the context menu for that node.
For example, on a view object node you can reexecute the query if needed, to
remove the view object from the data model tree, and perform other tasks.

4. Right-click the tab of an open data viewer to display the context menu for that tab,
as shown in Figure 8-7. For example, you can close the data viewer or open it in a
separate window.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-7

Figure 8-7 Context Menu for Data Viewer Tabs in the Oracle ADF Model
Tester

How to Run the Oracle ADF Model Tester Using Configurations
To test the view objects you added to an application module, use the Oracle ADF
Model Tester, and run it using a specific configuration. The configuration you select will
determine the database connection used by the tester.

Before you begin:

It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Testing View Object Instances Using the Oracle ADF Model Tester.

You may also find it helpful to understand how to use debugging tools when you run
the tester. For more information, see Using the Oracle ADF Model Tester for Testing
and Debugging.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Testing
View Instances.

To test view objects using a specific application module configuration:

1. In the Applications window, double-click the application module that you want to
run.

2. In the overview editor, click the Configurations navigation tab.

3. In the Configurations page, select the desired application module configuration
from the Default Configuration dropdown list that you want to use to run the
Oracle ADF Model Tester.

By default, an application module has only its default configurations, named
AppModuleNameLocal and AppModuleNameShared. For example, Figure 8-8 shows
the BackOfficeAppModuleShared configuration is selected to connect to the
database.

Figure 8-8 Configuration Selection in Application Module Overview Editor

4. Right-click the selected configuration and choose Run.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-8

Alternatively, choose Debug when you want to run the application in the Oracle
ADF Model Tester with debugging enabled. JDeveloper opens the debugger
process panel in the Log window and the various debugger windows. For
example, when debugging using the Oracle ADF Model Tester, you can view
status message and exceptions, step in and out of source code, and manage
breakpoints.

For information about receiving diagnostic messages specific to ADF Business
Component debugging, see How to Enable ADF Business Components Debug
Diagnostics.

How to Test Language Message Bundles and UI Hints
When your application defines alternative languages in your resource message
bundles, you can configure the Oracle ADF Model Tester to recognize these
languages. In the Oracle ADF Model Tester, you can then display the Locale menu
and select among the available language choices.

To specify a default language for the Oracle ADF Model Tester:

1. In the main menu, choose Tools and then Preferences.

2. In the Preferences dialog, expand ADF Business Components and select
Tester.

3. In the Oracle ADF Model Tester page, add any locale for which you have created a
resource message bundle to the Selected list.

Alternatively, you can configure the default language choice by setting ADF Business
Components runtime configuration properties for a specific application module
configuration. These runtime properties also determine which language the Oracle
ADF Model Tester will display as the default. To set runtime configuration properties,
double-click the application module in the Applications window and, in the overview
editor, select the Configurations navigation tab. Then, in the Configurations page
of the overview editor, click the configuration hyperlink. In the application module
configuration overview editor (on the bc4j.xcfg file), select the Properties tab and
click Add Property to select the following properties from the Add Property dialog and
click OK.

• jbo.default.country

• jbo.default.language

Then, in the Properties list enter the desired country code for the country and
language. For example, to specify the Italian language, you would enter IT and it
for these two properties:

• jbo.default.country = IT

• jbo.default.language = it

Testing the language message bundles in the Oracle ADF Model Tester lets you verify
that the translations of the UI hints are correctly located. Or, if the message bundle
defines date formats for specific attributes, the tool lets you verify that date formats
change (like 04/12/2013 to 12/04/2013).

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-9

How to Test Entity-Based View Objects Interactively
You test entity-based view objects interactively in the same way as read-only ones.
Just add instances of the desired view objects to the data model of some application
module, and then test that application module using the Oracle ADF Model Tester.

You'll find the Oracle ADF Model Tester invaluable for quickly testing and debugging
your application modules. Table 8-1 gives an overview of the operations that the
Oracle ADF Model Tester toolbar buttons perform when you display an entity-based
view object.

Table 8-1 Oracle ADF Model Tester Toolbar Buttons

Button Operation Usage

Move to ... row Changes the current row displayed by the Oracle
ADF Model Tester. Moves to the first, previous,
next, or last row.

Insert a new row Creates and inserts a new row.

Delete the current
row

Deletes the current row.

Save changes to
the database

Posts and commits changes that you made in the
ADF Business Components cache.

Discard all
changes since last
save

Discards changes that you made in the ADF
Business Components cache and restores the
original values, rolling back any changes posted
to the database.

Specify view
criteria

Displays the View Criteria dialog that you can use
to create and apply view criteria to the master
view object instance.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-10

Table 8-1 (Cont.) Oracle ADF Model Tester Toolbar Buttons

Button Operation Usage

Validate row Validates the current row by applying validation
rules defined for all entity object instances.
Disabled unless at least one field is editable.

Edit bind variables Displays the Bind Variable dialog that you can
use to enter values for bind parameters used in
the view object query. Disabled unless the view
object query uses bind parameters in the query
statement.

To test the entity-based view objects you added to an application module, use the
Oracle ADF Model Tester, which is accessible from the Applications window.

Before you begin:

It may be helpful to have an understanding of the Oracle ADF Model Tester. See
Testing View Object Instances Using the Oracle ADF Model Tester.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. See Additional Functionality for Testing View Instances.

To test entity-based view objects using an application module configuration:

1. In the Applications window, right-click the application module that you want to test
and choose Run.

2. In the Oracle ADF Model Tester, expand the data model tree and double-click the
desired entity-based view object node.

Unlike the fields of a read-only view object, the fields displayed in the data view
page will appear enabled, because the data it represents is editable.

3. To update individual values and perform validation checks on the entered data,
use the editable fields.

In the case of a view instance with referenced entities, you can change the foreign
key value and observe that the referenced part changes.

4. To perform row-level operations, such as navigate rows, create row, remove row,
and validate the current row, use the toolbar buttons.

For further discussion about simulating end-user interaction in the data view page,
see How to Simulate End-User Interaction in the Oracle ADF Model Tester.

How to Update the Oracle ADF Model Tester to Display Project
Changes

Normally, changes that you make to the data model project will not be picked up
automatically by running the Oracle ADF Model Tester. You can, however, force the
Oracle ADF Model Tester to reload metadata from the data model project any time

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-11

you want to synchronize the displayed data model and the data model project. This
option is an alternative to quitting the Oracle ADF Model Tester, editing your project,
and rerunning the Oracle ADF Model Tester to view the latest changes.

Using the Reload Application option saves time, especially as you work iteratively
between the Oracle ADF Model Tester and JDeveloper. For example, while running
the Oracle ADF Model Tester you might determine the need to modify the data model
with a new view instance or you might find that a view instance is missing an LOV
attribute definition. You can return to JDeveloper and use the Business Components
overview editors to make the changes that alter the data model metadata. Then, after
you recompile the project (a necessary step), you can return to the Oracle ADF Model
Tester to reload the updated metadata from the project's class path.

Before you begin:

It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Testing View Object Instances Using the Oracle ADF Model Tester.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Testing
View Instances.

To reload the data model metadata in the running Oracle ADF Model Tester:

1. In the Applications window, right-click the application module and choose Run.

2. In the Oracle ADF Model Tester, test the data model and determine any changes
you want to make. Do not exit the Oracle ADF Model Tester.

3. In JDeveloper, make the desired changes and recompile the data model project.
(For example, you can right-click the data model project in the Applications
window and choose Make to complete the recompile step.)

Although the metadata changes that you make are not involved in compiling the
project, the compile step is necessary to copy the metadata to the class path and
to allow the Oracle ADF Model Tester to reload it.

4. Return to the Oracle ADF Model Tester and click the Reload the Application
Metadata button above the data model tree. The Oracle ADF Model Tester closes
all open windows.

Alternatively, you can choose Reload Application from the File menu of the
Oracle ADF Model Tester.

5. Reopen the desired windows and view your changes.

What Happens When You Use the Oracle ADF Model Tester
When you launch the Oracle ADF Model Tester, JDeveloper starts the tool in a
separate process and the Oracle ADF Model Tester appears. The tree at the left
of the dialog displays all of the view object instances in your application module's
data model. After you double-click the desired view object instance, the Oracle ADF
Model Tester will display a data view page to inspect the query results. For example,
Figure 8-9 shows the view instance Products that has been double-clicked in the
expanded tree to display the data for this view instance in the data view page on the
right.

The data view page will appear disabled for any read-only view objects you display
because the data is not editable. But even for a read-only view object, the tool affords
some useful features:

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-12

• You can validate that the UI hints based on the Label Text hint and format masks
are defined correctly.

• You can also scroll through the data using the toolbar buttons.

• You can enter Query-by-Example criteria to find a particular row whose data you
want to inspect. By clicking the Specify View Criteria button in the toolbar, the
View Criteria dialog displays the list of available Query-by-Example criteria.

For example, as shown in Figure 8-9, you can select a view criteria like
FindByProductNameCriteria and enter a query criteria like "P%" for a ProductName
attribute and click Find to narrow the search to only those products with a name
that begins with the letter P.

The Oracle ADF Model Tester becomes even more useful when you create entity-
based view objects that allow you to simulate inserting, updating, and deleting rows,
as described in How to Test Entity-Based View Objects Interactively.

Figure 8-9 Built-in Query-by-Example Functionality

How to Simulate End-User Interaction in the Oracle ADF Model Tester
When you launch the Oracle ADF Model Tester, the tree at the left of the display
shows the hierarchy of the view object instances that the data model of your
application module defines. If the data model defines master-detail view instance
relationships, the tree will display them as parent and child nodes. A node between the
master-detail view instances represent the view link instance that performs the active
master-detail coordination as the current row changes in the master. For example, in
Figure 8-10 the tree is expanded to show the master-detail relationship between the
master Products view instance and the detail WarehouseStockLevels view instance.
The selected node, ProductsToWarehouseStockLevels1, is the view link instance that
defines the master-detail relationship.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-13

Figure 8-10 Application Module Data Model in the Oracle ADF Model Tester

Double-clicking the view link instance executes the master object and displays the
master-detail data in the data view page. For example, in Figure 8-11, double-clicking
the ProductsToWarehouseStockLevels1 view link instance in the tree executes the
Products master view instance in the top portion of the data view page and the
WarehouseStockLevels view instance in the bottom portion of the data view page.
Additional context menu items on the view object node allow you to reexecute the
query if needed, remove the view object from the data model panel, and perform other
tasks.

In the master-detail data view page, you can scroll through the query results.
Additionally, because instance of entity-based view objects are fully editable, Instead
of displaying disabled UI controls showing read-only data for a read-only view object,
the data view page displays editable fields. You are free to experiment with creating,
inserting, updating, validating, committing, and rolling back.

Figure 8-11 Master-Detail Data View Page in the Oracle ADF Model Tester

For example, you can view multiple levels of master-detail hierarchies, opening
multiple data view pages at the same time. Use the Detach context menu item to
open any tab into a separate window and visualize multiple view object's data at the
same time.

Using just the master-detail data view page, you can test several functional areas of
your application.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-14

Testing Master-Detail Coordination
When you click the navigation buttons on the Oracle ADF Model Tester toolbar, you
can see that the rows for the current master view object are correctly coordinated. For
example, Figure 8-11 shows a master-detail hierarchy with products and warehouses.
If you click the Next Row button in the master panel, the master panel will display the
next product (identified by a product ID) and the detail panel will update to display the
list of warehouses and quantities available for the product.

Testing UI Hints
The entity-based view object attributes inherit their UI hints from those on the
underlying entity object attribute. The prompts displayed in the data view page help
you see whether you have correctly defined a user-friendly label text UI hint for each
attribute. For details on setting up the hint on your entity object, see Defining UI Hints
for View Objects.

Testing Business Domain Layer Validation
Depending on the validation rules you have defined, you can try entering invalid values
to trigger and verify validation exceptions. For example, when you have defined a
range validation rule, enter a value outside the range and see an error similar to:

(oracle.jbo.AttrSetValException) Valid product codes are between 100 and 999

Click the rollback button in the toolbar to revert data to the previous state.

Testing View Objects That Reference Entity Usages
By scrolling through the data — or using the Specify View Criteria button in the
Oracle ADF Model Tester toolbar to search — you can verify whether you have
correctly altered the WHERE clause in an entity-based view object's query to use an
outer join. The rows should appear as expected.

You also can try changing a primary key attribute of a master view object. This
will allow you to verify that the corresponding reference information is automatically
updated to reflect the new primary key value.

Use the Oracle ADF Model Tester to verify that UI hints defined at the view object
level override the ones it would normally inherit from the underlying entity object. If
you notice that several attributes share the same label text, you can edit the UI hint
for the desired attributes at the view object level. For example, you can set the Label
Text hint to Member Since for the RegisteredDate attribute and Provisioned? for the
ProvisionedFlag attribute.

Testing Row Creation and Default Value Generation
When displaying an entity-based view object, click the Create Row button in the
Oracle ADF Model Tester toolbar for the view object instance to create a new blank
row. Any fields that have a declarative default value will appear with that value in the
blank row. If the DBSequence-valued attribute is used, a temporary value will appear in
the new row. After entering all the required fields, click the Commit button to commit
the transaction. The actual, trigger-assigned primary key should appear in the field
after successful commit.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-15

Testing That New Detail Rows Have Correct Foreign Keys
If you click Create Row in the Oracle ADF Model Tester toolbar to try adding a new
row to an existing detail entity-based view object instance, you'll notice that the view
link automatically ensures that the foreign key attribute value in the new row is set to
the value of the current master view instance row.

How to Test Multiuser Scenarios in the Oracle ADF Model Tester
When view objects and entity objects cooperate at runtime, two exceptions can
occur when you run the application in a multiuser environment. To anticipate these
exceptions, you can simulate a multiuser environment for testing purposes using the
Oracle ADF Model Tester. For example, when the application displays edit forms for
view object queries, what is the expected behavior when two users attempt to modify
the same attribute in their forms?

To understand the expected behavior, open two instances of the Oracle ADF Model
Tester on the application module to simulate two users editing the same view
object attribute. Keep both instances open and perform the following two tests to
demonstrate how multiuser exceptions can arise:

• In one instance of the Oracle ADF Model Tester, modify an attribute of an existing
view object and tab out of the field. Then, in the other tester instance, try to modify
the same view object attribute in some way. You'll see that the second user gets
the oracle.jbo.AlreadyLockedException.

You can then change the value of jbo.locking.mode to be pessimistic on the
Properties page of the Oracle ADF Model Tester Connect dialog and try repeating
the test (the default mode is set to optimistic). You'll see the error occurs for the
second user immediately after changing the value instead of after committing the
change.

• In one instance of the Oracle ADF Model Tester, modify an attribute of an existing
view object and tab out of the field. Then, in the other tester instance, retrieve (but
don't modify) the same view object attribute. Back in the first window, commit the
change. If the second user then tries to modify that same attribute, you'll see that
the second user gets the oracle.jbo.RowInconsistentException. The row has
been modified and committed by another user since the second user retrieved the
row into the entity cache.

How to Customize Configuration Options Before Running the Tester
Using the overview editor for the application module, you can select a predefined
configuration to run the tool using that named set of runtime configuration properties.
The Configurations page of the overview editor also lets you open the overview
editor for application module configurations (defined in the bc4j.xcfg file) to specify
properties of the configuration before running the tester.

To display the application module configuration overview editor, double-click the
application module in the Applications window and, in the overview editor, select the
Configurations navigation tab. Then, in the Configurations page of the overview
editor, click the configuration hyperlink. In the application module configuration
overview editor, select the Properties tab and click Add Property to select the
desired property from the Add Property dialog and click OK.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-16

For example, you could alter the default language for the UI hints by editing the
configuration and choosing the Properties tab to add and then set the following two
properties with the desired country code (in this case, IT for Italy):

• jbo.default.country = IT

• jbo.default.language = it

How to Enable ADF Business Components Debug Diagnostics
When launching the Oracle ADF Model Tester, if you have configured diagnostic
logging for the oracle.jbo logger, JDeveloper will direct ADF Business Components
debug diagnostics messages to the JDeveloper Log window. Figure 8-12 shows the
oracle.jbo logger set to a log level of FINEST to enable ADF Business Components
debug diagnostics.

Figure 8-12 Configuring a Logger for ADF Business Components Debugging

The oracle.jbo logger can be configured either before running the application or while
the application is running in Integrated WebLogic Server. The logging will begin without
the need to restart the server. You do not need to run the application in debug mode to
log diagnostic messages.

With the oracle.jbo logger configured, the next time you run the Oracle ADF Model
Tester and double-click the view object, you'll see detailed diagnostic output in the Log
window, as shown in the following example. Configuring the oracle.jbo logger with a
log level FINEST will allow you to visualize everything the ADF Business Components
framework components are doing for your application.

 :
[355] Oracle SQLBuilder: Registered driver: oracle.jdbc.OracleDriver
[356] Creating a new pool resource
[357] **** DBTransactionImpl establishNewConnection
[358] Successfully logged in
[359] JDBCDriverVersion: xx.xx.x.x-Production
[360] DatabaseProductName: Oracle

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-17

[361] DBTransactionImpl initTransaction
[362] Replacing: null with: StoreServiceAM_AddressesPageDef
[363] Replacing: null with: StoreServiceAM_MostPopularProductsByCategoriesPageDef
...
[537] Orders ViewRowSetImpl.execute caused params to be "un"changed
[538] Column count: 41
[539] ViewObject: Orders Created new QUERY statement
[540] Orders>#q computed SQLStmtBufLen: 952, actual=865, storing=895
[541] SELECT OrderEO.ORDER_ID, OrderEO.ORDER_DATE, OrderEO.ORDER_SHIPPED_DATE,
 FROM ORDERS OrderEO ORDER BY OrderEO.ORDER_DATE desc
[542] Bind params for ViewObject: Orders

For backward compatibility, it remains possible to enable ADF Business Components
debug diagnostics on the data model project using the Java system property
jbo.debugoutput=console. To set the property, open the Run/Debug/Profile page in
the Project Properties dialog for your data model project. Click Edit to edit the chosen
run configuration, and add -Djbo.debugoutput=console to the Java Options field in
the page. Other legal values for this property are silent (the default, if not specified)
and file. If you choose the file option, diagnostics are written to the system temp
directory.

Other legal values for the -Djbo.debugoutput system property are silent (the default,
if not specified) and file. If you enter the file option, diagnostics are written to the
system temp directory.

What Happens at Runtime: How View Objects and Entity Objects
Cooperate

On their own, view objects and entity objects simplify two important jobs that every
enterprise application developer needs to do:

• Work with SQL query results

• Modify and validate rows in database tables

Entity-based view objects can query any selection of data that you want the end user
to be able to view and modify. Any data the end user is allowed to change will be
validated and saved by your reusable business domain layer. The key ingredients you
provide as the developer are the ones that only you can know:

• You decide what business logic should be enforced in your business domain layer

• You decide what queries describe the data you need to put on the screen

These are the things that make your application unique. The built-in functionality of
your entity-based view objects handles the rest of the implementation details.

Note:

Understanding row keys and what role the entity cache plays in the
transaction are important concepts that help to clarify the nature of the
entity-based view objects. These two concepts are addressed in ViewObject
Interface Methods for Working with the View Object's Default RowSet.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-18

What Happens at Runtime: After a View Object Executes Its Query
After adding an instance of an entity-based view object to the application module's
data model, you can see what happens at runtime when you execute the query. Like
a read-only view object, an entity-based view object sends its SQL query straight to
the database using the standard Java Database Connectivity (JDBC) API, and the
database produces a result set. In contrast to its read-only counterpart, however, as
the entity-based view object retrieves each row of the database result set, it partitions
the row attributes based on which entity usage they relate to. This partitioning occurs
by creating an entity object row of the appropriate type for each of the view object's
entity usages, populating them with the relevant attributes retrieved by the query, and
storing each of these entity rows in its respective entity cache. Then, rather than
storing duplicate copies of the data, the view row simply points at the entity row parts
that comprise it.

Figure 8-13 illustrates how the entity cache partitions the result set attributes of two
entity-based view objects. In this example, the highlighted row in the database result
set is partitioned into an Order entity row with primary key 112 and a CustomerInfo
entity row with primary key 301.

As described in The Role of the Entity Cache in the Transaction, the entity row that is
brought into the cache using findByPrimaryKey() contains all attributes of the entity
object. In contrast, an entity row created by partitioning rows from the entity-based
view object's query result contains values only for attributes that appear in the query.
It does not include the complete set of attributes. This partially populated entity row
represents an important runtime performance optimization.

Since the ratio of rows retrieved to rows modified in a typical enterprise application is
very high, you can save memory by bringing only the attributes into memory that you
need to display instead of bringing all attributes into memory all the time.

Figure 8-13 Entity Cache Partitions View Rows into Entity Rows

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-19

By partitioning queried data this way into its underlying entity row constituent parts, the
first benefit you gain is that all of the rows that include some data queried will display
a consistent result when changes are made in the current transaction. In other words,
if one view object allows the PaymentType attribute of customer 301 to be modified,
then all rows in any entity-based view object showing the PaymentType attribute for
customer 301 will update instantly to reflect the change. Since the data related to
customer 301 is stored exactly once in the CustomerInfo entity cache in the entity row
with primary key 301, any view row that has queried the order's PaymentType attribute
is just pointing at this single entity row.

Luckily, these implementation details are completely hidden from a client working with
the rows in a view object's row set. The client works with a view row, getting and
setting the attributes, and is unaware of how those attributes might be related to entity
rows behind the scenes.

What Happens at Runtime: After a View Row Attribute Is Modified
When a user attempts to update the attribute of a view row, a series of steps occur to
automatically coordinate this view row attribute modification with the underlying entity
row. These steps ensure that a validation rule defined on the entity-mapped attribute
will be triggered before the value is changed.

Figure 8-14 illustrates the basic steps that occur at runtime when the user attempts
to update an entity-mapped attribute. In this example, the modified attribute Status is
mapped to an entity usage where a validation rule is defined.

1. The user attempts to set the Status attribute to the value Ship.

2. Since Status is an entity-mapped attribute from the Order entity usage, the view
row delegates the attribute set to the appropriate underlying entity row in the Order
entity cache having primary key 112.

3. Any attribute-level validation rules on the Status attribute of the Order entity object
are evaluated and the modification attempt will fail if any rule does not succeed.

Assume that some validation rule for the Status attribute programmatically
references the ShipDate attribute (for example, to enforce a business rule that
an Order cannot be shipped the same day it is placed). The ShipDate was not one
of the Order attributes retrieved by the query, so it is not present in the partially
populated entity row in the Order entity cache.

4. To ensure that business rules can always reference all attributes of the entity
object, the entity object detects this situation and "faults-in" the entire set of Order
entity object attributes for the entity row being modified using the primary key
(which must be present for each entity usage that participates in the view object).

5. After the attribute-level validations all succeed, the entity object attempts to
acquire a lock on the row in the ORDERS table before allowing the first attribute
to be modified.

6. If the row can be locked, the attempt to set the Status attribute in the row
succeeds and the value is changed in the entity row.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-20

Note:

The jbo.locking.mode configuration property controls how rows are locked.
The default value is optimistic. Typically, Fusion web applications will use
the default setting optimistic, so that rows aren't locked until transaction
commit time. In pessimistic locking mode, the row must be lockable before
any change is allowed to it in the entity cache.

Figure 8-14 View Row Attribute Updates Delegate to the Entity

What Happens at Runtime: After a Foreign Key Attribute is Changed
When a user attempts to update a foreign key attribute, a series of steps occur
to automatically coordinate this view row attribute modification with the underlying
entity row. These steps ensure that a validation rule defined on the foreign key, entity-
mapped attribute will be triggered before the value is changed. They also ensure that
the view row for the changed foreign key attribute reflects the correct attributes of all
referenced entity objects.

Figure 8-15 illustrates the basic steps that occur at runtime when the user attempts to
update a foreign key, entity-mapped attribute. In this example, the modified attribute
CustomerInfoId is mapped to an entity usage Order where the attribute is associated
with another entity object CustomerInfo.

1. The user attempts to set the CustomerInfoId attribute to the value 300.

2. Since CustomerInfoId is an entity-mapped attribute from the Order entity usage,
the view row delegates the attribute set to the appropriate underlying entity row in
the Order entity cache, which has primary key 112.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-21

3. Any attribute-level validation rules on the CustomerInfoId attribute of the Order
entity object are evaluated and the modification attempt will fail if any rule does not
succeed.

4. The row is already locked, so the attempt to set the CustomerInfoId attribute in
the row succeeds and the value is changed in the entity row.

5. Since the CustomerInfoId attribute on the Order entity usage is associated with
the CustomerInfo entity object, this change of foreign key value causes the view
row to replace its current entity row part for customer 301 with the entity row
corresponding to the new CustomerInfoId = 300. This effectively makes the view
row for order 112 point to the entity row for 300, so the value of the PaymentType
in the view row updates to reflect the correct reference information for this newly
assigned customer.

Figure 8-15 After Updating a Foreign Key, View Row Points to a New Entity

What Happens at Runtime: After a Transaction is Committed
Suppose the user is satisfied with the changes, and commits the transaction. As
shown in Figure 8-16, there are two basic steps:

1. The Transaction object validates any invalid entity rows in its pending changes
list.

2. The entity rows in the pending changes list are saved to the database.

The figure depicts a loop in Step 1 before the act of validating one modified
entity object might programmatically affect changes to other entity objects. Once the
transaction has processed its list of invalid entities on the pending changes list, if the
list has entities, the transaction will complete another pass. It will attempt up to ten
passes through the list. If by that point there are still invalid entity rows, it will throw an
exception because this typically means you have an error in your business logic that
needs to be investigated.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-22

Figure 8-16 Committing the Transaction Validates Invalid Entities, Then Saves
Them

What Happens at Runtime: After a View Object Requeries Data
When you reexecute a view object's query, by default the view rows in its current row
set are "forgotten" in preparation for reading in a fresh result set. This view object
operation does not directly affect the entity cache, however. The view object then
sends the SQL to the database and the process begins again to retrieve the database
result set rows and partition them into entity row parts.

Note:

Typically when the view object requeries data, you expect it to retrieve the
latest database information. If instead you want to avoid a database roundtrip
by restricting your view object to querying only over existing entity rows in
the cache, or over existing rows already in the view object's row set, see
Performing In-Memory Sorting and Filtering of Row Sets.

How Unmodified Attributes are Handled During Requery
As part of the entity row partitioning process during a requery, if an attribute on the
entity row is unmodified, then its value in the entity cache is updated to reflect the
newly queried value.

How Modified Attributes are Handled During Requery
However, if the value of an entity row attribute has been modified in the current
transaction, then during a requery the entity row partitioning process does not refresh
its value. Uncommitted changes in the current transaction are left intact so the end-
user's logical unit of work is preserved. As with any entity attribute value, these

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-23

pending modifications continue to be consistently displayed in any entity-based view
object rows that reference the modified entity rows.

Note:

End-user row inserts and deletes are also managed by the entity cache,
which permits new rows to appear and deleted rows to be skipped during
requerying. For more information about new row behavior, see Maintaining
New Row Consistency Between View Objects Based on the Same Entity.

For example, Figure 8-17 illustrates the scenario where a user "drills down" to a
different page that uses the Orders view object instance to retrieve all details about
order 112 and that this happens in the context of the current transaction's pending
changes. That view object has two entity usages: a primary Orders usage and a
reference usage for CustomerInfo. When its query result is partitioned into entity rows,
it ends up pointing at the same Order entity row that the previous OrderInfo view row
had modified. This means the end user will correctly see the pending change, that the
order is assigned to sking in this transaction.

Figure 8-17 Entity Cache Merges Sets of Entity Attributes from Different View
Objects

How Overlapping Subsets of Attributes are Handled During Requery
Two different view objects can retrieve two different subsets of reference information
and the results are merged whether or not they have matching sets of attributes.
For example, Figure 8-17 also illustrates the situation, where the Orders view
object queries the user's Email, while the OrderInfo view object queried the user's
PaymentOption. The figure shows what happens at runtime: if while partitioning the
retrieved row, the entity row part contains a different set of attributes than does the
partially populated entity row that is already in the cache, the attributes get "merged".
The result is a partially populated entity row in the cache with the union of the
overlapping subsets of user attributes. In contrast, for jchen (user 302), who wasn't

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-24

in the cache already, the resulting new entity row contains only the Email attribute, but
not the PaymentOption.

What You May Need to Know About Optimizing View Object Runtime
Performance

The view object provides tuning parameters that let you control how SQL is executed
and how data is fetched from the database. These tuning parameters play a significant
role in the runtime performance of the view object. If the fetch options are not tuned
correctly for the application, then your view object may fetch an excessive amount of
data and may make too many roundtrips to the database.

You can use the Tuning section of the General page of the overview editor to
configure the fetch options shown in Table 8-2.

Table 8-2 Parameters to Tune View Object Performance

Fetch Tuning Parameters Usage

Fetch Mode The default fetch option is the All Rows
option, which will be retrieved As Needed
(FetchMode="FETCH_AS_NEEDED") or All at
Once (FetchMode="FETCH_ALL"), depending
on which option is desired. The As Needed
option ensures that an executeQuery()
operation on the view object initially retrieves
only as many rows as necessary to fill the first
page of a display, whose number of rows is set
based on the view object's range size.

Fetch Size In conjunction with the Fetch Mode option,
the in Batches of field controls the number
of records fetched at one time from the
database (FetchSize in the view object
XML). The default value is 1, which will give
poor performance unless only one row will
be fetched. The suggested configuration is
to set this value to n+3 where n is the
number of rows to be displayed in the user
interface. For more information about how this
parameter may affect memory requirements,
see Consider Whether Fetching One Row at a
Time is Appropriate.

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-25

Table 8-2 (Cont.) Parameters to Tune View Object Performance

Fetch Tuning Parameters Usage

Max Fetch Size The default max fetch size for a view object
is -1, which means that there is no limit
to the number of rows the view object
can fetch. In cases where the result set
should contain only n rows of data, the
option Only up to row number should be
selected and set to n. The developer can
alternatively call setMaxFetchSize(n) to set
this programmatically or manually add the
parameter MaxFetchSize to the view object
XML.

For view objects whose WHERE clause expects
to retrieve a single row, set the option At Most
One Row. This way the view object knows you
don't expect any more rows and it will skip its
normal test for that situation.

As mentioned earlier, setting a maximum fetch
size of 0 (zero) makes the view object insert-
only. In this case, no select query will be
issued, so no rows will be fetched.

When you want to specify a global threshold
for all view object queries in the application,
you can configure the Row Fetch Limit
property in the adf-config.xml file. Setting
this property means you can avoid changing
the Max Fetch Size for individual query
operations. If you do specify a fetch limit
for individual view objects, the Row Fetch
Limit setting will be ignored in those cases.
For more details about Row Fetch Limit,
see Using Fetch Size to Limit the Maximum
Number of Records Fetched for a View Object.

Forward-only Mode If a data set will only be traversed
going forward, then forward-only mode
can help performance when iterating
through the data set. This can be
configured by programmatically calling
setForwardOnly(true) on the view object.
Setting forward-only will also prevent caching
previous sets of rows as the data set is
traversed.

When you tune view objects, you should also consider these issues:

• Large data sets: View objects provide a mechanism to page through large data
sets such that a user can jump to a specific page in the results. This is configured
by calling setRangeSize(n) followed by setAccessMode(RowSet.RANGE_PAGING)
on the view object where n is the number of rows contained within one page.
When the user navigates to a specific page in the data set, the application can call
scrollToRangePage(P) on the view object to navigate to page P. Range paging
fetches and caches only the current page of rows in the view object row cache at
the cost of another query execution to retrieve each page of data. Range paging
is not appropriate where it is beneficial to have all fetched rows in the view object

Chapter 8
Testing View Object Instances Using the Oracle ADF Model Tester

8-26

row cache (for example, when the application needs to read all rows in a dataset
for an LOV or page back and forth in records of a small data set.

• Spillover: There is a facility to use the data source as "virtual memory" when the
JVM container runs out of memory. By default, this is disabled and can be turned
on as a last resort by setting jbo.use.pers.coll=true. Enabling spillover can
have a large performance impact.

• SQL platform: If the generic SQL92 SQL platform is used to connect to generic
SQL92-compliant databases, then some view object tuning options will not
function correctly. The parameter that choosing the generic SQL92 SQL platform
affects the most is the fetch size. When SQL92 SQL platform is used, the fetch
size defaults to 10 rows regardless of what is configured for the view object. You
can set the SQL platform when you define the database connection or you can
define it as global project setting in the adf-config.xml file. By default, the SQL
platform will be Oracle. To manually override the SQL platform, you can also pass
the parameter -Djbo.SQLBuilder="SQL92" to the JVM upon startup.

Additionally, you have some options to tune the view objects' associated SQL for
better database performance:

• Bind variables: If the query associated with the view object contains values that
may change from execution to execution, use bind variables. Using bind variables
in the query allows the query to reexecute without needing to reparse the query
on the database. You can add bind variables to the view object in the Query page
of the overview editor for the view object. For more information, see Working with
Bind Variables.

• Query optimizer hints: The view object can pass hints to the database to influence
which execution plan to use for the associated query. The optimizer hints can be
specified in the Retrieve from the Database group box in the Tuning section of
the overview editor for the view object. For information about optimizer hints, see
Specify a Query Optimizer Hint if Necessary.

Testing View Object Instances Programmatically
You can use client programs to test an ADF application module programmatically.

When you are ready to test a working application module containing at least one view
object instance, you can build a simple test client program to illustrate the basics of
working programmatically with the data in the contained view object instances.

From the point of view of a client accessing your application module's data model,
the API's to work with a read-only view object and an entity-based view object are
identical. The key functional difference is that entity-based view objects allow the data
in a view object to be fully updatable. The application module that contains the entity-
based view objects defines the unit of work and manages the transaction. This section
presents test client programs that work with the SummitADF_Examples workspace to
illustrate:

• Iterating master-detail-detail hierarchy

• Finding a row and updating a foreign key value

• Creating a new order

• Retrieving the row key identifying a row

Chapter 8
Testing View Object Instances Programmatically

8-27

ViewObject Interface Methods for Working with the View Object's
Default RowSet

The ViewObject interface in the oracle.jbo package provides the methods to easily
perform any data-retrieval task. Some of these methods used in the example include:

• executeQuery(), to execute the view object's query and populate its row set of
results

• setWhereClause(), to add a dynamic predicate at runtime to narrow a search

• setNamedWhereClauseParam(), to set the value of a named bind variable

• hasNext(), to test whether the row set iterator has reached the last row of results

• next(), to advance the row set iterator to the next row in the row set

• getEstimatedRowCount(), to count the number of rows a view object's query
would return

Typically, when you work with a view object, you will work with only a single row set
of results at a time. To simplify this overwhelmingly common use case, as shown
in Figure 8-18, the view object contains a default RowSet, which, in turn, contains
a default RowSetIterator. The default RowSetIterator allows you to call all of the
data-retrieval methods directly on the ViewObject component itself, knowing that they
will apply automatically to its default row set.

Figure 8-18 ViewObject Contains a Default RowSet and RowSetIterator

Note:

Defining Polymorphic View Objects presents situations when you might want
a single view object to produce multiple distinct row sets of results. You can
also find scenarios for creating multiple distinct row set iterators for a row set.
Most of the time, however, you'll need only a single iterator.

The phrase "working with the rows in a view object," when used in this guide more
precisely means working with the rows in the view object's default row set. Similarly,
the phrase "iterate over the rows in a view object," more precisely means you will use
the default row set iterator of the view object's default row set to loop over its rows.

The Role of the Key Object in a View Row or Entity Row
When you work with view rows you use the Row interface in the oracle.jbo package.
As shown in Figure 8-19, the interface contains a method called getKey() that you can

Chapter 8
Testing View Object Instances Programmatically

8-28

use to access the Key object that identifies any row. Notice that the Entity interface in
the oracle.jbo.server package extends the Row interface. This relationship provides
a concrete explanation of why the term entity row is so appropriate. Even though an
entity row supports additional features for encapsulating business logic and handling
database access, you can still treat any entity row as a Row.

An entity-based view object delegates the task of finding rows by key to its underlying
entity row parts.

Recall that both view rows and entity rows support either single-attribute or
multiattribute keys, so the Key object related to any given Row will encapsulate all
of the attributes that comprise its key. Once you have a Key object, you can use the
findByKey() method on any row set to find a row based on its Key object. When you
use the findByKey() method to find a view row by key, the view row proceeds to use
the entity definition's findByPrimaryKey() method to find each entity row contributing
attributes to the view row key.

In the case of a read-only view object with no underlying entity row to which
to delegate this task, the view object implementation automatically enables the
manageRowsByKey flag when at least one primary key attribute is detected. This
ensures that the findByKey() method is successful in the case of read-only view
objects. If the manageRowsByKey flag is not enabled, then UI operations like setting the
current row with the key, which depend on the findByKey() method, would not work.

Figure 8-19 Any View Row or Entity Row Supports Retrieving Its Identifying
Key

Note:

When you define an entity-based view object, by default the primary key
attributes for all of its entity usages are marked with their Key Attribute
property set to true. In any nonupdatable reference entity usages, you
should disable the Key Attribute property for the key attributes. Since view
object attributes related to the primary keys of updatable entity usages must
be part of the composite view row key, their Key Attribute property cannot
be disabled.

The Role of the Entity Cache in the Transaction
An application module is a transactional container for a logical unit of work. At runtime,
it acquires a database connection using information from the named configuration you
supply, and it delegates transaction management to a companion Transaction object.

Chapter 8
Testing View Object Instances Programmatically

8-29

Since a logical unit of work may involve finding and modifying multiple entity rows of
different types, the Transaction object provides an entity cache as a "work area" to
hold entity rows involved in the current user's transaction. Each entity cache contains
rows of a single entity type, so a transaction involving two or more entity objects holds
the working copies of those entity rows in separate caches.

By using an entity object's related entity definition, you can write code in an application
module to find and modify existing entity rows. As shown in Figure 8-20, by calling
findByPrimaryKey() on the entity definition for the Order entity object, you can
retrieve the row with that key. If it is not already in the entity cache, the entity
object executes a query to retrieve it from the database. This query selects all of the
entity object's persistent attributes from its underlying table, and finds the row using
an appropriate WHERE clause against the column corresponding to the entity object's
primary key attribute. Subsequent attempts to find the same entity row by key during
the same transaction will find it in the cache, preventing the need for a trip to the
database. In a given entity cache, entity rows are indexed by their primary key. This
makes finding an entity row in the cache a fast operation.

When you access related entity rows using association accessor methods, they are
also retrieved from the entity cache. If related entity rows are not in the cache,
then they are retrieved from the database. Finally, the entity cache is also the
place where new entity rows wait to be saved. In other words, when you use the
createInstance2() method on the entity definition to create a new entity row, it is
added to the entity cache.

Figure 8-20 Entity Cache Stores Entity Rows During the Transaction

When an entity row is created, modified, or removed, it is automatically enrolled in
the transaction's list of pending changes. When you call commit() on the Transaction
object, it processes its pending changes list, validating new or modified entity rows
that might still be invalid. When the entity rows in the pending list are all valid, the
Transaction issues a database SAVEPOINT and coordinates saving the entity rows to
the database. If all goes successfully, it issues the final database COMMIT statement. If
anything fails, the Transaction performs a ROLLBACK TO SAVEPOINT to allow the user
to fix the error and try again.

Chapter 8
Testing View Object Instances Programmatically

8-30

The Transaction object used by an application module represents the working set of
entity rows for a single end-user transaction. By design, it is not a shared, global
cache. The database engine itself is an extremely efficient shared, global cache
for multiple, simultaneous users. Rather than attempting to duplicate all the work
of fine-tuning that has gone into the database's shared, global cache functionality,
ADF Business Components consciously embraces it. To refresh a single entity
object's data from the database at any time, you can call its refresh() method. You
can setClearCacheOnCommit() or setClearCacheOnRollback() on the Transaction
object to control whether entity caches are cleared at commit or rollback. The
defaults are false and true, respectively. The Transaction object also provides a
clearEntityCache() method you can use to programmatically clear entity rows of a
given entity type (or all types). When you clear an entity cache, you allow entity rows
of that type to be retrieved from the database fresh the next time they are either found
by primary key or retrieved by an entity-based view object.

How to Create a Command-Line Java Test Client
To the create a test client program, use the Create Java Class wizard, which is
accessible from the New Gallery.

Generating a Test Client with Skeleton Code
When you use the Create Java Class wizard to create the test client program,
JDeveloper will open your program file in the source editor and allow you to add code
from a predefined code template to complete the test client.

Before you begin:

It may be helpful to have an understanding of programmatic testing. For more
information, see Testing View Object Instances Programmatically.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Testing
View Instances.

To generate a skeleton Java test client:

1. In the Applications window, right-click the project in which you want to create the
test client and choose New and then Java Class.

2. In the Create Java Class dialog, enter a class name and a package name and
ensure that the Extends field shows java.lang.Object.

3. In Optional Attributes, deselect Constructors from Superclass and select Main
Method.

4. Click OK.

The .java file opens in the source editor to show the skeleton code, as shown
in the following example. In this example, TestClient is the class name and
oracle.summit.model.test is the package name.

package oracle.summit.model.test;

public class TestClient {
 public static void main(String[] args) {
 TestClient testClient = new TestClient();
 }
}

Chapter 8
Testing View Object Instances Programmatically

8-31

Modifying the Skeleton Code to Create the Test Client
After you generate skeleton code for the test client, you can proceed to edit the file
using the skeleton code template you created.

Before you begin:

It may be helpful to have an understanding of programmatic testing. For more
information, see Testing View Object Instances Programmatically.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Testing
View Instances.

You will need to complete this task:

Create create the test client skeleton code, as described in Generating a Test Client
with Skeleton Code.

To insert the skeleton code:

1. Place the cursor on a blank line inside the body of the main() method and type the
name of your test client class and then press Ctrl + Enter.

2. Type the characters bc4jclient and then press Ctrl + Enter.

3. Adjust the values of the amDef andconfig variables to reflect the names of
the application module definition and the configuration that you want to use,
respectively.

For the example below, the changed lines look like this:

String amDef = "oracle.summit.model.viewobjects.AppModule";
String config = "AppModuleLocal";

4. Finally, change the view object instance name in the call to findViewObject()
to the one you want to work with. Specify the name exactly as it appears in the
Data Model tree on the Data Model page of the overview editor for the application
module.

the changed line looks like this:

ViewObject customerList = am.findViewObject("SCustomerView1");

Your skeleton test client for your application module should contain source code like
what you see in the following example.

Note:

The examples throughout Working Programmatically with an Application
Module's Client Interface expand this test client sample code to illustrate
calling custom application module service methods, too.

package oracle.summit.model.viewobjects;

import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.RowSet;

Chapter 8
Testing View Object Instances Programmatically

8-32

import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

public class TestClient {

 public static void main(String[] args) {
 String amDef = "oracle.summit.model.viewobjects.AppModule";
 String config = "AppModuleLocal";
 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef,config);
 // 1. Find the Customer view object instance.
 ViewObject customerList = am.findViewObject("SCustomerView1");
 // Work with your appmodule and view object here
 Configuration.releaseRootApplicationModule(am,true);
 }
}

The method call createRootApplicationModule() allows test clients to create an
application module instance where the ADF Model layer is unavailable. Normally, in
the Fusion web applications your code finds the view object on the application module
through ADF binding objects. For more information about how to work with the ADF
Model layer, see How to Access an Application Module Client Interface in a Fusion
Web Application.

Replace // Work with your appmodule and view object here , with code that will
execute the view objects you want to test. For example, to execute the view object's
query, display the number of rows it will return, and loop over the result to fetch the
data and print it out to the console, you can adapt the code shown in the following
example for your data model project components.

 // 2. Execute the query
 customerList.executeQuery();
 // 3. Iterate over the resulting rows
 while (customerList.hasNext()) {
 Row customer = customerList.next();
 // 4. Print the customer's name
 System.out.println("Customer: " + customer.getAttribute("Name"));
 // 5. Get related rowset of Orders using view link accessor attribute
 RowSet orders = (RowSet)customer.getAttribute("SOrdView");
 // 6. Iterate over the Orders rows
 while (orders.hasNext()) {
 Row order = orders.next();
 // 7. Print out some order attribute values
 System.out.println(" ["+order.getAttribute("CustomerId")+"] "+
 order.getAttribute("Id")+": "+
 order.getAttribute("Total"));
 if(!order.getAttribute("OrderFilled").equals("Y")) {
 // 8. Get related rowset of OrderItems
 RowSet items = (RowSet)order.getAttribute("SItemView");
 // 9. Iterate over the OrderItems rows
 while (items.hasNext()) {
 Row item = items.next();
 // 10. Print out some order items attributes
 System.out.println(" "+item.getAttribute("ItemId")+": "+
 item.getAttribute("Price"));
 }
 }
 }
 }

Chapter 8
Testing View Object Instances Programmatically

8-33

The first line calls the executeQuery() method to execute the view object's query.
This produces a row set of zero or more rows that you can loop over using a while
statement that iterates until the view object's hasNext() method returns false. Inside
the loop, the code puts the current Row in a variable named customer, then invokes
the getAttribute() method twice on that current Row object to get the value of the
Name and Orders attributes to print order information to the console. A second while
statement performs the same task for the line items of the order.

What Happens When You Run a Test Client Program
The call to createRootApplicationModule() on the Configuration object returns an
instance of the application module to work with. As you might have noticed in the
debug diagnostic output, the ADF Business Components runtime classes load XML
documents as necessary to instantiate the application module and the instance of
the view object component that you've defined in its data model at design time. The
findViewObject() method on the application module finds a view object instance
by name from the application module's data model. After the loop described in
Modifying the Skeleton Code to Create the Test Client, the test client executes
releaseRootApplicationModule() on the Configuration object. This signals that
you're done using the application module and it allows the framework to clean up
resources, like the database connection that was used by the application module.

What You May Need to Know About Running a Test Client
The createRootApplicationModule() and releaseRootApplicationModule()
methods are very useful for command-line access to application module components.
However, you typically won't need to write these two lines of code in the context of
an ADF-based web application. The ADF Model layer cooperates automatically with
the ADF business services layer to acquire and release ADF application module
components for you in those scenarios. For more information about how to work with
the ADF Model layer, see How to Access an Application Module Client Interface in a
Fusion Web Application.

How to Count the Number of Rows in a Row Set
The getEstimatedRowCount() method is used on a RowSet to determine how many
rows it contains:

long numOrders = orders.getEstimatedRowCount();

The implementation of the getEstimatedRowCount() initially issues a SELECT
COUNT(*) query to calculate the number of rows that the query will return. The query is
formulated by "wrapping" your view object's entire query in a statement like:

SELECT COUNT(*) FROM (... your view object's SQL query here ...)

The SELECT COUNT(*) query allows you to access the count of rows for a view
object without necessarily retrieving all the rows themselves. This approach permits
an important optimization for working with queries that return a large number of rows,
or for testing how many rows a query would return before proceeding to work with the
results of the query.

Once the estimated row count is calculated, subsequent calls to the method do not
reexecute the COUNT(*) query. The value is cached until the next time the view object's
query is executed, since the fresh query result set returned from the database could

Chapter 8
Testing View Object Instances Programmatically

8-34

potentially contain more, fewer, or different rows compared with the last time the query
was run. The estimated row count is automatically adjusted to account for pending
changes in the current transaction, adding the number of relevant new rows and
subtracting the number of removed rows from the count returned.

You can also override getEstimatedRowCount() to perform a custom count query that
suits your application's needs.

How to Access a Detail Collection Using the View Link Accessor
Once you've retrieved the RowSet of detail rows using a view link accessor, as
described in Programmatically Accessing a Detail Collection Using the View Link
Accessor, you can loop over the rows it contains using the same pattern used by
the view object's row set of results, as shown in the following example.

while (orders.hasNext()) {
 Row curOrder = orders.next();
 System.out.println("--> (" + curOrder.getAttribute("Id") + ") " +
 curOrder.getAttribute("Total"));
}

The following example shows the main() method sets a dynamic WHERE clause
to restrict the CustomerView view object instance to show only customers whose
credit_rating_id has the value 4. Additionally, the executeAndShowResults()
method accesses the view link accessor attribute (SOrdView) and prints out the order
Id and Total attribute for each customer.

To access the a detail collection using a view link accessor, follow these basic steps
(as illustrated in the following example):

1. Find the master view object instance.

2. Execute the query.

3. Iterate over the master view object rows.

4. Get the related row set of the detail view object using the view link accessor
attribute.

5. Iterate over the detail view object rows.

6. Optionally, do something with the detail row set attributes.

Performance Tip:

If the code you write to loop over the rows does not need to display them,
then you can call the closeRowSet() method on the row set when you're
done. This technique will make memory use more efficient. The next time
you access the row set, its query will be reexecuted.

package oracle.summit.model.viewobjects;

import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.RowSet;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

Chapter 8
Testing View Object Instances Programmatically

8-35

public class TestClient2 {
 public static void main(String[] args) {
 String amDef = "oracle.summit.model.viewobjects.AppModule";
 String config = "AppModuleLocal";
 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef, config);
 ViewObject vo = am.findViewObject("SCustomerView1");
 // Add an extra where clause with a new named bind variable
 vo.setWhereClause("credit_rating_id = :theCreditRating");
 vo.defineNamedWhereClauseParam("theCreditRating", null, null);
 vo.setNamedWhereClauseParam("theCreditRating", "4");
 // Show results when :theCreditRating = '4'
 executeAndShowResults(vo);
 Configuration.releaseRootApplicationModule(am, true);
 }
 private static void executeAndShowResults(ViewObject vo) {
 System.out.println("---");
 vo.executeQuery();
 while (vo.hasNext()) {
 Row curCustomer = vo.next();
 // Access the row set of details using the view link accessor attr.
 RowSet orders = (RowSet)curCustomer.getAttribute("SOrdView");
 long numOrders = orders.getEstimatedRowCount();
 System.out.println(curCustomer.getAttribute("Id") + " " +
 curCustomer.getAttribute("Name")+" ["+
 numOrders+" orders]");
 while (orders.hasNext()) {
 Row curOrder = orders.next();
 System.out.println("--> (" + curOrder.getAttribute("Id") + ") " +
 curOrder.getAttribute("Total"));
 }
 }
 }
}

Running TestClient2.java produces output in the Log window, as shown in the
following example. Each customer is listed, and for each customer that has some
orders, the order ID and total appears beneath their name.

202 Simms Athletics [11 orders]
--> (98) 595
--> (113) 4990
--> (114) 567
--> (115) 866.7
--> (116) 3661.24
--> (117) 17489
212 Hamada Sport [22 orders]
--> (108) 149570
--> (196) 761
--> (197) 516.75
...

If you run TestClient2.java with debug diagnostics enabled, you will see the SQL
queries that the view object performed. The view link WHERE clause predicate is used to
automatically perform the filtering of the detail service request rows for the current row
in the CustomerView view object.

Chapter 8
Testing View Object Instances Programmatically

8-36

How to Iterate Over a Master-Detail-Detail Hierarchy
To iterate over a master-detail with an additional level of nesting, follow these basic
steps (as illustrated in the following example):

1. Find the master view object instance.

2. Executes the query.

3. Iterate over the resulting rows.

4. Optionally, do something with the attributes of the master row set.

5. Get the related row set of the detail view object using the view link accessor
attribute.

6. Iterate over the detail row set rows.

7. Optionally, do something with the attributes of the detail row set.

8. Get the related row set of the second detail view object using the view link
accessor attribute.

9. Iterates over the second detail row set rows.

10. Optionally, do something with the second detail row set attributes.

Other than having one additional level of nesting, the following example uses the same
API's used in the TestClient program that was iterating over master-detail read-only
view objects in How to Access a Detail Collection Using the View Link Accessor.

If you use JDeveloper's Refactor > Duplicate functionality on an existing
TestClient.java class, you can quickly "clone" it to create a TestClient2.java
class. For example, the TestClient.java class described in How to Access a Detail
Collection Using the View Link Accessor is suited to this technique.

package oracle.summit.model.viewobjects;

import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.RowSet;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

public class TestClient {
 public static void main(String[] args) {
 TestClient testClient = new TestClient();
 String amDef = "oracle.summit.model.viewobjects.AppModule";
 String config = "AppModuleLocal";
 ApplicationModule am =

Configuration.createRootApplicationModule(amDef,config);
 // Work with your appmodule and view object here
 // 1. Find the Customer view object instance.
 ViewObject customerList = am.findViewObject("SCustomerView1");
 // 2. Execute the query
 customerList.executeQuery();
 // 3. Iterate over the resulting rows
 while (customerList.hasNext()) {
 Row customer = customerList.next();
 // 4. Print the person's email
 System.out.println("Customer: " + customer.getAttribute("Name"));

Chapter 8
Testing View Object Instances Programmatically

8-37

 // 5. Get related rowset of Orders using view link accessor attr.
 RowSet orders = (RowSet)customer.getAttribute("SOrdView");
 // 6. Iterate over the Orders rows
 while (orders.hasNext()) {
 Row order = orders.next();
 // 7. Print out some order attribute values
 System.out.println(" ["+order.getAttribute("CustomerId")+"]
"+
 order.getAttribute("Id")+": "+
 order.getAttribute("Total"));
 if(order.getAttribute("OrderFilled").equals("Y")) {
 // 8. Get related rowset of Items
 RowSet items = (RowSet)order.getAttribute("SItemView");
 // 9. Iterate over the Items rows
 while (items.hasNext()) {
 Row item = items.next();
 // 10. Print out some order items attributes
 System.out.println(" "+
 item.getAttribute("ItemId")+":
$"+
 item.getAttribute("Price"));
 }
 }
 }
 }
 }
}

Running the program produces the output shown in the following example.

Customer: Unisports
 [201] 97: 84000
 210: $9
 211: $1500
Customer: Simms Athletics
 [202] 98: 595
 212: $85
 [202] 113: 4990
 328: $9
 [202] 114: 567
 329: $28
 330: $40.95
 331: $25
...

How to Find a Row and Update a Foreign Key Value
To find a row and update a foreign key value, follow these basic steps (as illustrated in
the following example):

1. Find the view object instance.

2. Construct a Key object to look up the row for the view instance.

3. Use findByKey() to find the row.

4. Optionally, do something with the row's attribute.

The following example shows the main() method finds and updates a foreign key
value to find a row of the Orders view object instance. The sample then prints out the
existing value of the OrderStatusCode attribute before changing the value on the row.

Chapter 8
Testing View Object Instances Programmatically

8-38

package oracle.summit.model.viewobjects;

import java.text.ParseException;
import java.text.SimpleDateFormat;

import java.util.Calendar;
import java.util.Date;

import oracle.jbo.ApplicationModule;
import oracle.jbo.JboException;
import oracle.jbo.Key;
import oracle.jbo.Row;
import oracle.jbo.RowSet;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

public class TestClient3 {
 public TestClient3() {
 super();
 }

 public static void main(String[] args) {
 String amDef = "oracle.summit.model.viewobjects.AppModule";
 String config = "AppModuleLocal";
 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef,
config);
 // 1. Find the Orders view object instance
 ViewObject vo = am.findViewObject("SOrdView1");
 // 2. Construct a new Key to find Order # 100
 Key orderKey = new Key(new Object[] { 100 });
 // 3. Find the row matching this key
 Row[] ordersFound = vo.findByKey(orderKey, 1);
 if (ordersFound != null && ordersFound.length > 0) {
 Row order = ordersFound[0];
 // 4. Print some order information
 Date dateOrdered = (Date) order.getAttribute("DateOrdered");
 String orderDate = dateOrdered.toString();
 System.out.println("Order Date is: " + orderDate);

 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
 Calendar c = Calendar.getInstance();
 try {
 c.setTime(sdf.parse(orderDate));
 } catch (ParseException e) {
 }
 c.add(Calendar.DAY_OF_MONTH, -2);
 // // number of days to add
 orderDate = sdf.format(c.getTime());
 System.out.println(orderDate);
 try {
 // 5. Try setting the ship date to an illegal value
 order.setAttribute("DateShipped", orderDate);
 am.getTransaction().commit();
 } catch (JboException ex) {
 System.out.println("ERROR: " + ex.getMessage());
 }
 // 6. Set the ship date to a legal value
 order.setAttribute("DateShipped", orderDate);
 // 7. Show the value of the ship date was updated successfully
 System.out.println("Ship date is: " +

Chapter 8
Testing View Object Instances Programmatically

8-39

 order.getAttribute("DateShipped"));
 // 8. Show the current value of the customer for this order
 System.out.println("Customer: " + order.getAttribute("CustomerId"));
 // 9. Reassign the order to customer # 210
 order.setAttribute("CustomerId", 210);
 // 10. Show the value of the reference information now
 System.out.println("Customer: " + order.getAttribute("CustomerId"));
 // 11. Rollback the transaction
 am.getTransaction().rollback();
 System.out.println("Transaction canceled");
 }
 Configuration.releaseRootApplicationModule(am, true);
 }

}

Running this example produces the output shown in the following example.

Order Date is: 2012-08-29
2012-08-27
ERROR: JBO-oracle.summit.model.viewobjects.SOrd_Rule_0:
 You cannot have a shipping date that is before the order date
Ship date is: 2012-08-27
Customer: 204
Customer: 210
Transaction canceled

How to Create a New Row for a View Object Instance
To create a new view row instance, follow these basic steps (as illustrated in the
following example):

1. Find the view object instance.

2. Create a new row and insert it into the row set.

3. Set the values of the required attributes in the new row.

4. Commit the transaction.

The following example shows the main() method finds the OrdView view object
instance and inserts a new row into the row set. Because the OrdView view object
is entity-based, the CreatedBy attribute derives its value from the mapped entity object
attribute. The sample then sets values for the remaining attributes before committing
the transaction.

package oracle.summit.model.viewobjects;

import java.util.Date;

import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.domain.DBSequence;

public class TestClient4 {

 public static void main(String[] args) {
 String amDef = "oracle.summit.model.viewobjects.AppModule";
 String config = "AppModuleLocal";

Chapter 8
Testing View Object Instances Programmatically

8-40

 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef,
config);

 // 1. Find the Orders view object instance.
 ViewObject orders = am.findViewObject("SOrdView1");

 // 2. Create a new row and insert it into the row set
 Row newOrder = orders.createRow();
 orders.insertRow(newOrder);
 // Show the entity object-related defaulting for DateOrdered attribute
 System.out.println("DateOrdered defaults to: " +
 newOrder.getAttribute("DateOrdered"));

 // 3. Set values for some of the required attributes
 newOrder.setAttribute("CustomerId", 201);
 newOrder.setAttribute("SalesRepId", 12);
 newOrder.setAttribute("PaymentTypeId", 2);
 newOrder.setAttribute("OrderFilled", "N");

 // 4. Commit the transaction
 am.getTransaction().commit();

 // 5. Retrieve and display the trigger-assigned order id
 DBSequence id = (DBSequence)newOrder.getAttribute("Id");
 System.out.println("Thanks, reference number is " +
 id.getSequenceNumber());
 Configuration.releaseRootApplicationModule(am, true);
 }
}

Running this example produces the results shown in the following example.

DateOrdered defaults to: 2013-3-11
Thanks, reference number is 6

How to Retrieve the Row Key Identifying a Row
To retrieve a row key to identify a row, follow these basic steps (as illustrated in the
following example):

1. Find the view object instance.

2. Construct a key using a supplied value.

3. Find the row with this key.

4. Optionally, do something with the key of the row.

The following example shows the main() method finds the OrdView view object
instance and constructs a row key to find an order number. The findByKey() method
find the OrdView rows with the specified key. The sample then displays the key of the
row, accesses the row set using the ItemView view link accessor, and iterates over the
rows to display the key of each ItemView row.

package oracle.summit.model.viewobjects;

import oracle.jbo.ApplicationModule;
import oracle.jbo.Key;
import oracle.jbo.Row;
import oracle.jbo.RowSet;

Chapter 8
Testing View Object Instances Programmatically

8-41

import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

public class TestClient5 {
 public static void main(String[] args) {
 String amDef = "oracle.summit.model.viewobjects.AppModule";
 String config = "AppModuleLocal";
 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef,
config);
 // 1. Find the Orders view object instance
 ViewObject vo = am.findViewObject("SOrdView1");
 // 2. Construct a key to find order number 100
 Key orderKey = new Key(new Object[] { 100 });
 // 3. Find the Orders row with the key
 Row[] ordersFound = vo.findByKey(orderKey, 1);
 if (ordersFound != null && ordersFound.length > 0) {
 Row order = ordersFound[0];
 // 4. Displays the key of the Orders row
 showKeyFor(order);
 // 5. Accesses row set of Orders using OrderItems view link accessor
 RowSet items = (RowSet)order.getAttribute("SItemView");
 // 6. Iterates over the Items row
 while (items.hasNext()) {
 Row itemRow = items.next();
 // 4. Displays the key of each Items row
 showKeyFor(itemRow);
 }
 }
 Configuration.releaseRootApplicationModule(am, true);
 }

 private static void showKeyFor(Row r) {
 // get the key for the row passed in
 Key k = r.getKey();
 // format the key as "(val1,val2)"
 String keyAttrs = formatKeyAttributeNamesAndValues(k);
 // get the serialized string format of the key, too
 String keyStringFmt = r.getKey().toStringFormat(false);
 System.out.println("Key " + keyAttrs + " has string format " +
 keyStringFmt);
 }

 // Build up "(val1,val2)" string for key attributes
 private static String formatKeyAttributeNamesAndValues(Key k) {
 StringBuffer sb = new StringBuffer("(");
 int attrsInKey = k.getAttributeCount();
 for (int i = 0; i < attrsInKey; i++) {
 if (i > 0)
 sb.append(",");
 sb.append(k.getAttributeValues()[i]);
 }
 sb.append(")");
 return sb.toString();
 }
}

Running the example produces the results shown in the following example. Notice that
the serialized string format of a key is a hexadecimal number that includes information
in a single string that represents all the attributes in a key.

Chapter 8
Testing View Object Instances Programmatically

8-42

Key (100) has string format 000100000003313030
Key (100,156) has string format 000200000003C2020200000002C102
Key (100,157) has string format 000200000003C2020200000002C102
...

What You May Need to Know About Using Partial Keys with
findByKey()

View objects based on multiple entity usages support the ability to find view rows by
specifying a partially populated key. A partial key is a multi-attribute Key object with
some of its attributes set to null. However, there are strict rules about what kinds of
partial keys can be used to perform the findByKey().

If a view object is based on n entity usages, where n > 1, then the view row key is by
default comprised of all of the primary key attributes from all of the participating entity
usages. Only the ones from the first entity object are required to participate in the view
row key, but by default all of them do.

If you allow the key attributes from some secondary entity usages to remain as key
attributes at the view row level, then you should leave all of the attributes that form the
primary key for that entity object as part of the view row key. Assuming you have left
the one or more key attributes in the view row for m of the n entity usages, where (m <=
n), then you can use findByKey() to find rows based on any subset of these m entity
usages. Each entity usage for which you provide values in the Key object, requires that
you must provide non-null values for all of the attributes in that entity's primary key.

You have to follow this rule because when a view object is based on at least
one or more entity usages, its findByKey() method finds rows by delegating to
the findByPrimaryKey() method on the entity definition corresponding to the first
entity usage whose attributes in the view row key are non-null. The entity definition's
findByPrimaryKey() method requires all key attributes for any given entity object to
be non-null in order to find the entity row in the cache.

As a concrete example, imagine that you have a OrderInfoVO view object with
a OrderEO entity object as its primary entity usage, and an AddressEO entity as
secondary reference entity usage. Furthermore, assume that you leave the Key
Attribute property of both of the following view row attributes set to true:

• OrderId — primary key for the OrderEO entity

• AddressId — primary key for the AddressEO entity

The view row key will therefore be the (OrderId, AddressId) combination. When you
do a findByKey(), you can provide a Key object that provides:

• A completely specified key for the underlying OrderEO entity

Key k = new Key(new Object[]{new Number(200), null});

• A completely specified key for the underlying AddressEO entity

Key k = new Key(new Object[]{null, new Number(118)});

• A completely specified key for both entities

Key k = new Key(new Object[]{new Number(200), new Number(118)});

When a valid partial key is specified, the findByKey() method can return multiple rows
as a result, treating the missing entity usage attributes in the Key object as a wildcard.

Chapter 8
Testing View Object Instances Programmatically

8-43

How to Authenticate Test Users in the Test Client
If you have enabled ADF Security for your application and provisioned the jazn-
data.xml file with test users, you will need to include method calls to authenticate a
user before you run the test client. To authenticate a user in the test client, follow these
basic steps (as illustrated in the following exxample):

1. Create the authentication service.

2. Pass in the login credentials for a test user defined in the jazn-data.xml file.

3. If authentication succeeds, then test the application module.

4. Log the user out.

For details about how to run the Configure ADF Security wizard to enable ADF
Security and how to create test users in JDeveloper's identity store, see ADF Security
Process Overview.

package oracle.summit.model.test;
import oracle.jbo.ApplicationModule;
import oracle.jbo.Key;
import oracle.jbo.Row;
import oracle.jbo.RowSet;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

import oracle.adf.share.security.AuthenticationService;
import oracle.adf.share.security.authentication.AuthenticationServiceUtil;
import oracle.adf.share.ADFContext;
import oracle.adf.share.security.SecurityContext;
import oracle.adf.share.security.SecurityEnv;

import javax.security.auth.Subject;

public class TestAuthenticationClient {
 public static void main(String[] args) {
 String amDef = "test.TestAuthModule";
 String config = "TestAuthModuleLocal";

 // 1. Create authentication service.
 AuthenticationService authService =
 AuthenticationServiceUtil.getAuthenticationService();
 try
 {
 // 2. Pass in user id and password defined in local identity store.
 authService.login("tester1", "welcome1");
 }
 catch (Exception e)
 {

 }

 // Uncomment to output authentication status
 // String userName =
 ADFContext.getCurrent().getSecurityContext().getUserName();

 // System.out.println("*** userName : " + userName);
 // Subject subject =
 ADFContext.getCurrent().getSecurityContext().getSubject();

Chapter 8
Testing View Object Instances Programmatically

8-44

 // System.out.println("Subject : " + subject);

 // 3. Test application module if authentication succeeds.
 if (ADFContext.getCurrent().getSecurityContext().isAuthenticated()) {
 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef,config);
 ViewObject vo = am.findViewObject("TestView");
 // Work with your appmodule and view object here
 Configuration.releaseRootApplicationModule(am,true);

 // 4. Log out test user.
 authService.logout();

 // Uncomment to report logout success
 // boolean isAuthenticated =
 ADFContext.getCurrent().getSecurityContext().isAuthenticated();
 // System.out.println("*** isAuthenticated : " + isAuthenticated);
 }

 }
}

Chapter 8
Testing View Object Instances Programmatically

8-45

9
Tuning View Object Performance

This chapter describes advanced techniques you can use while designing and working
with your ADF view objects in an Oracle ADF application.
This chapter includes the following sections:

• About View Object Tuning

• Maintaining New Row Consistency Between View Objects Based on the Same
Entity

• Using Bind Variables for Parameterized Queries

• Working with Multiple Row Sets and Row Set Iterators

• Using Entity-Based View Objects for Read-Only Data

• Using SQL Tracing to Identify Ill-Performing Queries

• Using the Appropriate View Object Tuning Settings

• Using Fetch Size to Limit the Maximum Number of Records Fetched for a View
Object

• Using Range Size to Present and Scroll Data a Page at a Time

• Using Range Paging to Efficiently Scroll Through Large Result Sets

• Using Forward Only Mode to Avoid Caching View Rows

• Using Retain Row Set to Optimize View Link Accessor Access

• Using Dynamic Attributes On View Objects to Store UI State

About View Object Tuning
JDeveloper provides you many tools to configure ADF Business Components view
objects and improve their performance during transactions.

You can use view objects to read rows of data, create and store rows of transient data,
as well as automatically coordinate inserts, updates, and deletes made by end users
with your underlying business objects. How you design and use your view objects can
definitely affect their performance at runtime. The JDeveloper design time for ADF
Business Components provides a number of features that you can use to configure
your view objects to get the best possible performance.

Maintaining New Row Consistency Between View Objects
Based on the Same Entity

ADF Business Components automatically inserts a new row created in one view object
instance into other view object instances based on the same entity object.

When multiple instances of entity-based view objects in an application module are
based on the same underlying entity object, a new row created in one of them can be

9-1

automatically added (without having to requery) to the row sets of the others to keep
your user interface consistent or simply to consistently reflect new rows in different
application pages for a pending transaction. Consider an application that displays a
customer's list of orders. If the customer goes to create a new order, this task is
performed through a different view object and handled by a custom application module
method. Using the view object new row consistency feature, the newly created order
automatically appears in the customer's list of open orders without having to requery
the database.

For historical reasons, this capability is known as the view link consistency feature
because in prior releases of Oracle Application Development Framework (Oracle
ADF) the addition of new rows to other relevant row sets only was supported for
detail view object instances in a view link based on an association. Now this view link
consistency feature works for any view objects for which it is enabled, regardless of
whether they are involved in a view link or not.

What Happens at Runtime: When View Link Consistency is Enabled
Consider two entity-based view objects OrdersViewSummary and OrdersView both
based on the same underlying Orders entity object. When a new row is created in
a row set for one of these view objects (like OrdersView) and the row's primary key is
set, any of the other row sets for view objects based on the same Orders entity object
(like OrdersViewSummary) receive an event indicating a new row has been created. If
their view link consistency flag is enabled, then a copy of the new row is inserted into
their row set as well.

Note:

By default the view link consistency mechanism adds new rows in an
unqualified way. If you want to prevent the new rows from being added to
the row sets of all participating view objects, you can write a filter expression
on the RowMatch object to qualify the row before it is added to the row set.
For more information, see Using RowMatch to Qualify Which New, Unposted
Rows Get Added to a Row Set.

What You May Need to Know About Changing the Default View Link
Consistency Setting

You can use the overview editor for application module configurations (on the
bc4j.xcfg file) to control the default setting for the view link consistency feature using
the jbo.viewlink.consistent configuration parameter.

To display the application module configuration overview editor, double-click the
application module in the Applications window and, in the overview editor, select the
Configurations navigation tab. Then, in the Configurations page of the overview
editor, click the configuration hyperlink. In the application module configuration
overview editor, select the Properties tab and click Add Property to select the
property from the Add Property dialog and click OK.

The default setting for this parameter is the word DEFAULTwhich has the following
meaning. If your view object has:

Chapter 9
Maintaining New Row Consistency Between View Objects Based on the Same Entity

9-2

• A single entity usage, view link consistency is enabled

• Multiple entity usages, and:

– If all secondary entity usages are marked as contributing reference
information, then view link consistency is enabled

– If any secondary entity usage marked as not being a reference view link
consistency is disabled.

You can globally disable this feature by setting the jbo.viewlink.consistent to the
value false in your configuration. Conversely, you could globally enable this feature by
setting jbo.viewlink.consistent to the value true, but Oracle does not recommend
doing this. Doing so would force view link consistency to be set on for view objects
with secondary entity usages that are not marked as a reference which presently do
not support the view link consistency feature well.

To set the feature programmatically, use the setAssociationConsistent() API on any
RowSet. When you call this method on a view object, it affects its default row set.

Using RowMatch to Qualify Which New, Unposted Rows Get Added to
a Row Set

If a view object has view link consistency enabled, any new row created by another
view object based on the same entity object is added to its row set. By default the
mechanism adds new rows in an unqualified way. If your view object has a design-time
WHERE clause that queries only a certain subset of rows, you can apply a RowMatch
object to your view object to perform the same filtering in-memory. The filtering
expression of the RowMatch object you specify prevents new rows from being added
that wouldn't make sense to appear in that view object.

For example, an OrdersByStatus view object might include a design time WHERE clause
like this:

WHERE /* ... */ AND STATUS LIKE NVL(:StatusCode,'%')

Its custom Java class overrides the create() method as shown in the following
example to force view link consistency to be enabled. It also applies a RowMatch object
whose filtering expression matches rows whose Status attribute matches the value of
the :StatusCode named bind variable (or matches any row if :StatusCode = '%'). This
RowMatch filter is used by the view link consistency mechanism to qualify the row that
is a candidate to add to the row set. If the row qualifies by the RowMatch, it is added.
Otherwise, it is not.

// In OrdersByStatusImpl.java
protected void create() {
 super.create();
 setAssociationConsistent(true);
 setRowMatch(new RowMatch("Status = :StatusCode or :StatusCode = '%'"));
}

See Performing In-Memory Filtering with RowMatch for more information on creating
and using a RowMatch object. For a list of supported SQL operators see Table 11-2. For
a list of supported SQL function, see Table 11-3.

Chapter 9
Maintaining New Row Consistency Between View Objects Based on the Same Entity

9-3

Note:

If the RowMatch facility does not provide enough control, you can override
the view object's rowQualifies() method to implement a custom filtering
solution. Your code can determine whether a new row qualifies to be added
by the view link consistency mechanism or not.

What You May Need to Know About the Dynamic WHERE Clause and
View Link Consistency

If you call setWhereClause() on a view object to set a dynamic WHERE clause, the
view link consistency feature is disabled on that view object. If you have provided an
appropriate custom RowMatch object to qualify new rows for adding to the row set, you
can call setAssociationConsistent(true) after setWhereClause() to reenable view
link consistency.

If a row set has view link consistency enabled, then new rows added due to creation
by other row sets are added to the bottom of the row set.

If a row set has view link consistency enabled, then when you call the executeQuery()
method, any qualifying new, unposted rows are added to the top of the row set before
the queried rows from the database are added.

Using Bind Variables for Parameterized Queries
Use bind variables when values of the WHERE clause can change with every execution.

Whenever the WHERE clause of your query includes values that might change from
execution to execution, you should use named bind variables. The Create View
Criteria dialog that you display from the Query page of the view object overview
editor makes this an easy task. Their use also protects your application against
abuse through SQL injection attacks by malicious end-users. For information about
defining view criteria with bind variables, see How to Create Named View Criteria
Declaratively.

Use Bind Variables to Avoid Reparsing of Queries
Bind variables are place holders in the SQL string whose value you can easily change
at runtime without altering the text of the SQL string itself. Since the query text
doesn't change from execution to execution, the database can efficiently reuse the
same parsed statement each time. Avoiding reparsing of your statement alleviates
the database from having to continually re-determine its query optimization plan and
eliminates contention by multiple end-users on other costly database resources used
during this parsing operation. This savings leads to higher runtime performance of
your application. See How to Add WHERE Clause Bind Variables to a View Object
Definition for details on how to use named bind variables.

Chapter 9
Using Bind Variables for Parameterized Queries

9-4

Use Bind Variables to Prevent SQL-Injection Attacks
Using bind variables for parameterized WHERE clause values is especially important if
their values will be supplied by end-users of your application. Consider the following
example. It adds a dynamic WHERE clause formed by concatenating a user-supplied
parameter value into the statement.

// EXAMPLE OF BAD PRACTICE, Do not follow this approach!
String userSuppliedValue = ... ;
yourViewObject.setWhereClause("BANK_ACCOUNT_ID = "+userSuppliedValue);

A user with malicious intentions — if able to learn any details about your application's
underlying database schema — could supply a carefully constructed "bank account
number" as a field value or URL parameter like:

BANK_ACCOUNT_ID

When the code in the above example concatenates this value into the dynamically
applied where clause, what the database sees is a query predicate like this:

WHERE (BANK_ACCOUNT_ID = BANK_ACCOUNT_ID)

This WHERE clause retrieves all bank accounts instead of just the current user's,
perhaps allowing the hacker to view private information of another person's account.
This technique of short-circuiting an application's WHERE clause by trying to supply
a maliciously constructed parameter value into a SQL statement is called a SQL
injection attack. Using named bind variables instead for these situations as shown in
the followign example prevents the vulnerability.

// Best practice using named bind variables
String userSuppliedValue = ... ;
yourViewObject.setWhereClause("BANK_ACCOUNT_ID = :BankAcccountId");
yourViewObject.defineNamedWhereClauseParam("BankAcccountId", null, null);
yourViewObject.setNamedWhereClauseParam("BankAcccountId",userSuppliedValue);

If a malicious user supplies an illegal value in this case, they receive an error your
application can handle instead of obtaining data they are not suppose to see.

Log Bind Parameter Values
When you want to be able to determine the bind parameter values that are used to
execute the queries of your view objects, you can configure the log level before a
test run or during a debug session. The log level you specify will determine the type
and quantity of log messages. To view bind parameter information, you must set a
minimum Java log level of CONFIG. For details about using and configuring the Log
Analyzer, see How to Use the Log Analyzer to View Log Messages.

Alternatively, you can log bind parameter values programmatically, by overriding the
bindParametersForCollection() method on the view object's ViewObjectImpl class.
This method is used to log bind parameter names and values used in the query. Your
implementation may log the bind parameter values, which is especially useful in those
scenarios where the bind parameter is generated by the runtime. For example, when
an ADF Faces Tree component is built using view link association, the nodes will be
populated by bind parameters that you may log. The following example shows how to
define the bindParametersForCollection() method for this purpose.

Chapter 9
Using Bind Variables for Parameterized Queries

9-5

@Override protected void bindParametersForCollection(QueryCollection qc,
 Object[] params,
 PreparedStatement stmt) throws
SQLException { String vrsiName = null;
 if (qc != null) {
 ViewRowSetImpl vrsi = qc.getRowSetImpl();
 vrsiName = vrsi.isDefaultRS() ? "<Default>" : vrsi.getName();
 }
 String voName = getName();
 String voDefName = getDefFullName();
 if (qc != null) {
 System.out.println("----[Exec query for VO=" + voName + ", RS=" +
 vrsiName + "]----");
 } else {
 System.out.println("----[Exec COUNT query for VO=" + voName +
 "]----");
 }
 System.out.println("VODef =" + voDefName);
 System.out.println(getQuery());
 if (params != null) {
 if (getBindingStyle() == SQLBuilder.BINDING_STYLE_ORACLE_NAME) {
 StringBuilder binds = new StringBuilder("BindVars:(");
 int paramNum = 0;
 for (Object param : params) {
 paramNum++;
 Object[] nameValue = (Object[])param;
 String name = (String)nameValue[0];
 Object value = nameValue[1];
 if (paramNum > 1) {
 binds.append(",");
 }
 binds.append(name).append("=").append(value);
 }
 binds.append(")");
 System.out.println(binds);
 }
 }
 super.bindParametersForCollection(qc, params, stmt);

Working with Multiple Row Sets and Row Set Iterators
JDeveloper allows you to create secondary, named rowsets and secondary, named
rows set iterators.

While you typically work with a view object's default row set, you can call the
createRowSet() method on the ViewObject interface to create secondary, named
row sets based on the same view object's query. One situation where this could
make sense is when your view object's SQL query contains named bind variables.
Since each RowSet object stores its own copy of bind variable values, you could use
a single view object to produce and process multiple row sets based on different
combinations of bind variable values. You can find a named row set you've created
using the findRowSet() method. When you're done using a secondary row set, call its
closeRowSet() method.

For any RowSet, while you typically work with its default row set iterator, you can
call the createRowSetIterator() method of the RowSet interface to create secondary,
named row set iterators. You can find a named row set iterator you've created using

Chapter 9
Working with Multiple Row Sets and Row Set Iterators

9-6

the findRowSetIterator() method. When you're done using a secondary row set
iterator, call its closeRowSetIterator() method.

Performance Tip:

When you need to perform programmatic iteration over a result set, create
a secondary iterator to avoid disturbing the current row of the default row
set iterator. For example, through the ADF Model declarative data binding
layer, user interface pages in your application work with the default row set
iterator of the default row set of view objects in the application module's data
model. In this scenario, if you did not create a secondary row set iterator for
the business logic you write to iterate over a view object's default row set,
you would consequently change the current row of the default row set iterator
used by the user interface layer.

Using Entity-Based View Objects for Read-Only Data
Depending on functional requirements, JDeveloper allows you to design read-only
view objects. You use such view objects for SQL-validation and displaying list of
values in a selection component to name a few.

Typically view objects used for SQL-based validation purposes, as well as for
displaying the list of valid selections in a dropdown list, can be read-only. You need to
decide what kind of functionality your application requires and design the view object
accordingly.

Best Practice:

In previous releases, an Oracle best practice recommendation for read-only
data had been to create read-only, custom SQL view objects. The purpose of
this recommendation had been to avoid the overhead of storing the relating
rows in an entity object cache. Oracle has now optimized a solution such that
this best practice is no longer relevant.

In the current release, when you need to create a read-only view object for
data lookup, use the entity-based view object and deselect the Updatable
option in the Entity Objects page of the view object overview editor. This
approach has two benefits: First, it benefits from the design time editors
which aid in generating the SQL query, and second, if you ever decide to
make the view object updatable, it is already backed by an updatable entity
object.

The alternative of creating a read-only, custom SQL view object still has
merit when you can specify a fully fledged SQL query, and will be especially
useful for cases where Unions and Group By Queries cannot be expressed
using entity objects.

View objects can either be related to underlying entity objects or not. When a view
object is related to one or more underlying entity objects the default behavior supports
creating new rows and modifying or removing queried rows. However, the update

Chapter 9
Using Entity-Based View Objects for Read-Only Data

9-7

feature can be disabled by deselecting Updatable in the overview editor for the entity-
based view object, as shown in Figure 9-1.

Figure 9-1 Deselecting the Updatable Option for an Entity-based View Object

The alternative is to create a read-only view object and define the SQL query by
selecting Write Custom SQL in the Query page of the overview editor. For the
Business Components developer not comfortable with constructing a complex SQL
statement, it will always be more convenient to create a nonupdatable view object
based on an entity object since the editor simplifies the task of creating the query.
Entity-based view objects that you set to nonupdatable compare favorably to read-
only, custom SQL view objects:

• There is the ability to optimize the select list at runtime to include only those
attributes that are required by the user interface

• There is no significant performance degradation incurred by using the entity object
to create the local cache

• The data in the view object will reflect the state of the local cache rather than need
to return to the database for each read operation

• The data in the local cache will stay consistent should another view object you
define need to perform an update on the nonupdatable view object's base entity
object.

So, while there is a small amount of runtime overhead associated with the coordination
between view object rows and entity object rows (estimates show less than 5%
overhead), weigh this against the ability to keep the view object definition entirely
declarative and maintain a customizable view object. Custom SQL view objects are
not customizable but they can be used to perform Unions and Group By queries that
cannot be expressed in entity objects. Custom SQL view objects are also useful in
SQL-based validation queries used by the view object-based Key Exists validator.

When data is not read-only, the best (and only) choice is to create entity-based view
objects. Entity-based view objects that are updatable (default behavior) are the only
way to pickup entity-derived attribute default values, reflect pending changes made to

Chapter 9
Using Entity-Based View Objects for Read-Only Data

9-8

relevant entity object attributes through other view objects in the same transaction, and
reflect updated reference information when foreign key attribute values are changed is
to use an entity-based view object.

Using SQL Tracing to Identify Ill-Performing Queries
JDeveloper allows you to tune queries so that the query plan that is used by the
database query optimizer is not doing a full table scan and creating performance
overheads.

After deciding whether your view object should be mapped to entities or not, your
attention should turn to the query itself. On the Query page of the view object overview
editor, click the Test and Explain button to see the query plan that the database query
optimizer will use. If you see that it is doing a full table scan, you should consider
adding indexes or providing a value for the Query Optimizer Hint field on the Tuning
section of the overview editor's General page. This will let you explicitly control which
query plan will be used. These facilities provide some useful tools to the developer
to evaluate the query plans for individual view object SQL statements. However, their
use is not a substitute for tracing the SQL of the entire application to identify poorly
performing queries in the presence of a production environment's amount of data and
number of end users.

You can use the Oracle database's SQL Tracing facilities to produce a complete log of
all SQL statements your application performs. The approach that works in all versions
of the Oracle database is to issue the command:

ALTER SESSION SET SQL_TRACE TRUE

Specifically in version 10g of Oracle, the DBA would need to grant ALTER SESSION
privilege in order to execute this command.

This command enables tracing of the current database session and logs all SQL
statements to a server-side trace file until you either enter ALTER SESSION SET
SQL_TRACE FALSE or close the connection. To simplify enabling this option to trace
your Fusion web applications, override the afterConnect() method of your application
module (or custom application module framework extension class) to conditionally
perform the ALTER SESSION command to enable SQL tracing based on the presence of
a Java system property as shown in the following example.

// In YourCustomApplicationModuleImpl.java
protected void afterConnect() {
 super.afterConnect();
 if (System.getProperty("enableTrace") != null) {
 getDBTransaction().executeCommand("ALTER SESSION SET SQL_TRACE TRUE");
 }
}

After producing a trace file, you use the TKPROF utility supplied with the database
to format the information and to better understand information about each query
executed like:

• The number of times it was (re)parsed

• The number of times it was executed

• How many round-trips were made between application server and the database

• Various quantitative measurements of query execution time

Chapter 9
Using SQL Tracing to Identify Ill-Performing Queries

9-9

Using these techniques, you can decide which additional indexes might be required
to speed up particular queries your application performs, or which queries could be
changed to improve their query optimization plan. For details about working with the
TKPROF utility, see sections "Understanding SQL Trace and TKPROF" and "Using the
SQL Trace Facility and TKPROF" in the "Performing Application Tracing" chapter of
the Oracle Database SQL Tuning Guide.

Note:

The Oracle database provides the DBMS_MONITOR package that further
simplifies SQL tracing and integrates it with Oracle Enterprise Manager for
visually monitoring the most frequently performed query statements your
applications perform.

Using the Appropriate View Object Tuning Settings
The view object overview editor’s Tuning section provides various options to tune the
query’s performance.

The Tuning section on the General page of the view object overview editor lets you
set various options that can dramatically effect your query's performance. Figure 9-2
shows the default options that the new view object defines.

Chapter 9
Using the Appropriate View Object Tuning Settings

9-10

Figure 9-2 View Object Default Tuning Options

What You May Need to Know About the Retrieve from Database
Options

In the Tuning section of the view object overview editor General page, the Retrieve
from the Database group box controls how the view object retrieves rows from the
database server. The options for the fetch mode are All Rows, Only Up To Row
Number, At Most One Row, and No Rows. Most view objects will use the default All
Rows option, which will be retrieved As Needed (default) or All at Once depending
on which option you choose.

Note:

The All at Once option does not enforce a single database round trip to fetch
the rows specified by the view object query. The As Needed and All at Once
options work in conjunction with the value of in Batches of (also known as
fetch size) to determine the number of round trips. For best database access
performance, you should consider changing the fetch size as described in
Consider Whether Fetching One Row at a Time is Appropriate.

Chapter 9
Using the Appropriate View Object Tuning Settings

9-11

The As Needed option ensures that an executeQuery() operation on the view object
initially retrieves only as many rows as necessary to fill the first page of a display,
whose number of rows is set based on the view object's range size. If you use
As Needed, then you will require only as many database round trips as necessary
to deliver the number of rows specified by the initial range size, as defined by the
Range Size option. Whereas, if you use All at Once, then the application will perform
as many round trips as necessary to deliver all the rows based on the value of in
Batches of (fetch size) and the number of rows identified by the query.

For view objects whose WHERE clause expects to retrieve a single row, set the option
to At Most One Row for best performance. This way, the view object knows you don't
expect any more rows and will skip its normal test for that situation. Finally, if you use
the view object only for creating new rows, for optimal performance set the option to
No Rows so no query will ever be performed.

Before you begin:

It may be helpful to have an understanding of view objects. For more information, see
About View Objects.

To set view object row fetch options:

1. In the Applications window, double-click the view object that you want to edit.

2. In the overview editor, click the General navigation tab and expand the Tuning
section.

3. In the Retrieve from the Database group box, select the option to control how
many rows should be fetched from the database.

4. Enter a Query Optimizer Hint hat the database will use to optimize the query for
this view object.

At runtime, the hint is added immediately after the SELECT keyword in the query.
For example, you would enter ALL_ROWS when you want to retrieve all rows as
quickly as possible or FIRST_ROWS when you want to retrieve the first rows as
quickly as possible (rather than optimize the retrieval of all rows).

Consider Whether Fetching One Row at a Time is Appropriate
The fetch size controls how many rows will be returned in each round trip to the
database. By default, the framework will fetch rows in batches of one row at a time.
If you are fetching any more than one row, you will gain efficiency by setting this
in Batches of value on the Tuning section of the General page of the view object
overview editor.

Unless your query actually fetches just one row, leaving the default fetch size of one
(1) in the in Batches of field is not recommended due to many unnecessary round
trips between the application server and the database. Oracle strongly recommends
considering the appropriate value for each view object's fetch size.

If you are displaying results n rows at a time in the user interface, for simple web
pages, it is good to set the fetch size to at least n+3 so that each page of results can
be retrieved in a single round trip to the database. However the higher the number, the
larger the client-side buffer required, so avoid setting this number to values the exceed
Oracle JDBC fetch size recommendations.

In general, fetch size should be consistent with Oracle database 12c
recommendations, which state fetch size should be no more than 100,

Chapter 9
Using the Appropriate View Object Tuning Settings

9-12

although in some cases larger size may be appropriate. For more information,
see Oracle JDBC Memory Management for Oracle Database 12c located
at http://www.oracle.com/technetwork/database/application-development/jdbc-
memory-management-12c-1964666.pdf.

Before you begin:

It may be helpful to have an understanding of view objects. For more information, see
About View Objects.

To limit the number of database roundtrips for a view object:

1. In the Applications window, double-click the view object that you want to edit.

2. In the overview editor, click the General navigation tab and expand the Tuning
section.

3. In the Retrieve from the Database group box, select All Rows or Only up to
Row Number.

4. In the In Batches of field, enter the number of rows to return from each database
roundtrip.

5. Select the option All at Once when you want to fetch all rows whether or not the
number of rows fetched fits within the web page displaying the row set. Otherwise,
to fetch only the number of rows necessary to fill the first page of the web page
displaying the row se, leave the default setting As Needed selected.

If you select All at Once, then the application will perform as many roundtrips as
necessary to deliver all the rows based on the value of In Batches of (fetch size)
and the number of rows identified by the query.

Specify a Query Optimizer Hint if Necessary
The Query Optimizer Hint field allows you to specify an optional hint to the Oracle
query optimizer to influence what execution plan it will use. You can set this hint in the
Tuning page of the overview editor for the view object, as shown in Figure 9-2.

At runtime, the hint you provide is added immediately after the SELECT keyword in
the query, wrapped by the special comment syntax /*+ YOUR_HINT */. Two common
optimizer hints are:

• FIRST_ROWS — to hint that you want the first rows as quickly as possible

• ALL_ROWS — to hint that you want all rows as quickly as possible

There are many other optimizer hints that are beyond the scope of this manual to
document. Reference the Oracle database reference manuals for more information on
available hints.

Before you begin:

It may be helpful to have an understanding of view objects. For more information, see
About View Objects.

To edit a view object definition:

1. In the Applications window, double-click the view object that you want to edit.

2. In the overview editor, click the General navigation tab and expand the Tuning
section.

Chapter 9
Using the Appropriate View Object Tuning Settings

9-13

http://www.oracle.com/technetwork/database/application-development/jdbc-memory-management-12c-1964666.pdf
http://www.oracle.com/technetwork/database/application-development/jdbc-memory-management-12c-1964666.pdf

3. In the Retrieve from the Database group box, select the option to control how
many rows should be fetched from the database.

4. Enter a Query Optimizer Hint hat the database will use to optimize the query for
this view object.

At runtime, the hint is added immediately after the SELECT keyword in the query.
For example, you would enter ALL_ROWS when you want to retrieve all rows as
quickly as possible or FIRST_ROWS when you want to retrieve the first rows as
quickly as possible (rather than optimize the retrieval of all rows).

Using Fetch Size to Limit the Maximum Number of Records
Fetched for a View Object

You can set an upper bound on the number of rows a view object retrieves. You can
configure a global threshold for all view object queries or a threshold for a specific ADF
view object query.

When your application needs to iterate over the rows of the view object query result,
you may want to specify a maximum number of records to fetch. The default maximum
fetch size of a view object is minus one (-1), which indicates there should be no limit
to the number of rows that can be fetched. By default, rows are fetched as needed, so
-1 does not imply a view object will necessarily fetch all the rows. It does means that if
you attempt to iterate through all the rows in the query result, you will get them all.

To put an upper bound on the maximum number of rows that a view object will
retrieve, use the following settings:

• You can configure a global threshold for all view objects queries using the Row
Fetch Limit property on the Business Components page of the overview editor for
the adf-config.xml file. You can locate the file in the Application Resources panel
by expanding the Descriptors and ADF META-INF nodes.

Note: Since Row Fetch Limit specifies a global threshold for all query operations
in the application (including iterator binding property RowCountThreshold used to
determine an estimated row count for the iterator result set), using this property
means you can avoid changing settings for individual query operations where that
operation's default behavior allows all rows to be fetched. If you do specify a fetch
limit for individual view objects using the Max Fetch Size, then the Row Fetch
Limit setting will be ignored in those cases. Note that the Row Fetch Limit setting
is also ignored if the view object implementation class overrides getRowLimit() to
return an appropriate value for a view object.

• You can configure a threshold for a specific view object query using the Only up
to row number field selected in the Tuning section of the General page of the
overview editor for the view object. Note that the Property Inspector displays this
setting in the Max Fetch Size property.

Tip:

If you want to set the global threshold for query operations using Row Fetch
Limit and you still need to allow specific view object queries to return all
available rows, then you can set the Max Fetch Size with the Only up to
row number field for those view objects to a very large number.

Chapter 9
Using Fetch Size to Limit the Maximum Number of Records Fetched for a View Object

9-14

For example, if you write a query containing an ORDER BY clause and only want
to return the first n rows to display the "Top-N" entries in a page, you can use
the overview editor for the view object to specify a value for the Only up to row
number field in the Tuning section of the General page. For example, to fetch only
the first five rows, you would enter "5" in this field. This is equivalent to calling the
setMaxFetchSize() method on your view object to set the maximum fetch size to 5.
The view object will stop fetching rows when it hits the maximum fetch size. Often
you will combine this technique with specifying a Query Optimizer Hint of FIRST_ROWS
also on the Tuning section of the General page of the overview editor. This gives a hint
to the database that you want to retrieve the first rows as quickly as possible, rather
than trying to optimize the retrieval of all rows.

Using Range Size to Present and Scroll Data a Page at a
Time

You can configure an ADF view object to retrieve and manage a predetermined
number of data-rows on each page.

To present and scroll through data a page at a time, you can configure a view object to
manage for you an appropriately sized range of rows. The range facility allows a client
to easily display and update a subset of the rows in a row set, as well as easily scroll
to subsequent pages, n rows as a time. You call setRangeSize() to define how many
rows of data should appear on each page. The default range size is one (1) row. A
range size of minus one (-1) indicates the range should include all rows in the row set.

Note:

When using the declarative bindings in the ADF Model layer, the iterator
binding in the page definition file has a RangeSize attribute. At runtime,
the iterator binding invokes the setRangeSize() method on its corresponding
row set iterator, passing the value of this RangeSize attribute. The ADF
design time by default sets this RangeSize attribute to 10 rows for most
iterator bindings. An exception is the range size specified for a List binding to
supply the set of valid values for a UI component like a dropdown list. In this
case, the default range size is minus one (-1) to allow the range to include all
rows in the row set.

When you set a range size greater than one, you control the row set paging
behavior using the iterator mode. The two iterator mode flags you can pass to the
setIterMode() method are:

• RowIterator.ITER_MODE_LAST_PAGE_PARTIAL

In this mode, the last page of rows may contain fewer rows than the range size.
For example, if you set the range size to 10 and your row set contains 23 rows, the
third page of rows will contain only three rows. This is the style that works best for
Fusion web applications.

• RowIterator.ITER_MODE_LAST_PAGE_FULL

In this mode, the last page of rows is kept full, possibly including rows at the top
of the page that had appeared at the bottom of the previous page. For example, if

Chapter 9
Using Range Size to Present and Scroll Data a Page at a Time

9-15

you set the range size to 10 and your row set contains 23 rows, the third page of
rows will contain 10 rows, the first seven of which appeared as the last seven rows
of page two. This is the style that works best for desktop-fidelity applications using
Swing.

Using Range Paging to Efficiently Scroll Through Large
Result Sets

The Fusion web application allows you to limit very large query results by pre-
determining how many ADF Business Components rows the query fetches. If it is
very large, the end-user can be prompted to provide more filter criteria.

As a general rule, for highest performance, Oracle recommends building your
application in a way that avoids giving the end user the opportunity to scroll
through very large query results. To enforce this recommendation, call the
getEstimatedRowCount() method on a view object to determine how many rows would
be returned by the user's query before actually executing the query and allowing the
user to proceed. If the estimated row count is unreasonably large, your application can
demand that the end-user provide additional search criteria.

However, when you must work with very large result sets, typically over 100 rows, you
can use the view object's access mode called "range paging" to improve performance.
The feature allows your applications to page back and forth through data, a range
of rows at a time, in a way that is more efficient for large data sets than the default
"scrollable" access mode.

The range paging access mode is typically used for paging through read-only row
sets, and often is used with read-only view objects. You allow the user to find the row
they are looking for by paging through a large row set with range paging access mode,
then you use the Key of that row to find the selected row in a different view object for
editing.

Range paging for view objects supports a standard access mode and a variation of
the standard access mode that combines the benefits of range paging and result set
scrolling with a minimum number of visits to the database. These modes for the view
object range paging feature include:

• RANGE_PAGING, standard access mode fetches the number of rows specified by
a range size. In this mode, the number of rows that may be scrolled without
requerying the database is determined by a range size that you set. The default
is to fetch a single row, but it is expected that you will set a range size equal
to the number of rows you want to be able to display to the user before they
scroll to the next result set. The application requeries the database each time a
row outside of the range is accessed by the end user. Thus, scrolling backward
and forward through the row set will requery the database. For clarification about
this database-centric paging strategy, see Understanding How Oracle Supports
"TOP-N" Queries.

• RANGE_PAGING_INCR, incremental access mode gives the UI designer more
flexibility for the number of rows to display at a time while keeping database
queries to a minimum. In this mode, the UI incrementally displays the result set
from the memory cache and thus supports scrolling within a single database
query. The number of rows that the end user can scroll though in a single query
is determined by the range size and a range paging cache factor that you set.
For example, suppose that you set the range size to 4 and the cache factor to

Chapter 9
Using Range Paging to Efficiently Scroll Through Large Result Sets

9-16

5. Then, the maximum number of rows to cache in memory will be 4*5 = 20. For
further explanation of the caching behavior, see What Happens When View Rows
are Cached When Using Range Paging.

Note:

Additionally, the view object supports a RANGE_PAGING_AUTO_POST access
mode to accommodate the inserting and deleting of rows from the row
set. This mode behaves like the RANGE_PAGING mode, except that it eagerly
calls postChanges() on the database transaction whenever any changes are
made to the row set. However, this mode is typically not appropriate for use
in Fusion web applications unless you can guarantee that the transaction will
definitely be committed or rolled-back during the same HTTP request. Failure
to heed this advice can lead to strange results in an environment where both
application modules and database connections can be pooled and shared
serially by multiple different clients.

Understanding How Oracle Supports "TOP-N" Queries
The Oracle database supports a feature called a "Top-N" query to efficiently return the
first n ordered rows in a query. For example, if you have a query like:

SELECT EMPNO, ENAME,SAL FROM EMP ORDER BY SAL DESC

If you want to retrieve the top 5 employees by salary, you can write a query like:

SELECT * FROM (
 SELECT X.*,ROWNUM AS RN FROM (
 SELECT EMPNO,ENAME,SAL FROM EMP ORDER BY SAL DESC
) X
) WHERE RN <= 5

which gives you results like:

 EMPNO ENAME SAL RN
---------- -------- ------ ----
 7839 KING 5000 1
 7788 SCOTT 3000 2
 7902 FORD 3000 3
 7566 JONES 2975 4
 7698 BLAKE 2850 5

The feature is not only limited to retrieving the first n rows in order. By adjusting the
criteria in the outermost WHERE clause you can efficiently retrieve any range of rows in
the query's sorted order. For example, to retrieve rows 6 through 10 you could alter the
query this way:

SELECT * FROM (
 SELECT X.*,ROWNUM AS RN FROM (
 SELECT EMPNO,ENAME,SAL FROM EMP ORDER BY SAL DESC
) X
) WHERE RN BETWEEN 6 AND 10

Generalizing this idea, if you want to see page number P of the query results, where
each page contains R rows, then you would write a query like:

Chapter 9
Using Range Paging to Efficiently Scroll Through Large Result Sets

9-17

SELECT * FROM (
 SELECT X.*,ROWNUM AS RN FROM (
 SELECT EMPNO,ENAME,SAL FROM EMP ORDER BY SAL DESC
) X
) WHERE RN BETWEEN ((:P - 1) * :R) + 1 AND (:P) * :R

As the result set you consider grows larger and larger, it becomes more and more
efficient to use this technique to page through the rows. Rather than retrieving
hundreds or thousands of rows over the network from the database, only to display
ten of them on the page, instead you can produce a clever query to retrieve only the R
rows on page number P from the database. No more than a handful of rows at a time
needs to be returned over the network when you adopt this strategy.

To implement this database-centric paging strategy in your application, you could
handcraft the clever query yourself and write code to manage the appropriate values
of the :R and :P bind variables. Alternatively, you can use the view object's range
paging access mode, which implements it automatically for you.

How to Enable Range Paging for a View Object
You can use the Tuning panel of the overview editor for the view object to set the
access mode to either standard range paging or incremental range paging. The
Range Paging Cache Factor field is only editable when you select Range Paging
Incremental. Figure 9-3 shows the view object's Access Mode set to Range Paging
(standard mode) with the default range size of 1. To understand the row set caching
behavior of both access modes, see What Happens When View Rows are Cached
When Using Range Paging.

Figure 9-3 Access Mode in the Overview Editor for the View Object

To programmatically enable standard range paging for your view object, first call
setRangeSize() to define the number of rows per page, then call the following method
with the desired mode:

yourViewObject.setAccessMode(RowSet.RANGE_PAGING | RANGE_PAGING_INCR);

Chapter 9
Using Range Paging to Efficiently Scroll Through Large Result Sets

9-18

If you set RANGE_PAGING_INCR, then you must also call the following method to set the
cache factor for your defined range size:

yourViewObject.setRangePagingCacheFactor(int f);

What Happens When You Enable Range Paging
When a view object's access mode is set to RANGE_PAGING, the view object takes its
default query like:

SELECT EMPNO, ENAME, SAL FROM EMP ORDER BY SAL DESC

and automatically "wraps" it to produce a Top-N query.

For best performance, the statement uses a combination of greater than and less than
conditions instead of the BETWEEN operator, but the logical outcome is the same as
the Top-N wrapping query you saw above. The actual query produced to wrap a base
query of:

SELECT EMPNO, ENAME, SAL FROM EMP ORDER BY SAL DESC

looks like this:

SELECT * FROM (
 SELECT /*+ FIRST_ROWS */ IQ.*, ROWNUM AS Z_R_N FROM (
 SELECT EMPNO, ENAME, SAL FROM EMP ORDER BY SAL DESC
) IQ WHERE ROWNUM < :0)
WHERE Z_R_N > :1

The two bind variables are bound as follows:

• :1 index of the first row in the current page

• :0 is bound to the last row in the current page

What Happens When View Rows are Cached When Using Range
Paging

When a view object operates in RANGE_PAGING access mode, it only keeps the current
range (or "page") of rows in memory in the view row cache at a time. That is, if you are
paging through results ten at a time, then on the first page, you'll have rows 1 through
10 in the view row cache. When you navigate to page two, you'll have rows 11 through
20 in the cache. This also can help make sure for large row sets that you don't end
up with tons of rows cached just because you want to preserve the ability to scroll
backwards and forwards.

When a view object operates in RANGE_PAGING_INCR access mode, the cache factor
determines the number of rows to cache in memory for a specific range size. For
example, suppose the range size is set to 4 and cache factor to 5. Then, the memory
will keep at most 4*5 = 20 rows in its collection. In this example, when the range is
refreshed for the first time, the memory will have just four rows even though the range
paging query is bound to retrieve rows 0 to 19 (for a total of twenty rows). When the
range is scrolled past the forth row, more rows will be read in from the current result
set. This will continue until all twenty rows from the query result are read. If the user's
action causes the next set of rows to be retrieve, the query will be reexecuted with the
new row number bind values. The exact row number bind values are determined by
the new range-start and the number of rows that can be retained from the cache. For

Chapter 9
Using Range Paging to Efficiently Scroll Through Large Result Sets

9-19

example, suppose all twenty rows have been filled up and the user asks to move the
range-start to 18 (0-based). This means that memory can retain row 18 and row 19
and will need two more rows to fill the range. The query is reexecuted for rows 20 and
21.

How to Scroll to a Given Page Number Using Range Paging
When a view object operates in RANGE_PAGING access mode, to scroll to page number
n call its scrollToRangePage() method, passing n as the parameter value.

How to Estimate the Number of Pages in the Row Set Using Range
Paging

When a view object operates in RANGE_PAGING access mode, you can access an
estimate of the total number of pages the entire query result would produce using the
getEstimatedRangePageCount() method.

Understanding the Tradeoffs of Using a Range Paging Mode
You might ask yourself, "Why wouldn't I always want to use RANGE_PAGING or
RANGE_PAGING_INCR mode?" The answer is that using range paging potentially causes
more overall queries to be executed as you are navigating forward and backward
through your view object rows. You would want to avoid using RANGE_PAGING mode in
these situations:

• You plan to read all the rows in the row set immediately (for example, to populate a
dropdown list).

In this case your range size would be set to -1 and there really is only a single
"page" of all rows, so range paging does not add value.

• You need to page back and forth through a small-sized row set.

If you have 100 rows or fewer, and are paging through them 10 at a time, with
RANGE_PAGING mode you will execute a query each time you go forward and
backward to a new page. Otherwise, in the default scrollable mode, you will
cache the view object rows as you read them in, and paging backwards through
the previous pages will not reexecute queries to show those already-seen rows.
Alternatively, you can use RANGE_PAGING_INCR mode to allow scrolling through
in-memory results based on a row set cache factor that you determine.

In the case of a very large (or unpredictably large) row set, the trade off of potentially
doing a few more queries — each of which only returns up to the RangeSize number
of rows from the database — is more efficient then trying to cache all of the previously
viewed rows. This is especially true if you allow the user to jump to an arbitrary
page in the list of results. Doing so in default, scrollable mode requires fetching and
caching all of the rows between the current page and the page the users jumps to. In
RANGE_PAGING mode, it will ask the database just for the rows on that page. Then, if
the user jumps back to a page of rows that they have already visited, in RANGE_PAGING
mode, those rows get requeried again since only the current page of rows is held in
memory in this mode. The incremental range paging access mode RANGE_PAGING_INCR
combines aspects of both standard range paging and scrollable access mode since it
allows the application to cache more rows in memory and permits the user to jump to
any combination of those rows without needing to requery.

Chapter 9
Using Range Paging to Efficiently Scroll Through Large Result Sets

9-20

Using Forward Only Mode to Avoid Caching View Rows
You can set the forward only mode on the ADF view object if each row in the row
set needs to be read only once and does not require reiteration. This technique avoids
caching of retrieved rows.

Often you will write code that programmatically iterates through the results of a view
object. A typical situation will be custom validation code that must process multiple
rows of query results to determine whether an attribute or an entity is valid or not. In
these cases, if you intend to read each row in the row set a single time and never
require scrolling backward or reiterating the row set a subsequent time, then you can
use "forward only" mode to avoid caching the retrieved rows. To enable forward only
mode, call setForwardOnly(true) on the view object.

Note:

Using a read-only view object (with no entity usages) in forward-only
mode with an appropriately tuned fetch size is the most efficient way to
programmatically read data.

You can also use forward-only mode to avoid caching rows when inserting, updating,
or deleting data as long as you never scroll backward through the row set and never
call reset() to set the iterator back to the first row. Forward only mode only works with
a range size of one (1).

Using Retain Row Set to Optimize View Link Accessor
Access

You can force an ADF view link accessor row set to refresh its rows from the database.
This is because each time you access a view link accessor row set, you access an
object of this rowset without a database roundtrip.

Each time you retrieve a view link accessor row set, by default the view object creates
a new RowSet object to allow you to work with the rows. This does not imply re-
executing the query to produce the results each time, only creating a new instance of a
RowSet object with its default iterator reset to the "slot" before the first row. To force the
row set to refresh its rows from the database, you can call its executeQuery() method.

You can enable caching of the view link accessor row set when you do not want the
application to incur the small amount of overhead associated with creating new detail
row sets. For example, because view accessor row sets remain stable as long as
the master row view accessor attribute remains unchanged, it would not be necessary
to re-create a new row set for UI components, like the tree control, where data for
each master node in a tree needs to retain its distinct set of detail rows. The view link
accessor's detail row set can also be accessed programmatically. In this case, if your
application makes numerous calls to the same view link accessor attributes, you can
consider caching the view link accessor row set. This style of managing master-detail
coordination differs from creating view link instances in the data model, as explained
in What You May Need to Know About View Link Accessors Versus Data Model View
Link Instances.

Chapter 9
Using Forward Only Mode to Avoid Caching View Rows

9-21

You can enable retention of the view link accessor row set using the overview editor
for the view object that is the source for the view link accessor. Select Retain Row Set
in the View Accessors page of the overview editor for the view object.

Alternatively, you can enable a custom Java class for your view object, override
the create() method, and add a line after super.create() that calls the
setViewLinkAccessorRetained() method passing true as the parameter. It affects
all view link accessor attributes for that view object.

When this feature is enabled for a view object, since the view link accessor row set is
not re-created each time, the current row of its default row set iterator is also retained
as a side-effect. This means that your code will need to explicitly call the reset()
method on the row set you retrieve from the view link accessor to reset the current row
in its default row set iterator back to the "slot" before the first row.

Note, however, that with accessor retention enabled, your failure to call reset() each
time before you iterate through the rows in the accessor row set can result in a subtle,
hard-to-detect error in your application. For example, if you iterate over the rows in a
view link accessor row set like this, for example to calculate some aggregate total:

RowSet rs = (RowSet)row.getAttribute("OrdersShippedToPurchaser");
while (rs.hasNext()) {
 Row r = rs.next();
 // Do something important with attributes in each row
}

The first time you work with the accessor row set the code will work. However, since
the row set (and its default row set iterator) are retained, the second and subsequent
times you access the row set the current row will already be at the end of the row set
and the while loop will be skipped since rs.hasNext() will be false. Instead, with this
feature enabled, write your accessor iteration code like this:

RowSet rs = (RowSet)row.getAttribute("OrdersShippedToPurchaser");
rs.reset(); // Reset default row set iterator to slot before first row!
while (rs.hasNext()) {
 Row r = rs.next();
 // Do something important with attributes in each row
}

Recall that if view link consistency is on, when the accessor is retained the new
unposted rows will show up at the end of the row set. This is slightly different from
when the accessor is not retained (the default), where new unposted rows will appear
at the beginning of the accessor row set.

Using Dynamic Attributes On View Objects to Store UI State
You can add dynamic attributes which hold serializable objects as values to an ADF
view object.

You can add one or more dynamic attributes to a view object at runtime using the
addDynamicAttribute() method. Dynamic attributes can hold any serializable object
as their value. Typically, you will consider using dynamic attributes when writing
generic framework extension code that requires storing some additional per-row
transient state to implement a feature you want to add to the framework in a global,
generic way.

Chapter 9
Using Dynamic Attributes On View Objects to Store UI State

9-22

10
Defining Validation and Business Rules
Declaratively

This chapter describes how to use ADF entity objects to write business rules that
implement declarative validation in an Oracle ADF application.
This chapter includes the following sections:

• About Declarative Validation

• Determining Where to Implement Validation

• Understanding the Validation Cycle

• Adding Validation Rules to Entity Objects and Attributes

• Using the Built-in Declarative Validation Rules

• Using Groovy Expressions For Business Rules and Triggers

• Triggering Validation Execution

• Creating Validation Error Messages

• Setting the Severity Level for Validation Exceptions

• Bulk Validation in SQL

About Declarative Validation
Use the overview editor of the ADF entity object to define declarative validation rules.
These rules are stored in the entity object XML file. In addition to built-in declarative
validation, you can write custom rules.

The easiest way to create and manage validation rules is through declarative
validation rules. Declarative validation rules are defined using the overview editor,
and once created, are stored in the entity object XML file. Declarative validation
is different from programmatic validation (covered in Implementing Validation and
Business Rules Programmatically), which is stored in an entity object's Java file.

Oracle ADF provides built-in declarative validation rules that satisfy many of your
business needs. If you have custom validation rules you want to reuse, you can code
them and add them to the IDE, so that the rules are available directly from JDeveloper.
Custom validation rules are an advanced topic and covered in Implementing Custom
Validation Rules. You can also base validation on a Groovy expression, as described
in Using Groovy Expressions For Business Rules and Triggers.

When you add a validation rule, you supply an appropriate error message and can
later translate it easily into other languages if needed. You can also define how
validation is triggered and set the severity level.

10-1

Declarative Validation Use Cases and Examples
In a Fusion web application containing ADF Business Components, most of your
validation code is defined in your entity objects. Encapsulating the business logic
in these shared, reusable components ensures that your business information is
validated consistently in every view object or client that accesses it, and it simplifies
maintenance by centralizing where the validation is stored.

Another benefit of using declarative validation (versus writing your own validation) is
that the validation framework takes care of the complexities of batching validation
exceptions, which frees you to concentrate on your application's specific validation rule
logic.

In the model layer, ADF Model validation rules can be set for the attributes of a
collection. Many of the declarative validation features available for entity objects are
also available at the model layer, should your application warrant the use of model-
layer validation in addition to business-layer validation. For more information, see
Using Validation in the ADF Model Layer .

When you use the ADF Business Components application module data control,
you do not need to use model-layer validation. Consider defining all or most of your
validation rules in the centralized, reusable, and easier to maintain entity objects of
your business layer. With other types of data controls, ADF Model layer validation
can be more useful.

Additional Functionality for Declarative Validation
You may find it helpful to understand other Oracle ADF features before you start using
declarative validation. It is possible to go beyond the declarative behavior to implement
more complex validation rules for your business domain layer when needed. Following
are links to other functionality that may be of interest.

• Using Method Validators explains how to use the Method validator to invoke
custom validation code.

• Implementing Custom Validation Rules details how to extend the basic set of
declarative rules with custom rules of your own.

Determining Where to Implement Validation
Oracle ADF follows the Model View Controller (MVC) architectural design pattern
that allows validation implementation at each layer. Depending on business needs,
implement validations at particular layers.

As explained in Oracle ADF Architecture, the model-view-controller (MVC) architecture
of a Fusion web application has multiple layers that provide a clean separation of
business logic, page navigation, and user interface. These layers also provide multiple
options for implementing validation, and there are benefits and disadvantages to using
validation at each layer. The place where you choose to implement validation is
dependent on the given business need or use case. Generally, the validations that
occur closer to the data source are more centralized and therefore easier to maintain,
while those that occur closer to the user interface provide more immediate feedback at
runtime.

Chapter 10
Determining Where to Implement Validation

10-2

Data services layer -- Whether it be a database or a web service or some other
source of data, the data services layer typically resides outside the context of the
application itself and employs constraints that define the nature of each field of data.
Data services constraints are typically defined for every piece of data that is stored,
and are very important to maintaining the integrity of that data. However, it is neither
effective nor efficient to rely solely on these constraints, because they are not enforced
until the data reaches the data source, typically when the application attempts to
commit a transaction. This requires a round trip from the client UI to the data source
and back, and a single error on a single record can cause the rollback of entire
transaction.

Business services layer -- Business rules that you implement at the business service
layer in ADF Business Components (such as entity objects and view objects) provide
more efficiency than data services constraints because they don't require a round trip
to the data source. They are also easier to maintain than validators implemented at
the view layer because a business rule defined on an attribute for a given entity object
is enforced on every page that uses that entity object. In addition to attribute-level
validators, you can also implement entity-level validators when the validity of the value
of one attribute is dependent on the value of another. For example, DateShipped must
be greater than DateOrdered. This kind of business rule is explained in this chapter.

Model layer -- Although not used as commonly as the other kinds of business
rules, model layer validation can also be useful. You can define business rules on
a binding to a business service. This feature can be useful, for example, if you can't
implement validation on the business service itself because your application consumes
an external web service. See Using Validation in the ADF Model Layer .

View layer -- From the user's perspective, view layer validations are the most efficient.
They provide immediate feedback when the user enters data and subsequently leaves
(tabs out of) a given field, without requiring even a trip to the application server.
However, view layer validations are implemented on the page, so every page that
provides access to a given data field must define the validation for that field. See
the "Validating and Converting Input" chapter in Developing Web User Interfaces with
Oracle ADF Faces.

Understanding the Validation Cycle
You can enforce validation on an ADF entity row, either when a persistent entity row
attribute is modified, or an entity row is created.

Each entity row tracks whether or not its data is valid. When an existing entity row is
retrieved from the database, the entity is assumed to be valid. When the first persistent
attribute of an existing entity row is modified, or when a new entity row is created, the
entity is marked invalid.

When an entity is in an invalid state, the declarative validation you have configured
and the programmatic validation rules you have implemented are evaluated again
before the entity can be considered valid again. You can determine whether a given
entity row is valid at runtime by calling the isValid() method on it.

Chapter 10
Understanding the Validation Cycle

10-3

Note:

Because attributes can (by default) be left blank, validations are not triggered
if the attribute contains no value. For example, if a user creates a new entity
row and does not enter a value for a given attribute, the validation on that
attribute is not run. To force the validation to execute in this situation, set the
Mandatory flag on the attribute.

Types of Entity Object Validation Rules
Entity object validation rules fall into two basic categories: attribute-level and entity-
level.

Attribute-Level Validation Rules
Attribute-level validation rules are triggered for a particular entity object attribute when
either the end user or the program code attempts to modify the attribute's value. Since
you cannot determine the order in which attributes will be set, attribute-level validation
rules should be used only when the success or failure of the rule depends exclusively
on the candidate value of that single attribute.

The following represent attribute-level validations:

• The value of the OrderDate of an order should not be a date in the past.

• The ProductId attribute of a product should represent an existing product.

Entity-Level Validation Rules
All other kinds of validation rules are entity-level validation rules. These are rules
whose implementation requires considering two or more entity attributes, or possibly
composed children entity rows, in order to determine the success or failure of the rule.

The following represent entity-level validations:

• The value of the OrderShippedDate should be a date that comes after the
OrderDate.

• The ProductId attribute of an order should represent an existing product.

Entity-level validation rules are triggered by calling the validate() method on a Row.
This occurs when:

• You call the method explicitly on the entity object

• You call the method explicitly on a view row with an entity row part that is invalid

• A view object's iterator calls the method on the current row in the view object
before allowing the current row to change

• During transaction commit, processing validates an invalid entity (in the list of
pending changes) before proceeding with posting the changes to the database

As part of transaction commit processing, entity-level validation rules can fire multiple
times (up to a specified limit). For more information, see Avoiding Infinite Validation
Cycles.

Chapter 10
Understanding the Validation Cycle

10-4

Understanding Commit Processing and Validation
Transaction commit processing happens in three basic phases:

1. Ensure that any invalid entity rows on the pending changes list are valid.

2. Post the pending changes to the database by performing appropriate DML
operations.

3. Commit the transaction.

If you have business validation logic in your entity objects that executes queries
or stored procedures that depend on seeing the posted changes in the SELECT
statements they execute, they should be coded in the beforeCommit() method
described in What You May Need to Know About Row Set Access with View
Accessors. This method fires after all DML statements have been applied so queries
or stored procedures invoked from that method can "see" all of the pending changes
that have been saved, but not yet committed.

Caution:

Don't use the transaction-level postChanges() method in web applications
unless you can guarantee that the transaction will definitely be committed or
rolled-back during the same HTTP request. This method exists to force the
transaction to post unvalidated changes without committing them. Failure to
heed this advice can lead to strange results in an environment where both
application modules and database connections can be pooled and shared
serially by multiple different clients.

Understanding the Impact of Composition on Validation Order
Because a composed child entity row is considered an integral part of its composing
parent entity object, any change to composed child entity rows causes the parent
entity to be marked invalid. For example, if a line item on an order were to change, the
entire order would now be considered to be changed, or invalid.

Therefore, when the composing entity is validated, it causes any currently invalid
composed children entities to be validated first. This behavior is recursive, drilling into
deeper levels of invalid composed children if they exist.

Avoiding Infinite Validation Cycles
If your validation rules contain code that updates attributes of the current entity or
other entities, then the act of validating the entity can cause that or other entities
to become invalid. As part of the transaction commit processing phase that attempts
to validate all invalid entities in the pending changes list, the transaction performs
multiple passes (up to a specified limit) on the pending changes list in an attempt to
reach a state where all pending entity rows are valid.

The maximum number of validation passes is specified by the transaction-level
validation threshold setting. The default value of this setting is 10. You can increase

Chapter 10
Understanding the Validation Cycle

10-5

the threshold count if the entities involved contain the appropriate logic to validate
themselves in the subsequent passes.

If after 10 passes, there are still invalid entities in the list, you will see the following
exception:

JBO-28200: Validation threshold limit reached. Invalid Entities still in cache

This is a sign that you need to debug your validation rule code to avoid inadvertently
invalidating entities in a cyclic fashion.

To change the validation threshold:

1. In the Applications window, double-click the desired application module.

2. In the overview editor, click the Configurations navigation tab, select the
configuration hyperlink for which you want to adjust the validation threshold.

3. In the overview editor for application module configurations (on the bc4j.xcfg file),
click the Properties tab, and click Add Property.

4. In the Add Property dialog, select the jbo.validation.threshold property and
click OK.

5. In the overview editor, in the Properties list, enter a new value for the
jbo.validation.threshold property and save your changes.

You can also change the validation threshold programmatically by using the
SetValidationThreshold() method as shown below. In this example, the new
threshold is 12.

oracle.jbo.server.DBTransaction::setValidationThreshold(12)

What Happens When Validations Fail
When an entity object's validation rules throw exceptions, the exceptions are bundled
and returned to the client. If the validation failures are thrown by methods you've
overridden to handle events during the transaction postChanges processing, then the
validation failures cause the transaction to roll back any database INSERT, UPDATE,
or DELETE statements that might have been performed already during the current
postChanges cycle.

Note:

The bundling of exceptions is the default behavior for ADF Model-based
web applications, but not for Oracle ADF Model Tester or Swing bindings.
Additional configuration is required to bundle exceptions for the Oracle ADF
Model Tester or Swing clients.

Understanding Entity Objects Row States
When an entity row is in memory, it has an entity state that reflects the logical state
of the row. Figure 10-1 illustrates the different entity row states and how an entity
row can transition from one state to another. When an entity row is first created, its
status is New. You can use the setNewRowState() method to mark the entity as being
Initialized, which removes it from the transaction's list of pending changes until the

Chapter 10
Understanding the Validation Cycle

10-6

user sets at least one of its attributes, at which time it returns to the New state. This
allows you to create more than one initialized row and post only those that the user
modifies.

The Unmodified state reflects an entity that has been retrieved from the database and
has not yet been modified. It is also the state that a New or Modified entity transitions
to after the transaction successfully commits. During the transaction in which it is
pending to be deleted, an Unmodified entity row transitions to the Deleted state.
Finally, if a row that was New and then was removed before the transaction commits, or
Unmodified and then successfully deleted, the row transitions to the Dead state.

Figure 10-1 Diagram of Entity Row States and Transitions

You can use the getEntityState() and getPostState() methods to access the
current state of an entity row in your business logic code. The getEntityState()
method returns the current state of an entity row with regard to the transaction, while
the getPostState() method returns the current state of an entity row with regard to
the database after using the postChanges() method to post pending changes without
committing the transaction.

For example, if you start with a new row, both getEntityState() and getPostState()
return STATUS_NEW. Then when you post the row (before commit or rollback), the row
will have an entity state of STATUS_NEW and a post state of STATUS_UNMODIFIED. If you
subsequently remove that row, the entity state will remain STATUS_NEW because for the
transaction the row is still new. But the post state will be STATUS_DEAD.

Understanding Bundled Exception Mode
An application module provides a feature called bundled exception mode which
allows web applications to easily present a maximal set of failed validation exceptions
to the end user, instead of presenting only the first error that gets raised. By default,
the ADF Business Components application module pool enables bundled exception
mode for web applications.

You typically will not need to change this default setting. However it is important to
understand that it is enabled by default since it effects how validation exceptions are
thrown. Since the Java language and runtime only support throwing a single exception
object, the way that bundled validation exceptions are implemented is by wrapping
a set of exceptions as details of a new "parent" exception that contains them. For

Chapter 10
Understanding the Validation Cycle

10-7

example, if multiple attributes in a single entity object fail attribute-level validation, then
these multiple ValidationException objects will be wrapped in a RowValException.
This wrapping exception contains the row key of the row that has failed validation.
At transaction commit time, if multiple rows do not successfully pass the validation
performed during commit, then all of the RowValException objects will get wrapped in
an enclosing TxnValException object.

When writing custom error processing code, you can use the getDetails() method of
the JboException base exception class to recursively process the bundled exceptions
contained inside it.

Note:

All the exception classes mentioned here are in the oracle.jbo package.

Adding Validation Rules to Entity Objects and Attributes
ADF Business Components allows you to declaratively add validations rules to an
entity object.

The process for adding a validation rule to an entity object is similar for most of the
validation rules, and is done using the Add Validation Rule dialog. You can open this
dialog from the overview editor by clicking the Add icon on the Business Rules page.

It is important to note that when you define a rule declaratively using the Add
Validation Rule dialog, the rule definition you provide specifies the valid condition for
the attribute or entity object. At runtime, the entry provided by the user is evaluated
against the rule definition and an error or warning is raised if the entry fails to satisfy
the specified criteria. For example, if you specify a Length validator on an attribute that
requires it to be Less Than or Equal To 12, the validation fails if the entry is more
than 12 characters, and the error or warning is raised.

How to Add a Validation Rule to an Entity or Attribute
To add a declarative validation rule to an entity object, use the Business Rules page of
the overview editor.

Before you begin:

It may be helpful to have an understanding of the use of validation rules in entity
objects and attributes. For more information, see Adding Validation Rules to Entity
Objects and Attributes.

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To add a validation rule:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select the object
for which you want to add a validation rule, and then click the Add icon.

• To add a validation rule at the entity object level, select Entity.

Chapter 10
Adding Validation Rules to Entity Objects and Attributes

10-8

• To add a validation rule for an attribute, expand Attributes and select the
desired attribute.

When you add a new validation rule, the Add Validation Rule dialog appears.

3. In the Add Validation Rule dialog, select the desired type of validation rule from the
Rule Type dropdown list.

4. Use the dialog settings to configure the new rule.

The controls will change depending on the kind of validation rule you select.

For more information about the different validation rules, see Using the Built-in
Declarative Validation Rules.

5. Optionally, click the Validation Execution tab to enter criteria for the execution of
the rule, such as dependent attributes and a precondition expression.

For more information, see Triggering Validation Execution.

Note:

For Key Exists and Method entity validators, you can also use the
Validation Execution tab to specify the validation level.

6. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails.

For more information, see Creating Validation Error Messages.

7. Click OK.

How to View and Edit a Validation Rule on an Entity Object or Attribute
The Business Rules page of the overview editor for entity objects displays the
validation rules for an entity and its attributes in a tree control. To see the validation
rules that apply to the entity as a whole, expand in the Entity node. To see the
validation rules that apply to an attribute, expand the Attributes node and then
expand the attribute.

The validation rules that are shown on the Business Rules page of the overview
editor include those that you have defined as well as database constraints, such as
mandatory or precision. To open a validation rule for editing, double-click the rule or
select the rule and click the Edit icon.

What Happens When You Add a Validation Rule
When you add a validation rule to an entity object, JDeveloper updates the entity
object's XML document to include an entry describing what rule you've used and what
rule properties you've entered. For example, if you add a range validation rule to the
DiscountAmount attribute, this results in a RangeValidationBean entry in the XML file,
as shown in the following example.

 <Attribute
 Name="DiscountAmount"
 IsNotNull="true"
 ColumnName="DISCOUNT_AMOUNT"
 . . .

Chapter 10
Adding Validation Rules to Entity Objects and Attributes

10-9

 <validation:RangeValidationBean
 xmlns="http://xmlns.oracle.com/adfm/validation"
 Name="DiscountAmount_Rule_0"
 ResId="DiscountAmount_RangeError_0"
 OnAttribute="DiscountAmount"
 OperandType="LITERAL"
 Inverse="false"
 MinValue="0"
 MaxValue="40"/>
 . . .
 </Attribute>

At runtime, the rule is enforced by the entity object based on this declarative
information.

What You May Need to Know About Entity and Attribute Validation
Rules

Declarative validation enforces both entity-level and attribute-level validation,
depending on where you place the rules. Entity-level validation rules are enforced
when a user tries to commit pending changes or navigates between rows. Attribute-
level validation rules are enforced when the user changes the value of the related
attribute.

The Unique Key validator (described in How to Ensure That Key Values Are Unique)
can be used only at the entity level. Internally the Unique Key validator behaves like an
attribute-level validator. This means that users see the validation error when they tab
out of the key attribute for the key that the validator is validating. This is done because
the internal cache of entities can never contain a duplicate, so it is not allowed for
an attribute value to be set that would violate that. This check needs to be performed
when the attribute value is being set because the cache consistency check is done
during the setting of the attribute value.

Best Practice:

If the validity of one attribute is dependent on one or more other attributes,
enforce this rule using entity validation, not attribute validation. Examples of
when you would want to do this include the following:

• You have a Compare validator that compares one attribute to another.

• You have an attribute with an expression validator that examines the
value in another attribute to control branching in the expression to
validate the attribute differently depending on the value in this other
attribute.

• You make use of conditional execution, and your precondition expression
involves an attribute other than the one that you are validating.

Entity object validators are triggered whenever the entity, as a whole, is dirty. To
improve performance, you can indicate which attributes play a role in your rule and
thus the rule should be triggered only if one or more of these attributes are dirty. For
more information on triggering attributes, see, Triggering Validation Execution.

Chapter 10
Adding Validation Rules to Entity Objects and Attributes

10-10

What You May Need to Know About List of Values and Attribute
Validation Rules

Developers may define a List of Values (LOV) attribute on a view object to support
displaying choice lists in the user interface. The view object's LOV attribute in turn
relies on a data source view object to provide the values for display. Because the
LOV feature assumes that the queried data source contains only valid values, any
validation rules defined on data source view object attributes will be suppressed before
the choice list displays in the user interface. Therefore, the developer who defines
the LOV must ensure that the list of values returned by the data source view object
contains only valid values, as describe in Working with List of Values (LOV) in View
Object Attributes.

Using the Built-in Declarative Validation Rules
ADF Business Components provides numerous built-in declarative validation rules to
achieve numerous validation use cases.

The built-in declarative validation rules can satisfy many, if not all, of your business
needs. These rules are easy to implement because you don't write any code. You use
the user-interface tools to choose the type of validation and how it is used.

Built-in declarative validation rules can be used to:

• Ensure that key values are unique (primary key or other unique keys)

• Determine the existence of a key value

• Make a comparison between an attribute and anything from a literal value to a
SQL query

• Validate against a list of values that might be a literal list, a SQL query, or a view
attribute

• Make sure that a value falls within a certain range, or that it is limited by a certain
number of bytes or characters

• Validate using a regular expression or evaluate a Groovy expression

• Make sure that a value satisfies a relationship defined by an aggregate on a child
entity available through an accessor

• Validate using a validation condition defined in a Java method on the entity

How to Ensure That Key Values Are Unique
The Unique Key validator ensures that primary key values for an entity object are
always unique. The Unique Key validator can also be used for a non-primary-key
attribute, as long as the attribute is defined as an alternate key. For information on how
to define alternate keys, see How to Define Alternate Key Values.

Whenever any of the key attribute values change, this rule validates that the new
key does not belong to any other entity object instance of this entity object class.
(It is the business-logic tier equivalent of a unique constraint in the database.) If the
key is found in one of the entity objects, a TooManyObjectsException is thrown. The
validation check is done both in the entity cache and in the database.

Chapter 10
Using the Built-in Declarative Validation Rules

10-11

There is a slight possibility that unique key validation might not be sufficient to prevent
duplicate rows in the database. It is possible for two application module sessions
to simultaneously attempt to create records with the same key. To prevent this from
happening, create a unique index in the database for any unique constraint that you
want to enforce.

Before you begin:

It may be helpful to have a general understanding of the built-in validation rules. For
more information, see Using the Built-in Declarative Validation Rules.

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To ensure that a key value is unique:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select the Entity
node, and click the Add icon.

3. In the Add Validation Rule dialog, in the Rule Type dropdown list, select
UniqueKey.

4. In the Keys box, select the primary or alternate key.

5. Optionally, click the Validation Execution tab to enter criteria for the execution of
the rule, such as dependent attributes and a precondition expression.

For more information, see Triggering Validation Execution.

Best Practice:

While it is possible to add a precondition for a Unique Key validator, it
is not a best practice. If a Unique Key validator fails to fire, for whatever
reason, the cache consistency check is still performed and an error will
be returned. It is generally better to add the validator and a meaningful
error message.

6. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails.

For more information, see Creating Validation Error Messages.

7. Click OK.

What Happens When You Use a Unique Key Validator
When you use a Unique Key validator, a <UniqueKeyValidationBean> tag is added to
the entity object's XML file. The following example shows the XML for a Unique Key
validator.

<validation:UniqueKeyValidationBean
 Name="CustomerEORule0"
 KeyName="SCustomerIdPk">
 <validation:OnAttributes>
 <validation:Item
 Value="Id"/>

Chapter 10
Using the Built-in Declarative Validation Rules

10-12

 </validation:OnAttributes>
</validation:UniqueKeyValidationBean>

How to Validate Based on a Comparison
The Compare validator performs a logical comparison between an entity attribute and
a value. When you add a Compare validator, you specify an operator and something to
compare with. You can compare the following:

• Literal value

When you use a Compare validator with a literal value, the value in the attribute is
compared against the specified literal value. When using this kind of comparison,
it is important to consider data types and formats. The literal value must conform
to the format specified by the data type of the entity attribute to which you are
applying the rule. In all cases, the type corresponds to the type mapping for the
entity attribute.

For example, an attribute of column type DATE maps to the
oracle.jbo.domain.Date class, which accepts dates and times in the same
format accepted by java.sql.TimeStamp and java.sql.Date. You can use format
masks to ensure that the format of the value in the attribute matches that of the
specified literal. For information about entity object attribute type mappings, see
How to Set Database and Java Data Types for an Entity Object Attribute. For
information about the expected format for a particular type, refer to the Javadoc for
the type class.

• Query result

When you use this type of validator, the SQL query is executed each time the
validator is executed. The validator retrieves the first row from the query result,
and it uses the value of the first column in the query (of that first row) as the value
to compare. Because this query cannot have any bind variables in it, this feature
should be used only when selecting one column of one row of data that does not
depend on the values in the current row.

• View object attribute

When you use this type of validator, the view object's SQL query is executed
each time the validator is executed. The validator retrieves the first row from the
query result, and it uses the value of the selected view object attribute from that
row as the value to compare. Because you cannot associate values with the
view object's named bind variables, those variables can only take on their default
values. Therefore this feature should be used only for selecting an attribute of one
row of data that does not depend on the values in the current row.

• View accessor attribute

When defining the view accessor, you can assign row-specific values to the
validation view object's bind variables.

• Expression

For information on the expression option, see Using Groovy Expressions For
Business Rules and Triggers.

• Entity attribute

The entity attribute option is available only for entity-level Compare validators.

Before you begin:

Chapter 10
Using the Built-in Declarative Validation Rules

10-13

It may be helpful to have a general understanding of the built-in validation rules. For
more information, see Using the Built-in Declarative Validation Rules.

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To validate based on a comparison:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select where you
want to add the validator, and click the Add icon.

• To add an entity-level validator, select the Entity node.

• To add an attribute-level validator, expand the Attributes node and select the
appropriate attribute.

3. In the Add Validation Rule dialog, in the Rule Type dropdown list, select
Compare. Note that the subordinate fields change depending on your choices.

4. Select the appropriate operator.

5. Select an item in the Compare With list, and based on your selection provide the
appropriate comparison value.

6. Optionally, click the Validation Execution tab to enter criteria for the execution of
the rule, such as dependent attributes and a precondition expression.

For more information, see Triggering Validation Execution.

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails.

For more information, see Creating Validation Error Messages.

8. Click OK.

Figure 10-2 shows what the dialog looks like when you use an entity-level Compare
validator with an entity object attribute.

Chapter 10
Using the Built-in Declarative Validation Rules

10-14

Figure 10-2 Compare Validator Using an Entity Object Attribute

What Happens When You Validate Based on a Comparison
When you create a Compare validator, a <CompareValidationBean> tag is added to an
entity object's XML file. The following example shows the XML code for an entity level
validator in the OrdEO entity object.

<validation:CompareValidationBean
 Name="OrdEO_Rule_0"
 ResId="oracle.summit.model.entities.OrdEO_Rule_0"
 OnAttribute="DateShipped"
 OperandType="ATTR"
 Inverse="false"
 CompareType="GREATERTHANEQUALTO"
 CompareValue="DateOrdered">
 <validation:OnAttributes>
 <validation:Item
 Value="DateShipped"/>
 <validation:Item
 Value="DateOrdered"/>
 </validation:OnAttributes>
 </validation:CompareValidationBean>

How to Validate Using a List of Values
The List validator compares an attribute against a list of values (LOV). When you add
a List validator, you specify the type of list to choose from:

Chapter 10
Using the Built-in Declarative Validation Rules

10-15

• Literal values - The validator ensures that the entity attribute is in (or not in, if
specified) the list of values.

• Query result - The validator ensures that the entity attribute is in (or not in, if
specified) the first column of the query's result set. The SQL query validator cannot
use a bind variable, so it should be used only on a fixed, small list that you have to
query from a table. All rows of the query are retrieved into memory.

• View object attribute - The validator ensures that the entity attribute is in (or not
in, if specified) the view attribute. The View attribute validator cannot use a bind
variable, so it should be used only on a fixed, small list that you have to query from
a table. All rows of the query are retrieved into memory.

• View accessor attribute - The validator ensures that the entity attribute is in (or
not in) the view accessor attribute. The view accessor is probably the most useful
option, because it can take bind variables and after you've created the LOV on the
user interface, a view accessor is required.

Best Practice:

When using a List validator, the view accessor is typically the most useful
choice because you can define a view criteria on the view accessor to
filter the view data when applicable; and when defining an LOV on a view
attribute, you typically use a view accessor with a view criteria.

Before you begin:

It may be helpful to have a general understanding of the built-in validation rules. For
more information, see Using the Built-in Declarative Validation Rules.

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To validate using a list of values:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select where you
want to add the validator, and click the Add icon.

• To add an entity-level validator, select the Entity node.

• To add an attribute-level validator, expand the Attributes node and select the
appropriate attribute.

3. In the Add Validation Rule dialog, in the Rule Type dropdown list, select List.

4. In the Attribute list, choose the appropriate attribute.

5. In the Operator field, select In or NotIn, depending on whether you want an
inclusive or exclusive list.

6. In the List Type field, select the appropriate type of list.

7. Depending on the type of list you selected, you can either enter a list of values
(each value on a new line) or an SQL query, or select a view object attribute or
view accessor attribute.

Chapter 10
Using the Built-in Declarative Validation Rules

10-16

8. Optionally, click the Validation Execution tab to enter criteria for the execution of
the rule, such as dependent attributes and a precondition expression.

For more information, see Triggering Validation Execution.

9. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails.

For more information, see Creating Validation Error Messages.

10. Click OK.

Figure 10-3 shows what the dialog looks like when you use a List validator with a view
object attribute.

Figure 10-3 List Validator Using a View Object Attribute

What Happens When You Validate Using a List of Values
When you validate using a list of values, a <ListValidationBean> tag is added to
an entity object's XML file. The following example shows the CustomerEO.CountryId
attribute, which uses a view object attribute for the List validator.

<validation:ListValidationBean
 Name="CountryIdRule0"
 OnAttribute="CountryId"
 OperandType="JBO"
 Inverse="false"
 ListValue="oracle.summit.model.views.CountryVO.Id"/>

Chapter 10
Using the Built-in Declarative Validation Rules

10-17

What You May Need to Know About the List Validator
The List validator is designed for validating an attribute against a relatively small
set of values. If you select the Query Result or View Object Attribute type of
list validation, keep in mind that the validator retrieves all of the rows from the
query before performing an in-memory scan to validate whether the attribute value
in question matches an attribute in the list. The query performed by the validator's SQL
or view object query does not reference the value being validated in the WHERE clause
of the query.

It is inefficient to use a validation rule when you need to determine whether a user-
entered product code exists in a table of a large number of products. Instead, Using
View Objects for Validation explains the technique you can use to efficiently perform
SQL-based validations by using a view object to perform a targeted validation query
against the database. See also Using Validators to Validate Attribute Values.

Also, if the attribute you're comparing to is a key, the Key Exists validator is more
efficient than validating a list of values; and if these choices need to be translatable,
you should use a static view object instead of the literal choice.

How to Make Sure a Value Falls Within a Certain Range
The Range validator performs a logical comparison between an entity attribute and a
range of values. When you add a Range validator, you specify minimum and maximum
literal values. The Range validator verifies that the value of the entity attribute falls
within the range (or outside the range, if specified).

If you need to dynamically calculate the minimum and maximum values, or need
to reference other attributes on the entity, use the Script Expression validator and
provide a Groovy expression. For more information, see What You May Need to Know
About Referencing Business Components in Groovy Expressions and What You May
Need to Know About Manipulating Business Component Attribute Values in Groovy
Expressions.

Before you begin:

It may be helpful to have a general understanding of the built-in validation rules. For
more information, see Using the Built-in Declarative Validation Rules.

You may also find it useful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To validate within a certain range:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select where you
want to add the validator, and click the Add icon.

• To add an entity-level validator, select the Entity node.

• To add an attribute-level validator, expand the Attributes node and select the
appropriate attribute.

3. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Range.

4. In the Attribute list, select the appropriate attribute.

Chapter 10
Using the Built-in Declarative Validation Rules

10-18

5. In the Operator field, select Between or NotBetween.

6. In the Minimum and Maximum fields, enter appropriate values.

7. Optionally, click the Validation Execution tab to enter criteria for the execution of
the rule, such as dependent attributes and a precondition expression.

For more information, see Triggering Validation Execution.

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails.

For more information, see Creating Validation Error Messages.

9. Click OK.

What Happens When You Use a Range Validator
When you validate against a range, a <RangeValidationBean> tag is added to the
entity object's XML file. The following example shows the ItemEO.Quantity attribute
with a minimum quantity of one and a maximum of 99.

<validation:RangeValidationBean
 Name="QuantityRule0"
 OnAttribute="Quantity"
 OperandType="LITERAL"
 Inverse="false"
 MinValue="1"
 MaxValue="99"/>

How to Validate Against a Number of Bytes or Characters
The Length validator validates whether the string length (in characters or bytes) of an
attribute's value is less than, equal to, or greater than a specified number, or whether it
lies between a pair of numbers.

Before you begin:

It may be helpful to have a general understanding of the built-in validation rules. For
more information, see Using the Built-in Declarative Validation Rules.

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To validate against a number of bytes or characters:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select where you
want to add the validator, and click the Add icon.

• To add an entity-level validator, select the Entity node.

• To add an attribute-level validator, expand the Attributes node and select the
appropriate attribute.

3. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Length.

4. In the Attribute list, select the appropriate attribute.

5. In the Operator field, select how to evaluate the value.

Chapter 10
Using the Built-in Declarative Validation Rules

10-19

6. In the Comparison Type field, select Byte or Character and enter a length.

7. Optionally, click the Validation Execution tab to enter criteria for the execution of
the rule, such as dependent attributes and a precondition expression. For more
information, see Triggering Validation Execution.

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Creating
Validation Error Messages.

9. Click OK.

What Happens When You Validate Against a Number of Bytes or
Characters

When you validate using length, a <LengthValidationBean> tag is added to the entity
object's XML file, as shown in the following example. For example, you might have a
field where the user enters a password or PIN and the application wants to validate
that it is at least 6 characters long, but not longer than 10. You would use the
Length validator with the Between operator and set the minimum and maximum values
accordingly.

 <validation:LengthValidationBean
 OnAttribute="pin"
 CompareType="BETWEEN"
 DataType="CHARACTER"
 MinValue="6"
 MaxValue="10"
 Inverse="false"/>

How to Validate Using a Regular Expression
The Regular Expression validator compares attribute values against a mask specified
by a Java regular expression.

If you want to create expressions that can be personalized in metadata, you can use
the Script Expression validator. For more information, see Using Groovy Expressions
For Business Rules and Triggers.

Before you begin:

It may be helpful to have a general understanding of the built-in validation rules. For
more information, see Using the Built-in Declarative Validation Rules.

You may also find it useful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To validate using a regular expression

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select where you
want to add the validator, and click the Add icon.

• To add an entity-level validator, select the Entity node.

• To add an attribute-level validator, expand the Attributes node and select the
appropriate attribute.

Chapter 10
Using the Built-in Declarative Validation Rules

10-20

3. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Regular
Expression.

4. In the Operator field, select Matches or Not Matches.

5. To use a predefined expression (if available), you can select one from the
dropdown list and click Use Pattern. Otherwise, write your own regular expression
in the field provided.

Note:

You can add your own expressions to the list of
predefined expressions. To add a predefined expression,
add an entry in the PredefinedRegExp.properties file in
the BC4J subdirectory of the JDeveloper system directory
(for example, C:\Documents and Settings\username\Application
Data\JDeveloper\system##\o.BC4J\PredefinedRegExp.properties).

6. Optionally, click the Validation Execution tab to enter criteria for the execution of
the rule, such as dependent attributes and a precondition expression. For more
information, see Triggering Validation Execution.

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Creating
Validation Error Messages.

8. Click OK.

Figure 10-4 shows what the dialog looks like when you select a Regular Expression
validator and validate that the Email attribute matches a predefined Email Address
expression.

Chapter 10
Using the Built-in Declarative Validation Rules

10-21

Figure 10-4 Regular Expression Validator Matching Email Address

What Happens When You Validate Using a Regular Expression
When you validate using a regular expression, a <RegExpValidationBean> tag is
added to the entity object's XML file. The following example shows an Email attribute
that must match a regular expression.

<validation:RegExpValidationBean
 Name="EmailPrimaryRule0"
 OnAttribute="EmailPrimary"
 Pattern="[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}"
 Flags="CaseInsensitive"
 Inverse="false"/>

How to Use the Average, Count, or Sum to Validate a Collection
You can use collection validation on the average, count, sum, min, or max of a
collection. This validator is available only at the entity level. It is useful for validating
the aggregate calculation over a collection of associated entities by way of an entity
accessor to a child entity (on the many end of the association). You must select the
association accessor to define the Collection validator.

Before you begin:

It may be helpful to have a general understanding of the built-in validation rules. For
more information, see Using the Built-in Declarative Validation Rules.

Chapter 10
Using the Built-in Declarative Validation Rules

10-22

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To validate using an aggregate calculation:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select the Entity
node, and click the Add icon.

3. In the Add Validation Rule dialog, in the Rule Type dropdown list, select
Collection.

4. In the Operation field, specify the operation (sum, average, count, min, or max) to
perform on the collection for comparison.

5. Select the appropriate accessor and attribute for the validation.

The accessor you choose must be a composition association accessor. Only
accessors of this type are displayed in the dropdown list.

6. Specify the operator and the comparison type and value.

7. Optionally, click the Validation Execution tab to enter criteria for the execution of
the rule, such as dependent attributes and a precondition expression. For more
information, see Triggering Validation Execution.

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Creating
Validation Error Messages.

9. Click OK.

What Happens When You Use Collection Validation
When you validate using a Collection validator, a <CollectionValidationBean> tag is
added to the entity object's XML file, as in the following example.

<validation:CollectionValidationBean
 Name="OrdEORule01"
 Accessor="ItemEO"
 CollAttribute="Quantity"
 OperandType="LITERAL"
 Inverse="false"
 CompareType="GREATERTHAN"
 CompareValue="5"
 Operation="min"/>

How to Determine Whether a Key Exists
The Key Exists validator is used to determine whether a key value (primary, foreign, or
alternate key) exists.

There are a couple of benefits to using the Key Exists validator:

• The Key Exists validator has better performance because it first checks the cache
and only goes to the database if necessary.

• Since the Key Exists validator uses the cache, it will find a key value that has
been added in the current transaction, but not yet committed to the database. For

Chapter 10
Using the Built-in Declarative Validation Rules

10-23

example, you add a new Department and then you want to link an Employee to that
new department.

Before you begin:

It may be helpful to have a general understanding of the built-in validation rules. For
more information, see Using the Built-in Declarative Validation Rules.

You may also find it useful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To determine whether a value exists:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select where you
want to add the validator, and click the Add icon.

• To add an entity-level validator, select the Entity node.

• To add an attribute-level validator, expand the Attributes node and select the
appropriate attribute.

3. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Key
Exists.

4. Select the type of validation target (Entity Object, View Object, or View
Accessor).

If you want the Key Exists validator to be used for all view objects that use this
entity attribute, select Entity Object.

5. Depending on the validation target, you can choose either an association or a key
value.

If you are searching for an attribute that does not exist in the Validation Target
Attributes list, it is probably not defined as a key value. To create alternate keys,
see How to Define Alternate Key Values.

6. Optionally, click the Validation Execution tab to enter criteria for the execution
of the rule, such as dependent attributes and the validation level (entity or
transaction). For more information, see Triggering Validation Execution.

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Creating
Validation Error Messages.

8. Click OK.

Figure 10-5 shows a Key Exists validator that validates whether the MembershipId
entered in the PersonEO entity object exists in the MembershipBaseEO entity object.

Chapter 10
Using the Built-in Declarative Validation Rules

10-24

Figure 10-5 Key Exists Validator on an Entity Attribute

What Happens When You Use a Key Exists Validator
When you use a Key Exists validator, an <ExistsValidationBean> tag is created in
the XML file for the entity object, as in the following example.

<validation:ExistsValidationBean
 Name="CustomerId_Rule_0"
 ResId="oracle.summit.model.entities.OrdEO.CustomerId_Rule_0"
 OperandType="EO"
 AssocName="oracle.summit.model.entities.assoc.SOrdCustomerIdFkAssoc"/>

What You May Need to Know About Declarative Validators and View
Accessors

When using declarative validators you must consider how your validation will
interact with expected input. The combination of declarative validators and view
accessors provides a simple yet powerful alternative to coding. But, as powerful
as the combination is, you still need to consider how data composition can impact
performance.

Consider a scenario where you have the following:

• A ServiceRequestEO entity object with Product and RequestType attributes, and a
view accessor that allows it to access the RequestTypeVO view object

Chapter 10
Using the Built-in Declarative Validation Rules

10-25

• A RequestTypeVO view object with a query specifying the Product attribute as a
bind parameter

The valid list of RequestTypes varies by Product. So, to validate the RequestType
attribute, you use a List validator using the view accessor.

Now lets add a set of new service requests. For the first service request (row), the List
validator binds the value of the Product attribute to the view accessor and executes it.
For each subsequent service request the List validator compares the new value of the
Product attribute to the currently bound value.

• If the value of Product matches, the current RowSet object is retained.

• If the value of Product has changed, the new value is bound and the view
accessor re-executed.

Now consider the expected composition of input data. For example, the same products
could appear in the input multiple times. If you simply validate the data in the order
received, you might end up with the following:

1. Dryer (initial query)

2. Washing Machine (re-execute view accessor)

3. Dish Washer (re-execute view accessor)

4. Washing Machine (re-execute view accessor)

5. Dryer (re-execute view accessor)

In this case, the validator will execute 5 queries to get 3 distinct row sets. As an
alternative, you can add an ORDER BY clause to the RequestTypeVO to sort it by
Product. In this case, the validator would execute the query only once each for
Washing Machine and Dryer.

1. Dish Washer (initial query)

2. Dryer (re-execute view accessor)

3. Dryer

4. Washing Machine (re-execute view accessor)

5. Washing Machine

A small difference on a data set this size, but multiplied over larger data sets and many
users this could easily become an issue. An ORDER BY clause is not a solution to every
issue, but this example illustrates how data composition can impact performance.

Using Entity-Level Triggers
ADF Business Components allows you to apply triggers in an entity object’s lifecycle.
Triggers execute at these set lifecycle events such as before a delete, after it, or
before an insert operation.

Entity-level triggers enable you to implement expressions that are executed in
response to trigger points in the entity object life cycle, such as before an insert
operation or after a delete.

For example, you can evaluate or assert the value of an attribute prior to inserting an
entity object or after updating an entity object. For a list of the available trigger points,
see the online help.

Chapter 10
Using Entity-Level Triggers

10-26

How to Implement Business Rules Using Entity-Level Triggers
You can use Groovy script to implement business rules that are executed in response
to entity-level triggers.

Before you begin:
It may be helpful to have an understanding of entity-level triggers. See Using Entity-
Level Triggers.

You may also find it helpful to understand additional functionality that can be added
using other validation features. See Additional Functionality for Declarative Validation.

To add a trigger:

1. In the Applications window, double-click the entity object you want to add a trigger
to.

2. In the overview editor, click the Business Rules navigation tab.

3. On the Business Rules page, select the Entity-Level Triggers node, and click the
Create New Trigger icon.

4. Select the appropriate trigger point from the Type dropdown list.

5. Enter a Groovy expression.

6. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the expression fails.

See Creating Validation Error Messages to read more on creating validation error
messages.
When a Groovy expression is evaluated at runtime, it is assumed to be untrusted.
For more information, see What You May Need to Know About Untrusted Groovy
Expressions.

What Happens When You Create an Entity-Level Trigger
When you create a trigger, a <Trigger> tag is added to the entity object’s XML file, as
shown in the following example.

 <Trigger
 Name="BeforeUpdate">
 <validation:ExpressionValidationBean
 Name="BeforeUpdateExpression0"
 OperandType="EXPR"
 Inverse="false">
 <validation:TransientExpression
 Name="ValidationRuleScript"
 trustMode="untrusted"
 hasReturn="false"
 CodeSourceName="ItemEORow"/>
 </validation:ExpressionValidationBean>
 </Trigger>

Chapter 10
Using Entity-Level Triggers

10-27

Using Groovy Expressions For Business Rules and Triggers
You can use Groovy expressions to build business rules and triggers. These
expressions are stored as part of the ADF entity object’s XML definition as well as
the .bcs file associated with the entity object.

Groovy expressions are Java-like scripting code stored in the XML definition of an
entity object and the .bcs file associated with the entity object. Because Groovy scripts
are stored in the .bcs file, you can change the expression values in this file.

For more information about using Groovy script in your entity object business logic,
see Using Groovy Scripting Language with Business Components.

How to Reference Entity Object Methods in Groovy Expressions
You can call methods on the current entity instance using the source property of the
current object. The source property allows you to access to the entity instance.

If the method is a non-boolean type and the method name is getXyzAbc() with no
arguments, then you access its value as if it were a property named XyzAbc. For a
boolean-valued property, the same holds true but the JavaBean naming pattern for the
getter method changes to recognize isXyzAbc() instead of getXyzAbc(). If the method
on your entity object does not match the JavaBean getter method naming pattern, or if
it takes one or more arguments, then you must call it like a method using its complete
name.

For example, say you have an entity object with the four methods shown in the
following example.

public boolean isNewRow() {
 System.out.println("## isNewRow() accessed ##");
 return true;
}

public boolean isNewRow(int n) {
 System.out.println("## isNewRow(int n) accessed ##");
 return true;
}

public boolean testWhetherRowIsNew() {
 System.out.println("## testWhetherRowIsNew() accessed ##");
 return true;
}

public boolean testWhetherRowIsNew(int n) {
 System.out.println("## testWhetherRowIsNew(int n) accessed ##");
 return true;
}

Then the following Groovy validation condition would execute them all, one of them
being executed twice, as shown in this example.

newRow && source.newRow && source.isNewRow(5) && source.testWhetherRowIsNew() &&
source.testWhetherRowIsNew(5)

By running this example and forcing entity validation to occur, you would see the
following diagnostic output in the log window:

Chapter 10
Using Groovy Expressions For Business Rules and Triggers

10-28

isNewRow() accessed
isNewRow() accessed
isNewRow(int n) accessed
testWhetherRowIsNew() accessed
testWhetherRowIsNew(int n) accessed

Notice the slightly different syntax for the reference to a method whose name
matches the JavaBeans property getter method naming pattern. Both newRow and
source.newRow work to access the boolean-valued, JavaBeans getter-style method
that has no arguments. But because the testWhetherRowIsNew() method does not
match the JavaBeans getter method naming pattern, and the third isNewRow() method
takes an argument, then you must call them like methods using their complete name.

How to Validate Using a True/False Expression
You can use a Groovy expression to return a true/false statement. The Script
Expression validator requires that the expression either return true or false, or that it
calls the adf.error.raise/warn() method. A common use of this feature would be to
validate an attribute value, for example, to make sure that an account number is valid.

Note:

Using the adf.error.raise/warn() method (rather than simply returning
true or false) allows you to define the message text to show to the user,
and to associate an entity-level validator with a specific attribute. For more
information, see How to Conditionally Raise Error Messages Using Groovy.

Before you begin:

It may be helpful to have an understanding of the use of Groovy in validation rules. For
more information, see Using Groovy Expressions For Business Rules and Triggers.

You may also find it useful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To validate using a true/false expression:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select where you
want to add the validator, and click the dropdown of the plus icon to select New
Validator.

• To add an entity-level validator, select the Entity node.

• To add an attribute-level validator, expand the Attributes node and select the
appropriate attribute.

3. In the Add Validation Rule dialog, in the Rule Type dropdown list, select
Expression.

4. Enter a validation expression in the Expression field.

5. Optionally, click the Validation Execution tab to enter criteria for the execution
of the rule, such as dependent attributes and a precondition expression in the
Expression field. For more information, see Triggering Validation Execution.

Chapter 10
Using Groovy Expressions For Business Rules and Triggers

10-29

6. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Creating
Validation Error Messages.

7. Click OK.

The following Groovy script example validates account numbers based on the Luhn
algorithm, a checksum formula in widespread use.

@ValidatorExpression(name="PaymentOptionIdRule0",
attributeName="PaymentOptionId")
def PaymentOptionId_PaymentOptionIdRule0_ValidationRuleScript_ValidationRule()
{
String acctnumber = newValue;
 sumofdigits = 0;
 digit = 0;
 addend = 0;
 timesTwo = false;
 range = acctnumber.length()-1..0
 range.each {i ->
 digit = Integer.parseInt (acctnumber.substring (i, i + 1));
 if (timesTwo) {
 addend = digit * 2;
 if (addend > 9) {
 addend -= 9;
 }
 }
 else {
 addend = digit;
 }
 sumofdigits += addend;
 timesTwo = !timesTwo;
 }
 modulus = sumofdigits % 10;
 return modulus == 0;
}

What Happens When You Add a Groovy Expression
When you create a Groovy expression, it is saved in the entity object's XML
component. The following example shows a DateOrdered attribute in an entity object.
The Groovy expression is wrapped by a <validation:ExpressionValidationBean>
tag. The Groovy script is enclosed in OrdEO.bcs file as indicated by
CodeSourceName="OrdEORow” in the XML definition.

<Attribute
 Name="DateOrdered"
 ColumnName="DATE_ORDERED"
 SQLType="TIMESTAMP"
 Type="java.sql.Date"
 ColumnType="DATE"
 TableName="S_ORD">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="7"/>
 </DesignTime>
 <validation:ExpressionValidationBean
 Name="DateOrderedRule0"
 OperandType="EXPR"
 Inverse="false">
 <validation:TransientExpression

Chapter 10
Using Groovy Expressions For Business Rules and Triggers

10-30

 Name="ValidationRuleScript"
 trustMode="untrusted"
 CodeSourceName="OrdEORow"/>
 </validation:ExpressionValidationBean>
</Attribute>

Figure 10-6 shows the validation expression in the Edit Validation Rule dialog.

Figure 10-6 Validation Expression for Date Ordered Attribute

Triggering Validation Execution
ADF Business Components allows you to define attribute level validations, as well as
entity-level validations.

JDeveloper allows you to select the attributes that trigger validation, so that validation
execution happens only when one of the triggering attributes is dirty. In previous
releases of JDeveloper, an entity-level validator would fire on an attribute whenever
the entity as a whole was dirty. This feature is described in How to Specify Which
Attributes Fire Validation.

Chapter 10
Triggering Validation Execution

10-31

JDeveloper also allows you to specify a precondition for the execution of a validator
(as described in How to Set Preconditions for Validation) and set transaction-level
validation (described in How to Set Transaction-Level Validation).

How to Specify Which Attributes Fire Validation
When defining a validator at the entity level, you have the option of selecting one
or more attributes of the entity object that, when changed, trigger execution of the
validator.

Note:

When the validity of one attribute is dependent on the value in another
attribute, the validation should be performed as entity validation, not attribute
validation. You can set validation execution order on the entity level or
attribute level.

If you do not specify one or more dependent attributes, the validator will fire whenever
the entity is dirty. Firing execution only when required makes your application more
performant.

Before you begin:

It may be helpful to have an understanding of how validation rules are triggered. For
more information, see Triggering Validation Execution.

You may also find it useful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To specify which attributes fire validation:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select the Entity
node, and click the Edit icon.

3. In the Edit Validation Rule dialog, click the Validation Execution tab.

4. Select the attributes that will fire validation.

5. Click OK.

For example, in the SummitADF application workspace, the OrdEO entity object has
an entity-level validator that requires the DateShipped attribute to be later than the
DateOrdered attribute. As shown in Figure 10-7, this validator is set to be executed
on the entity object only when either the DateShipped attribute or the DateOrdered
attribute has been changed.

Chapter 10
Triggering Validation Execution

10-32

Figure 10-7 Triggering attributes on the Validation Execution tab of the Edit
Validation Rule dialog

What Happens When You Constrain Validation Execution with
Triggering Attributes

When you specify triggering attributes on the Validation Execution tab of the Edit
Validation Rule dialog, JDeveloper adds a <validation:OnAttributes> tag to the
validator definition in the entity object's XML file. The following example shows the
XML code for the entity-level validator for the OrdEO entity object in the core Summit
ADF sample application.

<validation:CompareValidationBean
 Name="OrdEO_Rule_0"
 ResId="oracle.summit.model.entities.OrdEO_Rule_0"
 OnAttribute="DateShipped"
 OperandType="ATTR"
 Inverse="false"
 CompareType="GREATERTHANEQUALTO"
 CompareValue="DateOrdered">
 <validation:OnAttributes>
 <validation:Item
 Value="DateShipped"/>
 <validation:Item
 Value="DateOrdered"/>
 </validation:OnAttributes>
</validation:CompareValidationBean>

Chapter 10
Triggering Validation Execution

10-33

How to Set Preconditions for Validation
The Validation Execution tab (on the Add/Edit Validation Rule dialog) allows you to
add a Groovy expression that serves as a precondition. If you enter an expression
in the Conditional Execution Expression box, the validator is executed only if the
condition evaluates True.

Best Practice:

While it is possible to add a precondition for a Unique Key validator, it is not
a best practice. If a Unique Key validator fails to fire, for whatever reason, the
cache consistency check is still performed and an error will be returned. It is
generally better to add the validator and a meaningful error message.

How to Set Transaction-Level Validation
Performing a validation during the transaction level (rather than entity level) means
that the validation will be performed after all entity-level validation is performed. For
this reason, it may be useful if you want to ensure that a validator is performed at the
end of the process.

In addition, the Key Exists validator is more performant with bulk transactions if it is
run as a transaction level validator since it will be run only once for all entities in the
transaction (of the same type), rather than once per entity. This will result in improved
performance if the validator has to go to the database.

Note:

Transaction-level validation is only applicable to Key Exists and Method
entity validators.

Before you begin:

It may be helpful to have an understanding of how validation rules are triggered. For
more information, see Triggering Validation Execution.

You may also find it useful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To specify entity-level or transaction-level validation:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select an entity-
level validation rule, and click the Edit icon.

3. In the Edit Validation Rule dialog, click the Validation Execution tab.

4. Select Execute at Entity Level or Defer Execution to Transaction Level.

Chapter 10
Triggering Validation Execution

10-34

5. Click OK.

What You May Need to Know About the Order of Validation Execution
You cannot control the order in which attributes are validated – they are always
validated in the order they appear in the entity definition. You can order validations for
a given attribute (or for the entity), but you cannot reorder the attributes themselves.

Creating Validation Error Messages
ADF Business Components allows you to create validation error messages by entering
text that provides self-explanatory information to the end-user on the problem and
troubleshooting tips.

Validation error messages provide important information for the user: the message
should convey what went wrong and how to fix it.

How to Create Error Messages for Validators and Triggers
When you create or edit a validation rule or trigger, you can enter text to help the user
determine what caused the error.

Before you begin:

It may be helpful to have an understanding of error messages in validation rules. For
more information, see Creating Validation Error Messages.

You may also find it useful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Declarative Validation.

To create error messages for validators or triggers:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab, select a validation
rule or trigger, and click the Edit icon.

3. In the Edit dialog, click the Failure Handling tab.

4. In the Message Text field, enter your error message.

You can also define error messages in a message bundle file. To select a
previously defined error message or to define a new one in a message bundle
file, click the Select Message icon.

Note:

Triggers and Script Expression validators allow you to enter more than
one error message. This is useful if the validation script conditionally
returns different error or warning messages. For more information, see
How to Conditionally Raise Error Messages Using Groovy.

5. You can optionally include message tokens in the body of the message, and define
them in the Token Message Expressions list.

Chapter 10
Creating Validation Error Messages

10-35

Figure 10-8 shows the failure message for a validation rule in the OrdEO entity
object that contains message tokens. For more information on this feature, see
How to Embed a Groovy Expression in an Error Message.

6. Click OK.

How to Localize Validation Messages
The error message is a translatable string and is managed in the same way as
translatable UI control hints in an entity object message bundle class. To view the
error message for the defined rule in the message bundle class, locate the String key
in the message bundle that corresponds to the ResId property in the XML document
entry for the validator. For example, The following example shows a message bundle
where the NAME_CANNOT_BEGIN_WITH_U key appears with the error message for the
default locale.

Resource bundles can be created for your applications either as a list resource bundle
(as shown in the sample below), as a properties bundle, or as an XLIFF resource
bundle. For more information about using translatable strings in a resource bundle,
see Working with Resource Bundles.

package devguide.advanced.customerrors;
import java.util.ListResourceBundle;

public class CustomMessageBundle extends ListResourceBundle {
 private static final Object[][] sMessageStrings = new String[][] {
 // other strings here
 {"NAME_CANNOT_BEGIN_WITH_U", "The name cannot begin with the letter u!"},
 // other strings here
 };
 // etc.
}

How to Conditionally Raise Error Messages Using Groovy
You can use the adf.error.raise() and adf.error.warn() methods to conditionally
raise one error message or another depending upon branching in the Groovy
expression. For example, if an attribute value is x, then validate as follows, and if the
validation fails, raise error messageA; whereas if the attribute value is y, then instead
validate a different way and if validation fails, raise error messageB.

If the expression returns false (versus raising a specific error message using the
raise() method), the validator calls the first error message associated with the
validator.

The syntax of the raise() method takes one required parameter (the msgId to use
from the message bundle), and optionally can take the attrName parameter. If you
pass in the AttrName, the error is associated with that attribute even if the validation is
assigned to the entity.

You can use either adf.error.raise() or adf.error.warn() methods, depending on
whether you want to throw an exception, or whether you want processing to continue,
as described in Setting the Severity Level for Validation Exceptions.

Chapter 10
Creating Validation Error Messages

10-36

How to Embed a Groovy Expression in an Error Message
A validator's error message can contain embedded expressions that are resolved by
the server at runtime. To access this feature, simply enter a named token delimited by
curly braces (for example, {2} or {errorParam}) in the error message text where you
want the result of the Groovy expression to appear.

After entering the token into the text of the error message (on the Failure Handling
tab of the Edit Validation Rule dialog), the Token Message Expressions table at the
bottom of the dialog displays a row that allows you to enter a Groovy expression for
the token. Figure 10-8 shows the failure message for a validation rule in the OrdEO
entity object that contains message tokens.

Figure 10-8 Using Message Tokens in a Failure Message

The expressions shown in Figure 10-8 are Groovy expressions that return the labels
of the specified fields. You can also use Groovy expressions to access attribute
values and other business components objects. For example, you can use the Groovy
expression newValue to return the entered value.

The Groovy syntax to retrieve a value from a view accessor is
accessorName.currentRow.AttributeName. For example, the Groovy expression
MyEmpAccessor.currentRow.Job returns the value of the Job attribute in the current
row of the MyEmpAccessor view accessor.

Chapter 10
Creating Validation Error Messages

10-37

The Groovy expression can also be more complex, as in the following example,
which shows an expression in the error message for the List validation rule for the
PaymentTypeId attribute in the OrdEO entity object.

cr = CustomerEO.CreditRatingId
ratings = [1, 2]
if (cr in ratings)
{return true}
else
{return false}

For more information about accessing business components objects using Groovy,
see Using Groovy Scripting Language with Business Components.

Setting the Severity Level for Validation Exceptions
ADF Business Components allows you to set severity levels for validations exceptions
as Informational Warning or Error. The latter level if set does not allow the end-user to
proceed without fixing the issue.

You can set the severity level for validation exceptions to two levels, Informational
Warning and Error. If you set the severity level to Informational Warning, an error
message will display, but processing will continue. If you set the validation level to
Error, the user will not be able to proceed until you have fixed the error.

Under most circumstances you will use the Error level for validation exceptions, so this
is the default setting. However, you might want to implement a Informational Warning
message if the user has a certain security clearance. For example, a store manager
may want to be able to make changes that would surface as an error if a clerk tried to
do the same thing.

When the severity level is set to Informational Warning, the error message is
presented with a warning icon rather than an error icon and after acknowledging the
warning, you can proceed to save the changes.

To set the severity level for validation exceptions, use the Failure Handling tab of the
Add Validation Rule dialog.

To set the severity level of a validation exception:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab.

3. On the Business Rules page, select an existing validation rule and click the Edit
icon, or click the Add icon to create a new rule.

4. In the Edit/Add Validation Rule dialog, click the Failure Handling tab and select
the option for either Error or Informational Warning.

5. Click OK.

Bulk Validation in SQL
ADF Business Components provides bulk validation facility to improve performance of
batch-load applications. The validation is applied on primary keys, alternative keys and
foreign keys.

Chapter 10
Setting the Severity Level for Validation Exceptions

10-38

To improve the performance of batch-load applications, such as data synchronization
programs, Oracle ADF employs bulk validation for primary keys (including alternate
keys) and foreign keys.

When the Key Exists validator is configured to defer validation until the transaction
commits, or when the rows are being updated or inserted through the processXXX
methods of the ADF Business Components service layer, the validation cache is
preloaded. This behavior uses the normal row-by-row derivation and validation logic,
but uses validation logic that checks a memory cache before making queries to the
database. Performance is improved by preloading the memory cache using bulk SQL
operations based on the inbound data.

Chapter 10
Bulk Validation in SQL

10-39

11
Working Programmatically with View
Objects

This chapter describes programmatic uses of the ADF Business Components API that
you can use while designing and working with ADF view objects in an Oracle ADF
application.
This chapter includes the following sections:

• Generating Custom Java Classes for a View Object

• Working Programmatically with Multiple Named View Criteria

• Performing In-Memory Sorting and Filtering of Row Sets

• Reading and Writing XML

• Working Programmatically with Custom Data Sources and the Framework Base
Class ProgrammaticViewObjectImpl

• Using Classic Style Programmatic View Objects for Alternative Data Sources

• Creating a View Object with Multiple Updatable Entities

• Programmatically Creating View Definitions and View Objects

• Declaratively Preventing Insert, Update, and Delete

Generating Custom Java Classes for a View Object
Use custom Java code in a custom Java class associated with an ADF Business
Components view object to add custom logic and validation methods.

As you've seen, all of the basic querying functionality of a view object can be achieved
without using custom Java code. Clients can retrieve and iterate through the data of
any SQL query without resorting to any custom code on the view object developer's
part. In short, for many view objects, once you have defined the SQL statement, you're
done. However, it's important to understand how to enable custom Java generation for
a view object when your needs might require it. For example, reasons you might write
code in a custom Java class include:

• To add validation methods (although Groovy Script expressions can provide this
support without needing Java)

• To add custom logic

• To augment built-in behavior

Most Commonly Used ADF Business Components Methods provides a quick
reference to the most common code that you will typically write, use, and override
in your custom view object and view row classes.

11-1

How To Generate Custom Classes
To enable the generation of custom Java classes for a view object, use the Java
page of the view object overview editor. As shown in the figure below, there are three
optional Java classes that can be related to a view object. The first two in the list are
the most commonly used:

• View object class, which represents the component that performs the query and
controls the execution lifecycle

• View row class, which represents each row in the query result

Figure 11-1 View Object Custom Java Generation Options

Generating View Row Attribute Accessors
When you enable the generation of a custom view row class, if you also select
the Include Accessors checkbox, as shown in the Select Java Options dialog,
then JDeveloper generates getter and setter methods for each attribute in the
view row. For example, for the ProductView view object, the corresponding custom
ProductViewRowImpl.java class might have methods like this generated in it:

public String getName() {...}
public void setName(String value) {...}
public String getShortDesc() {...}
public void setShortDesc(String value) {...}
public String getImageId() {...}
public void setImageId(Integer value) {...}
public String getSuggestedWhlslPrice() {...}
public void setSuggestedWhlslPrice(BigDecimal value) {...}

Chapter 11
Generating Custom Java Classes for a View Object

11-2

These methods allow you to work with the row data with compile-time checking of the
correct datatype usage. That is, instead of writing a line like this one that gets the
value of the Name attribute:

String name = row.getAttribute("Name");

you can write the code like:

String name = row.getName();

You can see that with the latter approach, the Java compiler would catch a
typographical error had you accidentally typed FullName instead of Name:

// spelling name wrong gives compile error
String name = row.getFullName();

Without the generated view row accessor methods, an incorrect line of code like the
following cannot be caught by the compiler:

// Both attribute name and type cast are wrong, but compiler cannot catch it
Integer name = (Integer)row.getAttribute("FullName");

It contains both an incorrectly spelled attribute name, as well as an incorrectly typed
cast of the getAttribute() return value. Using the generic APIs on the Row interface,
errors of this kind will raise exceptions at runtime instead of being caught at compile
time.

Exposing View Row Accessors to Clients
When enabling the generation of a custom view row class, if you would like to
generate a view row attribute accessor, select the Expose Accessor to the Client
checkbox. This causes an additional custom row interface to be generated which
application clients can use to access custom methods on the row without depending
directly on the implementation class.

Best Practice:

When you create client code for business components, you should use
business service interfaces rather than concrete classes. Using the interface
instead of the implementation class, ensures that client code does not need
to change when your server-side implementation does. For more details
working with client code, see in What You May Need to Know About Custom
Interface Support.

For example, in the case of the ProductView view object, exposing the accessors
to the client will generate a custom row interface named ProductViewRow. This
interface is created in the common subpackage of the package in which the
view object resides. Having the row interface allows clients to write code that
accesses the attributes of query results in a strongly typed manner. The following
example shows a TestClient sample client program that casts the results of the
productByName.first() method to the ProductViewRow interface so that it can make
method calls like printAllAttributes() and testSomethingOnProductRows().

package oracle.summit.model.extend;

Chapter 11
Generating Custom Java Classes for a View Object

11-3

import oracle.jbo.*;
import oracle.jbo.client.Configuration;

import oracle.summit.model.extend.common.ProductView;
import oracle.summit.model.extend.common.ProductViewEx;
import oracle.summit.model.extend.common.ProductViewExRow;
import oracle.summit.model.extend.common.ProductViewRow;

public class TestClient {
 public static void main(String[] args) {
 String amDef = "oracle.summit.model.extend.AppModule";
 String config = "AppModuleLocal";
 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef,config);
 ProductView products = (ProductView)am.findViewObject("ProductView1");
 products.executeQuery();
 ProductViewRow product = (ProductViewRow)products.first();
 printAllAttributes(products,product);
 testSomethingOnProductsRow(product);
 products = (ProductView)am.findViewObject("ProductViewEx1");
 ProductViewEx productsByName = (ProductViewEx)products;
 productsByName.setbv_ProductName("bunny");
 productsByName.executeQuery();
 product = (ProductViewRow)productsByName.first();
 printAllAttributes(productsByName,product);
 testSomethingOnProductsRow(product);
 am.getTransaction().rollback();
 Configuration.releaseRootApplicationModule(am,true);
 }
 private static void testSomethingOnProductsRow(ProductViewRow product) {
 try {
 if (product instanceof ProductViewExRow) {
 ProductViewExRow productByName = (ProductViewExRow)product;
 productByName.someExtraFeature("Test");
 }
 product.setName("Q");
 System.out.println("Setting the Name attribute to 'Q' succeeded.");
 }
 catch (ValidationException v) {
 System.out.println(v.getLocalizedMessage());
 }
 }
 private static void printAllAttributes(ViewObject vo, Row r) {
 String viewObjName = vo.getName();
 System.out.println("Printing attribute for a row in VO '"+ viewObjName+"'");
 StructureDef def = r.getStructureDef();
 StringBuilder sb = new StringBuilder();
 int numAttrs = def.getAttributeCount();
 AttributeDef[] attrDefs = def.getAttributeDefs();
 for (int z = 0; z < numAttrs; z++) {
 Object value = r.getAttribute(z);
 sb.append(z > 0 ? " " : "")
 .append(attrDefs[z].getName())
 .append("=")
 .append(value == null ? "<null>" : value)
 .append(z < numAttrs - 1 ? "\n" : "");
 }
 System.out.println(sb.toString());
 }
}

Chapter 11
Generating Custom Java Classes for a View Object

11-4

Configuring Default Java Generation Preferences
You've seen how to generate custom Java classes for your view objects when you
need to customize their runtime behavior, or if you simply prefer to have strongly typed
access to bind variables or view row attributes.

To change the default settings that control how JDeveloper generates Java classes,
choose Tools | Preferences and open the ADF Business Components page. The
settings you choose will apply to all future business components you create.

Oracle recommends that developers getting started with ADF Business Components
set their preference to generate no custom Java classes by default. As you run into
specific needs, you can enable just the bit of custom Java you need for that one
component. Over time, you'll discover which set of defaults works best for you.

What Happens When You Generate Custom Classes
When you choose to generate one or more custom Java classes, JDeveloper creates
the Java file(s) you've indicated.

For example, in the case of a view object named
oracle.summit.model.extend.ProductView, the default names for its custom
Java files will be ProductViewImpl.java for the view object class and
ProductViewRowImpl.java for the view row class. Both files get created in the
same ./model/extend directory as the component's XML document file.

The Java generation options for the view object continue to be reflected on the Java
page on subsequent visits to the view object overview editor. Just as with the XML
definition file, JDeveloper keeps the generated code in your custom Java classes up
to date with any changes you make in the editor. If later you decide you didn't require
a custom Java file for any reason, unchecking the relevant options in the Java page
causes the custom Java files to be removed.

Viewing and Navigating to Custom Java Files
As shown in Figure 11-2, when you've enabled generation of custom Java classes,
they also appear under the node for the view object. When you need to see or work
with the source code for a custom Java file, there are two ways to open the file in the
source editor:

• Choose Open in the context menu, as shown in Figure 11-2

• With the Java file node selected in the Applications window, double-click a node in
the Structure window

Chapter 11
Generating Custom Java Classes for a View Object

11-5

Figure 11-2 Viewing and Navigating to Custom Java Classes for a View Object

What You May Need to Know About Custom Classes
This section provides additional information to help you use custom Java classes.

About the Framework Base Classes for a View Object
When you use an "XML-only" view object, at runtime its functionality is provided by
the default ADF Business Components implementation classes. Each custom Java
class that gets generated will automatically extend the appropriate ADF Business
Components base class so that your code inherits the default behavior and can easily
add or customize it. A view object class will extend ViewObjectImpl, while the view
row class will extend ViewRowImpl (both in the oracle.jbo.server package).

You Can Safely Add Code to the Custom Component File
Based perhaps on previous negative experiences, some developers are hesitant to
add their own code to generated Java source files. Each custom Java source code file

Chapter 11
Generating Custom Java Classes for a View Object

11-6

that JDeveloper creates and maintains for you includes the following comment at the
top of the file to clarify that it is safe to add your own custom code to this file:

// ---
// --- File generated by ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---

JDeveloper does not blindly regenerate the file when you click the OK or Apply button
in the component dialogs. Instead, it performs a smart update to the methods that it
needs to maintain, leaving your own custom code intact.

Attribute Indexes and InvokeAccessor Generated Code
The view object is designed to function either in an XML-only mode or using a
combination of an XML document and a custom Java class. Since attribute values
are not stored in private member fields of a view row class, such a class is not present
in the XML-only situation. Instead, attributes are defined as an AttributesEnum type,
which specifies attribute names (and accessors for each attribute) based on the
view object's XML document, in sequential order of the <ViewAttribute> tag, the
association-related <ViewLinkAccessor> tag, and the <ViewAccessor> tag in that file.
At runtime, the attribute values in an view row are stored in a structure that is
managed by the base ViewRowImpl class, indexed by the attribute's numerical position
in the view object's attribute list.

For the most part this private implementation detail is unimportant. However, when
you enable a custom Java class for your view row, this implementation detail is
related to some of the generated code that JDeveloper automatically maintains in
your view row class, and you may want to understand what that code is used for.
For example, in the custom Java class for the Users view row, the following example
shows that each attribute, view link accessor attribute, or view accessor attribute
has a corresponding generated AttributesEnum enum. JDeveloper defines enums
instead of constants in order to prevent merge conflicts that could result when multiple
developers add new attributes to the XML document.

public class RowImpl extends SummitViewRowImpl implements ProductViewRow {
/**
 * AttributesEnum: generated enum for identifying attributes and accessors.
 * Do not modify.
 */
public enum AttributesEnum {...}
 public static final int ID = AttributesEnum.Id.index();
 public static final int NAME = AttributesEnum.Name.index();
 public static final int SHORTDESC = AttributesEnum.ShortDesc.index();
 public static final int LONGTEXTID = AttributesEnum.LongtextId.index();
 public static final int IMAGEID = AttributesEnum.ImageId.index();
 public static final int SUGGESTEDWHLSLPRICE =
 AttributesEnum.SuggestedWhlslPrice.index();
 public static final int WHLSLUNITS = AttributesEnum.WhlslUnits.index();
 public static final int SOMEVALUE = AttributesEnum.SomeValue.index();
 public static final int SFADSF = AttributesEnum.sfadsf.index();
 ...

You'll also notice that the automatically maintained, strongly typed getter and setter
methods in the view row class use these attribute constants like this:

public Integer getId() {
 return (Integer) getAttributeInternal(ID); // <-- Attribute constant

Chapter 11
Generating Custom Java Classes for a View Object

11-7

}
public void setId(Integer value) {
 setAttributeInternal(ID, value);// <-- Attribute constant
}

The last two aspects of the automatically maintained code related to view row attribute
constants defined by the AttributesEnum type are the getAttrInvokeAccessor()
and setAttrInvokeAccessor() methods. These methods optimize the performance
of attribute access by numerical index, which is how generic code in
the ViewRowImpl base class typically accesses attribute values. An example
of the getAttrInvokeAccessor() method looks like the following from the
ProductViewRowImpl.java class. The companion setAttrInvokeAccessor() method
looks similar.

protected Object getAttrInvokeAccessor(int index, AttributeDefImpl attrDef) throws Exception {
 if ((index >= AttributesEnum.firstIndex()) && (index < AttributesEnum.count())) {
 return AttributesEnum.staticValues()[index - AttributesEnum.firstIndex()].get(this);
 }
 return super.getAttrInvokeAccessor(index, attrDef);
}

The rules of thumb to remember about this generated attribute-related code are the
following.

The Do's

• Add custom code if needed inside the strongly typed attribute getter and setter
methods

• Use the view object overview editor to change the order or type of view object
attributes

JDeveloper will change the Java signature of getter and setter methods, as well
as the related XML document for you.

The Don'ts

• Don't modify the list of enums in the generated AttributesEnum enum

• Don't modify the getAttrInvokeAccessor() and setAttrInvokeAccessor()
methods

Avoid Creating Dependencies on Parent Application Module Types
Custom methods that you implement in the view object class or view object row
class must not be dependent on the return type of an application module. At
runtime, in specific cases, methods that execute with such a dependency may throw
a ClassCastException because the returned application module does not match the
expected type. It is therefore recommended that custom methods that you implement
should not have code to get a specific application module implementation or view
object implementation as shown below.

((MyAM)getRootApplicationModule()).getMyVO

Specifically, the above code fails with a ClassCastException in the following
scenarios:

• When the ADF Business Components framework instantiates the view object in
a different container application module than its defining container. While view
objects are typically instantiated in the container application module that declares

Chapter 11
Generating Custom Java Classes for a View Object

11-8

their view usage (XML definition), the ADF Business Components runtime does
not guarantee that the containers associated with each application module will
remain fixed. Thus, if you implement methods with dependencies on the parent
application module type, your methods may not execute consistently.

• When you manually nest an application module under a root application module.
In this case, the nested application modules share the same Transaction object
and there is no guarantee that the expected application module type is returned
with the above code.

• When the ADF Business Components framework implementation changes with
releases. For example, in previous releases, the framework created an internal
root application module in order to control declarative transactions that the
application defined using ADF task flows.

Working Programmatically with Multiple Named View
Criteria

ADF Business Components allows you to define multiple view criteria and apply
combinations of them to a view object at runtime.

You can define multiple named view criteria in the overview editor for a view object
and then selectively apply any combination of them to your view object at runtime as
needed. For information about working with named view criteria at design time, see
How to Create Named View Criteria Declaratively.

Note:

The example in this section refers to the
oracle.summit.model.multinamedviewcriteria package in the
SummitADF_Examples application workspace.

Applying One or More Named View Criteria
To apply one or more named view criteria, use the setApplyViewCriteriaNames()
method. This method accepts a String array of the names of the criteria you want
to apply. If you apply more than one named criteria, they are AND-ed together in
the WHERE clause produced at runtime. New view criteria that you apply with
the setApplyViewCriteriaNames() method will overwrite all previously applied view
criteria. Alternatively, you can use the setApplyViewCriteriaName() method when
you want to append a single view criteria to those that were previously applied.

When you need to apply more than one named view criteria, you can expose
custom methods on the client interface of the view object to encapsulate applying
combinations of the named view criteria. For example, the following example shows
custom methods showCustomersForSalesRep(), showCustomersForCreditRating(),
and showCustomersForSalesRepForCreditRating(), each of which uses the
setApplyViewCriteriaNames() method to apply an appropriate combination of named
view criteria. Once these methods are exposed on the view object's client interface,
at runtime clients can invoke these methods as needed to change the information
displayed by the view object.

Chapter 11
Working Programmatically with Multiple Named View Criteria

11-9

// In CustomerViewImpl.java
 public void showCustomersForSalesRep() {
 // reset the view criteria
 setApplyViewCriteriaNames(null);
 // set the view criteria to show all the customers for the given sales rep
 setApplyViewCriteriaName("SalesRepIsCriteria");
 executeQuery();
 }

 public void showCustomersForCreditRating() {
 setApplyViewCriteriaNames(null);
 setApplyViewCriteriaName("CreditRatingIsCriteria");
 executeQuery();
 }

 public void showCustomersForSalesRepForCreditRating() {
 // reset the view criteria
 setApplyViewCriteriaNames(null);
 // apply both view criteria to show all the customers that match both
 setApplyViewCriteriaNames(new String[]{"SalesRepIsCriteria",
 "CreditRatingIsCriteria"});
 executeQuery();
 }

What You May Need to Know about Applying One or More Named
View Criteria

You can also use the appendViewCriteriaName() method instead of
setApplyViewCriteriaNames() to apply one or more named view criteria. This method
works the same way as setApplyViewCriteriaNames() that accepts a String array of
the names of the criteria you want to apply. If you apply more than one named criteria,
they are AND-ed together in the WHERE clause produced at runtime. New view criteria
that you apply with the appendViewCriteriaName() method will append the new view
criteria to the already applied view criteria list of the view object. Alternatively, you can
use the appendViewCriteriaName() method when you want to append a single view
criteria to those that were previously applied.

The following code examples show the different new APIs that you can add to a view
object.

• To append a given view criteria name to an existing list of applied view criteria.

 public void appendViewCriteriaName(String criteria);

• To append a list of given view criteria name to an existing list of view criteria.

public void appendViewCriteriaName(String[] criterias);

• To append a given view criteria object to an existing list of criteria.

public void appendViewCriteriaObject(ViewCriteria criteria);

Chapter 11
Working Programmatically with Multiple Named View Criteria

11-10

• To append a list of given view criteria object to an existing list of applied view
criteria.

public void appendViewCriteriaObject(ViewCriteria[] criterias);

• To append a given view criteria expression to an existing list of applied view
criteria.

 public void appendViewCriteriaExpression(String expr);

• To reset all the view criteria objects to their definition state.

 public void resetAllViewCriteria();

This also removes any view criteria created at runtime.

• To reset a given view criteria object to its definition state.

public void resetViewCriteriaName(String viewcriteria);

Removing All Applied Named View Criteria
To remove any currently applied named view criteria, use
setApplyViewCriteriaNames(null). For example, you could add the
showAllCustomers() method in the following example to the CustomersView view
object and expose it on the client interface. This would allow clients to return to an
unfiltered view of the data when needed.

Do not remove any design time view criteria because the row level bind variable
values may already be applied on the row set. To help ensure this, named view criteria
that get defined for a view accessor in the design time, will be applied as "required"
view criteria on the view object instance so that it does not get removed by the view
criteria's life cycle methods.

// In CustomerViewImpl.java
public void showAllCustomers() {
 setApplyViewCriteriaNames(null);
 executeQuery();
}

Note:

The setApplyViewCriterias(null) removes all applied view criteria, but
allows you to later reapply any combination of them. In contrast, the
clearViewCriterias() method deletes all named view criteria. After calling
clearViewCriterias() you would have to use putViewCriteria() again to
define new named criteria before you could apply them.

Chapter 11
Working Programmatically with Multiple Named View Criteria

11-11

Using the Named Criteria at Runtime
At runtime, your application can invoke different client methods on a single view object
interface to return different filtered sets of data. The following example shows the
interesting lines of a test client class that works with the CustomerView view object
described above. The showResults() method is a helper method that iterates over the
rows in the view object to display some attributes.

// In MultiNamedViewCriteriaTestClient.java
 CustomerView vo = (CustomerView) am.findViewObject("CustomerView");

// Show list of all rows in the CustomerView, without applying any view criteria.
 showResults(vo,"All Customers");

// Use type safe set method to set the value of the bind variable used by the
// view criteria
 vo.setbv_SalesRepId(12);
 vo.showCustomersForSalesRep();
 showResults(vo, "All Customers with SalesRepId = 12");

// Set the sales rep id to 11 and show the results.
 vo.setbv_SalesRepId(11);
 vo.showCustomersForSalesRep();
 showResults(vo, "All Customers with SalesRepId = 11");

// use type safe method to set value of bind variable used by the view criteria
 vo.setbv_CreditRatingId(2);

// This method applies both view criteria to the VO so the results match
// both criteria, but we do not set the bind variable for sales rep as it
// was already set. The results will show all the customers with a sales
// rep of 11 and a credit rating of 2.
 vo.showCustomersForSalesRepForCreditRating();
 showResults(vo, "Customers with SalesRepId = 11 and CreditRating = 2");

// Now show all the customers again. The showAllCustomers method resets
// the view criteria.
 vo.showAllCustomers();
 showResults(vo, "All Customers");

Running MultiNamedViewCriteriaTestClient.java produces output as follows:

---All Customers ---

Unisports Sao Paulo [12, 1]
Simms Athletics Osaka [14, 4]
Delhi Sports New Delhi [14, 2]
...
---All Customers with SalesRepId = 12 ---

Unisports Sao Paulo [12, 1]
Futbol Sonora Nogales [12, 1]
Stuffz Sporting Goods Madison [12, 3]
...
---All Customers with SalesRepId = 11 ---

Womansport Seattle [11, 3]
Beisbol Si! San Pedro de Macon's [11, 1]
Big John's Sports Emporium San Francisco [11, 1]

Chapter 11
Working Programmatically with Multiple Named View Criteria

11-12

Ojibway Retail Buffalo [11, 3]
...
---Customers with SalesRepId = 11 and CreditRating = 2 ---

Max Gear New York [11, 2]
MoreAndMoreStuffz Dallas [11, 2]
Schindler's Sports St Louis [11, 2]
...
---All Customers ---

Unisports Sao Paulo [12, 1]
Simms Athletics Osaka [14, 4]
Delhi Sports New Delhi [14, 2]
...

Performing In-Memory Sorting and Filtering of Row Sets
ADF Business Components allows you to configure view objects to search for data
in-memory as opposed to from the database. In-memory searching and sorting is
transaction-efficient and cost-effective.

View Object rows can be sorted by using the following APIs:

• setSortBy

• setOrderByClause

• setOrderByorSortBy

The SortBy() method is used to deal with in-memory sorting and the OrderBy()
method is used to sort rows in the database layer.

By default a view object performs its query against the database to retrieve the rows
in its resulting row set. However, you can also use view objects to perform in-memory
searches and sorting to avoid unnecessary trips to the database. If transient attributes
are passed to setSortBy API, then the rows will be sorted only in memory. This type
of operation is ideal for sorting and filtering the new, as yet unposted rows of the
view object row set; otherwise, unposted rows are added to the top of the row set. If
any persistent attributes are passed to setSortBy API, then only for those persistent
attributes a database order by clause is generated, so that rows are first sorted in
database layer. If both transient and persistent attributes are passed , then for the
persistent attributes a database order by clause is generated, database sorted rows
are fetched into memory and then ADF BC will sort the fetched rows using both the
transient and persistent attributes in the order specified.

Note:

The example in this section refers to to the
oracle.summit.model.inMemoryOperations package in the
SummitADF_Examples application workspace.

Chapter 11
Performing In-Memory Sorting and Filtering of Row Sets

11-13

Understanding the View Object's SQL Mode
The view object's SQL mode controls the source used to retrieve rows to populate
its row set. The setQueryMode() allows you to control which mode, or combination of
modes, are used:

• ViewObject.QUERY_MODE_SCAN_DATABASE_TABLES

This is the default mode that retrieves results from the database.

• ViewObject.QUERY_MODE_SCAN_VIEW_ROWS

This mode uses rows already in the row set as the source, allowing you to
progressively refine the row set's contents through in-memory filtering.

• ViewObject.QUERY_MODE_SCAN_ENTITY_ROWS

This mode, valid only for entity-based view objects, uses the entity rows presently
in the entity cache as the source to produce results based on the contents of the
cache.

You can use the modes individually, or combine them using Java's logical OR operator
(X | Y). For example, to create a view object that queries the entity cache for
unposted new entity rows, as well as the database for existing rows, you could write
code like:

setQueryMode(ViewObject.QUERY_MODE_SCAN_DATABASE_TABLES |
 ViewObject.QUERY_MODE_SCAN_ENTITY_ROWS)

If you combine the SQL modes, the view object automatically handles skipping of
duplicate rows. In addition, there is an implied order to the results that are found:

1. Scan view rows (if specified)

2. Scan entity cache (if specified)

3. Scan database tables (if specified) by issuing a SQL query

If you call the setQueryMode() method to change the SQL mode, your new setting
takes effect the next time you call the executeQuery() method.

Sorting View Object Rows In Memory
To sort the rows in a view object at runtime, use the setSortBy() method to control
the sort order or you can set the view object property PROP_ALWAYS_USE_SORT to true
to allow the system to handle in-memory sorting by default.

When you want to control the sort order, you pass a sort expression that looks like
a SQL ORDER BY clause. However, instead of referencing the column names of
the table, you use the view object's attribute names. For example, for a view object
containing attributes named CreditRatingId and ZipCode, you could sort the view
object first by Customer descending, then by DaysOpen by calling:

setSortBy("CreditRatingId desc, ZipCode");

Alternatively, you can use the zero-based attribute index position in the sorting clause
like this:

setSortBy("3 desc, 2");

Chapter 11
Performing In-Memory Sorting and Filtering of Row Sets

11-14

After calling the setSortBy() method, the rows will be sorted the next time you call
the executeQuery() method. The view object translates this sorting clause into an
appropriate format to use for ordering the rows depending on the SQL mode of the
view object. If you use the default SQL mode, the SortBy clause is translated into
an appropriate ORDER BY clause and used as part of the SQL statement sent to the
database. If you use either of the in-memory SQL modes, then the SortBy by clause is
translated into one or more SortCriteria objects for use in performing the in-memory
sort.

Note:

While SQL ORDER BY expressions treat column names in a case-
insensitive way, the attribute names in a SortBy expression are case-
sensitive.

Combining setSortBy and setQueryMode for In-Memory Sorting
You can perform an in-memory sort on the rows produced by a read-only view
object using the setSortBy() and setQueryMode() methods. The following example
shows the interesting lines of code from the TestClientSetSortBy class that uses
setSortBy() and setQueryMode() to perform an in-memory sort on the rows produced
by a read-only view object CustomersInTx.

// In TestClientSetSortBy.java
am.getTransaction().executeCommand("ALTER SESSION SET SQL_TRACE TRUE");
ViewObject vo = am.findViewObject("CustomersInTx");
vo.executeQuery();
showRows(vo,"Initial database results");
vo.setSortBy("Name");
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_VIEW_ROWS);
vo.executeQuery();
showRows(vo,"After in-memory sorting by Customer Name ");
vo.setSortBy("CreditRatingId desc, ZipCode");
vo.executeQuery();
showRows(vo,"After in-memory sorting by CreditRating desc, and ZipCode");

Running the example produces the results:

--- Initial database results ---

36,Great Gear,1500 Barton Springs Rd,78704, 2, TX
37,Acme Outfitters,3500 Guadalupe St,78705, 3, TX
38,Athena's Closet,1209 Red River St,78701, 1, TX
39,BuyMyJunk,5610 E Mockingbird Ln,75206, 3, TX
...

--- After in-memory sorting by Customer Name ---

37,Acme Outfitters,3500 Guadalupe St,78705, 3, TX
38,Athena's Closet,1209 Red River St,78701, 1, TX
43,Big Bad Sports,2920 Hillcroft St,77057, 1, TX
39,BuyMyJunk,5610 E Mockingbird Ln,75206, 3, TX
...

--- After in-memory sorting by CreditRating desc, and ZipCode ---

Chapter 11
Performing In-Memory Sorting and Filtering of Row Sets

11-15

42,Field Importers,2111 Norfolk St,77098, 4, TX
39,BuyMyJunk,5610 E Mockingbird Ln,75206, 3, TX
37,Acme Outfitters,3500 Guadalupe St,78705, 3, TX
41,MoreAndMoreStuffz,3501 McKinney Ave,75204, 2, TX
...

The first line in the above test client containing the executeCommand() call issues
the ALTER SESSION SET SQL TRACE command to enable SQL tracing for the current
database session. This causes the Oracle database to log every SQL statement
performed to a server-side trace file. It records information about the text of each
SQL statement, including how many times the database parsed the statement and
how many round-trips the client made to fetch batches of rows while retrieving the
query result.

Note:

You might need a DBA to grant permission to the Summit account to perform
the ALTER SESSION command to do the tracing of SQL output.

Once you've produced a trace file, you can use the TKPROF utility that comes with the
database to format the file:

tkprof xe_ora_3916.trc trace.prf

For details about working with the TKPROF utility, see sections "Understanding SQL
Trace and TKPROF" and "Using the SQL Trace Facility and TKPROF" in the
"Performing Application Tracing" chapter of the Oracle Database SQL Tuning Guide.

This will produces a trace.prf file containing the interesting information shown in
the following example about the SQL statement performed by the CustomersInTx
view object. You can see that after initially querying six rows of data in a
single execute and fetch from the database, the two subsequent sorts of those
results did not cause any further executions. Since the code set the SQL
mode to ViewObject.QUERY_MODE_SCAN_VIEW_ROWS the setSortBy() followed by the
executeQuery() performed the sort in memory.

SELECT
 S_CUSTOMER.ID ID,
 S_CUSTOMER.NAME NAME,
 S_CUSTOMER.PHONE PHONE,
 S_CUSTOMER.ADDRESS ADDRESS,
 S_CUSTOMER.CITY CITY,
 S_CUSTOMER.STATE STATE,
 S_CUSTOMER.ZIP_CODE ZIP_CODE,
 S_CUSTOMER.CREDIT_RATING_ID CREDIT_RATING_ID
FROM
 S_CUSTOMER
WHERE
 S_CUSTOMER.STATE = 'TX'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.02 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 9 0.00 0.00 0 14 0 8

Chapter 11
Performing In-Memory Sorting and Filtering of Row Sets

11-16

------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 11 0.00 0.02 0 14 0 8

Simplified In-Memory Sorting
Should you not require control over the way that rows are sorted in memory, the view
object interface provides the PROP_ALWAYS_USE_SORT property that enforces sorting
when you change the view object query mode to use in-memory rows as the source.
You can use this property when a view object has a small row set and the client needs
to have in-memory sorting performed. Set the view object property to specify default
in-memory sorting after you set the query mode:

vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_ENTITY_ROWS);
vo.setProperty(ViewObject.PROP_ALWAYS_USE_SORT, "true");

Extensibility Points for In-Memory Sorting
Should you need to customize the way that rows are sorted in memory, you have the
following means at your disposal:

• You can override the method:

public void sortRows(Row[] rows)

This method performs the actual in-memory sorting of rows. By overriding this
method you can plug in an alternative sorting approach if needed.

• You can override the method:

public Comparator getRowComparator()

The default implementation of this method returns an oracle.jbo.RowComparator.
RowComparator invokes the compareTo() method to compare two data values.
These methods/objects can be overridden to provide custom compare routines.

Performing In-Memory Filtering with View Criteria
To filter the contents of a row set using ViewCriteria, you can call:

• applyViewCriteria() or setApplyViewCriteriaNames() followed by
executeQuery() to produce a new, filtered row set.

• findByViewCriteria() to retrieve a new row set to process programmatically
without changing the contents of the original row set.

Both of these approaches can be used against the database or to perform in-memory
filtering, or both, depending on the view criteria mode. You set the criteria mode using
the setCriteriaMode() method on the ViewCriteria object, to which you can pass
either of the following integer flags, or the logical OR of both:

• ViewCriteria.CRITERIA_MODE_QUERY

• ViewCriteria.CRITERIA_MODE_CACHE

When used for in-memory filtering with view criteria, the operators supported are
shown in Table 11-1. You can group subexpressions with parenthesis and use the AND
and OR operators between subexpressions.

Chapter 11
Performing In-Memory Sorting and Filtering of Row Sets

11-17

Table 11-1 SQL Operators Supported By In-Memory Filtering with View Criteria

Operator Operation

=, >, <, <=, >=, <>, LIKE, BETWEEN, IN Comparison

NOT Logical negation

AND Conjunction

OR Disjunction

The following example shows the interesting lines from a
TestClientFindByViewCriteria class that uses the two features described above
both against the database and in-memory. It uses a CustomerList view object
instance and performs the following basic steps:

1. Queries customers from the database with a last name starting with a 'C',
producing the output:

--- Initial database results with applied view criteria ---
John Chen
Emerson Clabe
Karen Colmenares

2. Subsets the results from step 1 in memory to only those with a first name starting
with 'J'. It does this by adding a second view criteria row to the view criteria and
setting the conjunction to use "AND". This produces the output:

--- After augmenting view criteria and applying in-memory ---
John Chen

3. Sets the conjunction back to OR and reapplies the criteria to the database to query
customers with last name like 'J%' or first name like 'C%'. This produces the
output:

--- After changing view criteria and applying to database again ---
John Chen
Jose Manuel Urman
Emerson Clabe
Karen Colmenares
Jennifer Whalen

4. Defines a new criteria to find customers in-memory with first or last name that
contain a letter 'o'

5. Uses findByViewCriteria() to produce new a row set (instead of subsetting),
producing the output:

--- Rows returned from in-memory findByViewCriteria ---
John Chen
Jose Manuel Urman
Emerson Clabe
Karen Colmenares

6. Shows that original row set hasn't changed when findByViewCriteria() was
used, producing the output:

--- Note findByViewCriteria didn't change rows in the view ---
John Chen
Jose Manuel Urman
Emerson Clabe

Chapter 11
Performing In-Memory Sorting and Filtering of Row Sets

11-18

Karen Colmenares
Jennifer Whalen

// In TestClientFindByViewCriteria.java
ViewObject vo = am.findViewObject("CustomerList");
// 1. Show customers with a last name starting with a 'M'
ViewCriteria vc = vo.createViewCriteria();
ViewCriteriaRow vcr1 = vc.createViewCriteriaRow();
vcr1.setAttribute("LastName","LIKE 'M%'");
vo.applyViewCriteria(vc);
vo.executeQuery();
vc.add(vcr1);
vo.executeQuery();
showRows(vo, "Initial database results with applied view criteria");
// 2. Subset results in memory to those with first name starting with 'S'
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_VIEW_ROWS);
ViewCriteriaRow vcr2 = vc.createViewCriteriaRow();
vcr2.setAttribute("FirstName","LIKE 'S%'");
vcr2.setConjunction(ViewCriteriaRow.VCROW_CONJ_AND);
vc.setCriteriaMode(ViewCriteria.CRITERIA_MODE_CACHE);
vc.add(vcr2);
vo.executeQuery();
showRows(vo,"After augmenting view criteria and applying in-memory");
// 3. Set conjuction back to OR and reapply to database query to find
// customers with last name like 'H%' or first name like 'S%'
vc.setCriteriaMode(ViewCriteria.CRITERIA_MODE_QUERY);
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_DATABASE_TABLES);
vcr2.setConjunction(ViewCriteriaRow.VCROW_CONJ_OR);
vo.executeQuery();
showRows(vo,"After changing view criteria and applying to database again");
// 4. Define new critera to find customers with first or last name like '%o%'
ViewCriteria nameContainsO = vo.createViewCriteria();
ViewCriteriaRow lastContainsO = nameContainsO.createViewCriteriaRow();
lastContainsO.setAttribute("LastName","LIKE '%o%'");
ViewCriteriaRow firstContainsO = nameContainsO.createViewCriteriaRow();
firstContainsO.setAttribute("FirstName","LIKE '%o%'");
nameContainsO.add(firstContainsO);
nameContainsO.add(lastContainsO);
// 5. Use findByViewCriteria() to produce new rowset instead of subsetting
nameContainsO.setCriteriaMode(ViewCriteria.CRITERIA_MODE_CACHE);
RowSet rs = (RowSet)vo.findByViewCriteria(nameContainsO,
 -1,ViewObject.QUERY_MODE_SCAN_VIEW_ROWS);
showRows(rs,"Rows returned from in-memory findByViewCriteria");
// 6. Show that original rowset hasn't changed
showRows(vo,"Note findByViewCriteria didn't change rows in the view");

Performing In-Memory Filtering with RowMatch
The RowMatch object provides an even more convenient way to express in-memory
filtering conditions. You create a RowMatch object by passing a query predicate
expression to the constructor like this:

RowMatch rm =
 new RowMatch("LastName = 'Popp' or (FirstName like 'A%' and LastName like 'K%')"
);

As you do with the SortBy clause, you phrase the RowMatch expression in terms of the
view object attribute names, using the supported operators shown in Table 11-2. You
can group subexpressions with parenthesis and use the AND and OR operators between
subexpressions.

Chapter 11
Performing In-Memory Sorting and Filtering of Row Sets

11-19

Table 11-2 SQL Operators Supported By In-Memory Filtering with RowMatch

Operator Operation

=, >, <, <=, >=, <>, LIKE, BETWEEN, IN Comparison

NOT Logical negation

Note that logical negation operations NOT
IN are not supported by the RowMatch
expression.

To negate the IN operator, use this
construction instead (note the use of
brackets):

NOT (EmpID IN ('VP','PU'))

AND Conjunction

OR Disjunction

You can also use a limited set of SQL functions in the RowMatch expression, as shown
in Table 11-3.

Table 11-3 SQL Functions Supported By In-Memory Filtering with RowMatch

Operator Operation

UPPER Converts all letters in a string to
uppercase.

TO_CHAR Converts a number or date to a string.

TO_DATE Converts a character string to a date
format.

TO_TIMESTAMP Converts a string to timestamp.

Note:

While SQL query predicates treat column names in a case-insensitive way,
the attribute names in a RowMatch expression are case-sensitive.

Applying a RowMatch to a View Object
To apply a RowMatch to your view object, call the setRowMatch() method. In contrast
to a ViewCriteria, the RowMatch is only used for in-memory filtering, so there is no
"match mode" to set. You can use a RowMatch on view objects in any supported
SQL mode, and you will see the results of applying it the next time you call the
executeQuery() method.

When you apply a RowMatch to a view object, the RowMatch expression can reference
the view object's named bind variables using the same :VarName notation that you
would use in a SQL statement. For example, if a view object had a named bind
variable named StatusCode, you could apply a RowMatch to it with an expression like:

Status = :StatusCode or :StatusCode = '%'

Chapter 11
Performing In-Memory Sorting and Filtering of Row Sets

11-20

The following example shows the interesting lines of a TestClientRowMatch class that
illustrate the RowMatch in action. The CustomerList view object used in the example
has a transient Boolean attribute named Selected. The code performs the following
basic steps:

1. Queries the full customer list, producing the output:

--- Initial database results ---
Neena Kochhar [null]
Lex De Haan [null]
Nancy Greenberg [null]
:

2. Marks odd-numbered rows selected by setting the Selected attribute of odd rows
to Boolean.TRUE, producing the output:

--- After marking odd rows selected ---
Neena Kochhar [null]
Lex De Haan [true]
Nancy Greenberg [null]
Daniel Faviet [true]
John Chen [null]
Ismael Sciarra [true]
:

3. Uses a RowMatch to subset the row set to contain only the select rows, that is,
those with Selected = true. This produces the output:

--- After in-memory filtering on only selected rows ---
Lex De Haan [true]
Daniel Faviet [true]
Ismael Sciarra [true]
Luis Popp [true]
:

4. Further subsets the row set using a more complicated RowMatch expression,
producing the output:

--- After in-memory filtering with more complex expression ---
Lex De Haan [true]
Luis Popp [true]

// In TestClientRowMatch.java
// 1. Query the full customer list
ViewObject vo = am.findViewObject("CustomerList");
vo.executeQuery();
showRows(vo,"Initial database results");
// 2. Mark odd-numbered rows selected by setting Selected = Boolean.TRUE
markOddRowsAsSelected(vo);
showRows(vo,"After marking odd rows selected");
// 3. Use a RowMatch to subset row set to only those with Selected = true
RowMatch rm = new RowMatch("Selected = true");
vo.setRowMatch(rm);
// Note: Only need to set SQL mode when not defined at design time
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_VIEW_ROWS);
vo.executeQuery();
showRows(vo, "After in-memory filtering on only selected rows");
// 5. Further subset rowset using more complicated RowMatch expression
rm = new RowMatch("LastName = 'Popp' "+
 "or (FirstName like 'A%' and LastName like 'K%')");
vo.setRowMatch(rm);
vo.executeQuery();
showRows(vo,"After in-memory filtering with more complex expression");

Chapter 11
Performing In-Memory Sorting and Filtering of Row Sets

11-21

// 5. Remove RowMatch, set query mode back to database, requery to see full list
vo.setRowMatch(null);
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_DATABASE_TABLES);
vo.executeQuery();
showRows(vo,"After requerying to see a full list again");

Using RowMatch to Test an Individual Row
In addition to using a RowMatch to filter a row set, you can also use its rowQualifies()
method to test whether any individual row matches the criteria it encapsulates. For
example:

RowMatch rowMatch = new RowMatch("CountryId = 'US'");
if (rowMatch.rowQualifies(row)) {
 System.out.println("Customer is from the United States ");
}

How a RowMatch Affects Rows Fetched from the Database
Once you apply a RowMatch, if the view object's SQL mode is set to retrieve rows from
the database, when you call executeQuery() the RowMatch is applied to rows as they
are fetched. If a fetched row does not qualify, it is not added to the row set.

Unlike a SQL WHERE clause, a RowMatch can evaluate expressions involving transient
view object attributes and not-yet-posted attribute values. This can be useful to filter
queried rows based on RowMatch expressions involving transient view row attributes
whose values are calculated in Java. This interesting aspect should be used with care,
however, if your application needs to process a large row set. Oracle recommends
using database-level filtering to retrieve the smallest-possible row set first, and then
using RowMatch as appropriate to subset that list in memory.

Reading and Writing XML
View objects in ADF Business Components support reading and writing of data in
XML documents. This allows view objects to perform CRUD operations based on XML
documents.

The Extensible Markup Language (XML) standard from the Worldwide Web
Consortium (W3C) defines a language-neutral approach for electronic data exchange.
Its rigorous set of rules enables the structure inherent in data to be easily encoded and
unambiguously interpreted using human-readable text documents.

View objects support the ability to write these XML documents based on their queried
data. View objects also support the ability to read XML documents in order to apply
changes to data including inserts, updates, and deletes. When you've introduced
a view link, this XML capability supports reading and writing multi-level nested
information for master-detail hierarchies of any complexity. While the XML produced
and consumed by view objects follows a canonical format, you can combine the
view object's XML features with XML Stylesheet Language Transformations (XSLT) to
easily convert between this canonical XML format and any format you need to work
with.

Chapter 11
Reading and Writing XML

11-22

Note:

The example in this section refers to the
oracle.summit.model.readandwrite package in the SummitADF_Examples
application workspace.

How to Produce XML for Queried Data
To produce XML from a view object, use the writeXML() method. If offers two ways to
control the XML produced:

1. For precise control over the XML produced, you can specify a view object attribute
map indicating which attributes should appear, including which view link accessor
attributes should be accessed for nested, detail information:

Node writeXML(long options, HashMap voAttrMap)

2. To producing XML that includes all attributes, you can simply specify a depth level
that indicates how many levels of view link accessor attributes should be traversed
to produce the result:

Node writeXML(int depthCount, long options)

The options parameter is an integer flag field that can be set to one of the following bit
flags:

• XMLInterface.XML_OPT_ALL_ROWS

Includes all rows in the view object's row set in the XML.

• XMLInterface.XML_OPT_LIMIT_RANGE

Includes only the rows in the current range in the XML.

Using the logical OR operation, you can combine either of the above flags with
the XMLInterface.XML_OPT_ASSOC_CONSISTENT flag when you want to include new,
unposted rows in the current transaction in the XML output.

Both versions of the writeXML() method accept an optional third argument which is an
XSLT stylesheet that, if supplied, is used to transform the XML output before returning
it.

Additionally, both versions of the writeXML() method allow you to set the argument
depthCount=ignore to indicate to ignore the depth count and just render what is in the
data model based on the specified options parameter flags.

What Happens When You Produce XML
When you produce XML using writeXML(), the view object begins by creating a
wrapping XML element whose default name matches the name of the view object
definition. For example, for a CustomersView view object, the XML produced will be
wrapped in an outermost CustomersView tag.

Then, it converts the attribute data for the appropriate rows into XML elements. By
default, each row's data is wrapped in an row element whose name is the name of
the view object with the Row suffix. For example, each row of data from a view object
named CustomersView is wrapped in an CustomersViewRow element. The elements

Chapter 11
Reading and Writing XML

11-23

representing the attribute data for each row appear as nested children inside this row
element.

If any of the attributes is a view link accessor attribute, and if the parameters passed
to writeXML() enable it, the view object will include the data for the detail row set
returned by the view link accessor. This nested data is wrapped by an element
whose name is determined by the name of the view link accessor attribute. The return
value of the writeXML() method is an object that implements the standard W3C Node
interface, representing the root element of the generated XML.

Note:

The writeXML() method uses view link accessor attributes to
programmatically access detail collections. It does not require adding view
link instances in the data model.

For example, to produce an XML element for all rows of a CustomersView view
object instance, and following view link accessors as many levels deep as exists, the
following example shows the code required.

ViewObject vo = am.findViewObject("CustomersView");
printXML(vo.writeXML(-1,XMLInterface.XML_OPT_ALL_ROWS));

The CustomersView view object is linked to a Orders view object showing the orders
created by that person. In turn, the Orders view object is linked to a OrderItems view
object providing details on the items ordered by customers. Running the code in the
following example produces the XML shown in the following example, reflecting the
nested structure defined by the view links.

 ...
 <CustomersViewRow>
 <Id>211</Id>
 <Name>Kuhn's Sports</Name>
 <Phone>42-111292</Phone>
 <Address>7 Modrany</Address>
 <City>Prague</City>
 <CountryId>11</CountryId>
 <CreditRatingId>2</CreditRatingId>
 <SalesRepId>15</SalesRepId>
 <OrdersView>
 <OrdersViewRow>
 <Id>107</Id>
 <CustomerId>211</CustomerId>
 <DateOrdered>2012-12-13</DateOrdered>
 <DateShipped>2012-12-14</DateShipped>
 <SalesRepId>15</SalesRepId>
 <Total>142171</Total>
 <PaymentTypeId>2</PaymentTypeId>
 <PaymentOptionId>1082</PaymentOptionId>
 <OrderFilled>Y</OrderFilled>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>183</Id>
 <CustomerId>211</CustomerId>
 <DateOrdered>2013-02-24</DateOrdered>
 <DateShipped>2013-02-27</DateShipped>

Chapter 11
Reading and Writing XML

11-24

 <SalesRepId>13</SalesRepId>
 <Total>3742</Total>
 <PaymentTypeId>1</PaymentTypeId>
 <OrderFilled>Y</OrderFilled>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>184</Id>
 <CustomerId>211</CustomerId>
 <DateOrdered>2012-11-19</DateOrdered>
 <DateShipped>2012-11-22</DateShipped>
 <SalesRepId>12</SalesRepId>
 <Total>987</Total>
 <PaymentTypeId>1</PaymentTypeId>
 <OrderFilled>Y</OrderFilled>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>185</Id>
 <CustomerId>211</CustomerId>
 <DateOrdered>2012-08-08</DateOrdered>
 <DateShipped>2012-08-12</DateShipped>
 <SalesRepId>12</SalesRepId>
 <Total>2525.25</Total>
 <PaymentTypeId>1</PaymentTypeId>
 <OrderFilled>Y</OrderFilled>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>186</Id>
 <CustomerId>211</CustomerId>
 <DateOrdered>2012-04-26</DateOrdered>
 <DateShipped>2012-04-30</DateShipped>
 <SalesRepId>12</SalesRepId>
 <Total>307.25</Total>
 <PaymentTypeId>1</PaymentTypeId>
 <OrderFilled>Y</OrderFilled>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>187</Id>
 <CustomerId>211</CustomerId>
 <DateOrdered>2012-12-23</DateOrdered>
 <DateShipped>2012-12-30</DateShipped>
 <SalesRepId>13</SalesRepId>
 <Total>3872.9</Total>
 <PaymentTypeId>1</PaymentTypeId>
 <OrderFilled>Y</OrderFilled>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>188</Id>
 <CustomerId>211</CustomerId>
 <DateOrdered>2013-01-14</DateOrdered>
 <DateShipped>2013-01-15</DateShipped>
 <SalesRepId>12</SalesRepId>
 <Total>12492</Total>
 <PaymentTypeId>1</PaymentTypeId>
 <OrderFilled>Y</OrderFilled>
 </OrdersViewRow>
 ...
 </OrdersView>
 </CustomersViewRow>
...

Chapter 11
Reading and Writing XML

11-25

What You May Need to Know About Reading and Writing XML
This section provides additional information to help you work with XML.

Controlling XML Element Names
You can use the Properties window to change the default XML element names used
in the view object's canonical XML format by setting several properties. To accomplish
this, open the overview editor for the view object, then:

• Select the attribute on the Attributes page and in the Properties window, select
the Custom Properties navigation tab and set the custom attribute-level property
named Xml Element to a value SomeOtherName to change the XML element name
used for that attribute to <SomeOtherName>

For example, the Email attribute in the CustomersView view object defines this
property to change the XML element described in What Happens When You
Produce XML to be <EmailAddress> instead of <Email>.

• Select the General navigation tab in the Properties window and set the
custom view object-level property named Xml Row Element to a value
SomeOtherRowName to change the XML element name used for that view object
to <SomeOtherRowName>.

For example, the CustomersView view object defines this property to change the
XML element name for the rows described in What Happens When You Produce
XML to be <Customer> instead of <CustomersViewRow>.

• To change the name of the element names that wrapper nested row set data
from view link attribute accessors, use the View Link Properties dialog. To open
the dialog, in the view link overview editor, click the Edit accessors icon in the
Accessors section of the Relationship page. Enter the desired name of the view
link accessor attribute in the Accessor Name field.

Controlling Element Suppression for Null-Valued Attributes
By default, if a view row attribute is null, then its corresponding element is omitted
from the generated XML. Select the attribute on the Attributes page of the overview
editor and in the Properties window, select the Custom Properties navigation tab and
set the custom attribute-level property named Xml Explicit Null to any value (e.g.
"true" or "yes") to cause an element to be included for the attribute if its value is
null. For example, if an attribute named AssignedDate has this property set, then
a row containing a null assigned date will contain a corresponding AssignedDate
null="true"/ element. If you want this behavior for all attributes of a view object, you
can define the Xml Explicit Null custom property at the view object level as a shortcut
for defining it on each attribute.

Printing or Searching the Generated XML Using XPath
Two of the most common things you might want to do with the XML Node object
returned from writeXML() are:

1. Printing the node to its serialized text representation — to send across the network
or save in a file, for example

2. Searching the generated XML using W3C XPath expressions

Chapter 11
Reading and Writing XML

11-26

Unfortunately, the standard W3C Document Object Model (DOM) API does not include
methods for doing either of these useful operations. But there is hope. Since ADF
Business Components uses the Oracle XML parser's implementation of the DOM, you
can cast the Node return value from writeXML() to the Oracle specific classes XMLNode
or XMLElement (in the oracle.xml.parser.v2 package) to access additional useful
functionality like:

• Printing the XML element to its serialized text format using the print() method

• Searching the XML element in memory with XPath expressions using the
selectNodes() method

• Finding the value of an XPath expression related to the XML element using the
valueOf() method.

The following example shows the printXML() method in the TestClientWriteXML. It
casts the Node parameter to an XMLNode and calls the print() method to dump the
XML to the console.

// In TestClientWriteXML.java
private static void printXML(Node n) throws IOException {
 ((XMLNode)n).print(System.out);
}

Using the Attribute Map For Fine Control Over Generated XML
When you need fine control over which attributes appear in the generated XML, use
the version of the writeXML() method that accepts a HashMap. The following example
shows the interesting lines from a TestClientWriteXML class that use this technique.
After creating the HashMap, you put String[]-valued entries into it containing the
names of the attributes you want to include in the XML, keyed by the fully qualified
name of the view definition those attributes belong to. The example includes the Name,
City, and OrdersView attributes from the CustomersView view object, and the Id,
DateOrdered, and Total attributes from the OrdersView view object.

Note:

For upward compatibility reasons with earlier versions of ADF Business
Components the HashMap expected by the writeXML() method is the one
in the com.sun.java.util.collections package.

While processing the view rows for a given view object instance:

• If an entry exists in the attribute map with a key matching the fully qualified
view definition name for that view object, then only the attributes named in the
corresponding String array are included in the XML.

Furthermore, if the string array includes the name of a view link accessor attribute,
then the nested contents of its detail row set are included in the XML. If a view link
accessor attribute name does not appear in the string array, then the contents of
its detail row set are not included.

• If no such entry exists in the map, then all attributes for that row are included in the
XML.

Chapter 11
Reading and Writing XML

11-27

HashMap viewDefMap = new HashMap();
viewDefMap.put("oracle.summit.model.readandwritexml.queries.CustomersView",
 new String[]{"Name","City",
 "OrdersView" /* View link accessor attribute */
 });
viewDefMap.put("oracle.summit.model.readandwritexml.queries.OrdersView",
 new String[]{"Id","DateOrdered","Total"});
printXML(vo.writeXML(XMLInterface.XML_OPT_ALL_ROWS,viewDefMap));

Running the above example produces the following XML, including only the exact
attributes and view link accessors indicated by the supplied attribute map.

 <CustomersViewRow>
 <Id>211</Id>
 <Name>Kuhn's Sports</Name>
 <City>Prague</City>
 <OrdersView>
 <OrdersViewRow>
 <Id>107</Id>
 <DateOrdered>2012-12-13</DateOrdered>
 <Total>142171</Total>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>183</Id>
 <DateOrdered>2013-02-24</DateOrdered>
 <Total>3742</Total>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>184</Id>
 <DateOrdered>2012-11-19</DateOrdered>
 <Total>987</Total>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>185</Id>
 <DateOrdered>2012-08-08</DateOrdered>
 <Total>2525.25</Total>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>186</Id>
 <DateOrdered>2012-04-26</DateOrdered>
 <Total>307.25</Total>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>187</Id>
 <DateOrdered>2012-12-23</DateOrdered>
 <Total>3872.9</Total>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>188</Id>
 <DateOrdered>2013-01-14</DateOrdered>
 <Total>12492</Total>
 </OrdersViewRow>
 ...
 </OrdersView>
 </CustomersViewRow>
...

Chapter 11
Reading and Writing XML

11-28

Use the Attribute Map Approach with Bi-Directional View Links
If your view objects are related through a view link that you have configured to be
bi-directional, then you must use the writeXML() approach that uses the attribute map.
If you were to use the writeXML() approach in the presence of bi-directional view links
and were to supply a maximum depth of -1 to include all levels of view links that exist,
the writeXML() method will go into an infinite loop as it follows the bi-directional view
links back and forth, generating deeply nested XML containing duplicate data until it
runs out of memory. Use writeXML() with an attribute map instead in this situation.
Only by using this approach can you control which view link accessors are included in
the XML and which are not to avoid infinite recursion while generating the XML.

Transforming Generated XML Using an XSLT Stylesheet
When the canonical XML format produced by writeXML() does not meet your needs,
you can supply an XSLT stylesheet as an optional argument. It will produce the XML
as it would normally, but then transform that result using the supplied stylesheet before
returning the final XML to the caller.

Consider the XSLT stylesheet shown in the following example. It is a simple
transformation with a single template that matches the root element of the generated
XML described in Using the Attribute Map For Fine Control Over Generated XML to
create a new CustomerNames element in the result. The template uses the xsl:for-
each instruction to process all CustomersView elements. For each CustomersView
element that qualifies, it creates a CustomerNames element in the result whose Contact
attribute is populated from the value of the Name child element of the CustomersView.

<?xml version="1.0" encoding="windows-1252" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <CustomerNames>
 <xsl:for-each
 select="/CustomersView/CustomersViewRow)">
 <xsl:sort select="Name"/>
 <Customer Contact="{Name}"/>
 </xsl:for-each>
 </CustomerNames>
 </xsl:template>
</xsl:stylesheet>

The following example shows the interesting lines from a TestClientWriteXML class
that put this XSLT stylesheet into action when calling writeXML().

// In TestClientWriteXML.java
XSLStylesheet xsl = getXSLStylesheet();
printXML(vo.writeXML(XMLInterface.XML_OPT_ALL_ROWS,viewDefMap,xsl));

Running the code in the above example produces the transformed XML shown here:

<CustomerNames>
 <Customer Contact="ABC Company"/>
 <Customer Contact="Acme Outfitters"/>
 <Customer Contact="Acme Sporting Goods"/>
 <Customer Contact="All Baseball"/>
 ...
 <Customer Contact="The Sports Emporium"/>
 <Customer Contact="Unisports"/>

Chapter 11
Reading and Writing XML

11-29

 <Customer Contact="Value Valley"/>
 <Customer Contact="Wally's Mart"/>
 <Customer Contact="Wally's Weights"/>
 <Customer Contact="Westwind Sports"/>
 <Customer Contact="Womansport"/>
 <Customer Contact="Your Choice Sporting Goods"/>
 <Customer Contact="Z-Mart"/>
 <Customer Contact="Zibbers"/>
 <Customer Contact="Zip City"/>
</CustomerNames>

The getXSLStylesheet() helper method shown in the following example is also
interesting to study since it illustrates how to read a resource like an XSLT stylesheet
from the classpath at runtime. The code expects the Example.xsl stylesheet to be
in the same directory as the TestClientWriteXML class. By referencing the Class
object for the TestClientWriteXML class using the .class operator, the code uses
the getResource() method to get a URL to the resource. Then, it passes the URL
to the newXSLStylesheet() method of the XSLProcessor class to create a new
XSLStylesheet object to return. That object represents the compiled version of the
XSLT stylesheet read in from the *.xslfile.

private static XSLStylesheet getXSLStylesheet()
 throws XMLParseException, SAXException,IOException,XSLException {
 String xslurl = "Example.xsl";
 URL xslURL = TestClientWriteXML.class.getResource(xslurl);
 XSLProcessor xslProc = new XSLProcessor();
 return xslProc.newXSLStylesheet(xslURL);
}

Note:

When working with resources like XSLT stylesheets that you want to be
included in the output directory along with your compiled Java classes
and XML metadata, you can use the Compiler page of the Project
Properties dialog to update the Copy File Types to Output Directory field
to include .xsl in the semicolon-separated list.

Generating XML for a Single Row
In addition to calling writeXML() on a view object, you can call the same method
with the same parameters and options on any Row as well. If the Row object
on which you call writeXML() is a entity row, you can bitwise-OR the additional
XMLInterface.XML_OPT_CHANGES_ONLY flag if you only want the changed entity
attributes to appear in the XML.

How to Consume XML Documents to Apply Changes
To have a view object consume an XML document to process inserts, updates, and
deletes, use the readXML() method:

void readXML(Element elem, int depthcount)

The canonical format expected by readXML() is the same as what would be produced
by a call to the writeXML() method on the same view object. If the XML document

Chapter 11
Reading and Writing XML

11-30

to process does not correspond to this canonical format, you can supply an XSLT
stylesheet as an optional third argument to readXML() to transform the incoming XML
document into the canonical format before it is read for processing.

What Happens When You Consume XML Documents
When a view object consumes an XML document in canonical format, it processes
the document to recognize row elements, their attribute element children, and any
nested elements representing view link accessor attributes. It processes the document
recursively to a maximum level indicated by the depthcount parameter. Passing -1 for
the depthcount to request that it process all levels of the XML document.

How ViewObject.readXML() Processes an XML Document
For each row element it recognizes, the readXML() method does the following:

• Identifies the related view object to process the row.

• Reads the children attribute elements to get the values of the primary key
attributes for the row.

• Performs a findByKey() using the primary key attributes to detect whether the row
already exists or not.

• If the row exists:

– If the row element contains the marker attribute bc4j-action="remove", then
the existing row is deleted.

– Otherwise, the row's attributes are updated using the values in any attribute
element children of the current row element in the XML

• If the row does not exist, then a new row is created, inserted into the view object's
row set. Its attributes are populated using the values in any attribute element
children of the current row element in the XML.

Using readXML() to Processes XML for a Single Row
The same readXML() method is also supported on any Row object. The canonical XML
format it expects is the same format produced by a call to writeXML() on the same
row. You can invoke readXML() method on a row to:

• Update its attribute values from XML

• Remove the row, if the bc4j-action="remove" marker attribute is present on the
corresponding row element.

• Insert, update, or delete any nested rows via view link accessors

Consider the XML document shown in the following example. It is in the canonical
format expected by a single row in the CustomersView view object. Nested inside
the root CustomersViewRow element, the City attribute represents the customer's city.
The nested OrdersView element corresponds to the OrdersView view link accessor
attribute and contains three OrdersViewRow elements. Each of these includes Id
elements representing the primary key of a OrdersView row.

<CustomersViewRow>
 <Id>16</Id>
 <!-- This will update Customer's ConfirmedEmail attribute -->
 <City>Houston</City>

Chapter 11
Reading and Writing XML

11-31

 <OrdersView>
 <!-- This will be an update since it does exist -->
 <OrdersViewRow>
 <Id>1018</Id>
 <DateShipped>2013-03-13</DateShipped>
 </OrdersViewRow>
 <!-- This will be an insert since it doesn't exist -->
 <OrdersViewRow>
 <Id>9999</Id>
 <CustomerId>16</CustomerId>
 <Total>9999.00</Total>
 </OrdersViewRow>
 <!-- This will be deleted -->
 <OrdersViewRow bc4j-action="remove">
 <Id>1008</Id>
 </OrdersViewRow>
 </OrdersView>
</CustomersViewRow>

The following example shows the interesting lines of code from a TestClientReadXML
class that applies this XML datagram to a particular row in the CustomersView view
object. TestClientReadXML class performs the following basic steps:

1. Finds a target row by key (e.g. for customer "The Sports Emporium").

2. Shows the XML produced for the row before changes are applied.

3. Obtains the parsed XML document with changes to apply using a helper method.

4. Reads the XML document to apply changes to the row.

5. Shows the XML with the pending changes applied.

TestClientReadXML class is using the XMLInterface.XML_OPT_ASSOC_CONSISTENT
flag described in How to Produce XML for Queried Data to ensure that new,
unposted rows are included in the XML.

ViewObject vo = am.findViewObject("CustomersView");
Key k = new Key(new Object[] { 16 });
// 1. Find a target row by key (e.g. for customer "The Sports Emporium")
Row sports = vo.findByKey(k, 1)[0];
// 2. Show the XML produced for the row before changes are applied
printXML(sports.writeXML(-1, XMLInterface.XML_OPT_ALL_ROWS));
// 3. Obtain parsed XML document with changes to apply using helper method
Element xmlToRead = getInsertUpdateDeleteXMLGram();
printXML(xmlToRead);
// 4. Read the XML document to apply changes to the row
sports.readXML(getInsertUpdateDeleteXMLGram(), -1);
// 5. Show the XML with the pending changes applied
printXML(sports.writeXML(-1, XMLInterface.XML_OPT_ALL_ROWS |
 XMLInterface.XML_OPT_ASSOC_CONSISTENT));

Running the code in the above example initially displays the "before" version of The
Sports Emporium information. Notice that:

• The City attribute has a value of "Lapeer"

• There is no ShippedDate attribute for order ID 1018

• There is an orders row for order ID 1008, and

• There is no orders row related to order ID 9999.

Chapter 11
Reading and Writing XML

11-32

<CustomersViewRow>
 <Id>16</Id>
 <Name>The Sports Emporium</Name>
 <Address>222 E Nepessing St</Address>
 <City>Lapeer</City>
 <State>MI</State>
 <CountryId>4</CountryId>
 <ZipCode>48446</ZipCode>
 <CreditRatingId>1</CreditRatingId>
 <SalesRepId>13</SalesRepId>
 <OrdersView>
 <OrdersViewRow>
 <Id>1018</Id>
 <CustomerId>16</CustomerId>
 <DateOrdered>2013-02-25</DateOrdered>
 <SalesRepId>11</SalesRepId>
 <Total>195.99</Total>
 <PaymentTypeId>2</PaymentTypeId>
 <PaymentOptionId>1009</PaymentOptionId>
 <OrderFilled>Y</OrderFilled>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>1008</Id>
 <CustomerId>16</CustomerId>
 <DateOrdered>2013-02-26</DateOrdered>
 <SalesRepId>14</SalesRepId>
 <Total>100.97</Total>
 <PaymentTypeId>2</PaymentTypeId>
 <PaymentOptionId>1009</PaymentOptionId>
 <OrderFilled>N</OrderFilled>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>1023</Id>
 <CustomerId>16</CustomerId>
 <DateOrdered>2013-01-11</DateOrdered>
 <DateShipped>2013-01-15</DateShipped>
 <SalesRepId>11</SalesRepId>
 <Total>2451.97</Total>
 <PaymentTypeId>2</PaymentTypeId>
 <PaymentOptionId>1009</PaymentOptionId>
 <OrderFilled>Y</OrderFilled>
 </OrdersViewRow>
 </OrdersView>
</CustomersViewRow>

After applying the changes from the XML document using readXML() to the row and
printing its XML again using writeXML() you see that:

• The City attribute is now Houston.

• A new orders row for order 9999 got created.

• The date shipped for orders row 1018 has been set to 2013-03-13, and

• The orders row for order 1008 is removed

<CustomersViewRow>
 <Id>16</Id>
 <Name>The Sports Emporium</Name>
 <Address>222 E Nepessing St</Address>
 <City>Houston</City>
 <State>MI</State>

Chapter 11
Reading and Writing XML

11-33

 <CountryId>4</CountryId>
 <ZipCode>48446</ZipCode>
 <CreditRatingId>1</CreditRatingId>
 <SalesRepId>13</SalesRepId>
 <OrdersView>
 <OrdersViewRow>
 <Id>9999</Id>
 <CustomerId>16</CustomerId>
 <Total>9999.00</Total>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>1018</Id>
 <CustomerId>16</CustomerId>
 <DateOrdered>2013-02-25</DateOrdered>
 <DateShipped>2013-03-13</DateShipped>
 <SalesRepId>11</SalesRepId>
 <Total>195.99</Total>
 <PaymentTypeId>2</PaymentTypeId>
 <PaymentOptionId>1009</PaymentOptionId>
 <OrderFilled>Y</OrderFilled>
 </OrdersViewRow>
 <OrdersViewRow>
 <Id>1023</Id>
 <CustomerId>16</CustomerId>
 <DateOrdered>2013-01-11</DateOrdered>
 <DateShipped>2013-01-15</DateShipped>
 <SalesRepId>11</SalesRepId>
 <Total>2451.97</Total>
 <PaymentTypeId>2</PaymentTypeId>
 <PaymentOptionId>1009</PaymentOptionId>
 <OrderFilled>Y</OrderFilled>
 </OrdersViewRow>
 </OrdersView>
</CustomersViewRow>

Note:

The example illustrated using readXML() to apply changes to a single row. If
the XML document contained a wrapping CustomersView row, including the
primary key attribute in each of its one or more nested CustomersViewRow
elements, then that document could be processed using the readXML()
method on the CustomersView view object for handling operations for
multiple CustomersView rows.

Working Programmatically with Custom Data Sources and
the Framework Base Class ProgrammaticViewObjectImpl

ADF Business Components supports programmatic view objects that you can create
to interact with custom data sources.

The framework base classes oracle.jbo.server.ProgrammaticViewObjectImpl and
oracle.jbo.serverProgrammaticViewRowImpl let you take control of interacting with a
custom data source and returning the collection of data. ADF will internally take care of
converting the data object into a ViewRow.

Chapter 11
Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticViewObjectImpl

11-34

These framework base implementation classes provide specific hook points for the
application developer to interact with a custom data source and perform operations.
Using the framework base class, ADF supports features like activation/passivation for
the given collection. Unlike earlier, developers do not need to code a wide variety of
methods that require understanding of the various stages in the view object lifecycle to
populate the row programmatically.

Note:

Prior to the ProgrammaticViewObjectImpl base class, applications extended
from the base class oracle.jbo.server.ViewObjectImpl and overrode a
number of lifecycle methods for custom behavior. Using programmatic view
objects means integration with a custom data source is accomplished by the
application developer without needing to understand the various stages of
the view object lifecycle.

To work with programmatic view objects in the ADF Model project, you
select the Programmatic option in the Create View Object wizard. Then View
Object java classes that you generate in the wizard will by default extend
from the framework base classes oracle.jbo.server.ProgrammaticViewObjectImpl
and oracle.jbo.server.ProgrammaticViewRowImpl instead of extending from
the classic style framework classes oracle.jbo.server.ViewObjectImpl and
oracle.jbo.server.ViewRowImpl.

Note:

In order to ensure this behavior when creating a programmatic view
object, you must de-select the option in the ADF Business Components
Preferences dialog that enables extending from the classic style
base class oracle.jbo.server.ViewObjectImpl. The option in the ADF
Business Components-View Objects page of the Tools-Preferences dialog
is Classic Programmatic View {de-select to enable extending from
ProgrammaticViewObjectImpl).

How to Create a View Object Class Extending
ProgrammaticViewObjectImpl

To create a programmatic view object
that extends oracle.jbo.server.ProgrammaticViewObjectImpl or
oracle.jbo.server.ProgrammaticViewRowImp, you use the Create View Object
wizard and select the Programmatic data source option.

Before you begin:

You must disable classic style programmatic view object generation. In the
Tools-Preferences dialog, de-select the option Classic Programmatic View on
the ADF Business Components-View Objects page. If you leave this option
selected (default), JDeveloper will generate view object Java classes that
extend oracle.jbo.server.ViewObjectImpl and oracle.jbo.server.ViewRowImpl.

Chapter 11
Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticViewObjectImpl

11-35

For details about classic mode, see Using Classic Style Programmatic View Objects
for Alternative Data Sources.

To create programmatic view objects extending ProgrammaticViewObjectImpl:

1. In the Applications window, right-click the project in which you want to create the
view object and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then View Object, and click OK.

3. In the Create View Object wizard, in the Name page, provide a name and package
for the view object. For the data source, select Programmatic.

4. In the Attributes page, click New one or more times to define the view object
attributes your programmatic view object requires.

5. In the Attribute Settings page, adjust any setting you may need to for the attributes
you defined.

6. In the Java page, select Generate View Object Class to enable a custom view
object class (ProgrammaticViewObjectImpl) to contain your code.

7. Click Finish to create the view object.

In your view object's custom Java class, override the methods described in section
Key Framework Methods to Override for ProgrammaticViewObjectImpl Based
View Objects to implement your custom data retrieval strategy.

Key Framework Methods to Override for ProgrammaticViewObjectImpl
Based View Objects

You will override one of two methods, depending on the how the view object's Access
Mode property has been set.

The property Access Mode determines how many rows will be returned by the view
object query. The property’s default setting SCROLLABLE will cache the view object rows
as you read them in. The RANGEPAGING setting fetches the number of rows specified by
a range size. For more details about access mode, see section Using Range Paging to
Efficiently Scroll Through Large Result Sets.

SCROLLABLE

If access mode is SCROLLABLE, then the getScrollableData() API needs to be
overridden to provide a concrete implementation.

• protected Collection<Object> getScrollableData(ScrollableDataFilter
dataFilter)

For a scrollable programmatic view object the framework expects the extender
to provide the complete dataset as the result of the following API call. The
framework will internally manage the API calls when the client asks for next or
previous rows in the collection.

RANGEPAGING

If access mode is RANGEPAGING, then the application need to override following two API
methods together.

• /Apps should return the collection within a current Range.

Chapter 11
Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticViewObjectImpl

11-36

protected Collection<Object> getRangePagingData(RangePagingDataFilter
dataFilter)

• protected Collection<Object> retrieveDataByKey(Key key , int size).

For a range paging view object the framework expects the extender to only provide
the collection of rows with a current range. When the framework needs a different
range of rows, a followup API call will be made. The current Range's start index and
size information can be obtained from RangePagingDataFilter object passed as an
argument.

What You May Need to Know About Programmatic View Object
Triggers

You can use triggers defined in the Groovy scripting language in place of overridden
methods of ProgrammaticViewObjectImpl.java to perform data retrieval operations
on the custom datasource. Triggers can be called from the various programmatic view
object lifecycle points.

The application allows you to call triggers that are defined in Groovy script in
place of Java hook points. These triggers interact with a custom data source and
perform data retrieval operations. They can be called from the various programmatic
view object lifecycle points. Although the option of subclassing the framework
class, namely ProgrammaticViewObjectImpl and overriding certain methods to define
implementations specific to a custom datasource remains, in order for the trigger to
execute, the Java hook points should not be defined. Alternatively, if Java hook points
are defined, then the triggers shouldn’t exist for the Java hook points to execute.
Note that if Java hook points as well as triggers are defined, then the triggers will not
execute. The application allows you to utilize Groovy scripts in the overridden methods
to interact with the custom data source. These triggers can be called from various
programmatic view object lifecycle points.

Specifically, the programmatic view object triggers are:

FetchData

This trigger is used to retrieve a data collection from the custom datasource. This
trigger is invoked in place of the getScrollableData() and getRangePagingData()
methods of ProgrammaticViewObjectImpl.java depending on whether the access
mode of the view object is scroll or range paging. The returnList data collection is
populated with the records (objects/maps) retrieved from the custom data source.

The following sample code illustrates usage of this trigger. The following context
specific keywords is used in the sample code.

• dataFilter – Returns the DataFilter object which is a ScrollableDataFilter or
RangePagingDataFilter depending on the mode of the view object.

• dataFilter.fetchSize – Returns the range size of the data to be fetched.

• dataFilter.fetchStart — Returns the range start value of the data to be
fetched.

• dataFilter.searchCriteria - Returns a list of ViewCriteria applied on the view
object.

• dataFilter.sortCriteria - Returns a list of SortCriteria applied on the view
object.

Chapter 11
Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticViewObjectImpl

11-37

• dataFilter.bindParameterValues - Returns a map containing the bind parameter
names and values corresponding to the rowset that is currently being executed.

• dataFilter.masterData - When used in the context of a detail view object, it
returns the dataprovider object of the master row.

• returnList - The collection that is to be populated with the records (objects/maps)
from the custom data source.

@TriggerExpression(triggerType="FetchData", name="FetchData_Rule_0")
def FetchData_Rule_0_ValidationRuleScript_Trigger()
{
 def empData = model.data.DataCenter.getInstance().getEmpData()
 def empFilteredData = new ArrayList()
 model.data.DeptObject master = (model.data.DeptObject)dataFilter.masterData

 for (emp in empData)
 {
 if (master == null || emp.deptno.equals(master.deptno))
 {
 empFilteredData.add(emp)
 }
 }

 def fetchStart = dataFilter.fetchStart
 def fetchSize = dataFilter.fetchSize
 if(fetchStart == -1)
 {
 fetchStart = 0;
 }
 for(int i = fetchStart; i < fetchSize + fetchStart && i <
empFilteredData.size() ; i++)
 {
 returnList.add(empFilteredData.get(i))
@TriggerExpression(triggerType="RetrieveDataByKey",
name="RetrieveDataByKey_Rule_0")
def RetrieveDataByKey_Rule_0_ValidationRuleScript_Trigger()
{
 def empData = model.data.DataCenter.getInstance().getEmpData()

 def keyValue = dataFilter.key.keyValues[0]

 def iter = empData.iterator()
 while (iter.hasNext())
 {
 def emp = iter.next();
 if (emp.empno.equals(keyValue))
 {
 returnList.add(emp);
 }
 }
 }
}

RetrieveDataByKey Trigger

This trigger is used to retrieve a data collection matching a key value from the
custom datasource. It is invoked in place of the retrieveDataByKey method of
ProgrammaticViewObjectImpl.java. This trigger is invoked when the required data
matching the key is not present in the current range of rows retrieved by the view
object. This trigger retrieves the collection of objects/maps matching the key value.

Chapter 11
Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticViewObjectImpl

11-38

The following sample code illustrate the usage of this trigger. The following context
specific keywords is used in the sample code.

• dmlFilter.key - Returns an oracle.jbo.Key containing the key values of the data/
object to be retrieved.

• dmlFilter.fetchSize - Returns the fetch size.

• returnList - The collection that is to be populated with the records (objects/maps)
from the custom data source that match the key value.

@TriggerExpression(triggerType="RetrieveDataByKey",
name="RetrieveDataByKey_Rule_0")
def RetrieveDataByKey_Rule_0_ValidationRuleScript_Trigger()
{
 def empData = model.data.DataCenter.getInstance().getEmpData()

 def keyValue = dataFilter.key.keyValues[0]

 def iter = empData.iterator()
 while (iter.hasNext())
 {
 def emp = iter.next();
 if (emp.empno.equals(keyValue))
 {
 returnList.add(emp);
 }
 }
}

Key Framework Methods to Override for ProgrammaticViewRowImpl
Based View Objects

The framework base class oracle.jbo.server.ProgrammaticViewRowImpl is an
implementation class for programmatic ViewRow.

Oracle ADF provides multiple hookpoints to interact with programmatic view row
during various lifecycle phases. Not all of the following API methods are mandatory
to override.

• createRowData(HashMap attrNameValueMap)

If the use case requires creation of new rows for a programmatic view object, then
override this API. This hookpoint allows applications to create a DataProvider for
this newly created row and return it to the framework for further management.

• updateDataProvider(Object rowDataProvider , ViewAttributeDefImpl
attrDef , Object newValue)

If the programmatic view object is created without a backing entity object, then
override this API to retain the modified values of attributes in the row. Applications
should override this API and update newvalue into DataProvider.

• convertToSourceType(ViewAttributeDefImpl vad, String sourceType ,
Object val)

If required, the application should override this API to provide custom
implementation for conversion of value from JavaType to sourceType. The
framework calls this hookpoint prior to updating the value in DataProvider.

Chapter 11
Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticViewObjectImpl

11-39

• convertToAttributeType(AttributeDefImpl attrDef, Class javaTypeClass ,
Object val)

If required, applications should override this API to provide custom implementation
for conversion of value from sourceType to JavaType. The framework calls this
hookpoint as it fetches the value from DataProvider.

Using Classic Style Programmatic View Objects for
Alternative Data Sources

You can override methods in a custom Java class of an ADF view object to
programmatically retrieve data from data sources such as in-memory array, Java
*.properties file, REF CURSOR etc.

By default view objects read their data from the database and automate the task of
working with the Java Database Connectivity (JDBC) layer to process the database
result sets. However, by overriding appropriate methods in its custom Java class,
you can create a view object that programmatically retrieves data from alterative data
sources like a REF CURSOR, an in-memory array, or a Java *.properties file, to name a
few.

Note:

The sections describing alternative data sources are retained for legacy
purposes. Starting in JDeveloper release 12.2.1.1.0, ADF Business
Components provides improved support for programmatic view objects. New
framework base classes for programmatic view objects implements common
methods for custom data sources and provides hook points to interact
with the view row during various phases of the view object lifecycle. This
feature must be enabled in the View Objects page of the Tools-Preferences
dialog. For more details, see How to Create a View Object Class Extending
ProgrammaticViewObjectImpl.

The general process for enabling a programmatic view object to work with an non-
database, data source involves overriding the default lifecycle methods of the view
object. For a complete description of the lifecycle methods, see Key Framework
Methods to Override for Programmatic View Objects.

To enable programmatic view objects for alternative data sources, follow this general
process:

1. Create the view object in the view object wizard and select Programmatic for the
data source.

2. In view object overview editor, generate the custom view object implementation
class (ViewObjImpl.java).

3. In the custom view object implementation class, override create() to initialize any
state required by the programmatic view object. At a minimum, remove all traces
of a SQL query for this view object.

4. Override executeQueryForCollection() and call setUserDataForCollection() to
associate the result of your custom query with a UserData object.

Chapter 11
Using Classic Style Programmatic View Objects for Alternative Data Sources

11-40

5. Override hasNextForCollection() and iterate over the UserData object to test for
more records to retrieve. While hasNextForCollection() returns true:

a. Override createRowFromResultSet() to create the row on the view object
query collection.

b. In your overridden createRowFromResultSet() method call the
getUserDataForCollection() method to get an instance of the stored
UserData object and createNewRowForCollection() to create a new blank
row.

c. If necessary, convert each record to an attribute data type supported
by ADF Business Components view object attributes and call
populateAttributeForRow() to store attribute values on the query collection.

d. When hasNextForCollection() returns false, inform the view object
that the query collection is done being populated by calling
setFetechCompleteForCollection().

6. Override releaseUserDataForCollection() to release the result set.

Because the view object component can be related to several active row sets at
runtime, many of these lifecycle methods receive an Object parameter (a query
collection) in which the ADF Business Components framework passes the collection of
rows that your custom code fills, as well as the array of bind variable values that might
affect which rows get populated into the specific collection.

You can store a UserData object with each collection of rows so that your
custom data source implementation can associate any needed data source
context information. The framework provides the setUserDataForCollection() and
getUserDataForCollection() methods to get and set this context information for each
collection. Each time one of the overridden framework methods is called, you can
use the getUserDataForCollection() method to retrieve the correct ResultSet object
associated with the collection of rows the framework populates.

How to Create a Read-Only Programmatic View Object
To create a read-only programmatic view object, you use the Create View Object
wizard.

To create the read-only programmatic view object:

1. In the Applications window, right-click the project in which you want to create the
view object and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then View Object, and click OK.

3. In the Create View Object wizard, in the Name page, provide a name and package
for the view object. For the data source, select Programmatic.

4. In the Attributes page, click New one or more times to define the view object
attributes your programmatic view object requires.

5. In the Attribute Settings page, adjust any setting you may need to for the attributes
you defined.

6. In the Java page, select Generate View Object Class to enable a custom view
object class (ViewObjImpl) to contain your code.

7. Click Finish to create the view object.

Chapter 11
Using Classic Style Programmatic View Objects for Alternative Data Sources

11-41

In your view object's custom Java class, override the methods described in Key
Framework Methods to Override for Programmatic View Objects to implement your
custom data retrieval strategy.

How to Create an Entity-Based Programmatic View Object
To create a entity-based view object with programmatic data retrieval, create the view
object in the normal way, enable a custom Java class for it, and override the methods
described in the next section to implement your custom data retrieval strategy.

Key Framework Methods to Override for Programmatic View Objects
A programmatic view object typically overrides all of the following methods of the base
ViewObjectImpl class to implement its custom strategy for retrieving data:

• create()

This method is called when the view object instance is created and can be used
to initialize any state required by the programmatic view object. At a minimum, this
overridden method will contain the following lines to ensure the programmatic view
object has no trace of a SQL query related to it:

// Wipe out all traces of a query for this VO
getViewDef().setQuery(null);
getViewDef().setSelectClause(null);
setQuery(null);

• executeQueryForCollection()

This method is called whenever the view object's query needs to be executed (or
reexecuted). Your implementation must not override this method and completely
change the query or change the list of parameters. For implementation best
practices, see The Overridden executeQueryForCollection() Method.

• hasNextForCollection()

This method is called to support the hasNext() method on the row set iterator for
a row set created from this view object. Your implementation returns true if you
have not yet exhausted the rows to retrieve from your programmatic data source.

• createRowFromResultSet()

This method is called to populate each row of retrieved data. Your implementation
will call createNewRowForCollection() to create a new blank row and then
populateAttributeForRow() to populate each attribute of data for the row. Note
that calls to populateAttributeForRow() require that you populate each attribute
with the correctly typed value, as allowed by ADF Business Components view
objects. The method does not handle data type conversion, and therefore your
program is responsible for ensuring that the data type of each value matches an
allowed view object attribute type.

• getQueryHitCount()

This method is called to support the getEstimatedRowCount() method. Your
implementation returns a count, or estimated count, of the number of rows that
will be retrieved by the programmatic view object's query.

• getCappedQueryHitCount()

Chapter 11
Using Classic Style Programmatic View Objects for Alternative Data Sources

11-42

The row count query is optimized to determine whether the query would return
more rows than the capped value specified by a global row fetch limit. If the
number of potential rows is greater, the method returns a negative number.
Although the scroll bar in the user interface may not be able to use the row count
query to show an accurate scroll position, your row count query will perform well
even with large tables. Your implementation can check the Cap value and return
the actual row count. The framework obtains the Cap value from the row fetch limit
specified in the adf-config.xml file. Note that oldCap is not used

The method returns a row count when the value is less than or equal to
the Cap; otherwise, returns a negative number. Your implementation can use
this information to build a performing row count query. If performance is not
important, you may just return the same value as getQueryHitCount(), but the
getCappedQueryHitCount() now provides additional information about the number
of rows it is looking for. For example, assume the DEPT table has one million rows.
When getQueryHitCount() is called, the framework will execute SELECT COUNT(*)
FROM DEPT against the database and return all one million rows. However, when
you intend to show at most 500 rows, you can set a global row fetch limit and
call getCappedQueryHitCount(). In this case, the framework will execute SELECT
COUNT(*) FROM DEPT WHERE ROWNUM <= 500. The query will complete much faster
and also provides a performance improvements. The method wraps the view
object query in a nested clause like SELECT COUNT(*) FROM (SELECT DEPTNO, LOC
FROM DEPT) WHERE ROWNUM <= :cap (assuming that SELECT DEPTNO, LOC FROM
DEPT is the view object query statement).

• protected void releaseUserDataForCollection()

Your code can store and retrieve a user data context object with each row set. This
method is called to allow you to release any resources that may be associated
with a row set that is being closed.

The examples in the following sections each override these methods to implement
different kinds of programmatic view objects.

How to Create a View Object on a REF CURSOR
Sometimes your application might need to work with the results of a query that is
encapsulated within a stored procedure. PL/SQL allows you to open a cursor to iterate
through the results of a query, and then return a reference to this cursor to the client.
This so-called REF CURSOR is a handle with which the client can then iterate the results
of the query. This is possible even though the client never actually issued the original
SQL SELECT statement.

Note:

The example in this section refers to the
oracle.summit.model.viewobjectonrefcursor package in the
SummitADF_Examples application workspace.

Declaring a PL/SQL package with a function that returns a REF CURSOR is
straightforward. The following example shows how your package might look.

CREATE OR REPLACE PACKAGE RefCursorExample IS
 TYPE ref_cursor IS REF CURSOR;

Chapter 11
Using Classic Style Programmatic View Objects for Alternative Data Sources

11-43

 FUNCTION get_orders_for_customer(p_custId NUMBER) RETURN ref_cursor;
 FUNCTION count_orders_for_customer(p_custId NUMBER) RETURN NUMBER;
END RefCursorExample;
.
/
show errors
CREATE OR REPLACE PACKAGE BODY RefCursorExample IS
 FUNCTION get_orders_for_customer(p_custIdl NUMBER) RETURN ref_cursor IS
 the_cursor ref_cursor;
 BEGIN
 OPEN the_cursor FOR
 SELECT o.id, o.date_ordered, o.total
 FROM s_ord o, s_customer c
 WHERE o.customer_id = c.id
 AND c.id = p_custId;
 RETURN the_cursor;
 END get_orders_for_customer;

 FUNCTION count_orders_for_customer(p_custId NUMBER) RETURN NUMBER IS
 the_count NUMBER;
 BEGIN
 SELECT COUNT(*)
 INTO the_count
 FROM s_ord o, s_customer c
 WHERE o.customer_id = c.id
 AND c.id = p_cust_id;
 RETURN the_count;
 END count_orders_for_customer;
END RefCursorExample;
.
/
show errors

After defining an entity-based OrdersForCustomer view object with an entity usage for
an Order entity object, go to its custom Java class OrdersForCustomerImpl.java.
Then, override the methods of the view object as described in the following sections.

The Overridden create() Method
The create() method removes all traces of a SQL query for this view object. The
following example shows how to override the create() method for this purpose.

protected void create() {
 getViewDef().setQuery(null);
 getViewDef().setSelectClause(null);
 setQuery(null);
}

The Overridden executeQueryForCollection() Method
The executeQueryForCollection() method is executed when the framework needs to
issue the database query for the query collection based on this view object. One view
object can produce many related result sets, each potentially the result of different
bind variable values. If the row set in query is involved in a framework-coordinated
master/detail view link, then the params array will contain one or more framework-
supplied name-value pairs of bind parameters from the source view object. If there are
any user-supplied bind parameter values, they will precede the framework-supplied

Chapter 11
Using Classic Style Programmatic View Objects for Alternative Data Sources

11-44

bind variable values in the params array, and the number of user parameters will be
indicated by the value of the numUserParams argument.

The method calls a helper method retrieveRefCursor() to execute the stored
function and return the REF CURSOR return value, cast as a JDBC ResultSet. The
following example shows how to override the executeQueryForCollection() method
for this purpose.

protected void executeQueryForCollection(Object qc,Object[] params,
 int numUserParams) {
 storeNewResultSet(qc,retrieveRefCursor(qc,params));
 super.executeQueryForCollection(qc, params, numUserParams);
}

Then, it calls the helper method storeNewResultSet() that uses the
setUserDataForCollection() method to store this ResultSet with the collection of
rows for which the framework is asking to execute the query. The following example
shows how to define the storeNewResultSet() method for this purpose.

private void storeNewResultSet(Object qc, ResultSet rs) {
 ResultSet existingRs = getResultSet(qc);
 // If this query collection is getting reused, close out any previous rowset
 if (existingRs != null) {
 try {existingRs.close();} catch (SQLException s) {}
 }
 setUserDataForCollection(qc,rs);
 hasNextForCollection(qc); // Prime the pump with the first row.
}

The retrieveRefCursor() method uses the helper method described in Invoking
Stored Procedures and Functions to invoke the stored function and return the REF
CURSOR. The following example shows how to define the retrieveRefCursor() method
for this purpose.

private ResultSet retrieveRefCursor(Object qc, Object[] params) {
 ResultSet rs = (ResultSet)callStoredFunction(OracleTypes.CURSOR,
 "RefCursorExample.get_orders_for_customer(?)",
 new Object[]{getNamedBindParamValue("bv_custId",params)});
 return rs ;
}

The Overridden createRowFromResultSet() Method
For each row that the framework needs fetched from the data source, it will invoke
your overridden createRowFromResultSet() method. The implementation retrieves
the collection-specific ResultSet object from the user-data context. It uses the
getResultSet() method to retrieve the result set wrapper from the query-collection
user data, and the createNewRowForCollection() method to create a new blank row
in the collection, and then uses the populateAttributeForRow() method to populate
the attribute values for each attribute defined at design time in the view object
overview editor.

Chapter 11
Using Classic Style Programmatic View Objects for Alternative Data Sources

11-45

Note:

Calls to populateAttributeForRow() assume that attribute values that you
populate on the view object already conform to the data types expected
for ADF Business Components view object attributes. The method will not
handle data type conversion, and therefore your program is responsible for
converting the data type of the populated value to match an allowed view
object attribute type.

The following example shows how to override the createRowFromResultSet() method
for this purpose.

protected ViewRowImpl createRowFromResultSet(Object qc, ResultSet rs) {
 /*
 * We ignore the JDBC ResultSet passed by the framework (null anyway) and
 * use the resultset that we've stored in the query-collection-private
 * user data storage
 */
 rs = getResultSet(qc);

 /*
 * Create a new row to populate
 */
 ViewRowImpl r = createNewRowForCollection(qc);
 try {
 /*
 * Populate new row by type correct attribute slot number for current row
 * in Result Set
 */
 populateAttributeForRow(r,0, rs.getLong(1));
 populateAttributeForRow(r,1, rs.getString(2));
 populateAttributeForRow(r,2, rs.getString(3));
 }
 catch (SQLException s) {
 throw new JboException(s);
 }
 return r;
}

The Overridden hasNextForCollectionMethod()
The overridden implementation of the framework method hasNextForCollection()
has the responsibility to return true or false based on whether there are more rows
to fetch. When you've hit the end, you call the setFetchCompleteForCollection() to
tell the view object that this collection is done being populated. The following example
shows how to override the hasNextForCollection() method for this purpose.

protected boolean hasNextForCollection(Object qc) {
 ResultSet rs = getResultSet(qc);
 boolean nextOne = false;
 try {
 nextOne = rs.next();
 /*
 * When were at the end of the result set, mark the query collection
 * as "FetchComplete".
 */

Chapter 11
Using Classic Style Programmatic View Objects for Alternative Data Sources

11-46

 if (!nextOne) {
 setFetchCompleteForCollection(qc, true);
 /*
 * Close the result set, we're done with it
 */
 rs.close();
 }
 }
 catch (SQLException s) {
 throw new JboException(s);
 }
 return nextOne;
}

The Overridden releaseUserDataForCollection() Method
Once the collection is done with its fetch-processing, the overridden
releaseUserDataForCollection() method gets invoked and closes the ResultSet
cleanly so no database cursors are left open. The following example shows how to
override the releaseUserDataForCollection() method for this purpose.

 protected void releaseUserDataForCollection(Object qc, Object rs) {
 ResultSet userDataRS = getResultSet(qc);
 if (userDataRS != null) {
 try {
 userDataRS.close();
 }
 catch (SQLException s) {
 /* Ignore */
 }
 }
 super.releaseUserDataForCollection(qc, rs);
 }

The Overridden getQueryHitCount() Method
Lastly, in order to properly support the view object's getEstimatedRowCount() method,
the overridden getQueryHitCount() method returns a count of the rows that would
be retrieved if all rows were fetched from the row set. Here the code uses a stored
function to get the job done. Since the query is completely encapsulated behind
the stored function API, the code also relies on the PL/SQL package to provide an
implementation of the count logic as well to support this functionality. The following
example shows how to override the getQueryHitCount() method for this purpose.

public long getQueryHitCount(ViewRowSetImpl viewRowSet) {
 Long result = (Long)callStoredFunction(NUMBER,
 "RefCursorExample.count_orders_for_customer(?)",
 viewRowSet.getParameters(true));
 return result.longValue();
}

Creating a View Object with Multiple Updatable Entities
When adding a secondary entity usage to an ADF view object with multiple entity
usages, the secondary entity usage is non-updateable by default. You can override
this default behavior and make it updateable.

Chapter 11
Creating a View Object with Multiple Updatable Entities

11-47

By default, when you create a view object with multiple entity usages, each secondary
entity usage that you add to a view object in the overview editor is configured with
these settings:

• The Updatable checkbox is deselected

• The Reference checkbox is selected

You can change the default behavior to enable a secondary entity usage to be
updatable by selecting the usage in the Selected list of the Entity Objects page of the
view object overview editor and selecting the Updatable checkbox.

Additionally, for each secondary entity usage, you can decide whether to leave
Reference select to control whether or not to refresh the attributes of the secondary
entity when the entity lookup information changes. By default, Reference is selected
to ensure attributes of each secondary entity objects will be refreshed. For details
about this setting when you allow row inserts with multiple entity usages, see What
Happens at Runtime: View Row Creation.

Table 11-4 summarizes the combinations you can select when you define secondary
entity usages for a view object.

Table 11-4 View Object Properties to Control View Row Creation Behavior

Updatable Reference View Row Behavior

true true This combination allows the entity
usage's attributes to be updated and
keeps its attributes synchronized with
the value of the primary key. Since this
combination works fine with the view
link consistency feature, you can use
it to make sure your view object only
has one entity object usage that will
participate in inserts.

true false This combination allows the entity
usage's attributes to be updated but
prevents its attributes from being
changed by the a primary key lookup.
This is a rather rare combination,
and works best in situations where
you only plan to use the view object
to update or delete existing data.
With this combination, the user can
update attributes related to any of the
nonreference, updatable entity usages
and the view row will delegate the
changes to the appropriate underlying
entity rows.

Note: The combination of the view
link consistency feature with a view
object having some of its secondary
entity usages set as Updatable=true,
Reference=false can end up creating
unwanted extra new entities in your
application.

Chapter 11
Creating a View Object with Multiple Updatable Entities

11-48

Table 11-4 (Cont.) View Object Properties to Control View Row Creation
Behavior

Updatable Reference View Row Behavior

false true This is the default behavior, described
in How to Create Joins for Entity-
Based View Objects. This combination
assumes you do not want the entity
usage to be updatable.

If you need a view object with multiple updatable entities to support creating new rows
(Updatable=true, Reference=false) and the association between the entity objects
is not a composition, then you need to write a bit of code, as described in How to
Programmatically Create New Rows With Multiple Updatable Entity Usages.

How to Programmatically Create New Rows With Multiple Updatable
Entity Usages

If you need a view object with multiple updatable entities to support creating new rows
(Updatable=true, Reference=false) and the association between the entity objects is
not a composition, then you need to override the create() method of the view object's
custom view row class to enable that to work correctly.

Note:

You only need to write code to handle creating new rows when the
association between the updatable entities is not a composition. If the
association is a composition, then ADF Business Components handles this
automatically.

When you call createRow() on a view object with multiple update entities, it creates
new entity row parts for each updatable entity usage. Since the multiple entities in this
scenario are related by an association, there are three pieces of code you might need
to implement to ensure the new, associated entity rows can be saved without errors:

1. You may need to override the postChanges() method on entity objects involved to
control the correct posting order.

2. If the primary key of the associated entity is populated by a database
sequence using DBSequence, and if the multiple entity objects are associated
but not composed, then you need to override the postChanges() and
refreshFKInNewContainees() method to handle cascading the refreshed primary
key value to the associated rows that were referencing the temporary value.

3. You need to override the create() method of the view object's custom view row
class to modify the default row creation behavior to pass the context of the parent
entity object to the newly created child entity.

To understand the code for steps 1 and 2, see the example with associated entity
objects described in How to Control Entity Posting Order to Prevent Constraint
Violations. The last thing you need to understand is how to override create() method

Chapter 11
Creating a View Object with Multiple Updatable Entities

11-49

on the view row. Consider a ProductInventoryVO view object with a primary entity
usage of Product and secondary entity usage of Inventory. Assume the Product
entity usage is marked as updatable and nonreference, while the Inventory entity
usage is a reference entity usage.

Note:

The example in this section refers to the
oracle.summit.model.multieoupdate package in the SummitADF_Examples
application workspace.

The following example shows the commented code required to correctly sequence the
creation of the multiple, updatable entity row parts during a view row create operation.

 /**
 * By default, the framework will automatically create the new
 * underlying entity object instances that make up this
 * view object row being created.
 *
 * We override this default view object row creation to explicitly
 * pre-populate the new (detail) InventoryImpl instance using
 * the new (master) ProductImpl instance. Since all entity objects
 * implement the AttributeList interface, we can directly pass the
 * new ProductImpl instance to the InventoryImpl create()
 * method that accepts an AttributeList.
 */
 protected void create(AttributeList attributeList) {
 // The view row will already have created "blank" entity instances
 // so be sure to use the respective names of the entity instance.
 ProductImpl newProduct = getProduct();
 InventoryImpl newInventory = getInventory();
 try {
 // Let inventory "blank" entity instance to do programmatic defaulting
 newProduct.create(attributeList);
 // Let inventory "blank" entity instance to do programmatic
 // defaulting passing in new ProductImpl instance so its attributes
 // are available to the ProductInventoryVORowImpl's create method.
 newInventory.create(newProduct);
 }
 catch (JboException ex) {
 newProduct.revert();
 newInventory.revert();
 throw ex;
 }
 catch (Exception otherEx) {
 newProduct.revert();
 newInventory.revert();
 throw new RowCreateException(true /* EO Row? */,
 "Inventory" /* EO Name */,
 otherEx /* Details */);
 }
 }

In order for this ProductInventoryVO view object's view row class
(ProductInventoryVORowImpl class) to be able to invoke the protected create()

Chapter 11
Creating a View Object with Multiple Updatable Entities

11-50

method on the Product and Inventory entity objects, the entity object classes need to
override their create() methods for method accessibility:

/**
 * Overridding this method in this class allows friendly access
 * to the create() method by other classes in this same package, like the
 * ProductInventoryVO view object implementation class, whose overridden
 * create() method needs to call this.
 * @param nameValuePair
 */
 protected void create(AttributeList nameValuePair) {
 super.create(nameValuePair);
 }

When overriding the create() method, the declaration of the method will depend on
the following conditions:

• If the view object and entity objects are in the same package,
the overridden create() method can have protected access and the
ProductInventoryVORowImpl class will have access to them.

• If either entity object is in a different package, then ProductImpl.create()
and InventoryImpl.create() (whichever is in a different package) have to be
declared public in order for the ProductInventoryVORowImpl class to be able to
invoke them.

What Happens at Runtime: View Row Creation
If you need a view object with multiple updatable entities to support creating new
rows, you will want to understand that the Reference flag controls behavior related to
view row creation, as well as automatic association-driven lookup of information. If you
disable the Reference flag for a given entity usage, then:

• Each time a new view row is created, a new entity instance will be created for that
entity usage.

• The entity row to which the view row points for its storage of view row attributes
related to that entity usage is never changed automatically by the framework.

Conversely, if you leave the Reference flag enabled (default) for an entity usage then:

• No new entity instance will be created for that entity usage when a new view row is
created.

• The entity row to which the view row points for storage of view row attributes
related to that entity usage will automatically be kept in sync with changes made to
attributes in the view row that participate in an association with said entity.

Consider a ProductInventoryVO view object that joins information from the PRODUCT
and INVENTORY tables to show ProductId, PName, ProductInventoryId (a name
chosen in the view object editor to identify this as an attribute of ProductInventoryVO),
InventoryInventoryId (a name chosen in the view object editor to identify this as an
attribute of ProductInventoryVO) and AmountInStock attributes.

Now, consider what happens at runtime for the default case where you set up the
secondary entity object marked as both updatable and reference:

• The Product entity object is the primary entity usage.

Chapter 11
Creating a View Object with Multiple Updatable Entities

11-51

• The Inventory entity object is a secondary entity usage and is marked as a
Reference.

When the user creates a new row in the ProductInventoryVO, ADF Business
Components only creates a new Product entity instance (since the Reference
flag for the Inventory entity usage is enabled). If the user changes the
product's InventoryInventoryId attribute to 10, then ADF Business Components will
automatically look up the Inventory entity with primary key 10 in the entity cache
(reading it in from the database if not already in the cache) and make this new view
row's Inventory entity usage point to this inventory 10 entity. That has the result of
automatically reflecting the right AmountInStock value for inventory 10.

In the default scenario, the reference lookup occurs both because the entity usage
for Inventory is marked as a reference, as well as the fact that an association
exists between the Product entity and the Inventory entity. Through the association
definition, ADF Business Components knows which attributes are involved on each
side of this association. When any of the attributes on the Product side of the
ProductToInventory association are modified, if the Inventory entity usage is marked
as a Reference, ADF Business Components will perform that automatic reference
lookup. If the user changes value of the AmountInStock to 20 in this new view row,
after committing the change, the database will have a new product for inventory 10 and
have updated the amount of inventory 10 to 20.

Now, consider what happens at runtime where you set up the secondary entity object
marked as updatable and reference is disabled:

• The Product entity object is the primary entity usage.

• The Inventory entity object is a secondary entity usage, but this usage is not
marked as a Reference.

In this scenario, when the user creates a new row in the ProductInventoryVO, ADF
Business Components will create both a new Product entity instance and a new
Inventory entity instance (since the Reference flag for the Inventory entity usage is
disabled). If the user changes the product's InventoryId attribute to 10, it will have
no effect on the value of the AmountInStock attribute being displayed in the row.
Additionally, if the user sets InventoryInventoryId to 99 and AmountInStock to 20 in
this new view row, after committing the changes, the database will have both a new
product for inventory 10 and a new inventory number 99.

Programmatically Creating View Definitions and View
Objects

When you create an ADF view object, the application creates a view definition
object utilizing the XML file. Alternatively, you can create the view definition object
programmatically using a framework class.

The oracle.jbo.server.ViewDefImpl class lets you dynamically define the view
definition meta-object for view object instances. The view definition describes the view
object's structure.

Typically, the application creates the view definition object by loading an XML file that
you create using JDeveloper overview editors. When the application needs to create
a view object instance, it queries the MetaObjectManager for the view object's view
definition by the view definition name, it then finds the XML file, opens it, parses it, and
constructs a view definition object in memory.

Chapter 11
Programmatically Creating View Definitions and View Objects

11-52

Alternatively, you can create the view definition programmatically using methods of the
ViewDefImpl class. When you create a programmatic view definition, your application
code begins with code like:

ViewDefImpl viewDef = new ViewDefImpl("MyViewDef");
viewDef.setFullName("sessiondef.mypackage.MyViewDef");

A view definition that you create must be uniquely identified by its full name,
where the full name is a package-qualified name. Thus, you call setFullName()
to pass in the package-qualified name of your view definition object (for example,
sessiondef.mypackage.MyViewDef).

The MyViewDef name that you initially pass in is the short name of the view definition
you create. Your application may pass the short name when an API requires a view
definition name. For example, your application might request the defName parameter
when invoking ApplicationModule.createViewObject(String, String).

To create a view definition and then create a view object instance based on that
definition, follow these basic steps (as illustrated in the following example):

1. Create the view definition object and set the full name.

2. Define the view object SQL statement.

3. Resolve the view definition and save it into the MDS repository.

4. With the view definition, construct instance of view objects based on it.

Note:

To save the view definition into the MDS repository, the adf-config.xml file
must be appropriately configured for the saved view definition. For details
about configuring the adf-config.xml file, see What You May Need to Know
About MDS Repository Configuration..

/*
 * 1. Create the view definition object.
 */
ViewDefImpl v = new ViewDefImpl("DefNameForTheObject");

v.setFullName("sessiondef.some.unique.DefNameForTheObject");

/*
* 2. Then, define the view object's SQL statement by using a fully-
* specified custom SQL query.
*/
v.setQuery("select e.empno,e.ename,e.sal,e.deptno,d.dname,d.loc,"+
 "d.deptno,trunc(sysdate)+1 tomorrow_date, "+
 "e.sal + nvl(e.comm,0) total_compensation, "+
 "to_char(e.hiredate,'dd-mon-yyyy') formated_hiredate"+
 " from emp e, dept d "+
 " where e.deptno = d.deptno (+)"+
 " order by e.ename");
v.setFullSql(true);

/*
* 3. Then resolve and save the view definition.
*/

Chapter 11
Programmatically Creating View Definitions and View Objects

11-53

v.resolveDefObject();
v.writeXMLContents();
v.saveXMLContents();

/*
* 4. Finally, use the dynamically-created view definition to construct
* instances of view objects based on it. myAM is an instance of
* oracle.jbo.ApplicationModule that will parent this VO instance.
*/
ViewObject vo = myAM.createViewObject("SomeInstanceName", v.getFullName());

What You May Need to Know About MDS Repository Configuration
After defining a view definition, it is important to write and save the view definition into
the MDS repository. If it is not properly saved, you may encounter issues when the
request is redirected to a different node in a cluster because the definition cannot be
loaded and accessed from the other node.

In order to save the definition, you need to define the mds-config element of adf-
config.xml. For example, your adf-config.xml file should contain definitions similar
to those shown in the following example.

<mds-config version="11.1.1.000">
 <persistence-config>
<!-- metadata-namespaces must define /sessiondef and /persdef namespaces -->
 <metadata-namespaces>
 <namespace path="/sessiondef" metadata-store-usage="mymdsstore">
 <namespace path="/persdef" metadata-store-usage="mymdsstore">
 </metadata-namespaces>

 <metadata-store-usages>
 <metadata-store-usage id="mymdsstore" default-cust-store="true">
 <metadata-store name="fs1"
 class-name="oracle.mds.persistence.stores.file.FileMetadataStore">
<!-- metadata-path value should be the absolute dir path where you want
 the metadata documents to be written -->
 <property name="metadata-path" value="/tmp">
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>

 <cust-config>
 <match path="/">
 <customization-class name="oracle.adf.share.config.UserCC">
 </match>
 </cust-config>
</mds-config>

If your adf-config.xml file already defines the metadata-store-usage element, then
you may be able to define the two namespaces /sessiondef and /persdef so
that they use that metadata-store-usage definition. For more information about
MDS configuration entries in the adf-config.xml file, see adfc-config.xml. For more
information about configuring MDS repositories, see the "Managing the Metadata
Repository" chapter in Administering Oracle Fusion Middleware.

Chapter 11
Programmatically Creating View Definitions and View Objects

11-54

What You May Need to Know About Creating View Objects at Runtime
It's important to understand the overhead associated with creating view objects at
runtime, as described in Programmatically Creating View Definitions and View Objects.
Avoid the temptation to do this without a compelling business requirement. For
example, if your application issues a query against a table whose name you know at
design time and if the list of columns to retrieve is also fixed, then create a view object
at design time. When you do this, your SQL statements are neatly encapsulated, can
be easily explained and tuned during development, and incur no runtime overhead to
discover the structure and data types of the resulting rows.

In contrast, when you use the createViewObjectFromQueryStmt() API on the
ApplicationModule interface at runtime, your query is buried in code, it's more
complicated to proactively tune your SQL, and you pay a performance penalty each
time the view object is created. Since the SQL query statement for a dynamically
created view object could theoretically be different each time a new instance is created
using this API, an extra database round trip is required to discover the "shape" of
the query results on-the-fly. Only create queries dynamically if you cannot know the
name of the table to query until runtime. Most other needs can be addressed using a
design-time created view object in combination with runtime API's to set bind variables
in a fixed where clause, or to add an additional WHERE clause (with optional bind
variables) at runtime.

Declaratively Preventing Insert, Update, and Delete
ADF Business Components provides an extension class that allows you to control
insert, update and delete on a view object.

Some 4GL tools like Oracle Forms provide declarative properties that control whether
a given data collection allows inserts, updates, or deletes. While the view object does
not yet support this as a built-in feature in the current release, it's easy to add this
facility using a framework extension class that exploits custom metadata properties as
the developer-supplied flags to control insert, update, or delete on a view object.

Note:

The example in this section refers to the oracle.summit.model.declblock
package in the SummitADF_Examples application workspace.

To allow developers to have control over individual view object instances, you
could adopt the convention of using application module custom properties by
the same name as the view object instance. For example, if an application
module has view object instances named ProductsInsertOnly, ProductsUpdateOnly,
ProductsNoDelete, and Products, your generic code might look for application module
custom properties by these same names. If the property value contains Insert, then
insert is enabled for that view object instance. If the property contains Update, then
update allowed. And, similarly, if the property value contains Delete, then delete is
allowed. You could use helper methods like this to test for these application module
properties and determine whether insert, update, and delete are allowed for a given
view object:

Chapter 11
Declaratively Preventing Insert, Update, and Delete

11-55

private boolean isInsertAllowed() {
 return isStringInAppModulePropertyNamedAfterVOInstance("Insert");
}
private boolean isUpdateAllowed() {
 return isStringInAppModulePropertyNamedAfterVOInstance("Update");
}
private boolean isDeleteAllowed() {
 return isStringInAppModulePropertyNamedAfterVOInstance("Delete");
}
private boolean isStringInAppModulePropertyNamedAfterVOInstance(String s) {
 String voInstName = getViewObject().getName();
 String propVal = (String)getApplicationModule().getProperty(voInstName);
 return propVal != null ? propVal.indexOf(s) >= 0 : true;
}

The following example shows the other code required in a custom framework
extension class for view rows to complete the implementation. It overrides the
following methods:

• isAttributeUpdateable()

To enable the user interface to disable fields in a new row if insert is not allowed or
to disable fields in an existing row if update is not allowed.

• setAttributeInternal()

To prevent setting attribute values in a new row if insert is not allowed or to prevent
setting attributes in an existing row if update is not allowed.

• remove()

To prevent remove if delete is not allowed.

• create()

To prevent create if insert is not allowed.

public class CustomViewRowImpl extends ViewRowImpl {
 public boolean isAttributeUpdateable(int index) {
 if (hasEntities() &&
 ((isNewOrInitialized() && !isInsertAllowed()) ||
 (isModifiedOrUnmodified() && !isUpdateAllowed()))) {
 return false;
 }
 return super.isAttributeUpdateable(index);
 }
 protected void setAttributeInternal(int index, Object val) {
 if (hasEntities()) {
 if (isNewOrInitialized() && !isInsertAllowed())
 throw new JboException("No inserts allowed in this view");
 else if (isModifiedOrUnmodified() && !isUpdateAllowed())
 throw new JboException("No updates allowed in this view");
 }
 super.setAttributeInternal(index, val);
 }
 public void remove() {
 if (!hasEntities() || isDeleteAllowed() || isNewOrInitialized())
 super.remove();
 else
 throw new JboException("Delete not allowed in this view");
 }
 protected void create(AttributeList nvp) {
 if (isInsertAllowed()) {

Chapter 11
Declaratively Preventing Insert, Update, and Delete

11-56

 super.create(nvp);
 } else {
 throw new JboException("Insert not allowed in this view");
 }
 }
 // private helper methods omitted from this example
}

What You May Need to Know About Programmatic View
Object Triggers

You can use triggers defined in the Groovy scripting language in place of overridden
methods of ProgrammaticViewObjectImpl.java to perform data retrieval operations
on the custom datasource. Triggers can be called from the various programmatic view
object lifecycle points.

The application allows you to call triggers that are defined in Groovy script in
place of Java hook points. These triggers interact with a custom data source and
perform data retrieval operations. They can be called from the various programmatic
view object lifecycle points. Although the option of subclassing the framework
class, namely ProgrammaticViewObjectImpl and overriding certain methods to define
implementations specific to a custom datasource remains, in order for the trigger to
execute, the Java hook points should not be defined. Alternatively, if Java hook points
are defined, then the triggers shouldn’t exist for the Java hook points to execute.
Note that if Java hook points as well as triggers are defined, then the triggers will not
execute. The application allows you to utilize Groovy scripts in the overridden methods
to interact with the custom data source. These triggers can be called from various
programmatic view object lifecycle points.

Specifically, the programmatic view object triggers are:

FetchData

This trigger is used to retrieve a data collection from the custom datasource. This
trigger is invoked in place of the getScrollableData() and getRangePagingData()
methods of ProgrammaticViewObjectImpl.java depending on whether the access
mode of the view object is scroll or range paging. The returnList data collection is
populated with the records (objects/maps) retrieved from the custom data source.

The following sample code illustrates usage of this trigger. The following context
specific keywords is used in the sample code.

• dataFilter – Returns the DataFilter object which is a ScrollableDataFilter or
RangePagingDataFilter depending on the mode of the view object.

• dataFilter.fetchSize – Returns the range size of the data to be fetched.

• dataFilter.fetchStart — Returns the range start value of the data to be
fetched.

• dataFilter.searchCriteria - Returns a list of ViewCriteria applied on the view
object.

• dataFilter.sortCriteria - Returns a list of SortCriteria applied on the view
object.

• dataFilter.bindParameterValues - Returns a map containing the bind parameter
names and values corresponding to the rowset that is currently being executed.

Chapter 11
What You May Need to Know About Programmatic View Object Triggers

11-57

• dataFilter.masterData - When used in the context of a detail view object, it
returns the dataprovider object of the master row.

• returnList - The collection that is to be populated with the records (objects/maps)
from the custom data source.

@TriggerExpression(triggerType="FetchData", name="FetchData_Rule_0")
def FetchData_Rule_0_ValidationRuleScript_Trigger()
{
 def empData = model.data.DataCenter.getInstance().getEmpData()
 def empFilteredData = new ArrayList()
 model.data.DeptObject master = (model.data.DeptObject)dataFilter.masterData

 for (emp in empData)
 {
 if (master == null || emp.deptno.equals(master.deptno))
 {
 empFilteredData.add(emp)
 }
 }

 def fetchStart = dataFilter.fetchStart
 def fetchSize = dataFilter.fetchSize
 if(fetchStart == -1)
 {
 fetchStart = 0;
 }
 for(int i = fetchStart; i < fetchSize + fetchStart && i <
empFilteredData.size() ; i++)
 {
 returnList.add(empFilteredData.get(i))
@TriggerExpression(triggerType="RetrieveDataByKey",
name="RetrieveDataByKey_Rule_0")
def RetrieveDataByKey_Rule_0_ValidationRuleScript_Trigger()
{
 def empData = model.data.DataCenter.getInstance().getEmpData()

 def keyValue = dataFilter.key.keyValues[0]

 def iter = empData.iterator()
 while (iter.hasNext())
 {
 def emp = iter.next();
 if (emp.empno.equals(keyValue))
 {
 returnList.add(emp);
 }
 }
 }
}

RetrieveDataByKey Trigger

This trigger is used to retrieve a data collection matching a key value from the
custom datasource. It is invoked in place of the retrieveDataByKey method of
ProgrammaticViewObjectImpl.java. This trigger is invoked when the required data
matching the key is not present in the current range of rows retrieved by the view
object. This trigger retrieves the collection of objects/maps matching the key value.

The following sample code illustrate the usage of this trigger. The following context
specific keywords is used in the sample code.

Chapter 11
What You May Need to Know About Programmatic View Object Triggers

11-58

• dmlFilter.key - Returns an oracle.jbo.Key containing the key values of the data/
object to be retrieved.

• dmlFilter.fetchSize - Returns the fetch size.

• returnList - The collection that is to be populated with the records (objects/maps)
from the custom data source that match the key value.

@TriggerExpression(triggerType="RetrieveDataByKey",
name="RetrieveDataByKey_Rule_0")
def RetrieveDataByKey_Rule_0_ValidationRuleScript_Trigger()
{
 def empData = model.data.DataCenter.getInstance().getEmpData()

 def keyValue = dataFilter.key.keyValues[0]

 def iter = empData.iterator()
 while (iter.hasNext())
 {
 def emp = iter.next();
 if (emp.empno.equals(keyValue))
 {
 returnList.add(emp);
 }
 }
}

Defining Triggers for Programmatic View Objects
ADF Business Components allows you to apply triggers in a programmatic view
object's lifecycle. Triggers execute at these set lifecycle events. You can use
Groovy script to implement business rules that are executed in response to these
programmatic view object triggers.

To add a trigger to a programmatic view object.

1. In the Applications Navigator, double-click the view object you want to add a
trigger.

2. In the overview editor, click the Business Rules navigation tab.

3. On the Business Rules page, select the view-level Triggers node, and click the
Create New Trigger icon.

4. From the Add Trigger dialog box, select the appropriate trigger point from the Type
dropdown list.

5. Enter a Groovy expression in the Trigger Definition tab.

The application creates a <trigger> tag in the view object's XML file and also
populates the .bcs file associated with the view object. When a Groovy expression
is evaluated at runtime, it is assumed to be untrusted unless explicitly identified as
a trusted expression. To avoid the runtime exception, use the Properties window to
identify the expression as a trusted expression..

Chapter 11
Defining Triggers for Programmatic View Objects

11-59

12
Implementing Validation and Business
Rules Programmatically

This chapter describes how to use ADF entity object events and features to
programmatically implement business rules in an Oracle ADF application. It also
describes how to invoke custom validation code, for example, using setter methods
to populate entity rows.
This chapter includes the following sections:

• About Programmatic Business Rules

• Using Method Validators

• Assigning Programmatically Derived Attribute Values

• Undoing Pending Changes to an Entity Using the Refresh Method

• Using View Objects for Validation

• Accessing Related Entity Rows Using Association Accessors

• Referencing Information About the Authenticated User

• Accessing Original Attribute Values

• Storing Information About the Current User Session

• Accessing the Current Date and Time

• Sending Notifications Upon a Successful Commit

• Conditionally Preventing an Entity Row from Being Removed

• Determining Conditional Updatability for Attributes

• Implementing Custom Validation Rules

About Programmatic Business Rules
ADF Business Components provide method validators and events to programmatically
define business logic in addition to using built-in declarative validation features.

Complementing the built-in declarative validation features, entity objects and view
objects contain method validators and several events you can handle that allow you
to programmatically implement encapsulated business logic using Java code. These
concepts are illustrated in Figure 12-1.

• Attribute-level method validators trigger validation code when an attribute value
changes.

• Entity-level method validators trigger validation code when an entity row is
validated.

• You can override the following key methods in a custom Java class for an entity:

– create(), to assign default values when a row is created

12-1

– initDefaultExpressionAttributes(), to assign defaults either when a row is
created or when a new row is refreshed

– remove(), to conditionally disallow deleting

– isAttributeUpdateable(), to make attributes conditionally updatable

– setAttribute(), to trigger attribute-level method validators

– validateEntity(), to trigger entity-level method validators

– prepareForDML(), to assign attribute values before an entity row is saved

– beforeCommit(), to enforce rules that must consider all entity rows of a given
type

– afterCommit(), to send notifications about a change to an entity object's state

Figure 12-1 Key Entity Objects Features and Events for Programmatic
Business Logic

Note:

Only new and modified rows participate in transaction validation. Although
deleted rows are part of the transaction, they are not included in the
validation.

When coding programmatic business rules, it's important to have a firm
grasp of the validation cycle. See Understanding the Validation Cycle.

Programmatic Business Rules Use Cases and Examples
While much of your validation can be implemented using basic declarative behavior,
you can implement more complex business rules for your business domain layer when
needed, using the Method validator to invoke custom validation code.

Some examples of when you might want to use programmatic business rules include:

Chapter 12
About Programmatic Business Rules

12-2

• Eagerly defaulting an attribute value from a database sequence

• Assigning values derived from complex calculations

• Undoing pending changes to an entity object

• Accessing and storing information about the current user session

• Determining conditional updatability for attributes

Additional Functionality for Programmatic Business Rules
You may find it helpful to understand other Oracle ADF features before you start
using programmatic validation. Following are links to other functionality that may be of
interest.

• Before implementing business rules programmatically, you should see if the
declarative validation can handle the needs of your application. For more
information, see Defining Validation and Business Rules Declaratively.

• You can use resource bundles to provide localizable validation error messages, as
described in Working with Resource Bundles.

• How to Synchronize with Trigger-Assigned Values, explains how to use the
DBSequence type for primary key attributes whose values need to be populated
by a database sequence at commit time.

• For information about security features in Oracle Fusion Web Applications,
including how to access information about the authenticated user, see Enabling
ADF Security in a Fusion Web Application.

• For information about using Groovy script in your entity object business logic, see
Using Groovy Scripting Language with Business Components.

Using Method Validators
You can define custom Java code that is triggered by method validators. ADF Method
validators allow you to supplement declarative validation rules. You can define attribute
or entity level method validators.

Method validators are the primary way of supplementing declarative validation rules
and Groovy-scripted expressions using your own Java code. Method validators trigger
Java code that you write in your own validation methods at the appropriate time during
the entity object validation cycle. There are many types of validation you can code with
a method validator, either on an attribute or on an entity as a whole.

You can add any number of attribute-level or entity-level method validators, provided
they each trigger a distinct method name in your code. All validation method names
must begin with the word validate; however, following that rule you are free to name
them in any way that most clearly identifies the functionality. For an attribute-level
validator, the method must take a single argument of the same type as the entity
attribute. For an entity-level validator, the method takes no arguments. The method
must also be public, and must return a boolean value. Validation will fail if the method
returns false.

Chapter 12
Using Method Validators

12-3

Note:

Although it is important to be aware of these rules, when you use JDeveloper
to create method validators, JDeveloper creates the correct interface for the
class.

At runtime, the Method validator passes an entity attribute to a method implemented in
your entity object class.

In the following example, the method accepts strings that start with a capital letter and
throws an exception on null values, empty strings, and strings that do not start with a
capital letter.

public boolean validateIsCapped(String text)
{
 if (text != null &&
 text.length() != 0 &&
 text[0] >= 'A' &&
 text[0] <= 'Z')
 {
 return true;
 }
}

How to Create an Attribute-Level Method Validator
The use of method validators is a programmatic approach that supplements your
declarative validation rules.

Before you begin:

It may be helpful to have an understanding of what method validators are. For more
information, see Using Method Validators.

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Programmatic Business Rules.

To create an attribute-level Method validator:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Java navigation tab.

The Java page shows the Java generation options that are currently enabled for
the entity object. If your entity object does not yet have a custom entity object
class, then you must generate one before you can add a Method validator. To
generate the custom Java class, click the Edit icon, then select Generate Entity
Object Class, and click OK to generate the *.java file.

3. Click the Business Rules navigation tab, and then expand the Attributes section
and select the attribute that you want to validate.

4. Click the New icon to add a validation rule.

5. In the Add Validation Rule dialog, select Method from the Rule Type dropdown
list.

Chapter 12
Using Method Validators

12-4

Figure 12-2 Adding an Attribute-Level Method Validator

The Add Validation Rule dialog displays the expected method signature for an
attribute-level validation method. You have two choices:

• If you already have a method in your entity object's custom Java class of
the appropriate signature, it will appear in the list and you can select it after
deselecting the Create and Select Method checkbox.

• If you leave the Create and Select Method checkbox selected (see
Figure 12-2), you can enter any method name in the Method Name box
that begins with the word validate. When you click OK, JDeveloper adds
the method to your entity object's custom Java class with the appropriate
signature.

6. Optionally, click the Validation Execution tab to enter criteria for the execution of
the rule, such as dependent attributes and a precondition expression. For more
information, see Triggering Validation Execution.

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails.

For more information, see Creating Validation Error Messages.

What Happens When You Create an Attribute-Level Method Validator
When you add a new method validator, JDeveloper updates the XML document to
reflect the new validation rule. If you asked to have the method created, the method
is added to the entity object's custom Java class. The following example illustrates

Chapter 12
Using Method Validators

12-5

a simple attribute-level validation rule that ensures that the OrderShippedDate of an
order is a date in the current month. Notice that the method accepts an argument
of the same type as the corresponding attribute, and that its conditional logic
is based on the value of this incoming parameter. When the attribute validator
fires, the attribute value has not yet been set to the new value in question, so
calling the getOrderShippedDate() method inside the attribute validator for the
OrderShippedDate attribute would return the attribute's current value, rather than the
candidate value that the client is attempting to set.

Note:

The return value of the compareTo() method is zero (0) if the two dates are
equal, negative one (-1) if the first date is less than the second, or positive
one (1) if the first date is greater than the second.

public boolean validateOrderShippedDate(Date data) {
 if (data != null && data.compareTo(getFirstDayOfCurrentMonth()) <= 0) {
 return false;
 }
 return true;
}

How to Create an Entity-Level Method Validator
Entity-level method validators are similar to attribute-level method validators, except
that they have a broader scope: the entire entity rather than a single attribute.

In addition, you can defer execution of the validator to time of the transaction when
using an entity-level method validator.

Before you begin:

It may be helpful to have an understanding of what method validators are. For more
information, see Using Method Validators.

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Programmatic Business Rules.

To create an entity-level method validator:

1. In the Applications window, double-click the desired entity object.

2. In the overview editor, click the Java navigation tab.

The Java page shows the Java generation options that are currently enabled for
the entity object. If your entity object does not yet have a custom entity object
class, then you must generate one before you can add a Method validator. To
generate the custom Java class, click the Edit icon, then select Generate Entity
Object Class, and click OK to generate the *.java file.

3. Click the Business Rules navigation tab, and then select the Entity node and
click the New icon to add a validation rule.

4. In the Add Validation Rule dialog, select Method from the Rule Type dropdown
list.

Chapter 12
Using Method Validators

12-6

The Add Validation Rule dialog displays the expected method signature for an
entity-level validation method. You have two choices:

• If you already have a method in your entity object's custom Java class of
the appropriate signature, it will appear in the list and you can select it after
deselecting the Create and Select Method checkbox.

• If you leave the Create and Select Method checkbox selected (see
Figure 12-3), you can enter any method name in the Method Name box
that begins with the word validate. When you click OK, JDeveloper adds
the method to your entity object's custom Java class with the appropriate
signature.

5. Optionally, click the Validation Execution tab to enter criteria for the execution of
the rule, such as dependent attributes and a precondition expression. For more
information, see Triggering Validation Execution.

Figure 12-3 Adding an Entity-Level Method Validator

For Method entity validators, you can also use the Validation Execution tab to
specify the validation level. If you select Defer Execution to Transaction Level,
the validator will fire when the entity is committed. This is useful when multiple
rows are displayed for editing in a table.

6. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails.

For more information, see Creating Validation Error Messages.

Chapter 12
Using Method Validators

12-7

What Happens When You Create an Entity-Level Method Validator
When you add a new method validator, JDeveloper updates the XML document to
reflect the new validation rule. If you asked to have the method created, the method
is added to the entity object's custom Java class. The following example illustrates a
simple entity-level validation rule that ensures that the DateShipped of an order comes
after the DateOrdered.

public boolean validateDateShippedAfterDateOrdered() {
 Date DateShipped = getDateShipped();
 Date DateOrdered = getDateOrdered();
 if (DateShipped != null && DateShipped.compareTo(DateOrdered) < 0) {
 return false;
 }
 return true;
}

If you select Defer Execution to Transaction Level on the Validation Execution tab
of the Add Validation Rule dialog and set SkipValidation="skipDataControls" on the
page that displays the entity object, you can postpone the validation until transaction
time. This allows the user to modify multiple rows in a table and then validate them as
a group when the user commits. The following example shows a method validator that
verifies that the department name is not null for a collection of entity rows.

// Validation method for Departments.
public boolean validateDepartments(ArrayList ctxList) {
 Iterator iter = ctxList.iterator();
 while (iter.hasNext()) {
 JboValidatorContext entValContext = (JboValidatorContext)iter.next();
 DepartmentsImpl deptEO = (DepartmentsImpl)entValContext.getSource();
 if (deptEO.getDepartmentName() == null) {
 // if Dept is null, throw error
 return false;
 }
 }
 return true;
}

What You May Need to Know About Translating Validation Rule Error
Messages

Like the locale-specific UI control hints for entity object attributes, the validation
rule error messages are added to the entity object's component message bundle
file. These entries in the message bundle represent the strings for the default locale
for your application. To provide translated versions of the validation error messages,
follow the same steps as for translating the UI control hints, as described in Working
with Resource Bundles.

Assigning Programmatically Derived Attribute Values
ADF Business Components allows you to perform programmatic defaulting when
declarative defaulting is insufficient.

When declarative defaulting falls short of your needs, you can perform programmatic
defaulting in your entity object:

Chapter 12
Assigning Programmatically Derived Attribute Values

12-8

• When an entity row is first created

• When the entity row is first created or when refreshed to null values

• When the entity row is saved to the database

• When an entity attribute value is set

How to Provide Default Values for New Rows at Create Time
The create() method provides the entity object event you can handle to initialize
default values the first time an entity row is created. The following example shows
the overridden create method of an entity object. It calls an attribute setter method to
populate the DateOrdered attribute in a new order entity row.

You can also define default values using a Groovy expression. For more information,
see How to Define a Static Default Value.

Note:

Calling the setAttribute() method inside the overridden create() method
does not mark the new row as being changed by the user. These
programmatically assigned defaults behave like declaratively assigned
defaults. Also note that any changes you make to the create() method must
occur after the call to super.create().

// In entity object implementation class
protected void create(AttributeList nameValuePair) {
 super.create(nameValuePair);
 this.setDateOrdered(new Date());
}

Choosing Between create() and initDefaultExpressionAttributes() Methods
You should override the initDefaultExpressionAttributes() method for
programmatic defaulting logic that you want to fire both when the row is first created,
and when it might be refreshed back to initialized status.

If an entity row has New status and you call the refresh() method on it, then the
entity row is returned to an Initialized status if you do not supply either the
REFRESH_REMOVE_NEW_ROWS or REFRESH_FORGET_NEW_ROWS flag. As part of this process,
the entity object's initDefaultExpressionAttributes() method is invoked, but not its
create() method again.

Eagerly Defaulting an Attribute Value from a Database Sequence
How to Synchronize with Trigger-Assigned Values, explains how to use the
DBSequence type for primary key attributes whose values need to be populated by
a database sequence at commit time. Sometimes you may want to eagerly allocate a
sequence number at entity row creation time so that the user can see its value and
so that this value does not change when the data is saved. To accomplish this, use
the SequenceImpl helper class in the oracle.jbo.server package in an overridden
create() method as shown in the following example. It shows code from the custom
Java class for an entity object. After calling super.create(), it creates a new instance

Chapter 12
Assigning Programmatically Derived Attribute Values

12-9

of the SequenceImpl object, passing the sequence name and the current transaction
object. Then it calls the setWarehouseId() attribute setter method with the return value
from SequenceImpl's getSequenceNumber() method.

Note:

For a metadata-driven alternative to this approach, see Assigning the
Primary Key Value Using an Oracle Sequence.

// In entity object implementation class
import oracle.jbo.server.SequenceImpl;
// Default WarehouseId value from WAREHOUSE_SEQ sequence at entity row create
time
protected void create(AttributeList attributeList) {
 super.create(attributeList);
 SequenceImpl sequence = new SequenceImpl("WAREHOUSE_SEQ",getDBTransaction());
 setWarehouseId(sequence.getSequenceNumber());
}

How to Assign Derived Values Before Saving
If you want to assign programmatic defaults for entity object attribute values before
a row is saved, override the prepareForDML() method and call the appropriate
attribute setter methods to populate the derived attribute values. To perform the
assignment only during INSERT, UPDATE, or DELETE, you can compare the value of the
operation parameter passed to this method against the integer constants DML_INSERT,
DML_UPDATE, DML_DELETE respectively.

The following example shows an overridden prepareForDML() method that assigns
derived values.

protected void prepareForDML(int operation, TransactionEvent e) {
 super.prepareForDML(operation, e);
 //Populate GL Date
 if (operation == DML_INSERT) {
 if (this.getGlDate() == null) {
 String glDateDefaultOption =
 (String)this.getInvoiceOption().getAttribute("DefaultGlDateBasis");
 if ("I".equals(glDateDefaultOption)) {
 setAttribute(GLDATE, this.getInvoiceDate());
 } else {
 setAttribute(GLDATE, this.getCurrentDBDate());
 }
 }
 }

 //Populate Exchange Rate and Base Amount if null
 if ((operation == DML_INSERT) || (operation == DML_UPDATE)) {
 BigDecimal defaultExchangeRate = new BigDecimal(1.5);
 if ("Y".equals(this.getInvoiceOption().getAttribute("UseForeignCurTrx"))) {
 if (!(this.getInvoiceCurrencyCode().equals(
 this.getLedger().getAttribute("CurrencyCode")))) {
 if (this.getExchangeDate() == null) {
 setAttribute(EXCHANGEDATE, this.getInvoiceDate());
 }
 if (this.getExchangeRateType() == null) {

Chapter 12
Assigning Programmatically Derived Attribute Values

12-10

 String defaultConvRateType =
 (String)this.getInvoiceOption().getAttribute("DefaultConvRateType");
 if (defaultConvRateType != null) {
 setAttribute(EXCHANGERATETYPE, defaultConvRateType);
 } else {
 setAttribute(EXCHANGERATETYPE, "User");
 }
 }
 if (this.getExchangeRate() == null) {
 setAttribute(EXCHANGERATE, defaultExchangeRate);
 }
 if ((this.getExchangeRate() != null) &&
 (this.getInvoiceAmount() != null)) {
 setAttribute(INVAMOUNTFUNCCURR,
 (this.getExchangeRate().multiply(this.getInvoiceAmount())));
 }
 } else {
 setAttribute(EXCHANGEDATE, null);
 setAttribute(EXCHANGERATETYPE, null);
 setAttribute(EXCHANGERATE, null);
 setAttribute(INVAMOUNTFUNCCURR, null);
 }
 }
 }
}

How to Assign Derived Values When an Attribute Value Is Set
To assign derived attribute values whenever another attribute's value is set, add code
to the latter attribute's setter method. The following example shows the setter method
for an AssignedTo attribute in an entity object.

After the call to setAttributeInternal() to set the value of the AssignedTo attribute,
it uses the setter method for the AssignedDate attribute to set its value to the current
date and time.

Note:

It is safe to add custom code to the generated attribute getter and setter
methods as shown here. When JDeveloper modifies code in your class, it
intelligently leaves your custom code in place.

public void setAssignedTo(Number value) {
 setAttributeInternal(ASSIGNEDTO, value);
 setAssignedDate(getCurrentDateWithTime());
}

Undoing Pending Changes to an Entity Using the Refresh
Method

Use the refresh(int flag) method on an ADF Business Components row to refresh
pending row-changes. The int flag argument allows different values that control the
behavior of this method.

Chapter 12
Undoing Pending Changes to an Entity Using the Refresh Method

12-11

You can use the refresh(int flag) method on a row to refresh any pending changes
it might have. The behavior of the refresh() method depends on the flag that you
pass as a parameter. The three key flag values that control its behavior are the
following constants in the Row interface:

• REFRESH_WITH_DB_FORGET_CHANGES forgets modifications made to the row in the
current transaction, and the row's data is refreshed from the database. The latest
data from the database replaces data in the row regardless of whether the row
was modified or not.

• REFRESH_WITH_DB_ONLY_IF_UNCHANGED works just like
REFRESH_WITH_DB_FORGET_CHANGES, but for unmodified rows. If a row was already
modified by this transaction, the row is not refreshed.

• REFRESH_UNDO_CHANGES works the same as REFRESH_WITH_DB_FORGET_CHANGES for
unmodified rows. For a modified row, this mode refreshes the row with attribute
values at the beginning of this transaction. The row remains in a modified state if
it had been previously posted but not committed in the current transaction prior to
performing the refresh operation.

How to Control What Happens to New Rows During a Refresh
By default, any entity rows with New status that you refresh() are reverted back
to blank rows in the Initialized state. Declarative defaults are reset, as well as
programmatic defaults coded in the initDefaultExpressionAttributes() method,
but the entity object's create() method is not invoked during this blanking-out
process.

You can change this default behavior by combining one of the flags in Undoing
Pending Changes to an Entity Using the Refresh Method with one of the following
two flags (using the bitwise-OR operator):

• REFRESH_REMOVE_NEW_ROWS, new rows are removed during refresh.

• REFRESH_FORGET_NEW_ROWS, new rows are marked Dead.

How to Cascade Refresh to Composed Children Entity Rows
You can cause a refresh() operation to cascade to composed child entity rows by
combining the REFRESH_CONTAINEES flag (using the bitwise-OR operator) with any of the
valid flag combinations described in Undoing Pending Changes to an Entity Using the
Refresh Method and How to Control What Happens to New Rows During a Refresh.
This causes the entity to invoke refresh() using the same mode on any composed
child entities it contains.

Using View Objects for Validation
You can manage pending changes for ADF entity-based view objects in the entity
cache, while read-only view objects only retrieve data.

When your business logic requires performing SQL queries, the natural choice is to
use a view object to perform that task. Keep in mind that the SQL statements you
execute for validation will "see" pending changes in the entity cache only if they are
entity-based view objects. Read-only view objects will only retrieve data that has been
posted to the database.

Chapter 12
Using View Objects for Validation

12-12

How to Use View Accessors for Validation Against View Objects
Since entity objects are designed to be reused in any application scenario, they
should not depend directly on a view object instance in the data model of any
specific application module. Doing so would prevent them from being reused in other
application modules, which is highly undesirable.

Instead, you should use a view accessor to validate against a view object. For more
information, see How to Create a View Accessor for an Entity Object or View Object.

Using a view accessor, your validation code can access the view object and set bind
variables, as shown in the following example.

// Sample entity-level validation method
public boolean validateSomethingUsingViewAccessor() {
 RowSet rs = getMyValidationVO();
 rs.setNamedBindParameter("Name1", value1);
 rs.setNamedBindParameter("Name2", value2);
 rs.executeQuery();
 if (/* some condition */) {
 /*
 * code here returns true if the validation succeeds
 */
 }
 return false;
}

Best Practice:

Any time you access a row set programmatically, you should consider
creating a secondary iterator for the row set. This ensures that you will
not disturb the current row set of the default row set iterator that may
be utilized when your expose your view objects as data controls to the
user interface project. You can call createRowSetIterator() on the row
set you are working with to create a secondary named row set iterator.
When you are through with programmatic iteration, your code should call
closeRowSetIterator() on the row set to remove the secondary iterator
from memory.

As the sample code suggests, view objects used for validation typically have one or
more named bind variables in them. In this example, the bind variables are set using
the setNamedBindParameter() method. However, you can also set these variables
declaratively in JDeveloper using Groovy expressions in the view accessor definition
page.

Depending on the kind of data your view object retrieves, the "/* some condition */"
expression in the example will look different. For example, if your view object's SQL
query is selecting a COUNT() or some other aggregate, the condition will typically use
the rs.first() method to access the first row, then use the getAttribute() method
to access the attribute value to see what the database returned for the count.

If the validation succeeds or fails based on whether the query has returned zero or
one row, the condition might simply test whether rs.first() returns null or not. If
rs.first() returns null, there is no "first" row. In other words, the query retrieved no

Chapter 12
Using View Objects for Validation

12-13

rows. In other cases, you may be iterating over one or more query results retrieved by
the view object to determine whether the validation succeeds or fails.

How to Validate Conditions Related to All Entities of a Given Type
The beforeCommit() method is invoked on each entity row in the pending changes list
after the changes have been posted to the database, but before they are committed.
This can be a useful method in which to execute view object-based validations that
must assert some rule over all entity rows of a given type.

Note:

You can also do this declaratively using a transaction-level validator (see
How to Set Transaction-Level Validation).

If your beforeCommit() logic can throw a ValidationException, you must set the
jbo.txn.handleafterpostexc property to true in your configuration to have the
framework automatically handle rolling back the in-memory state of the other entity
objects that may have already successfully posted to the database (but not yet been
committed) during the current commit cycle.

For example, consider the overridden beforeCommit() shown in the following
example. In this example, there are three view objects based on polymorphic entity
objects (Persons, Staff, and Supplier), with the PersonTypeCode attribute as the
discriminator. The PersonsImpl.java file has an overridden beforeCommit() method
that calls a validation method. The validation method uses the fourth view object,
PersonsValidator, to make sure that the principal name is unique across each person
type. For example, there is a PrincipalName of SKING for the Staff view object, but
there cannot be another SKING in this or the other person types.

// In entity object implementation class
. . .
@Override
public void beforeCommit(TransactionEvent transactionEvent) throws
ValidationException {
 String principalName = getPrincipalName();
 if (!validatePrincipalNameIsUniqueUsingViewAccessor(principalName)) {
 throw new ValidationException("Principal Name must be unique across person
types");
 }
 super.beforeCommit(transactionEvent);
}

public boolean validatePrincipalNameIsUniqueUsingViewAccessor(String
principalName) {
RowSet rs = getPersonsValidatorVO();
rs.setNamedWhereClauseParam("principalName", principalName);
rs.setRangeSize(-1);
rs.executeQuery();
Row[] validatorRows = rs.getAllRowsInRange();
if (validatorRows.length > 1)
 // more than one row has the same princpalName
{
 return false;
}

Chapter 12
Using View Objects for Validation

12-14

rs.closeRowSetIterator();
return true;
}

What You May Need to Know About Row Set Access with View
Accessors

If your entity object or view object business logic iterates over its own view accessor
row set, and that view accessor is not also used by a model-defined List of Values,
then there is no need to use a secondary row set iterator. For example, if an entity
object has a view accessor named AirportValidationVA for a view object that takes
one named bind parameter, it can iterate its own view accessor row set using either
Groovy script or Java. The following example shows Groovy script that iterates over a
view accessor row set.

AirportValidationVA.setNamedWhereClauseParam("VarTla",newValue)
AirportValidationVA.executeQuery();
return AirportValidationVA.first() != null;

The following example shows a Java method validator that iterates over a view
accessor row set.

public boolean validateJob(String job) {
 getAirportValidationVA().setNamedWhereClauseParam("VarTla",job);
 getAirportValidationVA().executeQuery();
 return getAirportValidationVA().first() != null;
}

Accessing Related Entity Rows Using Association
Accessors

Use an ADF entity object’s custom Java class’s association accessor method to
access information from related entity objects.

To access information from related entity objects, you use an association accessor
method in your entity object's custom Java class. By calling the accessor method, you
can easily access any related entity row — or set of entity rows — depending on the
cardinality of the association.

How to Access Related Entity Rows
You can use an association accessor to access related entity rows. The following
example shows code from the controlpostorder module in the SummitADF application
workspace that shows the overridden postChanges() method in the EmpEO entity
object's custom Java class. It uses the getDeptEO() association accessor to retrieve
the related department for the employee.

// In EmpEOImpl.java
public void postChanges(TransactionEvent transactionEvent) {
 /* If current entity is new or modified */
 if (getPostState() == STATUS_NEW ||
 getPostState() == STATUS_MODIFIED) {
 /* Get the associated dept for the employee */
 DeptEOImpl dept = getDeptEO();
 /* If there is an associated dept */

Chapter 12
Accessing Related Entity Rows Using Association Accessors

12-15

 if (dept != null) {
 /* And if it's post-status is NEW */
 if (dept.getPostState() == STATUS_NEW) {
 /*
 * Post the department first, before posting this
 * entity by calling super below
 */
 dept.postChanges(transactionEvent);
 }
 }
 }
 super.postChanges(transactionEvent);
}

How to Access Related Entity Row Sets
If the cardinality of the association is such that multiple rows are returned, you can use
the association accessor to return sets of entity rows.

The following example illustrates the code for the overridden postChanges() method
in the DeptEO entity object's custom Java class. It shows the use of the getEmpEO()
association accessor to retrieve the RowSet object of EmpEO rows in order to update the
DeptId attribute in each row using the setDeptId() association accessor.

// In DeptEOImpl.java in the controlpostorder module
// of the SummitADF application workspace
RowSet newEmployeesBeforePost = null;
@Override
public void postChanges(TransactionEvent transactionEvent) {
 /* Update references only if Department is a NEW one */
 if (getPostState() == STATUS_NEW) {
 /*
 * Get a rowset of employees related
 * to this new department before calling super
 */
 newEmployeesBeforePost = (RowSet)getEmpEO();
 }
 super.postChanges(transactionEvent);
 }
@Override
protected void refreshFKInNewContainees() {
 if (newEmployeesBeforePost != null) {
 Number newDeptId = getId().getSequenceNumber();
 /*
 * Process the rowset of employees that referenced
 * the new department prior to posting, and update their
 * Id attribute to reflect the refreshed Id value
 * that was assigned by a database sequence during posting.
 */
 while (newEmployeesBeforePost.hasNext()){
 EmpEOImpl emp = (EmpEOImpl)newEmployeesBeforePost.next();
 emp.setDeptId(newDeptId);
 }
 closeNewProductRowSet();
 }
}

Chapter 12
Accessing Related Entity Rows Using Association Accessors

12-16

Referencing Information About the Authenticated User
Use the Configure ADF Security wizard to enable the ADF authentication servlet to
trigger user login and logout by the web application container. You can also retrieve
authenticated user credentials.

If you have run the Configure ADF Security wizard on your application to
enable the ADF authentication servlet to support user login and logout, the
oracle.jbo.server.SessionImpl object provides methods you can use to get
information about the name of the authenticated user and about the roles of which
they are a member. This is the implementation class for the oracle.jbo.Session
interface that clients can access.

For information about how to access information about the authenticated user, see
How to Determine Membership of a Java EE Security Role.

For more information about security features in Oracle Fusion Web Applications, read
Enabling ADF Security in a Fusion Web Application.

Accessing Original Attribute Values
Use the getPostedAttribute() method to retrieve an ADF entity object attribute’s
original value before it was changed in entity row in the current transaction.

If an entity attribute's value has been changed in the current transaction, when
you call the attribute getter method for it you will get the pending changed value.
Sometimes you want to get the original value before it was changed. Using the
getPostedAttribute() method, your entity object business logic can consult the
original value for any attribute as it was read from the database before the entity
row was modified. This method takes the attribute index as an argument, so pass the
appropriate generated attribute index enums that JDeveloper maintains for you.

Storing Information About the Current User Session
Use the user data hash table provided the Session object to store current user session
information that the ADF entity object business logic can utilize.

If you need to store information related to the current user session in a way that entity
object business logic can reference, you can use the user data hash table provided by
the Session object.

How to Store Information About the Current User Session
When a new user accesses an application module for the first time, the
prepareSession() method is called. As shown in the following example, the
application module overrides prepareSession() to retrieve information about the
authenticated user by calling a retrieveUserInfoForAuthenticatedUser() method on
the view object instance. Then, it calls the setUserIdIntoUserDataHashtable() helper
method to save the user's numerical ID into the user data hash table.

// In the application module
protected void prepareSession(Session session) {
 super.prepareSession(session);

Chapter 12
Referencing Information About the Authenticated User

12-17

 /*
 * Query the correct row in the VO based on the currently logged-in
 * user, using a custom method on the view object component
 */
 getLoggedInUser().retrieveUserInfoForAuthenticatedUser();
 setUserIdIntoUserDataHashtable();
}

The following example shows the code for the view object's
retrieveUserInfoForAuthenticatedUser() method. It sets its own EmailAddress
bind variable to the name of the authenticated user from the session and then calls
executeQuery() to retrieve the additional user information from the USERS table.

// In the view object's custom Java class
public void retrieveUserInfoForAuthenticatedUser() {
 SessionImpl session = (SessionImpl)getDBTransaction().getSession();
 setEmailAddress(session.getUserPrincipalName());
 executeQuery();
 first();
}

One of the pieces of information about the authenticated user that the view object
retrieves is the user's numerical ID number, which that method returns as its result. For
example, the user sking has the numeric UserId of 300.

The next example shows the setUserIdIntoUserDataHashtable() helper method —
used by the prepareSession() code in the sample above— that stores this numerical
user ID in the user data hash table, using the key provided by the string constant
CURRENT_USER_ID.

// In the application module
private void setUserIdIntoUserDataHashtable() {
 Integer userid = getUserIdForLoggedInUser();
 Hashtable userdata = getDBTransaction().getSession().getUserData();
 userdata.put(CURRENT_USER_ID, userid);
}

The corresponding entity objects in this example can have an overridden create()
method that references this numerical user ID using a helper method like the one in
the following example to set the CreatedBy attribute programmatically to the value of
the currently authenticated user's numerical user ID.

protected Number getCurrentUserId() {
 Hashtable userdata = getDBTransaction().getSession().getUserData();
 Integer userId = (Integer)userdata.get(CURRENT_USER_ID);
 return userdata != null ? Utils.intToNumber(userId):null;
}

// In the application module
protected void prepareSession(Session session) {
 super.prepareSession(session);
 /*
 * Query the correct row in the VO based on the currently logged-in
 * user, using a custom method on the view object component
 */
 getLoggedInUser().retrieveUserInfoForAuthenticatedUser();
 setUserIdIntoUserDataHashtable();
}

Chapter 12
Storing Information About the Current User Session

12-18

How to Use Groovy to Access Information About the Current User
Session

The top-level adf object allows you access to objects that the framework makes
available to Groovy script. The adf.userSession object returns a reference to the ADF
Business Components user session, which you can use to reference values in the
userData hash map that is part of the session.

The following example shows the Groovy script you would use to reference a
userData hash map key named MyKey.

adf.userSession.userData.MyKey

Accessing the Current Date and Time
ADF Business Components includes pre-defined Groovy expressions that you can use
in entity object business logic to retrieve current date and time.

You might find it useful to reference the current date and time in your entity object
business logic. You can reference the current date or current date and time using the
following Groovy script expressions:

• adf.currentDate — returns the current date (time truncated)

• adf.currentDateTime — returns the current date and time

For information about using Groovy script in your entity object business logic, see
Using Groovy Scripting Language with Business Components.

Sending Notifications Upon a Successful Commit
Upon successful commit of pending row changes, the afterCommit() method is called
on such ADF Business Components entity rows. Use this method to send a notification
as well.

The afterCommit() method is invoked on each entity row that was in the pending
changes list and got successfully saved to the database. You can use this method to
send a notification on a commit.

A better way to send notifications upon a successful commit is by declaring a business
event. For information on how to create a business event, see Creating Business
Events.

Conditionally Preventing an Entity Row from Being
Removed

Use the remove() method to control removal of an ADF entity row.

Before an entity row is removed, the remove() method is invoked on an entity row.
You can throw a JboException in the remove() method to prevent a row from being
removed if the appropriate conditions are not met.

Chapter 12
Accessing the Current Date and Time

12-19

For example, you can add a test in the remove() method that determines the state
of the entity object and allows the removal only if it is a new record. The following
example illustrates this technique.

Note:

The entity object offers declarative prevention of deleting a master entity row
that has existing, composed children rows. You configure this option on the
Relationship page of the overview editor for the association.

// In entity object custom Java class
private boolean isDeleteAllowed() {
 byte s = this.getEntityState();
 return s==STATUS_NEW;
}

/**
 * Add entity remove logic in this method.
 */
public void remove() {
 if (isDeleteAllowed())
 super.remove();
 else
 throw new JboException("Delete not allowed in this view");
}

Determining Conditional Updatability for Attributes
Check if a given ADF entity object attribute is updateable or not at runtime by
overriding the isAttributeUpdateable() method in the entity object class.

You can override the isAttributeUpdateable() method in your entity object class to
programmatically determine whether a given attribute is updatable or not at runtime
based on appropriate conditions.

The following example shows how an entity object can override the
isAttributeUpdateable() method to enforce that its PersonTypeCode attribute is
updatable only if the current authenticated user is a staff member. Notice that when
the entity object fires this method, it passes in the integer attribute index whose
updatability is being considered.

You can implement conditional updatability logic for a particular attribute inside an if
or switch statement based on the attribute index. Here PERSONTYPECODE is referencing
the integer attribute index enums that JDeveloper maintains in your entity object
custom Java class.

Chapter 12
Determining Conditional Updatability for Attributes

12-20

Note:

Entity-based view objects inherit this conditional updatability as they do
everything else encapsulated in your entity objects. Should you need to
implement this type of conditional updatability logic in a way that is specific
to a transient view object attribute, or to enforce some condition that involves
data from multiple entity objects participating in the view object, you can
override this same method in a view object's view row class to achieve the
desired result.

// In the entity object custom Java class
public boolean isAttributeUpdateable(int index) {
 if (index == PERSONTYPECODE) {
 if (!currentUserIsStaffMember()) {
 return super.isAttributeUpdateable(index);
 }
 return CUSTOMER_TYPE.equals(getPersonTypeCode()) ? false : true;
 }
 return super.isAttributeUpdateable(index);
}

Implementing Custom Validation Rules
ADF Business Components allows you to create custom validation rule classes that
capture common validation code and use it along with built-in declarative validation
rules.

ADF Business Components comes with a base set of built-in declarative validation
rules that you can use. However, a powerful feature of the validator architecture for
entity objects is that you can create your own custom validation rules. When you
notice that you or your team are writing the same kind of validation code over and
over, you can build a custom validation rule class that captures this common validation
"pattern" in a parameterized way.

After you've defined a custom validation rule class, you can register it in JDeveloper so
that it is as simple to use as any of the built-in rules. In fact, you can even bundle your
custom validation rule with a custom UI panel that JDeveloper leverages to facilitate
developers' using and configuring the parameters your validation rule might require.

How to Create a Custom Validation Rule
To write a custom validation rule for entity objects, you need a Java class that
implements the JboValidatorInterface in the oracle.jbo.rules package. You can
create a skeleton class from the New Gallery.

Before you begin:

It may be helpful to have an understanding of custom validation rules. For more
information, see Implementing Custom Validation Rules.

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Programmatic Business Rules.

Chapter 12
Implementing Custom Validation Rules

12-21

To create a custom validator:

1. In the Applications window, right-click the project in which you want to create the
validator and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Validation Rule, and click OK.

3. In the Create Validation Rule Class dialog, enter a name and package for the rule.

4. Enter a display name and a description, and click OK.

As shown in the following example, JBOValidatorInterface contains one main
validate() method, and a getter and setter method for a Description property.

package oracle.jbo.rules;
public interface JboValidatorInterface {
 void validate(JboValidatorContext valCtx) { }
 java.lang.String getDescription() { }
 void setDescription(String description) { }
}

If the behavior of your validation rule will be parameterized to make it more flexible,
then add additional bean properties to your validator class for each parameter. For
example, the code in the following example implements a custom validation rule
called DateMustComeAfterRule which validates that one date attribute must come after
another date attribute. To allow the developer using the rule to configure the names of
the date attributes to use as the initial and later dates for validation, this class defines
two properties initialDateAttrName and laterDateAttrName.

The following example shows the code that implements the custom validation rule. It
extends the AbstractValidator to inherit support for working with the entity object's
custom message bundle, where JDeveloper saves the validation error message when
a developer uses the rule in an entity object.

The validate() method of the validation rule gets invoked at runtime whenever the
rule class should perform its functionality. The code performs the following basic steps:

1. Ensures validator is correctly attached at the entity level.

2. Gets the entity row being validated.

3. Gets the values of the initial and later date attributes.

4. Validate that initial date is before later date.

5. Throws an exception if the validation fails.

For easier reuse of your custom validation rules, you would typically package them
into a JAR file for reference by applications that make use of the rules.

// package and imports omitted
public class DateMustComeAfterRule extends AbstractValidator
 implements JboValidatorInterface {
 /**
 * This method is invoked by the framework when the validator should do its job
 */
 public void validate(JboValidatorContext valCtx) {
 // 1. If validator is correctly attached at the entity level...
 if (validatorAttachedAtEntityLevel(valCtx)) {
 // 2. Get the entity row being validated
 EntityImpl eo = (EntityImpl)valCtx.getSource();
 // 3. Get the values of the initial and later date attributes

Chapter 12
Implementing Custom Validation Rules

12-22

 Date initialDate = (Date) eo.getAttribute(getInitialDateAttrName());
 Date laterDate = (Date) eo.getAttribute(getLaterDateAttrName());
 // 4. Validate that initial date is before later date
 if (!validateValue(initialDate,laterDate)) {
 // 5. Throw the validation exception
 RulesBeanUtils.raiseException(getErrorMessageClass(),
 getErrorMsgId(),
 valCtx.getSource(),
 valCtx.getSourceType(),
 valCtx.getSourceFullName(),
 valCtx.getAttributeDef(),
 valCtx.getNewValue(),
 null, null);
 }
 }
 else {
 throw new RuntimeException("Rule must be at entity level");
 }
 }
 /**
 * Validate that the initialDate comes before the laterDate.
 */
 private boolean validateValue(Date initialDate, Date laterDate) {
 return (initialDate == null) || (laterDate == null) ||
 (initialDate.compareTo(laterDate) < 0);
 }
 /**
 * Return true if validator is attached to entity object
 * level at runtime.
 */
 private boolean validatorAttachedAtEntityLevel(JboValidatorContext ctx) {
 return ctx.getOldValue() instanceof EntityImpl;
 }
 // NOTE: Getter and Setter Methods omitted
 private String description;
 private String initialDateAttrName;
 private String laterDateAttrName;
}

How to Register and Use a Custom Rule in JDeveloper
After you've created a custom validation rule, you can add it to the project or
application level in the JDeveloper IDE so that other developers can use the rule
declaratively.

Registering a Custom Validator at the Project Level
When you register a custom validation rule at the project level, you can use it within
the project.

Before you begin:

It may be helpful to have an understanding of custom validation rules. For more
information, see Implementing Custom Validation Rules.

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Programmatic Business Rules.

Chapter 12
Implementing Custom Validation Rules

12-23

To register a custom validation rule, you must have already created it, as described in
How to Create a Custom Validation Rule.

To register a custom validation rule in a project containing entity objects:

1. In the Applications window, right-click the project containing the entity objects and
choose Project Properties.

2. In the Project Properties dialog, expand ADF Business Components and select
Registered Rules.

3. On the Registered Rules page, click Add.

4. In the Register Validation Rule dialog, browse to find the validation rule you have
created and click OK.

Registering a Custom Validator at the IDE Level
When you register a custom validation rule at the IDE level for JDeveloper, you can
use it in other projects as well as your current project.

Before you begin:

It may be helpful to have an understanding of custom validation rules. For more
information, see Implementing Custom Validation Rules.

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
Programmatic Business Rules.

To register a custom validation rule, you must have already created it, as described in
How to Create a Custom Validation Rule.

To register a custom validator at the IDE level:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand ADF Business Components and select
Register Rules.

3. From the Register Rules page, you can add a one or more validation rules.

When adding a validation rule, provide the fully qualified name of the validation
rule class, and supply a validation rule name that will appear in JDeveloper's list of
available validators.

Chapter 12
Implementing Custom Validation Rules

12-24

13
Implementing Business Services with
Application Modules

This chapter describes how to create ADF application modules that encapsulate the
data model of an Oracle ADF application derived from a JDBC data source. This
chapter also describes how to combine business service methods with that data model
to implement a complete business service.
This chapter includes the following sections:

• About Application Modules

• Creating and Modifying an Application Module

• Configuring Your Application Module Database Connection

• Defining Nested Application Modules

• Creating an Application Module Diagram for Your Business Service

• Supporting Multipage Units of Work

• Customizing an Application Module with Service Methods

• Customizing Application Module Message Strings

• Publishing Custom Service Methods to UI Clients

• Working Programmatically with an Application Module's Client Interface

• Overriding Built-in Framework Methods

• Calling a Web Service from an Application Module

About Application Modules
An ADF application module encapsulates end-user tasks as logical units of work. User
interface clients use the application module to manage application data.

An application module is the transactional component that UI clients use to work
with application data. The application module is an ADF business component that
encapsulates the business service methods and data model for a logical unit of work
related to an end-user task.

In the early phases of application development, architects and designers often use
UML use case techniques, as well as ADF task flows, to create a high-level
description of the application's planned end-user functionalities. Each high-level, end-
user use case identified during the design phase typically depends on:

• The domain business objects involved. To answer the question, "What core
business data is relevant to the use case?"

• The user-oriented view of business data required. To answer the questions, "What
subset of columns, what filtered set of rows, sorted in what way, grouped in what
way, is needed to support the use case?"

13-1

The identified domain objects involved in each use case help you identify the
required entity objects from your business domain layer. The user-oriented view
of the required business data helps to define the right SQL queries captured as
view objects and to retrieve the data in the exact way needed by the end user. For
best performance, this includes retrieving the minimum required details necessary to
support the use case. In addition to leveraging view object queries and view criteria
to shape the data, you've learned how to use a view link to set up a master-detail
hierarchy in your data model to match exactly the kind of end-user experience you
want to offer the user to accomplish the use case.

The application module is the "work unit" container that includes instances of the
reusable view objects required for the use case in question. These view object
instances are related through metadata to the underlying entity objects in your
reusable business domain layer where the end-user use cases determine the
information being presented or modified.

Application Module Use Cases and Examples
This chapter illustrates the following concepts illustrated in Figure 13-1, and more:

• You expose instances of view objects in an application module to define its data
model.

• You write service methods to encapsulate task-level business logic.

• You expose selected methods on the client interface for UI clients to call.

• You expose selected methods on the service interface for programmatic use in
application integration scenarios.

Note that starting in release 12c, support for EJB Session Bean-enabled
application modules in an ADF Business Components model project has been
deprecated in Oracle JDeveloper. It is no longer possible to create or run EJB
Session Bean-enabled application modules in JDeveloper. As an alternative for
existing EJB Session Bean-enabled application modules, you may want to migrate
application modules services to Web Service-enabled application modules, as
described in Creating SOAP Web Services with Application Modules. This
approach is consistent with the best practice for exposing service methods using
external services.

• You use the application module instance from a pool during a logical transaction
that can span multiple web pages or views.

• Your application module works with a Transaction object that acquires a database
connection and coordinates saving or rolling back changes made to entity objects.

• The related Session object provides runtime information about the current
application user.

Chapter 13
About Application Modules

13-2

Figure 13-1 Application Module Is a Business Service Component
Encapsulating a Unit of Work

Additional Functionality for Application Modules
You may find it helpful to understand other Oracle ADF features before you start
working with application modules. Following are links to other functionality that may be
of interest.

• For details about creating shared application modules, see Sharing Application
Module View Instances.

• For details about exposing ADF Business Components service methods using
external services, see Creating SOAP Web Services with Application Modules.

• For details about how the Data Controls panel exposes the application module to
UI developers, see Using ADF Model in a Fusion Web Application.

• For details about configuring application module instances to improve runtime
performance, see Using State Management in a Fusion Web Application and
Tuning Application Module Pools.

• For details about how to maximize the performance and scalability in the
production environment, see the "Tuning Oracle Application Development
Framework (ADF)" chapter in Tuning Performance.

Chapter 13
About Application Modules

13-3

• For a quick reference to the most common code that you will typically write, use,
and override in your custom application module classes, see Most Commonly
Used ADF Business Components Methods.

• For API documentation related to the oracle.jbo package, see the following
Javadoc reference document:

– Java API Reference for Oracle ADF Model

Creating and Modifying an Application Module
You create a single or multiple ADF application modules depending on the size of the
application in terms of user tasks.

In a large application, you typically create one application module to support each
coarse-grained end-user task. In a smaller-sized application, you may decide that
creating a single application module is adequate to handle the needs of the
complete set of application functionality. Defining Nested Application Modules provides
additional guidance on this subject.

How to Create an Application Module
Any view object you create is a reusable component that can be used in the context of
one or more application modules. Each view object performs the query it encapsulates
in the context of that application module's transaction. The set of view object instances
used by an application module defines its data model, in other words, the set of data
that a client can display and manipulate through a user interface.

To add an application module to your existing ADF Business Components project, use
the Create Application Module wizard, which is available in the New Gallery.

Before you begin:

It may be helpful to have an understanding of application modules. For more
information, see Creating and Modifying an Application Module.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

You will need to complete this task:

Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

To manually create an application module:

1. In the Applications window, right-click the project in which you want to create the
application module and choose New and Application Module.

2. In the Create Application Module wizard, on the Name page, provide a package
name and an application module name. Click Next.

Chapter 13
Creating and Modifying an Application Module

13-4

Note:

In Fusion web applications, the reserved words data, bindings,
security, and adfContext must not be used to name your application
module. Also, avoid using the "_" (underscore) at the beginning of the
name. For more information, see How to Edit an Existing Application
Module.

3. On the Data Model page, include instances of the view objects you have
previously defined and edit the view object instance names to be exactly what
you want clients to see in the Data Controls panel. Then click Next.

4. On the Java page, you can optionally generate the Java files that allow you
to programmatically customize the behavior of the application module or to
expose methods on the application module's client interface that can be called by
clients. To generate an XML-only application module component, leave the fields
unselected and click Finish.

Initially, you may want to generate only the application module XML definition
component. After you complete the wizard, you can subsequently use the
overview editor to generate the application module class files when you require
programmatic access. For details about the programmatic use of the application
module, see Customizing an Application Module with Service Methods.

For more step by step details, see Adding Master-Detail View Object Instances to an
Application Module.

What Happens When You Create an Application Module
When you create an application module, JDeveloper creates the XML document file
that represents its declarative settings and saves it in the directory that corresponds
to the name of its package. For example, in the Summit ADF sample application the
application module named BackOfficeAppModule in the summit.model package has
the XML file ./summit/model/BackOfficeAppModule.xml under the project's source
path. This XML file contains the information needed at runtime to re-create the view
object instances in the application module's data model.

If you are curious to view its contents, you can see the XML file for the application
module by double-clicking the application module node in the Applications window to
open the overview editor. In the editor window, click the Source tab to view the XML
so that you can inspect it. The Structure window shows the structure of the XML file.

When you create business components, JDeveloper automatically creates a data
control that contains all the functionality of the application module. Data controls
are an ADF Model abstraction layer that provides supplemental metadata to describe
the application module's operations and data collections (row sets of view object
instances), including information about the attributes, methods, and types involved.
Developers can then use the representation of the data control displayed in
JDeveloper's Data Controls panel to create UI components that are automatically
bound to the application module. At runtime, the ADF Model layer reads the metadata
describing the data controls and bindings from appropriate XML files and implements
the two-way connection between the user interface and the business service.

For example, the BackOfficeAppModule application module implements the business
service layer of the SummitADF application workspace. Its data model contains

Chapter 13
Creating and Modifying an Application Module

13-5

numerous view object instances, including several master-detail hierarchies. The
view layer of the core Summit ADF sample application consists of JSF pages
whose UI components are bound to data from the view object instances in the
BackOfficeAppModule's data model, and to built-in operations and service methods
on its client interface. For details about how the Data Controls panel exposes the
application module to UI developers, see Exposing Application Modules with ADF
Data Controls.

How to Add a View Object Instance to an Application Module
You can add a view object instance to an application module as you create the
application module with the Create Application Module wizard, or you can add it later
to an already created application module.

For information about using the Create Application Module wizard, see How to Create
an Application Module.

Adding a View Object Instance to an Existing Application Module
You can add a view object instance to an application module that you have already
created. To add a view object instance to an existing application module, and
optionally, customize the view object instance, use the Data Model page of the
overview editor for the application module.

Before you begin:

It may be helpful to have an understanding of application modules. For more
information, see Creating and Modifying an Application Module.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

You will need to complete this task:

Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

To add a view object instance to an existing application module:

1. In the Applications window, double-click the application module for which you want
to define a new view instance.

2. In the overview editor, click the Data Model navigation tab.

3. On the Data Model Components page, expand the View Object Instances
section and, in the Available View Objects list, select the view object you want to
add.

The New View Instance field below the list shows the name that will be used to
identify the next instance of that view object that you add to the data model.

4. With the desired view object selected, shuttle the view object to the Data Model
list.

For example, Figure 13-2 shows the CountryVO view object in the SummitADF
workspace shuttled to the data model, where it appears as CountryVO1.

Chapter 13
Creating and Modifying an Application Module

13-6

Figure 13-2 Data Model Displays Added View Instances

5. To change the name of the newly created view instance, enter a different name in
the New View Instance field.

For example, you might change the view instance name CountryVO1 to Countries,
as shown in Figure 13-3.

Figure 13-3 Overview Editor Displays View Instance Renamed

Adding Master-Detail View Object Instances to an Application Module
You can use the data model that the application module overview editor displays to
create a hierarchy of view instances, based on existing view links that your project
defines. If you have defined view links that establish more than one level of master-
detail hierarchy, then you can proceed to create as many levels of master-detail view
instances as your application supports.

Before you begin:

It may be helpful to have an understanding of application modules. For more
information, see Creating and Modifying an Application Module.

Chapter 13
Creating and Modifying an Application Module

13-7

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

You will need to complete this task:

Create hierarchical relationships between view objects, as described in Working
with Multiple Tables in a Master-Detail Hierarchy.

To add master-detail view object instances to a data model:

1. In the Applications window, double-click the application module for which you want
to define a new master-detail view instances.

2. In the overview editor, click the Data Model navigation tab.

3. On the Data Model Components page, expand the View Object Instances
section and, in the Available View Objects list, select the instance of the view
object that you want to be the actively coordinating master.

The master view object will appear with a plus sign in the list indicating the
available view links for this view object. The view link must exist to define a
master-detail hierarchy.

For example, the SummitADF workspace of the Summit ADF sample application
contains the master view object CustomerVO and detail view object OrdVO related
by the view link OrdCustomerIdFkLink. To view the master-detail hierarchy in
the Available View Objects list, you would expand CountryVO, as shown in
Figure 13-4.

Figure 13-4 Master View Object Selected

4. Shuttle the selected master view object to the Data Model list.

For example, you might shuttle the master view object CustomerVO to the data
model, where it receives the view instance name CustomerVO1, as shown in
Figure 13-5.

Chapter 13
Creating and Modifying an Application Module

13-8

Figure 13-5 Master View Instance Created

5. To change the name of the newly created master view instance, enter a different
name in the View Instance field.

For example, you might change the view instance name CustomerVO1 to
Customers, as shown in Figure 13-6.

Figure 13-6 Overview Editor Displays View Instance Renamed

6. In the Data Model list, leave the newly created master view instance selected so
that it appears highlighted. This will be the target of the detail view instance you
will add. Then locate and select the detail view object beneath the master view
object in the Available View Objects list.

For example, Figure 13-7 shows the detail OrdVO indented beneath master
CustomerVO with the name OrdVO via OrdCustomerIdFkLink. The name identifies
the view link OrdCustomerIdFkLink, which defines the master-detail hierarchy
between CustomerVO and OrdVO. Notice also that OrdVO will have the view instance
name OrdersForCustomers when added to the data model.

Chapter 13
Creating and Modifying an Application Module

13-9

Figure 13-7 Detail View Object Selected

7. To add the detail instance to the previously added master instance, shuttle the
detail view object to the Data Model list below the selected master view instance
and rename the view instance.

For example, you might shuttle OrdVO via OrdCustomerIdFkLink to the data
model beneath the selected master view instance Customers, as shown in
Figure 13-8.

Figure 13-8 Detail View Instance Created and Renamed

8. To add another level of hierarchy, repeat Step 3 through Step 6, but select the
newly added detail in the Data Model list, then shuttle over the new detail, which
itself has a master-detail relationship with the previously added detail instance.

For example, the SummitADF workspace contains the view object ItemVO via
ItemOrdIdFkLink which is a detail of the OrdVO view object, which is itself a detail
of the master view object CustomerVO.

To create the master-detail-detail data model hierarchy, you might shuttle the
detail view object ItemVO via ItemOrdIdFkLink to the data model beneath the
view instance OrdersForCustomers (renamed from OrdVO1) and rename the new
detail view instance ItemsForOrder, as shown in Figure 13-9. In the Data Model
list the view instance Customers (renamed from CustomerVO1) is the master
of OrdersForCustomer (renamed from OrdVO1), which is, in turn, a master of
ItemsForOrder (renamed from ItemVO1).

Chapter 13
Creating and Modifying an Application Module

13-10

Figure 13-9 Master-Detail-Detail Hierarchy Created

Customizing a View Object Instance that You Add to an Application Module
You can optionally customize the view object instance by using the Data Model
Components page of the overview editor for the application module. For example,
you might want to apply a filter to set the controlling attribute for a master-detail view
object relationship.

For example, in the SummitADF workspace of the Summit ADF sample application, the
view instance SalesPeople has been defined for the BackOfficeAppModule application
module and a view criteria FilterByTitleIdVC has been defined for this view instance
that filters the sales staff by a title. Figure 13-10 shows the Edit View Instance dialog
opened for the SalesPeople view instance with the FilterByTitleIdVC selected. The
bind variable TitleIdBind defines a default value of 2, which sets the value of the
TitleId attribute, as the controlling attribute for the SalesPeople view instance. The
controlling attribute, when set by the view criteria filter, provides a way to retrieve only
the view rows for the matching ID.

Chapter 13
Creating and Modifying an Application Module

13-11

Figure 13-10 Customized View Object Instance Using a View Criteria FIlter

Before you begin:

It may be helpful to have an understanding of application modules. For more
information, see Creating and Modifying an Application Module.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

To customize a view object instance that you add to an existing application module:

1. In the Applications window, double-click the application module for which you want
to customize an existing view instance.

2. In the overview editor, click the Data Model navigation tab.

3. On the Data Model Components page, expand the View Object Instances
section and, in the Data Model list, select the view object instance you want to
customize and click the Edit button.

4. In the Edit View Instance dialog, perform any of the following steps, and then click
OK.

Chapter 13
Creating and Modifying an Application Module

13-12

• In the View Criteria group box, select one or more view criteria that you want
to apply to the view object instance. The view criteria will be appended as a
WHERE clause to the instance query. For details about defining view criteria, see
Working with Named View Criteria.

• In the View Criteria group box, for each view criteria that you add to the
Selected list, you may define one or more view criteria as mandatory filters
on the view instance. Select the Required checkbox for the currently selected
view criteria when it should remain applied on the view instance at all times.
Normally, when multiple view criteria are applied to a view instance, one will
be the default view criteria and should remain applied at all times. Mandatory
view criteria, will remain applied on the view criteria list even when the
application programmatically applies view criteria (using applyViewCriteria()
for example).

• In the Bind Parameters Values group box, enter any values that you wish the
instance to use when applying the defined view criteria. For more information
about defining bind variables, see Working with Bind Variables.

What Happens When You Add a View Object Instance to an
Application Module

You add instances of view object components to define the data model of an
application module. Figure 13-11 shows a JDeveloper business components diagram
of a BackOfficeAppModule application module that appears in the SummitADF
workspace of the Summit sample application.

Figure 13-11 Application Module Containing Two Instances of a View Object
Component

The sample application module contains two instances of the CustomerVO view object
component, with member names of Customer and AnotherCustomer to distinguish
them. At runtime, both instances share the same CustomerVO view object component
definition—this ensures that they have the same attribute structure and view object
behavior—however, each might be used independently to retrieve data about different
users. For example, some of the runtime properties, like an additional filtering WHERE
clause or the value of a bind variable, might be different on the two distinct instances.

The following example shows how the BackOfficeAppModule application module
defines its member view object instances in its XML document file.

Chapter 13
Creating and Modifying an Application Module

13-13

<AppModule
 Name="BackOfficeAppModule"
 ...>
 <ViewUsage
 Name="Customer"
 ViewObjectName="oracle.summit.model.appmodule.CustomerVO"/>
 <ViewUsage
 Name="AnotherCustomer"
 ViewObjectName="oracle.summit.model.appmodule.CustomerVO"/>
</AppModule>

How to Edit an Existing Application Module
After you've created a new application module, you can edit any of its settings by
using the Edit Application Module dialog. To launch the editor, in the Applications
window, right-click the application module node and choose Open, or double-click the
application module. By visiting the different pages of the editor, you can adjust the data
model to determine whether or not to reference nested application modules, specify
Java generation settings, client interface methods, runtime instantiation behavior, and
custom properties.

If you edit the name of your application module, choose a name that is not among
the reserved words that Oracle Application Development Framework (Oracle ADF)
defines. In particular, reserved words are not valid for a data control usage name
which JDeveloper automatically assigns based on your application module's name. In
Fusion web applications, these reserved words consist of data, bindings, security,
and adfContext. For example, you should not name an application module data. If
JDeveloper creates a data control usage with an ID that collides with a reserved word,
your application may not reliably access your data control objects at runtime and may
fail with a runtime ClassCastException.

Do not name the application module with an initial underscore (_) character to prevent
a potential name collision with a wider list of reserved words that begin with the
underscore.

Application module names that incorporate a reserved word into their name (or that
change the case of the reserved word) will not conflict. For example, Product_Data,
Product_data, or just Data are all valid application module names since the whole
name does not match the reserved word data.

How to Change the Data Control Name Before You Begin Building
Pages

By default, an application module will appear in the Data Controls panel as an
application module data control named AppModuleNameDataControl. The user
interface designer uses the Data Controls panel to bind data from the application
module to the application's web pages. For example, if the application module is
named SummitAppModule, the Data Controls panel will display the data control with the
name SummitAppModuleDataControl. You can change the default data control name to
make it shorter or to supply a more preferable name.

When the user interface designer works with the data control, they will see the data
control name for your application module in the DataBindings.cpx file in the user
interface project and in each data binding page definition XML file. In addition, you
might refer to the data control name in code when needing to work programmatically

Chapter 13
Creating and Modifying an Application Module

13-14

with the application module service interface. For this reason, if you plan to change the
name of your application module, do this change before you begin building your view
layer.

For complete information about the application module data control, see Using ADF
Model in a Fusion Web Application.

Note:

If you decide to change the application module's data control name after you
have already referenced it in one or more pages, you will need to open the
page definition files and DataBindings.cpx file where it is referenced and
update the old name to the new name manually.

To change the application module data control name:

1. In the Applications window, double-click the application module for which you want
to edit the data control name.

2. In the Properties window, expand the Other section, and enter your preferred data
control name in the Data Control Name field.

What You May Need to Know About Application Module Granularity
A common question related to application modules is, "How big should my application
module be?" In other words, "Should I build one big application module to contain the
entire data model for my enterprise application, or many smaller application modules
that allow me to compartmentalize the application according to functionality?" The
answer depends on your situation.

In general, application modules should be as big as necessary to support the specific
use case you have in mind for them to accomplish. They can be assembled from
finer-grained application module components using a nesting feature, as described
in Defining Nested Application Modules. Since a complex business application is not
really a single use case, a complex business application implemented using Oracle
ADF will typically not be just a single application module.

In actual practice, you may choose any granularity you wish to support the type of
modularization you require. For example, the need to support disparate data sources
or the need to configure separate tuning options are both legitimate cases for creating
multiple application modules. Or, in a small application with one main use case and a
"backend" supporting use case, you might create two application modules. However,
for the sake of simplicity you can combine both use cases, rather than create a second
application module that contains just a couple of view objects.

Other situations may dictate creating more than one root application module. For
example, if you need to support more than one transaction per user session, you
can create multiple application modules. Alternatively, you can work with data control
scope and task flows to manage transactions, as described in Managing Transactions
in Task Flows.

Chapter 13
Creating and Modifying an Application Module

13-15

What You May Need to Know About View Object Components and
View Object Instances

While designing an application module, you use instances of a view object component
to define its data model. Just as the user interface may contain two instances of a
Button component with member names of myButton and anotherButton to distinguish
them, your application module contains two instances of the CustomerVO view object
component, with member names of CustomerList and AnotherCustomerList to
distinguish them.

Configuring Your Application Module Database Connection
JDeveloper allows you to modify JDBC data source definition for each ADF application
module as an alternative to using the default runtime JDBC data source connection for
all application modules.

When you initialize your data model project to use ADF Business Components,
JDeveloper prompts you to supply database connection details. You must specify a
database connection before you can run ADF Business Components wizards and
work with the database's tables and views to create business components. After you
specify the connection details, JDeveloper also creates a Java Database Connectivity
(JDBC) data source that will be used as the default runtime connection for all
application modules created in the current project.

You can use the overview editor for application module configurations (on the
bc4j.xcfg file) to change the JDBC data source definition for each application module
individually. To display the application module configuration overview editor, double-
click the application module in the Applications window and, in the overview editor,
select the Configurations navigation tab. Then, in the Configurations page of the
overview editor, click the configuration hyperlink. In cases where you do not want to
use a data source, you also use the overview editor to replace the connection type for
individual application modules with a JDBC URL connection type.

You can use either the JDBC data source or the JDBC URL connection type to run
the application module in any context where Java can run. Your application is not
restricted to running inside a Java Enterprise Edition (Java EE) application server.
For example, although the Oracle ADF Model Tester is a standalone Java tool and
does not run within the context of a Java EE application server, you can use either
connection type to test your business components in the Oracle ADF Model Tester.
You can use the application module configurations overview editor to select among
both connection types for the existing application resource connections that appear in
the Databases window.

JDeveloper configures the application module by default to use the data source
connection type. A JDBC data source is a vendor-independent encapsulation of a
database server connection. The JDBC data source offers advantages that the JDBC
URL connection type does not. When you define a connection type based on a data
source, you reconfigure the data source without changing the deployed application.
The data source is also centrally defined at the application server level, whereas JDBC
URL connections are not. In cases where a JDBC data source is not viable, at runtime,
ADF Business Components will construct a default JDBC URL based on the data
source connection information.

Chapter 13
Configuring Your Application Module Database Connection

13-16

How to Use a JDBC Data Source Connection Type
The type of connection all default application module configurations use is a JDBC
data source. You define a JDBC data source as part of your application server
configuration information, and then the application module looks up the resource at
runtime using a logical name. When you use the JDBC data source as the connection
type, your application resource connection details may change, and you will not need
to change the deployed application module configuration. For this reason the JDBC
data source is the recommended choice for all application module configurations.
Figure 13-12 shows how the default selection appears in the overview editor for
application module configurations (on the bc4j.xcfg file). To display the application
module configuration overview editor, double-click the application module in the
Applications window and, in the overview editor, select the Configurations navigation
tab. Then, in the Configurations page of the overview editor, click the configuration
hyperlink.

Figure 13-12 JDBC DataSource Connection Type Setting

Note:

The other type of connection type displayed in the Connection Type
dropdown is a JDBC URL connection. This connection type is supported for
legacy applications and should not be used instead of the JDBC data source
connection type.

The following example shows the <resource-ref> tags in the web.xml file of a Fusion
web application. These define two logical data sources named jdbc/Summit_adfDS
and jdbc/Summit_adfCoreDS. The application module configurations overview editor
references this logical connection name after the prefix java:comp/env in the
Datasource Name field. For example, the JDBC data source name for the same
Fusion web application would display the value java:comp/env/jdbc/summit_adfDS
that you can select. Therefore the Datasource Name field is prepopulated with the
JNDI name for all available application resources connection names.

 <!-- In web.xml -->
 <resource-ref>
 <res-ref-name>jdbc/summit_adfDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <resource-ref>
 <res-ref-name>jdbc/summit_adfCoreDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

Chapter 13
Configuring Your Application Module Database Connection

13-17

You can directly edit the Datasource Name field when you want to specify a
connection name for a global data source that is required to run the application
on a target standalone application server. When you deploy to Oracle WebLogic
Server, by default, the application-specific data source is not packaged with the
application and Oracle WebLogic Server is configured to find a global data source
named jdbc/applicationConnectNameDS using the look up java:comp/env/jdbc/
applicationConnectNameDS. Therefore, by following this naming convention, you
enable a single data source connection name to work correctly when running the
application in JDeveloper using an application-specific data source or when running on
the deployed standalone server using a global data source.

Note:

When configuring the ADF application module to access a highly available
database system, such as redundant databases or Oracle Real Application
Clusters (Oracle RAC) as the backend, the data source must be container-
defined. In this scenario, the application module will use a multi data source;
however, from the standpoint of the application module configuration, the
naming convention for the multi data source is the same as it is for an non-
multi data source. This ensures that the correct data source will be used at
runtime. For details about configuring multi data sources for high availability
applications, see Multi Data Sources in the High Availability Guide.

What Happens When You Create an Application Module Database
Connection

When you select connection type in the Edit Configuration dialog, JDeveloper updates
the application module configuration file, bc4j.xcfg in the ./common subdirectory
relative to the application module's XML document. The file defines configurations
for all of the application modules in a single Java package. The bc4j.xcfg file does
not appear in the Applications window. To view the bc4j.xcfg file in JDeveloper,
double-click the application module in the Applications window and, in the overview
editor, select the Configurations navigation tab. Then, in the Configurations page of
the overview editor, click the configuration hyperlink.

For example, if you open the overview editor for application module configurations
(on the bc4j.xcfg file) for the SummitAppModule application module in the ./classes/
oracle/summit/model/services/common directory of the core Summit ADF sample
application's Model project, you will see the named configurations for this application
module.

The configurations defined by the bc4j.xcfg file allow the Fusion web application to
interact with specific, deployed application modules. In addition to the connection type
for the application module, the bc4j.xcfg file contains metadata information about
application module names and it contains the runtime parameters that are configured
for the application module. The application resource database connection details for
the named connection type are defined in the Connections node of the Applications
window and saved in the application's connections.xml file.

The following example displays a sample bc4j.xcfg file from the core Summit ADF
sample application. The configurations SummitAppModuleLocal and SummitAppModule
both reference a data source (named Summit_adfDS) in the JDBCDataSource attribute.

Chapter 13
Configuring Your Application Module Database Connection

13-18

The JDBCDataSource attribute in each configuration specifies the JNDI name for
the application resources connection name in the form of java:comp/env/jdbc/
applicationConnectNameDS, where applicationConnectName is the name of the
application resources database connection defined in JDeveloper (in this case,
Summit_adf). This JNDI naming convention (with the application-specific name
space java:comp/env/jdbc/ and DS appended to the application resources database
connection name) ensures that a deployed Fusion web application will run on Oracle
WebLogic Server using the application's global data source and no changes will
be required. The global data source is typically defined by the application server
administrator using the Oracle WebLogic Server Administration Console.

<BC4JConfig version="11.1" xmlns="http://xmlns.oracle.com/bc4j/configuration">
 <AppModuleConfigBag
ApplicationName="oracle.summit.model.services.SummitAppModule">
 <AppModuleConfig name="SummitAppModuleLocal"
 DeployPlatform="LOCAL"
 JDBCName="summit_adf"
 jbo.project="oracle.summit.model.Model"

java.naming.factory.initial="oracle.jbo.common.JboInitialContextFactory"

ApplicationName="oracle.summit.model.services.SummitAppModule">
 <Database jbo.TypeMapEntries="Java"/>
 <Security
AppModuleJndiName="oracle.summit.model.services.SummitAppModule"/>
 <Custom ns0:JDBCDataSource="java:comp/env/jdbc/summit_adfDS"
 xmlns:ns0="http://xmlns.oracle.com/bc4j/
configuration"/>
 </AppModuleConfig>
 ...
 </AppModuleConfigBag>
</BC4JConfig>

How to Change Your Application Module's Runtime Configuration
In addition to creating the application module XML definition, JDeveloper also adds
a default configuration named appModuleNameLocal to the bc4j.xcfg file in the
subdirectory named common, relative to the directory containing the application module
XML definition file. The bc4j.xcfg file does not appear in the Applications window.
To view the bc4j.xcfg file in JDeveloper, double-click the application module in the
Applications window and, in the overview editor, select the Configurations navigation
tab. Then, in the Configurations page of the overview editor, click the configuration
hyperlink. To view the default settings or to change the application module's runtime
configuration settings, select the Database and Scalablity tab in the overview editor
and make the desired changes.

Before you begin:

It may be helpful to have an understanding of application module database
connections. For more information, see Configuring Your Application Module Database
Connection.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

To manage your application module's configuration:

Chapter 13
Configuring Your Application Module Database Connection

13-19

1. In the Applications window, double-click the application module for which you want
to edit the configuration.

2. In the overview editor, click the Configurations navigation tab.

3. In the Configurations page, click the configuration hyperlink that you want to edit.

The Configuration page may display these three default configurations:

• appModuleNameLocal: One local configuration is automatically defined when
you create the application module. Create a new local configuration, for
example, when you want to change the runtime properties for the application
module for testing purposes.

• appModuleNameShared: The shared application module configuration is present
only when a named instance of a shared application module has been
defined in the Project Properties dialog for the data model project. A shared
application module is one that groups view instances when you want to reuse
lists of static data across the application. For example, you can define a
shared application module to group view instances that access lookup data,
such as a list of countries.

• appModuleNameService (type SI for service interface): The service interface
configuration is present only when the service interface (web service
implementation wrapper) has been defined in the Service Interface page of
the overview editor for the application module. An application module exposed
as a web service allows your application module to participate in a composite
application to provide data access and method calls to web service clients.
The same application module can support interactive web user interfaces
using ADF data controls and web service clients.

4. In the overview editor for application module configurations (on the bc4j.xcfg
file), click the Database and Scalability tab to customize the desired runtime
properties and save the changes.

How to Change the Database Connection for Your Project
When you are developing applications, you may have a number of different users
or schemas that you want to switch between. You can do this by changing the
database connection properties of the project that contains the business components.
The selection you make will automatically update the connection string for each
configuration in your project's bc4j.xcfg file that specifies a JDBC URL type
connection.

Before you begin:

It may be helpful to have an understanding of application module database
connections. For more information, see Configuring Your Application Module Database
Connection.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

To change the connection used by your application module's configuration:

1. In the Applications window, right-click the project that contains the application
module and choose Project Properties.

Chapter 13
Configuring Your Application Module Database Connection

13-20

2. In the Project Properties dialog, select ADF Business Components and from the
Connection dropdown list, choose the desired connection and then click the Edit
icon.

3. In the Edit Database Connection dialog, make the appropriate changes.

4. Click OK.

Defining Nested Application Modules
JDeveloper allows you to create composite ADF application modules by way of
application module nesting. This allows a higher application module to use the inner
application module’s function.

Application modules support the ability to create software components that mimic
the modularity of your use cases, for which your higher-level functions might reuse
a "subfunction" that is common to several business work flows. You can implement
this modularity by defining composite application modules that you assemble using
instances of other application modules. This task is referred to as application
module nesting. That is, an application module can contain (logically) one or more
other application module instances, as well as view object instances. The outermost
containing application module is referred to as the root application module.

Declarative support for defining nested application modules is available through the
overview editor for the application module, as shown in Figure 13-14. The API for
application modules also supports nesting of application modules at runtime.

When you nest an instance of one application module inside another, you aggregate
not only the view object instances in its data model, but also any custom service
methods it defines. This feature of "nesting," or reusing, an instance of one application
module inside of another is an important design aspect of ADF Business Components
for implementing larger-scale, real-world application systems.

Considering that an application module represents an end-user use case or work
flow, you can build application modules that cater to the data required by some
shared, modular use case, and then reuse those application modules inside of
other more complicated application modules that are designed to support a more
complex use case. For example, imagine that after creating the application modules
BackOfficeAM and CustomerSelfServiceAM, you later need to build an application
that uses both of these services as an integral part of a new composite service
application module. Figure 13-13 illustrates what this composite service would look like
in a JDeveloper business components diagram. Notice that an application module like
SummitAppModule can contain a combination of view object instances and application
module instances.

Chapter 13
Defining Nested Application Modules

13-21

Figure 13-13 Application Module Instances Can Be Reused to Assemble
Composite Services

How to Define a Nested Application Module
To specify a composite root application module that nests an instance of an existing
application module, use the overview editor for the application module. All of the
nested component instances (contained by the application module instance) share the
same transaction and entity object caches as the root application module that reuses
an instance of them.

For example, in the SummitADF workspace of the Summit ADF sample application,
the nested application module instances BackOfficeAM and CustomerSelfServiceAM
share the same transaction and entity object caches as the root application module
SummitAppModule.

Tip:

If you leverage nested application modules in your application, be sure to
read How Nested Application Modules Appear in the Data Controls Panel to
avoid common pitfalls when performing data binding involving them.

Before you begin:

It may be helpful to have an understanding of nested application modules. For more
information, see Defining Nested Application Modules.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

You will need to complete this task:

Create the desired application modules, as described in How to Create an
Application Module.

To define a nested application module:

1. In the Applications window, double-click the root application module for which you
want to define a nested application module.

2. In overview editor, click the Data Model navigation tab.

Chapter 13
Defining Nested Application Modules

13-22

3. In the Data Model Components page, expand the Application Module Instances
section and, in the Available list, select the application module that you want to
add to the data model.

The New App Module Instance field below the list shows the name that will be
used to identify the nested application module that you add to the data model.

4. To change the name before adding it, type a different name in the New App
Module Instance field.

5. With the desired application module selected, shuttle the application module to the
Selected list.

For example, in the SummitADF workspace of the Summit ADF sample application,
the SummitAppModule application module defines two nested application module
instances: BackOfficeAM and CustomerSelfServiceAM. Figure 13-14 shows the
application module instances BackOfficeAM and CustomerSelfServiceAM have
been added to the Selected list.

Figure 13-14 Data Model Displays Added Application Module Instances

What You May Need to Know About Root Application Modules Versus
Nested Application Module Usages

At runtime, your application works with a main — or what's known as a root —
application module. Any application module can be used as a root application module;
however, in practice the application modules that are used as root application modules
are the ones that map to more complex end-user use cases, assuming you're not just
building a straightforward CRUD application. When a root application module contains
other nested application modules, they all participate in the root application module's
transaction and share the same database connection and a single set of entity caches.
This sharing is handled for you automatically by the root application module and its
Transaction object.

Additionally, when you construct an application using an ADF bounded task flow, to
declaratively manage the transactional boundaries, Oracle ADF will automatically nest
application modules used by the task flow at runtime. For details about bounded task
flows and transactions, see Managing Transactions in Task Flows.

Chapter 13
Defining Nested Application Modules

13-23

Creating an Application Module Diagram for Your Business
Service

You can create an ADF Application Module UML diagram that can be referenced by
other users. Use the diagram to modify Application Module details.

As you develop the business service's data model, it is often convenient to be able to
visualize it using a UML model. JDeveloper supports easily creating a diagram for your
application module that other developers can use for reference.

You can perform a number of tasks directly on the diagram, such as editing the
application module, controlling display options, filtering methods names, showing
related objects and files, publishing the application, and launching the Oracle ADF
Model Tester.

How to Create an Application Module Diagram
To create an application module diagram, use the Create Business Components
Diagram dialog, which is available in the New Gallery.

Before you begin:

It may be helpful to have an understanding of the UML model diagram For more
information, see Creating an Application Module Diagram for Your Business Service.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

You will need to complete this task:

Create the desired application modules, as described in How to Create an
Application Module.

To create a diagram of your application module:

1. In the Applications window, right-click the data model project in which you want to
create the diagram and choose New and then Business Components Diagram.

2. In the Create Business Components dialog, enter a diagram name and a package
name in which the diagram will be created.

3. Click OK to create the empty diagram and open the diagrammer.

4. In the Applications window, select the desired application module and drop it onto
the diagram surface.

5. Inside the application module diagram, right-click the desired diagram node and
choose Visual Properties and make the desired changes in the Edit Visual
Properties dialog.

6. In the diagram editor, click anywhere outside of the application module diagram to
display the Properties window for the diagram editor and make these changes:

• Set the layout style

• Change the font

• Turn off the grid

Chapter 13
Creating an Application Module Diagram for Your Business Service

13-24

After you complete these steps, the diagram looks similar to the diagram shown in
Figure 13-15.

Figure 13-15 Partial UML Diagram of Application Module

What Happens When You Create an Application Module Diagram
When you create a business components diagram, JDeveloper creates
a .adfbc_diagram file to represents the diagram in a subdirectory of the project's
model path that matches the package name in which the diagram resides.

By default, the Applications window unifies the display of the project content's paths
so that ADF components and Java files in the source path appear in the same
package tree as the UML model artifacts in the project model path. You can use the
Applications Window Options > Directory View toolbar option in the Applications
window to switch between the unified directory view and a more distinct directory path
view of the project content.

How to Use the Diagram to Edit the Application Module
The UML diagram of business components is not just a static picture that reflects the
point in time when you dropped the application module onto the diagram. Rather, it is
a UML-based rendering of the current component definitions, so it will always reflect
the current state of affairs. The UML diagram is both a visualization aid and a visual
navigation and editing tool.

You can bring up the overview editor for any application module in a diagram by
choosing Properties from the context menu (or by double-clicking the application
module).

You can also perform some application module editing tasks directly on the diagram,
tasks such as renaming view object instances, dropping view object definitions from
the Applications window onto the data model to create a new view object instance, and
removing view object instances by pressing the Delete key.

Chapter 13
Creating an Application Module Diagram for Your Business Service

13-25

Note:

Deleting components from the diagram only removes their visual
representation on the diagram surface. The components and classes remain
on the file system and in the Applications window.

How to Control Diagram Display Options
After you display the application module in the diagram, you can use the Edit Visual
Properties dialog to control its display options. To display the dialog for the diagram, in
the diagram, right-click the application module node and choose Visual Properties.

In the Display page, toggle properties like the following:

• Show Package — to display the package name

• Show Methods — to display service methods

• Show Stereotype — to display the type of object (for example "<<application
module>>")

• Show Usages — to display all usages by other application modules in the current
project

In the Methods page, consider changing the following settings depending on the
amount of detail you want to provide in the diagram:

• Show Visibility (public, private, etc.)

• Show Return Type of Method

• Show Static Methods

By default, all operations of the application module are fully displayed, as shown by
the Edit Visual Properties dialog settings in Figure 13-16.

Figure 13-16 Edit Visual Properties Dialog with Default Diagram Editor Options

Chapter 13
Creating an Application Module Diagram for Your Business Service

13-26

On the context menu of the diagram, you can also select to View As:

• Compact — to show only the icon and the name

• Symbolic — to show service operations

• Expanded — to show operations and data model (default)

How to Filter Method Names Displayed in the Diagram
Initially, if you show the methods for the application module, the diagram displays all
the methods. Any method it recognizes as an overridden framework method displays
in the <<Framework>> operations category. The rest display in the <<Business>>
methods category.

The Exclude Method Filters setting in the Methods page of the Edit Visual Properties
dialog is a regular expression that you can use to filter out methods you don't want to
display on the diagram. For example, by setting Exclude Method Filters to:

findLoggedInUser.*|retrieveOrder.*|get.*

you can filter out all of the following application module methods:

• findLoggedInUserByEmail

• retrieveOrderById

• All the generated view object getter methods

How to Show Related Objects and Implementation Files in the
Diagram

After selecting the application module on the diagram — or any set of individual view
object instances in its data model — you can choose Show > Related Elements from
the context menu to display related component definitions on the diagram. In a similar
fashion, choosing Show > Implementation Files will include the files that implement
the application module on the diagram. You can repeat these options on the additional
diagram elements that appear until the diagram includes the level of detail you want to
convey.

Figure 13-17 illustrates how the diagram displays the implementation files for an
application module. You will see the related elements for the application module's
implementation class (AppModuleImpl). The diagram also draws an additional
dependency line between the application module and the implementation class. If you
have cast the application module instance to a specific custom interface, the diagram
will also show that.

Chapter 13
Creating an Application Module Diagram for Your Business Service

13-27

Figure 13-17 Adding Detail to a Diagram Using Show Related Elements and
Show Implementation Files

How to Publish the Application Module Diagram
To publish the diagram to PNG, JPG, SVG, or compressed SVG format, choose Publish
Diagram from the context menu on the diagram surface.

How to Test the Application Module from the Diagram
To launch the Oracle ADF Model Tester for an application module in the diagram,
choose Run from the context menu.

Supporting Multipage Units of Work
Use ADF application module pooling to implement scalable, fault-tolerant applications.

While interacting with your Fusion web application, end users might:

• Visit the same pages multiple times, expecting fast response times

• Perform a logical unit of work that requires visiting many different pages to
complete

• Need to perform a partial "rollback" of a pending set of changes they've made but
haven't saved yet.

• Unwittingly be the victim of an application server failure in a server farm before
saving pending changes

The application module pooling and state management features simplify
implementing scalable, well-performing applications to address these requirements.

Chapter 13
Supporting Multipage Units of Work

13-28

Note:

ADF bounded task flows can represent a transactional unit of work. You
can specify options on the task flow to determine how to handle the
transaction. For details about the declarative capabilities of ADF bounded
task flows, see Managing Transactions in Task Flows.

How to Simulate State Management in the Oracle ADF Model Tester
To simulate what the state management functionality does, you can launch two
instances of Oracle ADF Model Tester on an application module.

Before you begin:

It may be helpful to have an understanding of state management. For more
information, see Supporting Multipage Units of Work.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

To simulate transaction state passivation using the Oracle ADF Model Tester:

1. Run the Oracle ADF Model Tester and double-click a view object instance to query
its data.

2. Make a note of the current values of several attributes for a few rows.

3. Update those rows to have a different value for those attributes, but do not commit
the changes.

4. Choose File > Save Transaction State from the Oracle ADF Model Tester main
menu.

A Passivated Transaction State dialog appears, indicating a numerical transaction
ID number. Make a note of this number.

5. Exit the Oracle ADF Model Tester completely.

6. Restart the Oracle ADF Model Tester and double-click the same view object
instance to query its data.

7. Notice that the data is not changed. The queried data from the data reflects the
current state of the database without your changes.

8. Choose File > Restore Transaction State from the Oracle ADF Model Tester
main menu, and enter the transaction ID you noted in Step 4.

At this point, you'll see that your pending changes are reflected again in the rows you
modified. If you commit the transaction now, your changes are permanently saved to
the database.

What Happens at Runtime: How the Application Uses Application
Module Pooling and State Management

Applications you build that leverage an application module as their business service
take advantage of an automatic application module pooling feature. This facility

Chapter 13
Supporting Multipage Units of Work

13-29

manages a configurable set of application module instances that grows and shrinks
as the end-user load on your application changes during the day. Due to the natural
"think time" inherent in the end user's interaction with your application user interface,
the number of application module instances in the pool can be smaller than the overall
number of active users using the system.

As shown in Figure 13-18, as a given end user visits multiple pages in your application
to accomplish a logical task, with each page request an application module instance
in the pool is acquired automatically from the pool for the lifetime of that one request.
At the end of the request, the instance is automatically returned to the pool for use by
another user session. In order to protect the end user's work against application server
failure, the application module supports the ability to freeze the set of pending changes
in its entity caches to a persistent store by saving an XML snapshot describing the
change set. For scalability reasons, this state snapshot is typically saved in a state
management schema that is a different database schema than the one containing the
application data.

Figure 13-18 Using Pooled Application Modules Throughout a Multipage, Logical Unit of Work

The pooling algorithm affords a tunable optimization whereby a certain number of
application module instances will attempt to stay "sticky" to the last user session that
returned them to the pool. The optimization is not a guarantee, but when a user can
benefit from the optimization, they continue to work with the same application module
instance from the pool as long as system load allows. When load is too high, the
pooling algorithm uses any available instance in the pool to service the user's request
and the frozen snapshot of their logical unit of work is reconstituted from the persistent
store to allow the new instance of the application module to continue where the last
one left off. The end user continues to work in this way until they commit or roll back
their changes.

Using these facilities, the application module delivers the productivity of a stateful
paradigm that can easily handle multipage work flows, in an architecture that delivers
the runtime performance near that of a completely stateless application. You will learn
more about these application module features in Using State Management in a Fusion
Web Application and about how to tune them in Tuning Application Module Pools.

Chapter 13
Supporting Multipage Units of Work

13-30

Customizing an Application Module with Service Methods
Any external client code which is a logical aspect of business functionality
implementation can be accommodated in an ADF Application Module’s custom Java
class.

An application module can expose its data model of view object instances to
clients without requiring any custom Java code. This allows client code to use
the ApplicationModule, ViewObject, RowSet, and Row interfaces in the oracle.jbo
package to work directly with any view object in the data model. However, just
because you can programmatically manipulate view objects any way you want to in
client code doesn't mean that doing so is always a best practice.

Whenever the programmatic code that manipulates view objects is a logical aspect
of implementing your complete business service functionality, you should encapsulate
the details by writing a custom method in your application module's Java class. This
includes code that:

• Configures view object properties to query the correct data to display

• Iterates over view object rows to return an aggregate calculation

• Performs any kind of multistep procedural logic with one or more view objects

By centralizing these implementation details in your application module, you gain the
following benefits:

• You make the intent of your code more clear to clients.

• You allow multiple client pages to easily call the same code if needed.

• You simplify regression-testing of your complete business service functionality.

• You keep the option open to improve your implementation without affecting clients.

• You enable declarative invocation of logical business functionality in your pages.

How to Generate a Custom Class for an Application Module
To add a custom service method to your application module, you must first enable a
custom Java class for it. If you have configured your IDE-level Business Components
Java generation preferences to automatically generate an application module class,
a custom class will be present. As Figure 13-19 shows, if you're not sure whether
your application module has a custom Java class, open the overview editor for the
application module node in the Applications window. The Java Classes page of the
editor displays the complete list of classes generated for the application module in the
project. If the file exists because someone created it already, then the Java Classes
page will display a linked file name identified as the Application Module Class. To
open an existing file in the source editor, click the corresponding file name link.

Figure 13-19 Application Module's Custom Java Class in Overview Editor

Chapter 13
Customizing an Application Module with Service Methods

13-31

If no Java class exists in your project, you can generate one using the Java Classes
page of the overview editor for the application module.

Before you begin:

It may be helpful to have an understanding of application module service methods. For
more information, see Customizing an Application Module with Service Methods.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

You will need to complete this task:

Create the desired application modules, as described in How to Create an
Application Module.

To generate a Java file for your application module class:

1. In the Applications window, double-click the application module.

2. In the overview editor, click the Java navigation tab and then click the Edit java
options button.

3. In the Select Java Options dialog, select Generate Application Module Class.

4. Click OK.

The new .java file will appear in the Java Classes page.

What Happens When You Generate a Custom Class for an Application
Module

When you generate a custom class for an application module, JDeveloper creates the
file in the same directory as the component's XML document file. The default name for
its custom Java file will be AppModuleNameImpl.java.

The Java generation option choices you made for the application module persist on
the Java Classes page on subsequent visits to the overview editor for the application
module. Just as with the XML definition file, JDeveloper keeps the generated code in
your custom Java classes up to date with any changes you make in the editor. If later
you decide you do not require a custom Java file, from the Java Classes page open
the Select Java Options dialog and deselect Generate Application Module Class to
remove the custom Java file from the project.

What You May Need to Know About Default Code Generation
By default, the application module Java class will look similar to what you see in the
following example when you've first enabled it. Of interest, it contains Getter methods
for each view object instance in the data model.

package oracle.summit.model.services;

import oracle.jbo.server.ApplicationModuleImpl;
// ---
// --- File generated by ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---

Chapter 13
Customizing an Application Module with Service Methods

13-32

public class AppModuleImpl extends ApplicationModuleImpl {
 /** This is the default constructor (do not remove) */
 public AppModuleImpl() { }

 /** Container's getter for YourViewObjectInstance1 */
 public YourViewObjectImpl getYourViewObjectInstance1() {
 return (YourViewObjectImpl)findViewObject("YourViewObjectInstance1");
 }

 // ... Additional ViewObjectImpl getters for each view object instance

 // ... ViewLink getters for view link instances here
}

As shown in Figure 13-20, your application module class extends the base ADF
ApplicationModuleImpl class to inherit all the default behavior before adding your
custom code.

Figure 13-20 Your Custom Application Module Class Extends
ApplicationModuleImpl

How to Add a Custom Service Method to an Application Module
To add a custom service method to an application module, simply navigate to the
application module's custom class and enter the Java code for a new method into the
application module's Java implementation class. Use the following guidelines to decide
on the appropriate visibility for the method:

• If you will use the method only inside this component's implementation as a helper
method, make the method private.

• If you want to allow eventual subclasses of your application module to be able to
invoke or override the method, make it protected.

• If you need clients to be able to invoke it, it must be public.

Note:

The application module examples in this chapter use strongly typed, custom
entity object classes. For details about creating these entity classes, see
Creating a Business Domain Layer Using Entity Objects.

Chapter 13
Customizing an Application Module with Service Methods

13-33

The following example shows a private retrieveOrderById() helper method in the
AppModuleImpl.java class for the AppModule application module. It uses the static
getDefinitionObject() method of the OrdEOImpl entity object class to access its
related entity definition, it uses the createPrimaryKey() method on the entity object
class to create an appropriate Key object to look up the order, and then it uses the
findByPrimaryKey() method on the entity definition to find the entity row in the entity
cache. It returns an instance of the strongly typed OrdersImpl class, the custom Java
class for the Orders entity object.

// In summit.model.appmodule.service.AppModuleImpl class
/*
 * Helper method to return a Order by Id
 */
private OrdersImpl retrieveOrderById(long orderId) {
 EntityDefImpl orderDef = OrdersImpl.getDefinitionObject();
 Key orderKey = OrdersImpl.createPrimaryKey(new DBSequence(orderId));
 return (OrdersImpl)orderDef.findByPrimaryKey(getDBTransaction(), orderKey);
}

The following example shows a public findOrderAndCustomer() method that allows
the caller to pass in an ID of an order to be created. It uses the getCustomer() method
of the OrdersImpl entity object class to access its related entity definition.

/*
 * Create a new Customer and Return its new id
 */
public String findOrderAndCustomer(long orderId) {
 OrdersImpl order = retrieveOrderById(orderId);
 if (order != null) {
 CustomerImpl cust = order.getCustomer();
 if (cust != null) {
 return "Customer: " + cust.getName() + ", Location: " + cust.getCity();
 }
 else {
 return "Unassigned";
 }
 }
 else {
 return null;
 }
}

How to Test the Custom Application Module Using a Static Main
Method

When you are ready to test the methods of your custom application module, you can
use JDeveloper to generate JUnit test cases. With JUnit, you can use any of the
programmatic APIs available in the oracle.jbo package to work with the application
module and invoke the custom methods. For details about using JUnit with ADF
Business Components, see Regression Testing with JUnit.

As an alternative to JUnit test cases, a common technique to test your custom
application module methods is to write a simple test case. For example, you could
build the testing code into an object and include that code in a static main() method.
The following example shows a sample main() method you could add to your custom
application module class to test the sample methods you will write. You'll make use

Chapter 13
Customizing an Application Module with Service Methods

13-34

of a Configuration object (see How to Create a Command-Line Java Test Client) to
instantiate and work with the application module for testing.

Note:

The fact that this Configuration object resides in the oracle.jbo.client
package suggests that it is used for accessing an application module
as an application client. Because a main() method is a kind of
programmatic, command-line client, so this is an acceptable practice.
Furthermore, even though you typically would not cast the return value
of createRootApplicationModule() directly to an application module's
implementation class, it is legal to do so in this one situation since despite
being a client to the application module, the main() method's code resides
right inside the application module implementation class itself.

A glance through the code in the following example shows that it exercises the
methods created in the previous examples to:

1. Retrieve the total for order 101.

2. Retrieve the name of the customer for order 101.

3. Set the status of order 101 to the value "Y".

package oracle.summit.model.appmodule.service;

import oracle.jbo.ApplicationModule;
import oracle.jbo.JboException;
import oracle.jbo.client.Configuration;

public class TestAM {
 public TestAM() {
 super();
 }

 /*
 * Testing method
 */

 public static void main(String[] args) {
 String amDef = "oracle.summit.model.appmodule.service.AppModule";
 String config = "AppModuleLocal";
 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef,config);
 /*
 * NOTE: This cast to use the AppModuleImpl class is OK since this
 * code is inside a business tier file and not in a
 * client class that is accessing the business tier from "outside".
 */
 AppModuleImpl service = (AppModuleImpl)am;

 String customerName = service.findOrderAndCustomer(101);
 System.out.println("Customer for Order # 101 = " + customerName);
 try {
 service.updateOrderStatus(101,"Y");
 }
 catch (JboException ex) {

Chapter 13
Customizing an Application Module with Service Methods

13-35

 System.out.println("ERROR: "+ex.getMessage());
 }
 Configuration.releaseRootApplicationModule(am,true);
 }
}

Running the custom application module class calls the main() method in the above
example and produces the following output:

anonymous
Customer for Order # 101 = Customer: Kam's Sporting Goods, Location: Hong Kong

Note:

For an explanation of how you can use the client application to invoke the
custom service methods that you create in your custom application module,
see Publishing Custom Service Methods to UI Clients.

What You May Need to Know About Programmatic Row Set Iteration
Any time your application logic accesses a row set to perform programmatic iteration,
you should use a secondary row set iterator when working with view object instances
in an application module's data model, or view link accessor row sets of these view
object instances, since they may be bound to user interface components. To create a
secondary iterator, use the createRowSetIterator() method on the row set you are
working with. When you are done using it, call the closeRowSetIterator() method
on the row set to remove the secondary iterator from memory. The following example
shows a typical application module custom method that correctly uses a secondary
row set iterator for programmatic iteration, because the CustomerView1 view object
instance in its data model may be bound to a user interface (either now or at a later
time).

// Custom method in an application module implementation class
public void doSomeCustomProcessing() {
 ViewObject vo = getCustomerView1();
 // create secondary row set iterator with system-assigned name
 RowSetIterator iter = vo.createRowSetIterator(null);
 while (iter.hasNext()) {
 Row r = iter.next();
 // Do something with the current row.
 Integer custId = (Integer)r.getAttribute("Id");
 String name = (String)r.getAttribute("Name");
 System.out.println(custId + " " + name);
 }
 // close secondary row set iterator
 iter.closeRowSetIterator();
}

Chapter 13
Customizing an Application Module with Service Methods

13-36

Note:

The same recommendation holds for custom code in a view object's
implementation class that iterates its own default row set using that row set's
default row set iterator.

There are two important reasons to follow this recommendation. Failing to do so can
lead to confusion for the end user when the current row unexpectedly changes or it
can introduce subtle business logic errors because the first or last row, or both rows
get skipped.

• Confusing the end user by changing the current row unexpectedly

The iterator bindings determine what row the end-user sees as the current row in
the row set. If your own programmatic logic iterates through the row set using the
same default row set iterator that the iterator binding uses, you may inadvertently
change the current row the user has selected, leaving the user confused.

• Introducing subtle business logic errors by inadvertently skipping the first or last
row

Iterator bindings force their row set iterator to be on a valid row to guarantee
that UI components display data when the row set is not empty. This has the
side-effect of preventing your custom logic from navigating to the slot either before
the first row or to the slot after the last row (when it is using the same row
set iterator as an iterator binding). In concrete terms, this means that a typical
while (iter.hasNext()) row set iteration loop will either be skipped or start by
processing the second row instead of the first as shown in the following example.

// Reset the default row set iterator (iter) to the slot before the first row
iter.reset();
// If an iterator binding is bound to the same default row set iterator,
// then it has already forced it to navigate to the first row here instead
// of being on the slot before the first row.
//
// If the row set iterator has only one row, the following will then return false
while (iter.hasNext()) {
 // If the row set has more than one row, the first time through the loop
 // this call to next() will return the second row rather than the first
 // row as expected.
 Row curRow = iter.next();
 // Do something with current row
}

Customizing Application Module Message Strings
You can add a resource bundle file for an ADF Application Module. You use this
resource bundle file or .properties file to hold custom message strings.

The ADF application module does not normally require a resource bundle of its own.
However, you can create a custom message string file (.properties) that you can use
to add your custom message strings.

The .properties file you create can reference attribute properties by their fully
qualified package name and custom method exception messages. For example, you
might define message keys and strings as follows:

Chapter 13
Customizing Application Module Message Strings

13-37

test.Order.Orderno_LABEL=Order Number
INVALID=You have called the method foo in an invalid way.

If your resource bundle defines a message for a method exception message, the
custom method should appear in the application module client interface, as described
in How to Publish a Custom Method on the Application Module's Client Interface.

For example, if you defined a message for the method foo() to replace the exception
message INVALID, your interface might define this method to invoke the message from
the resource bundle as:

public void foo() {
 ResourceBundleDef r = getResourceBundleDef();
 throw new JboException(r,"INVALID",null);
}

How to Add a Resource Bundle File for the Application Module
When you want to create a .properties file to contain custom message strings, you
use the resource bundle option on the Resource Bundle page of the Project Properties
dialog and select the option One Bundle Per File. By default JDeveloper sets the
option to One Bundle Per Project, which produces a single .properties file for the
project.

Before you begin:

It may be helpful to have an understanding of how projects use resource bundles. For
more information, see Customizing Application Module Message Strings.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

You will need to complete these tasks:

1. Create the desired application module, as described in How to Create an
Application Module.

2. Set the project properties for the data model project to generate one bundle per
file, as described in Working with Resource Bundles.

To generate the resource bundle for the application module:

1. In the Applications window, double-click the application module for which you want
to generate the resource bundle.

2. In the overview editor, click the General navigation tab and enter any display
name.

Adding a display name for the application module will generate the .properties
file with a message key for the display name.

3. Save the file.

Chapter 13
Customizing Application Module Message Strings

13-38

What Happens When You Add a Resource Bundle to an Application
Module

When you generate a resource bundle for an application module, JDeveloper creates
the .properties file in the same directory as the component's XML document file. The
default name for its custom Java file will be AppModuleNameMsgBundle.properties.

The following example shows the ResourceBundle element in the application module
XML document that references the .properties file.

<AppModule
 ...
 <ResourceBundle>
 <PropertiesBundle
 PropertiesFile=
 "oracle.summit.model.services.common.BackOfficeAppModuleMsgBundle"/>
 </ResourceBundle>
</AppModule>

Publishing Custom Service Methods to UI Clients
For the user interface to invoke a public custom method in the ADF Application Module
class, include this method on the Application Module’s UI client interface.

When you add a public custom method to your application module class, if you want
your application's UI to be able to invoke it, you need to include the method on the
application module's UI client interface.

How to Publish a Custom Method on the Application Module's Client
Interface

To include a public method from your application module's custom Java class on the
client interface, use the Java Classes page of the overview editor for the application
module.

Before you begin:

It may be helpful to have an understanding of the purpose of the client interface. For
more information, see Publishing Custom Service Methods to UI Clients.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

You will need to complete this task:

Create the desired application modules, as described in How to Create an
Application Module.

To publish a custom method on the client interface:

1. In the Applications window, double-click the application module for which you want
to define the client interface.

Chapter 13
Publishing Custom Service Methods to UI Clients

13-39

2. In the overview editor, click the Java navigation tab and in the Client Interface
section, click the Edit application module client interface button.

3. In the Edit Client Interface dialog, select one or more desired methods from the
Available list and click the Add button to shuttle them into the Selected list.

4. Click OK.

The new methods will appear in the Client Interface section of the Java Classes
page.

Figure 13-21 shows multiple public methods added to the client interface.

Figure 13-21 Public Methods Added to an Application Module's Client Interface

What Happens When You Publish Custom Service Methods
When you publish custom service methods on the client interface, as shown
in Figure 13-22, JDeveloper creates a Java interface with the same name as
the application module in the common subpackage of the package in which your
application module resides. For an application module named AppModule in the
summit.model package, this interface will be named AppModule and reside in the
summit.model.common package. The interface extends the base ApplicationModule
interface in the oracle.jbo package, reflecting that a client can access all of the base
functionality that your application module inherits from the ApplicationModuleImpl
class.

Chapter 13
Publishing Custom Service Methods to UI Clients

13-40

Figure 13-22 Custom Client Interface Extends the Base ApplicationModule
Interface

As shown in the following example, the AppModule interface includes the method
signatures of all of the methods you've selected to be on the client interface of your
application module.

package summit.model.appmodule.service.common;
import oracle.jbo.ApplicationModule;
// ---
// --- File generated by ADF Business Components Design Time.
// ---
public interface AppModule extends ApplicationModule {
 String findOrderAndCustomer(long orderId);
 void updateOrderStatus(long orderId, String newStatus);
 String findOrderTotal (long orderId);
 long createCustomer(String name, String city, Integer countryId);
}

Note:

After adding new custom methods to the client interface, if your new custom
methods do not appear to be available when you use JDeveloper's code
insight context-sensitive statement completion, try recompiling the generated
client interface. To do this, select the application module in the Applications
window, select the source file for the interface of the same name in the
Structure window, and choose Rebuild from the context menu. Consider this
tip for new custom methods added to view objects and view rows as well.

How to Generate Client Interfaces for View Objects and View Rows
In addition to generating a client interface for your application module, it is also
possible to generate strongly typed client interfaces for working with the other key
client objects that you can customize. For example, you can add custom methods to
the view object client interface and the view row client interface, respectively.

Before you begin:

Chapter 13
Publishing Custom Service Methods to UI Clients

13-41

It may be helpful to have an understanding of the purpose of the client interface. For
more information, see Publishing Custom Service Methods to UI Clients.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

You will need to complete this task:

Create the desired view object, as described in Populating View Object Rows from
a Single Database Table.

To publish a custom method on the client interface for view objects:

1. In the Applications window, double-click the view object for which you want to
define the client interface.

2. In the overview editor, click the Java navigation tab and in the Client Interface
section, click the Edit java options button.

3. In the Select Java Options dialog, click the Generate View Object Class and click
the Generate View Row Class. Click OK.

4. In the overview editor, expand the Client Interface section and then click the Edit
view object client interface button.

5. In the Edit Client Interface dialog, select one or more desired methods from the
Available list and click the Add button to shuttle them into the Selected list.

6. In the overview editor, expand the Client Row Interface section and then click the
Edit view object client row interface button.

7. In the Edit Client Interface dialog, select one or more desired methods from the
Available list and click the Add button to shuttle them into the Selected list.

8. Click OK.

The new methods will appear in the Java Classes page.

For example, if for the CustomerView view object in the summit.model.views package
you were to enable the generation of a custom view object Java class and add one or
more custom methods to the view object client interface, JDeveloper would generate
the CustomerViewImpl class and CustomerView interface, as shown in Figure 13-23.
As with the application module custom interface, notice that it gets generated in the
common subpackage.

Figure 13-23 Custom View Object Interface Extends the Base ViewObject
Interface

Chapter 13
Publishing Custom Service Methods to UI Clients

13-42

Likewise, if for the same view object you were to enable the generation of a
custom view row Java class and add one or more custom methods to the view
row client interface, JDeveloper would generate the CustomerViewRowImpl class and
CustomerViewRow interface, as shown in Figure 13-24.

Figure 13-24 Custom View Row Interface Extends the Base Row Interface

How to Test Custom Service Methods Using the Oracle ADF Model
Tester

You can test the methods of your custom application module in the Oracle ADF Model
Tester after you have published them on the client interface, as described in Publishing
Custom Service Methods to UI Clients.

Before you begin:

It may be helpful to have an understanding of the purpose of the client interface. For
more information, see Publishing Custom Service Methods to UI Clients.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

You will need to complete this task:

Create the desired application modules, as described in How to Create an
Application Module.

To test the service methods that you have published:

1. In the Applications window, right-click the application module and choose Run.

Alternatively, choose Debug when you want to run the application in the Oracle
ADF Model Tester with debugging enabled. The debugger process panel opens in
the Log window and the various debugger windows. When debugging using the

Chapter 13
Publishing Custom Service Methods to UI Clients

13-43

Oracle ADF Model Tester, you can use these windows to view status message and
exceptions, step in and out of source code, and manage breakpoints.

For information about receiving diagnostic messages specific to ADF Business
Component debugging, see How to Enable ADF Business Components Debug
Diagnostics.

2. To open the method testing panel for a method defined by a client interface, do
one of the following:

• In the data model tree, select the application module node and in the main
menu choose View and then Operations when you want to execute a method
you published for the application module client interface. You can also double-
click the application module node to display the method testing panel.

• In the data model tree, select the desired view object node and in the main
menu choose View and then Operations when you want to execute a method
you published on the client interface for a view object. You can also right-click
the view object node and choose Operations.

3. To open the method testing panel for a method defined by a client row interface for
a view object row, expand the data model tree, right-click the desired view object
node and choose Show Table. Then in the overview panel for the view instance,
select the desired row, and in the main menu, choose View and then Operations.

Do not select a master view instance in the data model tree since view row
operations are not permitted on master view objects. Always select a detail view
instance or a view instance that is not specified in a master-detail hierarchy, as
shown in Figure 13-25.

Tip:

In the case of a detail view instance, you can open the master view
instance to navigate to the detail with the desired row. The Oracle ADF
Model Tester automatically synchronizes the data displayed in the open
overview panel with the master view instance that you navigate to.

Chapter 13
Publishing Custom Service Methods to UI Clients

13-44

Figure 13-25 Menu Selection for View Row Operations in the Oracle ADF
Model Tester

4. In the method panel, select the desired service method from the dropdown list,
enter values to pass as method parameters, and click Execute.

Notice that the method testing panel displays the parameter names to help you
identify where to enter the values to pass. This is particularly useful when the
method signature defines multiple parameters of the same data type.

You can view the return value (if any) and test result. The result displayed in
the Oracle ADF Model Tester will indicate whether or not the method executed
successfully.

What You May Need to Know About Method Signatures on the Client
Interface

You can include any custom method in the client interface that obeys these
implementation rules:

• If the method has a non-void return type, the type must be serializable.

• If the method accepts any parameters, all their types must be serializable.

• If the method signature includes a throws clause, the exception must be an
instance of JboException in the oracle.jbo package.

In other words, all the types in its method signature must implement
the java.io.Serializable interface, and any checked exceptions must be
JboException or its subclass. Your method can throw any unchecked exception —
java.lang.RuntimeException or a subclass of it — without disqualifying the method
from appearing on the application module's client interface.

Note that method signatures of type java.util.List are allowed as long
as the implementing class for the interface is serializable. For example,
java.util.ArrayList and java.util.LinkedList are both serializable implementing

Chapter 13
Publishing Custom Service Methods to UI Clients

13-45

classes. The same requirement applies to element types within the collection. The
ADF Business Components runtime will produce an error if you instantiate a class that
implements the interface yet does not implement the java.io.Serializable interface.

Note:

If the method you've added to the application module class doesn't appear
in the Available list, first verify that it doesn't violate any of the method
implementation rules. If it seems like it should be a legal method, try
recompiling the application module class before visiting the overview editor
for the application module again.

What You May Need to Know About Passing Information from the
Data Model

The private implementation of an application module custom method can easily refer
to any view object instance in the data model using the generated accessor methods.
By calling the getCurrentRow() method on any view object, it can access the same
current row for any view object that the client user interface sees as the current row.
As a result, while writing application module business service methods, you may not
need to pass in parameters from the client. This is true if you would be passing
in values only from the current rows of other view object instances in the same
application module's data model.

For example, the custom application module method in the following
example accepts no parameters. Internally, the createOrderItem() method calls
getGlobals().getCurrentRow() to access the current row of the Globals view object
instance. Then it uses the strongly typed accessor methods on the row to access the
values of the Description and LineItemId attributes to set them as the values of
corresponding attributes in a newly created OrderItem entity object row.

// In AppModuleImpl.java, createOrderItem() method
GlobalsRowImpl globalsRow = (GlobalsRowImpl)getGlobals().getCurrentRow();
newOrder.setDescription(globalsRow.getDescription());
newOrder.setLineItemId(globalsRow.getLineItemId());

Working Programmatically with an Application Module's
Client Interface

The ADF Business Components application module client interface lets you work
programmatically with application modules.

After publishing methods on your application module's client interface, you can invoke
those methods from a client.

Chapter 13
Working Programmatically with an Application Module's Client Interface

13-46

How to Work Programmatically with an Application Module's Client
Interface

To work programmatically with an application module's client interface, do the
following:

• Cast ApplicationModule to the more specific client interface.

• Call any method on the interface.

Note:

For simplicity, this section focuses on working only with the custom
application module interface; however, the same downcasting approach
works on the client to use a ViewObject interface as a view object interface
like Customers or a Row interface as a custom view row interface like
CustomersRow.

The following example illustrates a TestClientEntity class that puts these two steps
into practice. You could also use the main() method of this class to test application
module methods, as described in How to Test the Custom Application Module Using
a Static Main Method. Here you use it to call all of the same methods from the client
using the AppModule client interface.

Note:

If you work with your application module using the default
ApplicationModule interface in the oracle.jbo package, you won't have
access to your custom methods. Make sure to cast the application module
instance to your more specific custom interface like the AppModule interface
in this example.

The basic logic of the following example follows these steps:

1. Retrieve the total for order 1011.

2. Retrieve the name of the customer for order 1011.

3. Set the status of order 1011 to the value "Y".

4. Create anew customer supplying a null customer name.

5. Create a new customer with a customer name and display its newly assigned
customer ID.

package oracle.summit.model.appmodule.client;

import oracle.jbo.client.Configuration;
import oracle.jbo.*;
import oracle.jbo.domain.Number;
import oracle.jbo.domain.*;

Chapter 13
Working Programmatically with an Application Module's Client Interface

13-47

import oracle.summit.model.appmodule.service.common.AppModule;

public class TestClientCustomInterface {
 public static void main(String[] args) {
 String amDef = "oracle.summit.model.appmodule.service.AppModule";
 String config = "AppModuleLocal";

 /*
 * This is the correct way to use application custom methods
 * from the client, by using the application module's automatically-
 * maintained custom service interface.
 */
 AppModule service =

(AppModule)Configuration.createRootApplicationModule(amDef,config);
 String total = service.findOrderTotal(1011);
 System.out.println("Total for Order # 1011 = " + total);
 String custName = service.findOrderAndCustomer(1011);
 System.out.println("Customer for Order # 1011 = " + custName);
 try {
 service.updateOrderStatus(1011,"Y");
 }
 catch (JboException ex) {
 System.out.println("ERROR: "+ex.getMessage());
 }
 long id = 0;
 try {
 id = service.createCustomer(null, "Oakville", 14);
 }
 catch (JboException ex) {
 System.out.println("ERROR: "+ex.getMessage());
 }
 id = service.createCustomer("Oakville Curling Club", "Oakville", 14);
 System.out.println("New customer created successfully with id = " + id);
 Configuration.releaseRootApplicationModule(service,true);
 }
}

Running the custom application module class calls the main() method in the above
example and produces the following output:

Total for Order # 1011 = 99.99
Customer for Order # 1011 = Customer: Zibbers, Location: Boston
ERROR: JBO-27014: You must provide a value for Name.
New customer created successfully with id = 133

Notice that the first attempt to call findOrderAndCustomer() with a null for the
customer name raises an exception due to the built-in mandatory validation on the
Name attribute of the Customer entity object.

What Happens at Runtime: How the Application Module's Client
Interface is Accessed

Because the client layer accessing your application module will be located in the
same tier of the Java EE architecture, the application module is deployed in what is
known as local mode. In local mode, the client interface is implemented directly by
your custom application module Java class. You access an application module in local

Chapter 13
Working Programmatically with an Application Module's Client Interface

13-48

mode whenever you access the application module in the web tier of a JavaServer
Faces application.

How to Access an Application Module Client Interface in a Fusion Web
Application

The Configuration class in the oracle.jbo.client package makes it very easy to
get an instance of an application module for testing. This eases writing test client
programs like the test client program described in Regression Testing with JUnit as
part of the JUnit regression testing fixture.

Best Practice:

For Fusion web applications you should always work though the
binding layer to access the application module. While developers may
be tempted to use the class createRootApplicationModule() and
releaseApplicationModule() methods anywhere to access an application
module, the best approach in the view layer is to use the declarative features
of the ADF Model layer.

When working with Fusion web applications using the ADF Model layer for data
binding, JDeveloper configures a servlet filter in your user interface project called
the ADFBindingFilter. It orchestrates the automatic acquisition and release of an
appropriate application module instance based on declarative binding metadata, and
ensures that the service is available to be looked up as a data control using a known
action binding or iterator binding, specified by any page definition file in the user
interface project. You may eventually want to read about the ADF binding container,
data controls, page definition files, and ADF bindings, as described in Using
ADF Model in a Fusion Web Application. For now, it is enough to realize that you
can access the application module's client interface from this DCBindingContainer
by naming an ADF action binding or an ADF iterator binding. You can reference the
binding context and call methods on the custom client interface in a JSF managed
bean, as shown in the following examples for an action binding and for an iterator
binding.

To access the custom interface of your application module using an action binding,
follow these basic steps (as illustrated in the following example):

1. Access the ADF binding container.

2. Find a named action binding. (Use the name of any available action binding in the
page definition files of the user interface project.)

3. Get the data control by name from the action binding.

4. Access the application module data provider from the data control.

5. Cast the application module to its client interface.

6. Call any method on the client interface.

package oracle.summit.model.viewobjects;

import oracle.summit.model.appmodule.service.common.SummitAppModule;
import oracle.adf.model.binding.DCBindingContainer;

Chapter 13
Working Programmatically with an Application Module's Client Interface

13-49

import oracle.adf.model.binding.DCDataControl;
import oracle.jbo.ApplicationModule;
import oracle.jbo.uicli.binding.JUCtrlActionBinding;
public class YourBackingBean {
 public String commandButton_action() {
 // Example using an action binding to get the data control
 public String commandButton_action() {
 // 1. Access the binding container
 DCBindingContainer bc = (DCBindingContainer)getBindings();
 // 2. Find a named action binding
 JUCtrlActionBinding action =
 (JUCtrlActionBinding)bc.findCtrlBinding("SomeActionBinding");
 // 3. Get the data control from the iterator binding (or method binding)
 DCDataControl dc = action.getDataControl();
 // 4. Access the data control's application module data provider
 ApplicationModule am = (ApplicationModule)dc.getDataProvider();
 // 5. Cast the AM to call methods on the custom client interface
 SummitAppModule service = (SummitAppModule)am;
 // 6. Call a method on the client interface
 service.doSomethingInteresting();
 return "SomeNavigationRule";
 }
}

To access the custom interface of your application module using an iterator binding,
follow these basic steps (as illustrated in the following example):

1. Access the ADF binding container.

2. Find a named iterator binding. (Use the name of any iterator binding in the page
definition files of the user interface project.)

3. Get the data control by name from the iterator binding.

4. Access the application module data provider from the data control.

5. Cast the application module to its client interface.

6. Call any method on the client interface.

package oracle.summit.model.viewobjects;

import oracle.summit.model.appmodule.service.common.SummitAppModule;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCDataControl;
import oracle.adf.model.binding.DCIteratorBinding;
import oracle.jbo.ApplicationModule;
public class YourBackingBean {
 public String commandButton_action() {
 // Example using an iterator binding to get the data control
 public String commandButton_action() {
 // 1. Access the binding container
 DCBindingContainer bc = (DCBindingContainer)getBindings();
 // 2. Find a named iterator binding
 DCIteratorBinding iter = bc.findIteratorBinding("SomeIteratorBinding");
 // 3. Get the data control from the iterator binding
 DCDataControl dc = iter.getDataControl();
 // 4. Access the data control's application module data provider
 ApplicationModule am = (ApplicationModule)dc.getDataProvider();
 // 5. Cast the AM to call methods on the custom client interface
 SummitAppModule service = (SummitAppModule)am;
 // 6. Call a method on the client interface
 service.doSomethingInteresting();

Chapter 13
Working Programmatically with an Application Module's Client Interface

13-50

 return "SomeNavigationRule";
 }
}

These backing bean examples depend on the helper method shown in the following
example.

public BindingContainer getBindings() {
{
 return BindingContext.getCurrent().getCurrentBindingsEntry();
}

If you create the backing bean class by overriding a button that is declaratively bound
to an ADF action, then JDeveloper will automatically generate this method in your
class. Otherwise, you will need to add the helper method to your class yourself.

Overriding Built-in Framework Methods
You can enhance the default behavior of an ADF Application Module by overriding
built-in ADF methods for the Application Module Java class.

The ApplicationModuleImpl base class provides a number of built-in methods that
implement its functionality. While Most Commonly Used ADF Business Components
Methods provides a quick reference to the most common code that you will typically
write, use, and override in your custom application module classes, this section
focuses on helping you understand the basic steps to override one of these built-in
framework methods to augment the default behavior.

How to Override a Built-in Framework Method
To override a built-in framework method for an application module, use the Override
Methods dialog, which you open for the application module Java class from the main
menu.

Before you begin:

It may be helpful to have an understanding of the application module base class. For
more information, see Overriding Built-in Framework Methods.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

You will need to complete this task:

Create the desired application modules, as described in How to Create an
Application Module.

To override an application module framework method:

1. In the Applications window, double-click the application module for which you want
to override framework methods.

2. In the overview editor, click the Java navigation tab and then click the linked file
name of the application module Java class that you want to customize.

The class file opens in the source editor.

3. In the main menu, choose Source and then Override Methods.

Chapter 13
Overriding Built-in Framework Methods

13-51

If the Source menu is not displayed, be sure that the desired Java class file is
open and that the source editor is visible.

4. In the Override Methods dialog, scroll the list to locate the desired methods or type
the first few letters of the method name to perform an incremental search.

5. Select one or more methods.

The Override Methods dialog allows you to select any number of methods to
override simultaneously.

For example, if you wanted to override the application module's prepareSession()
method to augment the default functionality when a new user session begins
working with an application module service component for the first time, you would
select the checkbox next to the prepareSession(Session) method, as shown in
Figure 13-26.

Figure 13-26 Overriding a Built-in Framework Method

6. Click OK.

What Happens When You Override a Built-in Framework Method
When you dismiss the Override Methods dialog, you return to the source editor with
the cursor focus on the overridden method, as shown in Figure 13-27. Notice that
the method appears with a single line that calls super.prepareSession(). This is
the syntax in Java for invoking the default behavior that the base class would have
normally performed for this method. By adding code before or after this line in the
custom application module class, you can augment the default behavior before or after
the default functionality.

Figure 13-27 Source Editor Margin Gives Visual Feedback About Overridden
Methods

Chapter 13
Overriding Built-in Framework Methods

13-52

Also notice that when you override a method using the Override Methods dialog,
the source editor inserts the JDK @Override annotation just before the overridden
method. This causes the compiler to generate a compile-time error if the method
in the application module class does not match the signature of any method in the
superclass.

Be careful when you add method names to your class to override a method in
the superclass; you must have the signature exactly the same as the base class
method you want to override. Be sure to add the @Override annotation just before
the method. This way, if your method does not match the signature of any method in
the superclass, the compiler will generate a compile-time error. Also, when you write
code for a method instead of calling the superclass implementation, you should have a
thorough understanding of what built-in code you are suppressing or replacing.

How to Override prepareSession() to Set Up an Application Module for
a New User Session

Since the prepareSession() method is invoked by the application module when it
is used for the first time by a new user session, it's a useful method to override
in your custom application module class to perform setup tasks that are specific to
each new user that uses your application module. The following example illustrates
an overridden prepareSession() method in the AppModuleImpl class that invokes a
setApplicationInfo() helper method to specify database client information for the
connected user.

public class AppModuleImpl extends SummitApplicationModuleImpl
 implements AppModule {
...

 @Override
 protected void prepareSession(Session session) {
 super.prepareSession(session);
 setApplicationInfo ("AppModuleImpl", "prepareSession");
 String username = this.getUserPrincipalName();
 System.out.println(username);
 }

 protected void setApplicationInfo(String clientInfo, String clientIdentifier)
{
 DBTransactionImpl dbti = (DBTransactionImpl)getDBTransaction();
 CallableStatement statement =
 dbti.createCallableStatement("BEGIN "
 + "DBMS_APPLICATION_INFO.SET_CLIENT_INFO (client_info
=> :client_info);"
 + "DBMS_SESSION.SET_IDENTIFIER (:client_identifier);"
 + "END;", 0);
 try {
 statement.setString("client_info", clientInfo);
 statement.setString("client_identifier", clientIdentifier);
 statement.execute();
 } catch (SQLException sqlerr) {
 throw new JboException(sqlerr);
 } finally {
 try {
 if (statement != null) {
 statement.close();
 }
 } catch (SQLException closeerr) {

Chapter 13
Overriding Built-in Framework Methods

13-53

 throw new JboException(closeerr);
 }
 }
 }
}

Calling a Web Service from an Application Module
Use the built-in web services wizard to create a proxy class, implement methods in this
class, and use it to call web service methods in an ADF Application Module.

In a service-oriented architecture, your Oracle ADF application module may need to
take advantage of functionality offered by a web service that is not based on an
application module. A web service can be implemented in any programming language
and can reside on any server on the network. Each web service identifies the methods
in its API by describing them in a standard, language-neutral XML format. This XML
document, whose syntax adheres to the Web Services Description Language (WSDL),
enables JDeveloper to understand the names of the web service's methods, as well as
the data types of the parameters they might expect and their eventual return value.

Note:

Application modules can also be exposed as web services so that they can
be consumed across modules of the deployed Fusion web application. For
details about reusing ADF Business Components using external services,
see Creating SOAP Web Services with Application Modules.

JDeveloper's built-in web services wizards make this an easy task. Create a web
service proxy class using the wizard, then call the service using method calls you add
to a local Java object.

How to Call an External Service Programmatically
To call a web service from an application module, you create a web service proxy
class for the service you want to invoke. A web service proxy is a generated Java
class that represents the web service inside your application. It encapsulates the
service URL of the web service and handles the lower-level details of making the call.

To work with a web service, you need to know the URL that identifies its WSDL
document. If you have received the WSDL document as an email attachment, for
example, and saved it to your local hard drive, the URL could be similar to:

file:///D:/temp/SomeService.wsdl

Alternatively, the URL could be an HTTP-based URL like:

http://someserver.somecompany.com/SomeService/SomeService.wsdl

Some web services make their WSDL document available by using a special
parameter to modify the service URL. For example, a web service that expects
to receive requests at the HTTP address of http://someserver.somecompany.com/
SomeService might publish the corresponding WSDL document using the same URL
with an additional parameter on the end, like this:

Chapter 13
Calling a Web Service from an Application Module

13-54

http://someserver.somecompany.com/SomeService?WSDL

Since there is no established standard, you will just need to know what the correct
URL to the WSDL document is. With the URL information, you can then create a web
service proxy class to call the service.

ADF Business Components services have URLs to the service of the following
formats:

• On Integrated WebLogic Server, the URL has the format http://host:port/EJB-
context-root/@WebService-name?WSDL, for example:

http://localhost:8888/EJB-SummitService/SummitService?WSDL

• On Oracle WebLogic Server, the URL has the format http://host:port/context-
root/@WebService-name?WSDL, for example:

http://localhost:8888/SummitService/SummitService?WSDL

The web service proxy class presents a set of Java methods that correspond to the
web service's public API. By using the web service proxy class, you can call any
method in the web service in the same way as you work with the methods of any other
local Java class.

To call a web service from an application module using a proxy class, you perform the
following tasks:

1. Create a web service proxy class for the web service. To create a web service
proxy class for a web service that you need to call, use the Create Web Service
Client and Proxy wizard.

2. Implement the methods in the proxy class to access the desired web services.

3. Create an instance of the web service proxy class in your application module and
invoke one or more methods on the web service proxy object.

Creating a Web Service Proxy Class to Programmatically Access the Service
To create a web service proxy class for a web service you need to call, use the Create
Web Service Proxy wizard.

Before you begin:

It may be helpful to have an understanding of web services. For more information, see
Calling a Web Service from an Application Module.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

To create a web service proxy class to programmatically access the service:

1. In the Applications window, right-click the project in which you want to create the
web service proxy and choose New and then Web Service Client and Proxy.

2. In the Create Web Service Client and Proxy wizard, on the Select Web Service
Description page, enter the URL for the WSDL of the service you want to call in
your application, and then tab out of the field.

When the wizard displays Next enabled, then JDeveloper has recognized and
validated the WSDL document. If the Next button is not enabled, fix the problem
after verifying the URL and repeat this step.

Chapter 13
Calling a Web Service from an Application Module

13-55

3. Continue through the pages of the wizard to specify details about the web service
proxy.

4. Click Finish.

Calling the Web Service Proxy Template to Invoke the Service
After you create the web service proxy, you must implement the methods in the proxy
class to access the desired web services.

Before you begin:

It may be helpful to have an understanding of web services. For more information, see
Calling a Web Service from an Application Module.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

You will need to complete this task:

Create the desired web service proxy class, as described in Creating a Web
Service Proxy Class to Programmatically Access the Service.

To call the web service proxy template to invoke the service:

1. Open the proxy client class, called port_nameClient.java, in the source editor,
and locate the comment // Add your own code to call the desired methods,
which is in the main method.

2. Add the appropriate code to invoke the web service.

3. Deploy the full set of client module classes that JDeveloper has generated, and
reference this class in your application.

Calling a Web Service Method Using the Proxy Class in an Application Module
After you've generated the web service proxy class, you can use it inside a custom
method of your application module, as shown in the following example. The method
creates an instance of the web service proxy class and calls the web service method
from the web service proxy class for the result.

// In YourModuleImpl.java
public void performSomeApplicationTask(String symbol) throws Exception {
 // application-specific code here
 :
 // Create an instance of the web service proxy class
 StockQuoteServiceSoapHttpPortClient svc =
 new StockQuoteServiceSoapHttpPortClient();
 // Call a method on the web service proxy class and get the result
 QuoteInfo quote = svc.quoteForSymbol(symbol);
 float currentPrice = quote.getPrice();
 // more application-specific code here
}

What Happens When You Create the Web Service Proxy
JDeveloper generates the web service proxy class in the package you've indicated
with a name that reflects the name of the web service port it discovered

Chapter 13
Calling a Web Service from an Application Module

13-56

in the WSDL document. The web service port name might be a human-
readable name like StockQuoteService, or could be a less-friendly name like
StockQuoteServiceSoapHttpPort. The port name is decided by the developer that
published the web service you are using. If the port name of the service were
StockQuoteServiceSoapHttpPort, for example, JDeveloper would generate a web
proxy class named StockQuoteServiceSoapHttpPortClient.

The web service proxy displays in the Applications window as a single,
logical node called WebServiceNameProxy. For example, the node for the
StockQuoteService web service would appear in the Applications window with the
name StockQuoteServiceProxy. As part of generating the proxy class, in addition
to the main web service proxy class that you use to invoke the server, JDeveloper
generates a number of auxiliary classes and interfaces. You can see these files in the
Applications window under the WebServiceNameProxy node. The generated files are
used as part of the lower-level implementation of invoking the web service.

The only auxiliary generated classes you need to reference are those created to hold
structured web service parameters or return types. For example, imagine that the
StockQuoteService web service has a quoteForSymbol() method that accepts one
String parameter and returns a floating-point value indicating the current price of
the stock. If the designer of the web service chose to return a simple floating-point
number, then the web service proxy class would have a corresponding method like
this:

public float quoteForSymbol(String symbol)

If instead the designer of the web service thought it useful to return multiple pieces of
information as the result, then the service's WSDL file would include a named structure
definition describing the multiple elements it contains. For example, assume that the
service returns both the symbol name and the current price as a result. To contain
these two data elements, the WSDL file might define a structure named QuoteInfo
with an element named symbol of string type and an element named price of floating-
point type. In this situation, when JDeveloper generates the web service proxy class,
the Java method signature would instead look like this:

public QuoteInfo quoteForSymbol(String symbol)

The QuoteInfo return type references one of the auxiliary classes that comprises
the web service proxy implementation. It is a simple bean whose properties reflect
the names and types of the structure defined in the WSDL document. In a similar
way, if the web service accepts parameters whose values are structures or arrays
of structures, then you will work with these structures in your Java code using the
corresponding generated beans.

How to Create a New Web Service Connection
After developing a web service proxy, you can generate additional connections for
the proxy that you can use in testing and deployment situations. For example, you
might want to create a connection that includes user name and password for testing
purposes.

The connection information is stored in the connections.xml file along with the other
connections in your application. This abstraction of the endpoint URL also allows you
to edit the connection after deployment using Enterprise Manager without requiring
modification to the client code.

Before you begin:

Chapter 13
Calling a Web Service from an Application Module

13-57

It may be helpful to have an understanding of web services. For more information, see
Calling a Web Service from an Application Module.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Application
Modules.

To create a new web service connection:

1. In the Applications window, right-click a web service proxy and choose Create
ADF Web Service Connection.

The New ADF Web Service Connection dialog displays the default settings for a
connection associated with the selected proxy.

2. Modify the connection information as necessary, and click OK.

WARNING:

If you create a new web service connection with the same name as an
existing connection, the existing connection will be overwritten with the new
information.

After you create a new web service connection, you can modify your client to use
this connection. You could use code similar to that shown in the following example to
access the connection from your client.

Context ctx = ADFContext.getCurrent().getConnectionsContext();

WebServiceConnection wsc = (WebServiceConnection) ctx.lookup("MyAppModuleService");

MyAppModuleService proxy = wsc.getJaxWSPort(MyAppModuleService.class);

The argument that you pass to the lookup() method is the name that you gave to the
web service connection. In this example, it is MyAppModuleService.

What Happens at Runtime: How the Web Service Proxy Handles a
Web Service Invocation

When you invoke a web service from an application module, the web service proxy
class handles the lower-level details of using the XML-based web services protocol
described in SOAP. In particular, it does the following:

• Creates an XML document to represent the method invocation

• Packages any method arguments in XML

• Sends the XML document to the service URL using an HTTP POST request

• Unpackages the XML-encoded response from the web service

If the method you invoke has a return value, your code receives it as an appropriately
typed object to work with in your application module code.

Chapter 13
Calling a Web Service from an Application Module

13-58

What You May Need to Know About Web Service Proxies
When you are implementing web service proxies in an application, you might want
to use a try-catch block to handle web service exceptions or invoke an application
module with a web service proxy class. The following sections contain additional
information you might need to know about these and other features with regard to web
service proxies.

Using a Try-Catch Block to Handle Web Service Exceptions
By using the generated web service proxy class, invoking a remote web service
becomes as easy as calling a method in a local Java class. The only distinction to
be aware of is that the web service method call could fail if there is a problem with
the HTTP request involved. The method calls that you perform against a web service
proxy should anticipate the possibility that the request might fail by wrapping the
call with an appropriate try...catch block. The following example improves on the
simpler example (shown in Calling a Web Service Method Using the Proxy Class in
an Application Module) by catching the web service exception. In this case, it simply
rethrows the error as a JboException, but you could implement more appropriate error
handling in your own application.

// In YourModuleImpl.java
public void performSomeApplicationTask(String symbol) {
 // application-specific code here
 // :
 QuoteInfo quote = null;
 try {
 // Create an instance of the web service proxy class
 StockQuoteServiceSoapHttpPortClient svc =
 new StockQuoteServiceSoapHttpPortClient();
 // Call a method on the web service proxy class and get the result
 quote = svc.quoteForSymbol(symbol);
 }
 catch (Exception ex) {
 throw new JboException(ex);
 }
 float currentPrice = quote.getPrice();
 // more application-specific code here
}

Separating Application Module and Web Services Transactions
You will use some web services to access reference information. However, other
services you call may modify data. This data modification might be in your own
company's database if the service was written by a member of your own team or
another team in your company. If the web service is outside your firewall, of course the
database being modified will be managed by another company.

In either of these situations, it is important to understand that any data modifications
performed by a web service you invoke will occur in their own distinct transaction,
unrelated to the application module's current unit of work. For example, if you have
invoked a web service that modifies data and then you later call rollback() to cancel
the pending changes in the application module's current unit of work, this has no
effect on the changes performed by the web service you called in the process. You

Chapter 13
Calling a Web Service from an Application Module

13-59

may need to invoke a corresponding web service method to perform a compensating
change to account for your rollback of the application module's transaction.

Setting Browser Proxy Information
If the web service you need to call resides outside your corporate firewall, you need to
ensure that you have set the appropriate Java system properties to configure the use
of an HTTP proxy server. The Java system properties to configure are:

• http.proxyHost — Set this to the name of the proxy server.

• http.proxyPort — Set this to the HTTP port number of the proxy server (often
80).

• http.nonProxyHosts — Optionally set this to a vertical-bar-separated list of
servers not requiring the user of a proxy server (for example, localhost|
127.0.0.1|*.yourcompany.com).

Within JDeveloper, you can configure an HTTP proxy server on the Web Browser and
Proxy page of the Preferences dialog. When you run your application, JDeveloper
includes appropriate -D command-line options to set these three system properties
based on the settings you've indicated in this dialog.

Invoking Application Modules with a Web Service Proxy Class
If you use a web service proxy class to invoke an Oracle ADF service-based
application module, you lose the ability to optimize the call when the calling component
and the service you are calling are colocated. As an alternative, you can use the
service interface approach described in Creating SOAP Web Services with Application
Modules.

Chapter 13
Calling a Web Service from an Application Module

13-60

14
Sharing Application Module View Instances

This describes how to organize your ADF Business Components data model project
to most efficiently share read-only data accessed from lookup tables or other static
data source, such as a flat file. It describes the differences between ADF application
modules that you may share at the application level and those that you may share at
the session level.
This chapter includes the following sections:

• About Shared Application Modules

• Sharing an Application Module Instance

• Defining a Base View Object for Use with Lookup Tables

• Accessing View Instances of the Shared Service

• Testing View Object Instances in a Shared Application Module

About Shared Application Modules
You can create a shared ADF Business Components application module to allow
multiple requests from multiple sessions to share a single application module. It helps
prevent unnecessary overhead of repopulating data caches.

Web applications often utilize data that is required across sessions and does not
change very frequently. An example of this type of static data might be displayed in
the application user interface in a lookup list. Each time your application accesses
the static data, you could incur an unnecessary overhead when the static data
caches are repopulated from the database for each application session on every
request. In order to optimize performance, a common practice when working with
ADF Business Components is to cache the shared static data for reuse across
sessions and requests. Creating a shared application module allows requests from
multiple sessions to share a single application module instance which is managed by
an application pool for the lifetime of the web server virtual machine.

Shared Application Module Use Cases and Examples
A view accessor in ADF Business Components is a value accessor object that points
from an entity object attribute (or view object) to a destination view object or shared
view instance in the same application workspace.

This ability to access view objects in different application modules makes view
accessors particularly useful for:

• Validation rules that you set on the attributes of an entity object. For example,
when the end user fills out a registration form, individual validation rules can verify
the title, marital status, and contact code against lookup table data queried by view
instances of the shared application module.

• List of Value (LOV) that you enable for the attribute of any view object. For
example, to display a list of values to the end user at runtime.

14-1

Additional Functionality for Shared Application Modules
You may find it helpful to understand other Oracle ADF features before you start
working with shared application modules. Following are links to other functionality that
may be of interest.

• For details about configuring application module instances to improve runtime
performance, see Using State Management in a Fusion Web Application and
Tuning Application Module Pools.

• For a quick reference to the most common code that you will typically write, use,
and override in your custom application module classes, see Most Commonly
Used ADF Business Components Methods.

• For API documentation related to the oracle.jbo package, see the following
Javadoc reference document:

– Java API Reference for Oracle ADF Model

Sharing an Application Module Instance
JDeveloper allows you to specify application-level or session-level ADF application
module data model sharing.

Declarative support for shared data caches is available in JDeveloper through the
Project Properties dialog. Creating a shared application module allows requests from
multiple sessions to share a single application module instance which is managed by
an application pool for the lifetime of the web server virtual machine.

Best Practice:

Use a shared application module to group view instances when you want
to reuse lists of static data across the application. The shared application
module can be configured to allow any user session to access the data or
it can be configured to restrict access to just the UI components of a single
user session. For example, you can use a shared application module to
group view instances that access lookup data, such as a list of countries.
The use of a shared application module allows all shared resources to be
managed in a single place and does not require a scoped managed bean for
this purpose.

As shown in Figure 14-1, the Project Properties dialog lets you specify application-
level or session-level sharing of the application module's data model. In the case of
application-level sharing, any HTTP user session will be able to access the same
view instances contained in the shared application module. In contrast, the lifecycle
of the session-level shared application module extends to an application module
session (SessionImpl) that is in use by a single HTTP user session and applies
to a single root application module. In this case, each distinct root application
module used by a given HTTP user session will get its own distinct instance of a
session-scoped shared application module. In other words, distinct root application
modules used by the same HTTP session do not share data in a session-scoped
shared application module.

Chapter 14
Sharing an Application Module Instance

14-2

Figure 14-1 Project Properties Dialog Defines Shared Application Module
Instance

When you create the data model for the application module that you intend to share,
be sure that the data in cached row sets will not need to be changed either at
the application level or session level. For example, in the application-level shared
application module, view instances should query only static data such as state codes
or currency types. If a view object instance queries data that depends on the current
user, then the query can be cached at the session level and shared by all components
that reference the row-set cache. For example, the session-level shared application
module might contain a view instance with data security that takes a manager as the
current user to return the list of direct reports. In this case, the cache of direct reports
would exist for the duration of the manager's HTTP user session. The ADF Business
Components application module pool will re-create the session-scoped application
module should an HTTP user session be assigned a recycled application module from
the pool. This ensures that the duration of the session-scoped application module is
tied to the HTTP session for as long as the HTTP session is able to continue to use
the same root application module instance. Note that the cache of direct reports of
the session-level shared application module cannot be accessed across distinct root
application modules.

How to Create a Shared Application Module Instance
To create a shared application module instance, use the Project Properties dialog. You
define a logical name for a distinct, separate root application module that will hold your
application's read-only data.

Before you begin:

It may be helpful to have an understanding of lookup data. For more information, see
Defining a Base View Object for Use with Lookup Tables.

Chapter 14
Sharing an Application Module Instance

14-3

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Shared
Application Modules.

You will need to complete this task:

Create the application module that you will share, as described in How to Create an
Application Module.

To create a shared application module instance:

1. In the Application window, right-click the project in which you want to create the
shared application module and choose Project Properties.

2. In the Project Properties dialog, expand ADF Business Components and select
Application Module Instances.

3. On the ADF Business Components: Application Module Instances page, select
one of these tabs:

• When you want to define the shared application module for the context of the
application, select the Application tab.

• When you want to define the shared application module for the context of the
current user session, select the Session tab

4. In the Available Application Modules list, select the desired application module
and shuttle it to the Application Module Instances list.

5. Assign the application module a unique instance name.

The shared application module instance (of either scope) must have a unique
instance name. Supplying a meaningful name will also help to clarify which shared
application module instance a given usage is referencing.

6. Click OK.

What Happens When You Define a Shared Application Module
JDeveloper automatically creates the AppModuleNameShared configuration when you
create an application module. The presence of this configuration in the bc4j.xcfg
file informs JDeveloper that the application module is a candidate to be shared, and
allows JDeveloper to display the application module in the Available Application
Modules list of the Project Properties dialog's Application Module Usage page.

The AppModuleNameShared configuration sets these properties on the application
module to enable sharing and help to maintain efficient use of the shared resource
at runtime:

• jbo.ampool.isuseexclusive is set to false to specify that requests from multiple
sessions can share a single instance of the application module, which is managed
by the application pool for the lifetime of the web server virtual machine. When
you do not enable application module sharing, JDeveloper sets the value true
to repopulate the data caches from the database for each application session on
every request.

• jbo.ampool.maxpoolsize is set to 1 (one) to specify that only a single application
module instance will be created for the ADF Business Components application
module pool. This setting enforces the efficient use of the shared application
module resource and prevents unneeded multiple instances of the shared
application module from being created at runtime.

Chapter 14
Sharing an Application Module Instance

14-4

You can view the shared application module's configuration by opening the application
module in the overview editor and choosing Configurations from the navigation
menu. JDeveloper saves the bc4j.xcfg file in the ./common subdirectory relative to
the application module's XML document. If you remove the configuration or modify
the values of the jbo.ampool runtime properties (isuseexclusive, maxpoolsize),
the application module will not be available to use as a shared application module
instance.

For example, if you look at the bc4j.xcfg file in the ./src/oracle/summit/model/
services/common directory of the SummitADF application workspace, you will see the
two named configurations for the BackOfficeAppModule application module, as shown
in the following example. Specifically, the BackOfficeAppModuleShared configuration
sets the jbo.ampool runtime properties on the shared application module instance. For
more information about the ADF Business Components application module pooling
and runtime configuration of application modules, see Tuning Application Module
Pools.

<BC4JConfig version="11.1" xmlns="http://xmlns.oracle.com/bc4j/configuration">
...
 <AppModuleConfigBag
 ApplicationName="oracle.summit.model.services.BackOfficeAppModule">
 <AppModuleConfig
 name="BackOfficeAppModuleLocal"
 jbo.project="oracle.summit.model.Model"
 ApplicationName="oracle.summit.model.services.BackOfficeAppModule"
 DeployPlatform="LOCAL" JDBCName="summit_adf">
 <Database jbo.TypeMapEntries="Java"/>
 <Security

AppModuleJndiName="oracle.summit.model.services.BackOfficeAppModule"/>
 </AppModuleConfig>
 <AppModuleConfig
 name="BackOfficeAppModuleShared"
 jbo.project="oracle.summit.model.Model"
 ApplicationName="oracle.summit.model.services.BackOfficeAppModule"
 DeployPlatform="LOCAL" JDBCName="summit_adf">
 <AM-Pooling jbo.ampool.maxpoolsize="1"
 jbo.ampool.isuseexclusive="false"/>
 <Database jbo.TypeMapEntries="Java"/>
 <Security

AppModuleJndiName="oracle.summit.model.services.BackOfficeAppModule"/>
 </AppModuleConfig>
 </AppModuleConfigBag>
</BC4JConfig>

Because the shared application module can be accessed by any data model
project (based on ADF Business Components) in the same application workspace,
JDeveloper maintains the scope of the shared application module in the ADF Business
Components project configuration file (.jpx). This file is saved in the src directory of
the project. For example, if you look at the Model.jpx file in the ./src directory of
the application's Model project, you will see that the SharedLookupService application
module's usage definition specifies SharedScope = 2, corresponding to application-
level sharing, as shown in the following example. An application module that you set to
session-level sharing will show SharedScope = 1.

<JboProject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="Model"

Chapter 14
Sharing an Application Module Instance

14-5

 SeparateXMLFiles="true"
 PackageName="oracle.summit.model">
 . . .
 <AppModuleUsage
 Name="SharedLookupService"
 FullName="oracle.summit.model.services.BackOfficeAppModule"
 ConfigurationName="oracle.summit.model.services.BackOfficeAppModuleShared"
 SharedScope="2"/>
</JboProject>

What You May Need to Know About Design Time Scope of the Shared
Application Module

Defining the shared application module in the Project Properties dialog makes the
application module's data model available to other data model projects of the same
application workspace only. When you want to make the data model available beyond
the application workspace, you can publish the data model as an ADF Library, as
described in Reusing Application Components .

When viewing a data control usage from the DataBindings.cpx file in the Structure
window, do not set the Configuration property to a shared application module
configuration. By default, for an application module named AppModuleName, the
Property window will list the configurations named AppModuleNameShared and
AppModuleNameLocal. At runtime, Oracle Application Development Framework
(Oracle ADF) uses the shared configuration automatically when you configure an
application as a shared application module, but the configuration is not designed to be
used by an application module data control usage. For more information about data
control usage, see Working with the DataBindings.cpx File .

What You May Need to Know About the Design Time Scope of View
Instances of the Shared Application Module

You define view accessors on the business component definition for the data model
project that will permit access to view instances of the shared application module.
The view accessor lets you point from an entity object or view object definition in one
data model project to a view object definition or view instance in a shared application
module. For details about creating view accessors for this purpose, see Accessing
View Instances of the Shared Service.

What You May Need to Know About Managing the Number of Shared
Query Collections

Similar to the way application module pooling works in ADF Business Components,
shared query collections are stored in a query collection pool. To manage the query
collection pool, the ADF Business Components framework removes query collections
based on a maximum idle time setting. This behavior limits the growth of the cache
and prevents rarely used query collections from occupying memory space.

As in application module and connection pooling, a query collection pool monitor
wakes up after a user-specified sleep interval and then initiates the cleanup operation.
Any query collection that exceeds the maximum idle time (length of time since it was
last used), will be removed from the pool.

Chapter 14
Sharing an Application Module Instance

14-6

You can change the default values for the maximum idle time for the shared query
collection (default is 900000 ms/15 min) and the sleep period for its pool monitor
(default is 1800000 ms/30 min). You use the overview editor for application module
configurations (on the bc4j.xcfg file) to configure these values on the selected
AppModuleNameShared configuration.

To display the application module configuration overview editor, double-click the
application module in the Applications window and, in the overview editor, select
the Configurations navigation tab. Then, in the Configurations page of the overview
editor, click the shared configuration hyperlink. In the application module configuration
overview editor, select the Properties tab and click Add Property to select the
following properties from the Add Property dialog and click OK.

• jbo.qcpool.monitorsleepinterval

• jbo.qcpool.maxinactiveage

Then, in the Properties list enter the desired idle time and sleep period in
milliseconds:

• jbo.qcpool.monitorsleepinterval the time (ms) that the shared query collection
pool monitor should sleep between pool checks.

• jbo.qcpool.maxinactiveage the maximum amount of time (ms) that a shared
query collection may remain unused before it is removed from the pool.

What You May Need to Know About Shared Application Modules and
Connection Pooling

The default connection behavior for all application modules is to allow each root
application module to have its own database connection. When your application
defines more than one shared application module, you can configure the application to
nest them under the same transaction in order to use a single database connection.
This optimization allows the shared application module instances to share the same
connection and entity cache and reduces the database resources that the application
uses. This is particularly useful for shared application modules cases because they are
read only and have longer life than transactional application modules.

Best Practice:

Oracle recommends nesting shared application module instances under
a single transaction to reduce the database resources required by the
application. You can make this shared application module optimization by
setting the jbo.shared.txn property to use the same transaction name
(an arbitrary identifier you supply) for each shared application module
configuration the application defines.

Set the jbo.shared.txn property using the overview editor for application module
configurations (on the bc4j.xcfg file). To display the application module configuration
overview editor, double-click the shared application module in the Applications window
and, in the overview editor, select the Configurations navigation tab. Then, in the
Configurations page of the overview editor, click the configuration hyperlink. In the
application module configuration overview editor, select the Properties tab and click

Chapter 14
Sharing an Application Module Instance

14-7

Add Property to select the following property from the Add Property dialog and click
OK.

• jbo.shared.txn

Then, in the Properties list enter the transaction name (where SharedAMOptimization
is an arbitrary name) for the property:

• jbo.shared.txn = SharedAMOptimization

Repeat the jbo.shared.txn property setting using the same transaction name for
each shared application module configuration that your application defines.

Currently, the application module configuration parameter
jbo.doconnectionpooling=true is not supported for use with shared application
modules. This feature is available to configure nonshared application modules when it
is desirable to release JDBC connection objects to the database connection pool.

This feature is intentionally not supported for shared application modules to prevent
decreases in performance that would result from managing state for shared access.
Instead, the default use of jbo.doconnectionpooling=false is enforced.

The default connection pooling configuration ensures that each shared application
module instance holds onto the JDBC connection object that it acquires from the pool
until the application module instance is removed from the application module pool. For
more information about the jbo.doconnectionpooling parameter and connection pool
behavior, see Deployment Environment Scenarios and Pooling.

Defining a Base View Object for Use with Lookup Tables
Use an ADF application module to access static data that has been defined in a
database lookup table. An ADF Business Components shared application module
accesses such lookup tables to display static data.

When your application needs to display static data, you can define a shared
application module with view instances that most likely will access lookup tables. A
lookup table is a static, translated list of data to which the application refers. Lookup
table data can be organized in the database in various ways. While it is possible to
store related lookup data in separate tables, it is often convenient to combine all of
the lookup information for your application within a single table. For example, a column
LOOKUP_TYPE created for the ORDERS_LOOKUPS table would serve to partition one table
that might contain diverse codes such as FWK_TBX_YES_NO for the values yes and no,
FWK_TBX_COUNTRY for country names, and FWK_TBK_CURRENCY for the names of national
currencies.

When your database schema organizes lookup data in a single database table, you
want to avoid creating individual queries for each set of data. Instead, you will use the
overview editor to define a single, base view object that maps the desired columns
of the lookup table to the view object attributes you define. Since only the value
of the LOOKUP_TYPE column will need to change in the query statement, you can
add view criteria on the view object definition to specify a WHERE clause that will
set the LOOKUP_TYPE value. In this way, your application encapsulates access to the
lookup table data in a single view object definition that will be easy to maintain when
a LOOKUP_TYPE value changes or your application needs to query additional lookup
types.

Chapter 14
Defining a Base View Object for Use with Lookup Tables

14-8

How to Create a Base View Object Definition for a Lookup Table
The base view object that queries columns of the lookup table will be a read-only view
object, since you do not need to handle updating data or require any of the benefits
provided by entity-based view objects. (For a description of those benefits, see About
View Objects.)

Note:

While read-only view objects you create to access lookup tables are ideal
for inclusion in a shared application module, if you intend to share the view
object in a shared application module instance, you must create the view
object in the same package as the shared application module.

To create a read-only view object, use the Create View Object wizard, which is
available from the New Gallery.

Before you begin:

It may be helpful to have an understanding of lookup data. For more information, see
Defining a Base View Object for Use with Lookup Tables.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Shared
Application Modules.

You will need to complete this task:

Create the application module that you will share, as described in How to Create an
Application Module.

To create a base view object for a lookup table:

1. In the Application window, locate the shared application module, right-click its
package node, and choose New and then View Object.

2. In the Create View Object wizard, on the Name page, enter a package name and
a view object name.

When naming the package, consider creating a separate package for the lookup.

3. Select Custom SQL query to indicate that you want this view object to manage
data with read-only access and click Next.

4. On the Query page, enter your SQL statement directly into the Select text box.

Your query names the columns of the lookup table, and should look similar to the
SQL statement shown in Figure 14-2 which queries the LOOKUP_CODE, MEANING,
and DESCRIPTION columns in the LOOKUP_CODES table.

Chapter 14
Defining a Base View Object for Use with Lookup Tables

14-9

Figure 14-2 Create View Object Wizard, SQL Query for Lookup Table

5. After entering the query statement, no other changes are required. Click Next.

6. On the Bind Variables page, click Next.

7. On the Attribute Mappings page, note the mapped view object attribute names
displayed and click Next.

By default, the wizard creates Java-friendly view object attribute names that
correspond to the SELECT list column names.

8. On the Attribute Settings page, from the Select Attribute dropdown, select the
attribute that corresponds to the primary key of the queried table and then enable
the Key Attribute checkbox.

Because the read-only view object is not based on an entity object, the Create
View Object wizard does not define a key attribute by default. Failure to define
the key attribute can result in unexpected runtime behavior for ADF Faces
components with a data control based on the read-only view object collection.
In the case of read-only view objects, define the key attribute, as shown in
Figure 14-3.

Chapter 14
Defining a Base View Object for Use with Lookup Tables

14-10

Figure 14-3 Create View Object Wizard, Attribute Settings Page

9. If you want to rename individual attributes to use names that might be more
appropriate, from the Select Attributes dropdown, choose the attribute and enter
the desired name in the Name field. When you are finished, click Next.

For example, you might rename the default attributes LookupType and LookupCode
to Type and Value respectively. Changes you make to the view object definition will
not change the underlying query.

10. On the Java page, click Next.

11. On the Application Module page, do not add an instance of the view object to the
application module data model. Click Finish.

The shared application module data model will include view instances based
on view criteria that you add to the base view object definition. In this way, you
do not need to create an individual view object to query each LOOKUP_TYPE value.
For details about adding the view object instances to the data model, see Adding
Master-Detail View Object Instances to an Application Module.

What Happens When You Create a Base View Object
When you create the view object definition for the lookup table, JDeveloper first
describes the query to infer the following from the columns in the SELECT list:

• The Java-friendly view attribute names (for example, LookupType instead of
LOOKUP_TYPE)

By default, the wizard creates Java-friendly view object attribute names that
correspond to the SELECT list column names.

• The SQL and Java data types of each attribute

JDeveloper then creates the XML document file that represents the view objects's
declarative settings and saves it in the directory that corresponds to the name of its
package. For example, the XML file created for a view object named LookupsBaseVO

Chapter 14
Defining a Base View Object for Use with Lookup Tables

14-11

in the lookups package is ./lookups/LookupsBaseVO.xml under the project's source
path.

To view the view object settings, expand the desired view object in the Application
window, select the XML file under the expanded view object, and open the Structure
window. The Structure window displays the list of definitions, including the SQL query
and the properties of each attribute. To open the file in the editor, double-click the
corresponding .xml node. As shown in the following example, the LookupsBaseVO.xml
file defines one <SQLQuery> definition and one <ViewAttribute> definition for each
mapped column. Without a view criteria to filter the query results, the view object query
returns the LOOKUP_CODE, LOOKUP_MEANING, and LOOKUP_DESCRIPTION and maps them
to view instance attribute values for Value, Name, and Description respectively. Key
attributes are defined to ensure proper row set navigation when the base view object
collection is bound to an ADF Faces component.

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="LookupsBaseVO"
 BindingStyle="OracleName"
 CustomQuery="true"
 PageIterMode="Full"
 UseGlueCode="false"
 FetchMode="FETCH_AS_NEEDED"
 FetchSize="500">
 <SQLQuery>
 <![CDATA[SELECT L.LOOKUP_TYPE
 ,L.LOOKUP_CODE
 ,L.MEANING
 ,L.DESCRIPTION
 FROM LOOKUP_CODES L
 WHERE L.LANGUAGE = USERENV('CLIENT_INFO')
 ORDER BY L.MEANING]]>
 </SQLQuery>
 <DesignTime>
 <Attr Name="_codeGenFlag2" Value="Access|VarAccess"/>
 <Attr Name="_isExpertMode" Value="true"/>
 </DesignTime>
 <ViewAttribute
 Name="Type"
 IsUpdateable="false"
 IsPersistent="false"
 IsNotNull="true"
 PrecisionRule="true"
 Precision="255"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 AliasName="LOOKUP_TYPE"
 Expression="LOOKUP_TYPE"
 SQLType="VARCHAR">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="30"/>
 </DesignTime>
 ...
 </ViewAttribute>
 <ViewAttribute
 Name="Value"
 IsUpdateable="false"
 IsPersistent="false"
 IsNotNull="true"
 PrecisionRule="true"

Chapter 14
Defining a Base View Object for Use with Lookup Tables

14-12

 Precision="30"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 AliasName="LOOKUP_CODE"
 Expression="LOOKUP_CODE"
 SQLType="VARCHAR">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="30"/>
 </DesignTime>
 ...
 </ViewAttribute>
 <ViewAttribute
 Name="Name"
 IsUpdateable="false"
 IsPersistent="false"
 IsNotNull="true"
 PrecisionRule="true"
 Precision="80"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 AliasName="MEANING"
 Expression="MEANING"
 SQLType="VARCHAR">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="80"/>
 </DesignTime>
 ...
 </ViewAttribute>
 <ViewAttribute
 Name="Description"
 IsUpdateable="false"
 IsPersistent="false"
 PrecisionRule="true"
 Precision="240"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 AliasName="DESCRIPTION"
 Passivate="true"
 Expression="DESCRIPTION"
 SQLType="VARCHAR">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="240"/>
 </DesignTime>
 ...
 </ViewAttribute>
 <AttrArray Name="KeyAttributes">
 <Item Value="Type"/>
 <Item Value="Value"/>
 </AttrArray>
. . .
</ViewObject>

How to Define the WHERE Clause of the Lookup View Object Using
View Criteria

You create named view criteria definitions in the data model project when you need to
filter view object results. View criteria that you define at design time can participate in
UI scenarios that require filtering of data.

Chapter 14
Defining a Base View Object for Use with Lookup Tables

14-13

Use the Edit View Criteria dialog to create the view criteria definition for the lookup
base view object you defined to query the lookup table. The editor lets you build a
WHERE clause using attribute name instead of the target view object's corresponding
SQL column names. The resulting definition will include:

• One view criteria row consisting of one view criteria group, with a single view
criteria item used to define the lookup view object's Type attribute.

• The view criteria item will consist of an Type attribute name, the Equal operator,
and the value of the LOOKUP_TYPE that will filter the query results.

Because a single view criteria is defined, no logical conjunctions are needed to bracket
the WHERE clause conditions.

Before you begin:

It may be helpful to have an understanding of lookup data. For more information, see
Defining a Base View Object for Use with Lookup Tables.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Shared
Application Modules.

You may also find it helpful to have an understanding of view criteria. For more
information, see Working with Named View Criteria.

You will need to complete this task:

Create the base view object for the lookup data, as described in How to Create a
Base View Object Definition for a Lookup Table.

To create LOOKUP_TYPE view criteria for the lookup view object:

1. In the Application window, double-click the lookup base view object you defined.

2. In the overview editor, click the View Criteria navigation tab and click the Create
New View Criteria button.

3. In the Create View Criteria dialog, on the View Criteria page, click the Add Item
button to add a single criteria item to the view criteria group.

4. In the Criteria Item panel, define the criteria item as follows:

• Choose Type as the attribute (or other name that you defined for the attribute
the view object maps to the LOOKUP_TYPE column).

• Choose Equals as the operator.

• Keep Literal as the operand choice and enter the value name that defines the
desired type. For example, to query the marital status codes, you might enter
the value MARITAL_STATUS_CODE corresponding to the LOOKUP_TYPE column.

Leave all other settings unchanged.

The view object WHERE clause shown in the editor should display a simple criteria
similar to the one shown in Figure 14-4, where the value MARITAL_STATUS_CODE is
set to filter the LOOKUP_TYPE column.

5. Click OK.

6. Repeat this procedure to define one view criteria for each LOOKUP_TYPE that you
wish to query.

Chapter 14
Defining a Base View Object for Use with Lookup Tables

14-14

Figure 14-4 Edit View Criteria Dialog with Lookup View Object View Criteria
Specified

What Happens When You Create a View Criteria with the Editor
The Create View Criteria dialog in JDeveloper lets you easily create view criteria and
save them as named definitions. These named view criteria definitions add metadata
to the target view object's own definition. Once defined, named view criteria appear by
name in the View Criteria page of the overview editor for the view object.

JDeveloper then creates the XML document file that represents the view objects's
declarative settings and saves it in the directory that corresponds to the name of its
package. For example, the XML file created for a view object named LookupsBaseVO
in the lookups package is ./lookups/LookupsBaseVO.xml under the project's source
path.

To view the view criteria, expand the desired view object in the Application
window, select the XML file under the expanded view object, open the Structure
window, and expand the View Criteria node. As shown in the following example,
the LookupsBaseVO.xml file specifies the <ViewCriteria> definition that allows the
LookupsBaseVO to return only the marital types. Other view criteria added to the
LookupsBaseVO are omitted from this example for brevity.

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="LookupsBaseVO"
 BindingStyle="OracleName"
 CustomQuery="true"
 PageIterMode="Full"
 UseGlueCode="false">
 <SQLQuery>
 <![CDATA[SELECT L.LOOKUP_TYPE
 ,L.LOOKUP_CODE
 ,L.MEANING

Chapter 14
Defining a Base View Object for Use with Lookup Tables

14-15

 ,L.DESCRIPTION
 FROM LOOKUP_CODES L
 WHERE L.LANGUAGE = SYS_CONTEXT('USERENV','LANG')
 ORDER BY L.MEANING]]>
 </SQLQuery>
 ...
 <ViewCriteria
 Name="listMaritalStatusTypes"
 ViewObjectName="oracle.summit.model.lookups.LookupsBaseVO"
 Conjunction="AND"
 Mode="3"
 <Properties>
 <CustomProperties>
 <Property
 Name="autoExecute"
 Value="false"/>
 <Property
 Name="showInList"
 Value="true"/>
 <Property
 Name="mode"
 Value="Basic"/>
 </CustomProperties>
 </Properties>
 <ViewCriteriaRow
 Name="vcrow24">
 <ViewCriteriaItem
 Name="Type"
 ViewAttribute="Type"
 Operator="="
 Conjunction="AND"
 Value="MARITAL_STATUS_CODE"
 Required="Optional"/>
 </ViewCriteriaRow>
</ViewCriteria>

What Happens at Runtime: How a View Instance Accesses Lookup
Data

When you create a view instance based on a view criteria, the next time the view
instance is executed it augments its SQL query with an additional WHERE clause
predicate corresponding to the view criteria that you've populated in the view criteria
rows.

Accessing View Instances of the Shared Service
Use ADF Business Components view accessors to access view instances across
shared application modules. You can set up validation rules or LOVs and use view
accessors to access shared view instances.

View accessors in ADF Business Components are value accessor objects that point
from an entity object attribute (or view object) to a destination view object or shared
view instance in the same application workspace. The view accessor returns a row set
that by default contains all rows from the destination view object. You can optionally
filter this row set by applying view criteria to the view accessor. The base entity object
or view object on which you create the view accessor and the destination view object

Chapter 14
Accessing View Instances of the Shared Service

14-16

need not be in the same project or application module, but they must be in the same
application workspace.

Because view accessors give you the flexibility to reach across application modules to
access the queried data, they are ideally suited for accessing view instances of shared
application modules. For details about creating a data model of view instances for a
shared application module, see How to Create a Shared Application Module Instance.

This ability to access view objects in different application modules makes view
accessors particularly useful for:

• Validation rules that you set on the attributes of an entity object. In this case, the
view accessor derives the validation rule's values from lookup data corresponding
to a view instance attribute in the shared application module.

• List of Value (LOV) that you enable for the attribute of any view object. In this
case, the view accessor derives the list of values from lookup data corresponding
to a view instance attribute in the shared application module.

Validation rules with accessors are useful when you do not want the UI to display a list
of values to the user, but you still need to restrict the list of valid values. Alternatively,
consider defining an LOV for view object attributes to simplify the task of working
with list controls in the user interface. Because you define the LOV on the individual
attributes of business components, you can customize the LOV usage for an attribute
once and expect to see the list control in the form wherever the attribute appears.

How to Create a View Accessor for an Entity Object or View Object
View accessors provide the means to access a data source independent of the
application module. View accessors can be defined at the level of the entity object or
individual view objects. However, because at runtime view accessor results are often
filtered depending on the usage involved, it is recommended that you create unique
view accessors for each usage in your application.

Best Practice:

Oracle recommends creating unique view accessors whenever your
application needs to expose an LOV-enabled attribute. Reusing view
accessors to create multiple list of values is discouraged because LOV
results are often filtered at runtime. For example, the results of a saved
search will filter the row set of the target view object until the end user
unapplies the search criteria. Consequently, view accessors that get applied
to this same destination view object will have their results filter too. To ensure
the view accessor always returns the intended row set at runtime, create
unique view accessors for each usage.

Defining view accessors on the entity object should be used carefully since view
objects that you create based on the entity object will inherit the view accessors of
their base entity objects. While defining the view accessor once on the entity object
itself allows you to reuse the same view accessor, the view accessor must not be used
in different application scenarios. If you intend to define validation rules for the entity
object attributes and create LOV-enabled attributes for that entity object's view object,
it is recommended that you create separate view accessors.

Chapter 14
Accessing View Instances of the Shared Service

14-17

For example, assume the AddressEO entity object defines the Shared_CountriesVA
view accessor and the AddressesVO view object inherits this view accessor. In this
case, defining the view accessor on the entity object is useful: the accessor for
AddressEO defines a validation rule on the CountryId attribute. But a different view
accessor for AddressesVO should be used to enable an LOV on its CountryId attribute.

When you create a view accessor that accesses a view instance from a shared
application module, you may want to use a prefix like Shared_ to name the view
accessor. This naming convention will help you identify the view accessor when you
need to select it for the entity object or view object.

Before you begin:

It may be helpful to have an understanding of view accessors. For more information,
see Accessing View Instances of the Shared Service.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Shared
Application Modules.

You will need to complete these tasks:

• Create the entity object or view object that you want to access, as described
in Creating a Business Domain Layer Using Entity Objects and Defining SQL
Queries Using View Objects.

• Enable application module sharing, as described in How to Create a Shared
Application Module Instance.

• Create the base view object for the lookup data, as described in How to Create a
Base View Object Definition for a Lookup Table.

• You can optionally refine the list returned by a view accessor by applying view
criteria that you define on the view object. To create view criteria for use with a
view accessor, see How to Define the WHERE Clause of the Lookup View Object
Using View Criteria.

To create the view accessor:

1. In the Application window, double-click the entity object or view object on which
you want to define the view accessor.

Whether you create the view accessor on the entity object or on the view object
will depend on the view accessor's intended usage. Generally, creating view
accessors on the entity object ensures the widest possible usage.

2. In the overview editor, click the Accessors navigation tab and then, in the View
Accessors section, click the Create New View Accessors button to add the
accessor to the entity object or view object definition you are currently editing.

3. In the View Accessors dialog, select the view instance name you created for your
lookup table from the shared application module node and shuttle it to the view
accessors list.

The dialog will display all view objects and view instances from your application.
For example, the View Accessors dialog in Figure 14-5 shows the shared
application module LookupServiceAM with the list of view instances, as shown .

By default, the view accessor you create will display the same name as the
view object instance (or will have an integer appended when it is necessary to
distinguish it from a child view object of the same name). You can edit Accessor
Name to give it a unique name.

Chapter 14
Accessing View Instances of the Shared Service

14-18

For example, the View Accessors dialog in Figure 14-5 shows the view accessor
AddressUsageTypesVA for the AddressUsageTypes view instance selection in the
shared application module LookupServiceAM. This view accessor is created
on the base entity object AddressUsagesEO and accesses the row set of the
AddressUsageTypes view instance.

Figure 14-5 Defining a View Accessor on an Entity Object

4. If you want to apply an existing view criteria to filter the accessor, with the view
accessor selected in the overview editor, click the Edit icon.

In the Edit View Accessor dialog, click Edit and perform the following steps to
apply the view criteria:

a. Select the view criteria that you want to apply and shuttle it to the Selected
list.

You can add additional view criteria to apply multiple filters (a logical AND
operation will be performed at runtime).

b. Enter the attribute name for the bind variable that defines the controlling
attribute for the view accessor row set.

Unlike view criteria that you set directly on a view object (to create a view
instance, for example), the controlling attribute of the view accessor's view
criteria derives the value from the view accessor's base view object.

c. Click OK.

5. In the View Accessors dialog, click OK.

How to Validate Against the Attribute Values Specified by a View
Accessor

View accessors that you create to access the view rows of a destination view object
may be used to verify data that your application solicits from the end user at runtime.
For example, when the end user fills out a registration form, individual validation rules
can verify the title, marital status, and contact code against lookup table data queried
by view instances of the shared application module.

Chapter 14
Accessing View Instances of the Shared Service

14-19

You can apply view accessors you have defined on the entity object to these built-in
declarative validation rules:

• The Compare validator performs a logical comparison between an entity attribute
and a value. When you specify a view accessor to determine the possible values,
the compare validator applies the Equals, NotEquals, GreaterThan, LessThan,
LessOrEqualTo, GreaterOrEqualTo operator you select to compare against the
values returned by the view accessor.

• The List validator compares an entity attribute against a list of values. When
you specify a view accessor to determine the valid list values, the List validator
applies an In or NotIn operator you select against the values returned by the view
accessor.

• The Collection validator performs a logical comparison between an operation
performed on a collection attribute and a value. When you specify a view
accessor to determine the possible values, the Collection validator applies the
Sum, Average, Count, Min, Max operation on the selected collection attribute to
compare against the values returned by the view accessor.

Validation rules that you define to allow runtime validation of data for entity-based view
objects are always defined on the attributes of the entity object. You use the editor for
the entity object to define the validation rule on individual attributes. Any view object
that you later define that derives from an entity object with validation rules defined will
automatically receive attribute value validation.

Before you begin:

It may be helpful to have an understanding of view accessors. For more information,
see Accessing View Instances of the Shared Service.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Shared
Application Modules.

You will need to complete this task:

Create the desired entity object, as described in How to Create Multiple Entity
Objects and Associations from Existing Tables.

To validate against a view accessor comparison, list, or collection type:

1. In the Application window, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab.

3. In the Business Rules page, expand the entity object, select the attribute to be
validated, and then click the Create new validator button to add the validation
rule to the entity object attribute.

4. In the Add Validation Rule dialog, in the Rule Type dropdown list, select
Compare, List, or Collection.

5. Make the selections required by the validator selection.

6. In the Compare With or List Type dropdown list, select View Accessor
Attribute.

7. In the Select View Accessor Attribute group box, expand the desired view
accessor from the shared service and select the attribute you want to provide
as validation.

Chapter 14
Accessing View Instances of the Shared Service

14-20

Figure 14-6 shows what the dialog looks like when you use a List validator to
select a view accessor attribute.

Figure 14-6 List Validator Using a View Accessor

8. Click the Failure Handling tab and enter a message that will be shown to the user
if the validation rule fails.

9. Click OK.

What Happens When You Define a View Accessor Validator
When you use a List validator, a <ListValidationBean> tag is added to an entity
object's XML file. The following example shows the XML code for the CountryId
attribute in the Address entity object. A List validator has been used to validate the
user's entry against the list of country ID values as retrieved by the view accessor from
the Countries view instance.

<Attribute
 Name="CountryId"
 IsNotNull="true"
 Precision="2"
 ColumnName="COUNTRY_ID"
 Type="java.lang.String"
 ColumnType="CHAR"
 SQLType="VARCHAR"
 TableName="ADDRESSES">
 RetrievedOnUpdate="true"
 RetrievedOnInsert="true">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="2"/>
 </DesignTime>

Chapter 14
Accessing View Instances of the Shared Service

14-21

 <ListValidationBean
 xmlns="http://xmlns.oracle.com/adfm/validation"
 Name="CountryId_Rule_1"
 ResId="CountryId_Rule_0"
 OnAttribute="CountryId"
 OperandType="VO_USAGE"
 Inverse="false"
 ViewAccAttrName="Value"
 ViewAccName="SharedCountriesVA">
 <ResExpressions>
 <Expression
 Name="0"><![CDATA[SharedCountriesVA.Value]]>
 </Expression>
 </ResExpressions>
 </ListValidationBean>
 <Properties>
 <SchemaBasedProperties>
 <LABEL
 ResId="CountryId_LABEL"/>
 </SchemaBasedProperties>
 </Properties>
</Attribute>

What You May Need to Know About Dynamic Filtering with View
Accessors

The View Object API setWhereClause() method allows you to add a dynamic WHERE
clause to a view instance whose view accessor may already have view criteria
specified at design time. At runtime, when your view accessor and its view criteria
is applied to the view instance and you call the setWhereClause() method on the
view instance to add an extra WHERE clause, the programmatically set WHERE clause is
AND-ed with the WHERE clause of any already applied view criteria.

How to Create an LOV Based on a Lookup Table
View accessors that you create to access the view rows of a destination view object
may be used to display a list of values to the end user at runtime. You first create a
view accessor with the desired view instance as its data source, and then you can add
the view accessor to an LOV-enabled attribute of the displaying view object. You will
edit the view accessor definition for the LOV-enabled attribute so that it points to the
specific lookup attribute of the view instance. Because you want to populate the row
set cache for the query with static data, you would locate the destination view instance
in a shared application module.

While the list usage is defined on the attribute of a view object bound to a UI list
control, the view accessor definition exists on either the view object or the view
object's base entity object. If you choose to create the view accessor on the view
object's entity object, the Accessors page of the overview editor for the view object
will display the inherited view accessor, as shown in Figure 14-7. Alternatively, if you
choose to create the view accessor on the attribute's view object, you can accomplish
this from either the editor for the LOV definition or from the Accessors page of the
overview editor.

To ensure that the view accessor for the LOV always queries the latest data from
the database table, you can enable the auto-refresh feature on the view accessor's
destination view object.

Chapter 14
Accessing View Instances of the Shared Service

14-22

Figure 14-7 Accessors Page of the Overview Editor

Before you begin:

It may be helpful to have an understanding of view accessors. For more information,
see Accessing View Instances of the Shared Service.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Shared
Application Modules.

You may also find it helpful to understand additional examples of how to work with
LOV-enabled attributes. For more information, see Working with List of Values (LOV)
in View Object Attributes.

You will need to complete these tasks:

• Create the view object that is the data source for the view accessor, as described
in How to Create an Entity-Based View Object, and How to Create a Custom SQL
Mode View Object.

• Create the view object that is the data source for the view accessor, as described
in How to Create an Entity-Based View Object, and How to Create a Custom SQL
Mode View Object.

• Optionally, enable auto refresh for the view object, as described in How to
Automatically Refresh the View Object of the View Accessor.

If you need to ensure that your view accessor always queries the latest data from
the lookup table, you can set the Auto Refresh property on the destination view
object. This property allows the view object instance to refresh itself after a change
in the database. The typical use case is when you define a view accessor for the
destination view object.

To create an LOV that displays values from a lookup table:

1. In the Application window, double-click the view object that contains the desired
attribute.

2. In the overview editor, click the Accessors navigation tab.

3. In the Accessors page, in the View Accessors list, check to see whether the view
object inherited the desired view accessor from its base entity object. If no view

Chapter 14
Accessing View Instances of the Shared Service

14-23

accessor is present, either create the view accessor on the desired entity object
or click the Create New View Accessors button to add the accessor to the view
object you are currently editing.

Validation rules that you define are always defined on the attributes of the
view object's base entity object. It may therefore be convenient to define view
accessors at the level of the base entity objects when you know that you will also
validate entity object attributes using a view accessor list.

4. In the overview editor, click the Attributes navigation tab.

5. In the Attributes page, select the attribute that is to display the LOV, and then click
the List of Values tab and click the Add List of Values button.

6. In the Create List of Values dialog, select the view accessor from the List Data
Source dropdown list.

The view accessor you select, will be the one created for the lookup table view
object instances to use as the data source.

7. Select the attribute from this view accessor from the List Attribute dropdown list
that will return the list of values for the attribute you are currently editing.

The editor creates a default mapping between the view object attribute and the
LOV-enabled attribute. In this use case, the attributes are the same. For example,
the attribute OrderId from the OrdersView view object would map to the attribute
OrderId from the Shared_OrdersVA view accessor.

8. If you want to specify supplemental values that your list returns to the base view
object, click the Add button in List Return Values and map the desired view
object attributes to the same attributes accessed by the view accessor.

Supplemental attribute return values are useful when you do not require the user
to make a list selection for the attributes, yet you want those attributes values, as
determined by the current row, to participate in the update.

For example, to map the attribute StartDate from the OrdersView view object, you
would choose the attribute StartDate from the Shared_OrdersVA view accessor.
Do not remove the default attribute mapping for the attribute for which the list is
defined.

9. Click OK.

What Happens When You Define an LOV for a View Object Attribute
When you add an LOV to a view object attribute, JDeveloper updates the view object's
XML file with an LOVName property in the <ViewAttribute> element. The definition of
the LOV appears in a new <ListBinding> element. The metadata in the following
example shows that the PaymentTypeId attribute refers to the LOV_PaymentTypeId
LOV and sets the choice control type to display the LOV. The LOV definition for
LOV_PaymentTypeId appears in the <ListBinding> element.

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="CustomerRegistrationVO"
 ...
 <ViewAttribute Name="PaymentTypeId"
 LOVName="LOV_PaymentTypeId"
 PrecisionRule="true"
 EntityAttrName="PaymentTypeId"
 EntityUsage="OrdEO"

Chapter 14
Accessing View Instances of the Shared Service

14-24

 AliasName="PAYMENT_TYPE_ID">
 <Properties>
 <SchemaBasedProperties>
 <CONTROLTYPE Value="choice"/>
 </SchemaBasedProperties>
 </Properties>
 </ViewAttribute>
 ...
 <ListBinding
 Name="LOV_PaymentTypeId"
 ListVOName="PaymentTypeVA"
 ListRangeSize="-1"
 NullValueFlag="start"
 NullValueId="LOVUIHints_NullValueId"
 MRUCount="0">
 <AttrArray Name="AttrNames">
 <Item Value="PaymentTypeId"/>
 </AttrArray>
 <AttrArray Name="ListAttrNames">
 <Item Value="Id"/>
 </AttrArray>
 <AttrArray Name="ListDisplayAttrNames">
 <Item Value="Payment Type"/>
 </AttrArray>
 <DisplayCriteria/>
 </ListBinding>
 ...
</ViewObject>

What Happens at Runtime: How the Attribute Displays the List of
Values

The ADF Business Components runtime adds functionality in the attribute setters of
the view row and entity object to facilitate the LOV-enabled attribute behavior. In order
to display the LOV-enabled attribute values in the user interface, the LOV facility
fetches the data source, and finds the relevant row attributes and mapped target
attributes.

What You May Need to Know About Displaying List of Values From a
Lookup Table

Unlike entity-based view objects, read-only, custom SQL view objects that you create,
will not define a key attribute by default. While it is possible to create a read-only view
object without defining its key attribute, in custom SQL mode it is a best practice to
select the attribute that corresponds to the queried table's primary key and mark it as
the key attribute. The presence of a key attribute ensure the correct runtime behavior
for row set navigation. For example, the user interface developer may create an LOV
component based on the read-only view object collection. Without a key attribute to
specify the row key value, the LOV may not behave properly and a runtime error can
result.

Chapter 14
Accessing View Instances of the Shared Service

14-25

What You May Need to Know About Programmatically Invoking
Database Change Notifications

When you create a databound UI component in a web page, you can enable the auto-
refresh feature on the corresponding view object, as described in How to Automatically
Refresh the View Object of the View Accessor. In this case, the ADF Model layer and
ADF Business Components will handle processing database change notifications at
runtime and the shared application module cache will be updated for you. However,
when you create a method to programmatically refresh a view instance of a shared
application module, your method needs to invoke the processChangeNotification()
method on the shared application module before you refresh the view instance.
Calling the processChangeNotification() method before refreshing the view instance
ensures that the shared application module cache gets updated if the corresponding
queried data has changed in the database.

To programmatically refresh a view instance of a shared application module,
follow these steps (as illustrated in the following example from the
processChangeTestClient.java example in the SummitADF_Examples workspace):

1. Call the processChangeNotification() method.

2. Get the view instance from the shared application module.

3. Refresh the view instance.

public class processChangeTestClient {
 public static void main(String[] args) {
 processChangeTestClient processChangeTestClient = new
processChangeTestClient();

 ApplicationModuleHandle handle = null;
 String amDef = "oracle.summit.model.services.BackOfficeAppModule";
 String config = "BackOfficeAppModuleLocal";
 try {
 handle = Configuration.createRootApplicationModuleHandle(amDef,
config);
 ApplicationModule am = handle.useApplicationModule();
 // 1. Update the shared application module cache with changed data.
 am.processChangeNotifications();
 // 2. Get the view instance to refresh.
 ViewObject vo = am.findViewObject("Inventory");
 // 3. Refresh the view instance with updated data.
 ((ViewObjectImpl)vo).refreshCollection(null, false, false);
 vo.reset();
 while (vo.hasNext()) {
 Row r = vo.next();
 System.out.println((String)r.getAttribute("Name"));
 }
 } finally {
 if (handle != null)
 Configuration.releaseRootApplicationModuleHandle(handle, false);
 }

 }
}

Chapter 14
Accessing View Instances of the Shared Service

14-26

What You May Need to Know About Inheritance of AttributeDef
Properties

When one view object extends another, you can create the LOV-enabled attribute on
the base object. Then when you define the child view object in the overview editor,
the LOV definition will be visible on the corresponding view object attribute. This
inheritance mechanism allows you to define an LOV-enabled attribute once and apply
it later across multiple view objects instances for the same attribute. For details about
extending a view object from another view object definition, see How To Extend a
Component After Creation.

You can also use the overview editor to extend the inherited LOV definition. For
example, you may add extra attributes already defined by the base view object's query
to display in selection list. Alternatively, you can create a view object instance that
uses a custom WHERE clause to query the supplemental attributes not already queried
by the base view object. For information about customizing entity-based view objects,
see Working with Bind Variables.

What You May Need to Know About Using Validators
If you have created an LOV-enabled attribute for a view object, there is no need to
validate the attribute using a List validator. You use an attribute validator only when
you do not want the list to display in the user interface but still need to restrict the
list of valid values. A List validator may be a simple static list or it may be a list of
possible values obtained through a view accessor you define. Alternatively, you might
prefer to use a Key Exists validator when the attribute displayed in the UI is one that
references a key value (such as a primary, foreign, or alternate key). For information
about declarative validation in ADF Business Components, see Defining Validation and
Business Rules Declaratively.

Testing View Object Instances in a Shared Application
Module

Use the interactive ADF Business Components application module testing tool in
JDeveloper to test the data model. It helps you conducts tests without the need of
an application user interface or test client program.

JDeveloper includes an interactive application module testing tool that you can use to
test all aspects of its data model without having to use your application user interface
or write a test client program. Running the Oracle ADF Model Tester can often be
the quickest way of exercising the data functionality of your business service during
development.

How to Test the Base View Object Using the Oracle ADF Model Tester
The application module is the transactional component that the Oracle ADF Model
Tester (or UI client) will use to work with application data. The set of view objects used
by an application module defines its data model, in other words, the set of data that
a client can display and manipulate through a user interface. You can use the Oracle
ADF Model Tester to test that the accessors you defined yield the expected validation
result and that they display the correct LOV attribute values.

Chapter 14
Testing View Object Instances in a Shared Application Module

14-27

To test the view objects you added to an application module, use the Oracle ADF
Model Tester, which is accessible from the Application window.

Before you begin:

It may be helpful to have an understanding of Oracle ADF Model Tester. For more
information, see Testing View Object Instances in a Shared Application Module.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Shared
Application Modules.

You may also find it helpful to understand the diagnostic messages specific to ADF
Business Components debugging. For more information, see How to Enable ADF
Business Components Debug Diagnostics.

You will need to complete this task:

Create the application module with view instances, as described in Creating and
Modifying an Application Module.

To test view objects in an application module configuration:

1. In the Application window, right-click the application module and choose Run.

Alternatively, choose Debug when you want to run the application in the Oracle
ADF Model Tester with debugging enabled. For example, when debugging using
the Oracle ADF Model Tester, you can view status message and exceptions, step
in and out of source code, and manage breakpoints. The debugger process panel
opens in the Log window and the various debugger windows.

2. In the Oracle ADF Model Tester, expand the tree list and double-click the desired
view object node.

Note that the view object instance may already appear executed in the testing
session. In this case, the tester panel on the right already displays query results
for the view object instance, as shown in Figure 14-8. The fields in the tester panel
of a read-only view object will always appear disabled since the data it represents
is not editable.

Chapter 14
Testing View Object Instances in a Shared Application Module

14-28

Figure 14-8 Testing the Data Model in the Oracle ADF Model Tester

How to Test LOV-Enabled Attributes Using the Oracle ADF Model
Tester

To test the LOV you created for a view object attribute, use the Oracle ADF Model
Tester, which is accessible from the Application window. For details about displaying
the tester and the supported control types, see How to Test LOV-Enabled Attributes
Using the Oracle ADF Model Tester.

What Happens When You Use the Oracle ADF Model Tester
When you launch the Oracle ADF Model Tester, JDeveloper starts the tester tool
in a separate process and the Oracle ADF Model Tester appears. The tree at
the left of the dialog displays all of the view object instances in your application
module's data model. Figure 14-8 shows just one instance in the expanded tree,
called ProductImages. After you double-click the desired view object instance, the
Oracle ADF Model Tester will display a panel to inspect the query results, as shown in
Figure 14-8.

The test panel will appear disabled for any read-only view objects you display because
the data is not editable. But even for the read-only view objects, the tool affords some
useful features:

• You can validate that the UI hints based on the Label Text control hint and format
masks are defined correctly.

• You can also scroll through the data using the toolbar buttons.

The Oracle ADF Model Tester becomes even more useful when you create entity-
based view objects that allow you to simulate inserting, updating, and deleting rows,
as described in How to Test Entity-Based View Objects Interactively.

Chapter 14
Testing View Object Instances in a Shared Application Module

14-29

What Happens at Runtime: How Another Service Accesses the
Shared Application Module Cache

When a shared application module with application scope is requested by an LOV,
then the ADF Business Components runtime will create an ApplicationPool object
for that usage. There is only one ApplicationPool created for each shared usage
that has been defined in the ADF Business Components project configuration file
(.jpx). The runtime will then use that ApplicationPool to acquire an application
module instance that will be used like a user application module instance, to acquire
data. The reference to the shared application module instance will be released once
the application-scoped application module is reset. The module reference is released
whenever you perform an unmanaged release or upon session timeout.

Since multiple threads will be accessing the data caches of the shared application
module, it is necessary to partition the iterator space to prevent race conditions
between the iterators of different sessions. This will help ensure that the next request
from one session does not change the state of the iterator that is being used by
another session. The runtime uses ADF Business Components support for multiple
iterators on top of a single RowSet to prevent these race conditions. So, the runtime will
instantiate as many iterators as there are active sessions for each RowSet.

An application-scoped shared application module lifecycle is similar to the lifecycle of
any application module that is managed by the ApplicationPool object. For example,
once all active sessions have released their shared application module, then the
application module may be garbage-collected by the ApplicationPool object. The
shared pool may be tuned to meet specific application requirements.

Session-scoped shared application modules are simply created as nested application
module instances within the data model of the root, user application module. For
details about nested application modules, Defining Nested Application Modules.

Chapter 14
Testing View Object Instances in a Shared Application Module

14-30

15
Creating SOAP Web Services with
Application Modules

This chapter describes how to publish ADF application modules and how to define a
SOAP service interface connection to make them available as external web services
in a Fusion web application. It also describes how to incorporate the published
application module as an external service in a Fusion web application.
This chapter includes the following sections:

• About Service-Enabled Application Modules

• Publishing Service-Enabled Application Modules

• Accessing Remote Data Over the Service-Enabled Application Module

• Accessing Polymorphic Collections in the Consuming Application

• Working with the Find Method Filter Model in the Consuming Application

About Service-Enabled Application Modules
Service-enabled ADF Business Components application modules are made available
to SOAP service customers through a service interface.

A service-enabled application module is an ADF application module that you
advertise through a service interface to service consumers. There are three scenarios
for service consumers to consume a published service-enabled application module:
web service access, Service Component Architecture (SCA) composite access, and
access by another ADF application module.

Service Component Architecture (SCA) provides an open, technology-neutral model
for implementing remotable services that are defined in terms of business functionality
and that make middleware functions more accessible to application developers.
ADF Business Components supports an SCA-compliant solution through application
modules you can publish with a service interface.

When you service-enable your application module, JDeveloper generates the
necessary artifacts comprising: 1) The Java interface defining the service, 2) an EJB
3.0 session bean that implements this Java interface, 3) a WSDL file that describes
the service's operations, and (4) XML schema documents (XSD) that defines the
service's data structures. The service interface is described for Fusion web application
clients in a language-neutral way by the combination of WSDL and XSD.

SCA defines two kinds of service:

• Remotable services, typically coarse-grained and designed to be published
remotely in a loosely coupled SOA architecture

• Local services, typically fine-grained and designed to be used locally by other
implementations that are deployed concurrently in a tightly coupled architecture

ADF Business Components services fall into the first category, and should only be
used as remotable services.

15-1

ADF Business Components services, including data access and method calls, defined
by the remote application modules are interoperable with any other application
module. This means the same application module can support interactive web user
interfaces using ADF data controls and web service clients.

Service-Enabled Application Module Use Cases and Examples
Any development team can publish a service-enabled application module to contribute
to the Fusion web application. The Fusion web application assembled from remote
web services also does not require the participating services to run on a single
application server.

Although the web applications may run on separate application servers, the
appearance that SCA provides is one of a unified application. Consuming client
projects use the ADF service factory lookup mechanism to access the data and
any business methods encapsulated by the service-enabled application module. At
runtime, the calling client and the ADF web service may or may not participate in the
same transaction, depending on the protocol used to invoke the service (either SOAP
or RMI). Only the RMI protocol and a Java Transaction API (JTA) managed transaction
support the option to call the service in the same transaction as the calling client. By
default, to support the RMI protocol, the ADF web service is configured to participate
in the same transaction.

Additional Functionality for Service-Enabled Application Modules
You may find it helpful to understand other Oracle ADF features before you start
working with ADF Business Components services. Following are links to other
functionality that may be of interest.

• For information about the SCA and service data object (SDO) standards, see the
Specifications section of the website for the Organization for the Advancement of
Structured Information Standards (OASIS) through the Open Composite Services
Architecture (CSA) at http://www.oasis-opencsa.org.

• For further background about web services and Oracle WebLogic Server support
for web services, see Overview of Web Services in Understanding Web Services

• For details about the predefined authorization policies
supported by Oracle Web Services Manager (OWSM), including
binding_permission_authorization_policy used to enable authorization for RMI
clients. For more information, see the "Predefined Policies" appendix in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

• For local service support, use the ApplicationModule interface and ViewObject
interface support described in Working Programmatically with an Application
Module's Client Interface.

• For API documentation related to the oracle.jbo package, see the following
Javadoc reference document:

– Java API Reference for Oracle ADF Model

Publishing Service-Enabled Application Modules
Use the ADF Application Module to enable a SOAP-based web service and make
available rows of view object data.

Chapter 15
Publishing Service-Enabled Application Modules

15-2

http://www.oasis-opencsa.org

The application module is ADF Business Components framework component that
encapsulates business logic as a set of related business functions. Application
modules are mapped to services. You use the overview editor for your application
module to enable a web service interface and publish rows of view object data as
service data object (SDO) components.

The SDO framework upon which the SDO components are based abstracts the
data of the view object and standardizes the way that data structures are passed
between Java and XML. This data abstraction simplifies working with heterogeneous
data sources in a service-oriented architecture (SOA) and lets you selectively service-
enable view objects using the same view object to support interactive web user
interfaces and web service clients.

JDeveloper allows you to expose application modules as web services which use
SDO components based on view instance that your application module defines
to standardize the way that data structures are passed between Java and XML.
JDeveloper also generates the WSDL service description that is used by the web
service client in the consuming application.

Note:

JDeveloper only supports generating SDO components for view objects of
a service-enabled application module. Currently, no other ADF Business
Components may be defined as SDO components.

The service-enabled application module exposes the view objects, custom methods,
built-in data manipulation operations, and specialized find methods based on named
view criteria to be used by the client. Once you have enabled the application module
service interface, you will need to create an ADF Business Components Service
Interface deployment profile and deploy it to the target application server.

Note:

It is important to note that you don't implement methods with SDO
parameters directly. The SDO framework is used to wrap the view row types
during runtime only.

How to Enable the Application Module Service Interface
You edit the application module in JDeveloper to create a web service interface that
exposes the top-level view objects and defines the available service operations it
supports. Top-level view objects that you may service-enable and make accessible by
the service client are:

• View instances of standalone view objects (does not participate in a hierarchical
relationship)

• Master view instances of master-detail related view objects (does not include the
child view instance)

Chapter 15
Publishing Service-Enabled Application Modules

15-3

• View instances of view objects that extend a parent view object (must not include
a subtype discriminator attribute to define a polymorphic view object)

View objects that do not automatically participate in the service interface are:

• Child view instances of master-detail related view objects

You can add child view objects individually to the service interface. For information
on how to create SDO classes for child view objects, see How to Service-Enable
Individual View Objects.

• View instances of polymorphic view objects (as defined by a subtype discriminator
attribute)

In JDeveloper, you can create a web service proxy client to access and manipulate
for polymorphic view objects. For an example of a JAX-WS client, see Accessing
Polymorphic Collections in the Consuming Application.

The primary purpose of the standard service operations is to expose data manipulation
operations on the view objects. Any business logic that you have defined on the
underlying framework objects (for example, business rule validation) will be applied
when you invoke a standard service operation.

Table 15-1 shows the list of standard operations that service view instances support.

Table 15-1 Standard View Instance Data Manipulation Operations

Operation Method Name Operation Description

Create create<VOName> Creates an ADF Business Components
view row.

Update update<VOName> Updates an ADF Business Components
view row.

Delete delete<VOName> Deletes an ADF Business Components
view row.

Merge merge<VOName> Updates an ADF Business Components
view row if one exists; otherwise,
creates a new one.

GetByKey get<VOName> Gets a single ADF Business
Components view row by primary key.

Find (by view criteria
applied to view object
query statement)

find<VOName> Finds and returns a list of ADF Business
Components view rows using an SDO-
based view criteria that is applied to the
selected view object's query statement.

Note that the query must not specify a
bind variable defined as required for the
query to execute. The service interface
does not expose required bind variables
at runtime. For details about creating a
find method for this scenario, see How
to Expose a Declarative Find Operation
Filtered By a Required Bind Variable.

Chapter 15
Publishing Service-Enabled Application Modules

15-4

Table 15-1 (Cont.) Standard View Instance Data Manipulation Operations

Operation Method Name Operation Description

Find (by view criteria) find<VOName><VCName
>

Finds and returns a list of single ADF
Business Components view rows by
named view criteria and values for the
required bind variables. This is the
preferred way to filter the ADF Business
Components view rows that rely on a
required bind variable.

Process process<VOName> Performs a Create, Update, Delete,
or Merge operation on a list of ADF
Business Components view rows. The
specified operation is applied to all
objects in the given list.

ProcessChangeSummary processCS<VOName> Performs a Create, Update, or Delete
operation on a list of ADF Business
Components view rows. Different
operations may be applied to different
objects, depending on what is specified
in the ChangeSummary object.

Additionally, several built-in methods can be optionally added to the client service
interface of the application module (AppModuleService.java). Table 15-2 shows the
list of built-in methods that provide runtime support for service view instances that you
enable.

Table 15-2 Built-In Service Interface Methods

Operation Method Name and
Async Method Name

Method Description

Generate Object and
Attribute Control
Hint Operations

getDfltObjAttr
Hints()

getDfltObjAttr
HintsAsync()

Returns the base UI hints, including
object and attribute display name labels,
for an object based on a specific locale.
The method takes the name of the
object, at the service, to get the hints
and the locale name (in ISO 639-1
format) to drive localization of base
hints.

This method may be used by the
web service consuming application to
generate a user interface with the
correct labels for the service view
instance and its attributes. For details
about specifying display name UI hints,
see How to Set Display Names for
Service View Instances and Attributes.

Chapter 15
Publishing Service-Enabled Application Modules

15-5

Table 15-2 (Cont.) Built-In Service Interface Methods

Operation Method Name and
Async Method Name

Method Description

Generate Last Update
Time Operations

getServiceLast
UpdateTime()

getServiceLast
UpdateTimeAsync
Response()

Returns the last modified time for the
service schema files at the SOAP
service endpoint.

This method may be used by the
web service consuming application
that caches the service view instance
schema files (XSD) to determine when
the object has been updated.

Generate Entity List
Operation

getEntityList()

getEntityListAsync(
)

Returns the list of service view instance
names and flags that indicate whether
each service view object at the SOAP
service endpoint supports Create,
Update, Merge, and Delete operations.

This method may be used by the web
service consuming application that uses
custom object services to determine
the available operations. Custom object
services are not created using the
ADF Business Components web service
design time and are not described in
this documentation.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF application modules and enables web service clients to access
rows of data and perform service operations. For more information, see Publishing
Service-Enabled Application Modules.

When you create the service-enabled application module, do not create it in a project
that already contains a standard web service (a Java class or interface with the
@WebService annotation). JDeveloper deployment profiles do not support deploying
a standard web service and an ADF Business Service web service from the same
project. If you attempt to deploy the ADF Business Service web service from the same
project as a standard web service, the deployment will fail with an Oracle WebLogic
Server exception error.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete these tasks:

• Create the desired view objects, as described in How to Create an Entity-Based
View Object and How to Create a Custom SQL Mode View Object.

• Create the desired application module, as described in How to Create an
Application Module.

• Optionally, set JDeveloper preferences to specify a default suffix for the names
of generated SDO classes, modify the default subpackage where the service
interface and classes reside, and set the default namespace prefix for the

Chapter 15
Publishing Service-Enabled Application Modules

15-6

generated SDO schema and web service, as described in How to Set Preferences
for Generating the ADF Web Service Interface.

• If you want to expose custom find operations on the service, create declarative
view criteria to specify the custom query, as described in How to Create Named
View Criteria Declaratively.

To create the web service interface:

1. In the Applications window, double-click the application module.

2. In the overview editor, click the Service Interface navigation tab and then click the
Enable support for Service Interface button.

Use the Create Service Interface wizard to configure the desired options.

3. In Create Service Interface wizard, on the Service Interface page, enter the name
and target namespace for the web service.

The target namespace is a URI for the service that you can assign to group similar
services together by entering the same URI. The default target namespace is the
package name of the application module combined with package names that you
specify in the Preferences dialog.

Tip:

You can define JDeveloper preferences that will shape the URI and allow
you to define a unique target namespace for your service. For details
about namespace URI shaping preferences, see How to Set Preferences
for Generating the ADF Web Service Interface.

4. To expose the methods of the application module as asynchronous service
methods and enable both synchronous and asynchronous operations on the web
service, select Generate Asynchronous Web Service Methods.

By default, the web service supports synchronous service methods. This forces
the invoking client application to wait for the response to return before it can
continue with its work. In cases where the response returns immediately, this
method of invoking the web service is common. However, because request
processing can be delayed, it is often useful for the client application to continue
its work and to handle the response later on.

5. The Service Categories list will appear empty unless role shaping has been
defined based on previously defined customization roles. Leave the Selected list
empty unless your organization is classifying services.

This feature has no impact on the service WSDL file and has no relevance to the
operation of web services.

6. On the Service Built-in Methods page, optionally, select Generate Object and
Attribute Control Hints Operation to generate a method that will return the static
control hints (UI hints) defined on a view instance and its attributes.

When you enable this option, the wizard adds the getDfltObjAttrHints()
method to the client service interface (AppModuleService.java). The web service
consuming application can invoke this method to resolve UI hints on the server
without requiring a database roundtrip. The method takes a service view object
name and a locale name and returns the base UI hints, including object and

Chapter 15
Publishing Service-Enabled Application Modules

15-7

attribute display name labels, for an object based on a specific locale. If the locale
name is not specified, the method uses the default locale.

7. Optionally, select Generate Last Update Time Operation to generate a method
that will return the last modified time for the service schema files.

When you enable this option, the wizard adds the getServiceLastUpdateTime()
method to the client service interface (AppModuleService.java). Before any
customization occurs, this method returns the file timestamp of the last updated
schema file. When a schema is customized at runtime, the last-update timestamp
is updated, and this latest timestamp will be returned. This feature is primarily
useful in web service consuming applications that cache the service XSD.

8. Optionally, select Generate Entity List Operation to generate a method that will
return the list of service view instances.

When you enable this option, the wizard adds the getEntityList() method to
the client service interface (AppModuleService.java). The method returns the
list of service view instance names, XSD type, and flags that indicate whether
the service view supports Create, Update, Merge, and Delete operations. This
feature is primarily useful in web service consuming applications that require
customization.

9. On the Service Custom Methods page, add the custom methods you want to
expose in the service interface and define the data types of each method's
parameters and return value.

The parameters and non-void return value of the custom service methods you
enable must be one of the service-interface supported data types, such as
a Java primitive type, or a list of the service-interface supported data types
(including oracle.jbo.server.ViewRowImpl, java.util.List<ViewRowImpl>,
oracle.jbo.AttributeList, java.util.List<AttributeList>, or
java.util.List<PrimitiveType>).

Note that although both ViewRowImpl and AttributeList data types expose
the identical row structure to the web service client, at runtime there will be a
fundamental difference. For a description of the supported data types, see What
You May Need to Know About Method Signatures on the ADF Web Service
Interface.

After selecting a qualifying custom method to appear in the service interface, for
each parameter and return value using the ViewRowImpl or AttributeList data
type, you must in turn select the name of the view object instance corresponding
to the row structure:

a. In the Selected list, expand return or parameters and select the item.

b. Enter the Java element data type in Element Java Type.

c. In the case where the Java element type is ViewRowImpl or AttributeList,
enter the view object instance name to identify the row structure in Element
View Object.

For example, if you define a custom method to return a single row of
the CustomerInfo view object instance, you would need a custom method
signature like this:

public ViewRowImpl findCustomerInfo(int id)

Then, after selecting the findCustomerInfo() custom method to appear in the
service interface, you would select its return value in the tree and configure its

Chapter 15
Publishing Service-Enabled Application Modules

15-8

View Object property to be CustomerInfo, the view instance name whose row
structure should be used at runtime.

10. To expose service information messages for a custom method or warnings for
process operation methods, select Include Warnings in Return Service Data
Object.

For example, you might want to display an informational message when a method
returns the total employee compensation and the total is outside of the desired
range.

If Include Warnings is not selected, no informational messages will be returned
with the service response.

This option is only enabled when the method does not return a view row or a
list of view rows. When the method returns view rows, the underlying view object
determines whether the method supports warnings, as described How to Service-
Enable Individual View Objects.

The informational messages (and warnings) are reported as part of the return
object. JDeveloper generates appropriate wrappers as the return objects, and the
wrappers contain the actual method return and the informational messages.

11. On the Service View Instances page, select the top-level view instances in the
application module that you want to expose in the service interface.

View object subtypes of the top-level view instance will automatically be service-
enabled.

Also, on this page, you can enable the available data manipulation operations
supported on the exposed methods, as shown in Figure 15-1.

Figure 15-1 View Instances and CRUD Operation Selection

12. In the Basic Operations tab, select the data manipulation operations for the
currently selected view instance and in the Method Name field, change the names
of the selected service operations to the names that you prefer to expose in the
service interface.

Chapter 15
Publishing Service-Enabled Application Modules

15-9

The primary purpose of the standard service operations is to expose data
manipulation operations on the view objects. Any business logic that you
have defined on the underlying framework objects (for example, business rule
validation) will be applied when you invoke the service operations. For a
description of the operations that service view instances support, see Table 15-1.

In the case of the find method operation that you can select, the find method
must not reference a required bind variable in the view object's query statement.
A required bind variable is one that makes the query execution dependent on
the availability of a valid value for the bind variable. The service interface does
not expose required bind variables at runtime. For details about defining a find
operation for this scenario, see How to Expose a Declarative Find Operation
Filtered By a Required Bind Variable.

13. To expose declarative find operations, select the View Criteria Find Operations
tab and click the Add View Criteria icon.

You can define custom find operations when you want the service to support
executing a predefined query. For information about defining a named view
criteria, see Working with Named View Criteria.

Caution:

The service interface find operations are based on specific view criteria
that your project defines. This means that the bind variables of the view
criteria must match the parameters of the corresponding find operation
method. If you change the number or order of the bind variables
after the find operation is defined and the service interface generated,
the corresponding method will not execute at runtime. Therefore, after
changing the underlying view criteria, you must regenerate the service
interface.

a. In the Configure View Criteria Find Operation dialog, choose the named view
criteria for the find operation.

The dialog displays the list of view criteria exposed by the referenced view
object. For example, OrdersView defines OrdersViewCriteria with a bind
variable OrdId that specifies the order ID, as shown in Figure 15-2.

Chapter 15
Publishing Service-Enabled Application Modules

15-10

Figure 15-2 Specialized Find Methods Based on Named View Criteria

b. If the view criteria uses a bind variable, you can double-click the XML name to
customize the name as it will appear in the XML definition for the service.

14. Click Next to review the custom methods that your service view instances will
expose.

15. Click Finish.

What Happens When You Create an Application Module Service
Interface

JDeveloper generates the service interface class and enables any view instance
options you have chosen, as shown in Figure 15-3.

Do not modify the generated files for the service-enabled application module. The
generated files implement required methods of the service interface. An exception to
this are use cases that require adding Java annotations to the service implementation
class. For example, annotations that you add in the service implementation class let
you attach security policies, as described in How to Secure the ADF Web Service for
Access By SOAP Clients.

Chapter 15
Publishing Service-Enabled Application Modules

15-11

Figure 15-3 Service Interface Page of the Overview Editor for an Application
Module

The following types of files are generated and are listed in the Applications window in
the Projects panel, under the application module's serviceinterface node, as shown in
Figure 15-4.

• Web service interface, for example, ServiceAppModuleService.java

• Web service schema file, for example, ServiceAppModuleService.xsd

• Web service definition file, for example, ServiceAppModuleService.wsdl

• Web service implementation class, for example,
ServiceAppModuleServiceImpl.java

Chapter 15
Publishing Service-Enabled Application Modules

15-12

Figure 15-4 Service Interface Files Appear Below Application Module

In addition, the connections.xml file is created when you first create an ADF Business
Components service. Although this file is only used by the web service client (the
consuming application), it is generated with the service-enabled application module
as a convenience. This file appears in the Applications window in the Application
Resources panel, under the Descriptors and ADF META-INF nodes.

Annotations Generated in the Web Service Interface
The web service interface uses metadata annotations specified by the web service
specification (JSR-181) to indicate how the interface should be exposed as a web
service. This example shows part of ServiceAppModuleService.java, which is the
web service interface class for the ServiceAppModule application module in the
oracle.summit.model.amservice package in the SummitADF_Examples workspace.

package oracle.summit.model.amservice.common.serviceinterface;
...
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.soap.SOAPBinding;
...
import oracle.summit.model.amservice.common.CustomerViewSDO;
import oracle.summit.model.amservice.common.OrderViewSDO;
...
import oracle.webservices.annotations.PortableWebService;
import oracle.webservices.annotations.SDODatabinding;
...
@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.WRAPPED,
style=SOAPBinding.Style.DOCUMENT)
@PortableWebService(targetNamespace="http://www.globalcompany.com/
ServiceAppModuleService",
 name="ServiceAppModuleService",
 wsdlLocation=
 "oracle/summit/model/amservice/common/serviceinterface/
ServiceAppModuleService.wsdl")

Chapter 15
Publishing Service-Enabled Application Modules

15-13

@SDODatabinding(schemaLocation=
 "oracle/summit/model/amservice/common/serviceinterface/
ServiceAppModuleService.xsd")
public interface ServiceAppModuleService
{
 public static final String NAME =
("http://www.globalcompany.com/ServiceAppModuleService")

 @WebMethod(action="www.globalcompany.example.com/createCustomersView",
 operationName="createCustomersView")
 @RequestWrapper(targetNamespace="www.globalcompany.example.com/types/",
 localName="createCustomersView")
 @ResponseWrapper(targetNamespace="www.globalcompany.example.com/types/",
 localName="createCustomersViewResponse")
 @WebResult(name="result")
 CustomersViewSDO createCustomersView(@WebParam(mode =
WebParam.Mode.IN, name="customerView")
 CustomersViewSDO customersView) throws ServiceException;
 ...
}

Web Service Schema Generated in the Web Service Schema File
The web service schema file is an XML schema file which represents the web service
schema, as shown in Figure 15-5.

Figure 15-5 Web Service Schema File

WSDL Generated in the Web Service Definition File
The web service definition file is a XML-structured document file that conforms to the
Web Service Definition Language (WSDL) specification that describes the generated
web service as a collection of endpoints, or ports. A port is defined by associating a
network address with a reusable binding. The client application that connects to the
web service reads the WSDL to determine what functions are available on the server.
The WSDL also specifies the endpoint for the service itself, which you can use to
locate and test your deployed service.

Chapter 15
Publishing Service-Enabled Application Modules

15-14

Figure 15-6 shows the WSDL for the web service generated for the ServiceAppModule
application module in the WSDL visual editor. You can see the WSDL as an XML
document by selecting the Source tab.

Figure 15-6 WSDL Document

Stateless Session Bean Specified by the Service Implementation Class
The service implementation class is an EJB 3.0 stateless session
bean that implements the web service interface and extends the
oracle.jbo.server.svc.ServiceImpl class, the generic service implementation
for ADF Business Components. The following example shows part of
ServiceAppModuleServiceImpl.java, which is the service implementation class for
the ServiceAppModule application module in the oracle.summit.model.amservice
package in the SummitADF_Examples workspace.

package oracle.summit.model.amservice.server.serviceinterface;
...
import oracle.summit.model.amservice.common.CustomersViewSDO;
import oracle.summit.model.amservice.common.OrdersViewSDO;
import
oracle.summit.model.amservice.common.serviceinterface.ServiceAppModuleService;

...
import oracle.webservices.annotations.PortableWebService;

@Interceptors({ ServiceContextInterceptor.class })
@Stateless(name="oracle.summit.model.amservice.common.ServiceAppModuleServiceBean
",
 mappedName="ServiceAppModuleServiceBean")
@Remote(ServiceAppModuleService.class)
@PortableWebService(targetNamespace="http://www.globalcompany.com/
ServiceAppModuleService",
 serviceName="ServiceAppModuleService",
portName="ServiceAppModuleServiceSoapHttpPort",
 endpointInterface="oracle.summit.model.amservice.common.

Chapter 15
Publishing Service-Enabled Application Modules

15-15

 serviceinterface.ServiceAppModuleService")
public class ServiceAppModuleServiceImpl extends ServiceImpl implements
ServiceAppModuleService
{
 ...
 public CustomersViewSDO createCustomersView(CustomersViewSDO customersView)
 throws ServiceException {
 return (CustomersViewSDO) create(customersView, "CustomersView");
 }

 public CustomersViewSDO updateCustomersView(CustomersViewSDO customersView)
 throws ServiceException {
 return (CustomersViewSDO) update(customersView, "CustomersView");
 }
...
}

Lookup Defined in the connections.xml File
The connections.xml file allows the web service client to look up the service
with the factory class oracle.jbo.client.svc.ServiceFactory. The ADF Business
Components service factory provides the mechanism that allows the service client to
look up the service. The service factory relies on ADF connection architecture and
the connections.xml file to manage service endpoint locations. The connections.xml
file is created when you first create an ADF Business Components service. This file
appears in the Applications window in the Application Resources panel, under the
Descriptors and ADF META-INF nodes.

The following example shows the initial connections.xml entry created by JDeveloper
when you first create an ADF Business Components service.

<Reference name="{http://www.globalcompany.com}ServiceAppModuleService"
 className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.summit.model.amservice.common.serviceinterface.
 ServiceAppModuleService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>ADFBC</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiName">
 <Contents>ServiceAppModuleServiceBean#oracle.summit.model.amservice.
 common.serviceinterface.ServiceAppModuleService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>ServiceAppModuleService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/summit/model/amservice/common/
 serviceinterface/</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

Chapter 15
Publishing Service-Enabled Application Modules

15-16

What Happens When You Create an Application Module Service
Interface With Polymorphic View Objects

When your model project defines subtype view objects that extend a base view object,
the generated SDO service interface will be strongly-typed for the base view objects,
but not for the polymorphic subtypes. For example, assume SalespersonViewEx
extends the SEmpView and adds an attribute CommissionPct to define the subtype.
When you generate the service interface for the service-enabled view instances, the
Applications window displays the service interface and service objects, as shown in
Figure 15-7.

Figure 15-7 Service Object Generated for Polymorphic Subtype

Note:

After generating the SDO service interface from a ADF Model project that
defines base view objects and subtype view objects, the generated service
schema definition will be strongly-typed for the base view object, but not for
the polymorphic subtype. Therefore, web service clients that need to access
polymorphic subtype view objects use the approach described in Accessing
Polymorphic Collections in the Consuming Application.

Because the polymorphic subtype is specified in application module data model as an
import on the base service-enabled view instance, JDeveloper automatically generates
the subtype service object from the base service object. The following example
shows the SalespsersonViewExSDO.xsd subtype schema definition with the additional
attribute CommissionPct defined. The subtype schema includes the attributes of base
service object SEmpViewSDO.

Chapter 15
Publishing Service-Enabled Application Modules

15-17

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="/oracle/model/
polymorphicvo/views/common/"
 xmlns="/oracle/model/polymorphicvo/views/common/" elementFormDefault="qualified">
 <xsd:include schemaLocation="SEmpViewSDO.xsd"/>
 <xsd:complexType name="SalespersonViewExSDO">
 <xsd:annotation>
 <xsd:appinfo source="http://xmlns.oracle.com/adf/svc/metadata/">
 <key xmlns="http://xmlns.oracle.com/adf/svc/metadata/">
 <attribute>Id</attribute>
 </key>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="SEmpViewSDO">
 <xsd:sequence>
 <xsd:element name="CommissionPct" type="xsd:decimal"
 minOccurs="0" nillable="true"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="salespersonViewExSDO" type="SalespersonViewExSDO"/>
</xsd:schema>

The generated service interface uses the XSD <import> element to expose the
polymorphic subtype. The following example shows the service interface XSD
AppModuleService.xsd with the import definition for the SalespersonViewExSDO
subtype.

<schema xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/apps/hr/service/types/"
xmlns:tns="http://xmlns.oracle.com/apps/hr/service/types/"
 xmlns:ns0="/oracle/model/polymorphicvo/views/common/" xmlns:ns1="http://
xmlns.oracle.com/adf/svc/types/"> <import namespace="http://xmlns.oracle.com/adf/svc/types/"
 schemaLocation="classpath:/META-INF/wsdl/BC4JService.xsd"/> <import
namespace="/oracle/model/polymorphicvo/views/common/"
 schemaLocation="../../../views/common/SalespersonViewExSDO.xsd"/>
 <import namespace="/oracle/model/polymorphicvo/views/common/"
 schemaLocation="../../../views/common/SDeptViewSDO.xsd"/> <import
namespace="/oracle/model/polymorphicvo/views/common/"
 schemaLocation="../../../views/common/SEmpViewSDO.xsd"/>

Figure 15-8 shows how the web service schema represents the various strongly-
typed service objects, as well as the import definition for the polymorphic subtype
SalespersonViewExSDO.

Chapter 15
Publishing Service-Enabled Application Modules

15-18

Figure 15-8 Web Service Schema Imports Polymorphic View Usage

Chapter 15
Publishing Service-Enabled Application Modules

15-19

What You May Need to Know About Method Signatures on the ADF
Web Service Interface

You can define two different kinds of interfaces for an application module: the client
interface and the service interface. The client interface is used by the ADF Model
layer for UI clients. The service interface is for application integration and is used
by external web services or other application services (either programmatically or
automatically using the service-enabled entity feature).

An application module can support no interface at all, only client interfaces, only
service interfaces, or both client interfaces and service interfaces combined. However,
be aware that the two kinds of interfaces differ in the data types that are supported
for the parameters and/or return values of your custom methods that you define for
the respective interfaces. The types supported on the client interface are described in
What You May Need to Know About Method Signatures on the Client Interface.

The service interface, in contrast to the client interface, supports a more narrow set of
data types for custom method parameters and return values and is limited to:

• Java primitive types and their object wrapper types (for example, int, Integer,
and Long)

• java.lang.String

• java.math.BigDecimal

• java.math.BigInteger

• java.sql.Date

• java.sql.Time

• java.sql.Timestamp

• java.util.Date

• oracle.jbo.AttributeList

• oracle.jbo.domain.BlobDomain

• oracle.jbo.domain.Char

• oracle.jbo.domain.ClobDomain

• oracle.jbo.domain.DBSequence

• oracle.jbo.domain.Date

• oracle.jbo.domain.NClobDomain

• oracle.jbo.domain.Number

• oracle.jbo.domain.Timestamp

• oracle.jbo.domain.TimestampLTZ

• oracle.jbo.domain.TimestampTZ

• oracle.jbo.server.ViewRowImpl or any subtype

• java.util.List<aType>, where aType is any of the service-interface supported
data types, including Java primitive type

Chapter 15
Publishing Service-Enabled Application Modules

15-20

Note: The service interface specifically does not support Java Map collection.
This means it is not possible to return a collection of objects that are of different
types. However, a collection is not limited to view row attributes, a return type can
be defined as a list of any service-interface supported data type. For example,
List<DataObject>, List<AttributeList>, and List<String> are all valid types.

You can define a custom method that returns a type of AttributeList when you
want to allow the client developer to work with the list of attributes and perform
custom operations without the need to involve framework behavior before the custom
method executes. As an alternative, when the client developer wants the framework
to manage rows (create, find, and populate), define custom methods that return
ViewRowImpl or List<ViewRowImpl> instead. In summary, if your method signature
defines ViewRowImpl or List<ViewRowImpl> as the data type, then the application
automatically:

1. Looks up the row in the corresponding view object instance by primary key and/or
alternate key

2. If the row is not found, then creates a new row

3. Applies the attribute changes in the found or new row

Whereas, if your method signature defines the AttributeList data type, then no
automatic behavior is provided, and the actions performed and data modified by the
custom method will be limited to your custom method's code.

What You May Need to Know About Row Finders and the ADF Web
Service Operations

When you create a row finder for a view object, the service operations of the exposed
service view instance support row lookup using non-key attributes defined by the row
finder. For example, the service can invoke the row finder to locate the employee by
their email address instead of the employee ID (a row key attribute). When the row
finder is defined on a non-key attribute of the view object and the end user supplies
a value for this attribute in the web service payload, the service will automatically
invoke the row finder to identify the matching rows. Where the email address is the
row finder's only required value, the service update operation would allow the end user
to update the record of an employee who is identified only by their email address. For
details about defining a row finder for use with the service view instance, see Working
with Row Finders.

How to Service-Enable Individual View Objects
As a result of enabling the web service interface using the overview editor
for the application module, JDeveloper automatically enables your parent view
instance selections as Service Data Object (SDO) components. The generated SDO
components for each view instance will reference the same namespace and will
be configured with the same settings for options such as whether or not warnings
are supported. You can use the Java page of the overview editor to customize the
SDO definition of these existing service-enabled view objects. You can also use the
Java page to service-enable view objects that were not added already to the service
interface. For example, if you selected a parent view object that represents the master
in a master-detail relationship, the child view object will not be automatically service-
enabled. You can use the Java page of the overview editor for the child view object to
individually add it to the service interface.

Chapter 15
Publishing Service-Enabled Application Modules

15-21

You use the Java page of the overview editor for the view object to configure the SDO
name and namespace for a view object, or to selectively service-enable child view
objects.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows
of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete these tasks:

1. Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

2. Enable the service interface for the application module, as described in How to
Enable the Application Module Service Interface.

3. Optionally, set JDeveloper preferences to specify a default suffix for the names
of generated SDO classes, modify the default subpackage where the service
interface and classes reside, and set the default namespace prefix for the
generated SDO schema and web service, as described in How to Set Preferences
for Generating the ADF Web Service Interface.

To set the SDO name and namespace for a view object:

1. In the Applications window, double-click the view object.

2. In the overview editor, click the Java navigation tab and then click the Edit java
options button.

3. In the Select Java Options dialog, in the Service Data Object section, select
Generate Service Data Object Class. Enter a value for the service data object
name and the service data object's target namespace.

The target namespace is a URI for the SDO component that you can assign to
group similar SDO components together by entering the same URI.

A default SDO namespace is created for you based on the SDO component's
package name with periods replaced by "/". If you have defined a prefix for the
namespace in the Service page of the Preferences dialog, the prefix will be added
at runtime to the beginning of the namespace. For example, Figure 15-9 shows
the default namespace based on the package name.

Chapter 15
Publishing Service-Enabled Application Modules

15-22

Figure 15-9 Service Data Object Name and Namespace Options

4. When you want to be able to extract warnings associated with the view rows of the
service interface object, select Support Warnings.

For example, your view object might have a range validator defined on the
Salary attribute and failure handling for the validator is specified as Informational
Warning.

If Support Warnings is not selected, no informational messages will be returned
with the service response.

When enabled and a warning is generated from the underlying ADF business
component object for one of the standard service operations or custom operations,
the warning information will be captured by the response object. You can use the
methods generated for the service object result class to extract the messages
from the view rows, as described in Container Object Implemented by SDO Result
Class and Interface.

5. Click OK.

How to Customize the SDO Properties of Service-Enabled View
Objects

You can use the overview editor for the view object to customize the SDO component
definition of the service-enabled view object. By default, all attributes of the service-
enabled view object will be exposed as SDO properties. By customizing the view
object definition, you can exclude individual SDO properties from participating in the
service interface. In the case of SDO properties that define numeric values, you can
associate two properties so they appear as a single complex type in the service
interface. For example, you can associate one property that defines a currency code
or unit of measure with another property that displays the numeric value. Currently,
only the complex service types AmountType (a currency code) and MeasureType (a unit
of measure) are supported.

Chapter 15
Publishing Service-Enabled Application Modules

15-23

Excluding Individual SDO Properties in a Generated SDO Component
As a result of enabling the web service interface using the overview editor for
the application module, JDeveloper automatically enables your parent view instance
selections as SDO components. Additionally, you can selectively service-enable
individual child view objects and generate SDO components. By default, generated
SDO components expose all attributes of their base view object definition as SDO
properties. You can hide any attribute that you do not want the service interface to
return as an SDO property.

You use the Attributes page of the overview editor to select the view object attribute
that you want to exclude from the service interface. You then use the Details tab in
the overview editor for the view object to hide the selected attribute from the SDO
component.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows
of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete these tasks:

1. Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

2. Service-enable the desired view object, as described in How to Service-Enable
Individual View Objects.

To exclude an SDO property from a service-enabled view object:

1. In the Applications window, double-click the view object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute corresponding to the property that you
want to exclude and then click the Details tab and deselect SDO Property.

Associating Related SDO Properties Using Complex Data Types
As a result of service-enabling the view object, JDeveloper automatically exposes
SDO properties as XSD-defined service types that correspond to the data types of the
underlying view object's attributes. In the case of attributes that define numeric values,
you can change the SDO property's service type to associate a related property using
one of these predefined service types:

• AmountType service type, for use with any property that defines a currency code

• MeasureType service type, for use with any property that defines a unit of measure

When you change the service type of an SDO property to either of these complex
types, the service interface associates the two properties together and returns them
as a single XML element. Both properties of the SDO component must be defined by
attributes in the base service-enabled view object.

Chapter 15
Publishing Service-Enabled Application Modules

15-24

For example, suppose that your view object defines the OrderTotal attribute and a
CurrencyCode attribute to specify the currency code of allowed countries. By default,
the service interface exposes these attributes as SDO properties and returns each
property as a separate XML element:

<OrderTotal>100.00</Price>
<CurrencyCode>USD</CurrencyCode>

If you change the type of the OrderTotal property (assume that the XSD file defines
this property as a decimal type) to the complex type AmountType and then associate
the CurrencyCode property, the service interface will return them as one XML element:

<OrderTotal CurrencyCode="USD">123.00</OrderTotal>

Also, when you generate a web service proxy, as described in Calling a Web Service
Method Using the Proxy Class in an Application Module, the class treats the two
values as one object:

AmountType price;
...
price.setValue(123.00);
price.setCurrencyCode("USD");

You use the Attributes page of the overview editor to select the view object attribute
whose service type you want to customize. You use the Edit Attribute dialog that you
display from the Attributes page of the overview editor to associate SDO properties for
the selected attribute and select the predefined complex service type.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows
of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete these tasks:

1. Create the desired view objects, as described in How to Create an Entity-Based
View Object, and How to Create a Custom SQL Mode View Object.

2. Service-enable the desired view object, as described in How to Service-Enable
Individual View Objects.

To associate SDO properties in a service-enabled view object:

1. In the Applications window, double-click the view object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute corresponding to the property that you
will associate with another SDO property.

The attribute you select must define a numeric type. For example, to associate a
currency code with the attribute that displays the amount paid by a customer, you
might select the OrderTotal attribute in the Orders service-enabled view object.

4. With the attribute selected, click the Details tab and then from the XSD Type
dropdown list, choose the desired service type.

Chapter 15
Publishing Service-Enabled Application Modules

15-25

If the XSD Type dropdown is not enabled, return to the attribute list and select an
attribute of type numeric. Attributes whose values are not a numeric type cannot
be associated with the available complex service types.

The SDO framework supports the complex service types AmountType and
MeasureType. Choose AmountType when the property you want to associate
specifies currency information. Choose MeasureType when the property you want
to associate specifies a unit of measure.

5. In the currencyCode or unitCode dropdown list, select the view object attribute to
define the complex type.

The dialog changes to display the dropdown list appropriate to the XSD type
selection. Choose the attribute that is used to determine the currency code or unit
of measure.

How to Support Nested Processing in Service-Enabled Master-Detail
View Objects

When your data model defines master-detail relationships between parent and child
view objects, the service operations that you enable for the master view object may
not automatically be executed on the detail view object. Post operations on the detail
view object are supported by default when the primary source entity object of the
master view object is composed with the primary destination entity object of the detail
view object. This master-detail relationship is known as a composition association and
is created in JDeveloper when the source entity object contains the destination entity
object as a logical, nested part, as described in What You May Need to Know About
Composition Associations.

To support create/merge/update/process methods that post child details along with the
parent, you will need to create a view link to define the master-detail relationship
according to one of these scenarios:

• The view link uses the composition association, then post operations on the detail
view object are supported by default.

• The view link is based on an association, and the association has the
destination accessor generated, and the association has a custom property
SERVICE_PROCESS_CHILDREN=true defined.

• The view link is not based on an association but has a custom property
SERVICE_PROCESS_CHILDREN=true defined.

The custom property provides an alternative to using a composition association that
makes it convenient to support nested processing for any view objects with a view
link defined. You can define SERVICE_PROCESS_CHILDREN as a custom property in the
overview editor for either the view link or the view link's association (when present).

To support get and find methods that retrieve child details along with the parent,
the view link between the master and detail view objects must have the destination
accessor generated. The destination accessor permits traversal of the hierarchy from
the master to the detail view object.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows

Chapter 15
Publishing Service-Enabled Application Modules

15-26

of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to have an understanding of how master-detail
relationships are defined using view links or entity associations:

• For more information about view links, see Working with Multiple Tables in a
Master-Detail Hierarchy.

• For more information about associations, see Creating and Configuring
Associations.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete these tasks:

1. Create the desired view objects and service-enable the child view object in the
master-detail hierarchy, as described in How to Service-Enable Individual View
Objects.

2. If the view link is not based on an association, confirm that a destination accessor
exists for the view link by opening the view link in the overview editor and viewing
the Relationship page. To generate the accessor so it appears in the Relationship
page, click the Edit Accessors button, and then, in the View Link Properties
dialog, select Generate Accessor in View Object for the destination accessor.

If the view link is based on an association, then the destination accessor must
exist for the association's destination entity object. To generate one, use the
Relationship page of the overview editor for the association.

To support nested processing in a master-detail hierarchy:

1. If the view link for the master-detail hierarchy is not based on an association,
then in the Applications window, double-click the view link; otherwise, if the view
is based on an association, then in the Applications window, double-click the
association.

You can confirm how the view link was created in the Relationship page of
the overview editor. The Attributes section names the source and destination
attributes. When the view link is based on an association, the attribute hyperlinks
will contain the names of the association. Otherwise, the hyperlinks will contain the
names of the base entity objects.

2. In the overview editor, click the General navigation tab.

The overview editor for the view link and the association display similar selections.

3. In the General page, expand the Custom Properties section, and then click
the Add Custom Property icon and enter SERVICE_PROCESS_CHILDREN for the
property and true for the property value, as shown in Figure 15-10.

Figure 15-10 Custom Property to Support Nested Processing

Chapter 15
Publishing Service-Enabled Application Modules

15-27

What Happens When You Create SDO Classes
When you create SDO classes, the following files are generated and appear in the
Applications window under the owning view object:

• Service data object interface

• Service data object class

• Service data object schema file

• Service data object result class and Interface, generated when Support Warnings
is enabled in the Select Java Options dialog

Do not modify the files generated for service-enabled view objects. The generated files
implement required methods of the view object SDO interface.

Property Accessors Generated in the SDO Interface
The view object SDO interface contains strongly typed accessors for the SDO
properties, as shown in the following example.

package oracle.summit.model.amservice.common;
 public interface OrdersViewSDO extends java.io.Serializable {
 public java.math.Integer getId();
 public void setId(java.lang.Integer value);
...}

View Object Interface Implemented by SDO Class
The view object SDO class implements the view object SDO interface and extends the
SDODataObject class, which is Oracle's implementation of the SDO specification.

At runtime an instance of an SDO object represents a row in memory.

The SDO class is similar to the view row class, as shown in the following example.

package oracle.summit.model.amservice.common;
import org.eclipse.persistence.sdo.SDODataObject;
public class OrdersViewSDOImpl extends SDODataObject implements OrdersViewSDO
 {
 ...
 }

View Object Schema Generated in the SDO Schema File
The view object SDO schema file, as shown in Figure 15-16, is an XML Schema file
which represents the SDO schema.

Chapter 15
Publishing Service-Enabled Application Modules

15-28

Figure 15-11 Generated SDO Schema

Container Object Implemented by SDO Result Class and Interface
The view object SDO result class is a container object that allows a service operation
to return a list of view rows (wrapped in service data objects) and a list of warnings
associated with these view rows. Specifically, the service get operation returns
the original object, while the create/update/merge/find/process operations return a
wrapper object that contains a list of the original object and a list of information
messages, and the delete operation returns only the informational message. If you
have enabled the Support Warnings option for the service-enabled view object, you
can use the generated method result interface to extract warnings.

The view object SDO result class, as shown in the following example, is similar to the
view row class.

package oracle.summit.model.amservice.common;
import oracle.sdo.SDODataObject;
public class OrdersViewSDOResultImpl extends
 oracle.jbo.common.service.types.MethodResultImpl implements OrdersViewResult {

 public static final int START_PROPERTY_INDEX =
 oracle.jbo.common.service.types.MethodResultImpl.END_PROPERTY_INDEX +
1;
 public static final int END_PROPERTY_INDEX = START_PROPERTY_INDEX + 0;
 public OrdersViewResultImpl() {}
 public java.util.List getValue() {
 return getList(START_PROPERTY_INDEX + 0);
 }

 public void setValue(java.util.List value) {
 set(START_PROPERTY_INDEX + 0 , value);
 }
}

Chapter 15
Publishing Service-Enabled Application Modules

15-29

How to Expose a Declarative Find Operation Filtered By a Required
Bind Variable

The ADF service interface framework allows you to expose declarative find operations
to execute the query define by a view object you select. However, when that query
uses a bind variable to filter the query results, the bind variable must not be specified
as Required and Updatable. Because the service interface does not expose required,
updatable bind variables, a find operation that you execute for such a view object
would fail to return any result.

When you want to filter a query result using bind parameters, use the view criteria and
expose it as a find operation on the service interface. A service interface find operation
based on a view criteria that you create can specify required bind variables.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows
of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to have an understanding of how to filter view object
queries using bind variables. For more information, see Working with Bind Variables.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete these tasks:

1. Create the desired application module, as described in How to Create an
Application Module.

2. Create the view criteria, as described in How to Create Named View Criteria
Declaratively. In the Edit View Criteria dialog, set the criteria item as a bind
variable and set the Validation field to Required. This selection ensures that the
query will not execute without a valid value.

To expose a find operation for a view criteria with required bind variable:

1. In the Applications window, double-click the application module.

2. In the overview editor, click the Service Interface navigation tab and then click the
Edit attributes of Service Interface icon.

Alternatively, you can select Edit Service Custom Methods if you have already
defined the service interface.

3. In the Edit Service Interface dialog, select Service View Instances from the
navigation list and add the view object that you want to filter with its named view
criteria to the Selected list.

4. To expose the find operation, select the view instance, click the View Criteria Find
Operations tab and then click the Add View Criteria button.

5. In the Configure View Criteria Find Operation dialog, choose the named view
criteria for the find operation.

The dialog displays the bind variable for the selected view criteria.

Chapter 15
Publishing Service-Enabled Application Modules

15-30

6. If you want to customize the bind variable name shown in the XML definition for
the service, in the Find Operations Parameters section, double-click the XML
name and edit the name.

7. Click OK.

How to Expose a Custom Find Method Filtered By a Required Bind
Variable

As an alternative to exposing a declarative find operation that relies on a view
criteria, you can define a service method in your data model project's application
module implementation class. The class you create for this purpose allows you to
encapsulate business service functionality into a single method that you implement.
For details about the purpose of the custom application module implementation class,
see Customizing an Application Module with Service Methods.

The following example shows a custom find method implemented in the
AppModuleNameImpl.java file to set the bind variable and execute the view object
instance query. It uses setNamedWhereClauseParam() on the view object instance to
set the bind variable. Before executing the query, the find method sets the view object
in forward-only mode to prevent caching the view rows that the find method iterates
over.

public class AppModuleImpl extends ApplicationModuleImpl
{
 public List<ViewRowImpl> findProducts(String location)
 {
 List<ViewRowImpl> result = new ArrayList<ViewRowImpl>();
 ViewObjectImpl vo = getProductsView1();
 vo.setNamedWhereClauseParam("TheLocation", location);
 vo.setForwardOnly(true);
 vo.executeQuery();
 while (vo.hasNext()) {
 result.add((ViewRowImpl)vo.next());
 }
 return result;
 }
}

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled view objects and enables web service clients to access rows of data
and perform service operations. For more information, see Publishing Service-Enabled
Application Modules.

You may also find it helpful to have an understanding of how to filter view object
queries using bind variables. For more information, see Working with Bind Variables.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete these tasks:

1. Create the custom application module class, as described in How to Generate a
Custom Class for an Application Module.

Chapter 15
Publishing Service-Enabled Application Modules

15-31

2. Create the custom find method to programmatically filter a query result and set the
required bind variable, as described in How to Add a WHERE Clause with Named
Bind Variables at Runtime.

To expose a find method that sets a required bind variable:

1. In the Applications window, double-click the application module.

2. In the overview editor, click the Service Interface navigation tab and then click the
Edit attributes of Service Interface icon.

Alternatively, you can click the Edit Service Custom Methods icon if you have
already defined the service interface.

3. In the Edit Service Interface dialog, select Service View Instances from the
navigation list and add the find method that you defined to the Selected list.

4. Click OK.

How to Generate Asynchronous ADF Web Service Methods
By default, the web service supports synchronous service methods. This forces the
invoking client application to wait for the response to return before it can continue with
its work. In cases where the response returns immediately, this method of invoking the
web service is common. However, because request processing can be delayed, it is
often useful for the client application to continue its work and to handle the response
later on.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled view objects and enables web service clients to access rows of data
and perform service operations. For more information, see Publishing Service-Enabled
Application Modules.

You may also find it helpful to have an understanding of invoking web services
using asynchronous request-response. For more information, see the "Overview of
Asynchronous Web Services" section of the "Developing Asynchronous Web Services"
chapter in Developing Oracle Infrastructure Web Services.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete this task:

Before you can deploy an asynchronous web service, you must configure the
queues used to store the request and response. For information about configuring
the request and response queues, see the "Creating the Request and Response
Queues" section of the "Developing Asynchronous Web Services" chapter in
Developing Oracle Infrastructure Web Services.

To expose asynchronous web service methods:

1. In the Applications window, double-click the application module.

2. In the overview editor, click the Service Interface navigation tab and then click the
Edit attributes of Service Interface icon.

3. In the Edit Service Interface dialog, in the Service Interface page, select Generate
Asynchronous Web Service Methods.

Chapter 15
Publishing Service-Enabled Application Modules

15-32

4. Click OK.

What Happens When You Generate Asynchronous ADF Web Service
Methods

JDeveloper generates the service interface for the web service and enables
the asynchronous service operation. As shown in the following example, the
class annotation @AsyncWebService declares the EmpService service interface
asynchronous and for each synchronous method in the interface, the service exposes
an asynchronous method with the same method name and "Async" appended.

Exposing both synchronous and asynchronous methods in the same interface
allows the web service client developer to decide how to invoke the
operation through a web service proxy: by calling the appropriately named
method. Note that developers must not invoke asynchronous methods
through the ADF Business Components service proxy that is returned from
oracle.jbo.client.svc.ServiceFactory.getServiceProxy() method.

In this example, because the EmpService service is enabled for asynchronous
operation, the interface exposes the getEmployeeAsync() method and
declares the getEmployee() method synchronous using the method annotation
@CallbackMethod(exclude=true) to override the default operation (it is the
exclude=true part that declares a method in the asynchronous service as
synchronous). No annotation is required to declare the asynchronous service methods
when the class annotation @AsyncWebService is present.

import javax.xml.ws.Action;
...
import oracle.webservices.annotations.async.AsyncWebService;
import oracle.webservices.annotations.async.CallbackMethod;

@SOAPBinding(parameterStyle=SOAPBinding.ParameterStyle.WRAPPED,
style=SOAPBinding.Style.DOCUMENT)
@PortableWebService(targetNamespace="http://xmlns.example.com/apps/service/",
name="EmpService",
 wsdlLocation="oracle/apps/service/EmpService.wsdl")
@SDODatabinding(schemaLocation="oracle/apps/service/EmpService.xsd")
@AsyncWebService
public interface EmpService
{
 ...

 @WebMethod(action="http://xmlns.example.com/apps/service/getEmployee",
 operationName="getEmployee")
 @RequestWrapper(targetNamespace="http://xmlns.example.com/apps/service/
types/",
 localName="getEmployee")
 @ResponseWrapper(targetNamespace="http://xmlns.example.com/apps/service/
types/",
 localName="getEmployeeResponse")
 @WebResult(name="result")
 @CallbackMethod(exclude=true)
 Emp getEmployee(@WebParam(mode = WebParam.Mode.IN, name="empno") Integer
empno)
 throws ServiceException;

 @WebMethod(action="http://xmlns.example.com/apps/service/getEmployeeAsync",
 operationName="getEmployeeAsync")

Chapter 15
Publishing Service-Enabled Application Modules

15-33

 @RequestWrapper(targetNamespace="http://xmlns.example.com/apps/service/
types/",
 localName="getEmployeeAsync")
 @ResponseWrapper(targetNamespace="http://xmlns.example.com/apps/service/
types/",
 localName="getEmployeeAsyncResponse")
 @WebResult(name="result")
 @Action(input="http://xmlns.example.com/apps/service/getEmployeeAsync",
 output="http://xmlns.example.com/apps/service/
getEmployeeAsyncResponse")
 Emp getEmployeeAsync(@WebParam(mode = WebParam.Mode.IN, name="empno") Integer
empno);
}

The duplicate asynchronous methods delegate to the synchronous methods in the
service implementation, as shown in the following example. This ensures that the
underlying business logic is the same for operations declared as either synchronous or
asynchronous.

...
import oracle.webservices.annotations.async.AsyncWebService;

@Stateless(name="oracle.apps.service.EmpServiceBean",
mappedName="EmpServiceBean")
@Remote(EmpService.class)
@PortableWebService(targetNamespace="http://xmlns.oracle.com/apps/service/",
 serviceName="EmpService", portName="EmpServiceSoapHttpPort",
 endpointInterface="oracle.apps.service.EmpService")
@Interceptors(ServiceContextInterceptor.class)
@AsyncWebService
public class EmpServiceImpl extends ServiceImpl implements EmpService
{
 ...

 /**
 * getEmployee: generated method. Do not modify.
 */
 public Emp getEmployee(Integer empno)
 throws ServiceException
 {
 return (Emp) get(new Object[] { empno }, "Employee", Emp.class);
 }

 /**
 * getEmployeeAsync: generated method. Do not modify.
 */
 public Emp getEmployeeAsync(Integer empno)
 throws ServiceException
 {
 return getEmployee(empno);
 }
}

What Happens at Runtime: How the Asynchronous Call Is Made
From the client's point of view, an asynchronous call consists of two one-way message
exchanges. The sequence diagram in Figure 15-12 depicts the following flow:

1. The client calls for the asynchronous operation. (In the figure, Step 1.)

Chapter 15
Publishing Service-Enabled Application Modules

15-34

2. The asynchronous service receives the request and returns the HTTP
acknowledgement back to the client without actually processing the request. (In
the figure, Step 2)

3. Eventually the asynchronous operation will complete and the module on the server
side will send the response to the client side. (In the figure, Step 3.)

To receive the response at the client side, the client must have some kind of HTTP
listener, for example, a servlet or a web service.

4. The client side-generated web service (the Callback Service) receives the
asynchronous responses. (In the figure, Step 4.)

The module in Step 3 on the server side acts like a client to the callback service
and so is referred as the callback client.

Figure 15-12 Asynchronous Call Sequence

How to Set Preferences for Generating the ADF Web Service Interface
You have additional control of the service generated by JDeveloper. You can set
JDeveloper preferences to perform the following tasks:

• Specify a default suffix for the names of generated SDO classes

• Modify the default subpackage where the service interface and classes reside

• Shape the URI of the generated SDO schema and web service target namespace
by setting a default namespace prefix and by specifying the names of packages
that you want to exclude from the URI.

To set the SDO class name suffix:

1. In the main menu, choose Tools and then Preferences.

2. In the Preferences dialog, expand ADF Business Components and choose
Class Naming.

3. In the View Object suffix list, enter a suffix for SDO, for example, SDO.

To set the default subpackage for the generated service interface:

Chapter 15
Publishing Service-Enabled Application Modules

15-35

1. In the main menu, choose Tools and then Preferences.

2. In the Preferences dialog, expand ADF Business Components and choose
Packages.

3. In the Relative Package Specification for Classes list, specify the default
package names:

• To set the Service Interface package name, enter a value for the Client
Interface. (The Service Interface displays the same package name you
specify for the client interface). The default package name is common.

• Enter a value for the Service Interface Subpackage of the Service Interface.
The default subpackage name is serviceinterface.

For example, if you enter common for Service Interface and
serviceinterface for Service Interface Subpackage (the defaults),
service interfaces for data model components in the data model
package oracle.summit.model.amservice will be placed in the subpackage
oracle.summit.model.amservice.common.serviceinterface.

To shape the URI of the generated SDO schema and service interface target
namespace:

1. In the main menu, choose Tools and then Preferences.

2. In the Preferences dialog, expand ADF Business Components and choose
Service.

3. Enter a value for the Default Namespace Prefix to be added to the beginning of
the target namespace of the generated SDO schema and web service.

For example, when you enable Generate Service Data Object Class in
the Java page of the Create View Object wizard, a namespace prefix
www.globalcompany.example.com would be added to the package name for the
SDO to create the target namespace www.globalcompany.example.com/oracle/
summit/model/amservice/common/.

4. Enter a semi-colon separated list of package names for the Packages to Exclude
to shape the URI of the default target namespace.

For example, when you enter a namespace prefix
www.globalcompany.example.com and the package name of the SDO is
globalcompany.summit.model.amservice/ the generated target namespace
would incorrectly duplicate the package name globalcompany. In this situation,
you can exclude the package name globalcompany to shape the URI
for the target namespace as www.globalcompany.example.com/summit/model/
amservice/common/.

More than one package name can be excluded in a semi-colon separated list, as
a;a.b to yield <namespace-prefix>/c/d. In the case of subpackage names, be
sure to specify fully-qualified package names. For example to exclude package
c in the package name a.b.c.d, enter a.b.c. In this case, the default target
namespace yields <namespace-prefix>/a/b/d/.

How to Set Display Names for Service View Instances and Attributes
Display names are labels that support the web service consuming application to
programmatically generate a user interface and to display the service view instance
and its attributes with the correct identifying labels. To enable access to these display

Chapter 15
Publishing Service-Enabled Application Modules

15-36

names at runtime by the consuming application, you use the Create Service Interface
wizard to add the built-in method getDfltObjAttrHints() to the remote client service
interface. This method lets the consuming application developer programmatically
retrieve the Display Name UI hint associated with the service view instance and its
attributes. You define the UI hints in the Property window for the view object, where
you can define a singular label and a plural label for each view instance name and
attribute name. For example, as Figure 15-13 shows, you may define UI hints for the
OrdersVO view object with the labels Order and Orders.

Figure 15-13 Display Name UI Hints for View Objects

Before you begin:

You will need to complete this task:

Define the built-in method getDfltObjAttrHints() in the remote client service
interface, as described in How to Enable the Application Module Service Interface.

To set UI Hint labels for the view instance and its attributes:

1. In the Applications window, double-click the application module that defines the
view instance for the SDO.

2. In the Data Model list, select the view instance name and, below the list, click the
View Definition link.

3. In the overview editor for the view object, click the General navigation tab.

4. In the main menu, choose View and then Property Inspector.

5. In the Property Inspector, to set the label for the view object instance, expand UI
Hints and enter the labels for the Display Name and Display Name (Plural).

6. In the overview editor for the view object, click the Attributes navigation tab and
select the attribute that you want to label.

7. In the Property Inspector, to set the label for the view object attribute, expand UI
Hints and enter the labels for the Label and Display Name (Plural).

Chapter 15
Publishing Service-Enabled Application Modules

15-37

How to Secure the ADF Web Service for Access By SOAP Clients
At runtime, the web service client will invoke the service-enable methods of the
application module through the SOAP protocol. You can configure an Oracle Web
Service Manager (OWSM) security policy to enable authentication and authorization
on the service. The security policy that you select will require the SOAP client call
to provide credential information (or SAML token) as part of the SOAP header.
You can also configure other policies to enable message protection (integrity and
confidentiality) for inbound SOAP requests, for instance.

To secure the web service for SOAP clients:

1. Configure an OWSM authentication policy.

2. Configure an OWSM authorization policy.

You can enable authentication to require users to supply credentials before they have
access to the service methods on the service interface. The type of authentication
required is configured on the service implementation class using an OWSM
authentication policy annotation.

You can enable permission checking to enable only users with sufficient privileges to
invoke a service method on the service interface. Permission checking is configured
on the service implementation class using this OWSM authorization annotation:

• binding_permission_authorization_policy

This policy provides simple permission-based authorization for the request based
on the authenticated Subject at the SOAP binding level. This policy ensures that
the Subject has permission to perform the operation. This policy should follow an
authentication policy where the Subject is established and can be attached to any
SOAP-based endpoint.

As an alternative to the permission checking policy, you can configure one of these
role-based OWSM security policies:

• binding_authorization_denyall_policy

This policy provides simple role-based authorization for the request based on the
authenticated Subject at the SOAP binding level. This policy denies all users with
any roles. It should follow an authentication policy where the Subject is established
and can be attached to any SOAP-based endpoint.

• binding_authorization_permitall_policy

This policy provides a simple role-based authorization for the request based on the
authenticated Subject at the SOAP binding level. This policy permits all users with
any roles. It should follow an authentication policy where the Subject is established
and can be attached to any SOAP-based endpoint.

For further details about the authorization policies, see Security Policies—
Authorization Only in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

ADF service interface framework also provides an EJB interceptor
ServicePermissionCheckInterceptor which does the same permission check as
oracle/binding_permission_authorization_policy, and additionally covers RMI
invocation to services. If your services will always be invoked through SOAP,
you should attach the OWSM oracle/binding_permission_authorization_policy

Chapter 15
Publishing Service-Enabled Application Modules

15-38

authorization policy. If your services will also be invoked through RMI, you should
attach the EJB interceptor ServicePermissionCheckInterceptor.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows
of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to have an understanding of the predefined
authentication policies supported by OWSM. For more information, see Security
Policies-Authentication Only in Securing Web Services and Managing Policies with
Oracle Web Services Manager.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete this task:

Grant users access to the service, as described in How to Grant Test Users Access
to the Service.

To configure an authentication and authorization:

1. In the Applications window, expand the application module, expand the
serviceinterface node, and then double-click the service implementation class
(AppModuleServiceImpl.java) node.

In the web service generated from the ServiceAppModule application
module in the oracle.summit.model.amservice package in the
SummitADF_Examples workspace, the service implementation class is
ServiceAppModuleServiceImpl.java.

2. If your services will always be invoked exclusively through SOAP (and not RMI),
you should use an OWSM authorization policy as follows:

a. In the source for the service implementation class, place your cursor on the
@PortableWebService annotation.

For example, ServiceAppModuleServiceImpl.java shows the annotation for
the service as follows:

...
@PortableWebService(
 targetNamespace="/oracle/summit/model/amservice/common/",
 serviceName="ServiceAppModuleService",
 portName="ServiceAppModuleServiceSoapHttpPort",
 endpointInterface=
 "oracle.summit.model...common.serviceinterface.ServiceAppModuleService")

b. In the Properties window, expand the Policies section, and click the button
next to the Multiple Policies field.

c. In the Edit Property: Multiple Policies dialog, select the desired security policy
and click OK.

For details about the security policies supported by OWSM, see Security
Policies—Authorization Only in Securing Web Services and Managing Policies
with Oracle Web Services Manager.

d. Return to the source file and note that annotation @PolicySet is configured.

Chapter 15
Publishing Service-Enabled Application Modules

15-39

The @PolicySet annotation that you define for the service implementation
class specifies the security requirements to potential clients. In this example,
the annotation shows both the permission-checking authorization policy
(oracle/binding_permission_authorization_policy) and an authentication
policy:

...
@PortableWebService(
 targetNamespace="/oracle/summit/model/amservice/common/",
 serviceName="ServiceAppModuleService",
 portName="ServiceAppModuleServiceSoapHttpPort",
 endpointInterface=
 "oracle.summit.model...common.serviceinterface.ServiceAppModuleService")
@PolicySet(references = {
 @PolicyReference(value =
 "oracle/wss_username_token_service_policy"),
 @PolicyReference(value =
 "oracle/binding_permission_authorization_policy")
})

3. If your services will be invoked through SOAP and RMI, you should use
ServicePermissionCheckInterceptor only (there is no need to use an OWSM
authorization policy) as follows.

In the source editor, place your cursor in the @Interceptors annotation and
add ServicePermissionCheckInterceptor.class to enable permission checking
at runtime.

...
@Interceptors({ ServiceContextInterceptor.class,
 ServicePermissionCheckInterceptor.class })
@Stateless(name=
 "oracle.summit.model.amservice.common.ServiceAppModuleServiceBean",
 mappedName="ServiceAppModuleServiceBean")

4. Save the service implementation class file.

How to Secure the ADF Web Service for Access By RMI Clients
Because the ADF web service is implemented as an EJB and deployed on Oracle
WebLogic Server as Oracle Web Service's PortableWebService, the client application
can invoke the service-enable methods of the application module through the RMI
protocol.

To secure the web service for RMI clients:

1. Configure JNDI context properties to enable authentication.

2. Enable permission checking to configure an authorization policy.

Before you begin:

It may be helpful to have an understanding of the predefined authorization policies
supported by OWSM. For more information, see Security Policies—Authorization Only
in Securing Web Services and Managing Policies with Oracle Web Services Manager.

Enabling Authentication for RMI Clients
When the ADF web service is invoked through RMI, authentication is handled with
the common JAAS login module. The login module can be passed the principal and

Chapter 15
Publishing Service-Enabled Application Modules

15-40

credential as part of the JNDI initial context for the EJB in the calling application. If you
do not define the JNDI context properties, the login module will attempt to obtain the
caller's current security context.

When you choose to define remote JNDI context information, then these four JNDI
context properties need to be added to the connections.xml file.

Note:

When you intend to test the service in JDeveloper using Integrated
WebLogic Server, before deploying the service you can edit the JNDI context
properties in the connections.xml file directly. However, when you deploy
the service to standalone Oracle WebLogic Server, you will use Oracle
Enterprise Manager to configure the JNDI context properties.

• jndiFactoryInitial should be set to weblogic.jndi.WLInitialContextFactory.

• jndiProviderURL is the JNDI provider URL that indicates the location of the JNDI
server. The URL should be composed as t3://<hostname>:<server port>.

When you test the service in JDeveloper, and your service is deployed to
Integrated WebLogic Server, specify the JNDI provider URL of Integrated
WebLogic Server: t3://<hostname>:7101.

When you deploy the service to remote Oracle WebLogic Server, specify a URL
like: t3://localhost:8888, where t3 is the Oracle WebLogic protocol, localhost
is the host name that the remote Oracle WebLogic Server instance runs in, 8888 is
the port number.

• jndiSecurityPrincipal specifies the principal (user name) with permission to
access the remote JNDI.

When you test the service in JDeveloper Integrated WebLogic Server, you should
omit this context property since no security is configured for the JNDI server on
Integrated WebLogic Server.

When you deploy the service to standalone Oracle WebLogic Server, the user
name can be read from the file.

• jndiSecurityCredentials specifies the credentials (password) to be used for the
security principal.

When you test the service in JDeveloper Integrated WebLogic Server, you should
omit this context property since no security is configured for the JNDI server on
Integrated WebLogic Server.

When you deploy the service to standalone Oracle WebLogic Server in a test
environment, you can specify credentials in plain text for the JNDI provider. For
example, you can specify weblogic/weblogic1, which are the default administrator
user name/password credentials with sufficient privileges to access JNDI provider
for Oracle WebLogic Server.

When you deploy the service to a production environment, you
must remove the plain text password to avoid creating a security
vulnerability, and the connections.xml file must contain <SecureRefAddr
addrType="jndiSecurityCredentials"/> with no password. To configure the
service password for standalone Oracle WebLogic Server, you must use Oracle

Chapter 15
Publishing Service-Enabled Application Modules

15-41

Enterprise Manager, which will store the encrypted password in Oracle's credential
store.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows
of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

To configure JNDI context properties to handle authentication:

1. In the Application Resources panel, expand the Descriptors and ADF META-INF
nodes, and then double-click connections.xml.

2. If the source editor, use the JNDI context properties to specify the principal and
credentials.

If you are testing the service in JDeveloper's Integrated WebLogic Server, you only
need to specify the jndiProviderURL property, as shown in the following example.

<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="{www.globalcompany.com}ServiceAppModuleService"
 className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 ...
 <StringRefAddr addrType="jndiFactoryInitial">
 <Contents>weblogic.jndi.WLInitialContextFactory</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiProviderURL">
 <Contents>t3://a_hostname:7101</Contents>
 </StringRefAddr>
 ...
 </RefAddresses>
 </Reference>
 ...
</References>

If you are deploying the service for testing purposes to standalone Oracle
WebLogic Server, you can use the connections.xml file to specify credentials
for the JNDI provider. As the following example shows, you can specify weblogic/
weblogic1, which are the default administrator user name/password credentials
with sufficient privileges to access JNDI provider for Oracle WebLogic Server.

<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="{www.globalcompany.com}ServiceAppModuleService"
 className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 ...
 <StringRefAddr addrType="jndiFactoryInitial">
 <Contents>weblogic.jndi.WLInitialContextFactory</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiProviderURL">
 <Contents>t3://localhost:8888</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiSecurityPrincipal">

Chapter 15
Publishing Service-Enabled Application Modules

15-42

 <Contents>weblogic</Contents>
 </StringRefAddr>
 <SecureRefAddr addrType="jndiSecurityCredentials">
 <Contents>weblogic1</Contents>
 </SecureRefAddr>
 ...
 </RefAddresses>
 </Reference>
 ...
</References>

If you are deploying the service to production Oracle WebLogic Server, you can
use the connections.xml file to specify the user name. As shown in the following
example, you must not specify the password.

<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="{www.globalcompany.com}ServiceAppModuleService"
 className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 ...
 <StringRefAddr addrType="jndiFactoryInitial">
 <Contents>weblogic.jndi.WLInitialContextFactory</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiProviderURL">
 <Contents>t3://localhost:8888</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiSecurityPrincipal">
 <Contents>a_username</Contents>
 </StringRefAddr>
 <SecureRefAddr addrType="jndiSecurityCredentials/">
 ...
 </RefAddresses>
 </Reference>
 ...
</References>

3. Save the file.

Configuring Authorization for RMI Clients
You can enable permission checking to allow only users with sufficient privileges
to invoke a service method on the service interface. In order to enable
permission checking, the ADF service interface framework provides an EJB
interceptor named ServicePermissionCheckInterceptor. This EJB interceptor
ensures permission checking is enforced at runtime. Currently, the interceptor is
coded with the same logic that OWSM implements for the authorization policy
binding_permission_authorization_policy.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows
of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

Chapter 15
Publishing Service-Enabled Application Modules

15-43

You will need to complete these tasks:

1. Configure the authentication policy for the service in the connections.xml file
of the client application (the one invoking the service), as described in Enabling
Authentication for RMI Clients.

2. Grant users access to the service, as described in How to Grant Test Users
Access to the Service.

To configure a permission-based authorization policy:

1. In the Applications window, expand the META-INF node of the web service project
and double-click the ejb-jar.xml node.

2. In the source editor, add the following JpsInterceptor definition required by the
EJB for application roles evaluation.

<?xml version = '1.0' encoding = 'windows-1252'?>
<ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd" version="3.0"
 xmlns="http://java.sun.com/xml/ns/javaee">
 <enterprise-beans>
 ...
 </enterprise-beans>
 <interceptors>
 <interceptor>
 <interceptor-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ApplicationName</env-entry-value>
 <injection-target>
 <injection-target-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </injection-target-class>
 <injection-target-name>
 application_name
 </injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 ...
 <interceptors>
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </interceptor-class>
 </interceptor-binding>
 </assembly-descriptor>
</ejb-jar>

3. In the Applications window, expand the application module, expand the
serviceinterface node, and then double-click the service implementation class
(AppModuleServiceImpl.java) node.

Chapter 15
Publishing Service-Enabled Application Modules

15-44

4. In the source editor, place your cursor at the end of your annotations section
and add the annotation named ServicePermissionCheckInterceptor to enable
permission checking at runtime.

...
@Stateless(name="oracle.summit.model.amservice.common.
 ServiceAppModuleServiceBean")
@Remote(ServiceAppModuleService.class)
@PortableWebService(targetNamespace="http://www.globalcompany.com/
 ServiceAppModuleService",
 serviceName="ServiceAppModuleService",
 portName="ServiceAppModuleServiceSoapHttpPort",
 endpointInterface="oracle.summit.model.amservice.
 common.serviceinteface.ServiceAppModuleService")
@CallByReference
@Interceptors({ServiceContextInterceptor.class,
 ServicePermissionCheckInterceptor.class})

5. Save the files.

How to Grant Test Users Access to the Service
After you have configured the authorization policy for the service, you must configure
the Oracle Platform Security Services (OPSS) security provider to specify which users
can invoke method on the service. At design time, you perform this task by editing
the jazn-data.xml configuration file to create application roles and make an invoke
permission grant to the desired application roles. Then when you deploy the service,
the administrator for the target Oracle WebLogic Server will associate enterprise users
with the application roles you specify. This allows you to confer the right to invoke a
service method to any user who is a member of that application role. Users who are
members of a role that has not been granted the invoke permission, will denied access
to the service method.

The invoke permission for Oracle Web Services is defined by the
oracle.wsm.security.WSFunctionPermission class. You can grant the invoke
permission to the application roles you define for all the methods of the service or
just to individual methods.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows
of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to have an understanding of application roles and
the OPSS security provides. For more information, see the "Introduction to Oracle
Platform Security Services" chapter in Securing Applications with Oracle Platform
Security Services.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete these tasks:

1. Configure authentication and authorization policies for your service, as described
in How to Secure the ADF Web Service for Access By SOAP Clients, or How to
Secure the ADF Web Service for Access By RMI Clients.

Chapter 15
Publishing Service-Enabled Application Modules

15-45

2. Add the OPSS security provider configuration file to your project by creating a
jazn-data.xml deployment descriptor. For more information about deployment
descriptors, see the "Deploying Applications" chapter in Developing Applications
with Oracle JDeveloper.

Note that in JDeveloper you open the New Gallery, expand General, select
Deployment Descriptors and then Oracle Deployment Descriptors, and click
OK.

3. Create the desired application roles that you want to make grants to, as described
in Creating Application Roles.

4. For the purpose of testing your web service in JDeveloper using Integrated
WebLogic Server, you can populate the application roles with test users, as
described in Creating Test Users.

To grant the web service permission to application roles in the jazn-data.xml file:

1. In the main menu, choose either Application > Secure > Resource Grants or
Application > Secure > Entitlement Grants.

You can grant multiple privileges to an application role as an entitlement set or
you can grant individual privileges to a resource. Create an entitlement grant to
aggregate privileges that together secure a specific end user duty. For details
about entitlement grants, see How to Aggregate Resource Grants as Entitlement
Grants.

2. In the editor window for the jazn-data.xml file, click the Source tab.

3. In the source for the jazn-data.xml file, expand the <policy-store> element to
view all ADF security policies that you already defined for your application.

Currently, this release does not provide an editor to create an application security
policy; you will need to manually create the policy in the source for the jazn-
data.xml file.

4. Inside the <jazn-policy> element, create a <grant> element that defines
the <grantee> with the desired application role and the <permission>
with the fully qualified class name of the OWSM permission class
(oracle.wsm.security.WSFunctionPermission), the permission target name that
uniquely identifies the service method, and the invoke method action that you want
to grant to the application role principal.

Your finished source should look similar to this:

<grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</
class>
 <name>customers</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.wsm.security.WSFunctionPermission</class>
 <name>www.globalcompany.example.com/
 ServiceAppModuleService#CreateAccount</name>
 <actions>invoke</actions>
 </permission>

Chapter 15
Publishing Service-Enabled Application Modules

15-46

 </permissions>
</grant>

The <principal> element is defined by the application role class
name oracle.security.jps.service.policystore.ApplicationRole and an
application role name that you already created. For example, if you created
an application role customers and you want to grant invoke service method
permission to the members of that role, then enter customers.

The <permission> element is defined by the OWSM class name
oracle.wsm.security.WSFunctionPermission and the permission target name.
The permission target name is formed by appending /serviceInterfaceName and
#serviceMethodName (or wildcard character) to the service target namespace.

Tip:

You can find the target namespace and service name from the WSDL
definition file for the service. In the Applications window, double-click
the WSDL file under the serviceinterface node to view the name and
targetNamespace definitions.

For example, the WSDL definition file for the Summit ADF sample application
might define the following name and namespace:

<wsdl:definitions
 name="ServiceAppModuleService"
 targetNamespace="www.globalcompany.example.com"

Assume that you want to grant a permission to allow authorized users to
invoke a CreateOrder service method on the service interface with these
SummitADF_Examples workspace name and namespace, you would enter the
target name like this:

www.globalcompany.example.com/ServiceAppModuleService#CreateOrder

Alternatively, you can enter the target name using the wildcard character * to grant
all operations of the service interface in a single permission:

www.globalcompany.example.com/ServiceAppModuleService#*

The actions that you can enter are defined by the permission class. In this case,
oracle.wsm.security.WSFunctionPermission defines the single action invoke.

5. Save the changes to the jazn-data.xml file.

How to Enable Support for Binary Attachments for SOAP Clients
The ADF service interface framework supports using Message Transmission
Optimization Mechanism (MTOM) to handle sending binary data in any service method
that operates on a ViewRow with a BlobDomain/ClobDomain attribute. This permits
binary data to accompany XML messages, for example when images are required
to document an insurance claim. The SDO data objects of the service-enabled
application module maps BlobDomain/ClobDomain to javax.activation.DataHandler.
These DataHandler properties could be passed as attachments during SDO data

Chapter 15
Publishing Service-Enabled Application Modules

15-47

object marshalling/unmarshalling when the web service is called using the SOAP
protocol.

To enable MTOM support for your SOAP protocol, you must add
the @MTOM annotation to the service implementation class (for example,
ServiceAppModuleServiceImpl.java) and your method must operate on a view row
with BlobDomain/ClobDomain attribute.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows
of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete this task:

Configure a character encoding format that the ADF service interface framework
can use to convert data defined by the view object as ClobDomain attribute, as
described in How to Specify Character Encoding for ClobDomain Type Attributes.

To enable support for sending binary data attachments:

1. In the Applications window, expand the application module, expand the
serviceinterface node, and then double-click the service implementation class
(AppModuleServiceImpl.java) file.

In the web service generated from the ServiceAppModule application
module in the oracle.summit.model.amservice package in the
SummitADF_Examples workspace, the service implementation class is
ServiceAppModuleServiceImpl.java.

2. In the source for the service implementation class, place your cursor anywhere in
the annotation section.

For example, in the ServiceAppModuleServiceImpl.java the annotation section
for the service is:

...
@Stateless(name="oracle.summit.model....common.ServiceAppModuleServiceBean",
 mappedName="ServiceAppModuleServiceBean")
@Remote(ServiceAppModuleService.class)
@PortableWebService(targetNamespace="www.globalcompany.example.com",
 serviceName="ServiceAppModuleService",
 portName="ServiceAppModuleServiceSoapHttpPort",
 endpointInterface=
 "oracle.summit.model...common.serviceinterface.ServiceAppModuleService")
...

3. In the Properties window, expand the Web Services section and select Enable
MTOM.

JDeveloper adds the @MTOM annotation to the annotations section of the file.

...
@Stateless(name="oracle.summit.model....common.ServiceAppModuleServiceBean",
 mappedName="ServiceAppModuleServiceBean")
@Remote(ServiceAppModuleService.class)

Chapter 15
Publishing Service-Enabled Application Modules

15-48

@PortableWebService(targetNamespace="www.globalcompany.example.com",
 serviceName="ServiceAppModuleService",
 portName="ServiceAppModuleServiceSoapHttpPort",
 endpointInterface=
 "oracle.summit.model...common.serviceinterface.ServiceAppModuleService")
@MTOM
...

How to Specify Character Encoding for ClobDomain Type Attributes
A consequence of working with large string data, defined in the database as CLOB
type, is the character encoding used when converting string data to and from binary
data. When you work with ClobDomain attributes in your service data objects, the
ADF service interface framework streams the data by mapping the attribute value to
a base64-encoded SDO property. This mapping to base64 binary stream does not
include the character set of the original data.

To support converting string data to and from binary data, the ADF service
interface framework allows you to configure the encoding character set for individual
ClobDomain attributes of the view object. Alternatively, you can configure the encoding
character set at the level of the view object definition, when you want all ClobDomain
attributes to be converted using the same character encoding scheme.

When the framework needs to convert the binary stream to and from characters for
ClobDomain attributes, it can apply the character encoding specified as a value for
either of these custom properties that you have defined on the view object:

• SERVICE_USE_SERVER_DEFAULT_CHARSET

• SERVICE_CLOB_CONVERSION_CHARSET

The custom property SERVICE_USE_SERVER_DEFAULT_CHARSET is useful when you do
not know the specific character encoding used by the database. Since the character
set of the server JVM will be locale dependent, you should take that into account when
defaulting to the server's encoding character set.

The ideal configuration for ClobDomain attributes relies on the custom property
SERVICE_CLOB_CONVERSION_CHARSET and the character encoding that you specify. This
configuration assumes that you can verify the character encoding of the target data
to ensure that the ADF service interface framework does not convert using a different
encoding character set.

Note:

When no custom property is defined on the view object to configure
character encoding, at runtime, the ADF service interface framework will
default to the UTF-8 character encoding scheme to handle conversion of
ClobDomain data. UTF-8 is a Unicode encoding that provides multilingual
support for CLOB data that is supported by Oracle Database.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows

Chapter 15
Publishing Service-Enabled Application Modules

15-49

of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete this task:

Enable MTOM support by adding the @MTOM annotation to the service
implementation class to allow service methods to operate on a view row
with ClobDomain attributes, as described in How to Enable Support for Binary
Attachments for SOAP Clients.

To configure character encoding for individual ClobDomain attributes of the view
object:

1. In the Applications window, double-click the view object that contains ClobDomain
attributes.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute with Clob displayed in the Type column.

4. Click the Custom Properties tab, click the Add icon and choose Non-
Translatable Property from the dropdown list and then enter one of the following
predefined custom properties in the Property name field:

SERVICE_USE_SERVER_DEFAULT_CHARSET - when you want the character encoding
of the JVM to be used to convert the data. Enter true for the Value.

SERVICE_CLOB_CONVERSION_CHARSET - when you want to specify a known character
encoding that corresponds to the character encoding of the data. Enter the desired
character encoding for the Value. For example, you might enter UTF-16. Note,
when no value is supplied, the default UTF-8 will be used.

To configure character encoding for all ClobDomain attributes of the view object:

1. In the Applications window, double-click the view object that contains ClobDomain
attributes.

2. In the overview editor, click the General navigation tab.

3. In the General page, expand the Custom Properties section, click the Add icon
and choose Non-Translatable Property from the dropdown list and then enter
one of the following predefined custom properties in the Property name field:

SERVICE_USE_SERVER_DEFAULT_CHARSET - when you want the character encoding
of the JVM to be used to convert the data. Enter true for the Value.

SERVICE_CLOB_CONVERSION_CHARSET - when you want to specify a known character
encoding that corresponds to the character encoding of the data. Enter the desired
character encoding for the Value. For example, you might enter UTF-16. Note,
when no value is supplied, the default UTF-8 will be used.

How to Test the Web Service Using Integrated WebLogic Server
You can run the web service in JDeveloper using Integrated WebLogic Server. You can
also deploy the web service to Oracle WebLogic Server to test the service.

To run and test using Integrated WebLogic Server:

Chapter 15
Publishing Service-Enabled Application Modules

15-50

1. In the Applications window, expand the application module, expand the
serviceinterface node, and then select the service implementation class
(AppModuleServiceImpl.java) file.

In the web service generated from the ServiceAppModule application
module in the oracle.summit.model.amservice package in the
SummitADF_Examples workspace, the service implementation class is
ServiceAppModuleServiceImpl.java.

2. Right-click the service implementation class file, and choose Run or Debug.

The Create Default Domain dialog appears the first time you run the application
and start a new domain in Integrated WebLogic Server. Use the dialog to define
an administrator password for the new domain. Passwords you enter can be eight
characters or more and must have a numeric character.

JDeveloper initializes the server instance, and then deploys the application and
starts the web service. During this time, the output from these processes is
displayed in the Running tab of the Log window. After the web service has
started, the target URL is also displayed in the Log window.

Tip:

In the Log window, you can click the target URL link to launch the
HTTP Analyzer. This is a convenient shortcut for testing with JDeveloper
Integrated WebLogic Server. For more information about the HTTP
Analyzer, see the "Auditing and Monitoring Java Projects" chapter in
Developing Applications with Oracle JDeveloper.

3. Copy the target URL (beginning with http://) from the Log window.

For example, if the Log window displays:

http://<ipaddress>/ADFServiceDemo-ADFModel-context-root

Integrated WebLogic Server will display the service endpoint URL. So there is no
need to append the service name.

4. Launch a web browser, paste the target URL you copied from the Log window into
the browser address field, and submit the HTTP request.

5. In the test page, choose the operation you want to invoke from the Operations
dropdown list and enter sample data in its parameter fields.

6. When you are ready, press Invoke to submit the operation and view the results for
the operation in the Test Results page.

The Test Results page displays the XML Soap format of the information returned
by the operation.

How to Prevent Custom Service Methods from Timing Out
When you test the web service you may find that some of your custom methods
exceed the established timeout limitation established by the Java Transaction API
(JTA). The JTA timeout setting establishes an execution boundary for service methods
that by default may not exceed 30 seconds. You can use the Administration Console
for Oracle WebLogic Server to increase the JTA timeout setting. If you still receive a
timeout exception or you anticipate that the custom methods of the service interface

Chapter 15
Publishing Service-Enabled Application Modules

15-51

may be long running, you can specify an EJB transaction attribute for the stateless
session bean to prevent the EJB from executing those methods in a JTA transaction.

For example, calls to the afterCommit() method to execute JDBC SQL statements
from view objects or entity objects can result in the following SQLException:
java.sql.SQLException: The transaction is no longer active - status:
'Committed'. No further JDBC access is allowed within this transaction

To perform custom operations in the case of the afterCommit()
method, the service-enabled method annotation TransactionAttribute must
be configured as NOT_SUPPORTED. To make a custom method exempt
from timing out, you set TransactionAttributeType.NOT_SUPPORTED in
the Properties window specifically for that method. As the following
example shows, JDeveloper updates the method by adding the annotation
@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED).

@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public void updateCustomerInterests(List<String> pCategoryIds) throws
 ServiceException {
 invokeCustom((Method) _map.get("updateCustomerInterests"),
 new Object[] { pCategoryIds }, new String[] { null }, false);
}

Because a method with this transaction attribute setting will not be executed in the
JTA transaction, it is your responsibility to enforce control over the transaction using
the ADF Business Components methods of the oracle.jbo.ApplicationModule and
oracle.jbo.Transaction interfaces. For instance, as the following example shows,
the methods of the implementation class of the application module that you service-
enabled, will need to call am.getDBTransaction().commit() or rollback() in order to
complete the transaction.

public void updateCustomerInterests(List pCategoryIds) {
 try
 {
 if (pCategoryIds != null && pCategoryIds.size() > 0) {
 List<Integer> copyOfCategoryIds = (List<Integer>)
 this.cloneList(pCategoryIds);
 ViewObject selectedCategories =
 this.getSelectedCategoriesShuttleList();
 RowSetIterator rsi = selectedCategories.createRowSetIterator(null);
 // remove rows for the current user not in the list of product keys
 while (rsi.hasNext()) {
 Row r = rsi.next();
 Number interestId = (Number)r.getAttribute("CategoryId");
 // existing row is in the list, we're ok, so remove from list.
 if (copyOfCategoryIds.contains(interestId)) {
 copyOfCategoryIds.remove(interestId);
 }
 // if the existing row is in not list, remove it.
 else {
 r.remove();
 }
 }
 rsi.closeRowSetIterator();
 // at this point, add new rows for the keys that are left
 for (int i =0 ;i < copyOfCategoryIds.size(); i++) {
 Row newRow = selectedCategories.createRow();
 selectedCategories.insertRow(newRow);
 newRow.setAttribute("CategoryId", (String)
 copyOfCategoryIds.get(i).toString());

Chapter 15
Publishing Service-Enabled Application Modules

15-52

 }
 this.getTransaction().commit();
 }
 }
 catch (JboException e)
 {
 this.getTransaction().rollback();
 throw e;
 }
}

You should not change the default transaction attribute setting for the standard service
methods generated for the service interface (see Table 15-1). The standard methods
will execute within the default execution boundary set for the JTA transaction.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows
of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

To prevent custom methods from executing in a JTA transaction:

1. In the Applications window, expand the application module, expand the
serviceinterface node, then double-click the service implementation class
(AppModuleServiceImpl.java) file.

In the web service generated from the ServiceAppModule application
module in the oracle.summit.model.amservice package in the
SummitADF_Examples workspace, the service implementation class is
ServiceAppModuleServiceImpl.java.

2. In the source editor, locate the custom method that you want to prevent from
timing out and place your cursor on the method.

3. In the Properties window, expand Stateless Session Bean, and then select
TransactionAttributeType.NOT_SUPPORTED from the TransactionAttribute
dropdown list.

As shown in updateCustomerInterests() in the NOT_SUPPORTED annotation
for the service method example above, JDeveloper updates the custom service
method with the annotation.

4. Save the service implementation class.

5. In the Applications window, double-click the application module implementation
class (AppModuleImpl.java) file.

The implementation class defines the custom methods that you
exposed through the service interface. In the SummitADF_Examples
workspace, the application module implementation class is
oracle.summit.model.amservice.ServiceAppModuleImpl.java.

6. In the source editor, in the custom method that implements the service method
that you previously set the TransactionAttribute property on, add the custom
code that will commit and roll back the transaction.

Chapter 15
Publishing Service-Enabled Application Modules

15-53

As the above implementation example for the service method shows, if you
configured the TransactionAttribute property on the service method named
updateCustomerInterests(), then you would open the implementation class for
the application module, locate the custom method updateCustomerInterests(),
and add am.getDBTransaction().commit() and rollback() as part of the
method's try and catch statements.

7. Save the application module implementation class.

How to Deploy Web Services to Oracle WebLogic Server
You can deploy the web service to Oracle WebLogic Server, for example to perform a
second stage of testing the service.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows
of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete these tasks:

1. If your project contains a standard web service (a Java class or interface with the
@WebService annotation), you must remove the @WebService annotation from the
Java class before you can deploy the Business Components web service. If you
attempt to deploy the Business Components web service from the same project
as the standard web service, deployment will fail with an Oracle WebLogic Server
exception error. It is therefore necessary to create standard web services in a
separate project from your ADF Business Components service.

2. If you created an asynchronous web service, before you can deploy the service
you must configure the queues used to store the request and response. For
information about configuring the request and response queues, see the "Creating
the Request and Response Queues" section of the "Developing Asynchronous
Web Services" chapter in Developing Oracle Infrastructure Web Services.

3. If you configured authorization for the web service, as described in How to
Secure the ADF Web Service for Access By SOAP Clients, edit the weblogic-
application.xml file to define application ID parameters. This file appears in the
Applications window in the Application Resources panel, under the Descriptors
and META-INF nodes.

Add the following <application-param> definition as the first element:

<weblogic-application xmlns="http://www.bea.com/ns/weblogic/weblogic-
application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.bea.com/ns/weblogic/weblogic-
application.xsd">
 <application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value>ApplicationName</param-value>
 </application-param>

Chapter 15
Publishing Service-Enabled Application Modules

15-54

 ...
</weblogic-application>

Note that the ApplicationName that you enter must match the name identified in
the jazn-data.xml policy store definition:

<jazn-data>
 <policy-store>
 <applications>
 <application>
 <name>ApplicationName</name>
 <app-roles>
 ...
 </app-roles>
 <jazn-policy>
 ...
 </jazn-policy>
 </application>
 </applications>
 </policy-store>
</jazn-data>

4. Edit the ejb-jar.xml file to add the following JpsInterceptor definition required
by the EJB for application roles evaluation. This file appears in the Applications
window under the META-INF node of the web service project.

<?xml version = '1.0' encoding = 'windows-1252'?>
<ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd" version="3.0"
 xmlns="http://java.sun.com/xml/ns/javaee">
 <enterprise-beans>
 ...
 </enterprise-beans>
 <interceptors>
 <interceptor>
 <interceptor-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ApplicationName</env-entry-value>
 <injection-target>
 <injection-target-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </injection-target-class>
 <injection-target-name>
 application_name
 </injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 ...
 <interceptors>
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </interceptor-class>
 </interceptor-binding>

Chapter 15
Publishing Service-Enabled Application Modules

15-55

 </assembly-descriptor>
</ejb-jar>

Note that ApplicationName must also match the application name identified in the
jazn-data.xml policy store definition.

To deploy to Oracle WebLogic Server:

1. Create an application server connection to Oracle WebLogic Server:

a. In the main menu, choose Window and then Application Servers.

b. In the Application Servers window, right-click the Application Servers node
and choose New Application Server, and complete the Create Application
Server Connection wizard.

2. Create a service deployment profile:

a. In the Applications window, right-click the project that contains the web service
and choose Project Properties.

b. In the Project Properties dialog, open the Deployment page and click New.

c. In the Create Deployment Profile dialog, choose Business Components
Service Interface as the archive type, as shown in Figure 15-14.

Figure 15-14 Dialog for Creating a Business Components Service
Deployment Profile

3. In the main menu, choose Application > Deploy > deployment profile for the
deployment profile you created.

4. In the Deploy wizard, on the Deployment Action page, select Deploy to
Application Server and click Next.

5. On the Select Server page, select the application server connection.

6. Click OK.

Chapter 15
Publishing Service-Enabled Application Modules

15-56

Accessing Remote Data Over the Service-Enabled
Application Module

ADF Application Modules publish Service Data Objects (SDOs). You can create
service-backed entity objects to utilize SDOs to expose business services in SOAP
services.

ADF Business Components application modules offer built-in support for web services
and for publishing rows of view object data as service data objects (SDOs). Entity
objects that you create in your local data model project can utilize the SDO services
that the service-enabled application module exposes on its service interface. By
creating service-backed entity objects in your local project, you avoid having to work
directly with the service proxy and SDOs programmatically for all common web service
data access tasks.

The Create Entity Object wizard makes it easy for you to choose between a local
database and the ADF Business Components web service when you create the entity
object, as described in How to Use Service-Enabled Entity Objects and View Objects.
In this way, service-enabled application modules provide an alternative way to access
data that is not available locally in the database.

Once you create the service-backed entity object, you will be able to create view
objects, view links, and view criteria to filter the data at runtime. You will also be able to
utilize these view objects in your data model as though you were working with locally
available data accessed from database tables.

The following sections describe how to augment your data model project using a
service-enabled ADF application module.

How to Use Service-Enabled Entity Objects and View Objects
You will want to use the service-backed components as part of your application design
strategy when one of the following conditions is true:

• The client data model project needs to work with data from a service-enabled
application that is part of a separate business process.

• The client data model project needs to work with data from a pluggable, external
service.

In the first case, you provide both sides of the service. In the second case, you
may not know what the external service looks like and you may need to perform the
following:

1. Even though you might not need a Fusion implementation of the service, since
the service-enabled application module's service interface is the supported unit
of pluggability and the supported way of creating service-backed entity objects
and view objects, you create an application module with a service interface that
describes the shape you want your "canonical" pluggable service to have.

2. After generating the service-enabled application module, as described in How
to Enable the Application Module Service Interface, you then build service-back
entity objects and view objects.

3. Finally, you can create an EJB session bean (or an SCA composite) that supports
the same service interface as the "canonical" service-enabled application module

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-57

that you created in Step 2 and configure the connections.xml file of the client
project containing the service-enabled business components based on this service
interface to use this "plugged" version instead.

For details about how to expose an application module as a web service, see
Publishing Service-Enabled Application Modules.

Creating Entity Objects Backed by SDO Services
You create the service-backed entity object using the Create Entity Object wizard
by supplying the URL for the WSDL document that describes the deployed service
already running on an application server. You may locate the WSDL either from a
UDDI registry or, when the URL endpoint is not accessible, from the WSDL document
file that you have downloaded. The wizard uses the WSDL service description to
display the list of available service view instances. In the wizard, you select among
the displayed view instances to specify the entity object's data source. At the time you
run the wizard, the service endpoint must be accessible in order to locate the WSDL
document.

Only unsecured (HTTP) service endpoints may be used to create the service-backed
entity object; the Create Entity Object wizard displays an error message when you
attempt to access a secured (HTTPS) service endpoint.

Before you begin:

It may be helpful to have an understanding of how to access ADF Business
Components services in the client Fusion web application. For more information, see
Accessing Remote Data Over the Service-Enabled Application Module.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete these tasks:

1. Obtain the URL for the WSDL document that describes the deployed service. If the
unsecured HTTP URL is not accessible, download the WSDL file for the service
and use the downloaded WSDL to obtain the service from the local file system.

2. Expose an application module as a web service, as described in How to Enable
the Application Module Service Interface.

3. Service-enable specific view object as needed, as described in How to Service-
Enable Individual View Objects.

4. Define a complex type (one that includes currency codes or a unit of measure)
for attributes of the service-enabled view object as needed, as described in
Associating Related SDO Properties Using Complex Data Types.

To create the entity object that uses a service view instance as its data source:

1. In the Applications window, right-click the project in which you want to create the
entity object and choose New and then Entity Object.

2. On the Name page of the Create Entity Object wizard, do the following to create
the entity object:

a. Enter the package name in which the entity object will be created and enter
the entity object name.

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-58

b. Select Service Interface as the data source for which you want to create the
entity object.

c. Enter the WSDL document URL for the published web service, or click
Browse and choose UDDI Registry to use the Find Web Services wizard
to locate the web service from a UDDI registry. If the URL endpoint is not
accessible, copy the WSDL file to the local file system and then click Browse
and choose File System to navigate to the file.

JDeveloper will attempt to connect with the service endpoint and populate
the list of service view instances from the WSDL service description. If the
endpoint is unavailable, the list will remain empty.

d. From the Service View Instance dropdown, choose the appropriate service
view instance as the data source, as shown in Figure 15-15.

Figure 15-15 Service Interface as Data Source in the Create Entity
Object Wizard

3. Click Next and modify the attributes settings of the entity object before you
complete the wizard.

For example, on the Attributes Settings page, you can enable the Refresh After
Insert and Refresh After Update options for attributes that you anticipate will
be modified whenever the entity is modified. Typical candidates include a version
number column or an updated date column in the row.

4. Click Finish.

Using Complex Data Types with Service-Backed Entity Object Attributes
As a result of creating a service-backed entity object, JDeveloper automatically
exposes attributes that were defined by the SDO properties of the base service-
enabled view object. When your entity object contains attributes with complex types,
you will need to select the complex type's related attribute from the entity object.
For example, suppose that your service-backed entity object defines the OrderTotal
attribute and a CurrencyCode attribute to specify the currency code of allowed

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-59

countries. You will need to map the related attribute CurrencyCode to the SDO property
type specified by the service-enabled view object. Complex types support these
service types:

• AmountType service type, for use with any property that defines a currency code

• MeasureType service type, for use with any property that defines a unit of measure

You use the Attributes page of the overview editor to select the entity object attribute
defined as a complex type. You use the Details tab that you display from the Attributes
page of the overview editor to map the complex type of the selected attribute to a
related attribute of the appropriate type.

Before you begin:

It may be helpful to have an understanding of how to access ADF Business
Components services in the client Fusion web application. For more information, see
Accessing Remote Data Over the Service-Enabled Application Module.

It may be helpful to have an understanding of complex types and SDO properties.
For more information, see Associating Related SDO Properties Using Complex Data
Types.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete these tasks:

1. Expose an application module as a web service, as described in How to Enable
the Application Module Service Interface.

2. Service-enable the desired view object, as described in How to Service-Enable
Individual View Objects.

3. Specify a complex type for individual attributes of the service-enabled view object,
as described in Associating Related SDO Properties Using Complex Data Types.

4. Create the service-backed entity object from the service-enabled view object, as
described in Creating Entity Objects Backed by SDO Services.

To associate attributes using a complex type in the service-backed entity object:

1. In the Applications window, double-click the service-backed entity object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute backed by an attribute defined as a
complex type in the service-enabled view object.

The attribute you select will be defined as a numeric type by the SDO property of
the service-enabled view object.

4. With the attribute selected, click the Details tab and then in the Service section,
in the currencyCode or unitCode dropdown list, select the entity object attribute
that you want to associate with the complex type.

The dropdown list displays all String attributes that the entity object defines.
Select the attribute that is appropriate to map as the related attribute in the
complex type definition. For example, to associate a currency code with the
OrderTotal attribute that displays the amount paid by a customer, you might
select the CurrencyCode attribute in the Orders service-backed entity object.

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-60

The SDO framework supports related service attribute values currencyCode and
unitCode. When the editor displays currencyCode, the attribute you associate
must specify currency information. When the editor displays unitCode, the
attribute you associate must specify a unit of measure.

Creating View Objects Backed by SDO Services
After you add the service-backed entity object to your project, you can create service-
backed view objects to query and optionally filter the data from the web service for
use in the user interface. A service-backed view object is a view object whose single
entity usage references an entity object that is backed an SDO service. You cannot
make existing view objects service-backed. Instead, when you create the view object,
the new view object will automatically be service-backed if its entity usage is a service-
backed entity object.

Before you begin:

It may be helpful to have an understanding of how to access ADF Business
Components services in the client Fusion web application. For more information, see
Accessing Remote Data Over the Service-Enabled Application Module.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete this task:

Create the service-backed entity object, as described in Creating Entity Objects
Backed by SDO Services.

To create a view object from the service-backed entity object:

1. In the Applications window, right-click the service-backed entity object and choose
New Default View Object.

2. In the Create Default View Object dialog, enter the package name in which
the view object will be created and enter the view object name, as shown in
Figure 15-16.

The generated view object will contain the same attributes as the entity object. You
can optionally edit the view object in the overview editor to customize the query.
You can also define view criteria for the view object when you want to filter the
data from the web service. For details about filtering query results, see Working
with Named View Criteria.

Figure 15-16 View Object Can Be Created from Service-Backed Entity
Object

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-61

What Happens When You Create Service-Backed Business
Components

The service-backed entity object is an entity object that encapsulates the details
of accessing and, if necessary, modifying a row of data from an ADF Business
Components web service. After you use the Create Entity Object wizard to create
the service-backed entity object, JDeveloper saves additional service-related metadata
in the <Datasource> element of the entity component definition. The entity component
definition includes all the attributes that you selected from the service-enabled view
object instance, including attributes with a complex type definition, as shown in the
following example.

The service-backed view object references the single, service-backed entity object
in its metadata just as any entity-based view object does. You can use the service-
backed view object just as you would use any other view object. For details about
working with view objects, see Defining SQL Queries Using View Objects. The ADF
runtime handles the interaction with the ADF Business Components web service.

<Entity
 xmlns="http://xmlns.example.com/bc4j"
 Name="Customer_ServiceBasedEO"
 InheritPersnalization="true"
 AliasName="CustomerSEO"
 BindingStyle="OracleName"
 UseGlueCode="false">
 <DataSource
 DataSourceClass="oracle.jbo.datasource.svc.SIEODataSourceImpl"
 Type="ServiceInterface">
 <ServiceInterface
 ServiceName="{http://www.globalcompany.com/oesvc/}OrderEntryService"
 SDOName="{http://www.globalcompany.com/oesvc/}CustomersSVO"
 SVIName="{http://www.globalcompany.com/oesvc/}CustomersSVO"
 CreateOpName="createCustomer"
 UpdateOpName="updateCustomer"
 DeleteOpName="deleteCustomer"
 GetOpName="getCustomer"
 FindOpName="findCustomers"
 ProcessOpName="processCustomers"/>
 </DataSource>
 <Attribute
 Name="CustomerId"
 ColumnName="CustomerId"
 SQLType="NUMERIC"
 Type="oracle.jbo.domain.Number"
 ColumnType="NUMBER"
 PrimaryKey="true"/>
 <!-- ... Attribute that is associated with complex type attribute ... -->
 <Attribute
 Name="CurrencyCode"
 Precision="255"
 ColumnName="CurrencyCode"
 SQLType="VARCHAR"
 Type="java.lang.String"
 ColumnType="VARCHAR2"/>
 <!-- ... Attribute with complex type mapping ... -->
 <Attribute
 Name="OrderTotal"

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-62

 ColumnName="OrdTotal"
 SQLType="NUMERIC"
 Type="java.math.BigDecimal"
 ColumnType="NUMBER"
 <Properties>
 <SchemaBasedProperties>
 <DomainAttrMappings>
 <DomainAttrMapping
 MappedAttrName="CurrencyCode"
 Name="currencyCode"/>
 </DomainAttrMappings>
 </SchemaBasedProperties>
 </Properties>
 </Attribute>
 <!-- ... Other Attribute elements here ... -->
</Entity>

How to Update the Data Model for Service-Backed Business
Components

Because the service interface exposes individual view instances, you are responsible
for defining hierarchical relationships between service-backed entity objects (through
associations) and service-backed view objects (through view links) in your consuming
project. View links and associations are not automatically created when you create
the service-backed business component. For example, if the application module of the
published ADF Business Components service defines a master-detail relationship that
you want to utilize, then you must define a view link for the corresponding view objects
in your own project to preserve this hierarchy.

Furthermore, while you can create view links between view objects that query their
data locally and service-backed view objects (and the other way around), once you
define the view link, you will not be able to create entity-based view objects with the
following entity object usages:

• The view object will not be able to reference a secondary entity usage that is a
service-backed entity object.

• The view object will not be able to reference a primary entity usage that is a
service-backed entity object with secondary entity usages.

The same restrictions apply to associations in the client project between regular entity
objects and service-backed entity objects: while you can create the associations, you
will not be able to create view objects.

You use the Create View Link wizard to specify relationships between the view objects
that your project defines, as shown in Figure 15-17. For details about creating view
links, see How to Create a Master-Detail Hierarchy Based on Entity Associations.

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-63

Figure 15-17 One to Many Relationship Defined in Create View Link Wizard

View links you create may define relationships between service-backed view objects
and view objects that query locally accessed database tables. For example, you might
choose to drive a database-derived detail view object with a service-backed master
view object. You can create view links with the combinations shown in Table 15-3.

Table 15-3 Supported View Link Combinations Involving Service-Backed View Objects

Use Case Master View Object Type View Linked Detail
View Object Type

View Link Cardinality

Local master rows with
remote details

Query-based Service-backed One-to-many

Remote master rows with
local details

Service-backed Query-based One-to-many

Local master rows
with remote reference
information

Query-based Service-backed Many-to-one

Remote master rows
with local reference
information

Service-backed Query-based Many-to-one

Once you have defined the desired view hierarchy, using the Create View Link wizard,
you use the overview editor for your project's application module to define new view
instances on the data model, as shown in Figure 15-18. The updated data model
allows you to expose the view objects as ADF data controls that enable databinding
with the user interface components of the Fusion web application. For details about
updating the data model, see Adding Master-Detail View Object Instances to an
Application Module.

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-64

Figure 15-18 Data Model Contains Service View Instances

How to Configure the Service-Backed Business Components Runtime
Before you can run your application and interact with the published service-enabled
ADF application module to invoke service operations, you need to describe
the published service, including the service's endpoint provider type and other
configuration information. The ADF Business Components ServiceFactory class
(oracle.jbo.client.svc.ServiceFactory) returns a proxy for the service, then uses
the service proxy to invoke the service operations. The service factory can return
proxies for three different service endpoint providers, to support these transport
protocols:

• When the service endpoint provider is ADF Business Component, the transport
protocol is EJB RMI.

• When the service endpoint provider is SOA Fabric, the transport protocol is SOA
Fabric SDO binding.

• When the service endpoint provider is SOAP (for JAX-WS clients), the transport
protocol is SOAP.

To configure the consuming application to invoke published service operations:

1. Add the bcProfileName_Common.jar file for the SDO's generated classes to the
client project's classpath.

2. Update the connections.xml file in the client project's .adf/META-INF folder to
describe the published ADF Business Components service.

The updates you make to the file will depend on the transport protocol your
application uses: EJB RMI protocol, SOA Fabric SDO binding, or SOAP protocol
(for JAX-WS clients).

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-65

Adding the SDO Client Library to the Classpath
Before your application can access the published service, the service consuming
project must have access to the generated SDO classes and their schema definitions.
These files are packaged in the bcProfileName_Common.jar file generated by the
development team responsible for publishing the service.

To make the SDO classes and their schema definitions available to your application,
obtain the bcProfileName_Common.jar file from the service-provider team and place
this JAR file in a folder of your local project. For example, you may copy the JAR file
into your project's deploy folder. You can then use JDeveloper to add the JAR file to
your project's classpath with a SDO client library you create. For steps to generate the
SDO classes JAR file, see How to Deploy Web Services to Oracle WebLogic Server.

Before you begin:

It may be helpful to have an understanding of how to access ADF Business
Components services in the client Fusion web application. For more information, see
Accessing Remote Data Over the Service-Enabled Application Module.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

To add the SDO client library to the classpath:

1. In the Applications window, right-click the project that contains the SDO classes
and choose Project Properties.

2. In the Project Properties dialog, select Libraries and Classpath and click Add
Libraries.

3. In the Add Library dialog, click New to create the SDO client library.

4. In the Create Library dialog, click Add Entry to add a classpath entry.

5. In the Select Path Entry dialog, browse to the folder that contains the
bcProfileName_Common.jar file and select the file to view it in the Create Library
dialog.

The Select Path Entry dialog lets you browse the file system or local area network
to locate the JAR file. If you cannot browse the deploy folder of the service-
provider's application workspace to obtain the JAR file, you must obtain the file
and copy it into your own project's folder. For example, you may have copied the
JAR file into your project's deploy folder.

6. Click OK in the dialogs to display the Project Properties dialog with the SDO client
library selected. Click OK to add the library to the classpath.

Figure 15-19 shows the SDO client library with the name
ServiceProvider_Common.jar selected. In this case, the library name is the same
as the JAR file name. Optionally, you can edit the library name in the Create
Library dialog.

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-66

Figure 15-19 SDO Client Library Classpath Entry

Registering the ADF Business Components Service in the Consuming
Application's connections.xml for the EJB RMI Protocol

When the service endpoint provider is ADF Business Components, the service factory
will return an EJB object proxy bound to a stateless session bean running in the
EJB container. You must provide the JNDI context information to allow the consuming
application to look up the published service.

Lookup information that you provide to register the published ADF Business
Components service appears in the consuming Fusion web application's
connections.xml file, located in the .adf/META-INF folder relative to the application.
The ADF connection architecture uses this file to encapsulate the details of the service
endpoint provider.

The JNDI lookup information you provide will depend on whether the published service
runs locally (in the same JVM) with the consuming application or runs remotely
on a separate server from the consuming application. Typically, the ADF Business
Components service is in a different application from the consuming application and is
therefore run remotely.

To register the published service with your client application, update the
connections.xml file, as shown in the following example. When the ADF Business
Components service runs local to the consuming application (as occurs when you
run within JDeveloper), the service factory needs only the JNDI name to look up the
service.

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-67

Note:

When you deploy the calling application to standalone Oracle WebLogic
Server, you will use Oracle Enterprise Manager to configure the JNDI context
properties instead of editing the connections.xml file. For instructions, refer
to the online documentation in Oracle Enterprise Manager.

<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="{www.globalcompany.com}ServiceAppModuleService"
 className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.summit.model.amservice.common.
 serviceinterface.ServiceAppModuleService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>ADFBC</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiName">
 <Contents>ServiceAppModuleServiceBean#oracle.summit.model.amservice.common.
 serviceinterface.ServiceAppModuleService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>ServiceAppModuleService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/summit/model/amservice/common/serviceinterface/</Contents>
 </StringRefAddr>
 </RefAddresses>
 </Reference>
 ...
</References>

When the ADF Business Components service runs remotely to the calling client, then
remote JNDI context information needs to be added to the connections.xml file. You
can edit these JNDI context properties in the connections.xml file, as shown the
example:

• jndiFactoryInitial should be set to weblogic.jndi.WLInitialContextFactory.

• jndiProviderURL is the JNDI provider URL that indicates the location of the JNDI
server. The URL should be composed as t3://<hostname>:<server port>.

For example, specify a URL like: t3://localhost:8888, where t3 is the Oracle
WebLogic protocol, localhost is the host name that the remote Oracle WebLogic
Server instance runs in, 8888 is the port number.

• jndiSecurityPrincipal specifies the principal (user name) with permission to
access the remote JNDI.

When you deploy the service to standalone Oracle WebLogic Server, the user
name can be read from the file.

• jndiSecurityCredentials specifies the credentials (password) to be used for the
security principal.

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-68

When you deploy the service to standalone Oracle WebLogic Server in a test
environment, you can specify credentials in plain text for the JNDI provider. For
example, you can specify weblogic/weblogic1, which are the default administrator
user name/password credentials with sufficient privileges to access JNDI provider
for Oracle WebLogic Server.

When you deploy the service to a production environment, you must remove
the plain text password to avoid creating a security vulnerability. As the
following example shows, the connections.xml file must contain <SecureRefAddr
addrType="jndiSecurityCredentials"/> with no password. To configure the
service password for standalone Oracle WebLogic Server, you must use Oracle
Enterprise Manager, which will store the encrypted password in Oracle's credential
store.

<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="{www.globalcompany.com}ServiceAppModuleService"
 className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.summit.model.amservice.common.
 serviceinterface.ServiceAppModuleService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>ADFBC</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiName">
 <Contents>ServiceAppModuleServiceBean#oracle.summit.model.amservice.common.
 serviceinterface.ServiceAppModuleService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiFactoryInitial">
 <Contents>weblogic.jndi.WLInitialContextFactory</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiProviderURL">
 <Contents>t3://localhost:8888</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiSecurityPrincipal">
 <Contents>a_username</Contents>
 </StringRefAddr>
 <SecureRefAddr addrType="jndiSecurityCredentials"/>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>ServiceAppModuleService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/summit/model/amservice/common/serviceinterface/</Contents>
 </StringRefAddr>
 </RefAddresses>
 </Reference>
 ...
</References>

Registering the ADF Business Components Service in the Consuming
Application's connections.xml for the SOAP Protocol

When the service endpoint provider is SOAP, the service factory will create a dynamic
JAX-WS client proxy. You must provide the WSDL URL and port name to allow the
consuming application to look up the published service. Additionally, for the SOAP
client, OWSM client security policy can be attached as part of the SOAP header.

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-69

Lookup information that you provide to register the published ADF Business
Components service appears in the consuming Fusion web application's
connections.xml file, located in the .adf/META-INF folder relative to the application.
The ADF connection architecture uses this file to encapsulate the details of the service
endpoint provider.

Note:

When you deploy the calling application to standalone Oracle WebLogic
Server, you will use Oracle Enterprise Manager to configure the JNDI context
properties instead of editing the connections.xml file. For instructions, refer
to the online documentation in Oracle Enterprise Manager.

To register the published service with your client application for the SOAP protocol,
depending on whether your application uses identity propagation or identity switching,
update the connections.xml file following the examples below. Identity propagation
and switching are similar in that each process involves propagating an identity. In
Fusion web applications, identity propagation involves propagating the identity that is
currently executing code. Identity switching, on the other hand, involves propagating
an application identity that is different from that currently executing code.

To register the published service with your client application so the user
identity will be switched based on the credential key, specify the clientside
policy oracle/wss11_username_token_with_message_protection_client_policy in
the connections.xml file as the following example illustrates.

Note:

The connections.xml file supports OWSM security policy
client overrides. When the security policy is oracle/
wss11_username_token_with_message_protection_client_policy, the
csf-key property can be overridden to specify the consuming application's
credentials.

<Reference name="{http://xmlns.oracle.com/apps/sample/hrService/}HrService"
className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.apps.sample.hrService.HrService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>SOAP</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="webServiceConnectionName">
 <Contents>HrServiceConnection</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>HrService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/apps/sample/hrService/</Contents>

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-70

 </StringRefAddr>
 </RefAddresses>
</Reference>
<Reference name="HrServiceConnection"

className="oracle.adf.model.connection.webservice.impl.WebServiceConnectionImpl"
xmlns="">
 <Factory

className="oracle.adf.model.connection.webservice.api.WebServiceConnectionFactory
"/>
 <RefAddresses>
 <XmlRefAddr addrType="WebServiceConnection">
 <Contents>
 <wsconnection
 description="http://rws65094fwks:7202/MySampleSvc/HrService?WSDL"
 service="{http://xmlns.oracle.com/apps/sample/
hrService/}HrService">
 <model
 name="{http://xmlns.oracle.com/apps/sample/
hrService/}HrService"
 xmlns="http://oracle.com/ws/model">
 <service name="{http://xmlns.oracle.com/apps/sample/
hrService/}HrService">
 <port name="HrServiceSoapHttpPort"
 binding="{http://xmlns.oracle.com/apps/sample/
hrService/}HrServiceSoapHttp"
 portType="http://xmlns.oracle.com/apps/sample/
hrService/}HrService">
 <call-properties xmlns="http://oracle.com/adf">
 <call-property id="csf-key" xmlns="">
 <name>csf-key</name>
 <value>meuser.credentials</value>
 </call-property>
 </call-properties>
 <policy-references xmlns="http://oracle.com/adf">
 <policy-reference category="security"
 uri="oracle/
wss11_username_token_with_message_protection_client_policy"
 enabled="true"
 id="oracle/
wss11_username_token_with_message_protection_client_policy"
 xmlns=""/>
 </policy-references>
 <soapaddressUrl="http://rws65094fwks:7202/MySampleSvc/
HrService"
 xmlns="http://schemas.xmlsoap.org/wsdl/soap/"/>
 </port>
 </service>
 </model>
 </wsconnection>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>

To register the published service with your client application so the
user identity will be propagated to the caller, specify the clientside
policy oracle/wss11_saml_token_with_message_protection_client_policy in the
connections.xml file, as the following example illustrates.

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-71

<Reference name="{http://xmlns.oracle.com/apps/sample/hrService/}HrService"
className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.apps.sample.hrService.HrService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>SOAP</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="webServiceConnectionName">
 <Contents>HrServiceConnection</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>HrService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/apps/sample/hrService/</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>
<Reference name="HrServiceConnection"

className="oracle.adf.model.connection.webservice.impl.WebServiceConnectionImpl"
xmlns="">
 <Factory

className="oracle.adf.model.connection.webservice.api.WebServiceConnectionFactory
"/>
 <RefAddresses>
 <XmlRefAddr addrType="WebServiceConnection">
 <Contents>
 <wsconnection
 description="http://rws65094fwks:7202/MySampleSvc/HrService?WSDL"
 service="{http://xmlns.oracle.com/apps/sample/
hrService/}HrService">
 <model
 name="{http://xmlns.oracle.com/apps/sample/
hrService/}HrService"
 xmlns="http://oracle.com/ws/model">
 <service
 name="{http://xmlns.oracle.com/apps/sample/
hrService/}HrService">
 <port name="HrServiceSoapHttpPort"
 binding="{http://xmlns.oracle.com/apps/sample/
hrService/}HrServiceSoapHttp"
 portType="http://xmlns.oracle.com/apps/sample/
hrService/}HrService">
 <policy-references xmlns="http://oracle.com/adf">
 <policy-reference category="security"
 uri="oracle/
wss11_saml_token_with_message_protection_client_policy"
 enabled="true"
 id="oracle/
wss11_saml_token_with_message_protection_client_policy"
 xmlns=""/>
 </policy-references>
 <soap addressUrl="http://rws65094fwks:7202/MySampleSvc/
HrService"
 xmlns="http://schemas.xmlsoap.org/wsdl/soap/"/>
 </port>

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-72

 </service>
 </model>
 </wsconnection>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
</Reference>

Registering the ADF Business Components Service in the Consuming
Application's connections.xml for Fabric SDO Binding

When the service endpoint provider is Fabric, the service factory will return a SOA
Fabric composite proxy and call the service running inside a Fabric composite through
Fabric's SDO binding. You must provide the name of the Fabric composite to allow the
consuming application to look up the published service.

Lookup information that you provide to register the published ADF Business
Components service appears in the consuming Fusion web application's
connections.xml file, located in the .adf/META-INF folder relative to the application.
The ADF connection architecture uses this file to encapsulate the details of the service
endpoint provider.

Note:

When you deploy the calling application to standalone Oracle WebLogic
Server, you will use Oracle Enterprise Manager to configure the JNDI context
properties instead of editing the connections.xml file. For instructions, refer
to the online documentation in Oracle Enterprise Manager.

To register the published service with your client application for the Fabric
protocol, update the connections.xml file, as the following example shows, where
fabricAddress is the name of the Fabric composite for the published service.

<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="{www.globalcompany.com}ServiceAppModuleService"
 className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.summit.model.amservice.common.
 serviceinterface.ServiceAppModuleService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>Fabric</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="fabricAddress">
 <Contents>fabric_ServiceAppModuleService</Contents>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>ServiceAppModuleService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/summit/model/amservice/common/serviceinterface/</Contents>
 </StringRefAddr>
 </RefAddresses>
 </Reference>

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-73

 ...
</References>

How to Test the Service-Backed Components in the Oracle ADF
Model Tester

Before you can launch the Oracle ADF Model Tester, your project must meet the
runtime requirements, as described in How to Configure the Service-Backed Business
Components Runtime. The Oracle ADF Model Tester will display the view objects
you create from the remote web service and allow you to interact with the service to
perform standard CRUD operations.

Because the application module that you run can access locally queried data and
remotely queried data together, service-backed view objects and database-derived
view objects will display in the same tester. If the endpoint is unavailable at the time
you select the service-backed view object in the Oracle ADF Model Tester, you will get
a runtime exception.

For details about running the Oracle ADF Model Tester, see How to Run the Oracle
ADF Model Tester Using Configurations.

How to Invoke Operations of the Service-Backed Components in the
Consuming Application

The ADF Business Components service interface requires that you return a service
proxy to ensure that operations you invoke use the transport protocol specified by the
published service.

Before you begin:

It may be helpful to have an understanding of how to access ADF Business
Components services in the client Fusion web application. For more information, see
Accessing Remote Data Over the Service-Enabled Application Module.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete this task:

• Ensure that the consuming application has the correct libraries on the classpath.
In the Applications window, double-click the project and in the Project Properties
dialog, select Libraries and Classpath and confirm the following libraries appear:

– Java EE 1.5

– Oracle XML Parser v2

– BC4J Service Client

– JAX-WS Client

– The service's common JAR file

As the following example shows, when you invoke the operation, you perform the
following tasks:

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-74

1. Import the oracle.jbo.client.svc.ServiceFactory class and published service
class.

2. Call getServiceProxy() on the service factory object and pass in the service
name in the form <serviceName>.NAME. The ADF service factory embeds a
SDOHelperContext ID in the service proxy object returned by this method to ensure
delivery of the latest ADF Business Component service schema metadata to the
SDO.

The schema (.xsd files) for the service object may be stored in MDS and may
have been extended for example to add more business component attributes,
extend existing types, or define new types. The local helper context allows
customization of individual service's schema definitions without affecting other
service's SDO metadata or requiring restarting the application.

3. Call create() on a data factory object, where the proxy object is obtained from the
getServiceProxy() call.

4. Invoke the operation on the proxy object and return a data object.

5. Save the data object return as XML.

import commonj.sdo.DataObject;
import commonj.sdo.helper.DataFactory;
import commonj.sdo.helper.XMLHelper;
import hr.common.Dept;
import hr.common.serviceinterface.HRAppService;
import oracle.jbo.client.svc.ServiceFactory;
 ...
 {
 HRAppService proxy = (HRAppService)
ServiceFactory.getServiceProxy(HRAppService.NAME);

 Dept dept = (Dept)
 ServiceFactory.getDataFactory(proxy).create("http://example.com/hr/common/"
"Dept");
 dept.setDname("ENGINEERING");
 ...
 dept = proxy.createDept(dept);
 String xml = ServiceFactory.getXMLHelper(proxy).save((DataObject) dept,
 "http://example.com/hr/common/", "dept");
 out.print(xml);
 }

What You May Need to Know About Creating Service Data Objects in
the Consuming Application

The ADF service interface framework defines a set of common
data objects, such as oracle.jbo.common.service.types.FindCriteria,
oracle.jbo.common.service.types.FindControl,
oracle.jbo.common.service.types.ProcessControl, and so on. Those data objects
are used in standard findXxx() method and processXxx() method calls. You can
create these data objects in the consuming application and pass them to the standard
service methods. As the following example shows, you can need to call the data
factory class' create() method to construct those data objects before passing them
into the findXxx() or processXxx() methods.

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-75

FindCriteria fc = (FindCriteria) ServiceFactory.getDataFactory(proxy).create
 ("http://xmlns.oracle.com/adf/svc/types/",
"FindCriteria");

What You May Need to Know About Invoking Built-In Service Methods
in the Consuming Application

The ADF service interface framework defines several built-in SOAP service
methods that may be optionally enabled for the service view instances, including
getDftlObjAttrHints(), getServiceLastUpdateTime(), and getEntityList(), as
described in Table 15-2. These methods primarily support programmatic interaction
with the service endpoint by the consuming application and are not supported at
design time by data controls.

What Happens at Runtime: How the Application Accesses the
Published Application Module

The ADF runtime obtains the data source information from the service-backed entity
object XML definition to automate interactions with the service interface methods as
needed. By using the service-backed entity object, you avoid having to work directly
with the service proxy and service data objects programmatically for all common web
service data access tasks. The ADF service factory looks up the service and then
uses the service interface you specified in the connections.xml to invoke the service
methods.

When your application accesses an ADF Business Components web service, each
remote call is stateless, and the remote service will not participate in the same
transaction as the business component that uses a service-enabled application
module's service interface.

In the majority of the cases, calls to remote services will be informational in nature and
will not make changes to remote objects. However, if you must use a remote service to
make changes, then keep these points in mind:

• An exception thrown by the remote service will cause the local transaction to fail.

• If you successfully call a remote service that results in modifying data, and then
subsequently your local transaction fails for any reason, then it is the responsibility
of your error handling code to perform a compensating transaction against the
remote service to "undo" the previous change made.

What You May Need to Know About Service-Backed Entity Objects
and View Objects

You will use some web services to access reference information. However, other
services you call may modify data. This data modification might be in your own
company's database if the service was written by a member of your own or another
team in your company. If the web service is outside your firewall, of course the
database being modified will be managed by another company. In either of these
situations, it is important to understand that any data modifications performed by a
web service you invoke will occur in its own distinct transaction unrelated to the
service-enabled application module's current unit of work. For example, if you have
invoked a web service that modifies data and then you later call rollback() to

Chapter 15
Accessing Remote Data Over the Service-Enabled Application Module

15-76

cancel the pending changes in the application module's current unit of work, rolling
back the changes has no effect on the changes performed by the web service you
called in the process. You may need to invoke a corresponding web service method
to perform a compensating change to account for your rollback of the application
module's transaction.

At runtime, ADF handles the interaction with the ADF Business Components web
service. However, you should be aware that service-backed business components
have the following design time restrictions that may restrict your application's runtime
behavior.

• View objects that you create cannot reference a service-backed entity object as a
secondary entity object usage.

• View objects that you create cannot produce a flattened join from two or more
related entity objects when at least one of those entity objects is a service-backed
entity object.

• Service-backed view objects that you create from service-backed entity objects will
not reference secondary entity usages.

For more details about how these restrictions apply at design time, see How to Update
the Data Model for Service-Backed Business Components.

Accessing Polymorphic Collections in the Consuming
Application

ADF Business Components allows Service Data Objects (SDOs) as an alternative
approach to invoke polymorphic sub-type view object instances in the application
module.

The ADF Model project may contain base view objects that define one or more
subtype view objects derived from a common base view object. When the business
components developer wants to expose the polymorphic usage of the base view
object instance, they add the subtype to the ADF data model. However, when the
developer creates the SDO service interface from application module view instances,
the subtype SDO for the polymorphic subtype view objects are not directly referenced
in the SDO service interface.

After generating the SDO interface from a ADF Model project that defines base view
objects and subtype view objects, the generated XML schema (.xsd) will be strongly-
typed for the base view object, but not for the polymorphic subtype. Therefore,
web service clients that need to access polymorphic subtype view objects use an
alternative approach to invoke exposed operations of the SDO interface.

Note:

The example in this section refers to the custom project
PolymorphicVO_WSClient in the SummitADF_Examples application workspace.
The client project access the SDO service interface created in the
oracle.summit.model.polymorphicvo package in the Model project of the
same workspace.

Chapter 15
Accessing Polymorphic Collections in the Consuming Application

15-77

How to Generate Web Service Client Proxy Classes From the Service-
Enabled Application Module

In JDeveloper, you can generate Java classes that act as a proxy to the remote
service-enabled application module web service that you add to your web service
client project. To accomplish this, you use the Create Web Service Client and Proxy
wizard and supply a WSDL URL to the deployed service. The wizard creates a client
file which uses the proxy classes and allows you to make Java method calls to access
the web service.

Before you begin:

It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows
of data and perform service operations. For more information, see Publishing Service-
Enabled Application Modules.

It may be helpful to understand how JDeveloper supports accessing web services in
a Java applications by creating JAX-WS web service client and proxy classes. For
more information, see the "Creating JAX-WS Web Services and Clients" section in
Developing Applications with Oracle JDeveloper.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Service-
Enabled Application Modules.

You will need to complete these tasks:

1. Create the desired subtype view objects and configure the polymorphic usages on
the application module view instance using the subtypes, as described in Defining
Polymorphic View Objects.

2. Enable the service interface for the application module, as described in How to
Enable the Application Module Service Interface.

3. Create the client project that will contain the web service proxy classes that you
will use to invoke service methods.

Tip: If you have not already created a Java client project in JDeveloper, you
create a custom project to contain the web service proxy classes, as described
the "Creating Applications and Projects" section in Developing Applications with
Oracle JDeveloper.

4. Run the web service in JDeveloper to obtain the service endpoint URL that you will
use to specify the location of the WSDL document.

Tip: You can run the service in Integrated WebLogic Server and obtain the service
endpoint URL from the Log window, as described in How to Test the Web Service
Using Integrated WebLogic Server.

To generate the service client and proxy files:

1. In the Applications window, select the client project that you want to contain the
client proxy classes and choose File > New Gallery and from the Categories list,
expand Business Tier and Web Services, and then select Web Service Client
and Proxy.

2. In the Create Web Service Client and Proxy wizard, on the Select Web Service
Description page, paste the service endpoint URL that you copy from Log window

Chapter 15
Accessing Polymorphic Collections in the Consuming Application

15-78

into the WSDL Document URL field and append ?WSDL to the end of the URL,
accept all defaults and click Finish.

For example, if the name of the ADF web service you deploy is ADFModuleService,
the WSDL document URL with ?WSDL appended would look like this:

http://<ipaddress>/ADFServiceDemo-ADFModel-context-root/
AppModuleService?WSDL

How to Invoke Operations of Polymorphic View Object Using
Generated Proxy Classes

In JDeveloper, you can create a Java client that accesses web services through
JAXB (Java Architecture for XML Binding), using generated classes from the web
service schemas. To generate JAXB packages, proxy classes, and interfaces, the
client developer runs a JAXB binding compiler against the ADF Business Components
service schema (WSDL). The developer requires no knowledge of the service XML to
work with the proxy classes.

Using the generated proxy classes, developers can access and manipulate
polymorphic collections in method calls that you make in the Java class files of your
client project. A sample of such a file is the generated SOAP service client Java class
file. The generated client file is named for the deployed ADF web service that you
supplied with the WSDL document URL. For example, if the name of the ADF web
service you deploy is ADFModuleService, the SOAP service client Java class is named
AppModuleServiceSoapHttpPortClient.java.

Before you begin:

It may be helpful to have an understanding of why polymorphic collections cannot
be accessed as a remote service. For more information, see Accessing Polymorphic
Collections in the Consuming Application.

You will need to complete these tasks:

• Create the Java client project that contains Java proxy classes for the service-
enabled application module web service. For details, see How to Generate Web
Service Client Proxy Classes From the Service-Enabled Application Module.

• In the Applications window, expand the client project and
locate the SOAP service client file. As Figure 15-17 shows,
the AppModuleServiceSoapHttpPortClient.java file is located in the
com.oracle.xmlns package of the client project.

Chapter 15
Accessing Polymorphic Collections in the Consuming Application

15-79

Figure 15-20 JAXB Generated SOAP Service Client File

You may proceed to edit the SOAP service client file to invoke the exposed operations
of the base and subtype view objects. As the following example shows, factory objects
are created for the subtype view object:

1. Create the collection using the factory method of the subtype view object.

In this example, calling createSalespersonViewExSDO() on the service factory
object creates an employee of subtype Salesperson.

2. Call the setters of the service factory object to set the required and optional
attributes that the subtype's base view object defines.

Note that optional attribute values must be cast as a special type
factory.createViewAttrName type, as described in What You May Need to Know
About Invoking Service Methods in the Client Application.

3. Call the setters of the service factory object to set the required and optional
attributes that the subtype view object defines.

Chapter 15
Accessing Polymorphic Collections in the Consuming Application

15-80

In this example, the Salesperson subtype defines a single required attribute
CommissionPct for the sales commission of sales department employees.

4. Invoke other operations on the collection.

In this example, the deleteSEmpView1() deletes the created Salesperson row
on the Employee collection and the findSEmpView1ByDept() finds the list of
employees by their department.

package com.oracle.xmlns.apps.hr.service;

...

import oracle.summit.model.polymorphicvo.views.common.ObjectFactory;
import oracle.summit.model.polymorphicvo.views.common.SEmpViewSDO;

import oracle.summit.model.polymorphicvo.views.common.SalespersonViewExSDO;

...

public class AppModuleServiceSoapHttpPortClient {
 public static void main(String[] args) {
 AppModuleService_Service appModuleService_Service =
 new AppModuleService_Service();
 AppModuleService appModuleService =

appModuleService_Service.getAppModuleServiceSoapHttpPort();

 ...

 // Add your code to call the desired methods.
 try {
 SEmpViewSDO emp = testCreate(appModuleService);
 testFind(appModuleService);
 testDelete(appModuleService, emp);
 testFind(appModuleService);
 } catch (ServiceException e) {
 }

 }

...
 // 1. Create an employee of subtype Salesperson
 private static SEmpViewSDO testCreate(AppModuleService deptService) throws
 ServiceException
 {
 oracle.summit.model.polymorphicvo.views.common.ObjectFactory factory = new
 oracle.summit.model.polymorphicvo.views.common.ObjectFactory();

 System.out.println("\n*** Testing createEmp ***\n");
 SalespersonViewExSDO salesperson = factory.createSalespersonViewExSDO();
 // 2. Set the attrs of the base SEmpView view object
 salesperson.setId(8001);
 salesperson.setFirstName(factory.createSEmpViewSDOFirstName("Lynn"));
 salesperson.setLastName("Munsinger");
 salesperson.setEmail(factory.createSEmpViewSDOEmail
 ("lmunsing@summit.com"));
 salesperson.setTitleId(factory.createSEmpViewSDOTitleId
 (new BigDecimal(2)));
 salesperson.setSalary(factory.createSEmpViewSDOSalary
 (new BigDecimal(2000)));
 // 3. Set the attrs of the subtype SalespersonView view object

Chapter 15
Accessing Polymorphic Collections in the Consuming Application

15-81

 salesperson.setCommissionPct
 (factory.createSalespersonViewExSDOCommissionPct
 (new BigDecimal(20)));
 salesperson.setDeptId(factory.createSEmpViewSDODeptId(31));

 return printEmp(deptService.createSEmpView1(salesperson));
 }

 // 4. Delete the employee of type Salesperson
 private static void testDelete(AppModuleService deptService, SEmpViewSDO emp)
 throws ServiceException
 {
 System.out.println("\n*** Testing deleteEmp ***\n");
 deptService.deleteSEmpView1(emp);
 }

 // 5. Print
 private static SEmpViewSDO printEmp(SEmpViewSDO emp)
 {
 System.out.print(emp.getId() + "\t" + emp.getEmail().getValue() + "\t" +
 emp.getTitle().getValue() + "\t" +
 "\t" + emp.getSalary().getValue());
 if (emp instanceof SalespersonViewExSDO)
 {
 System.out.print("\t" + ((SalespersonViewExSDO)
 emp).getCommissionPct().getValue());
 }
 System.out.println();
 return emp;
 }

 // 6. Find employees by department
 private static void testFind(AppModuleService deptService) throws
 ServiceException
 {
 com.oracle.xmlns.adf.svc.types.ObjectFactory factory = new
 com.oracle.xmlns.adf.svc.types.ObjectFactory();

 System.out.println("\n*** Testing findEmpsByDept ***\n");
 FindCriteria fc = factory.createFindCriteria();
 fc.setFetchStart(0);
 fc.setFetchSize(-1);

 List<SEmpViewSDO> empList =
 deptService.findSEmpView1ByDept(fc, "SALES", null);
 for (SEmpViewSDO emp : empList)
 {
 printEmp(emp);
 }
 }
}

Running AppModuleServiceSoapHttpPortClient.java client in JDeveloper produces
the following output to the Log window. The createEmp method creates an employee
in the sales department as a Salesperson subtype of the EmpView collection.
The attribute value 20 is the Commission attribute of the new polymorphic view
row. The findEmpsByDept method displays a mix of EmpView base view rows
and SalespersonView subtype rows. The remaining methods delete the created
salesperson from the EmpView collection and print the result.

Chapter 15
Accessing Polymorphic Collections in the Consuming Application

15-82

*** Testing createEmp ***

8001 lmunsing@summit.com Sales Representative 2000 20

*** Testing findEmpsByDept ***

3 mnagayam@summit.com VP, Operations 1400
11 cmagee@summit.com Sales Representative 1400 10
13 ysedeghi@summit.com Sales Representative 1515 10
14 mnguyen@summit.com Sales Representative 1525 15
15 adumas@summit.com Sales Representative 1450 17.5
23 rpatel@summit.com Stock Clerk 795
8001 lmunsing@summit.com Sales Representative 2000 20

*** Testing deleteEmp ***

*** Testing findEmpsByDept ***

3 mnagayam@summit.com VP, Operations 400
11 cmagee@summit.com Sales Representative 1400 10
13 ysedeghi@summit.com Sales Representative 1515 10
14 mnguyen@summit.com Sales Representative 1525 15
15 adumas@summit.com Sales Representative 1450 17.5
23 rpatel@summit.com Stock Clerk 795

What Happens When You Generate Java Proxy Classes With the
SDO Schema

The JAXB binding compiler generates Java proxy classes for the application module
service and object factory classes for the various SDO view instances exposed by
the service interface WSDL. Because the polymorphic view object is defined in the
type hierarchy of the base view object, it also has a strongly-typed proxy class. As
Figure 15-21 shows, the SalespersonViewSDO.java proxy class appears along with
the proxy class SEmpViewSDO.java for the base view object SEmpView.

Figure 15-21 JAXB Generated SOAP Service Client Proxy Classes

As the following example shows, when the EmployeeView view object has a subtype
SalespersonView view object defined, the generated web service client contains
the proxy class SalespersonViewSDO.java which extends the base proxy class
(SEmpViewSDO) and defines the accessor methods for the commissionPct attribute.

Chapter 15
Accessing Polymorphic Collections in the Consuming Application

15-83

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "SalespersonViewExSDO", propOrder = { "commissionPct" })
public class SalespersonViewExSDO extends SEmpViewSDO {

 @XmlElementRef(name = "CommissionPct", namespace =
 "/oracle/summit/model/polymorphicvo/views/common/",
 type = JAXBElement.class, required = false)
 protected JAXBElement<BigDecimal> commissionPct;
 /**
 * Gets the value of the commissionPct property.
 *
 * @return
 * possible object is
 * {@link JAXBElement }{@code <}{@link BigDecimal }{@code >}
 *
 */
 public JAXBElement<BigDecimal> getCommissionPct() {
 return commissionPct;
 }

 /**
 * Sets the value of the commissionPct property.
 *
 * @param value
 * allowed object is
 * {@link JAXBElement }{@code <}{@link BigDecimal }{@code >}
 *
 */
 public void setCommissionPct(JAXBElement<BigDecimal> value)
{ this.commissionPct = value;
 }
}

What You May Need to Know About Invoking Service Methods in the
Client Application

The generated service factory classes of the ADF Business Components service
interface define the builtin methods that may be optionally enabled to create
the service view instances. For example, for the polymorphic view object, the
createSalespersonView() is enabled to create an instance of the polymorphic view
object. When you use the create factory method to define the attributes of the view
instance, the method signature for required attributes of the view object differs from
attributes that may be optionally defined.

For example, when the SalepersonViewSDO.java defines setters for the required
attributes of the view object, your client code can use a Java primitive value for
the required attribute. However, setters for optional attributes must use a special
type that indicates the XML element is missing and is not just an empty value. The
factory object method supports the special type for optional view object attributes.
As the following example shows, the method signature for setFirstName invokes
factory.createSEmpViewSDOFirstName, whereas, the method signature for required
attributes, like setId and setLastName, take an integer and String value.

private static SEmpViewSDO testCreate(AppModuleService deptService) throws
 ServiceException
 {
 oracle.summit.model.polymorphicvo.views.common.ObjectFactory factory = new
 oracle.summit.model.polymorphicvo.views.common.ObjectFactory();

Chapter 15
Accessing Polymorphic Collections in the Consuming Application

15-84

 System.out.println("\n*** Testing createEmp ***\n");
 SalespersonViewExSDO salesperson = factory.createSalespersonViewExSDO();
 salesperson.setId(8001);
 salesperson.setFirstName(factory.createSEmpViewSDOFirstName("Lynn"));
 salesperson.setLastName("Munsinger");
 salesperson.setEmail
 (factory.createSEmpViewSDOEmail("lmunsing@summit.com"));
 salesperson.setTitleId
 (factory.createSEmpViewSDOTitleId(new BigDecimal(2)));
 salesperson.setSalary
 (factory.createSEmpViewSDOSalary(new BigDecimal(2000)));
 salesperson.setCommissionPct
 (factory.createSalespersonViewExSDOCommissionPct(new
BigDecimal(20)));
 salesperson.setDeptId(factory.createSEmpViewSDODeptId(31));

 return printEmp(deptService.createSEmpView1(salesperson));
}

Working with the Find Method Filter Model in the Consuming
Application

ADF Business Components defines a hierarchical filter model for the FindCriteria
object that allows SOAP clients to control the behavior of find methods invoked as a
SOAP request or in client code, programmatically.

filter —>group—>item

The filter contains all runtime conditions and corresponds to a view criteria in ADF.
View criteria restrict returned data to those rows matching the defined filters. At
runtime, the filters will be converted to SQL WHERE clauses for the purpose of
providing a data filter to a view object. Within the filter, the group contains a set of
runtime filter conditions for one or more attributes of the SDO.

Note:

Attributes that participate in find method queries must be defined as
queriable by the backing view object. The item defines one filter condition
for a specific attribute.

The XSD diagram for the FindCriteria object shows in detail how the arguments for the
find method are constructed.

Chapter 15
Working with the Find Method Filter Model in the Consuming Application

15-85

Figure 15-22 FindCriteria XSD Diagram

Conjunctions (And, Or, Not, AndNot, OrNot) may be specified to define multiple
items in a group and define filter conditions are evaluated in relation to each other.
For example, an And conjunction specifies that the query results meet both joined
conditions. An Or conjunction specifies that the query results meet either or both
joined conditions. When a conjunction is omitted, And behavior is assumed.

The following block diagram is another way to represent the containment model of the
FindCriteria object.

Figure 15-23 FindCriteria Containment Hierarchy

Chapter 15
Working with the Find Method Filter Model in the Consuming Application

15-86

To specify the filter item for the FindCriteria, the client must define the following:

• Attribute is a case-sensitive attribute name to be filtered by the filter condition.

• Operator is applied to the filter condition. Operators are appropriate to the attribute
type and are defined by oracle.jbo.common.JboCompOper. See note below for
exceptions.

• Value specifies the attribute filter criteria, which can include non-leading %
wildcard.

Note:

SOAP services clients may specify conditions using all operators defined
by oracle.jbo.common.JboCompOper, with the exception of LIKE (use
CONTAINS instead), IN, and NOTIN. The operators IN and NOTIN have
runtime support and may therefore be applied programmatically. The
operators CONTAINSALL and CONTAINSDELIMITEDID are supported for
multi-select attributes.

Additionally, the client may specify the following FindCriteria elements to format the
result set response:

• FetchStart (required) specifies the zero-based row index to start with. The default
is 0 (first row).

• FetchSize (required) specifies the maximum number of rows to retrieve.

• SortOrder (optional) contains directive for sorting the result set in ascending or
descending order.

• FindAttribute (optional) specifies the subset of attributes to retrieve when the
filter criteria is satisfied. When none is satisfied, all attributes are fetched.

• ExcludeAttribute (optional) a boolean flag that when set to True, attributes
specified by FindAttribute are not returned.

When attributes of a child object need to be conditionally evaluated and/or returned
in the payload, a childFindCriteria structure may be added within the FindCriteria
structure. The elements of the childFindCriteria are the same as used in the
FindCriteria structure, with one addition: childAttrName specifies which child object
to apply the filter criteria to, as the following block diagram illustrates for a single child
object.

Chapter 15
Working with the Find Method Filter Model in the Consuming Application

15-87

Figure 15-24 FindCriteria Containment Hierarchy with Child Find Criteria

How to Control Find Method Behavior Using a SOAP Request
To construct a find request payload for a SDO, it is necessary to understand the
containment hierarchy of the find method filter model. Payload building blocks are
derived from the elements defined by the find method XSD. For details about
the containment hierarchy, see Working with the Find Method Filter Model in the
Consuming Application.

To define a SOAP request for a FindCriteria, follow this process:

1. Specify the number of rows in the result set, and on which row to start (required).

2. Define the filter condition on the parent object, specifying one or more view criteria
items (required).

3. Specify the sort order for the result, if desired (optional). Default is descending
order.

4. Specify one or more attributes to retrieve when the filter criteria is satisfied
(optional).

5. Specify filter conditions on child objects, if any (optional). See Figure 15-25.

The following request is designed to return a result set matching this description on the
parent object:
Find up to 50 Locations where the Country attribute value is US or IE. Return only the
Country, State, Province, and City attributes. Sort the result set in descending Country
order. Do not return any translated values.

Chapter 15
Working with the Find Method Filter Model in the Consuming Application

15-88

Figure 15-25 Find Request on Parent Object

The following request is designed to return a result set for a filtered child object
matching this description:

For each row in the result set (each qualifying object instance), include the
LocationProfile: including the FloorNumber, Building, City, State, Province, Country
and EffectiveStartDate attributes, if the EffectiveStartDate is on or after the date
specified.

Chapter 15
Working with the Find Method Filter Model in the Consuming Application

15-89

Figure 15-26 Find Request on Parent and Child Objects

How to Control Find Method Behavior Using a Java Client
The standard find method API provides control over the query behavior. To work with
the API, it is necessary to understand the object containment hierarchy of the find
method filter model. For details about the containment hierarchy, see Working with the
Find Method Filter Model in the Consuming Application,

The following sample illustrates the process for programmatically creating a
FindCriteria object:

Chapter 15
Working with the Find Method Filter Model in the Consuming Application

15-90

1. Create a new FindCriteria (the Filter).

2. Create a new ViewCriteriaItem (the Item).

3. Create a new ViewCriteriaRow (the Group).

4. Add the created items and groups to the FindCriteria.

//1. Create FindCriteria
 final FindCriteria findCriteria =
(FindCriteria)DataFactory.INSTANCE.create(FindCriteria.class);
 findCriteria.setFetchStart(0);
 findCriteria.setFetchSize(-1);
 findCriteria.setExcludeAttribute(false);

//2. Create ViewCriteriaItem
 final ViewCriteriaItem viewCriteriaItem =
(ViewCriteriaItem)DataFactory.INSTANCE.create(ViewCriteriaItem.class);
 viewCriteriaItem.setConjunction("AND"); //Can also be OR
 viewCriteriaItem.setUpperCaseCompare(true);
 viewCriteriaItem.setAttribute("EmpName");
 viewCriteriaItem.setOperator("LIKE"); //LIKE used for WILDCARD comparison
 final List<Object> item_values = new ArrayList<Object>(5);
 item_values.add(viewCriteriaItem);
 viewCriteriaItem.setValue(item_values);

//3. Create ViewCriteriaRow.
//4. Further add ViewCriteriaItem into ViewCriteriaRow and ViewCriteriaRow into
FindCriteria.
 final ViewCriteriaRow viewCriteriaRow =
(ViewCriteriaRow)DataFactory.INSTANCE.create(ViewCriteriaRow.class);
 viewCriteriaRow.setConjunction("AND");
 viewCriteriaRow.setUpperCaseCompare(true);
 final List<Object> item = new ArrayList<Object>(5);
 item.add(viewCriteriaItem);
 viewCriteriaRow.setItem(item);
 findCriteria.getFilter().getGroup().add(viewCriteriaRow);

When you want to query with a list of partial attributes list

By default, the find operation returns all the attributes including all details. When you
only need some attributes, you should set the partial attributes on the FindCriteria
parameter of the find method. Do this in the following situations:

• SDO contains LOB, which can be very expensive to retrieve and transfer.

• SDO contains details that are not needed, such as translations. Querying detail is
also expensive.

Note: The standard getXXX function does not take a FindCriteria, so this function
always returns everything. You should use findXXX to trim your return attributes.

The following example shows how to set the partial attributes to include only Dname,
Loc from Dept, and exclude Empno from Emp.

FindCriteria fc = (FindCriteria)datafactory.create(FindCriteria.class);
List l = new ArrayList();
l.add("Dname");
l.add("Loc");
l.add("Emp");
fc.setFindAttribute(l);
List cfcl = new ArrayList();
ChildFindCriteria cfc =

Chapter 15
Working with the Find Method Filter Model in the Consuming Application

15-91

(ChildFindCriteria)datafactory.create(ChildFindCriteria.class);
cfc.setChildAttrName("Emp");
List cl = new ArrayList();
cl.add("Empno");
cfc.setFindAttribute(cl);
cfc.setExcludeAttribute(true);
cfcl.add(cfc);
fc.setChildFindCriteria(cfcl);
DeptResult res = svc.findDept(fc, null);

The following example shows how to set the partial attributes to exclude
PurchaseOrderLine from PurchaseOrder.

FindCriteria fc = (FindCriteria)datafactory.create(FindCriteria.class);
List l = new ArrayList();
fc.setExcludeAttribute(true);
l.add("PurchaseOrderLine");
fc.setFindAttribute(l);
PchaseOrderResult res = svc.findPurchaseOrder(fc, null);

When you want to filter the result using a view criteria

The find API allows you to specify the WHERE clause of your query. The WHERE
clause can be set on any level of the SDO.

The following example shows how to retrieve only the departments with a department
number greater than 10 and child employees whose names start with "A".

FindCriteria fc = (FindCriteria)datafactory.create(FindCriteria.class);
//create the view criteria item
List value = new ArrayList();
value.add(new Integer(10));
ViewCriteriaItem vci =
(ViewCriteriaItem)datafactory.create(ViewCriteriaItem.class);
vci.setValue(value);
vci.setAttribute("Deptno");
List<ViewCriteriaItem> items = new ArrayList(1);
items.add(vci);
//create view criteria row
ViewCriteriaRow vcr = (ViewCriteriaRow)
datafactory.create(ViewCriteriaRow.class);
vcr.setItem(items);
//create the view criteria
List group = new ArrayList();
group.add(vcr);
ViewCriteria vc = (ViewCriteria)datafactory.create(ViewCriteria.class);
vc.setGroup(group);
//set filter
fc.setFilter(vc);

List cfcl = new ArrayList();
//create the child find criteria
ChildFindCriteria cfc =
(ChildFindCriteria)datafactory.create(ChildFindCriteria.class);
cfc.setChildAttrName("Emp");
//create the child view criteira
ViewCriteria cvc = (ViewCriteria)datafactory.create(ViewCriteria.class);
cfc.setFilter(cvc);
//create the view criteria item
List cvalue = new ArrayList();
cvalue.add("A%");

Chapter 15
Working with the Find Method Filter Model in the Consuming Application

15-92

ViewCriteriaItem cvci =
(ViewCriteriaItem)datafactory.create(ViewCriteriaItem.class);
cvci.setValue(value);
cvci.setAttribute("Dname");
cvci.setOperator("LIKE");
List<ViewCriteriaItem> citems = new ArrayList(1);
citems.add(cvci);
//create child view criteria row
ViewCriteriaRow cvcr = (ViewCriteriaRow)
datafactory.create(ViewCriteriaRow.class);
cvcr.setItem(citems);
List cgroup = new ArrayList();
cgroup.add(cvcr);
cvc.setGroup(cgroup);

DeptResult dres = svc.findDept(fc, null);

You can also query the parents with the children that satisfy certain criteria. For
example, the following sample retrieves the departments with employees whose salary
is greater than $10,000.

//create the view criteria item on the employees
List nvalue = new ArrayList();
nvalue.add(new BigDecimal(10000));
ViewCriteriaItem nvci =
(ViewCriteriaItem)datafactory.create(ViewCriteriaItem.class);
nvci.setValue(nvalue);
nvci.setAttribute("Salary");
nvci.setOperation(">");
List<ViewCriteriaItem> nitems = new ArrayList(1);
nitems.add(nvci);
//create view criteria row
ViewCriteriaRow nvcr = (ViewCriteriaRow)
datafactory.create(ViewCriteriaRow.class);
nvcr.setItem(nitems);
//create the nested view criteria
List ngroup = new ArrayList();
ngroup.add(nvcr);
ViewCriteria nvc = (ViewCriteria)datafactory.create(ViewCriteria.class);
nvc.setGroup(ngroup);

//create the view criteria item on the department
ViewCriteriaItem vci =
(ViewCriteriaItem)datafactory.create(ViewCriteriaItem.class);
vci.setAttribute("Emp");
vci.setNested(nvc);
List<ViewCriteriaItem> items = new ArrayList(1);
items.add(vci);
//create view criteria row
ViewCriteriaRow vcr = (ViewCriteriaRow)
datafactory.create(ViewCriteriaRow.class);
vcr.setItem(items);
//create view criteria on department
ViewCriteria vc = (ViewCriteria)datafactory.create(ViewCriteria.class);
List group = new ArrayList();
group.add(vcr);
vc.setGroup(group);
//set filter
FindCriteria fc = (FindCriteria)datafactory.create(FindCriteria.class);
fc.setFilter(vc);

Chapter 15
Working with the Find Method Filter Model in the Consuming Application

15-93

DeptResult dres = svc.findDept(fc, null);

When you want to page the result

If you know that your query might return a large amount of data, you should make
multiple service invocations, and use setFetchStart and setFetchSize to control the
amount of the data that you want to retrieve.

The following sample shows how to retrieve only the second employee and the
employee's department.

FindCriteria fc = (FindCriteria)datafactory.create(FindCriteria.class);
List cfcl = new ArrayList();
ChildFindCriteria cfc =
(ChildFindCriteria)datafactory.create(ChildFindCriteria.class);
cfc.setChildAttrName("Emp");
cfc.setFetchStart(1);
cfc.setFetchSize(1);
cfcl.add(cfc);
fc.setChildFindCriteria(cfcl);
DeptResult dres = svc.findDept(fc, null);

Chapter 15
Working with the Find Method Filter Model in the Consuming Application

15-94

16
Creating ADF RESTful Web Services with
Application Modules

This chapter describes how to create ADF REST resources based on view object
instances of the ADF application module to make these resources available as ADF
RESTful web services in a Fusion web application.
This chapter includes the following sections:

• About RESTful Web Services and ADF Business Components

• Creating ADF REST Resources Using the Application Module

• Customizing the ADF REST Resource Representation

• Versioning the ADF REST Resource

• Versioning the ADF REST Runtime Framework

• Granting Client Access to the ADF REST Resource

• Deploying the ADF REST Resource

• Testing the ADF REST Resources Using Integrated WebLogic Server

About RESTful Web Services and ADF Business
Components

ADF Business Components view object instances can be exposed as web services
using REST. Client developers interact with these resources through the REST API
enabled by the ADF REST runtime.

REpresentational State Transfer (REST) supports a stateless client-server architecture
in which the web services are viewed as resources identified by their URL. HTTP
Request methods such as GET and POST are the verbs that the developer can use in
a web service client request message to describe the necessary create, read, update,
and delete (CRUD) actions to be performed on the resource represented by the HTTP
URL. REST prescribes the use of standards such as HTTP, URL, URI, XML, HTML,
as well as Resource Types and MIME Types. Therefore, REST is not a standard but a
proposed architectural style for web services.

Web services conforming to the REST design constraints are referred to as being
RESTful. This type of web service allows the HTTP client and the HTTP server to
exchange information about resources identified by using a URL. The request and
response contain a representation of the resource, in a specific format, which defines
the state of the actual resource.

In the Fusion web application, ADF REST resources acted on by RESTful web
services are backed by view object instances exposed in the data model of the
ADF Business Components Model project. ADF Business Components developers
working in the ADF Model project can decide on the set of attributes to expose from

16-1

backing view objects, the actions to make available CRUD operations, and the view
link relationships to preserve for the resulting resource.

Note:

When you create view objects that you intend to expose as ADF REST
resources, use the Declarative option on the Query page of the Create
View Object wizard to create view objects with declarative SQL mode option
enabled. View objects created in declarative SQL mode at design time
support an ADF REST framework runtime optimization that allows resource
collections to be efficiently filtered by client requests made with the URL
query parameter fields.

The design-time choices made by ADF Business Components developers are
captured in REST resource definition XML files. Web service client developers may
interact with these resource definitions through the REST API enabled by the ADF
REST runtime. As a result, the consuming service client may invoke CRUD operations
to interact with the REST resources and ADF business objects. The data is shaped by
the resource's backing view object instance, with the parent-child relationships intact.

When you create the first REST resource in the ADF Business Components project,
JDeveloper also generates a separate RESTful web service project to register the
ADF REST servlet. Figure 16-1 shows the web.xml file that JDeveloper generates. You
use this project to run and deploy the RESTful web service.

Figure 16-1 Applications Window Displays RESTful Web Service Project

Security for ADF REST resources is enforced in RESTful web services similar to the
way you secure the Fusion web application. In JDeveloper, you run the Configure ADF
Security wizard to enforce security on the ADF Model project. After you run the wizard,
the REST resources of the deployed RESTful web service will be protected by default
and will require that you grant access to the operations of the service.

You can test security in JDeveloper by creating test users and granting them access
privileges to the resources. The security policies that confer these access rights, may

Chapter 16
About RESTful Web Services and ADF Business Components

16-2

then be migrated from the application level to a domain-level security policy store,
where enterprise users are provisioned with access rights.

RESTful Web Services Use Cases and Examples
Any development team can publish an ADF REST resource to contribute to the Fusion
web application. ADF REST application developers can manage the functionality that
they expose to the service client using these version features:

• Registering REST resources with an application-specific resource version name
(or number) to support versioning of REST resources.

• Declaring a default ADF REST framework version for REST resources allows
service clients to utilize new features and enhancements at runtime, such as
the advanced query capabilities offered in version 2 of the ADF REST runtime
framework. By declaring a default framework version to process requests, REST
application developers may opt into the features introduced by a specific ADF
REST framework when they are ready. In JDeveloper starting with release
12.2.1.2.0, versions 1, 2, and 3 exist. In the release 12.2.1.4.0 and later, versions
1, 2, 3, 4, 5, 6, and 7 exist.

Specific runtime features of the ADF REST framework that support the exchange of
resource information by client and server include:

• Interacting with the REST resource is supported by separate JSON-based media
type structures for the resource, action execution, and the results of action
execution.

• Passing a custom header to specify the version of the ADF REST runtime
framework that will be used to process requests. The version header allows
service clients to override the default version declaration defined by the REST
application. In JDeveloper starting with release 12.2.1.2.0, versions 1, 2, and 3
exist. In the release 12.2.1.4.0 and later, versions 1, 2, 3, 4, 5, 6, and 7 exist.

• Interacting with the REST resource using standard HTTP request methods,
including GET, POST, PATCH, and DELETE.

• Executing an HTTP method using an X-HTTP-Method-Override header on a
POST request method when client restrictions prevent the use of standard HTTP
methods to interact with the REST resource.

• Merging payload content with the REST resource using a POST method in
combination with a header Upsert-Mode set to true. This action implements create
if the record does not exist or update if the record exists.

• Locating a REST resource item (such as a specific employee) or REST resource
collection (such as an collection of all employees) is supported by REST-compliant
URI path names based on resource names defined in the ADF Business
Components Model project.

• Obtaining a description of the REST resource, including the resource attributes
and available actions, is supported by a specific media type and describe action.

• Obtaining a error responses in the form of a JSON payload with exception
detail when ADF REST framework version 4 or later is enabled. Alternatively,
with framework version 3 or earlier, error responses are in the form of a simple
message string.

Chapter 16
About RESTful Web Services and ADF Business Components

16-3

• Linking to a canonical REST resource is supported when a resource with a super
set of updatable entities is defined. The canonical link supports alternate links for
the backing view object.

• Filtering of the REST resource is supported by query string parameters on the URI
specified by the client to access the specific resource.

• Encoding formats are supported on the REST resource to enable compression
and decompression.

• Content streaming of BLOB and CLOB attributes exposed by the REST resource
is supported by the ADF REST framework.

• Performing data consistency checks while invoking the RESTful web service is
supported by the ADF REST framework. This capability uses version history in the
database to enable clients to manage HTTP payloads according to updates in the
resource itself.

• Authorizing users to access the REST resource is enabled by ADF Security
permission grants.

Additional Functionality for RESTful Web Services
You may find it helpful to understand other Oracle ADF features before you start
working with RESTful web services. Following are links to supporting functionality that
may be of interest.

• For details about creating view objects with the recommended declarative SQL
mode enabled to support efficient resource collection filtering at runtime, see
Working with View Objects in Declarative SQL Mode,

• For details about enabling change indicator attributes to entity objects when you
want to support data consistency checking on the service client, see How to
Protect Against Losing Simultaneously Updated Data.

• For details about creating row finders on view object when you want to expose
finders in ADF REST resource, see Working with Row Finders.

• For details about creating LOV-enabled view object attributes when you want to
expose LOV links in the ADF REST resource, see Working with List of Values
(LOV) in View Object Attributes.

• For information about creating polymorphic view objects to expose subtype view
rows in the ADF REST resource, see Working with Polymorphic View Rows.

• For information about the ADF REST framework that enables runtime access to
ADF REST resources using a REST API, see Consuming ADF RESTful Web
Services.

• For details about using the ADF REST data control to design the user interface,
see Creating ADF REST Data Controls from ADF RESTful Web Services.

• For information about creating ADF REST resources using Create Business
Components from Tables wizard, see How to Create a Data Model Project for
ADF REST Web Applications.

Chapter 16
About RESTful Web Services and ADF Business Components

16-4

Creating ADF REST Resources Using the Application
Module

You can use view object instances that you expose on the ADF application module to
create the ADF REST resource.

The application module is an ADF Business Components framework component that
encapsulates business logic as a set of related business functions exposed as view
object instances. You may map one or more view object instances that appear in the
application module data model to ADF REST resources. You use the overview editor
for your application module to create the ADF REST resource. The REST resource
that you add to the ADF Model project may be published as a web service that follows
the REST architectural style.

Note:

When you create view objects that you intend to expose as ADF REST
resources, use the Declarative option on the Query page of the Create
View Object wizard to create view objects with declarative SQL mode option
enabled. View objects created in declarative SQL mode at design time
support an ADF REST framework runtime optimization that allows resource
collections to be efficiently filtered by client requests made with the URL
query parameter fields.

How to Create ADF REST Resources Using the Create Business
Components from Tables Wizard

In the New Gallery, in the ADF Business Components category, JDeveloper offers a
wizard to create each kind of business component. Each wizard allows you to specify
the component name for the new component and to select the package into which
you'd like to organize the component. If the package does not yet exist, the new
component becomes the first component in that new package.

The Create Business Components from Tables wizard is particularly useful in
JDeveloper because it is the only wizard that combines generating the various
business components along with creating REST resources in a single end to end
process. This wizard lets you create REST resources quickly and easily. You can
create entity objects based on an online or offline database, then you can create either
entity-based view objects or query-based view objects, and an application module
to contain the view instances of the data model, and then create the ADF REST
resources.

Before you begin:

It may be helpful to have an understanding of the various ADF business components.
For more information, see About ADF Business Components.

You will need to complete this task:

Chapter 16
Creating ADF REST Resources Using the Application Module

16-5

Create the data model project that will contain the business components, as
described in How to Create a Data Model Project for ADF REST Web Applications.

To create REST resources from Business Components from Tables wizard in one
pass:

1. In the Applications window, right-click the project in which you want to create the
entity objects and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components
and then Business Components from Tables, and click OK.

If this is the first component you are creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.
Complete the dialog, as described in How to Initialize the Data Model Project With
a Database Connection.

3. In the Create Business Components from Tables wizard, on the Entity Objects
page, filter the database schema to display available database objects and select
those database objects for which you want to create entity objects. Click Next.

Note that if you change a default package name, you must not use reserved words
like rest in the package name. For details about package naming, see What You
May Need to Know About Package Naming Conventions.

4. On the Entity-based View Objects page, select among the available entity objects
to create updatable view object definitions for your entity object definitions. Click
Next.

Note that the view object definitions you create in this wizard will contain a single
usage of an entity object, and will expose all the attributes in that object.

5. On the Query-based View Objects page, select among the available database
objects to create read-only view object definitions. Click Next.

6. On the Application Module page, select the Add to Application Module checkbox
and leave the other default selections unchanged. Click Next.

7. On the REST Resources page, choose an existing Release Version from the
dropdown list or click the Create New Release Version icon. Select among the
available view objects to add as view instances and create REST resources. Click
Next.

8. You can optionally specify attributes to hide in the resource payload and also
shape it in the Attribute Settings page. Click Next.

9. On the Summary page, review the list of business components that the wizard will
create with REST resources, and click Finish.

10. You may create additional ADF REST resources using the overview editor for
application modules. For details, see How to Create ADF REST Resources from
View Object Instances.

How to Create ADF REST Resources from View Object Instances
View object instances are the business objects on which the Fusion web application
operates. The ADF application module exposes these business objects in the data
model it defines to specify the data that the service client can display and manipulate.
After you have created the Model project, optionally using the application template for
ADF REST, you may create additional ADF REST resources using the overview editor

Chapter 16
Creating ADF REST Resources Using the Application Module

16-6

for the application module. In this case, any view object instance that the application
module defines may have an ADF REST resource defined.

Adding an ADF REST resource is an option that appears in the Web Service
page of the application module overview editor. Figure 16-2 shows how the editor
displays the REST resources that have been created for view object instances on the
AppModule application module. Notice that the editor organizes REST resources on the
application module by their assigned release-specific version names (in this example,
named 11.0, 11.1, and 11.2).

Figure 16-2 ADF REST Resources Defined on the Application Module

Note:

When you create an ADF REST resource JDeveloper prompts you to specify
a version release name for the resource. The version is an alphanumeric
identifier that helps you to manage the current and subsequent versions of
resources that you add to the ADF Model project across multiple releases.

After you select the view object instance, name the REST resource, and select a
version, JDeveloper opens the resource in the overview editor for the REST resource.
You use the overview editor to edit the REST resource representation by exposing
view object accessors and available operations as payload objects and actions
of RESTful web services. JDeveloper saves the REST resource definition files as
subpackages of the ADF application module organized by their assigned release
version names.

For details about customizing the REST resource, see How to Edit the ADF REST
Resource Definition.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables web service clients to access rows of data and
perform service operations. For more information, see About RESTful Web Services
and ADF Business Components.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-7

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete these tasks:

• Create the application module data model that contains the view object instances
that you want the REST resource to expose, as described in How to Create an
Application Module.

• Create a release version identifier in the adf-config.xml file to associate ADF
REST resources you create with a specific version. Each REST resource must
be associated with a release version to help manage the current and subsequent
versions of ADF REST resources that you add to the ADF Model project, as
described in Versioning the ADF REST Resource.

To create the ADF REST resource:

1. In the Applications window, double-click the application module that contains the
view instance for which you want to create the ADF REST resource.

2. In the overview editor, click the Web Service navigation tab, then click the REST
tab, and then click the Enable Support for REST Service add icon.

When you create the first REST resource, JDeveloper also generates a separate
RESTful web service project to register the ADF REST servlet.

3. In Create REST Resource dialog, select the root view instance to expose in a
RESTful web service.

The dialog displays view instances defined in the application module data model.
Only the root view instance of a master-detail hierarchy may be selected.

4. Enter the Resource Name of the REST resource collection and select a release
version from the dropdown list, and then click OK.

The resource name is the identifier that service clients use to interact with view
instance. For example, as the following figure shows, to name a collection based
on a DeptView1 view instance, you might name enter Departments to indicate the
full collection name. For more information about naming, see What You May Need
to Know About Naming ADF REST Resources.

The release version is an identifier that you must create in the adf-config.xml file
to manage the creation of resources in JDeveloper. The version will be part of the
URL that service clients use to invoke operations on a specific REST resource, as
described in Versioning the ADF REST Resource.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-8

Figure 16-3 Assigning the ADF REST Resource to a Release Version

5. In the overview editor for the REST resource, you can proceed to edit the resource
and its structure by performing any of the following tasks:

a. Add and remove child resources defined by view link accessors. For details,
see How to Edit the ADF REST Resource Definition.

b. Add and remove resources defined by the same backing view instance. For
details, see How to Add and Remove Resources Based on the Same View
Instance.

c. Add and remove attributes. For details, see How to Hide and Expose
Attributes in the ADF REST Resource.

d. Modify access to standard operations defined by HTTP methods, canonical
links, row finder filters, and subtype view usages. For details, see Customizing
the ADF REST Resource Representation and Methods.

6. Click File and then Save All to save the selections on this resource.

JDeveloper saves the REST resource selections that you make in the overview
editor in the resource definition file for the resource, as described in What
Happens When You Create REST Resources in the ADF Business Components
Project.

What Happens When You Create REST Resources in the ADF
Business Components Project

JDeveloper generates the REST resources and displays them in the Applications
window organized in the model project by their version release names, as shown in
Figure 16-4.

JDeveloper also generates a separate RESTful web service project
(RESTWebService) to register the ADF REST servlet. Figure 16-4 shows the web.xml
file that JDeveloper generates. You use this project to run and deploy the RESTful web
service.

The ResourceRegistry.rpx file that appears in the model project uses metadata
annotations to specifies the list of REST resources that will be exposed as a RESTful
web service.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-9

The adf-config.xml file is updated when you create the version release names. This
file appears in the Applications window in the Application Resources panel, under the
Descriptors and ADF META-INF nodes. The connections.xml file in the same folder
is created when you first create the ADF Business Components.

Figure 16-4 REST Resources Appear Below Application Module Node

Chapter 16
Creating ADF REST Resources Using the Application Module

16-10

How to Edit the ADF REST Resource Definition
After you add an ADF REST resource definition to the ADF Model project, the REST
section of the application module overview editor displays the names of the resources
you have created. You can open the REST resource definition in its own editor by
clicking the resource name in the list (as shown in Figure 16-2).

The overview editor for REST resources displays the options for editing the structure
of the resource. From the standpoint of the RESTful web service, the REST resource
structure determines the available data that may be invoked by REST calls at runtime.

At design time, you can edit the REST resource definition to select only the resources
that you want to expose from the view object hierarchy backing the resource. When
you first create a REST resource, you are required to select a view object exposed
by the data model of the application module to back the resource. This original view
object selection defines the root resource of the REST resource. You may optionally
expose additional child view objects if present.

For example, the left side of the REST resource editor shown in Figure 16-5
displays the default structure of the resource, Departments. The resource structure
appears as a tree with the root node representing the root resource (in this case
DepartmentsView1). The leaf nodes of the tree represent child resources. In this
example, the Departments resource is comprised of a root resource DepartmentsView1
and various child resources, including Employees and JobHistory. Because the
DepartmentsView1, Employees, and JobHistory resources are related as view
instances in the data model, they appear in the hierarchy. You use the checkboxes
beside leaf nodes to add and remove child resources from the resource structure.

Figure 16-5 Overview Editor Displays Resource Structure

Chapter 16
Creating ADF REST Resources Using the Application Module

16-11

Note:

The right side of the REST resource editor displays the available options
corresponding to the node selections that you make in the Structure tree.

Table 16-1 summarizes the nodes of the resource structure tree:

Table 16-1 Nodes of the Resource Structure Tree

Node Description Editing Options

Root resource node: Represents the view object
instance that backs the root
resource selection.

The backing view object instance of the root
resource cannot be altered or removed.

You may select this node to select options
on the root resource. For details about these
options, see Customizing the ADF REST
Resource Representation and Methods.

Child resource node: Represents a view link
accessor used in the data
model to define master-details
relationships defined for the view
object instance that backs the
root resource selection.

Note: Child nodes are not
displayed when the view object
instance of the root resource is
not included in a master-detail
relationship.

Child resources are disabled by default.
Select the checkbox to expose a child
resource in the resource representation. To
remove a child resource from the resource
representation, deselect the checkbox.

You may select a child resource node to
select options on the child resource. For
details about these options, see Customizing
the ADF REST Resource Representation
and Methods.

Before you begin:

It may be helpful to have an understanding of how ADF REST supports application
modules and enables web service clients to access rows of data and perform service
operations. See About RESTful Web Services and ADF Business Components.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. See Additional Functionality for RESTful Web Services.

You will need to complete this task:

• Create the desired REST resource, as described in Creating ADF REST
Resources Using the Application Module.

To edit the ADF REST resource structure:

1. In the Applications window, double-click the resource definition file that defines the
ADF REST resource you want to edit.

2. In the overview editor, make the desired selections.

Press F1 to view the JDeveloper Help Center topic for the overview editor.

3. Choose File and then Save All to save the changes on this resource.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-12

JDeveloper saves your changes in the resource definition file for the resource,
as described in What Happens When You Create REST Resources in the ADF
Business Components Project.

How to Expose Child Resources in the ADF REST Resource
Child resources may be exposed in the ADF REST resource when the application
module data model specifies one or more hierarchical, master-detail relationships. For
each master-detail relationship in the data model, the ADF Business Components
Model project must define a view link accessor that names the related parent and child
view objects, thereby nesting the child or detail view object instance within the parent
or master view object instance.

At runtime, a REST resource that exposes nested view instances supports returning
collections for the master and detail in a single roundtrip. Thus, exposing child
resources at design-time is useful for service clients with the requirement to
manipulate master-detail data.

In JDeveloper, the overview editor for REST resources displays master-detail
relationships as a resource structure tree with child resources displayed as leaf nodes
of the root resource. For example, Figure 16-6 shows the Departments resource in the
overview editor with the following nested resource structure:

• DepartmentsView1 is the master view instance and backs the root resource.

• Employees is a detail view instance, nested below DepartmentsView1 and the
checkbox for the tree node appears selected, indicating the Departments resource
exposes the child resource.

• JobHistory is another detail view instance, nested below EmployeesView and the
checkbox for the tree node appears selected, indicating the Departments resource
exposes the child resource.

By default, JDeveloper creates the REST resource based on the selected backing
view instance, but does not include child resources. In the resource structure tree,
child resources appear unselected by default to indicate that these resources are not
exposed. You may expose or hide child resources, by selecting or unselecting its
checkbox.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-13

Figure 16-6 Child Resources Enabled in the Overview Editor

Note:

By default, child resources are not exposed and must be selected in the
overview editor to expose them in the resource.

Before you begin:

It may be helpful to have an understanding of how ADF REST supports application
modules and enables service clients to access rows of data and perform service
operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete this task:

• Create the desired REST resource, as described in Creating ADF REST
Resources Using the Application Module.

To expose nested resources:

1. In the Applications window, double-click the resource definition file that defines the
ADF REST resource you want to edit.

2. In the overview editor for the REST resource, expand the Structure tree and
select the checkbox of any child resource of the root resource.

By default, child resource nodes appear unselected in the Structure tree, which
indicates that nested resources are unexposed in the resource.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-14

If the data model does not define a master-detail hierarchy for the backing view
instance of the root resource, then no child resource node will appear in the
Structure tree. For more information about Structure nodes, see Table 16-1.

3. Select the checkbox of another child resource in the Structure tree to enable its
nested resource on the resource.

What You May Need to Know About Optimizing Child Resource
Database Queries

REST requests where M-1 or 1-1 child resources render as nested objects can result
in a high number of database queries, based on the number of resource items. For
example, child Department resources rendered for an Employee object result in a
database roundtrip for each employee. However, if the REST nested object request
is made and the ADF REST framework discovers a M-1 or 1-1 child relationship
involving the child’s primary key under the following additional conditions, then lookup
of child resources is optimized by finding a row in the view object’s entity cache. If
these conditions do not exist, a database query will be performed for the row fetches.

To ensure that the primary key lookup is used to improve the execution time for
fetching a one-side view link, nested entity-backed view objects must meet the
following conditions:

• The view object has an entity reference to a child view object and includes
the attributes that the child resource exposes. For example, the employee's
department name or manager name.

• The view link must be based on an association.

• The association attributes for the other side are primary keys.

• The association does not have any custom where clauses.

• The view object for the other side does not have any custom where clauses or
applied database-only view criteria.

How to Add and Remove Resources Based on the Same View
Instance

In JDeveloper, you can use the overview editor for REST resources to define multiple
resources for the same view instance. You might add a resource when a single
resource definition does not support all of the use cases of your service client. After
you add a resource you will be able to modify the operations, list of attributes, and
other items of the resource structure to support the desired use cases. Because each
resource you define represents a unique resource collection to the service client,
resource names should reflect the differences.

The overview editor for REST resources displays the list of resources you add in the
Resource dropdown. For example, Figure 16-7 shows the Employees resource and
the EmployeesAllAttrs resource in the overview editor for the same backing view
object EmployeesView.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-15

Figure 16-7 Resource List Supports Multiple Resource in the REST Resource
Definition

Note:

JDeveloper lets you remove resource definitions that have been added in the
overview editor for REST resources. However, the empty definition file will
appear in the Applications window.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform
service operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete this task:

• Create the REST resource for which you want to add or remove a resource, as
described in Creating ADF REST Resources Using the Application Module.

To add and remove resources in the overview editor:

1. In the Applications window, double-click the resource definition file that defines the
ADF REST resource for which you want to add or remove resources.

2. In the overview editor for the REST resource, choose the resource from the
Resource dropdown and then click Delete Resource to delete a resource that
has already been defined for the view object.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-16

If you delete the root resource definition using Delete Resource, the resource is
deleted, but the empty definition file will appear in the Applications window.

3. In the overview editor for the REST resource, to add a resource that you will
create for the view object, click Add Resource.

4. In the Add Resource for View Object dialog, enter the Resource Name of the
REST resource collection that you want to add for the selected root view instance
and then click OK.

5. In the overview editor for the REST resource, select the new resource from the
Resource dropdown to edit its resource definition:

a. Add and remove child resources defined by view link accessors. For details,
see How to Edit the ADF REST Resource Definition.

b. Add and remove attributes. For details, see How to Hide and Expose
Attributes in the ADF REST Resource.

c. Modify access to standard operations defined by HTTP methods, canonical
links, row finder filters, and subtype view usages. For details, see Customizing
the ADF REST Resource Representation and Methods.

How to Hide a Resource from the Catalog Describe
You can hide a top-level resource from the ADF REST catalog describe by setting the
Visibility attribute within the ServiceConfiguration tag in the resource definition as
shown in the following code example.

<tree..>
 <ServiceConfiguration Visibility="unlisted"/>
 ...
</tree>

You can set the Visibility attribute to unlisted or public. You can use the
include query parameter to include the description of resources of a certain visibility.
For more information, see Retrieving the Catalog Describe Based on Resource
Visibility Declaration.

How to Rename the ADF REST Resource
During development of ADF REST resources you may use the overview editor
for REST resources to change the name of a resource in the resource definition
file. Because service clients use the resource names to interact with the desired
REST resource collections, it is important that you finalize the names of ADF REST
resources before deploying the service to a production environment.

When you need to change the name of an ADF REST resource after deployment, this
is best handled by creating an entirely new version of the resource, as described How
to Version the ADF REST Resource.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform
service operations. For more information, see About RESTful Web Services and ADF
Business Components.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-17

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete this task:

• Create the REST resource, as described in Creating ADF REST Resources Using
the Application Module.

To rename a resource before production deployment:

1. In the Applications window, double-click the resource definition file that defines the
ADF REST resource you want to rename.

2. In the overview editor for the REST resource, choose the desired resource from
the Resource dropdown.

If you have not created additional resources on the resource definition file, the list
displays the original resource created for the backing view object.

3. Click the Representation tab of the overview editor and enter the new name in
the Resource Name field.

What You May Need to Know About Naming ADF REST Resources
The REST resource name is the way service clients identify and interact with exposed
resource collections. REST resource names typically identify the view object the
consuming client is to access. As such, REST resource names are nouns, not verbs.

How to Hide and Expose Attributes in the ADF REST Resource
In JDeveloper, you can use the overview editor for REST resources to define multiple
resources for the same view instance. You might add a resource when a single
resource definition does not support all of the use cases of your service client. After
you add a resource, you can modify the list of exposed attributes, and other items of
the resource structure, as needed to support the desired use cases.

The overview editor for REST resources displays the list of exposed attributes in the
Attributes tab. The list is populated by a REST service shape selection that you
define on the view object backing the root resource. For example, Figure 16-8 shows
the service shape definition EmployeesView_ForHR that exposes all but two of the
attributes for the EmployeesView view object.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-18

Figure 16-8 Attributes Exposed By REST Service Shape Definition Selection

Note:

You do not directly modify the list of exposed attributes in the overview
editor for REST resources. Rather, you must create service shape definitions
on the backing view object, and you then apply the desired REST Shape
definition to the current Resource dropdown selection.

To support the use cases of service clients, you can define as many service shape
definitions for each view object as required. The Applications window displays service
shape definitions that you create for the view object in the persdef folder under
the view object node. For example, Figure 16-9 shows two service shape definition
files EmployeesView_forHR.xml and EmployeesView_ForBenefits.xml beneath the
EmployeesView view object.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-19

Figure 16-9 REST Service Shape Definition Files in the Applications Window

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform
service operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete this task:

• Create the REST resource, as described in Creating ADF REST Resources Using
the Application Module.

To apply a REST service shape definition to a REST resource:

1. In the Applications window, double-click the resource definition file that defines the
ADF REST resource you want to edit.

2. In the overview editor for the REST resource, click the View Object link.

3. In the overview editor for the view object, click the Service Shape navigation tab.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-20

4. In the Service Shaping page, click the Create Service Shaping Object button and
then in the Create Service Shape dialog, enter a suffix name to uniquely identify
the service shape definition.

The suffix you enter forms the name of the service shape definition file. For
example, the suffix ForHR is added to the view object EmployeesView to form the
service shape definition name EmployeesView_ForHR, as shown in Figure 16-10.

Figure 16-10 View Object Service Shape Definition Defines Available
Attributes

5. In the Service Shaping page, use the shuttle buttons to alter the list of Hidden and
Selected attributes and save the view object definition.

When you alter the service shape in the overview editor for REST resources,
JDeveloper updates the service shape definition file for the view object. The
resource structure of any ADF REST resource that references the service shape
will be updated as well.

6. In the overview editor for the REST resource, select the desired resource from the
Resource dropdown.

7. Click the Attributes tab of the overview editor, and then select the Service
Shaping Object that defines the list of attributes that you want to expose.

What You May Need to Know About ADF REST Attribute Hints
In JDeveloper, you can use the overview editor to set ADF REST attribute hints.

Setting the attribute hints effects the REST service describe payload. They appear as
attribute properties in the json payload.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-21

Figure 16-11 UI Hints Editor

As Figure 16-11 shows, in the overview editor for the view object, you can set
UI Hints for the attributes. If you set the Form Type property to Summary, the
includeInCompactView=true hint will be surfaced on the attribute. After you have set
the From Type hint for the attribute, it will suggest as a hint to metadata driven UIs to
include the attribute in a compact view.

How to Control the ADF REST Response Payload Fields
The fields returned in a response payload for a GET request are limited by using
the ?fields URL parameter. If you do not specify the ?fields URL parameter, it might
result in a response of larger size. You can control the fields that are returned in the
response payload by setting the Form Type hint of an attribute either to Detail or
Summary. The default value is Detail.

When you set the Form Type hint of an attribute to Summary, the
includeInCompactView=true hint will be surfaced on the attribute. See What You May
Need to Know About ADF REST Attribute Hints.

You can use the prefer HTTP header either to return all the fields in the response
payload or only the most common fields by using one of the following return options:

• minimal: returns only a minimal response to a successful request. This option
returns only those attributes in the payload for which includeInCompactView=true
is set. The minimal response is at the discretion of the server.

• representation: returns the current state of the resources in the response to a
successful request. This option returns all the fields irrespective of the attributes
set. A POST or PATCH request with return=representation will return all fields.

Content-Type: application/vnd.oracle.adf.resourceitem+json
Prefer: return=representation/minimal

Chapter 16
Creating ADF REST Resources Using the Application Module

16-22

What You May Need to Know About Response Payload When a
Shape is Defined on a Resource

When you define a compact shape to a REST resource and do not specify ?fields in
the URL, then only those attributes for which the Form Type hint is set to Summary are
returned in the payload.

For example, if you define a REST service shape on a root or child resource, only the
fields that support Form Type=summary in the REST service shape are returned when
you do not specify the ?fields parameter.

The response payload for a REST resource is controlled at the resource level only if a
resource has the EnableCompactview=view configuration property set.

<tree IterBinding="EmpIter" id="employees" AccessorFolder="Always">
 <ServiceConfiguration EnableCompactView="true"/>
<nodeDefinition .../>
</tree>

A REST client can expand or contract the default set of fields by using the + and -
operators in the fields parameter.

The following example returns the PhoneNumber field in the response in addition to all
fields in the default shape.

/employees?fields=+PhoneNumber

The following example returns all the fields in the default shape in response, except
the email field.

/employees?fields=-Email

Use the Prefer REST HTTP header to toggle between full set of fields and the default
set. See How to Control the ADF REST Response Payload Fields.

What You May Need to Know About Modifying the ADF REST
Resource Structure

As shown in Figure 16-12, after you create the resource and assign a version
identifier, the overview editor for the REST resource displays the version in the top,
right corner of the editor to help you identify which version you are editing.

Figure 16-12 REST Resource Editor Displays Version

Chapter 16
Creating ADF REST Resources Using the Application Module

16-23

Changes that you make to ADF REST resources during the development cycle can be
made without the need to version the resource. However, once you have deployed the
RESTful web service, service clients that access the ADF REST resources rely on the
stability of the resource collection to satisfy their use cases.

Over time, as use cases change or the backing view objects of the REST resources
change, you may need to modify the resource structure of already deployed
resources. At that time, modifications to existing ADF REST resources may become
backward-incompatible with the deployed REST service and may necessitate creating
a new version identifier and ADF REST resource for that version. For details about
when to version the REST resource, see What You May Need to Know About
Versioning ADF REST Resources.

JDeveloper lets you manage resource versions in the Release Versions page of the
overview editor for the adf-config.xml file in the ADF META-INF folder. For details
about how to create a new version of ADF REST resources, see Versioning the ADF
REST Resource.

What You May Need to Know About ADF REST Resources and LOB
Attributes

A resource that exposes a BLOB or CLOB type attribute will be accessible at runtime
as streaming media. By default, the view object attribute will be handled by the
ADF REST runtime using the generic content type application/octet-stream. When
you want to support a specific content type, you can configure the special property
contentType as a custom property of the LOB-type attribute. For example, when
working with PNG image files, the following content type can be configured at design
time.

• Custom Property: contentType

• Value: image/png

As Figure 16-13 shows, the custom property contentType has been added to the view
object definition for the Picture attribute in the overview editor for the view object.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-24

Figure 16-13 Custom Content Type Configured for LOB Attributes

As Figure 16-14 shows, in the overview editor for the view object, you can
set UI Hints for the attributes. If you set the Form Type hint to Summary, the
includeInCompactView=true hint will be surfaced on the attribute. After you have set
the Form Type hint for the attribute, it will suggest as a hint to metadata driven UIs to
include the attribute in a compact view.

Figure 16-14 UI Hints Editor

Chapter 16
Creating ADF REST Resources Using the Application Module

16-25

What You May Need to Know About LOV Accessors in the ADF REST
Resource

A list of value (LOV) attribute is any attribute of a view object that relies on another
view object as its data source. Typically, the data source view object specifies a fixed
list of possible values for the LOV-enabled attribute. When you explicitly define an
LOV-enabled attribute on a view object, ADF Business Components defines an LOV
view accessor that the ADF REST runtime will automatically expose in the ADF REST
resource as a LOV child resource. Thus, at runtime when an LOV-enable attribute is
detected on a resource, service clients may invoke LOV view accessors to obtain the
data source of an LOV-enabled attribute and present selection choices to the end user.

Note that the LOV attribute must not rely on an LOV view accessor that references an
entity object attribute. Only LOV view accessors based on a view object attribute will
be visible to the REST service. At runtime, ADF REST knows nothing about attributes
and links defined at the level of entity objects and will return an HTTP error code 500
when the resource contains an LOV attribute defined by an LOV view accessor that
references an entity object attribute.

Note:

By default, LOV accessor resources are exposed on resources and are not
displayed in the structure tree of the resource overview editor. For details
about creating LOV-enabled attributes, see Working with List of Values
(LOV) in View Object Attributes.

What You May Need to Know About Mandatory Attributes in the ADF
REST Resource

A mandatory attribute is any attribute of a view object that must be supplied in a
query and if not supplied, will trigger a validation error at runtime. The ADF REST
resource describe identifies whether or not an attribute is mandatory using the
property “mandatory”: true or “mandatory”:false. The mandatory property of the
resource describe is based on the view object attribute metadata specified at design
time. When the attribute is set as mandatory and the setting is determined at runtime,
using a Groovy expression to evaluate to true or false, then the describe will return
“isMandatoryConditional”:true in the attribute properties list.

What You May Need to Know About Case Sensitivity in Resource
Collection Query Operations

The ADF REST framework supports case insensitive search when using a q query
parameter to filter search results. The flag named restV1QueryCaseSensitive in the
adf-config.xml file can be set to false if you want to perform case insensitive
search. The default value of the flag is true which implies case sensitive search.

Chapter 16
Creating ADF REST Resources Using the Application Module

16-26

Customizing the ADF REST Resource Representation
JDeveloper allows you to edit the ADF REST resource definition. You can enable
HTTP actions, expose a row finder, enable a canonical resource link for nodes of the
tree, expose subtype view objects in the resource, and configure the resource cache
duration.

You use the overview editor for the ADF REST resource to edit the ADF REST
resource definition. For example, selections that you make in the resource structure
tree let you enable HTTP actions, expose a row finder, and enable a canonical
resource link for each node of the tree.

The customization choices that you make for REST resources in your ADF Model
project ultimately affect the ability of service clients to interact with these resources
at runtime. Therefore it is important to understand the requirements of the service
client use cases to support the desired ADF REST runtime features though the various
design time customizations described in this section.

For details about the ADF REST runtime, see Consuming ADF RESTful Web
Services.

Note:

Custom properties defined for a resource attribute are included in the
describe. However, custom properties whose name begins with INTERNAL,
internal, or __ (double underscore), are hidden from the describe.

How to Expose Canonical Resources in the ADF REST Resource
The ADF REST resource representation limits the attributes returned in a runtime
response to the attributes queried by the resource's backing view object. When
defining the view object query at design time, it is therefore important to expose only
the attributes required to support specific use cases of the service client. However,
in order to allow the service client to navigate from the partial REST resource
representation to the full representation of the same data, you can configure a link
to a canonical resource.

Typically, the canonical resource is considered as the source of truth and therefore
specifies the full representation of a given data source. An example of a canonical
resource, can be illustrated by the employees resource with a link to a resource that
describes a manager instance. In this scenario, where typical use cases may require
only the manager name, the non-canonical manager resource includes only the name
attribute. And, for cases where the name is not sufficient to identify the manager, the
non-canonical resource may link to a canonical resource that exposes all attributes of
the manager instance, including name, id, department, hire date, and so on. Thus, the
canonical resource and the non-canonical resource exist as follows:

• Non-canonical resources and the canonical resource expose different
representations of the same data source.

• Non-canonical resources expose only a representation of the data source needed
to support service client use cases and are therefore a partial representation.

Chapter 16
Customizing the ADF REST Resource Representation

16-27

• Non-canonical resources include a link to its canonical, full representation when
defined.

In the overview editor for the resource, for each resource node in the resource
structure tree, you may choose a canonical resource from an existing REST resource
defined by the ADF Model project or you may choose an external resource defined by
an existing URL connection in the connections.xml file of the application.

The internal canonical resource that you can select in the overview editor for REST
resources, must meet the following criteria:

1. Your ADF Model project must define a view object that accesses the same data
source backing the existing, partial representation resource. The view object may
or may not be entity-based.

2. The view object must query a superset of available attributes queried by the
non-canonical resources.

3. The superset representation view object must be specified as a view instance on
the data model of the application module.

Figure 16-15 shows the EmployeesView root resource node selection in the overview
editor and the Resource dropdown selection HREmployees, with the internal canonical
resource Employees enabled. In this case, the database table specified by each
backing view object is the same for both the HREmployees and the Employees resource.
In this example, Employees is the canonical resource and contains all attributes from
the backing view object whereas the HREmployees resource is backed by the same
view object but queries only the attributes required to support a specific use case.

Figure 16-15 Canonical Resource Enabled in the Overview Editor

Chapter 16
Customizing the ADF REST Resource Representation

16-28

Note:

A resource (resource_partial) can only select another resource as canonical
(resource_full) as long as the resource_full contains all the attributes that
resource_partial exposes.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform
service operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete these tasks:

• Create the desired REST resource, as described in Creating ADF REST
Resources Using the Application Module.

• When you want the REST resource's canonical link to expose an internal
canonical resource, create a view object definition that queries the superset of
available attributes from the data source (must be the same data source as the
non-canonical REST resource) and expose that view object in the data model,
then create a resource for the internal canonical resource. For details about
creating a resource, see How to Create ADF REST Resources from View Object
Instances.

• When you want the REST resource's canonical link to expose an external
canonical resource, create a URL connection in the application connection file
(connections.xml), as described in the “Create URL Connection Dialog” topic in
the JDeveloper Online Help.

To expose a canonical resource link:

1. In the Applications window, double-click the resource definition file that defines the
ADF REST resource you want to edit.

2. In the overview editor for the REST resource, choose the desired resource from
the Resource dropdown, expand the Structure tree and select the node for which
you want to define a canonical resource link.

You can define a canonical link for each resource node in the resource tree. For
more information about Structure nodes, see Table 16-1.

3. With the resource node selected in the Structure tree, click the Representation
tab of the overview editor, and then select Canonical Link.

If you do not want to expose a canonical resource for the current resource
accessor node selection, deselect Canonical Link.

4. In the Canonical Link section, select whether the canonical resource is Internal
or External and choose the desired resource from the dropdown list to represent
the canonical version of the resource.

Chapter 16
Customizing the ADF REST Resource Representation

16-29

The dropdown list for internal resources is populated by the resources that
you added to the current resource; these are resources that are internal to the
application and must be based on the same data source as the current resource.

The dropdown list for external resources is populated by URL connections that you
have defined for the application and registered in the application connection file
(connections.xml).

How to Support Create Operations on ADF REST Resources with
LOV Attributes

When you want the ADF REST resource to support resource operations that require a
list of values (LOV) without a row context to populate the list, you must create a LOV
resource. For example, a service client may invoke a resource item create operation
on the REST resource, in which case no row context will be available for the LOV
list. In this situation, the LOV resource does not exist as a child resource and must
instead be accessed at runtime by the service client independent from resource items
that they attempt to create.

Note:

No design time changes are required to support resources with LOV-enabled
attributes when the service client needs to access existing resource items.
It is only necessary to create an LOV resource at design time when you
want to enable service clients to create new resource items and the resource
item is backed by an LOV-enabled attribute. In the case of existing resource
items, the resource item provides a row context within the resource collection
that allows the ADF REST runtime to automatically generate LOV links as a
child resource. For more information about LOV child resources, see What
You May Need to Know About LOV Accessors in the ADF REST Resource.

In JDeveloper, you use the overview editor for view objects to create LOV definitions
for individual attributes in the Attributes page of the editor. The same page is used to
define the static LOV resource. For example, Figure 16-16 shows the EmployeesView
view object and the LOV-enabled attribute JobId in the overview editor for the view
object backing the Employees resource. The static LOV resource is identified by the
specific ADF REST resource that it supports: in this case, v2 (the internal version
identifier of the Jobs resource). Below the static LOV resource is the LOV definition
used by the LOV-enabled attribute of the view object.

Chapter 16
Customizing the ADF REST Resource Representation

16-30

Figure 16-16 Static LOV Resource Supports Create Operations on the REST
Resource

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform
service operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete this task:

• Enable an LOV for the attribute of the view object, as described in Creating ADF
REST Resources Using the Application Module.

• Create the REST resource for the view object with the LOV-enabled attribute for
which you want to expose a create operation, as described in Creating ADF REST
Resources Using the Application Module.

Chapter 16
Customizing the ADF REST Resource Representation

16-31

Caution:

When the view object defines an LOV resource, the view object service
shape definition must not hide attributes that are required by the LOV-
enabled attribute's LOV definition. Required LOV attributes include attributes
mapped to the LOV data source, as well as LOV display attributes. For more
information about service shaping and ADF REST resources, see How to
Hide and Expose Attributes in the ADF REST Resource.

To define a static LOV resource for use with ADF REST resources:

1. In the Applications window, double-click the resource definition file that defines the
ADF REST resource you want to edit.

2. In the overview editor for the REST resource, click the View Object link.

3. In the overview editor for the view object, click the Attributes navigation tab.

4. In the Attributes page, expand the LOV section and click the Create LOV
Resource on Attribute button.

5. In the Create LOV Resource dialog, select the Release Version identifier, select
the Resource Name for the ADF REST resource that exposes the LOV-enabled
attribute, and then select the defining resource from the resource structure tree.

The Resource Name list is populated by the ADF REST resource definitions
in the Model project. The REST resource you select must have the same view
object definition as the view object that defines the LOV attributes data source. For
example, when creating an Employees resource, the EmployeesView view object
defines an LOV attribute JobsId. In the Create LOV Resource editor, you would
select the ADF REST resource Jobs and the root resource JobsView1 from the
Jobs resources resource structure tree, as shown in Figure 16-17.

Chapter 16
Customizing the ADF REST Resource Representation

16-32

Figure 16-17 Creating a Static LOV Resource for REST Create Operations

6. Click OK to save the LOV resource definition.

How to Enable Row Finder Keys in the ADF REST Resource
When you do not want service clients to be able to query resources using the primary
key for the resource (often a numeric value), the business components developer can
create a row finder that specifies a row finder key based on a view object attribute
with values that can be uniquely identified by name. One such example may find
employees by the first letters of the email attribute.

When a row finder has been explicitly defined on the view object named in the ADF
REST resource, the overview editor for the ADF REST resource gives you the option
to enable the row finder to filter the resource collection. Row finders are not enabled
by default; you must the select the row finder key by name to apply it the current node
selection in the resource structure.

In JDeveloper, the overview editor for ADF REST resources displays the list of
available row finders in the Rowfinder Key dropdown. The list is populated by
the row finders that have been defined on the view object definition backing the
node selection in the resource structure tree. For example, Figure 16-18 shows the
EmpByEmailFinder row finder key where Employees is the node defining the view
instance with the row finder EmpByEmailFinder.

Chapter 16
Customizing the ADF REST Resource Representation

16-33

Figure 16-18 Row Finder Key Enabled on the Root of the ADF REST Resource

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform
service operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete these tasks:

• Create the desired REST resource, as described in Creating ADF REST
Resources Using the Application Module.

• Create the application module data model that contains the view object instances
that you want the REST resource to expose, as described in How to Create an
Application Module.

• Create the row finders on the view instances that you want the REST resource to
expose, as described in Working with Row Finders.

To expose row finder filters:

1. In the Applications window, double-click the resource definition file that defines the
ADF REST resource you want to edit.

2. In the overview editor for the REST resource, choose the desired resource from
the Resource dropdown, expand the Structure tree and select the resource node
for which you want to expose a row finder.

If the data model does not define a master-detail hierarchy for the backing view
instance of the root resource, then no view link accessor node will appear in the
Structure tree. For more information about Structure nodes, see Table 16-1.

Chapter 16
Customizing the ADF REST Resource Representation

16-34

3. Click the Representation tab of the overview editor, and then, in the Rowfinder
key, select the row finder on the current Structure tree selection.

The Rowfinder key dropdown may appear disabled if the resource enables a
canonical link and the canonical resource itself enables a row finder key. The
overview editor for ADF REST resources will disable the row finder key field
and automatically reflect the row finder key on the partial resource, as described
in What You May Need to Know About Row Finders in ADF REST Resource
Requests.

4. Optionally, click Canonical Link when you want the row finder selection to filter
the canonical resource representing the current node selection.

If you enable a canonical link, you must also select an internal or external source
for the canonical resource.

5. Select another node in the Structure tree to expose another row finder.

What You May Need to Know About Configuring LOV Resources for
Row Finders

When you want service clients to be able to query resources using a LOV resource,
the business components developer can create a finder that specifies a finder key
based on a view object attribute with a finder value that can be uniquely identified by
name. A link between a regular resource and an LOV resource is configured using
the resource description. You must configure a resource that has the LOV definition in
order to use the LOV resource. Nested resources are exposed in an order to represent
some cascading LOVs that follow a tree structure.

For example, consider there are LOVs for State and City named LOV_City and
LOV_State. LOV_City filters the value that is already selected in State. Let us assume
there is a resource named Cities that has all possible cities in the countries grouped
by State. The LOV_City must filter the Cities resource with a State value already
selected. For that you need to define a Cities view object with a finder with the value
ByStateFinder that accepts a parameter State. The LOV URL would be /Cities?
finder=ByStateFinder;stateVar={State}, where State points to the State attribute
in the address object that has the master LOV.

The following view object definition shows the metadata for the view object that
provides the LOV source for the cities and states example.

<ViewAttribute
 Name="City"
 IsNotNull="true"
 PrecisionRule="true"
 EntityAttrName="CityName"
 EntityUsage="Address"
 AliasName="CITYNAME"
 LOVName="LOV_City">
 <Properties>
 <SchemaBasedProperties>
 <LOVResource name="Cities" finder="ByStateFinder"/>
 </SchemaBasedProperties>
 </Properties>
</ViewAttribute>
<ViewAttribute

Chapter 16
Customizing the ADF REST Resource Representation

16-35

 Name="State"
 IsNotNull="true"
 PrecisionRule="true"
 EntityAttrName="StateCode"
 EntityUsage="Address"
 AliasName="STATECODE"
 LOVName="LOV_State">
 <Properties>
 <SchemaBasedProperties>
 <LOVResource name="States"/>
 </SchemaBasedProperties>
 </Properties>
</ViewAttribute>

In the above example, the cascading LOV is being handled by the LOV with a finder
class.

Note that the custom property LOVResource identifies the source of that the LOV
resource uses for its data. The property name LOVResource is specific to ADF REST
framework version 5 and later and serves to distinguish the parametrized row finder
URL usage to obtain the LOV list from the usage associated with earlier framework
versions, where the LOV list URL does not use a row finder. The view object metadata
for the LOV source attribute identifies framework versions 1 though 4 by using the
property name ResourceLOV.

The resource describe associated for these two usages also differs. Compare the
static LOV resource associated with the regular view object-backed resource with
framework version 5 enabled (attribute metadata property identified as LOVResource)
to the same resource describe with framework version 4 enabled (attribute metadata
property identified as ResourceLOV).

Here is the describe with version 5 enabled. The LOVResource is added to the
lov element section of the regular resource (Address) and the childRefForCreate
property identifies the URL name that appears in the item - links element section .

{
 "Resources" : {
 "Address" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...
 }, {
 "name" : "City",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 32,
 "controlType" : "choice",
 "maxLength" : "32",
 "lov" : {
 "childRef" : "CityLOV",
 "childRefForCreate" : "CityLOVForCreate",
 "attributeMap": [{
 "source" : "CityName",

Chapter 16
Customizing the ADF REST Resource Representation

16-36

 "target" : "City"
 }],
 "displayAttributes" : ["CityName"],
 }
 }, {
 "name" : "State",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 2,
 "controlType" : "choice",
 "maxLength" : "2",
 "lov" : {
 "childRef" : "StateLOV",
 "childRefForCreate" : "StateLOVForCreate",
 "attributeMap": [{
 "source" : "StateCode",
 "target" : "State"
 }],
 "displayAttributes" : ["StateCode"],
 }
 }, {
 ...
 },
 "item" : {
 "links" : [{
 ...
 }, {
 "rel": "lov",
 "href": "http://server/demo/rest/11.0/Address/{id}/lov/
CityLOV",
 "name": "CityLOV",
 "kind": "collection"},
 }, {
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.0/Cities?
finder=ByStateFinder%3BstateVar%3D{State}",
 "name" : "CityLOVForCreate",
 "kind" : "collection"
 }, {
 }, {
 "rel": "lov",
 "href": "http://server/demo/rest/11.0/Address/{id}/lov/
StateLOV",
 "name": "StateLOV",
 "kind": "collection"},
 }, {
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.0/States",
 "name" : "StateLOVForCreate",
 "kind" : "collection"
 }, {
...

Chapter 16
Customizing the ADF REST Resource Representation

16-37

Here is the describe with version 4 enabled. The ResourceLOV is added to the lov
element section of the regular resource (Address) and the lovResourcePath array
identifies the URL name that appears in the links element section

{
 "Resources" : {
 "Address" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...
 }, {
 "name" : "City",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10",
 "lov" : {
 "childRef" : "CitiesLOV",
 "attributeMap" : [{
 "source" : "CityName",
 "target" : "City"
 }],
 "displayAttributes" : ["CityName"],
 "lovResourcePath" : [{
 "resource" : "Cities",
 "filter" : "?
finder=FilterByState%3BVStateName%3D{State}"
 }]
 }
 }, {
 ...
 },
 "links" : [{
 ...
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.0/Cities",
 "name" : "Cities",
 "kind" : "collection"
 }, {
...

What You May Need to Know About Row Finders in ADF REST
Resource Requests

At runtime, an ADF REST resource with a row finder key enabled must be accessed
in the service client by the row finder key attribute. The row finder supports returning
a collection or instance for the row finder-enabled resource using only the row finder
key attribute. Thus, service clients may access REST resources without requiring
knowledge of database primary key values to end users. For example, compare these
two GET requests to retrieve a specific employee in the Employees resource collection:

Chapter 16
Customizing the ADF REST Resource Representation

16-38

No row finder:

http://localhost:7101/RESTSample_App/rest/11.1/Employees/101

With row finder

http://localhost:7101/RESTSample_App/rest/11.1/Employees/NSMITH

The first URL, with no row finder key defined, requires the ID of the employee to
locate the employee resource item. The second URL uses the row finder key value
(employee's email address) in the resource path. Once the row finder key has been
enabled on the resource at design time, service clients may access the resource by
row finder key values using links generated in the request payload by the ADF REST
runtime.

You can optionally apply the row finder to a canonical resource that your ADF REST
resource defines. If a canonical resource with row finder key is defined on the ADF
REST resource with a row finder key enabled, then both sides must be defined by
the same key structure. The key attributes must be of the same type and in the same
sequence. When you create a canonical resource with a row finder key and then
create a partial resource with a canonical link, the overview editor for ADF REST
resources will disable the row finder key field and automatically reflect the row finder
key on the partial resource. For details about canonical resources, see How to Expose
Canonical Resources in the ADF REST Resource.

How to Expose Subtype View Objects in the ADF REST Resource
A subtype view object is a view object that extends a base view object in an
inheritance hierarchy. The subtype view object inherits its list of attributes from
the base view object and contributes its own attributes that are specific to the
subtype. Such subtype view objects are called polymorphic view objects. At runtime,
polymorphic view objects define subtype view rows comprised of attributes from the
base view object and attributes from the defining subtype view object.

In order to query subtype view rows, the subtype view object must specify
a discriminator attribute that determines the specific type. For example, an
EmployeesView base view object with a discriminator attribute JobId may instantiate
subtype view rows based on the available jobs (Accountant, Sale Representative, and
so on), where the attributes of subtype view rows are determined by the specified job
ID value. For example, a Sales Representative with the job ID SA_REP might contribute
the subtype view row attribute CommissionPct, whereas the subtype view rows for the
other job types would omit this attribute.

The overview editor for REST resources lets you expose subtype view objects for
each node of the Structure tree when the view object backing the node defines
a discriminator attribute. For example, Figure 16-7 shows the Employees resource
and the EmployeesView2 resource node selected in the overview editor. The backing
view object EmployeesView defines the discriminator attribute JobId and the subtype
view object SalesEmployeeView defines the subtype SA_REP. The editor exposes
the SalesEmployeesView subtype view object by enabling Include Discriminator
Subtype, specifying the Discriminator Name and omitting the discriminator attribute
value. Omitting the JobId discriminator attribute value ensures that subtype attributes
will be returned in service client requests for Employees based on the JobId value of
the requested employee.

Chapter 16
Customizing the ADF REST Resource Representation

16-39

Figure 16-19 Defining a Discriminator Attribute in the REST Resource
Definition

Note:

Discriminator attributes are defined on the backing view object and support
subtype view rows. Subtype view objects are not exposed in the design
time as ADF REST resources. The subtype definition is specified on the
application module and by the ADF REST runtime.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform
service operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand how view objects support subtype view
rows. For more information, see Working with Polymorphic View Rows.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete these tasks:

• Create the polymorphic view objects, as described in How to Create a View Object
with Polymorphic View Rows.

• Create the REST resource for which you want to add or remove a resource, as
described in Creating ADF REST Resources Using the Application Module.

To expose subtype view rows in the resource definition:

Chapter 16
Customizing the ADF REST Resource Representation

16-40

1. In the Applications window, double-click the resource definition file that defines the
ADF REST resource you want to edit.

2. In the overview editor for the REST resource, choose the desired resource from
the Resource dropdown, expand the Structure tree and select the resource node
for which you want to expose a subtype view object.

If the data model does not define a master-detail hierarchy for the backing view
instance of the root resource, then no view link accessor node will appear in the
Structure tree. For more information about Structure nodes, see Table 16-1.

3. Click the Representation tab of the overview editor, and then, select Include
Discriminator Subtype to enable subtype view rows on the current Structure
tree selection.

4. Select the subtype discriminator attribute from the Discriminator Name dropdown
and omit the value that defines the desired subtype view rows when the subtype
view object defines the subtype discriminator attribute value.

The Discriminator Name dropdown is populated by the discriminator attribute
definition of the backing view object. For example, an EmployeesView view object
might define the discriminator attribute JobId attribute as the discriminator attribute
with a subtype view object SaleEmployeesView. In most cases, the subtype view
object will define the subtype discriminator attribute value, and you can leave the
attribute value empty in the resource definition. For example, where the subtype
view object SalesEmployeesView defines SA_REP (Sales Representative) as the
JobId discriminator attribute value, a request made for the Employees resource
will contain the subtype attributes based on the employee's job ID and not by the
subtype defined by the resource. Defining the discriminator attribute subtype value
in the resource forces the resource items to the same type.

How to Expose Standard HTTP Actions in the ADF REST Resource
Standard data manipulation operations that you expose on the ADF REST resource
correspond to actions on the backing view instance of the resource. At runtime, the
service client invokes these operations as HTTP actions on the RESTful web service.

Table 16-2 lists the standard operations that are exposed by default in the overview
editor for the REST resource. You can expose a different set of operations by
deselecting operations from the list for each resource selection you make in the
resource tree. Note that the GET method is always exposed for a resource.

Table 16-2 Standard View Instance Data Manipulation Operations

Operation Selection HTTP Method Name Operation Description

Create POST Creates an ADF Business Components
view row or view row set.

Create and Update
(combined equals Upsert)

POST Merges payload content with the REST
resource using a POST method in
combination with a header Upsert-
Mode set to true. Creates the REST
resource if the REST resource does
not exist. Merges the payload content
with the REST resource if this REST
resource exists.

Chapter 16
Customizing the ADF REST Resource Representation

16-41

Table 16-2 (Cont.) Standard View Instance Data Manipulation Operations

Operation Selection HTTP Method Name Operation Description

Update PATCH Updates the specified items of an ADF
Business Components view row. The
view row must exist for this operation to
succeed.

Delete DELETE Deletes an ADF Business Components
view row or view row set.

not applicable GET Reads an ADF Business Components
view row or view row set. Note that this
operation is available by default when
you create a resource.

Note:

Note that Oracle has deprecated the functionality for executing HTTP PUT
methods on ADF REST resource requests. In the current release, the
describe for ADF REST resources continues to display PUT actions when
the backing view object has the Update operation enabled (the operation
enables both PUT and PATCH methods); however, ADF REST service
clients should avoid making PUT requests (replace all items of the view row)
as this functionality will be desupported in a future release.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform
service operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete this task:

• Create the desired REST resource, as described in Creating ADF REST
Resources Using the Application Module.

To expose HTTP actions:

1. In the Applications window, double-click the resource definition file that defines the
ADF REST resource you want to edit.

2. In overview editor for the REST resource, choose the desired resource from the
Resource dropdown, expand the Structure tree and select the resource accessor
node that you want to edit.

You can expose operations for root resources and child resources. For more
information about Structure nodes, see Table 16-1.

Chapter 16
Customizing the ADF REST Resource Representation

16-42

3. Click the Representation tab of the overview editor, and then, in the Available
Operations section, select the operations to expose for the current Structure tree
selection.

4. Select another node in the Structure tree to expose operations on another
resource accessor in the resource structure.

What You May Need to Know About Optimizing ADF REST Resource
Get Operations

All ADF REST resources support read operations by service clients. To support
efficient read operations (HTTP GET requests), the backing view object definition
of ADF REST resources should define access mode set to support paging of the
collection in an HTTP Request payload. For more information about range paging, see
How to Enable Range Paging for a View Object.

How to Control Caching of ADF REST Resources
When you want fine control over the cache duration of ADF REST resource payload
resulting from an ADF REST resource request, you can configure cache control in
seconds on the root of the resource in the REST resource overview editor. At runtime,
the cache setting can help to avoid intermediate proxies to cache/store the resource
payload in the HTTP response.

In JDeveloper, the overview editor for REST resources displays the resource cache
control setting in the Configurations tab for the root node of the resource. When this
setting is made on the root resource, it overrides the application-level cache setting
that may be configured in the web.xml file. For example, the following figure shows
the cache maximum age set to 30 seconds on the root of the Departments resource.
The option Visible in Catalog if selected enables the cache setting to appear in the
describe for ADF REST resource requests.

Figure 16-20 Cache Maximum in Seconds Set on the Root of the REST
Resource

Chapter 16
Customizing the ADF REST Resource Representation

16-43

From release 12.1.1.4.0, REST framework supports additional configuration options
for Cache-Control. See Header Field Definitions - Cache Control. You can specify
these additional configuration options in the source editor. When you specify one
of the valid values, then that Cache-Control header will be added in the payload
response.

The valid values are:

• Cacheability: indicates if a response can be cached or not. Valid values are:
public, private, and no-cache.
The value public cache indicates that the response can be cached by any cache
irrespective of the cache status. This value is useful for requests that include an
authorization header, because requests with authorization header prevents a
shared cache from caching the response.

The value no-cache does not mean not to cache the response, but instructs the
browser to re-validate before returning the response.

• NoStore: indicates that the response should not be cached irrespective of the
cacheability setting. It is a boolean flag with values true and false. When set to
true, no-store is added to the Cache-Control header in the response, separated
by comma if other settings are present.

• Revalidation: indicates that the response must be revalidated if a cache is
configured to return a stale response. If you configure MaxAge to 0, the response
becomes stale immediately, thus forcing the cache to revalidate every time. Valid
value is must-revalidate.

See, What You May Need to Know About the Cache-Control Header.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform
service operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete this task:

• Create the REST resource for the view object, as described in Creating ADF
REST Resources Using the Application Module.

To configure the cache control maximum age setting:

1. In the Applications window, double-click the resource definition file that defines the
ADF REST resource you want to edit.

2. In the overview editor for the REST resource, choose the desired resource from
the Resource dropdown and then, in the Structure tree, select the root resource
node.

For more information about Structure nodes, see Table 16-1.

3. Click the Configuration tab of the overview editor, and then, click Visible in
Catalog when you want the describe to show the cache control setting. For Max
Age enter the maximum age of the payload cache in seconds.

Chapter 16
Customizing the ADF REST Resource Representation

16-44

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

This tab is not displayed for child resource nodes that you select in the Structure
tree.

What You May Need to Know About the Cache-Control Header
The following table lists few example use cases that REST framework supports with
selected subset of options in any valid combination. The developer can choose any
combination to generate the desired Cache-Control header in the response.

Cache-Control Value Category Explanation Example

 <CacheControl>

<Cacheability>no-
cache</
Cacheability>

<NoStore>true</
NoStore>

<Revalidation>must-
revalidate</
Revalidation>
 </CacheControl>

Sensitive data Response is not
cached.

Bank account info

 <CacheControl>

<Cacheability>publi
c</Cacheability>
 <MaxAge>30</
MaxAge>
 </CacheControl>

Public shared data Response can be
cached by browser
and any intermediary
caches for up to the
specified number of
seconds.

LOV. For example
country codes

 <CacheControl>

<Cacheability>priva
te</Cacheability>
 <MaxAge>30</
MaxAge>
 </CacheControl>

Private data Response can be
cached by the client’s
browser only for up to
the specified number
of seconds.

Order history

For example, the following service configuration is defined on
DeptAM_DeptVOResources.xml:

<tree IterBinding="DeptIter" id="departments" AccessorFolder="Always">
 <ServiceConfiguration>
 <CacheControl>
 <Cacheability>private</Cacheability>
 <MaxAge>600</MaxAge>
 </CacheControl>
 </ServiceConfiguration>
 <nodeDefinition .../>
</tree>

Any requests against the departments resource have the following Cache-Control
header:

Chapter 16
Customizing the ADF REST Resource Representation

16-45

REQUEST

GET http://example.com/demoApi/resources/1.0/departments

RESPONSE

200 OK
Cache-Control: private,
max-age=600
{
 ...

How to Control the Format of the ADF REST Response
You can use REST-Pretty-Print header to remove extra whitespace in the response
payload. You can set this attribute for describe and GET, PATCH, and POST payload
responses. You must set this property in the adf-config.xml under the startup
Properties element.

<adf-adfm-config xmlns="http://xmlns.oracle.com/adfm/config">
 <startup>
 <Properties>
 <adf-property name="ORACLE.BC.REST.PRETTYPRINTJSON" value="true"/>
 </Properties>
 </startup>
</adf-adfm-config>

In the case of describe, this header reduces the size of the response by nearly 50%.

Versioning the ADF REST Resource
JDeveloper allows you to version the ADF REST resource. It helps create new
versions of the ADF REST resource if use cases or backing view objects of ADF
REST resource change.

Changes that you make to ADF REST resources during the development cycle can be
made without the need to version the resource. However, once you have deployed the
RESTful web service, service clients that access the ADF REST resources rely on the
stability of the resource collection to satisfy their use cases.

Over time, as use cases change or the backing view objects of the REST resources
change, you may need to modify the resource structure of already deployed
resources. At that time, modifications to existing ADF REST resources may become
backward-incompatible with the deployed REST service and may necessitate creating
a new version identifier and ADF REST resource for that version.

How to Version the ADF REST Resource
You use the overview editor for the adf-config.xml file to create new version
identifiers and to update the lifecycle status of existing versions. Lifecycle status can
be either active, deprecated, or desupported. If the service client requests a resource
that does not exist for the requested version, the ADF REST runtime will fallback to a
previous version with status active or deprecated

Note that the order of the release name identifiers in the release version list is
significant. The ADF REST runtime recognizes the top-most release name as the
most recent version. Subsequent release names below the top name in the list form a

Chapter 16
Versioning the ADF REST Resource

16-46

sequential list of versions. As Figure 16-21 shows, 11.0 is the first version and must
appear at the bottom of the list, with subsequent versions, listed above, where 11.2 is
the latest version.

Figure 16-21 Managing ADF REST Resource Versions

Note:

To alter the position of a release identifier in the sequential list of versions,
you can use the arrows in the Release Versions page of the overview editor
to move the identifier up (more recent version) or down (previous version) in
the list.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform
service operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand when editing a resource may introduce
backward-incompatible changes that require creating a resource with a new version.
For more information, see What You May Need to Know About Versioning ADF REST
Resources.

You may also find it helpful to understand how requests by service clients depend
on the version identifier of the resource. For more information, see What Happens At
Runtime: Invoking ADF REST Resource Versions.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

To manage ADF REST versions:

1. In the Applications window, in the Application Resources pane, expand
the Descriptors and ADF META-INF nodes, and then double-click the adf-
config.xml file.

2. In the overview editor for the adf-config.xml file, click the Release Versions
navigation tab, then click the Create New Release Version icon button to create a
new resource version identifier.

Chapter 16
Versioning the ADF REST Resource

16-47

3. When you want to change the order of the versions to affect the runtime, select
a version from the table and use the arrows to the right of the table to change its
hierarchy in the list of versions.

The ADF REST runtime will recognized the version at the top of the list as the
most recent version of the resource.

4. Optionally, select the status to conform to the desired resource lifecycle: active,
desupported, deprecated.

After you create the version and assign it to REST resources, the version identifier
must not be deleted from the adf-config.xml file. The proper way to effectively
remove a version is to change its status to desupported.

What You May Need to Know About Versioning ADF REST Resources
The following are examples of changes to the ADF REST resource structure that
should be considered backward-incompatible with already deployed RESTful web
services:

• Renaming exposed attributes

• Removing or hiding previously exposed attributes

• Removing previously exposed child resources

• Disabling standard operations

• Disabling LOV view accessors or changing an LOV to a different view object

Under certain circumstances, you may modify the ADF REST structure without
versioning the resource. The following changes are considered to be backward
compatible and therefore do not necessitate creating a new version of the already
deployed ADF REST resource.

• Exposing new attributes and the backing view object does not define the attributes
as mandatory

Note that exposing mandatory-defined attributes requires versioning the resource.

• Exposing standard operations

• Exposing new child resources

• Defining a LOV view accessor for already exposed attributes

What Happens At Runtime: Invoking ADF REST Resource Versions
Version identifiers that you specify will form the URL that the service client uses to
invoke operations of the REST resource. For example, the following GET request
specifies the URL parameters 11.0 and 11.1 to access two different versions of the
Departments resource:

http://localhost:7101/RESTSample_App/rest/11.0/Departments

http://localhost:7101/RESTSample_App/rest/11.1/Departments

When you use the overview editor for the adf-config.xml file to update the lifecycle
status of existing versions, you tag each version as either active, deprecated, or
desupported. The status deprecated has no runtime impact and is provided for
documentation purposes, but the status desupported will cause the deployed resource
to become inaccessible.

Chapter 16
Versioning the ADF REST Resource

16-48

Note that the order of the release name identifiers in the adf-config.xml file's release
version list is significant. The ADF REST runtime recognizes the top-most release
name as the most recent version. Release names below the top name in the list form
a sequential list of versions. For example, the following GET request retrieves version
11.1 of the Departments resource, where 11.1 is at the top of the release versions list:

http://localhost:7101/RESTSample_App/rest/11.1/Departments

If the service client requests a resource that does not exist for the requested version,
the ADF REST runtime will fallback to a previous version with status active or
deprecated. Thus, if the Departments resource versions 11.0 and 11.1 exist but 11.2
does not, the request for version 11.2 will return the next more recent resource,
version 11.1.

Versioning the ADF REST Runtime Framework
JDeveloper allows you to specify the default ADF REST runtime framework that you
want the service client to use when processing requests on ADF REST resources.
Declaring a default framework version ensures that clients interact with the appropriate
level of functionality.

Oracle JDeveloper 12c releases, starting with release 12.2.1.2.0, will introduce ADF
REST framework enhancements to support new runtime functionality on service
clients. Whether or not your application will benefit from these enhancements depends
on the use cases of your application. To support your ability to evaluate framework
enhancements before exposing them to service clients, each iteration of the ADF
REST framework is identified by a version number, such as version 1, 2, and 3, where
version 1 is associated with your application by default. Your application can either
remain at the current framework version (for example, the base framework version
1) or you can decide to opt into a newer version (for example, framework version
2) to enhance your application use cases. This ensures that the ADF REST runtime
will process the request using the framework version that offers the desired level of
functionality for your service clients. Being able to specify a framework version to
process requests on your application, allows you to opt into those features when you
are ready.

As new ADF REST runtime framework versions are introduced, you may want
to update your application to make use of runtime functionality offered in a later
framework. To accomplish this, the ADF REST design time allows you to associate
a restFrameworkVersion property in the adf-config.xml file to define the default
framework version for each version of your application’s ADF REST resources. For
example, you may have a resource version 11.0, which is by default associated with
the base functionality of framework version 1. Then starting with Oracle JDeveloper
12.2.1.2.0 and ADF REST framework version 2, you can choose to create a new
resource version 11.1 and associate it with framework version 2. Alternatively, you can
opt into framework version 2 on your existing resource version instead of creating a
new resource version. By specifying a default framework version that you associate
with individual resource versions, you ensure that your application will expose the
appropriate level of functionality to service clients.

Chapter 16
Versioning the ADF REST Runtime Framework

16-49

Note:

Starting in JDeveloper release 12.2.1.2.0, versions 1, 2, and 3 of the ADF
REST runtime framework exist, where version 1 is the base version and
includes the ability to support multiple framework versions on the ADF REST
service client. Starting in JDeveloper release 12.2.1.4.0, versions 4, 5, 6,
and 7 also exist. For complete details about versions of the framework, see
What You May Need to Know About Versioning the ADF REST Runtime
Framework.

How to Version the ADF REST Runtime Framework
You use the overview editor for the adf-config.xml file in Source view to declare the
default ADF REST framework versions for the resource versions of the ADF REST
application. When the service client requests a resource, the ADF REST runtime will
process the request using the declared framework version that is associated with the
resource version specified on the request URL.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework
supports application modules and enables service clients to access rows of data and
perform service operations. See About RESTful Web Services and ADF Business
Components.

You may find it helpful to understand the role of release versions that you create to
manage the release iterations of your application’s ADF REST resources. For more
information, see Versioning the ADF REST Resource.

You may also find it helpful to understand how an ADF REST framework version may
introduce backward-incompatible changes that will require creating a new resource
version and declaring a default framework version for it. See What You May Need to
Know About Versioning ADF the REST Framework.

You may also find it helpful to understand how the processing of requests by service
clients is affected by the ADF REST framework declared for the resource version. See
What Happens At Runtime: Invoking an ADF Rest Framework Version.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. See Additional Functionality for RESTful Web Services.

To declare default ADF REST framework versions:

1. In the Applications window, in the Application Resources pane, expand
the Descriptors and ADF META-INF nodes, and then double-click the adf-
config.xml file.

2. In the overview editor for the adf-config.xml file, click the Release Versions
navigation tab to view the existing list of release versions that the application uses.

3. Optionally, click the Create New Release Version icon button to create a new
resource version identifier to associate with the new framework version. For
example, you may want to create a new release version when the new ADF REST
framework version will introduce backward-incompatible changes to the service
client and you wish to preserve the original functionality for the existing release
version that you can associate with the existing framework version.

Chapter 16
Versioning the ADF REST Runtime Framework

16-50

4. To specify a default framework version to process requests for the resources of a
particular release version, click the Source tab and edit the <version> element
to add the restFrameworkVersion property with a specific framework version
number. Starting in JDeveloper 12.2.1.2.0, versions 1, 2, and 3 are available.
Starting in JDeveloper 12.2.1.4.0, versions 4, 5, 6, and 7 are also available. Make
no other changes to the XML and specifically do not change the order of the
release versions, where the top-most release version defines the most recent
release version.

<versions>
 <version name="11.2" displayName="11.2" restFrameworkVersion="3"/>
 <version name="11.1" displayName="11.1" restFrameworkVersion="2"/>
 <version name="11.0" displayName="11.0" restFrameworkVersion="1"/>
</versions>

In the above example, requests for ADF REST resources named version 11.0 will
use framework version 1 to process the request, while requests for resources
named 11.1, will use the functionality offered by framework version 2, and
requests for resources named 11.2, will use the functionality offered by framework
version 3 when processing the request.

What You May Need to Know About Versioning the ADF REST
Framework

One reason that you may want to version the ADF REST framework for your ADF
REST application is to opt into new functionality offered by a later version of the ADF
REST runtime framework. Currently, Oracle offers the following framework versions.

Note:

Each ADF REST framework version after version 1 introduces functionality
that the previous framework versions does not support. Thus, when you
choose to opt into a later framework version, the REST API of your
application may introduce backward incompatible changes on the service
client consuming the REST API. This topic explains the changes for each
framework version.

Framework Version 1

The ADF REST framework identified as version 1 is available starting with JDeveloper
release 12.2.1.0.0, when ADF REST was initially introduced. This is the base version
which specified a particular JSON payload format. In this release and all subsequent
releases, the ability to support multiple framework version was included, by allowing
the restFrameworkVersion property in the adf-config.xml file.

Version 1 is the default version that the ADF REST runtime will use to process
requests for service clients when no other version is specified. Therefore, when you
want to support service clients at the base level of functionality, your application does
not need to declare the version using the restFrameworkVersion property in the adf-
config.xml file.

Note that the query-by-example resource query syntax supported in the base
framework version (version 1) is not compatible with later versions of the ADF REST

Chapter 16
Versioning the ADF REST Runtime Framework

16-51

framework. Beginning with version 2 of the ADF REST framework, a more advanced
query syntax is offered instead.

Framework Version 2

The ADF REST runtime framework identified as version 2 is available starting with
JDeveloper release 12.2.1.2.0. The purpose of this new version is to introduce an
expanded query expression syntax for ADF REST requests. Version 2 of the ADF
REST framework will interpret the q query parameter value differently than the way
framework version 1 does, and therefore introduces a backward incompatible change
to service clients that rely on framework version 1. Only when framework version 2 (or
later) is specified for the resource request will the ADF REST runtime support the use
of the expanded expression syntax to process the request.

In version 1, filtering resource collections using the q query parameter is limited to a
query-by-example syntax, as follows.

GET /rest/11.0/Departments?q=Dname SA*;Loc BOSTON

Whereas, starting in version 2, the new advanced query syntax supports filtering
resource collections using rowmatch query expressions, as follows.

GET /rest/11.1/Departments?q=Dname like 'SA*' or Loc = 'BOSTON'

Note:

To support both rowmatch expressions (offered in framework version 2
and later) and the query-by-example syntax (version 1 only), you would
need to associate framework version 2 (or later) with a new release
version identifier that you define for the REST resources in the adf-
config.xml file. For example, in the above URL samples, you can preserve
the original functionality for release version 11.0 and expose the new
functionality for version 11.1. This assumes that the adf-config.xml file
for the application has declared framework version 2 the default using the
restFrameworkVersion=”2” property on release version 11.1. Alternatively, if
your service clients will no longer require the functionality of your current
framework version, you may associate the new framework version with
your existing release version identifier. Therefore, you are not required to
increment the release version to make use of a new framework version.

For an explanation of the enhanced query syntax offered by rowmatch expressions,
see What You May Need to Know About the Advanced Query Syntax in ADF REST
Framework Version 2.

Framework Version 3

The ADF REST runtime framework identified as version 3 is available starting with
JDeveloper release 12.2.1.2.0. The purpose of this version is to add support for
retrieving nested child resources with payload attributes that may be used by the
service client to determine whether more resource items would be returned in a
subsequent ADF REST request. To support this functionality, the payload structure in
framework version 3 now represents nested child resources as a resource collection,
instead of an array of items, as was true in version 1 and 2. Therefore, version 3
introduces a backward incompatible change to service clients that rely on framework
version 1 or version 2. If you decide to opt into version 3, you will expose functionality

Chapter 16
Versioning the ADF REST Runtime Framework

16-52

that allows GET operations to use the ?expand and ?fields query parameter to return
a nested child resource as a resource collection with the hasMore attribute. In affect,
this change supports pagination of nested child resources that would otherwise require
more than one request to fetch.

When you want to add support for framework version 3 to your application, the same
guidelines described for framework version 2 (see above section) apply for preserving
the existing level of functionality using the restFrameworkVersion property in the
adf-config.xml file.

For an example of the new payload structure for nested child resources introduced in
version 3, see Fetching Nested Child Resources and Querying With Filtering Attributes
(Partial Get). For details about paginating a resource collection using the hasMore
attribute, see Paging a Resource Collection.

Framework Version 4

The ADF REST runtime framework identified as version 4 is available starting with
JDeveloper release 12.2.1.4.0. In addition to HTTP status codes and error messages,
it is possible to obtain exception details in the response when your request is
enabled to use ADF REST framework version 4 and the request is made for either
application/vnd.oracle.adf.error+json or application/json media types. With
framework version 4, the response will be in the form an exception detail payload
which provides the following benefits to the service client:

• If multiple errors occur in a single request, the details of each error are presented
in a hierarchical structure.

• An application-specific error code may be present that identifies the ADF
exception corresponding to each error.

• An error path may be present that identifies the location of each error in the
request payload structure.

Note:

The exception detail may or may not present certain details, such as the
application-specific error code and the request payload’s error path.

For example, compare the error response for a POST submitted with a payload that
contains the following incorrectly formatted date field when framework version 3 (or
earlier) is enable and when framework version 4 (or later) is enabled.

{ "EmpNum" : 5027,
 "EmpName" : "John",
 "EmpHireDate" : "not a date"
}

Standard Error Response

Without framework version 4, no response payload is generated and instead only a
single error message that does not reference the request payload will be returned in
the response.

Chapter 16
Versioning the ADF REST Runtime Framework

16-53

"An instance of type oracle.jbo.domain.Date cannot be created from
string not a date. The string value must be in format YYYY-MM-
DDTHH:MI:SS.sss+hh:mm."

Exception Payload Error Response

With framework version 4 (or later) enabled, the following exception detail payload is
generated for the response. The payload includes the usual HTTP status code and
formats the details of one or more exceptions in an array structure.

{ "title" : "Bad Request",
 "status" : "400",
 "o:errorDetails" : [{
 "detail" : "An instance of type oracle.jbo.domain.Date cannot be
created from string not a date.
 The string value must be in format YYYY-MM-
DDTHH:MI:SS.sss+hh:mm.",
 "o:errorCode" : "26099",
 "o:errorPath" : "/EmpHireDate"
 }]
 }

Framework Version 5

The ADF REST runtime framework identified as version 5 is available starting with
JDeveloper release 12.2.1.4.0. In versions 4 and earlier you might pick a nested
resource as an LOV target. For example: /rest/v1/States/California/Cities. In
versions 5 and later you use filtering to access the nested LOV resource instead, for
example: /rest/v1/Cities?finder=ByState;name=California. With this framework
version, the row context LOV URLs are no longer returned in the payload and in the
describe. Only LOV resource URLs that point to top-level resources are described and
included in the payloads.

See What You May Need to Know About Configuring LOV Resources for Row Finders
and Retrieving LOV-Enabled Attribute Values with Framework Version 5 and Later.

This framework version 5 also provides support for request and response parameters
beyond the current supported types of string, number, date, and boolean. The
supported Java types include java.util.List and java.util.Map. For the ADF REST
catalog describe, if the response parameter is java.util.List, then specify the
request parameter as array and if the response parameter is java.util.Map then
specify the request parameter as object.

{
 "name" : "sales",
 "parameters" : [{
 "name" : "prices",
 "type" : "array",
 "typeProperties": {
 "itemType": "number"
 },
 "mandatory" : false
 }, {
 "name" : "quantities",
 "type" : "object",
 "typeProperties": {
 "itemType": "array",
 "typeProperties": {

Chapter 16
Versioning the ADF REST Runtime Framework

16-54

 "itemType": "integer"
 }
 },
 "mandatory" : false
 }],
 "resultType" : "object",
 "typeProperties": {
 "itemType": "number"
 },
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/vnd.oracle.adf.actionresult+json",
"application/json"]
}

Framework Version 6

The ADF REST runtime framework identified as version 6 is available starting with
JDeveloper release 12.2.1.4.0. The purpose of this framework version is to easily
differentiate between the resource fields and the item context information like links
and headers. A new element @context is introduced in this version and all the
information for an item is moved under @context section. The changeIndicator value
is moved to ETag, which is under headers. A new context information key is included
under @context that contains the unique identifier of the specific resource item as
a string. The @context section also contains warnings in the response payload for
create/upsert and update actions. See Fetching a Resource with Grouped Context
Information .

The new payload for a resource item in a response payload and collection response
payload will be similar to the one below:

{
 "field1": "value1",
 "field2": "value2",
 ...
 "@context" : {
 "key" : "AB8765BCD",
 "headers" : {
 "ETag" : "ACED..."
 ...
 },
 "links": [{
 "rel": "self",
 "href":
 ...
 }]
 "warnings": [{
 "detail": "Warning from overridden validateEntity method in DeptImpl :
DeptName = ABC"
 }, {
 "detail": "Attribute set with value 92 for DeptNum in Dept failed",
 "o:errorCode": "27011",
 "o:errorPath": "/DeptNum"
 }, {
 "detail": "Warning from overridden afterCommit method in DeptViewImpl"
 }, {
 "detail": "Warning from overridden afterCommit method in DeptViewImpl"
 }]
 }
}

Chapter 16
Versioning the ADF REST Runtime Framework

16-55

Framework Version 7

The ADF REST runtime framework identified as version 7 is available starting with
JDeveloper release 12.2.1.4.0. This framework version supports top-level LOVs,
and fully removes row-level LOV resource descriptions in the ADF REST describe.
Framework versions earlier than framework version 5 support nested LOVs in the
context of a row in the REST resource. With framework version 7 enabled, use
instead static LOV resources and row finder URL links in the describe, as described in
Retrieving LOV-Enabled Attribute Values with Framework Version 5 and Later.

Additionally, version 7 removes LOV links from the resource item payload links section
of the response. The goal is to enforce the use of parametrized row finders as
implemented by version 5 and later by removing LOV links. For example, compare
this response for a resource item request made with version 7 enabled to the same
request with an earlier version.

{
 "EmpId" : 101,
 "EmpName" : "Bob",
 "@context" : {
 "key" : "1",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }]
 }
}

Here is the same response with an earlier version with the LOV resource link returned.

{
 "EmpId" : 101,
 "EmpName" : "Bob",
 "@context" : {
 "key" : "1",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "lov",
 "href" : "http://server/demo/rest/12.0/Employees/10/lov/

Chapter 16
Versioning the ADF REST Runtime Framework

16-56

JobsLOV",
 "name" : "JobsLOV",
 "kind" : "collection"
 }]
 }
}

What You May Need to Know About the Advanced Query Syntax in
ADF REST Framework Version 2

The ADF REST runtime framework identified as version 2 was offered starting with
JDeveloper release 12.2.1.2.0. The purpose of this framework version is to introduce
an expanded query expression syntax for ADF REST requests. This version will
interpret the q query parameter value differently than the way framework version 1
does, and therefore introduces a backward incompatible change to service clients that
rely on framework version 1.

When you decide to opt into framework version 2 (or later), the ADF REST runtime
will process fetch requests for the q query parameter using the expanded expression
syntax, whereas requests using the query-by-example syntax will become invalid
and will return an error. However, you may decide not to opt into the functionality
offered in framework version 2 by leaving the default for your release version set to
framework version 1. Or, you may preserve the base functionality by creating a new
release version identifier that you associate with framework version 2, while leaving
the existing release identifier in the adf-config.xml file as framework version 1.

In version 1, filtering resource collections using query parameters is limited to a query-
by-example syntax, which separates expressions using a semi-colon, as follows:

GET /rest/11.0/Departments?q=Dname SA*;Loc BOSTON

Whereas, starting in version 2, a new advanced query syntax supports filtering
resource collections using rowmatch expressions, as follows:

GET /rest/11.1/Departments?q=Dname like 'SA*' or Loc = 'BOSTON'

Such rowmatch expressions include the case-sensitive name of a resource item,
followed by an operator and one or more operand values (depending on the operator
used). The filter can be as simple as a single expression, or it can combine
expressions using the and and or conjunctions with matching sets of parentheses
for grouping.

Benefits of the Advanced Query Syntax Offered in Framework Version 2 and
Later

The advantages of rowmatch expression include the following.

• They may use supported operators:

DepartmentNumber = 20

DepartmentNumber <> 20

DepartmentNumber <= 20

DepartmentNumber < 20

DepartmentNumber >= 20

Chapter 16
Versioning the ADF REST Runtime Framework

16-57

DepartmentNumber >20

DepartmentNumber between 20 and 40

DepartmentNumber not between 20 and 40

DepartmentNumber in (20, 30, 40)

DepartmentName like '%S%'

DepartmentName like 'RE%'

DepartmentName not like 'RE%'

Location is null

Location is not null

• They may involve multiple attributes:

DepartmentNumber = 10 or DepartmentName like 'RESEARCH'

DepartmentNumber > 10 and DepartmentNumber < 40

DepartmentNumber < 20 or DepartmentNumber > 30

(DepartmentNumber = 10 or DepartmentNumber = 30) and (DepartmentName like
'SALES')

DepartmentNumber BETWEEN 20 and 40) and (Location like 'DAL%')

(DepartmentNumber > 0 and DepartmentNumber < 100) and (DepartmentName
<> 'SALES') and (Location not like 'NEW%')

(DepartmentNumber = 10 or DepartmentNumber = 30) and (DepartmentName =
'ACCOUNTING' or DepartmentName = 'SALES')

(DepartmentNumber = 10 and DepartmentName like 'ACC%') or
(DepartmentNumber = 20 and DepartmentName like 'RES%')

DepartmentName='ACCOUNTING' or (DepartmentName like 'R%' and Location
like '%ALLA%')

(DepartmentName like 'R%' and Loc like '%ALLA%') or
DepartmentName='ACCOUNTING'

(DepartmentName like 'R%' or Loc like '%ALLA%') or
DepartmentName='ACCOUNTING'

(DepartmentNumber between 20 and 40) and DepartmentNumber is not null

• They may involve attributes of nested child resources:

Deptno > 5 and Emps.Job = 'MANAGER'

Emps.Job = 'MANAGER' and Deptno > 5

Deptno > 5 and (Emps.Job = 'MANAGER')

(Emps.Job = 'MANAGER') and Deptno > 5

(Deptno > 5) and (Emps.Job = 'MANAGER')

(Deptno = 10 and Emps.Job = 'PRESIDENT') or (Deptno = 20 and Emps.Job =
'MANAGER')

Deptno > 5 and Emps.Job = 'MANAGER' and Emps.Sal >= 2500

Deptno > 5 and (Emps.Job = 'ANALYST' or Emps.Sal >= 4000)

(Deptno > 5 and Emps.Job = 'ANALYST') or Emps.Sal >= 4000

Chapter 16
Versioning the ADF REST Runtime Framework

16-58

Emps.Job = 'ANALYST' or Emps.Job = 'SALESMAN'

Deptno > 5 and (Emps.Job = 'ANALYST' or Emps.Job = 'SALESMAN')

Deptno > 5 and Emps.Job = 'MANAGER' and Emps.DirectReports.Sal >= 2000

Deptno > 5 and (Emps.Job = 'MANAGER' or Emps.DirectReports.Sal >= 2000)

Deptno > 10 and (Emps.Job = 'MANAGER' and (Loc = 'NEW YORK' or
Emps.Mgr=7698))

Deptno > 10 and (Emps.Job = 'MANAGER' or (Loc = 'NEW YORK' or
Emps.Mgr=7698))

Deptno > 10 and (Emps.Job = 'MANAGER' or (Loc = 'NEW YORK' or
Emps.Mgr=7698)) or Deptno = 40

Deptno > 10 and (Emps.Job = 'MANAGER' or (Loc = 'NEW YORK' or
Emps.Mgr=7698)) or (Deptno = 40)

Deptno > 10 and (Emps.Job = 'MANAGER' or (Emps.DirectReports.Sal > 2000
and (Emps.DirectReports.Comm = 500 or Emps.DirectReports.Deptno > 10)))

Deptno > 10 and (Emps.Job = 'MANAGER' and (Emps.DirectReports.Sal >= 2000
and (Emps.DirectReports.Comm = 500 or Emps.DirectReports.Deptno > 10)))

• They may involve the UPPER function:

UPPER(DepartmentName) = 'RESEARCH'

UPPER(DepartmentName) = UPPER('research')

UPPER(DepartmentName) like 'RES%' and UPPER(Location) like 'DAL%'

UPPER(DepartmentName) like UPPER('research')

Overview of the Advanced Query Syntax Offered in Framework Version 2 and
Later

The following are some examples of rowmatch expressions.

• To test whether a value is null you must use the is null or the is not null
keywords:

AssignedToId is null

AssignedToId is not null

• For equality use the = sign, and for inequality use either the != or the <> operators.

AssignedToId = 100000000089003

Priority != 1

Priority <> 1

ActivityType != 'RS'

ActivityType <> 'RS'

• For relational comparisons, use the familiar <, <=, >, or <> operators, along with
between or not between.

Priority <= 2

Priority < 3

Priority <> 1

Chapter 16
Versioning the ADF REST Runtime Framework

16-59

Priority > 1

Priority >= 1

TotalLoggedHours >= 12.75

Priority between 2 and 4

Priority not between 2 and 4

• For string matching, you can use the like operator, employing the percent sign
% as the wildcard character to obtain "starts with", "contains", or "ends with" style
filtering, depending on where you place your wildcard(s):

RecordName like 'TT-%'

RecordName like '%-TT'

RecordName like '%-TT-%'

• To test whether a field's value is in a list of possibilities, you can use the in
operator:

ActivityType in ('OC','IC','RS')

• You can combine expressions using the conjunctions and and or along with
matching sets of parentheses for grouping to create more complex filters like:

(AssignedToId is null) or ((Priority <= 2) and (RecordName like
'TT-99%'))

(AssignedToId is not null) and ((Priority <= 2) or (RecordName like
'TT-99%'))

When using the between or in clauses, you must surround them by parentheses
when you join them with other clauses using and or or conjunctions.

What Happens At Runtime: Invoking an ADF REST Framework
Version

After Oracle JDeveloper introduces a new ADF REST framework version (such as
framework version 2 offered in JDeveloper release 12.2.1.2.0 and later), you may want
to create a new resource version and associate it with the new framework version to
ensure that service clients make use of the appropriate level of functionality.

For example, the following URL specifies resource version 11.2, where the
application’s adf-config.xml file associates this resource version with version 2 of the
ADF REST framework. Because ADF REST framework version 2 supports rowmatch
filter expressions, as a result, the ADF REST runtime will process the request with the
appropriate functionality and fetch the departments with names that begin with SA (for
example, SALES) or have a Location of BOSTON.

http://server/demo/rest/11.2/Departments?q=DepartmentName like 'SA*' or
Location = 'BOSTON'

Note that a service client may override the default framework version and process
individual requests using a specified framework version that gets passed in a custom
header, REST-Framework-Version. In this case, the ADF REST runtime will ignore
the application default framework version declaration. If the custom header is omitted
on the request, then the ADF REST runtime always uses the application’s default
framework version, as defined in the adf-config.xml file. When the application does

Chapter 16
Versioning the ADF REST Runtime Framework

16-60

not define a default framework version and the request on the service client omits
the version header, then version 1 of the ADF REST framework is assumed. For
information about processing requests using the framework versions, see Working with
ADF REST Framework Versions.

The following table contrasts what happens at runtime when a request uses
functionality supported (or not supported) by a particular ADF REST framework
version. In particular, note the URLs that contrast the query-by-example syntax
supported only in version 1 with rowmatch expressions supported in version 2 (and
later). The column for the REST-Framework-Version header specifies whether the
request passes a version header on the request. When the request includes the
version header, the ADF REST runtime processes the request with the passed
framework value and overrides the default adf-config.xml file declaration.

Table 16-3 Example Requests Processed By ADF REST Framework Versions

URI REST-Framework-
Version Header

Resolved Version Success / Error
Notes

GET /rest/11.0/
Departments

1 Success. Uses default
framework version for
resource version 11.0.

GET /rest/11.0/
Departments

1 1 Success. Uses the
requested framework
version, which
matches the default
declaration in the
adf-config.xml file.

GET /rest/11.0/
Departments

2 2 Success. Uses the
requested framework
version, which
overrides the default
declaration in the
adf-config.xml file.

GET /rest/11.1/
Departments

2 Success. Uses the
default framework
version for resource
version 11.1.

GET /rest/11.0/
Departments?
q=Dname SA*;Loc
BOSTON

1 Success. Uses the
default framework
version for resource
version 11.0, which is
defined as version 1.

Query by example
syntax is supported in
framework version 1.

GET /rest/11.1/
Departments?
q=Dname SA*;Loc
BOSTON

2 Error is returned. Uses
the default framework
version for resource
version 11.1, which is
defined a version 2.

Query by example
syntax is not
supported in
framework version 2.

Chapter 16
Versioning the ADF REST Runtime Framework

16-61

Table 16-3 (Cont.) Example Requests Processed By ADF REST Framework
Versions

URI REST-Framework-
Version Header

Resolved Version Success / Error
Notes

GET /rest/11.0/
Departments?
q=Dname LIKE 'SA*'
OR Loc = 'BOSTON'

2 2 Success. Uses the
requested framework
version, which
overrides the default
declaration in the
adf-config.xml file.

Rowmatch
expressions are
supported in
framework version 2.

GET /rest/11.0/
Departments?
q=Dname LIKE 'SA*'
OR Loc = 'BOSTON'

1 Error is returned. Uses
the default framework
version for resource
version 11.1, which is
defined as version 1.

Rowmatch
expressions are
not supported in
framework version 1.

GET /rest/11.1/
Departments?
q=Dname LIKE 'SA*'
OR Loc = 'BOSTON'

1 1 Error is returned.
Uses the requested
framework version,
which overrides
default declaration in
the adf-config.xml
file.

Rowmatch
expressions are
not supported in
framework version 1.

Granting Client Access to the ADF REST Resource
Use the Configure ADF Security wizard and in the wizard select RESTWebService.jpr
as the web project in the wizard to manage ADF REST resource security.

You can enable security for the ADF REST resources when you want to require
user authentication to invoke actions on the REST request. Security is handled
like all Fusion web applications and is enabled when you run the Configure ADF
Security wizard and select the RESTWebService.jpr as the web project in the wizard.
Enabling ADF Security on the web service project, means the deployed service will be
inaccessible by default and users will require security grants to application roles that
confer specific access permission.

Permission that you can grant to users of the RESTful web service is defined by the
following classes:

Chapter 16
Granting Client Access to the ADF REST Resource

16-62

• oracle.adf.share.security.authorization.RestServicePermission which
defines the authorization grants to the standard actions defined in a REST
resource.

Table 16-4 lists the actions defined by the ADF REST permission class that you may
grant to your defined application roles.

Table 16-4 Secured Actions of ADF REST Resources

Grantable Action Effect on the REST Resource

describe Grants describing the collections and instances of the REST resource.

get Grants returning the collection or instance for the REST resource.

update Grants updating a collection or instance for the REST resource.

delete Grants deleting a collection or instance for the REST resource.

create Grants creating a collection or instance for the REST resource.

The general process to authorize users to invoke actions of the ADF REST resource is
as follows.

1. Enable the desired standard actions on the REST resource.

2. Run the ADF Security wizard on the RESTWebService project.

3. Create one or more application roles and test users to test security in JDeveloper.

4. Create a resource grant for the REST resource that you associate with the desired
application role.

5. Map the application roles and their resource grants to your test users.

How to Create a Resource Grant for ADF REST Resources
You can use the overview editor for security policies to create a grant that
will secure operations that you have exposed on the resource. JDeveloper
will match your resource type definition to the OPSS permission class
oracle.adf.share.security.authorization.RestServicePermission, as described
in Table 16-4.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework
supports application modules and enables service clients to access rows of data and
perform service operations. See About RESTful Web Services and ADF Business
Components.

You may also find it helpful to understand other Oracle ADF features that depend
on ADF REST resources. For more information, see See Additional Functionality for
RESTful Web Services.

You will need to complete these tasks:

• Create the desired REST resource, as described in How to Create ADF REST
Resources from View Object Instances.

• Enable the standard operations that you want the REST resource to secure, as
described in How to Expose Standard HTTP Actions in the ADF REST Resource.

Chapter 16
Granting Client Access to the ADF REST Resource

16-63

• Run the Configure ADF Security wizard to enforce security and make the REST
resource methods protected by default. In the Authentication Type page of
the wizard instead of selecting ViewController, as described in Enabling ADF
Security, select the default generated RESTWebService project from the Web
Project dropdown to configure ADF Security for a ADF Business Components
model project that defines the ADF REST resources.

• Create one or more test users and map them to application roles that you
create for the purpose of granting resource permissions, as described in How to
Associate Test Users and Application Roles.

To create the ADF REST resource grant:

1. In the main menu, choose Application and then Secure > Resource Grants.

2. In the Resource Grants page of the overview editor for security policies, choose
ADF REST Resource from the Resource Type dropdown.

3. Locate the Model project that defines the resource and add it to the Source
Project field.

4. In the Resources column, select the resource.

5. In the Granted To column, click the Add Grantee icon and choose Add
Application Role and then, in the Select Application Roles dialog, click the Add
icon and choose the application role to receive the resource grants. For example,
if you created a role ManagerRole, select the role and click OK.

6. With the role selected in the Granted To column, select the desired actions from
the Actions list.

The overview editor displays the resource grant made to the application role, as
shown in Figure 16-22.

Figure 16-22 Creating a Grant for an ADF REST Resource

Deploying the ADF REST Resource
You can deploy the RESTful web service to either the Integrated Oracle WebLogic
Server of JDeveloper or to the standalone Oracle WebLogic Server.

You can deploy the RESTful web service to either JDeveloper's Integrated WebLogic
Server or to standalone Oracle WebLogic Server.

Chapter 16
Deploying the ADF REST Resource

16-64

How to Deploy the ADF REST Resource to Integrated WebLogic
Server

You can deploy the RESTful web service to JDeveloper's Integrated WebLogic Server
using the default Run option that you select on the RESTWebService project, as
shown in Figure 16-23.

Figure 16-23 Using the Default Run Option on RESTWebService Project

Once you have deployed the service to Integrated WebLogic Server, you can click
the target URL in the Log window to access the service in the HTTP Analyzer tool in
JDeveloper and to perform testing using the syntax that establishes the request (GET
or POST, for example). For details about testing RESTful web services, see Testing
the ADF REST Resources Using Integrated WebLogic Server.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform
service operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

Chapter 16
Deploying the ADF REST Resource

16-65

You will need to complete these tasks:

• Create the desired REST resource, as described in Creating ADF REST
Resources Using the Application Module.

• Optionally, create an Integrated WebLogic Server connection and configure the
default domain, as described in Working with the Default Domain. If you do not
create the connection, JDeveloper will prompt you to do so.

• Optionally, edit the REST servlet's URL pattern and context root as you want it to
appear in the target URL used to access the deployed RESTful web service. For
more information about editing the URL pattern, see What You May Need to Know
About Modifying the Target URL Used by Service Clients.

To deploy the web service to Integrated WebLogic Server:

1. In the Applications window, select the RESTWebService project node, right-click
and choose Run.

If you have not already configured Integrated WebLogic Server, JDeveloper
prompts you to configure the default domain.

JDeveloper deploys the application and starts the web service. During
this time, the output from these processes is displayed in the Running:
IntegratedWebLogicServer tab of the Log window. After the web service has
started, the target URL appears at the bottom of the log, as shown in Figure 16-24.

Figure 16-24 Log Window Displays Target URL

2. After you deploy the web service, in the Running: IntegratedWebLogicServer
tab of the Log window, click the target URL to access the web service in the HTTP
Analyzer and to perform testing on the deployed service in JDeveloper.

For example, the Running: IntegratedWebLogicServer tab of the Log window
might display the following target URL that you can click, where 7101 is the port
number and what follows is the service context root and the REST servlet URL
pattern:

http://<hostname>:7101/RESTSample_App-context-root/rest

3. Alternatively, to display the web service using a web browser, paste the target URL
the Log window into the browser address field, modify the URL to identify the ADF
REST resource, and submit the HTTP Get request.

For example, a Get request for version 11.1 of the Departments resource looks
like this:

Chapter 16
Deploying the ADF REST Resource

16-66

http://localhost:7101/RESTSample_App-context-root/rest/11.1/
Departments

Be sure to include the version number that you configured for the resource in the
URL. In this example, 11.1 was configured as the version for the Departments
resource, as shown in Figure 16-25.

Figure 16-25 Using the Browser to Make a GET REST Request

How to Configure the ADF REST Resources Deployment Profile For
Standalone Oracle WebLogic Server Deployment

Before you can deploy the RESTful web service to standalone Oracle WebLogic
Server, you must configure the ADF REST resources deployment profile to declare
the RESTWebService project as a dependent module of the ADF REST application
EAR file. This project contains a web.xml file and a weblogic.xml file that ensure
access to the REST resources by service clients.

In JDeveloper, you use the Application Assembly page of the Edit EAR Deployment
Profile Properties dialog to add the module dependency to the application. Then, when
you deploy the ADF REST application, the two files of the selected RESTWebService
project will be assembled as a WAR file in the deployed EAR file.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform

Chapter 16
Deploying the ADF REST Resource

16-67

service operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete these tasks:

• Create the desired REST resource, as described in Creating ADF REST
Resources Using the Application Module.

To configure the deployment profile:

1. Add the RESTWebService project as a dependency for the application's EAR
deployment profile:

a. In the Applications window, select the application and then choose
Application - Application Properties from the main menu.

b. In the Application Properties dialog, choose Deployment and select the
application module deployment profile and click Edit Profile.

c. In the Edit EAR Deployment Profile Properties dialog, choose Application
Assembly and expand the RESTWebService.jpr module and then select the
project as shown in Figure 16-26 and click OK.

Figure 16-26 Adding a Deployment Dependency on RESTWebService
Project

Chapter 16
Deploying the ADF REST Resource

16-68

How to Deploy the ADF REST Resource to Standalone Oracle
WebLogic Server

You can deploy the RESTful web service to standalone Oracle WebLogic Server.

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework supports
application modules and enables service clients to access rows of data and perform
service operations. For more information, see About RESTful Web Services and ADF
Business Components.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. For more information, see Additional Functionality for RESTful
Web Services.

You will need to complete these tasks:

• Create the desired REST resource, as described in Creating ADF REST
Resources Using the Application Module.

• Modify the deployment profile to add the RESTWebService project as a
dependency and deploy the web service, as described in How to Configure
the ADF REST Resources Deployment Profile For Standalone Oracle WebLogic
Server Deployment.

• When the application uses the customization features provided by Oracle
Metadata Services (MDS) framework and shaping definitions are applied to ADF
REST resources, it is necessary to modify the MAR profile for the customization
features, as described in What You May Need to Know About Deploying ADF
REST Resources With MDS Customization Support.

• Optionally, edit the REST servlet's URL pattern and context root as you want it to
appear in the target URL used to access the deployed RESTful web service. For
more information about editing the URL pattern, see What You May Need to Know
About Modifying the Target URL Used by Service Clients.

To deploy the web service to standalone Oracle WebLogic Server:

1. In the Applications window, select the application and then choose Application -
Deploy - deployment_profile to server_name from the main menu.

JDeveloper deploys the application and starts the web service. During this time,
the output from these processes is displayed in the Deployment tab of the Log
window. After the web service has started, the target URL is also displayed in the
Log window.

2. After you deploying the web service, open the Deployment - Log window and click
the target URL to access the web service and to perform testing on the deployed
service.

Chapter 16
Deploying the ADF REST Resource

16-69

What You May Need to Know About Modifying the Target URL Used
by Service Clients

You can edit the REST servlet's URL pattern as you want it to appear in the URL that
service clients use to access the service. By default the servlet mapping uses rest in
the URL pattern:

http://localhost:7101/RESTSample_App-context-root/rest/11.1/Departments

To edit the servlet mapping pattern, in the Applications window, expand the
RESTWebService project and double-click the web.xml file, and then in the editor for
the web.xml file, edit the URL pattern for the REST servlet, as shown in Figure 16-27.

Figure 16-27 Editing the URL Pattern for the REST Servlet Mapping

You may also edit the context root as you want it to appear in the URL to access
the service. By default, the context root is based on the application name and may
be shortened as desired. To edit the context root, in the Applications window, right-
click the RESTWebService project and choose Project Properties, and then, in the
Project Properties dialog, click Java EE Application and edit the Java EE Context
Root as shown in Figure 16-28 and click OK.

Chapter 16
Deploying the ADF REST Resource

16-70

Figure 16-28 Editing the Default Context Root on the RESTWebService Project

What You May Need to Know About Deploying ADF REST Resources
With MDS Customization Support

If your Model project defines view object shaping definitions and the application
supports end user customizations using features of the Oracle Metadata Services
(MDS) framework, it is necessary to create a MAR profile that includes the /persdef/
name in the user directory.

This is necessary because MDS customizations define the namespace path shared by
the ADF REST shaping definitions:

<namespace path="/persdef/" metadata-store-usage="reposX"/>

In this case, the adf-config.xml file should define deploy-target="true" for the
corresponding metadata-store-usage element.

For details about how to package the customized metadata, see How to Package and
Deploy Customized Applications.

Chapter 16
Deploying the ADF REST Resource

16-71

Testing the ADF REST Resources Using Integrated
WebLogic Server

JDeveloper allows you to test an ADF REST resource deployed on the Integrated
WebLogic Server. Use the HTTP Analyzer to create an HTTP request, web browser for
GET requests, or cURL command line tool.

You use JDeveloper to deploy the RESTful web service to Integrated WebLogic Server
and then access the ADF REST resources using the target URL generated by the
deployment process. Using the generated URL, you can make requests to test the
ADF REST resources of the ADF Model project.

You can use any of the following techniques to test the deployed RESTful web service
by modifying the URL of the deployed service to return an expected payload:

• In the HTTP Analyzer in JDeveloper, using the Create HTTP Request option

• In a web browser (typically limited to GET requests)

• In the cURL command line tool from a command window

Note that cURL is a third-party tool that you can install and configure to make
REST requests using a command window.

Testing the ADF resource using the deployed RESTful web service requires
knowledge of the REST API syntax enabled by the ADF REST runtime. However,
you can use the instructions in this document to make a basic GET request to view a
resource collection.

For example, a GET request that returns all versions of all resources looks like this:

http://<server>/<context-root>/rest

For example, a GET request that returns all resources of a specific version looks like
this:

http://<server>/<context-root>/rest/<versionID>/describe

For example, a GET request that returns a specific version of a specific resource
collection looks like this:

http://<server>/<context-root>/rest/<versionID>/<resourceName>

Before you begin:

It may be helpful to have an understanding of how the ADF REST framework
supports application modules and enables service clients to access rows of data and
perform service operations. See About RESTful Web Services and ADF Business
Components.

You may also find it helpful to understand the ADF REST framework and the syntax for
making API calls using HTTP methods. See Consuming ADF RESTful Web Services.

You may also find it helpful to understand other Oracle ADF features that depend on
ADF REST resources. See Additional Functionality for RESTful Web Services.

You will need to complete these tasks:

Chapter 16
Testing the ADF REST Resources Using Integrated WebLogic Server

16-72

• Create the desired REST resource, as described in Creating ADF REST
Resources Using the Application Module.

• Deploy the ADF REST resources to Integrated WebLogic Server, as described in
How to Deploy the ADF REST Resource to Integrated WebLogic Server.

• Download the command line tool cURL when you want to use the tool to test the
RESTful web service operations against REST resources.

To test the web service using HTTP GET:

1. To test using JDeveloper's HTTP Analyzer, choose Tools - HTTP Analyzer from
the main menu, then choose Create New HTTP Request in the HTTP Analyzer
Log window and then, in the HTTP Analyzer, select the HTTP Content tab and
paste the target URL that you copied from the Log window into the URL field,
modify the URL to identify the REST resource, then choose the desired Method
and click Send Request.

Be sure to include the version number that you configured for the resource in the
URL. In this example, 11.1 is the release name version identifier used to access
the Departments resource, as shown in Figure 16-29.

Chapter 16
Testing the ADF REST Resources Using Integrated WebLogic Server

16-73

Figure 16-29 Using the HTTP Analyzer to Make a GET REST Request

Note that the HTTP Analyzer supports SOAP, standard HTTP, and REST type
requests. However, the WADL that you might normally supply to the HTTP
Analyzer to define a generic RESTful web service does not support the describe
format of ADF REST resources. Therefore when using the HTTP Analyzer to test
the deployed ADF REST resource, you must create a new HTTP type request
instead of a REST request.

2. To test using the third-party cURL command line tool, open a command prompt
and enter a cURL command for the REST resource similar to the following, where
-v is the option to see what cURL sends and -X is the request option:

curl -v -X GET http://127.0.0.1:7101/RESTDemo/rest/11.1/Departments

Be sure to include the version number that you configured for the resource in the
URL. In this example, 11.1 is the release name version identifier used to access
the Departments resource, as shown in Figure 16-30.

Chapter 16
Testing the ADF REST Resources Using Integrated WebLogic Server

16-74

Figure 16-30 Using cURL to Make a REST Request

Chapter 16
Testing the ADF REST Resources Using Integrated WebLogic Server

16-75

17
Extending Business Components
Functionality

This chapter describes techniques that you can use to incorporate custom code with
all types of ADF Business Components and to extend the ADF Business Components
framework behavior.
This chapter includes the following sections:

• About Extending Business Components Functionality

• Creating ADF Business Components Extension Classes

• Customizing Framework Behavior with Extension Classes

• Creating Generic Extension Interfaces

• Invoking Stored Procedures and Functions

• Accessing the Current Database Transaction

• Customizing Business Components Error Messages

• Creating Extended Components Using Inheritance

• Substituting Extended Components in a Delivered Application

About Extending Business Components Functionality
You can extend base classes of ADF Business Components to incorporate custom
code.

One of the powerful features of framework-based development is the ability to extend
the base framework to change a built-in feature to behave differently or to add a new
feature that can be used by all of your applications.

The base classes of the ADF Business Components framework may be extended to
incorporate custom code with all types of components in the framework and to extend
the ADF Business Components framework behavior.

When used without customization, your business component is completely defined
by its XML document and it will be fully functional without custom Java code or
even a Java class file for the component. If you have no need to extend the built-in
functionality of a component in ADF Business Components, and no need to write
any custom code to handle its built-in events, you can use the component in this
XML-only fashion. However, when you do extend base classes of the ADF Business
Components framework, you can still work with XML documents in JDeveloper.

Once you have created framework extension classes, any new business component
you create can be based on your customized framework class instead of the base one.
And, you can always update the definitions of existing components to use the new
framework extension class as well.

17-1

Additional Functionality for Extending Business Components
You may find it helpful to understand other Oracle ADF features before you start
working with the ADF Business Components framework. Following are links to other
functionality that may be of interest.

• For details about creating a reusable library to make your framework extension
layer classes easier to package, see Reusing Application Components .

• For details about using the customization features provided by Oracle Metadata
Services (MDS) to create applications that can be customized and subsequently
deployed by a customer, see Customizing Applications with MDS .

• For a quick reference to the most common code that you will typically write, use,
and override in your custom classes, see Most Commonly Used ADF Business
Components Methods.

• For API documentation related to the oracle.jbo package, see the following
Javadoc reference document:

– Java API Reference for Oracle ADF Model

Creating ADF Business Components Extension Classes
An ADF Business Components extension class augments or modifies behavior of
built-in features and also allows you to provide a generic workaround for a bug.

An ADF Business Components framework extension class is a Java class you write
that extends one of the framework's base classes to:

• Augment a built-in feature with additional, generic functionality

• Change how a built-in feature works, or even to

• Workaround a bug you encounter in a generic way

Before you begin to develop application-specific business components, Oracle
recommends that you consider creating a complete layer of framework extension
classes and set up your project-level preferences to use that layer by default. You
might not have any custom code in mind to put in these framework extension classes
initially, but this practice will help when customization becomes practical.

This way, substantial inconvenience can be avoided if you discover mid-project that all
of your entity objects, for example, require a new generic feature, augmented built-in
feature, or a generic bug workaround.

Note:

To experiment with the examples in this chapter, use the
SummitADF_Examples workspace, as described in Running the Standalone
Samples from the SummitADF_Examples Workspace. For information about
how to obtain and install the Summit ADF standalone sample applications,
see Setting Up the Summit Sample Applications for Oracle ADF.

Chapter 17
Creating ADF Business Components Extension Classes

17-2

How To Create a Framework Extension Class
When you need to add custom code to extend the base functionality of the ADF
Business Components framework, you can enable a custom Java class for any of
the key types of business components you create. You enable the generation of
custom classes for a component on the Java page of its respective overview editor
in JDeveloper. When you enable this option, JDeveloper creates a Java source file
for a custom class related to the component whose name follows a configurable
naming standard. This class, whose name is recorded in the component's XML
document, provides a place where you can write the custom Java code required by
that component.

To create a framework extension class:

1. Identify a project to contain the framework extension class.

You can create it in the same project as your business service components if
you believe it will only be used by components in that project. Alternatively, if
you believe you might like to reuse the framework extension class across multiple
Fusion web applications, create a separate model project to contain the framework
extension classes.

2. Ensure that the BC4J Runtime library is in the project's libraries list.

Use the Libraries and Classpath page of the Project Properties dialog to verify
this and to add the library if missing.

3. In the Applications window, right-click the project in which you want to create the
extension class and choose New and then Java Class.

4. In the Create Java Class dialog, specify the appropriate framework base class
from the oracle.jbo.server package in the Extends field.

Figure 17-1 illustrates what it would look like to create a custom framework
extension class named CustomAppModuleImpl in the com.yourcompany.fwkext
package to customize the functionality of the base application module
component. To quickly find the base class you're looking for, use the Browse
button next to the Extends field that launches the JDeveloper Class Browser.
Using its Search tab, you can type in part of the class name (including using * as
a wildcard) to quickly subset the list of classes to find the one you're looking for.

Chapter 17
Creating ADF Business Components Extension Classes

17-3

Figure 17-1 Creating a Framework Extension Class for an Application
Module

When you click OK, JDeveloper creates the custom framework extension class for you
in the directory of the project's source path corresponding to the package name you've
chosen.

Note:

Some ADF Business Component classes exist in both a server-side and
a remote-client version. For example, if you use the JDeveloper Class
Browser and type ApplicationModuleImpl into the Match Class Name
field on the Search tab, the list will show two ApplicationModuleImpl
classes: one in the oracle.jbo.server package and the other in the
oracle.jbo.client.remote package. When creating framework extension
classes, use the base ADF Business Components classes in the
oracle.jbo.server package.

What Happens When You Create a Framework Extension Class
After creating a new framework extension class, it will not automatically be used by
your application. You must decide which components in your project should make
use of it. The following sections describe the available approaches for basing your
business components on your own framework extension classes.

Chapter 17
Creating ADF Business Components Extension Classes

17-4

What You May Need to Know About Customizing Framework
Extension Bases Classes

To make your framework extension layer classes easier to package as a reusable
library, create them in a separate project from the projects that use them.

A common set of customized framework base classes in a package name of your
own choosing like com.yourcompany.fwkext, each importing the oracle.jbo.server.*
package, would consist of the following classes:

• public class CustomEntityImpl extends EntityImpl

• public class CustomEntityDefImpl extends EntityDefImpl

• public class CustomViewObjectImpl extends ViewObjectImpl

• public class CustomViewRowImpl extends ViewRowImpl

• public class CustomApplicationModuleImpl extends ApplicationModuleImpl

• public class CustomDBTransactionImpl extends DBTransactionImpl2

• public class CustomDatabaseTransactionFactoryImpl extends
DatabaseTransactionFactory

For details about using the custom DBTransactionImpl2 and
DatabaseTransactionFactory classes, see Configuring an Application Module to Use
a Custom Database Transaction Class.

For completeness, you may also want to create customized framework classes for the
following classes as well, note however that overriding anything in these classes would
be a fairly rare requirement.

• public class CustomViewDefImpl extends ViewDefImpl

• public class CustomEntityCache extends EntityCache

• public class CustomApplicationModuleDefImpl extends
ApplicationModuleDefImpl

How to Base a Business Component on a Framework Extension Class
You can set the base classes for any business component using the Java page of any
ADF Business Components wizard or editor.

Before you begin:

• Create the framework extension class, as described in How To Create a
Framework Extension Class.

• If you created your framework extension classes in a separate project, visit the
Dependencies page of the Project Properties dialog for the project containing
your business components and select Build Output to add the framework
extension project as a project dependency.

• If you have packaged your framework extension classes in a Java archive (JAR)
file, create a named library definition to reference its JAR file and also list that
library in the library list of the project containing your business components. To
create a library if missing, use the Manage Libraries dialog available from the

Chapter 17
Creating ADF Business Components Extension Classes

17-5

Tools > Manage Libraries main menu item. To verify or adjust the project's library
list, use the Libraries page of the Project Properties dialog.

After you ensure the framework classes are available to reference, you can create
the business component. Every ADF Business Components wizard and editor displays
the same Class Extends button on the Java page so you can use the technique to
choose your desired framework extension base class(es) both for new components or
existing ones.

There is no fixed limit on how many levels of framework extension classes you
create. For example, after creating a company-level CustomAppModuleImpl to use for
all application modules in all Fusion web applications that your company creates,
some later project team might encounter the need to further customize that framework
extension class. That team could create a SomeProjectCustomAppModuleImpl class
that extends the CustomAppModuleImpl and then include the project-specific custom
application module code in there as shown in the following example.

public class SomeProjectCustomAppModuleImpl
 extends CustomAppModuleImpl {
 /*
 * Custom application module code specific to the
 * "SomeProject" project goes here.
 */
}

Then, any application modules created as part of the implementation of this specific
project can use the SomeProjectCustomAppModuleImpl as their base class instead of
the CustomAppModuleImpl.

To create a business component based on a framework extension class:

1. In the Applications window, double-click the desired component.

2. In the overview editor, click the Java navigation tab and then click the Edit Java
options button.

3. In the Select Java Options dialog, click Classes Extends.

4. In the Override Base Classes dialog, enter the fully qualified name of the
framework base classes you wish to override. You can also use the Browse
button to use the JDeveloper Class Browser to find the classes quickly.

When you use the Class Browser to select a custom base class for the
component, the list of available classes is automatically filtered to show
only classes that are appropriate. For example, when clicking Browse in
Figure 17-2 to select an application module Object base class, the list will
only show classes available in the current project's library list which extend the
oracle.jbo.server.ApplicationModule class either directly or indirectly. If you
don't see the class you're looking for, either you extended the incorrect base class
or you have chosen the wrong component class name to override.

Chapter 17
Creating ADF Business Components Extension Classes

17-6

Figure 17-2 Specifying a Custom Base Class for a New Application Module

How to Define Framework Extension Classes for All New Components
If you decide to use a specific set of framework extension classes as a standard for a
given project, you can use the Project Properties dialog to define your preferred base
classes for each component type. Setting these preferences for base classes does not
affect any existing components in the project, but the component wizards will use the
preferences for any new components created.

To define project-level preferences for framework extension classes:

1. In the Applications window, right-click the project that will contain the extension
classes and choose Project Properties.

2. In the Project Properties dialog, expand ADF Business Components > Base
Classes and enter the fully qualified name of the base class in the Application
Module Object class name field.

For example, to indicate that any new application modules created in the project
should use the CustomAppModuleImpl class by default, enter the fully qualified
name of that class in the componentName Object class name field as shown in
Figure 17-3.

Chapter 17
Creating ADF Business Components Extension Classes

17-7

Figure 17-3 Setting Project-Level Preferences for Business Component
Base Classes

How to Define Framework Extension Classes for All New Projects
When you want to apply the same base class preferences to each new project that
you create in JDeveloper, you can define the preferences at a global level using the
Preferences dialog. Base classes that you specify at the global level will not alter your
existing projects containing business components.

To define global preferences for framework extension classes:

1. In the main menu, choose Tools and then Preferences.

2. In the Preferences dialog, expand ADF Business Components > Base Classes
in the tree.

3. On the Business Components page, enter the fully qualified name of that class in
componentName Object class name field.

The page displays the same options for specifying the preferred base classes for
each component type as shown in How to Define Framework Extension Classes
for All New Components.

What Happens When You Base a Component on a Framework
Extension Class

When a business component you create extends a custom ADF Business
Components framework extension class, JDeveloper updates its XML document to
reflect the custom class name you've chosen.

Chapter 17
Creating ADF Business Components Extension Classes

17-8

XML-Only Components
For example, assume you've created the YourService application module in the
com.yourcompany.yourapp package, with a custom application module base class of
CustomAppModuleImpl. If you have opted to leave the component as an XML-only
component with no custom Java file, its XML document (YourService.xml) will look
similear to the one shown in the following example. The value of the ComponentClass
attribute of the AppModule tag is read at runtime to identify the Java class to use to
represent the component.

<AppModule
 Name="YourService"
 ComponentClass="com.yourcompany.fwkext.CustomAppModuleImpl" >
 <!-- etc. -->
</AppModule>

Figure 17-4 illustrates how the XML-only YourService application module relates to
your custom extension class. At runtime, it uses the CustomAppModuleImpl class which
inherits its base behavior from the ApplicationModuleImpl class.

Figure 17-4 XML-Only Component Reference an Extended Framework Base
Class

Components with Custom Java Classes
If your component requires a custom Java class, as you've seen in previous
chapters you open the Java page of the component editor and check the appropriate
checkbox to enable it. For example, when you enable a custom application module
class for the YourServer application module, JDeveloper creates the appropriate
YourServiceImpl.java class. As shown in the following example, it also updates the
component's XML document to reflect the name of the custom component class.

<AppModule
 Name="YourService"
 ComponentClass="com.yourcompany.yourapp.YourServiceImpl" >
 <!-- etc. -->
</AppModule>

JDeveloper also updates the component's custom Java class to modify its extends
clause to reflect the new custom framework base class, as shown in the following
example.

Chapter 17
Creating ADF Business Components Extension Classes

17-9

package com.yourcompany.yourapp;
import com.yourcompany.fwkext.CustomAppModuleImpl;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---
public class YourServiceImpl extends CustomAppModuleImpl {
 /**This is the default constructor (do not remove) */
 public YourServiceImpl() {}
 // etc.
}

Figure 17-5 illustrates how the YourService application module with its custom
YourServiceImpl class is related to your framework extension class. At runtime,
it uses the YourServiceImpl class which inherits its base behavior from the
CustomAppModuleImpl framework extension class which, in turn, extends the base
ApplicationModuleImpl class.

Figure 17-5 Component with Custom Java Extending Customized Framework
Base Class

What You May Need to Know About Updating the Extends Clause in
Custom Component Java Files

If you have a business component with a custom Java class and later decide to base
the component on an ADF Business Components framework extension class, use the
Class Extends button in the Select Java Options dialog to change the component's
base class. You can open the dialog from the Java page of the component's overview
editor. Doing this updates the component's XML document to reflect the new base
class, and also modifies the extends clause in the component's custom Java class.

Chapter 17
Creating ADF Business Components Extension Classes

17-10

Note:

If you manually update the extends clause without using the component
editor, the component's XML document will not reflect the new inheritance
and the next time you open the editor, your manually modified extends
clause will be overwritten with what the component editor believes is the
correct component base class.

How to Package Your Framework Extension Layer in a JAR File
Use the Create Deployment Profile: JAR File dialog to create a JAR file containing
the classes in your framework extension layer. This is available in the New Gallery in
the General > Deployment Profiles category.

Give the deployment profile a name like FrameworkExtensions and click OK. By
default the JAR file will include all class files in the project. Since this is exactly what
you want, when the JAR Deployment Profile Properties dialog appears, you can just
click OK to finish.

Note:

Do not use the ADF Library JAR archive type to package your framework
extension layer. You create the ADF Library JAR file when you want to
package reusable components to share in the JDeveloper Resource Catalog.
For details about working with business components and the ADF Library
JAR archive type, see Packaging a Reusable ADF Component into an ADF
Library.

Finally, to create the JAR file, right-click the project node in the Applications window
and choose Deploy - YourProfileName - to JAR File on the context menu. A
Deployment tab appears in the JDeveloper Log window that should display feedback
like:

---- Deployment started. ---- Feb 14, 2013 1:42:39 PM
Running dependency analysis...
Wrote JAR file to ...\FrameworkExtensions\deploy\FrameworkExtensions.jar
Elapsed time for deployment: 2 seconds
---- Deployment finished. ---- Reb 14, 2013 1:42:41 PM

How to Create a Library Definition for Your Framework Extension JAR
File

JDeveloper uses named libraries as a convenient way to organize the one or more
JAR files that comprise reusable component libraries.

To define a library for your framework extensions JAR file:

1. In the main menu, choose Tools and then Manage Libraries.

Chapter 17
Creating ADF Business Components Extension Classes

17-11

2. In the Manage Libraries dialog, select the Libraries tab and then select User and
click New.

3. In the Create Library dialog that appears, name the library "Framework Extension
Layer" and select the Class Path node and click Add Entry.

4. Use the Select Path Entry dialog to select the JAR file that contains the class files
for the framework extension components, then click Select.

5. Select the Source Path node and click Add Entry.

6. Use the Select Path Entry dialog that appears to select the directory where the
source files for the framework extension classes reside, then click Select.

For example, select ..\FrameworkExtensions\src for the JAR file
FrameworkExtensions.jar.

7. Click OK.

When finished, you will see your new "Framework Extension Layer" user-defined
library, as shown in Figure 17-6. You can then add this library to the library list of
any project where you will be building business services, and your custom framework
extension classes will be available to reference as the preferred component base
classes.

Figure 17-6 New User-Defined Library for Your Framework Extensions Layer

Customizing Framework Behavior with Extension Classes
ADF Business Components framework extension code is utilized by all components of
a specific type. Use ADF Business Components APIs to access component meta-data
at runtime within the code, to write generic functionality.

One of the common tasks you'll perform in your framework extension classes is
implementing custom application functionality. Since framework extension code is
written to be used by all components of a specific type, the code you write in
these classes often needs to work with component attributes in a generic way. To
address this need, ADF Business Components provides API's that allow you to access
component metadata at runtime. It also provides the ability to associate custom
metadata properties with any component or attribute. You can write your generic
framework extension code to leverage runtime metadata and custom properties to
build generic functionality, which if necessary, only is used in the presence of certain
custom properties.

Chapter 17
Customizing Framework Behavior with Extension Classes

17-12

How to Access Runtime Metadata For View Objects and Entity
Objects

Figure 17-7 illustrates the three primary interfaces ADF Business Components
provides for accessing runtime metadata about view objects and entity objects. The
ViewObject interface extends the StructureDef interface. The class representing the
entity definition (EntityDefImpl) also implements this interface. As its name implies,
the StructureDef defines the structure and the component and provides access to
a collection of AttributeDef objects that offer runtime metadata about each attribute
in the view object row or entity row. Using an AttributeDef, you can access its
companion AttributeHints object to reference hints like the display label, format
mask, tooltip, etc.

Figure 17-7 Runtime Metadata Available for View Objects and Entity Objects

How to Implement Generic Functionality Using Runtime Metadata
In ViewObject Interface Methods for Working with the View Object's Default RowSet
you learned that for read-only view objects the findByKey() method and the
setCurrentRowWithKey builtin operation only work if you override the create()
method on the view object to call setManageRowsByKey(true). This can be a tedious
detail to remember if you create a lot of read-only view objects, so it is a great
candidate for automating in a framework extension class for view objects.

Assume a FrameworkExtensions project contains a SummitViewObjectImpl class that
is the base class for all view objects in the application. This framework extension class
for view objects extends the base ViewObjectImpl class and overrides the create()
method as shown in the following example to automate this task. After calling the
super.create() to perform the default framework functionality when a view object
instance is created at runtime, the code tests whether the view object is a read-only
view object with at least one attribute marked as a key attribute. If this is the case, it
invokes setManageRowsByKey(true).

The isReadOnlyNonEntitySQLViewWithAtLeastOneKeyAttribute() helper method
determines whether the view object is read-only by testing the combination of the
following conditions:

• isFullSql() is true

Chapter 17
Customizing Framework Behavior with Extension Classes

17-13

This method returns true if the view object's SQL query is completely specified by
the developer, as opposed to having the select list derived automatically based on
the participating entity usages.

• getEntityDefs() is null

This method returns an array of EntityDefImpl objects representing the view
object's entity usages. If it returns null, then the view object has no entity usages.

It goes on to determine whether the view object has any key attributes by looping
over the AttributeDef array returned by the getAttributeDefs() method. If the
isPrimaryKey() method returns true for any attribute definition in the list, then you
know the view object has a key.

public class SummitViewObjectImpl extends ViewObjectImpl {
 protected void create() {
 super.create();
 if (isReadOnlyNonEntitySQLViewWithAtLeastOneKeyAttribute()) {
 setManageRowsByKey(true);
 }
 }
 boolean isReadOnlyNonEntitySQLViewWithAtLeastOneKeyAttribute() {
 if (getViewDef().isFullSql() && getEntityDefs() == null) {
 for (AttributeDef attrDef : getAttributeDefs()) {
 if (attrDef.isPrimaryKey()) {
 return true;
 }
 }
 }
 return false;
 }
 // etc.
}

How to Implement Generic Functionality Driven by Custom Properties
When you create application modules, view objects, and entity objects you can select
the General navigation tab in the overview editor for these business components and
expand the Custom Properties section to define custom metadata properties for any
component. These are name/value pairs that you can use to communicate additional
declarative information about the component to the generic code that you write in
framework extension classes. You can use the getProperty() method in your code to
conditionalize generic functionality based on the presence of, or the specific value of,
one of these custom metadata properties.

For example, the SummitViewObjectImpl framework extension class overrides the
view object's insertRow() method as shown in the following example to conditionally
force a row to be inserted and to appear as the last row in the row set. If any view
object extending this framework extension class defines a custom metadata property
named InsertNewRowsAtEnd, then this generic code executes to insert new rows at the
end. If a view object does not define this property, it will have the default insertRow()
behavior.

public class SummitViewObjectImpl extends ViewObjectImpl {
 private static final String INSERT_NEW_ROWS_AT_END = "InsertNewRowsAtEnd";
 public void insertRow(Row row) {
 super.insertRow(row);
 if (getProperty(INSERT_NEW_ROWS_AT_END) != null) {
 row.removeAndRetain();

Chapter 17
Customizing Framework Behavior with Extension Classes

17-14

 last();
 next();
 getDefaultRowSet().insertRow(row);
 }
 }
 // etc.
}

In addition to defining component-level custom properties, you can also define
properties on view object attributes, entity object attributes, and domains. At runtime,
you access them using the getProperty() method on the AttributeDef interface for a
given attribute.

What You May Need to Know About the Kinds of Attributes
In addition to providing information about an attribute's name, Java type, SQL type,
and many other useful pieces of information, the AttributeDef interface contains
the getAttributeKind() method that you can use to determine the kind of attribute
it represents. This method returns a byte value corresponding to one of the public
constants in the AttributeDef interface listed in Table 17-1.

Table 17-1 Entity Object and View Object Attribute Kinds

Public AttributeDef Constant Attribute Kind Description

ATTR_PERSISTENT Persistent attribute

ATTR_TRANSIENT Transient attribute

ATTR_ENTITY_DERIVED View object attribute mapped to an entity-level transient
attribute

ATTR_SQL_DERIVED SQL-Calculated attribute

ATTR_DYNAMIC Dynamic attribute

ATTR_ASSOCIATED_ROWITERATOR Accessor attribute returning a RowSet of set of zero or
more Rows

ATTR_ASSOCIATED_ROW Accessor attribute returning a single Row

What You May Need to Know About Custom Properties
You may find it handy to programmatically set custom property values at runtime.
While the setProperty() API to perform this function is by design not available to
clients on the ViewObject, ApplicationModule, or AttributeDef interfaces in the
oracle.jbo package, code that you write inside custom Java classes of your business
components can use it.

Creating Generic Extension Interfaces
ADF Business Components allows you to create custom interfaces that all
components can implement. It helps for example, to expose methods from an
application module.

In addition to creating framework extension classes, you can create custom interfaces
that all of your components can implement by default. The client interface is very
useful for exposing methods from your application module that might be invoked

Chapter 17
Creating Generic Extension Interfaces

17-15

by UI clients, for example. This section considers an example for an application
module, however, the same functionality is possible for a custom extended view
object and view row interface as well. For information about client interfaces, see
Publishing Custom Service Methods to UI Clients and Working Programmatically with
an Application Module's Client Interface.

Assume that you have a CustomApplicationModuleImpl class that extends
ApplicationModuleImpl and that you want to expose two custom methods like this:

public void doFeatureOne(String arg);
public int anotherFeature(String arg);

Perform the following steps to create a custom extension interface
CustomApplicationModule and have your CustomApplicationModuleImpl class
implement it.

1. Create a custom interface that contains the methods you would like to expose
globally on your application module components. For this scenario, that interface
would look like this:

package devguide.advanced.customintf.fwkext;
/**
 * NOTE: This does not extend the
 * ==== oracle.jbo.ApplicationModule interface.
 */
public interface CustomApplicationModule {
 public void doFeatureOne(String arg);
 public int anotherFeature(String arg);
}

Notice that the interface does not extend the oracle.jbo.ApplicationModule
interface.

2. Modify your CustomApplicationModuleImpl application module framework
extension class to implement this new CustomApplicationModule interface.

package devguide.advanced.customintf.fwkext;
import oracle.jbo.server.ApplicationModuleImpl;
public class CustomApplicationModuleImpl
 extends ApplicationModuleImpl
 implements CustomApplicationModule {
 public void doFeatureOne(String arg) {
 System.out.println(arg);
 }
 public int anotherFeature(String arg) {
 return arg == null ? 0 : arg.length();
 }
}

3. Rebuild your project.

The ADF Business Components overview editors will only "see" your interfaces
after they have been successfully compiled.

After you have implemented your CustomApplicationModuleImpl class, you can
create a new application module which exposes the global extension interface and
is based on your custom framework extension class. For this purpose you use the
overview editor for application modules.

To create a custom application module interface:

Chapter 17
Creating Generic Extension Interfaces

17-16

1. In the Applications window, double-click the application module for which you want
to create the custom interface.

For example, you might create a new ProductModule application module which
exposes the global extension interface CustomApplicationModule and is based on
the CustomApplicationModuleImpl framework extension class.

2. In the overview editor, select the Java navigation tab and then click the Edit Java
options icon.

The Java Classes page should show an existing Java class for the application
module identified as Application Module Class.

By default, JDeveloper generates the Java class for application modules you
create. However, if you disabled this feature, click the Edit Java options button in
the Java Classes section and select Generate Application Module Class. Click
OK to add a Java class to the project from which you will create the custom
interface.

3. In the Select Java Options dialog, click Class Extends.

4. In the Override Base Classes dialog, specify the name of the framework base
class you want to override and click OK.

For example, you might select CustomApplicationModuleImpl as the base class
for the application module.

5. In the Java Classes page of the overview editor, expand the Client Interface
section and click the Edit application module client interface button.

6. In the Edit Client Interface dialog, click the Interfaces button.

7. In the Select Interfaces to Extend dialog, select the desired custom application
module interface from the available list and click OK.

For example, you might shuttle the CustomApplicationModule interface to the
Selected list to be one of the custom interfaces that clients can use with your
component.

8. In the Edit Client Interfaces dialog, ensure that at least one method appears in the
Selected list.

Note:

You need to select at least one method in the Selected list in the Edit
Client Interfaces dialog, even if it means redundantly selecting one of the
methods on the global extension interface. Any method will do in order to
get JDeveloper to generate the custom interface.

9. Click OK.

The Java Classes page displays the new custom interface for the application
module identified as Application Module Client Interface.

When you dismiss the Edit Client Interfaces dialog and return to the application
module overview editor, JDeveloper generates the application module custom
interface. For example, the custom interface ProductModule automatically extends
both the base ApplicationModule interface and your CustomApplicationModule
extension interface like this:

Chapter 17
Creating Generic Extension Interfaces

17-17

package devguide.advanced.customintf.common;
import devguide.advanced.customintf.fwkext.CustomApplicationModule;

import oracle.jbo.ApplicationModule;
// ---
// --- File generated by ADF Business Components Design Time.
// ---
public interface ProductModule
 extends CustomApplicationModule, ApplicationModule {
 void doSomethingProductRelated();
}

Once you've done this, then client code can cast your ProductModule application
module to a CustomApplicationModule interface and invoke the generic extension
methods it contains in a strongly typed way.

Note:

The basic steps are the same for exposing methods on a ViewObjectImpl
framework extension class, as well as for a ViewRowImpl extension class.

Invoking Stored Procedures and Functions
You can write custom code in the custom Java classes of ADF Business Components
to invoke database stored procedures and functions.

You can write code in the custom Java classes for your business components to
invoke database stored procedures and functions. Here you'll consider some simple
examples based on procedures and functions in a PL/SQL package; however, using
the same techniques, you also can invoke procedures and functions that are not part
of a package.

Consider the PL/SQL package shown in the following example.

create or replace package invokestoredprocpkg as
 procedure proc_with_no_args;
 procedure proc_with_three_args(n number, d date, v varchar2);
 function func_with_three_args(n number, d date, v varchar2) return varchar2;
 procedure proc_with_out_args(n number, d out date, v in out varchar2);
end invokestoredprocpkg;

The following sections explain how to invoke each of the example procedures and
functions in this package.

Note:

The example in this section refers to the
oracle.summit.model.invokingstoredprocedure package in the
SummitADF_Examples application workspace.

Chapter 17
Invoking Stored Procedures and Functions

17-18

How to Invoke Stored Procedures with No Arguments
If you need to invoke a stored procedure that takes no arguments, you can use the
executeCommand() method on the DBTransaction interface (in the oracle.jbo.server
package as shown in the following example.

// In InvokingStoredProcAppModuleImpl.java
public void callProcWithNoArgs() {
 getDBTransaction().executeCommand(
 "begin invokestoredprocpkg.proc_with_no_args; end;");
}

How to Invoke Stored Procedure with Only IN Arguments
Invoking stored procedures that accept only IN-mode arguments — which
is the default PL/SQL parameter mode if not specified — requires using
a JDBC PreparedStatement object. The DBTransaction interface provides a
createPreparedStatement() method to create this object for you in the context of the
current database connection. You could use a helper method like the one shown in the
following example to simplify the job of invoking a stored procedure of this kind using
a PreparedStatement. Importantly, by using a helper method, you can encapsulate the
code that closes the JDBC PreparedStatement after executing it. The code performs
the following basic tasks:

1. Creates a JDBC PreparedStatement for the statement passed in, wrapping it in a
PL/SQL begin...end block.

2. Loops over values for the bind variables passed in, if any.

3. Sets the value of each bind variable in the statement.

Notice that since JDBC bind variable API's use one-based numbering, the code
adds one to the zero-based for loop index variable to account for this.

4. Executes the statement.

5. Closes the statement.

protected void callStoredProcedure(String stmt, Object[] bindVars) {
 PreparedStatement st = null;
 try {
 // 1. Create a JDBC PreparedStatement for
 st = getDBTransaction().createPreparedStatement("begin "+stmt+";end;",0);
 if (bindVars != null) {
 // 2. Loop over values for the bind variables passed in, if any
 for (int z = 0; z < bindVars.length; z++) {
 // 3. Set the value of each bind variable in the statement
 st.setObject(z + 1, bindVars[z]);
 }
 }
 // 4. Execute the statement
 st.executeUpdate();
 }
 catch (SQLException e) {
 throw new JboException(e);
 }
 finally {
 if (st != null) {
 try {

Chapter 17
Invoking Stored Procedures and Functions

17-19

 // 5. Close the statement
 st.close();
 }
 catch (SQLException e) {}
 }
 }
}

With a helper method like this in place, calling the proc_with_three_args procedure
shown in the previous example would look like this:

// In StoredProcTestModuleImpl.java
public void callProcWithThreeArgs(Number n, Date d, String v) {
 callStoredProcedure("callStoredProcedure.proc_with_three_args(?,?,?)",
 new Object[]{n,d,v});
}

Notice the question marks used as JDBC bind variable placeholders for the arguments
passed to the function. JDBC also supports using named bind variables, but using
these simpler positional bind variables is also fine since the helper method is just
setting the bind variable values positionally.

How to Invoke Stored Function with Only IN Arguments
Invoking stored functions that accept only IN-mode arguments requires using a
JDBC CallableStatement object in order to access the value of the function
result after executing the statement. The DBTransaction interface provides a
createCallableStatement() method to create this object for you in the context of
the current database connection. You could use a helper method like the one shown in
the following example to simplify the job of invoking a stored function of this kind using
a CallableStatement. The helper method encapsulates both the creation and clean
up of the JDBC statement being used.

The code performs the following basic tasks:

1. Creates a JDBC CallableStatement for the statement passed in, wrapping it in a
PL/SQL begin...end block.

2. Registers the first bind variable for the function return value.

3. Loops over values for the bind variables passed in, if any.

4. Sets the value of each user-supplied bind variable in the statement.

Notice that since JDBC bind variable API's use one-based numbering, and since
the function return value is already the first bind variable in the statement, the code
adds two to the zero-based for loop index variable to account for these.

5. Executes the statement.

6. Returns the value of the first bind variable.

7. Closes the statement.

// Some constants
public static int NUMBER = Types.NUMERIC;
public static int DATE = Types.DATE;
public static int VARCHAR2 = Types.VARCHAR;

protected Object callStoredFunction(int sqlReturnType, String stmt,
 Object[] bindVars) {

Chapter 17
Invoking Stored Procedures and Functions

17-20

 CallableStatement st = null;
 try {
 // 1. Create a JDBC CallabledStatement
 st = getDBTransaction().createCallableStatement(
 "begin ? := "+stmt+";end;",0);
 // 2. Register the first bind variable for the return value
 st.registerOutParameter(1, sqlReturnType);
 if (bindVars != null) {
 // 3. Loop over values for the bind variables passed in, if any
 for (int z = 0; z < bindVars.length; z++) {
 // 4. Set the value of user-supplied bind vars in the stmt
 st.setObject(z + 2, bindVars[z]);
 }
 }
 // 5. Set the value of user-supplied bind vars in the stmt
 st.executeUpdate();
 // 6. Return the value of the first bind variable
 return st.getObject(1);
 }
 catch (SQLException e) {
 throw new JboException(e);
 }
 finally {
 if (st != null) {
 try {
 // 7. Close the statement
 st.close();
 }
 catch (SQLException e) {}
 }
 }
}

With a helper method like this in place, calling the func_with_three_args procedure
shown in the previous example would look like this:

// In InvokingStoredProcAppModuleImpl.java
public String callFuncWithThreeArgs(Number n, Date d, String v) {
 return (String)callStoredFunction(VARCHAR2,
 "invokestoredprocpkg.func_with_three_args(?,?,?)",
 new Object[]{n,d,v});
}

Notice the question marks are used as JDBC bind variable placeholders for the
arguments passed to the function. JDBC also supports using named bind variables,
but using these simpler positional bind variables is also fine since the helper method is
just setting the bind variable values positionally.

How to Call Other Types of Stored Procedures
Calling a stored procedure or function like invokestoredprocpkg.proc_with_out_args
that includes arguments of OUT or IN OUT mode requires using a CallableStatement
as in the previous section, but is a little more challenging to generalize into a helper
method. The following example illustrates the JDBC code necessary to invoke the
invokestoredprocpkg.proc_with_out_args procedure.

The code performs the following basic tasks:

1. Defines a PL/SQL block for the statement to invoke.

Chapter 17
Invoking Stored Procedures and Functions

17-21

2. Creates the CallableStatement for the PL/SQL block.

3. Registers the positions and types of the OUT parameters.

4. Sets the bind values of the IN parameters.

5. Executes the statement.

6. Creates a JavaBean to hold the multiple return values

The DateAndStringBean class contains bean properties named dateVal and
stringVal.

7. Sets the value of its dateVal property using the first OUT param.

8. Sets value of its stringVal property using second OUT param.

9. Returns the result.

10. Closes the JDBC CallableStatement.

public DateAndStringBean callProcWithOutArgs(Number n, String v) {
 CallableStatement st = null;
 try {
 // 1. Define the PL/SQL block for the statement to invoke
 String stmt = "begin invokestoredprocpkg.proc_with_out_args(?,?,?); end;";
 // 2. Create the CallableStatement for the PL/SQL block
 st = getDBTransaction().createCallableStatement(stmt,0);
 // 3. Register the positions and types of the OUT parameters
 st.registerOutParameter(2,Types.DATE);
 st.registerOutParameter(3,Types.VARCHAR);
 // 4. Set the bind values of the IN parameters
 st.setObject(1,n);
 st.setObject(3,v);
 // 5. Execute the statement
 st.executeUpdate();
 // 6. Create a bean to hold the multiple return values
 DateAndStringBean result = new DateAndStringBean();
 // 7. Set value of dateValue property using first OUT param
 result.setDateVal(new Date(st.getDate(2)));
 // 8. Set value of stringValue property using 2nd OUT param
 result.setStringVal(st.getString(3));
 // 9. Return the result
 return result;
 } catch (SQLException e) {
 throw new JboException(e);
 } finally {
 if (st != null) {
 try {
 // 10. Close the JDBC CallableStatement
 st.close();
 }
 catch (SQLException e) {}
 }
 }
}

The DateAndString bean used in the previous example is a simple JavaBean with two
bean properties like this:

package oracle.summit.model.invokingstoredprocedure;

import java.io.Serializable;

Chapter 17
Invoking Stored Procedures and Functions

17-22

import oracle.jbo.domain.Date;

public class DateAndStringBean implements Serializable {
 Date dateVal;
 String stringVal;
 public void setDateVal(Date dateVal) {this.dateVal=dateVal;}
 public Date getDateVal() {return dateVal;}
 public void setStringVal(String stringVal) {this.stringVal=stringVal;}
 public String getStringVal() {return stringVal;}
}

Note:

In order to allow the custom method to be a legal candidate for inclusion
in an application module's custom service interface (if desired), the bean
needs to implement the java.io.Serializable. interface. Since this is a
"marker" interface, this involves simply adding the implements Serializable
keywords without needing to code the implementation of any interface
methods.

Accessing the Current Database Transaction
When trying to integrate third-party code with ADF Business Components, use a
helper method to access the JDBC Connection object.

Since ADF Business Components abstracts all of the lower-level database
programming details for you, you typically won't need direct access to the JDBC
Connection object. There is no guarantee at runtime that your application will use
the exact same application module instance or JDBC Connection instance across
different web page requests. Since inadvertently holding a reference to the JDBC
Connection object in this type of pooled services environment can cause unpredictable
behavior at runtime, by design, ADF Business Components has no direct API to obtain
the JDBC Connection. This is an intentional attempt to discourage its direct use and
inadvertent abuse.

However, on occasion it may come in handy when you're trying to integrate third-party
code with ADF Business Components, so you can use a helper method like the one
shown in the following example to access the connection.

/**
 * Put this method in your XXXImpl.java class where you need
 * to access the current JDBC connection
 */
private Connection getCurrentConnection() throws SQLException {
 /* Note that we never execute this statement, so no commit really happens */
 PreparedStatement st = getDBTransaction().createPreparedStatement("commit",1);
 Connection conn = st.getConnection();
 st.close();
 return conn;
}

Chapter 17
Accessing the Current Database Transaction

17-23

Caution:

Never cache the JDBC connection obtained using the helper method from
the above example anywhere in your own code. Instead, call the helper
method for each connection to avoid inadvertently holding a reference to a
JDBC connection that might be used in a later request by another user. Due
to the pooled services nature of the Oracle ADF runtime environment, you
must not close the reference you are holding; however, do ensure that you
close your statement.

Customizing Business Components Error Messages
You can use ADF Business Components custom message bundle to provide an
alternative message string for an error code. This way, you can customize in-built
error messages.

You can customize any of the builtin ADF Business Components error messages
by providing an alternative message string for the error code in a custom message
bundle.

Note:

The example in this section refers to the
oracle.summit.model.custommessages package in the SummitADF_Examples
application application workspace.

How to Customize Base ADF Business Components Error Messages
Assume you want to customize the builtin error message:

JBO-27014: Attribute OrderFilled in SOrd is required

If you have requested the Oracle Application Development Framework (Oracle
ADF) source code from Oracle Worldwide Support, you can look in the
CSMessageBundle.java file in the oracle.jbo package to see that this error message
is related to the combination of the following lines in that message bundle file:

public class CSMessageBundle extends CheckedListResourceBundle {
 // etc.
 public static final String EXC_VAL_ATTR_MANDATORY = "27014";
 // etc.
 private static final Object[][] sMessageStrings = {
 // etc.
 {EXC_VAL_ATTR_MANDATORY, "Attribute {2} in {1} is required"},
 // etc.
 }
}

The numbered tokens {2} and {1} are error message placeholders. In this example
the {l} is replaced at runtime with the name of the entity object and the {2} with the
name of the attribute.

Chapter 17
Customizing Business Components Error Messages

17-24

To create a custom message bundle file:

1. In the Applications window, right-click the project that you want to add the
message bundle file to and choose Project Properties.

2. In the Project Properties dialog, select Business Components > Options and
click New.

3. In the Create MessageBundle Class dialog, enter a name and package for the
custom message bundle and click OK.

Note:

If the fully qualified name of your custom message bundle file does not
appear in the Custom Message Bundles to use in this Project list,
click the Remove button, then click the Add button to add the new
message bundle file created. When the custom message bundle file is
correctly registered, its fully qualified class name should appear in the
list, as shown in Figure 17-8.

Figure 17-8 Project Properties Displays Message Resource Bundles

4. In the Project Properties dialog, click OK to dismiss the Project Properties dialog
and open the new custom message bundle class in the source editor.

5. Edit the two-dimensional String array in the custom message bundle class to
contain any customized messages you'd like to use.

The followig sample llustrates a custom message bundle class that overrides the
error message string for the JBO-27014 error to inform the user that a value
must be provided for the named attribute. A second custom error message
displays when a database constraint with the name ORD_ORDER_FILLED_CK is
violated to inform the user of the expected Order Filled value. For more details

Chapter 17
Customizing Business Components Error Messages

17-25

about customizing error messages for constraints, see How to Customize Error
Messages for Database Constraint Violations.

package oracle.summit.model.custommessages;

import java.util.ListResourceBundle;

public class CustomMessageBundle extends ListResourceBundle {
 private static final Object[][] sMessageStrings
 = new String[][] {
 {"27014","You must provide a value for {2}"},
 {"S_ORD_ORDER_FILLED_CK", "The order filled value must be Y or N"}
 };

 /* Return String Identifiers and corresponding Messages in a
 * two-dimensional array.
 */
 protected Object[][] getContents() {
 return sMessageStrings;
 }
}

What Happens When You Customize Base ADF Business
Components Error Messages

After adding this message to your custom message bundle file, if you test the
application using the Oracle ADF Model Tester and try to blank out the value of a
mandatory attribute, you'll now see your custom error message instead of the default
one:

JBO-27014: You must provide a value for Order Filled

You can add as many messages to the message bundle as you want. Any message
whose error code key matches one of the built-in error message codes will be used
at runtime instead of the default one in the oracle.jbo.CSMessageBundle message
bundle.

How to Display Customize Error Messages as Nested Exceptions
When you customize ADF Business Components error messages, you will also need
to customize the display of nested error messages. To accomplish this, you must
create and register a custom error handler class.

When your business method throws an error, the ADF Model data binding layer
intercepts the error and invokes the registered custom error handler class. In general,
the error handler class is responsible for formatting the exception to be readable.
During this process, the default error handler DCErrorHandlerImpl normally skips the
top-level JboException, as this object is a wrapper over other business exceptions and
does not have any business significance.

Although skipping the top-level exception is the desired behavior in the case of
ADF Business Components errors, the default behavior will result in skipping the
custom message you set for replacing the SQLException. To avoid this situation, while
displaying each item in a nested exception, your custom error handler class must
override DCErrorHandlerImpl::skipException(Exception ex) to decide whether to
display the corresponding exception to the user in the final list or not.

Chapter 17
Customizing Business Components Error Messages

17-26

Before you begin:

It may be helpful to have an understanding of application modules. For more
information, see Customizing Business Components Error Messages.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Extending
Business Components.

You will need to complete this task:

Create the error message in the resource bundle, as described in How to
Customize Base ADF Business Components Error Messages.

To provide custom messages for SQLExceptions in your project:

1. Create an error handler class that extends the default error handler
DCErrorHandlerImpl interface provided by the ADF Model data binding layer.

2. In the error handler class, override the default error handler behavior for the
DCErrorHandlerImpl::skipException(Exception ex) method, as shown in the
following example.

This overridden method is necessary to display each item in a nested exception,
such as the ones returned for database-level error messages. You must implement
logic to check for specifics exception types and, based on the business scenario,
determine whether to display it in the list.

3. You can then register the custom error handler in your project's DataBindings.cpx
file, as described in Customizing Error Handling.

The following example shows a custom implementation of the error handler that skips
the SQLIntegrityConstraintViolationException from displaying in the error final list
displayed to the user. You can choose to skip other database-level error message
resulting from errors, such as unique constraint violations or foreign key constraint
violations.

package view;

import java.sql.SQLIntegrityConstraintViolationException;

import oracle.adf.model.BindingContext;
import oracle.adf.model.RegionBinding;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCErrorHandlerImpl;

import oracle.adf.model.binding.DCErrorMessage;

import oracle.jbo.DMLConstraintException;
import oracle.jbo.JboException;

public class CustomErrorHandler extends DCErrorHandlerImpl {

 public CustomErrorHandler() {
 super();
 }

 /**
 * If an exception is a RowValException or a TxnValException
 * and they have nested exceptions, then do not display
 * it.

Chapter 17
Customizing Business Components Error Messages

17-27

 */
 @Override
 protected boolean skipException(Exception ex) {

 if (ex instanceof DMLConstraintException) {
 return false;
 } else if (ex instanceof SQLIntegrityConstraintViolationException) {
 return true;
 }
 return super.skipException(ex);
 }
)

How to Customize Error Messages for Database Constraint Violations
If you enforce constraints in the database, you might want to provide a custom
error message in your Fusion web application to display to the end user when
one of those constraints is violated. For example, assume a constraint called
S_ORD_ORDER_FILLED_CK gets added to the application's S_ORD table using the following
DDL statement shown in the following example.

alter table s_ord add (
 constraint S_ORD_ORDER_FILLED_CK
 check (ORDER_FILLED IN ('Y', 'N'))
);

To define a custom error message in your application, you add a message to a custom
message bundle with the constraint name as the message key. The following example
shows the CustomMessageBundle.java class when it defines a message with the key
S_ORD_ORDER_FILLED_CK which matches the name of the database constraint name
defined in previous example.

package oracle.summit.model.custommessages;

import java.util.ListResourceBundle;

public class CustomMessageBundle extends ListResourceBundle {
 private static final Object[][] sMessageStrings
 = new String[][] {
 {"27014","You must provide a value for {2}"},
 {"S_ORD_ORDER_FILLED_CK", "The order filled value must be Y or N"}
 };

 protected Object[][] getContents() {
 return sMessageStrings;
 }
}

How to Implement a Custom Constraint Error Handling Routine
If the default facility for assigning a custom message to a database constraint violation
does not meet your needs, you can implement your own custom constraint error
handling routine. Doing this requires creating a custom framework extension class
for the ADF Business Components transaction class, which you then configure your
application module to use at runtime.

Chapter 17
Customizing Business Components Error Messages

17-28

Creating a Custom Database Transaction Framework Extension Class
To write a custom framework extension class for the ADF Business Components
transaction, create a class like the CustomDBTransactionImpl shown in the following
example. This example overrides the transaction object's postChanges() method to
wrap the call to super.postChanges() with a try/catch block in order to perform
custom processing on any DMLConstraintException errors that might be thrown.
In this simple example, the only custom processing being performed is a call
to ex.setExceptions(null) to clear out any nested detail exceptions that the
DMLConstraintException might have. Instead of this, you could perform any other
kind of custom exception processing required by your application, including throwing
a custom exception, provided your custom exception extends JboException directly or
indirectly.

package oracle.summit.model.custommessages;

import oracle.jbo.DMLConstraintException;
import oracle.jbo.server.DBTransactionImpl2;
import oracle.jbo.server.TransactionEvent;

public class CustomDBTransactionImpl extends DBTransactionImpl2 {
 public void postChanges(TransactionEvent te) {
 try {
 super.postChanges(te);
 }
 /*
 * Catch the DML constraint exception
 * and perform custom error handling here
 */
 catch (DMLConstraintException ex) {
 ex.setExceptions(null);
 throw ex;
 }
 }
}

Configuring an Application Module to Use a Custom Database Transaction
Class

In order for your application module to use a custom database transaction class at
runtime, you must:

1. Provide a custom implementation of the DatabaseTransactionFactory class that
overrides the create() method to return an instance of the customized transaction
class.

2. Configure the value of the TransactionFactory property to be the fully qualified
name of this custom transaction factory class.

The following example shows a custom database transaction factory class that does
this. It returns a new instance of the CustomDBTransactionImpl class when the
framework calls the create() method on the database transaction factory.

package oracle.summit.model.custommessages;

import oracle.jbo.server.DBTransactionImpl2;
import oracle.jbo.server.DatabaseTransactionFactory;

Chapter 17
Customizing Business Components Error Messages

17-29

public class CustomDatabaseTransactionFactory
 extends DatabaseTransactionFactory {
 public CustomDatabaseTransactionFactory() {
 }
 /**
 * Return an instance of our custom CustomDBTransactionImpl class
 * instead of the default implementation.
 *
 * @return instance of custom CustomDBTransactionImpl implementation.
 */
 public DBTransactionImpl2 create() {
 return new CustomDBTransactionImpl();
 }
}

To complete the job, use the Properties tab of the overview editor for
application module configurations (on the bc4j.xcfg file) to assign the value
oracle.summit.model.custommessages.CustomDatabaseTransactionFactory to the
TransactionFactory property. To display the application module configuration
overview editor, double-click the application module in the Applications window
and, in the overview editor, select the Configurations navigation tab. Then, in the
Configurations page of the overview editor, click the configuration hyperlink. In the
application module configuration overview editor, select the Properties tab and click
Add Property to select the following property from the Add Property dialog and click
OK.

• TransactionFactory

Then, in the Properties list enter the value for the TransactionFactory property:

• TransactionFactory =
oracle.summit.model.custommessages.CustomDatabaseTransactionFactory

When you run the application using this configuration, your custom transaction class
will be used.

Creating Extended Components Using Inheritance
ADF Business Components supports inheritance. It allows you to create a new
business component by extending an existing one, which inherits all properties of the
original, and thence customize the new one.

Whenever you create a new business component, if necessary, you can extend an
existing one to create a customized version of the original. As shown in Figure 17-9,
the ProductViewEx view object extends the ProductView view object to add a bind
variable named bv_ProductName and to customize the WHERE clause to reference that
bind variable.

Chapter 17
Creating Extended Components Using Inheritance

17-30

Figure 17-9 ADF Business Components Can Extend Another Component

While the figure shows a view object example, this component inheritance facility
is available for all component types. When one component extends another, the
extended component inherits all of the metadata and behavior from the parent it
extends. In the extended component, you can add new features or customize existing
features of its parent component both through metadata and Java code.

Note:

The example in this section refers to the oracle.summit.model.extend
package in the SummitADF_Examples application workspace.

How To Create a Component That Extends Another
To create an extended component, use the component wizard in the New Gallery for
the type of component you want to create. For example, to create an extended view
object, you use the Create View Object wizard. On the Name page of the wizard —
in addition to specifying a name and a package for the new component — provide the
fully qualified name of the component that you want to extend in the Extends field.
To pick the component name from a list, use the Browse button next to the Extends
field. Then, continue to create the extended component in the normal way using the
remaining panels of the wizard.

How To Extend a Component After Creation
After you define an extended component, JDeveloper lets you change the parent
component from which an extended component inherits. You can use the overview
editor for the component to accomplish this.

To change the parent component after creation:

1. In the Applications window, double-click the component.

2. In the overview editor, click the General navigation tab and then click the Refactor
object extends button next to the Extends field.

Chapter 17
Creating Extended Components Using Inheritance

17-31

3. In the Select Parent dialog, choose the desired component to extend from the
package list and click OK.

To change the extended component to not inherit from any parent, select the None
checkbox in the Select Parent dialog. This has the same effect as if you deleted the
component and re-created to accomplish this.

What Happens When You Create a Component That Extends Another
Business components that you create in an ADF Business Component data model
project are comprised of an XML document and an optional Java class. When
you create a component that extends another, JDeveloper reflects this component
inheritance in both the XML document and in any generated Java code for the
extended component.

Attributes in an Extended Component Inherited from the Parent Component
When you create an extended component, the extended component inherits the
attributes and attribute properties of the parent component. This connection is
maintained because the inherited attributes are not defined in the extended
component, they are simply passed through from the parent component. Therefore,
if after creating an extended component you subsequently modify an attribute in the
parent component, the extended component's attribute reflects that modification.

For example, say you create a ProductViewEx extended view object that extends
a ProductView view object. Then you decide to set the Display UI hint for the
ShortDesc attribute to Hide in the ProductView parent view object. When you do this,
the ShortDesc attribute is hidden in the ProductViewEx extended view object as well.

However, if you override an attribute in the extended object, this connection is severed
because the overridden attribute is redefined in the extended object. This allows you
to make a change in an extended object without impacting the parent object or any
other objects derived from that parent object. Note that the override applies only to the
selected attribute, the other inherited attributes are unaffected.

For example, say you have a ProductView view object and two extended view
objects, ProductViewEx1 and ProductViewEx2. After setting the Display UI hint for the
ShortDesc attribute to Hide in the ProductView parent view object, you decide to set it
to Show in the ProductViewEx1 extended view object. When you override ShortDesc
in ProductViewEx1 and set the Display UI hint to Show, the change is only reflected in
the ProductViewEx1 extended view object, not in the ProductViewEx2 extended view
object or the ProductView parent view object.

Attributes Added to the Extended Component's XML Descriptor
JDeveloper notes the name of the parent component in the new component's XML
document by adding an Extends attribute to the root component element. Any new
declarative features you add or any aspects of the parent component's definition
you've overridden appear in the extended component's XML document. In contrast,
metadata that is purely inherited from the parent component is not repeated for the
extended component.

The following example shows what the ProductViewEx.xml XML document for the
ProductViewEx view object looks like. Notice the Extends attribute on the ViewObject
element, the Variable element related to the additional bind variable added in the

Chapter 17
Creating Extended Components Using Inheritance

17-32

extended view object, and the overridden value of the Where attribute for the WHERE
clause that was modified to reference the theProductName bind variable.

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="ProductViewEx"
 InheritPersonalization="true"
 BindingStyle="OracleName"
 CustomQuery="false"
 ComponentClass="oracle.summit.model.extend.ProductViewExImpl"
 RowClass="oracle.summit.model.extend.ProductViewExRowImpl"
 RowInterface="oracle.summit.model.extend.common.ProductViewExRow"
 ClientRowProxyName="oracle.summit.model.extend.client.ProductViewExRowClient"
 ComponentInterface="oracle.summit.model.extend.common.ProductViewEx"
 ClientProxyName="oracle.summit.model.extend.client.ProductViewExClient"
 Extends="oracle.summit.model.extend.ProductView"
 Where="UPPER(PRODUCT_NAME) LIKE UPPER(:theProductName)||'%'"
...
 <Variable
 Name="bv_ProductName"
 Kind="where"
 Type="java.lang.String"/>
...
</ViewObject>

Java Classes Generated for an Extended Component
If you enable custom Java code for an extended component, JDeveloper automatically
generates the Java classes to extend the respective Java classes of its parent
component. In this way, the extended component can override any aspect of the
parent component's programmatic behavior as necessary. If the parent component
is an XML-only component with no custom Java class of its own, the extended
component's Java class extends whatever base Java class the parent would use at
runtime. This could be the default ADF Business Components framework class in the
oracle.jbo.server package, or could be your own framework extension class if you
have specified that in the Extends dialog of the parent component.

In addition, if the extended component is an application module or view object and
you enable client interfaces on it, JDeveloper automatically generates the extended
component's client interfaces to extend the respective client interfaces of the parent
component. If the respective client interface of the parent component does not exist,
then the extended component's client interface directly extends the appropriate base
ADF Business Components interface in the oracle.jbo package.

What You May Need to Know About Extending Components

Parent Classes and Interfaces for Extended Components
Since an extended component is a customized version of its parent, code you write
that works with the parent component's Java classes or its client interfaces works
without incident for either the parent component or any customized version of that
parent component.

For example, assume you have a base ProductView view object with custom Java
classes and client interfaces like:

Chapter 17
Creating Extended Components Using Inheritance

17-33

• class ProductViewImpl

• row class ProductViewRowImpl

• client interface ProductView

• row client interface ProductViewRow

If you create a ProductViewEx view object that extends ProductView, then you can
use the base component's classes and interface to work both with ProductView and
ProductViewEx.

The following example illustrates a test client program that works with
the ProductView, ProductViewRow, ProductViewEx, and ProductViewExRow client
interfaces. A few interesting things to note about the example are the following:

1. You can use parent ProductView interface for working with the ProductViewEx
view object that extends it.

2. Alternatively, you can cast an instance of the ProductViewEx view object to its own
more specific ProductViewEx client interface.

3. You can test if row ProductViewRow is actually an instance of the more specific
ProductViewExRow before casting it and invoking a method specific to the
ProductViewExRow interface.

package oracle.summit.model.extend;

import oracle.jbo.ApplicationModule;
import oracle.jbo.AttributeDef;
import oracle.jbo.Row;
import oracle.jbo.StructureDef;
import oracle.jbo.ValidationException;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

import oracle.summit.model.extend.common.ProductView;
import oracle.summit.model.extend.common.ProductViewEx;
import oracle.summit.model.extend.common.ProductViewExRow;
import oracle.summit.model.extend.common.ProductViewRow;

public class TestClient {
 public static void main(String[] args) {
 String amDef = "oracle.summit.model.extend.AppModule";
 String config = "AppModuleLocal";
 ApplicationModule am =
 Configuration.createRootApplicationModule(amDef,config);
 ProductView products = (ProductView)am.findViewObject("ProductView1");
 products.executeQuery();
 ProductViewRow product = (ProductViewRow)products.first();
 printAllAttributes(products,product);
 testSomethingOnProductsRow(product);
 products = (ProductView)am.findViewObject("ProductViewEx1");
 ProductViewEx productsByName = (ProductViewEx)products;
 productsByName.setbv_ProductName("bunny");
 productsByName.executeQuery();
 product = (ProductViewRow)productsByName.first();
 printAllAttributes(productsByName,product);
 testSomethingOnProductsRow(product);
 am.getTransaction().rollback();
 Configuration.releaseRootApplicationModule(am,true);

Chapter 17
Creating Extended Components Using Inheritance

17-34

 }
 private static void testSomethingOnProductsRow(ProductViewRow product) {
 try {
 if (product instanceof ProductViewExRow) {
 ProductViewExRow productByName = (ProductViewExRow)product;
 productByName.someExtraFeature("Test");
 }
 product.setName("Q");
 System.out.println("Setting the Name attribute to 'Q' succeeded.");
 }
 catch (ValidationException v) {
 System.out.println(v.getLocalizedMessage());
 }
 }
 private static void printAllAttributes(ViewObject vo, Row r) {
 String viewObjName = vo.getName();
 System.out.println("Printing attribute for a row in VO '"+
 viewObjName+"'");
 StructureDef def = r.getStructureDef();
 StringBuilder sb = new StringBuilder();
 int numAttrs = def.getAttributeCount();
 AttributeDef[] attrDefs = def.getAttributeDefs();
 for (int z = 0; z < numAttrs; z++) {
 Object value = r.getAttribute(z);
 sb.append(z > 0 ? " " : "")
 .append(attrDefs[z].getName())
 .append("=")
 .append(value == null ? "<null>" : value)
 .append(z < numAttrs - 1 ? "\n" : "");
 }
 System.out.println(sb.toString());
 }
}

Running the test client produces the following results.

Printing attribute for a row in VO 'ProductView1'
Id=10011
 Name=Bunny Boot
 ShortDesc=Beginners ski boot
 LongtextId=518
 ImageId=1001
 SuggestedWhlslPrice=150
 WhlslUnits=<null>
 SomeValue=I am from the Product Impl Class
Setting the Name attribute to 'Q' succeeded.

Note:

In this example, ProductView is an entity-based view object based on
the Product entity object. The Product entity object includes a transient
SomeValue attribute that returns the string "I am from the Product Impl class".
You'll learn more about why this was included in the example in Substituting
Extended Components in a Delivered Application.

Chapter 17
Creating Extended Components Using Inheritance

17-35

Generated Classes for Extended Components
When you create an extended component, the Class Extends button on the Java
page of the extended component's wizard is disabled. Additionally, in the application
module editor's Java page, when you click Edit java options, the Class Extends
button in the Java dialog appears disabled. This is due to the fact that JDeveloper
automatically extends the appropriate class of its parent component, so it does not
make sense to allow you to select a different class.

Business Component Types
Entity Objects
When you create an extended entity object, you can introduce new attributes,
new associations, new validators, and new custom code. You can override certain
declarative aspects of existing attributes as well as overriding any method from the
parent component's class. You may not remove from the extended entity object any
attributes that the base class defines from the extended entity object.

View Objects
When you create an extended view object, you can introduce new attributes, new
view links, new bind variables, and new custom code. You can override certain
declarative aspects of existing attributes as well as overriding any method from the
parent component's class. You may not remove from the extended view object any
attributes that the base class defines.

Application Modules
When you create an extended application module, you can introduce new view object
instances or new nested application module instance and new custom code. You can
also override any method from the parent component's class from the extended view
object.

New Attributes in an Extended Component
If you add new attributes in an extended entity object or view object, the attribute index
numbers are computed relative to the parent component. For example, consider the
ProductView view object mentioned in Parent Classes and Interfaces for Extended
Components. If you enable a custom view row class, it might have attribute index
constants defined in the ProductViewRowImpl.java class like this:

public class ProductViewRowImpl extends SummitViewRowImpl
 implements ProductViewRow {

 /**
 * AttributesEnum: generated enum for identifying attributes and accessors.
 * Do not modify.
 */
 public enum AttributesEnum {...}

 public static final int ID = AttributesEnum.Id.index();
 public static final int NAME = AttributesEnum.Name.index();
 public static final int SHORTDESC = AttributesEnum.ShortDesc.index();
 public static final int LONGTEXTID = AttributesEnum.LongtextId.index();
 public static final int IMAGEID = AttributesEnum.ImageId.index();
 public static final int SUGGESTEDWHLSLPRICE =
 AttributesEnum.SuggestedWhlslPrice.index();

Chapter 17
Creating Extended Components Using Inheritance

17-36

 public static final int WHLSLUNITS = AttributesEnum.WhlslUnits.index();
 public static final int SOMEVALUE = AttributesEnum.SomeValue.index();
 //etc.
}

When you create an extended view object like ProductViewEx, if that view object adds
an additional attribute like SomeExtraAttr and has a custom view row class enabled,
then its attribute constants will be computed relative to the maximum value of the
attribute constants in the parent component:

public class ProductViewExRowImpl extends ProductViewRowImpl
 implements ProductViewExRow {

 public static final int MAXUSAGECONST = 1;

 public enum AttributesEnum {
 SomeExtraAttr {
 public Object get(ProductViewExRowImpl obj) {
 return obj.getSomeExtraAttr();
 }

 public void put(ProductViewExRowImpl obj, Object value) {
 obj.setAttributeInternal(index(), value);
 }
 }

 private static AttributesEnum[] vals = null;
 private static int firstIndex =
 ViewDefImpl.getMaxAttrConst("oracle.summit.model.extend.ProductView");

 public abstract Object get(ProductViewExRowImpl object);

 public abstract void put(ProductViewExRowImpl object, Object value);

 public int index() {
 return AttributesEnum.firstIndex() + ordinal();
 }

 public static int firstIndex() {
 return firstIndex;
 }

 public static int count() {
 return AttributesEnum.firstIndex() +
 AttributesEnum.staticValues().length;
 }

 public static AttributesEnum[] staticValues() {
 if (vals == null) {
 vals = AttributesEnum.values();
 }
 return vals;
 }
 }
 public static final int SOMEEXTRAATTR = AttributesEnum.SomeExtraAttr.index();
...
}

Chapter 17
Creating Extended Components Using Inheritance

17-37

Substituting Extended Components in a Delivered
Application

ADF Business Components supports application customization without needing to
have access to the application’s source code. It completely negates maintenance
expenses and human errors involved in customizations.

If you deliver packaged applications that can require on-site customization for each
potential client of your solution, ADF Business Components offers a useful feature to
simplify that task.

Note:

The example in this section refers to the ExtendedProject project in the
SummitADF_Examples application workspace.

All too often, on-site application customization is performed by making direct changes
to the source code of the delivered application. This approach demonstrates its
weaknesses whenever you deliver patches or new feature releases of your original
application to your clients. Any customizations they had been applied to the base
application's source code need to be painstakingly reapplied to the patched or updated
version of the base application. Not only does this render the application customization
a costly, ongoing maintenance expense, it can introduce subtle bugs due to human
errors that occur when reapplying previous customizations to new releases.

ADF Business Components offers a superior, component-based approach to support
application customization that doesn't require changing — or even having access to
— the base application's source code. To customize your delivered application, your
customers can:

1. Import one or more packages of components from the base application into a new
project.

2. Create new components to effect the application customization, extending
appropriate parent components from the base application as necessary.

3. Define a list of global component substitutions, naming their customized
components to substitute for your base application's appropriate parent
components.

When the customer runs your delivered application with a global component
substitution list defined, their customized application components are used by your
delivered application without changing any of its code. When you deliver a patched
or updated version of the original application, their component customizations apply
to the updated version the next time they restart the application without needing to
reapply any customizations.

How To Substitute an Extended Component
To define global component substitutions, use the Project Properties dialog in the
project where you have created extended components based on the imported
components from the base application.

Chapter 17
Substituting Extended Components in a Delivered Application

17-38

Note:

You can only substitute a component in the base application with an
extended component that inherits directly or indirectly from the base one.

To substitute an extended component:

1. In the Applications window, right-click the project that you want to add the
extended component to and choose Project Properties.

2. In the Project Properties dialog, select ADF Business Components >
Substitutions and select the base application's component in the Available list.

3. In the Substitute list, select the customized, extended component to substitute .

4. Click Add.

For example, assume that you have created the view object CustomizedProduct
in a package that extends the base view object Products. To substitute the
CustomizedProducts view object for the legacy Products view object, you would
select these view objects as shown in Figure 17-10 to define the component
substitution.

Figure 17-10 Defining Business Component Substitutions

What Happens When You Substitute
When you define a list of global component substitutions in a project named
ExtendedProject, the substitution list is saved in the ExtendedProject.jpx in the root
directory of the source path.

The file will contain Substitute elements as shown in the following example, one for
each component to be substituted.

<JboProject
 Name="ExtendedProject"
 SeparateXMLFiles="true"
 PackageName="oracle.summit.model.extended" >
 <Containee
 Name="custompackage"
 FullName="oracle.summit.model.custompackage"
 ObjectType="JboPackage" >

Chapter 17
Substituting Extended Components in a Delivered Application

17-39

 </Containee>
 <Containee
 Name="extended"
 FullName="oracle.summit.model.extended"
 ObjectType="JboPackage" >
 </Containee>
 <AppContainee
 Name="Model"
 FullName="oracle.summit.model.Model"
 ObjectType="JboProject">
 <Substitutes>
 <Substitute
 OldName="oracle.summit.model.extended.ProductEx"
 NewName="oracle.summit.model.custompackage.CustomProduct" />
 </Substitutes>
</JboProject>

How to Enable the Substituted Components in the Base Application
To have the original application use the set of substituted components, define the Java
system property Factory-Substitution-List and set its value to the name of the
project whose *.jpx file contains the substitution list. The value should be just the
project name without any *.jpr or *.jpx extension.

For example, consider a simple example that customizes the Product entity object and
the ProductView view object described in Parent Classes and Interfaces for Extended
Components. To perform the customization, assume you create new project named
ExtendedProject that:

• Defines a library for the JAR file containing the base components

• Imports the package containing Product and ProductView

• Creates new extended components in a distinct package name called
CustomizeProduct and CustomizeProductView

• Defines a component substitution list to use the extended components.

When creating the extended components, assume that you:

• Added an extra view attribute named SomeExtraAttribute to the ProductViewEx
view object.

• Added a new validation rule to the CustomizedProduct entity object to enforce that
the product name cannot be the letter "Q".

• Overrode the getChecksum() method in the CustomizedProduct.java class to
return "I am the CustomizedProduct Class".

If you define the Factory-Substitution-List Java system property set to the value
ExtendsAndSubstitutes, then when you run the exact same test client class described
in Parent Classes and Interfaces for Extended Components the output of the sample
will change to reflect the use of the substituted components.

Chapter 17
Substituting Extended Components in a Delivered Application

17-40

Part III
Using the ADF Model Layer

This part describes tasks that developers can perform in the ADF Model layer of the
Fusion web application.

Part III contains the following chapters:

• Using ADF Model in a Fusion Web Application

• Using Validation in the ADF Model Layer

• Designing a Page Using Placeholder Data Controls

• Creating ADF REST Data Controls from ADF RESTful Web Services

• Consuming ADF RESTful Web Services

18
Using ADF Model in a Fusion Web
Application

This chapter describes JDeveloper tools that you use to create databound pages from
data modeled with ADF Business Components, using ADF data controls in a Fusion
web application. Specifically, it describes how an ADF application module data model
and ADF Business Components client interface methods appear at design time for
drag and drop data binding. It also describes how they are accessible at runtime by
the ADF Model data binding layer using ADF data controls.
This chapter includes the following sections:

• About Using ADF Model in a Fusion Web Application

• Additional Functionality

• Exposing Application Modules with ADF Data Controls

• Using the Data Controls Panel

• Working with the DataBindings.cpx File

• Configuring the ADF Binding Filter

• Working with Page Definition Files

• Creating ADF Data Binding EL Expressions

• Using Simple UI First Development

About Using ADF Model in a Fusion Web Application
ADF Model is build on model-view-controller design where all the components are
separated. This supports the development of Fusion Web application in a more
structured way.
ADF Model implements concepts that enable decoupling the user interface technology
from the business service implementation: data controls and declarative ADF
bindings.

ADF Model builds upon the MVC (model-view-controller) design pattern, in which
the code for the application's data model, visual interface, and application flow are
all cleanly separated. As illustrated in Figure 18-1, ADF Model provides a layer of
abstraction over the business services that typically serve as an application's model
layer. For more information on how ADF Model fits in with the MVC architecture, see
"Abstraction of the Application's Model Layer" in Understanding Oracle Application
Development Framework.

18-1

Figure 18-1 ADF Model within the ADF Architecture

About ADF Data Controls
ADF Data Controls contains the functionality of the application module and created
automatically when you create an application module.
ADF data controls abstract the implementation technology of a business service by
using standard metadata interfaces to describe the service's operations and data
collections, including information about the properties, methods, and types involved. In
an application that uses ADF Business Components, a data control is automatically
created when you create an application module, and it contains all the functionality
of the application module. Developers can then use the representation of the data
control displayed in JDeveloper's Data Controls panel to create UI components that
are automatically bound to the application module. At runtime, the ADF Model layer
reads the information describing the data controls and bindings from the appropriate
XML files and then implements the two-way connection between the user interface
and the business service.

When you create an ADF Business Component application module and add view
objects to the data model for that application module, a data control is created for you
automatically.

You can also create data controls based on different types of business services, such
as EJB session beans, plain Java objects, and web services. For information on
working with these kinds of data controls, see Using ADF Data Controls in Developing
Applications with Oracle ADF Data Controls.

Chapter 18
About Using ADF Model in a Fusion Web Application

18-2

Note:

Using the ADF Model layer to perform business service access ensures that
the view and the business service stay in sync. For example, while you could
call a method on an application module by class-casting the data control
reference to the application module instance and then calling the method
directly, doing so would bypass the model layer and it would then become
unaware of any changes.

About JSF Data Binding
You can use simple expression language to reference an object in JSF, on which the
ADF bindings are based, which makes it easy to build a dynamic data-driven user
interface..
ADF declarative bindings are based on JSF data binding. In JSF, you use a simple
expression language (called EL) to bind to the information you want to present
and/or modify. Example expressions look like #{userInfoBean.principalName} to
reference a particular user's name, or #{userInfoBean.principalName eq 'SKING'}
to evaluate whether a user's name is SKING or not. At runtime, a generic expression
evaluator returns the String and boolean value of these respective expressions,
automating access to the individual objects and their properties without requiring code.

At runtime, the value of certain JSF UI components is determined by the value
attribute. While a component can have static text as its value, typically the value
attribute will contain a binding that is an EL expression that the runtime infrastructure
evaluates to determine what data to display. For example, an outputText component
that displays the name of the currently logged-in user might have its value
attribute set to the expression #{userInfoBean.principalName}. Since any attribute
of a component can be assigned a value using an EL expression, it's easy
to build dynamic, data-driven user interfaces. For example, you could hide a
component when a user is not logged in by using a boolean-valued expression like
#{userInfoBean.prinicpalName !=null} in the UI component's rendered attribute.
If there is no principal name in the current instantiation of the userInfoBean, the
rendered attribute evaluates to false and the component disappears from the page.

About ADF Data Binding
You can design a page by dragging and dropping ADF data controls as UI component
on a page with little knowledge of code.. The code and objects that are needed to bind
the component to data control are automatically created by JDeveloper.
ADF data binding extends JSF data binding by enabling you to bind to ADF data
controls declaratively. In a typical JSF application, you would create objects like the
userInfoBean object as a managed bean. The JSF runtime manages instantiating
these beans on demand when any EL expression references them for the first time.
However, in an application that uses ADF Model, instead of binding the UI component
attributes to properties or methods on managed beans, JDeveloper automatically
binds the UI component attributes to ADF Model, which uses XML configuration files
that drive generic data binding features.

ADF declarative bindings abstract the details of accessing data from data collections in
a data control and of invoking its operations. There are three basic kinds of declarative
binding objects:

Chapter 18
About Using ADF Model in a Fusion Web Application

18-3

• Executable bindings: Included in executable bindings are iterator bindings,
which simplify the building of user interfaces that allow scrolling and paging
through collections of data and drilling-down from summary to detail information.
Executable bindings also include bindings that allow searching and nesting a
series of pages within another page, as well as bindings that cause operations to
occur immediately.

• Value bindings: Used by UI components that display data. Value bindings range
from the most basic variety that work with a simple text field to more sophisticated
list and tree bindings that support the additional needs of list, table, and tree UI
controls.

• Action bindings: Used by UI components like hyperlinks or buttons to invoke built-
in or custom operations on data collections or a data control without writing code.

The group of bindings supporting the UI components on a page are described in a
page-specific XML file called the page definition file. The ADF Model layer uses
this file at runtime to instantiate the page's bindings. These bindings are held in
a request-scoped map called the binding container, accessible during each page
request using the EL expression #{bindings}. This expression always evaluates to
the binding container for the current page.

Tip:

The current binding container is also available from AdfContext for
programmatic access.

You can design a databound user interface by dragging an item from the Data Controls
panel and dropping it on a page as a specific UI component. When you use data
controls to create a UI component, JDeveloper automatically creates the various code
and objects needed to bind the component to the data control you selected.

Additional Functionality for ADF Model Layer
ADF Model provides a different layer of configuration with different functionalities,
which are helpful in creating a Fusion Web Application with ease.
You may find it helpful to understand other Oracle ADF features before you configure
or use the ADF Model layer. Additionally, you may want to read about what you can do
with your model layer configurations. Following are links to other functionality that may
be of interest.

• ADF model and data binding rely on the business layer. In most cases, you will
be working with representations of your view objects. For more information, see
Defining SQL Queries Using View Objects. You may also want to be familiar with
advanced functionality discussed in Tuning View Object Performance.

• You can use the ADF Model layer to create your view pages. After reading this
chapter for the basic information on how data binding in the view layer works,
you should refer to the chapters in Creating a Databound Web User Interface for
information about using data binding to create specific view functionality.

• For information about how ADF Model works with the page lifecycle, see
Understanding the Fusion Page Lifecycle .

Chapter 18
Additional Functionality for ADF Model Layer

18-4

• For a complete list of configuration parameters that affect the model layer, see
DataBindings.cpx and pageNamePageDef.xml.

• For a complete list of binding properties, see Oracle ADF Binding Properties.

Exposing Application Modules with ADF Data Controls
In ADF, the application module components directly implement the interfaces to
optimize the interaction between business components and data in the application
by binding the objects for data collections. Because of the optimized interaction, the
bindings work directly with the application module instances.
When you create an application module, a data control is created for the objects that
you have added to the application module's data model.

Note:

You can also create data controls for other kinds of business services. See
Using ADF Data Controls in Developing Applications with Oracle ADF Data
Controls.

Importantly, the application module component directly implements interfaces that
binding objects expected for data collections, built-in operations, and service methods.
This optimized interaction allows the bindings to work directly with the application
module instances in its data model in the following ways:

• Iterator bindings directly bind to the default row set iterator of the default row set
of any view object instance. The row set iterator manages the current object and
current range information.

Tip:

You can also use the iterator binding to bind to a secondary named row
set that you have created. To bind to a secondary row set iterator, you
need to use the RSIName. For information about the difference between
the default row set and secondary row sets and how to create them, see
Working with Multiple Row Sets and Row Set Iterators.

• Action bindings directly bind to either:

– Custom methods on the data control client interface

– Built-in operations of the application module and view objects

Figure 18-2 illustrates examples of iterator and action bindings connecting UI
components with application module data control objects.

Chapter 18
Exposing Application Modules with ADF Data Controls

18-5

Figure 18-2 Bindings Connect UI Components to Data Controls

How an Application Module Data Control Appears in the Data Controls
Panel

You use the Data Controls panel to create databound UI components by dragging and
dropping icons from the panel onto the visual editor for a page. Figure 18-3 shows the
Data Controls panel displaying the data controls for the Summit sample application for
Oracle ADF.

Chapter 18
Exposing Application Modules with ADF Data Controls

18-6

Figure 18-3 Data Controls Panel in JDeveloper

The Data Controls panel lists all the data controls that have been created for
the application's business services and exposes all the collections (row sets of
data objects), methods, and built-in operations that are available for binding to UI
components.

Note:

If you've configured JDeveloper to expose them, any view link accessor
returns are also displayed. For more information, see Working with Multiple
Tables in a Master-Detail Hierarchy. To view the accessor methods:

1. From the JDeveloper main menu, choose Tools > Preferences.

2. Select the Data Controls Panel node.

3. Select Show Underlying Accessor Nodes to activate the checkbox.

In an application that uses ADF Business Components to define the business
services, each data control on the Data Controls panel represents a specific
application module, and exposes the view object instances in that application's data
model. The hierarchy of objects in the data control is defined by the view links
between view objects that have specifically been added to the application module
data model. For information about creating view objects and view links, see Defining
SQL Queries Using View Objects. For information about adding view links to the data
model, see How to Enable Active Master-Detail Coordination in the Data Model.

Chapter 18
Exposing Application Modules with ADF Data Controls

18-7

Tip:

You can open the overview editor for a view object by right-clicking the
associated data control object and choosing Edit Definition.

For example, BackOfficeAppModuleDataControl represents the BackOfficeAppModule
application module, which implements the part of the business service layer of
the Summit ADF sample application that is available to the company's employees.
The application module's data model contains numerous view object instances,
including several master-detail hierarchies. The view layer of the Summit ADF sample
application consists of JSF pages whose UI components are bound to data from the
view object instances in BackOfficeAppModule's data model, and to built-in operations
and service methods on its client interface.

How the Data Model and Service Methods Appear in the Data Controls Panel
Each view object instance appears as a named data collection whose name matches
the view object instance name. Figure 18-4 illustrates how the Data Controls panel
displays the view object instances in BackOfficeAppModule's data model. The Data
Controls panel reflects the master-detail hierarchies in your application module data
model by displaying detail data collections nested under their master data collection.

Figure 18-4 How the Data Model Appears in the Data Controls Panel

The Data Controls panel also displays any custom method on the application module's
client interface as a named data control custom operation whose name matches the
method name. If a method accepts arguments, they appear in a Parameters node as
operation parameters nested inside the operation's node.

How Transaction Control Operations Appear in the Data Controls Panel
The Operations folder node of the application module data control exposes two data
control built-in operations named Commit and Rollback, as shown in Figure 18-5. At
runtime, when these operations are invoked by the data binding layer, they delegate to
the commit() and rollback() methods of the Transaction object associated with the
current application module instance.

Chapter 18
Exposing Application Modules with ADF Data Controls

18-8

Note:

In an application module with many view object instances and custom
methods, you may need to scroll the Data Controls panel display to find the
Operations node that is the direct child node of the data control. This node is
the one that contains these built-in operations.

Figure 18-5 How Transaction Control Operations Appear in the Data Controls
panel

How View Objects Appear in the Data Controls Panel
The view object attributes are displayed as immediate child nodes of the
corresponding data collection, as are any custom methods you've created. Figure 18-6
shows how each view object instance in the application module's data model appears
in the Data Controls panel. If you have selected any custom methods to appear on the
view object's client interface, they appear as custom methods immediately following
the view object attributes at the same level. If the method accepts arguments, these
appear in a nested Parameters node as operation parameters.

By default, implicit view criteria are created for each attribute that is able to be
queried on a view object. They are represented by the All Queriable Attributes node
under the Named Criteria node, as shown in Figure 18-6. If any named view criteria
were created for the view object, they appear under the Named Criteria node. The
conjunction used in the query, along with the criteria items and if applicable, any
nested criteria, are shown as children. These items are used to create quick search
forms, as detailed in Creating ADF Databound Search Forms .

Chapter 18
Exposing Application Modules with ADF Data Controls

18-9

Figure 18-6 How View Objects Appear in the Data Controls Panel

As shown in Figure 18-6, the Operations node under the data collection displays
all its available built-in operations. If an operation accepts one or more parameters,
then those parameters appear in a nested Parameters node. At runtime, when one
of these data collection operations is invoked by name by the data binding layer, the
application module data control delegates the call to an appropriate method on the
ViewObject interface to handle the built-in functionality. The built-in operations fall into
three categories: operations that affect the current row, operations that refresh the data
collection, and all other operations.

Operations that affect the current row:

• Create: Creates a new row that becomes the current row, but does not insert it.

Chapter 18
Exposing Application Modules with ADF Data Controls

18-10

• CreateInsert: Creates a new row that becomes the current row, and inserts the
new blank row into the data source.

• Create with Parameters: Creates a new row taking parameter values. The
passed parameters can supply the create-time value for the following:

– A discriminator for a polymorphic view object

– A composing parent's foreign key attribute needed for the creation of a
polymorphic view object

– A composed child view object row when it is not created in the context of a
parent row

For more information about polymorphic view objects, see Defining Polymorphic
View Objects.

• Delete: Deletes the current row.

• First: Sets the current row to be the first row in the row set.

• Last: Sets the current row to be the last row in the row set.

• Next: Sets the row to be the next row in the row set.

• Next Set: Navigates forward one full set of rows.

• Previous: Sets the current row to be the previous row in the row set.

• Previous Set: Navigates backward one full set of rows.

• setCurrentRowWithKey: Tries to finds a row using the serialized string
representation of row key passed as a parameter. If found, that row becomes
the current row.

• setCurrentRowWithKeyValue: Tries to finds a row using the primary key attribute
value passed as a parameter. If found, that row becomes the current row.

For more information on using setCurrentRowWithKey and
setCurrentRowWithKeyValue, see What You May Need to Know About Setting
the Current Row in a Table.

Operations that refresh the data collection:

• Execute: Refreshes the data collection by executing or reexecuting the view
object's query, leaving any bind parameters at their current values.

• ExecuteWithParams: Refreshes the data collection by first assigning new values
to the named bind variables passed as parameters, then executing or reexecuting
the view object's query.

Note:

The executeWithParams operation appears only for view objects that have
defined one or more named bind variables at design time.

All other operations:

• removeRowWithKey: Tries to find a row using the serialized string representation of
row key passed as a parameter. If found, the row is removed.

Chapter 18
Exposing Application Modules with ADF Data Controls

18-11

• Find: Toggles "Find Mode" on and off for the data collection.

How Nested Application Modules Appear in the Data Controls Panel
If you build composite application modules by including nested instances of other
application modules, the Data Controls panel reflects this component assembly
in the tree hierarchy. For example, the Summit ADF sample application contains
the SummitAppModule application module, which contains nested instances of the
BackOfficeAppModule and CustomerSelfServiceAppModule application modules. The
nested instances are called BackOfficeAM and CustomerSelfServiceAM, respectively.
As shown in Figure 18-7, there are top-level data controls for all three application
modules, and the SummitAppModuleDataControl data control has subnodes for the
BackOfficeAM and CustomerSelfServiceAM instances.

Figure 18-7 How Nested Application Modules Appear in the Data Controls
Panel

You need to be careful to perform your drag-and-drop data binding from the
data control that corresponds to your intended usage. When you drop a data
collection from the top-level BackOfficeAppModuleDataControl data control node in
the panel, at runtime your page will use an instance of the BackOfficeAppModule
application module acquired from a pool of BackOfficeAppModule components.
When you drop a data collection from the BackOfficeAM nested instance of
SummitAppModuleDataControl, at runtime your page will use an instance of the
SummitAppModule application module acquired from a pool of SummitAppModule
components. Since different types of application module data controls will have
distinct transactions and database connections, inadvertently mixing and matching
data collections from both a nested application module and a top-level data control will
lead to unexpected runtime behavior.

How a Row Finder Appears in the Data Controls Panel
By default, any row finders that you define on a view object will appear in the Data
Controls panel. At runtime, the row finder in the named criteria gets displayed as a
search panel and displays only the attributes present in the named criteria and does
not display any operators. The row-finder mapped attributes of a view object that the
application exposes as a collection in the Data Controls panel are available in the row

Chapter 18
Exposing Application Modules with ADF Data Controls

18-12

finder lookup operations. Figure 18-8 shows the Row Finder under Named Criteria in
the Data Controls panel.

Figure 18-8 Row Finder in Data Controls Panel

When the application programmatically invokes the row finder on the view object
instance, or when the end user supplies a value for a row-finder mapped attribute
in the web service payload, the row finder locates the rows that match the values
supplied to bind variables of the view criteria. The row finder does not alter the row set
when locating matching rows.

How to Open the Data Controls Panel
The Data Controls panel is a panel within the Applications window, located at the top
left of JDeveloper. To view its contents, click the panel header to expand the panel. If
you do not see the panel header, then the Applications window may not be displaying.

To open the Applications window and Data Controls panel:

1. From the main menu, choose Window > Applications.

2. To open the Data Controls accordion panel, click the expand icon in the Data
Controls header, as shown in Figure 18-9.

Figure 18-9 Data Controls Panel in the Applications window

Chapter 18
Exposing Application Modules with ADF Data Controls

18-13

How to Refresh the Data Controls Panel
Any time changes are made to the application module or underlying services, you
need to manually refresh the data control in order to view the changes.

To refresh the Data Controls panel:

Click the Refresh icon in the header of the Data Controls panel, as shown in
Figure 18-10.

Figure 18-10 Refresh Icon on Data Controls Panel

When you click Refresh, the Data Controls panel looks for all available data controls,
and therefore will now reflect any structural changes made to the data control.

Packaging a Data Control for Use in Another Project
You can package up data controls so that they can be used in another project. For
example, one development group might be tasked with creating the services and data
controls, while another development group might be tasked with creating the UI. The
first group would create the services and data controls, and then package them up
as an Oracle ADF Library and send it to the second group. The second group can
then add the data controls to their project using the Resources window. For more
information, see Reusing Application Components .

Using the Data Controls Panel
In ADF, all the components are listed in the Data Controls Panel, which helps you
design a page easily. It lists the UI components, service methods, transaction control
operations and also the nested application modules. All the code to bind the objects
are automatically created during drag and drop operations.
You can design a databound user interface by dragging an item from the Data Controls
panel and dropping it on a page as a specific UI component. When you use data
controls to create a UI component, JDeveloper automatically creates the various code
and objects needed to bind the component to the data control you selected.

In the Data Controls panel, each data control object is represented by a specific icon.
Table 18-1 describes what each icon represents, where it appears in the Data Controls
panel hierarchy, and what components it can be used to create.

Chapter 18
Using the Data Controls Panel

18-14

Table 18-1 Data Controls Panel Icons and Object Hierarchy

Icon Name Description Used to Create...

Data
Control

Represents a data control. You cannot use the data control
itself to create UI components, but you can use any of the
child objects listed under it. Depending on how your business
services were defined, there may be more than one data
control.

Usually, there is one data control for each application module.
However, you may have additional data controls that were
created for other types of business services (for example, for
web services).

For information about creating data controls for other business
services, see Using ADF Data Controls in Developing
Applications with Oracle ADF Data Controls.

Serves as a container for
the other object and is not
used to create anything.

Collection Represents a named data collection. A data collection
represents a set of data objects (also known as a row set)
in the data model. Each object in a data collection represents a
specific structured data item (also known as a row) in the data
model. Throughout this guide, data collection and collection are
used interchangeably.

For application modules, the data collection is the default row
set contained in a view object instance. The name of the
collection matches the view object instance name.

A view link creates a master-detail relationship between two
view objects. If you explicitly add an instance of a detail view
object (resulting from a view link) to the application module
data model, the collection contained in that detail view object
appears as a child of the collection contained in the master
view object. For information about adding detail view objects
to the data model, see How to Enable Active Master-Detail
Coordination in the Data Model.

The children under a collection may be attributes of the
collection, other collections that are related by a view link,
custom methods that return a value from the collection, or built-
in operations that can be performed on the collection.

If you've configured JDeveloper to display view link accessor
returns, then those are displayed as well.

Forms, tables, graphs,
trees, range navigation
components, and master-
detail components.

For information about
using collections on a
data control to create
forms, see Creating a
Basic Databound Page.

For information about
using collections to create
tables, see Creating ADF
Databound Tables .

For information about
using master-detail
relationships to create
UI components, see
Displaying Master-Detail
Data .

For information about
creating graphs, charts,
and other visualization UI
components, see Creating
Databound Chart and
Gauge Components.

Attribute Represents a discrete data element in an object (for example,
an attribute in a row). Attributes appear as children under the
collections or method returns to which they belong.

For application module data controls, only attributes included in
the corresponding view object are shown under a collection.
If a view object joins one or more entity objects, that view
object's collection will contain selected attributes from all of the
underlying entity objects.

Label, text field, date, list
of values, and selection
list components.

For information about
using attributes to create
fields on a page, see
Creating Text Fields Using
Data Control Attributes.

For information about
creating lists, see
Creating Databound
Selection Lists and
Shuttles .

Chapter 18
Using the Data Controls Panel

18-15

Table 18-1 (Cont.) Data Controls Panel Icons and Object Hierarchy

Icon Name Description Used to Create...

Structured
Attribute

Represents a returned object that is neither a Java primitive
type (represented as an attribute) nor a collection of any type.
An example of a structured attribute would be a domain, which
is a developer-created data type used to simplify application
maintenance.

For information about domains, see Creating Custom, Validated
Data Types Using Domains.

Label, text field, date, list
of values, and selection
list components.

Method Represents an operation in the data control or one of its
exposed structures that may accept parameters, perform some
business logic and optionally return a single value, a structure,
or a collection.

In application module data controls, custom methods are
defined in the application module itself and usually return either
nothing or a single scalar value. For information about creating
custom methods, see Implementing Business Services with
Application Modules.

Command components

For methods that
accept parameters:
command components
and parameterized forms.

Method
Return

Represents an object that is returned by a custom method. The
returned object can be a single value or a collection.

If a custom method defined in an application module returns
anything at all, it is usually a single scalar value. Application
module methods do not need to return a set of data to
the view layer, because displaying the latest changes to the
data is handled by the view objects in the data model (For
information, see What Happens at Runtime: How View Objects
and Entity Objects Cooperate). However, custom methods in
non-application module data controls (for example, a data
control for a CSV file) can return collections to the view layer.

A method return appears as a child under the method that
returns it. The objects that appear as children under a method
return can be attributes of the collection, other methods that
perform actions related to the parent collection, or operations
that can be performed on the parent collection.

The same components
as for collections and
attributes.

When a single-value
method return is dropped,
the method is not invoked
automatically by the
framework. To invoke the
method, you can drop
the corresponding method
as a button. If the form
is part of a task flow,
you can create a method
activity to invoke the
method. For information
about executables, see
Executable Binding
Objects Defined in the
Page Definition File.

Operation Represents a built-in data control operation that performs
actions on the parent object. Data control operations are
located in an Operations node under collections or method
returns, and also under the root data control node. The
operations that are children of a particular collection or method
return operate on those objects only, while operations under the
data control node operate on all the objects in the data control.

If an operation requires one or more parameters, they are listed
in a Parameters node under the operation.

UI command components,
such as buttons, links, and
menus.

For information, see
Creating Command
Components Using Data
Control Operations, and
Creating a Form to Edit an
Existing Record.

Parameter Represents a parameter value that is declared by the method
or operation under which it appears. Parameters appear in the
Parameters node under a method or operation.

Label, text, and selection
list components.

Chapter 18
Using the Data Controls Panel

18-16

Table 18-1 (Cont.) Data Controls Panel Icons and Object Hierarchy

Icon Name Description Used to Create...

Named
criteria

Represents a query from which you can create a user search
form.

An All Queriable Attributes criteria is generated automatically
for each accessor collection. This criteria can be used to create
a search form where it is possible for the user to query based
on any queriable attribute in the collection.

You can create custom view criteria and add them to the Data
Controls panel. See Working with Named View Criteria.

For information on
creating search forms,
seeCreating ADF
Databound Search
Forms .

How to Use the Data Controls Panel
JDeveloper provides you with a predefined set of UI components from which to choose
for each data control item you can drop.

Before you begin:

It may be helpful to have an understanding of the different objects in the Data Controls
panel. For more information, see Using the Data Controls Panel.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in "Exposing Business Services
with Data Controls" in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To use the Data Controls panel to create UI components:

1. Select an item in the Data Controls panel and drag it onto the visual editor for your
page. For a definition of each item in the panel, see Table 18-1.

If you need to drop an operation or method onto a method activity in a task flow,
you can drag and drop it onto the activity in the task flow diagram.

Tip:

You can use the Filter icon in the Data Controls Panel header to search
for a specific item, as shown in Figure 18-11.

Chapter 18
Using the Data Controls Panel

18-17

Figure 18-11 Filtering the Data Controls Panel

2. From the ensuing context menu, choose a UI component.

When you drag an item from the Data Controls panel and drop it on a page,
JDeveloper displays a context menu of all the default UI components available for
the item you dropped. The components displayed are based on the libraries in
your project.

Figure 18-12 shows the context menu displayed when a data collection from the
Data Controls panel is dropped on a page.

Figure 18-12 Data Controls Panel Context Menu

Depending on the component you select from the context menu, JDeveloper may
display a dialog that enables you to define how you want the component to
look. For example, if you select Table/List View > ADF Table from the context
menu, the Create Table dialog launches. This dialog enables you to define which
attributes you want to display in the table columns, what the column labels
are, what types of UI components you want use for each column, and what
functionality you want to include, such as row selection or column sorting. For
more information about creating the various databound UI components, see the
chapters in Creating a Databound Web User Interface .

Chapter 18
Using the Data Controls Panel

18-18

The UI components selected by default are determined first by any UI control
hints set on the corresponding business object. If no control hints have been set,
then JDeveloper uses input components for standard forms and tables, and output
components for read-only forms and tables. Components for lists are determined
based on the type of list you chose when dropping the data control object.

Once you select a component, JDeveloper inserts the UI component on the page
in the visual editor. For example, if you drag a collection from the Data Controls
panel, choose Table/List View > ADF Table from the context menu, and select
the read-only option, a read-only table appears in the visual editor, as shown in
Figure 18-13.

Figure 18-13 Databound UI Component: ADF Read-Only Table

By default, the UI components created when you use the Data Controls panel use
ADF Faces components, are bound to attributes in the ADF data control, and may
have one or more built-in features, including:

• Databound labels

• Tooltips

• Formatting

• Basic navigation buttons

• Validation, if validation rules are attached to a particular attribute. For more
information, see Defining Validation and Business Rules Declaratively.

The default components are fully functional without any further modifications.
However, you can modify them to suit your particular needs. Each component
and its various features are discussed further in Creating a Databound Web User
Interface .

Tip:

If you want to change the type of ADF databound component used on
a page, the easiest method is to use either the visual editor or the
Structure window to delete the component, and then drag and drop a
new one from the Data Controls panel. When you use the visual editor
or the Structure window to delete a databound component from a page,
if the related binding objects in the page definition file are not referenced
by any other component, JDeveloper automatically deletes those binding
objects for you. Automatic deletion of binding objects will not happen if
you use the source editor.

Chapter 18
Using the Data Controls Panel

18-19

What Happens When You Use the Data Controls Panel
When an Oracle ADF web application is built using the JSF framework, it requires a
few additional application object definitions to render and process a page containing
ADF databound UI components. If you do not use the Data Controls panel, you will
have to manually configure these various files yourself. However, when you use the
Data Controls panel, JDeveloper does all of the following required steps:

• Creates a DataBindings.cpx file in the default package for the project (if one does
not already exist), and adds an entry for the page.

DataBindings.cpx files define the binding context for the application. The
binding context is a container object that holds a list of available data controls
and data binding objects. For more information, see What Happens at Runtime:
How the Binding Context Works. Each DataBindings.cpx file maps individual
pages to the binding definitions in the page definition file and registers the
data controls used by those pages. For more information, see Working with the
DataBindings.cpx File .

• Creates the adfm.xml file in the META-INF directory. This file creates a registry for
the DataBindings.cpx file, which allows the application to locate it at runtime so
that the binding context can be created.

• Registers the ADF binding filter in the web.xml file.

The ADF binding filter preprocesses any HTTP requests that may require access
to the binding context. For more information about the binding filter configuration,
see Configuring the ADF Binding Filter.

• Adds any necessary libraries to the view project, such as the following:

– ADF Faces Databinding Runtime

– Oracle XML Parser v2

– JDeveloper Runtime

– ADF Model Runtime

– BC4J Runtime

– Oracle JDBC

– Connection Manager

– BC4J Oracle Domains

• Adds a page definition file (if one does not already exist for the page) to the page
definition subpackage. The default subpackage is view.pageDefs in the adfmsrc
directory.

Tip:

You can set the package configuration (such as name and location) in
the ADF Model settings page of the Project Properties dialog (accessible
by double-clicking the project node).

Chapter 18
Using the Data Controls Panel

18-20

The page definition file (pageNamePageDef.xml) defines the ADF binding container
for each page in an application's view layer. The binding container provides
runtime access to all the ADF binding objects for a page. In later chapters, you
will see how the page definition files are used to define and edit the binding
object definitions for specific UI components. For more information about the page
definition file, see Working with Page Definition Files.

• Configures the page definition file, which includes adding definitions of the binding
objects referenced by the page.

• Adds ADF Faces components to the JSF page.

These prebuilt components include ADF data binding expression language (EL)
expressions that reference the binding objects in the page definition file. For more
information, see Creating ADF Data Binding EL Expressions.

• Adds all the libraries, files, and configuration elements required by ADF Faces
components. For more information, see the "ADF Faces Configuration" appendix
in Developing Web User Interfaces with Oracle ADF Faces.

What Happens at Runtime: How the Binding Context Works
When a page contains ADF bindings, at runtime the interaction with the business
services initiated from the client or controller is managed by the application through
a single object known as the binding context. The binding context is a runtime map
(named data and accessible through the EL expression #{data}) of all data controls
and page definitions within the application.

The ADF lifecycle creates the Oracle ADF binding context from the application
module, DataBindings.cpx, and page definition files, as shown in Figure 18-14. The
union of all the DataControls.dcx files and any application modules in the workspace
define the available data controls at design time, but the DataBindings.cpx file defines
what data controls are available to the application at runtime. A DataBindings.cpx file
lists all the data controls that are being used by pages in the application and maps
the binding containers, which contain the binding objects defined in the page definition
files, to web page URLs. The page definition files define the binding objects used by
the application pages. There is one page definition file for each page.

The binding context does not contain real live instances of these objects. Instead,
it is a map that contains references that become data control or binding container
objects on demand. When the object (such as a page definition) is released from
the application (for example when a task flow ends or when the binding container
or data control is released at the end of the request), data controls and binding
containers turn back into reference objects. For information about the ADF lifecycle,
see Understanding the Fusion Page Lifecycle .

Chapter 18
Using the Data Controls Panel

18-21

Figure 18-14 ADF File Binding Runtime Usage

Note:

Application module data controls also take advantage of application
module pooling. The application module data control is a thin adapter
over an application module pool that automatically acquires an available
application module instance at the beginning of the request. During the
current request, the application module data control holds a reference to the
application module instance on behalf of the current user session. At the end
of the request, the data control releases the instance back to the pool. For
more information, see What Happens at Runtime: How the Application Uses
Application Module Pooling and State Management.

Working with the DataBindings.cpx File
In ADF, you can find the metadata and the context for bindings in the
DataBindings.cpx file. Depending on how an application is created, you can find one or
multiple files. This file is available to the application at runtime.
The DataBindings.cpx files define the binding context for the entire application
and provide the metadata from which the Oracle ADF binding objects are created
at runtime. An application may have more than one DataBindings.cpx file if a
component, for example a region, was created outside of the project and then
imported. These files map individual pages to page definition files and declare which
data controls are being used by the application. At runtime, only the data controls
listed in the DataBindings.cpx files are available to the current application.

Chapter 18
Working with the DataBindings.cpx File

18-22

How JDeveloper Creates a DataBindings.cpx File
The first time you use the Data Controls panel to add a component to a page or an
operation to an activity, JDeveloper automatically creates a DataBindings.cpx file in
the default package of the view project. It resides in the adfmsrc directory for the
project. Once the DataBindings.cpx file is created, JDeveloper adds an entry for the
first page or task flow activity. Each subsequent time you use the Data Controls panel,
JDeveloper adds an entry to the DataBindings.cpx for that page or activity, if one
does not already exist.

Tip:

JDeveloper supports refactoring. That is, you can safely rename or move
many of the objects referenced in the DataBindings.cpx file, and the
references will be updated. For more information, see Refactoring a Fusion
Web Application .

What Happens When JDeveloper Creates a DataBindings.cpx File
Once JDeveloper creates a DataBindings.cpx file, you can open it in the overview
editor. Figure 18-15 shows the DataBindings.cpx file from the Summit ADF sample
application, as viewed in the overview editor.

Figure 18-15 DataBindings.cpx File in the Overview Editor

Chapter 18
Working with the DataBindings.cpx File

18-23

The following example shows the contents of the .cpx file in the Summit ADF sample
application.

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="11.1.1.56.60" id="DataBindings" SeparateXMLFiles="false"
 Package="oracle.summit.view" ClientType="Generic">
 <definitionFactories>
 <factory nameSpace="http://xmlns.oracle.com/adf/controller/binding"
 className="oracle.adf.controller.internal.binding.
 TaskFlowBindingDefFactoryImpl"/>
 <dtfactory className="oracle.adf.controller.internal.dtrt.binding.
 BindingDTObjectFactory"/>
 <factory nameSpace="http://xmlns.oracle.com/adfm/dvt"
 className="oracle.adfinternal.view.faces.dvt.model.binding.
 FacesBindingFactory"/>
 </definitionFactories>
 <pageMap>
 <page path="/index.jsf" usageId="oracle_summit_view_indexPageDef"/>
 <page path="/Customers.jsff" usageId="oracle_summit_view_CustomersPageDef"/>
 <page path="/orders/Orders.jsff"
 usageId="oracle_summit_view_OrdersPageDef"/>
 <page path="/carousel/InventoryControl.jsff" usageId="oracle_summit_view_

InventoryControlTestPageDef"/>
 </pageMap>
 <pageDefinitionUsages>
 <page id="oracle_summit_view_CustomersPageDef"
 path="oracle.summit.view.pageDefs.CustomersPageDef"/>
 <page id="oracle_summit_view_indexPageDef"
 path="oracle.summit.view.pageDefs.indexPageDef"/>
 <page id="oracle_summit_view_OrdersPageDef"
 path="oracle.summit.view.pageDefs.OrdersPageDef"/>
 <page id="oracle_summit_view_InventoryControlTestPageDef"
 path="oracle.summit.view.pageDefs.InventoryControlPageDef"/>
 </pageDefinitionUsages>
 <dataControlUsages>
 <BC4JDataControl id="BackOfficeAppModuleDataControl"
 Package="oracle.summit.model.services"
 FactoryClass="oracle.adf.model.bc4j.DataControlFactoryImpl"
 SupportsTransactions="true" SupportsFindMode="true"
 SupportsRangesize="true" SupportsResetState="true"
 SupportsSortCollection="true"
 Configuration="BackOfficeAppModuleLocal"
 syncMode="Immediate"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"/>
 </dataControlUsages>
</Application>

The Page Mappings section of the editor maps each JSF page or task flow activity
to its corresponding page definition file using an ID. The Page Definition Usages
section maps the page definition ID to the absolute path for page definition file in the
application. The Data Control Usages section identifies the data controls being used
by the binding objects defined in the page definition files. These mappings allow the
binding container to be initialized when the page is invoked.

You can use the overview editor to change the ID name for page definition files or data
controls by double-clicking the current ID name and editing inline. Doing so will update
all references in the application. Note, however, that JDeveloper updates only the ID

Chapter 18
Working with the DataBindings.cpx File

18-24

name and not the file name. Be sure that you do not change a data control name to a
reserved word. For more information, see How to Edit an Existing Application Module.

You can also click an element in the Structure window and then use the Properties
window to change property values. For more information about the elements and
attributes in the DataBindings.cpx file, see DataBindings.cpx.

Configuring the ADF Binding Filter
In ADF, when you add a databound object, JDeveloper automatically configures a filter
which is a ADF binding filter that processes any HTTP request. This filter specifies the
name of the binding objects and link filters to servlets in a web application.
The ADF binding filter is a servlet filter that is an instance of the
oracle.adf.model.servlet.ADFBindingFilter class. ADF web applications use the
ADF binding filter to preprocess any HTTP requests that may require access
to the binding context. To do this, the ADF binding filter must be aware of all
DataBindings.cpx files that exist for an application.

How JDeveloper Configures the ADF Binding Filter
The first time you add a databound component to a page using the Data Controls
panel, JDeveloper automatically configures the filter for you in the application's
web.xml file.

What Happens When JDeveloper Configures an ADF Binding Filter
To configure the binding filter, JDeveloper adds the following elements to the web.xml
file:

• An ADF binding filter class: Specifies the name of the binding filter object, which
implements the javax.servlet.Filter interface.

The ADF binding filter is defined in the web.xml file, as shown in the following
example. The filter-name element must contain the value adfBindings, and the
filter-class element must contain the fully qualified name of the binding filter
class, which is oracle.adf.model.servlet.ADFBindingFilter.

<filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
</filter>

• Filter mappings: Link filters to static resources or servlets in the web application.

At runtime, when a mapped resource is requested, a filter is invoked. Filter
mappings are defined in the web.xml file, as shown in the following example. The
filter-name element must contain the value adfBindings.

<filter-mapping>
 <filter-name>adfBindings</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

Chapter 18
Configuring the ADF Binding Filter

18-25

Tip:

If you have multiple filters defined in the web.xml file, be sure to list them
in the order in which you want them to run. At runtime, the filters are
executed in the sequence in which they appear in the web.xml file.

The adfBindings filter should appear after the Trinidad filter and before
any filters that depend on the ADF context to be initialized.

What Happens at Runtime: How the ADF Binding Filter Works
At runtime, the ADF binding filter performs the following functions:

• Overrides the character encoding when the filter is initialized with the name
specified as a filter parameter in the web.xml file. The parameter name of the
filter init-param element is encoding.

• Instantiates the ADFContext object, which is the execution context for a Fusion
web application and contains context information about ADF, including the security
context and the environment class that contains the request and response object.

• Initializes the binding context for a user's HTTP session. To do this, it first loads
the bindings as defined in the DataBindings.cpx file in the current project's
adfmsrc directory. If the application contains DataBindings.cpx files that were
imported from another project, those files are present in the application's class
path. The filter additively loads any auxiliary .cpx files found in the class path of
the application.

• Serializes incoming HTTP requests from the same browser (for example, from
frame sets) to prevent multithreading problems.

• Notifies data control instances that they are about to receive a request, allowing
them to do any necessary per-request setup.

• Notifies data control instances after the response has been sent to the client,
allowing them to do any necessary per-request cleanup.

Working with Page Definition Files
In ADF, you add UI components on a page from the Data Controls panel. Then,
JDeveloper creates a page definition file and adds definition for each binding object.
The page definition file shows in the overview editor, which allows you to view and
configure parameters, bindings and so on.
Page definition files define the binding objects that populate the data in UI components
at runtime. For every page that has ADF bindings, there must be a corresponding
page definition file that defines the binding objects used by that page. Page definition
files provide design time access to all the ADF bindings. At runtime, the binding
objects defined by a page definition file are instantiated in a binding container, which is
the runtime instance of the page definition file.

Chapter 18
Working with Page Definition Files

18-26

Note:

When multiple windows are open to the same page, ADF Controller assigns
each window its own DataControlFrame. This ensures that each window has
its own binding container.

How JDeveloper Creates a Page Definition File
The first time you use the Data Controls panel to add a component to a page,
JDeveloper automatically creates a page definition file for that page and adds
definitions for each binding object referenced by the component. For each subsequent
databound component you add to the page, JDeveloper automatically adds the
necessary binding object definitions to the page definition file.

By default, the page definition files are located in the view.PageDefs package in the
Application Sources node of the view project. If the corresponding JSF page is saved
to a directory other than the default (public_html), or to a subdirectory of the default,
then the page definition will also be saved to a package of the same name. For
example, if you save your JSF file to the public_html\myDirectory directory, the page
definition will be saved to the myDirectory package. You can change the location of
the page definition files using the ADF Model Settings page of the Project Properties
dialog.

JDeveloper names the page definition files using the following convention:

pageNamePageDef.xml

where pageName is the name of the JSF page or fragment. For example, if the JSF
page is named index.jsf, the default page definition file name is indexPageDef.xml.
If you organize your pages into subdirectories, JDeveloper prefixes the directory name
to the page definition file name using the following convention:

directoryName_pageNamePageDef.xml

Tip:

Page definitions for task flows follow the same naming convention.

To open a page definition file, you can right-click directly on the page or activity in the
visual editor, and choose Go to Page Definition, or for a JSF page, you can click the
Bindings tab of the editor and click the Page Definition File link.

Chapter 18
Working with Page Definition Files

18-27

Tip:

While JDeveloper automatically creates a page definition for a JSF page
when you create components using the Data Controls panel, or for a task
flow when you drop an item onto an activity, it does not delete the page
definition when you delete the associated JSF page or task flow activity.
(This is to allow bindings to remain when they are needed without a JSF
page, for example when using ADF Desktop Integration features.) If you no
longer want the page definition, you need to delete the page definition and
all references to it manually. Note however, that as long as a corresponding
page or activity is never called, the page definition will never be used to
create a binding context. It is therefore not imperative to remove any unused
page definition files from your application.

What Happens When JDeveloper Creates a Page Definition File
When JDeveloper creates a page definition file, it is displayed in the overview editor.
Figure 18-16 shows the page definition file in the overview editor that was created for
the Orders.jsff page fragment in the Summit ADF sample application.

Figure 18-16 Page Definition File in the Overview Editor

The overview editor contains the following tabs, which allow you to view and configure
bindings, contextual events, and parameters for a page:

• Bindings and Executables: The Bindings and Executables tab of the page
definition overview editor shows three different types of objects: bindings,
executables, and the associated data controls. (The data controls do
not display unless you select a binding or executable.) For example, in
Figure 18-16, you can see that the binding for the LastName attribute uses
the OrdersForCustomerIterator iterator to get its value. The iterator accesses

Chapter 18
Working with Page Definition Files

18-28

the OrdersForCustomer collection on the BackOfficeAppModuleDataControl data
control. See Executable Binding Objects Defined in the Page Definition File.

By default, the model binding objects are named after the data control object that
was used to create them. If a data control object is used more than once on a
page, JDeveloper adds a number to the default binding object names to keep
them unique. In Creating ADF Data Binding EL Expressions, you will see how the
ADF data binding EL expressions reference the binding object names.

Table 18-2 shows the icons for each of the binding objects, as displayed in the
overview editor (note that while parameter objects are shown in the Parameter
section of the editor, they are also considered binding objects).

Table 18-2 Binding Object Icons

Binding
Object Type

Icon Description

Parameter Represents a parameter binding object.

Bindings Represents an attribute value binding object.

Represents a list value binding object.

Represents a tree value binding object.

Represents a method action binding object

Bindings/
Executables

Represents an action binding object.

Chapter 18
Working with Page Definition Files

18-29

Table 18-2 (Cont.) Binding Object Icons

Binding
Object Type

Icon Description

Executables Represents an iterator binding object.

Represents a task flow executable binding object.

Represents a search region binding object, which is used
when named criteria objects are added to a page.

• Contextual Events: You can create contextual events that artifacts in an application
can subscribe to. For example, you can use contextual events in a customer
registration page to display the appropriate informational topic. One region in
the page might contain a customer registration task flow, and the other an
informational topic task flow. A contextual event can be passed from the customer
registration region to the informational topic region so that the informational topic
task flow can display the correct information topic. At design time, the event name,
producer region, consumer region, consumer handler, and other information is
stored in the event map section of the page definition file. See Using Contextual
Events.

• Parameters: Parameter binding objects declare the parameters that the page
evaluates at the beginning of a request. For more information about the ADF
lifecycle, see Understanding the Fusion Page Lifecycle . Such parameters can
also be passed through task flows, as described in Using Parameters in Task
Flows.

You can define the value of a parameter in the page definition file using static
values, or EL expressions that assign a static value. The following example shows
a parameter binding object that uses an EL expression to assign its value.

<parameters>
<parameter name="productId" value="${payLoad}"/>
</parameters>

Chapter 18
Working with Page Definition Files

18-30

Tip:

The EL expression for the parameter values uses the dollar sign
($) because these expressions need to be resolved eagerly, so that
the result is returned immediately, as the page is rendered. Most EL
expressions in a JSF application use the hash sign (#), which defers the
expression evaluation so that the model is prepared before the values
are accessed.

When you click an item in the overview editor (or the associated node in the Structure
window), you can use the Properties window to view and edit the attribute values for
the item, or you can edit the XML source directly by clicking the Source tab. The
following example shows XML code excerpts for the page definition file shown in
Figure 18-16.

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.59.23" id="OrdersPageDef"
 Package="oracle.summit.view.pageDefs">
 <parameters/>
 <executables>
 <variableIterator id="variables"/>
 <iterator Binds="OrdersForCustomer" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="OrdersForCustomerIterator" ChangeEventPolicy="ppr"/>
 <iterator Binds="ItemsForOrder" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="ItemsForOrderIterator" ChangeEventPolicy="ppr"/>
 <iterator Binds="InventoryForOrderItem" RangeSize="-1"
 DataControl="BackOfficeAppModuleDataControl"
 id="InventoryForOrderItemIterator" ChangeEventPolicy="ppr"/>
 </executables>
 <bindings>
 <attributeValues IterBinding="OrdersForCustomerIterator" id="Id">
 <AttrNames>
 <Item Value="Id"/>
 </AttrNames>
 </attributeValues>
.
.
.
 <list IterBinding="OrdersForCustomerIterator" StaticList="false"
 Uses="LOV_OrderFilled" id="OrderFilled" DTSupportsMRU="false"/>
 <attributeValues IterBinding="OrdersForCustomerIterator" id="LastName">
 <AttrNames>
 <Item Value="LastName"/>
 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="OrdersForCustomerIterator" id="Name">
 <AttrNames>
 <Item Value="Name"/>
 </AttrNames>
 </attributeValues>
 <tree IterBinding="ItemsForOrderIterator" id="ItemsForOrder">
 <nodeDefinition DefName="oracle.summit.model.views.ItemVO"
 Name="ItemsForOrder0">
 <AttrNames>
 <Item Value="ProductId"/>

Chapter 18
Working with Page Definition Files

18-31

 <Item Value="Name"/>
 <Item Value="Price"/>
 <Item Value="Quantity"/>
 <Item Value="ItemTotal"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
.
.
.
 </bindings>
</pageDefinition>

In later chapters, you will see how the page definition file is used to define and edit the
bindings for specific UI components. For a description of all the possible elements and
attributes in the page definition file, see pageNamePageDef.xml.

Control Binding Objects Defined in the Page Definition File
There are three types of binding objects used to bind UI components to objects on the
data control:

• Value: Displays data in UI components by referencing an iterator binding. Each
discrete UI component on a page that will display data from the data control is
bound to a value binding object. Types of value binding objects include:

– Attribute Value: Binds text fields to a specific attribute in an object (also
referred to as an attribute binding object.)

– List: Binds the list items to all values of an attribute in a data collection.

– Tree: Binds an entire table to a data collection and can also bind the root node
of a tree to a data collection.

– Button (boolean): Binds a checkbox to a boolean value for an attribute.

– Graph: Binds a graph directly to the source data.

• Method Action: Binds command components, such as buttons or links, to custom
methods on the data control. A method action binding object encapsulates the
details about how to invoke a method and what parameters (if any) the method
expects.

• Action: Binds command components, such as buttons or links, to built-in data
control operations (such as, Commit or Rollback) or to built-in collection-level
operations (such as, Create, Delete, Next, or Previous).

The following example shows an excerpt from a sample bindings element. Among
other things, the element defines a tree binding for a table, several attribute bindings
for text fields, an action binding for the CreateInsert built-in operation, and a list
binding for a selectOneChoice component.

<bindings>
.
.
.
 <tree IterBinding="ItemsForOrderIterator" id="ItemsForOrder">
 <nodeDefinition DefName="oracle.summit.model.views.ItemVO"
 Name="ItemsForOrder0">
 <AttrNames>
 <Item Value="ProductId"/>
 <Item Value="Name"/>

Chapter 18
Working with Page Definition Files

18-32

 <Item Value="Price"/>
 <Item Value="Quantity"/>
 <Item Value="ItemTotal"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
 <attributeValues IterBinding="ItemsForOrderIterator" id="ShortDesc">
 <AttrNames>
 <Item Value="ShortDesc"/>
 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="ItemsForOrderIterator" id="ImageNameFromDB"
 ChangeEventPolicy="ppr">
 <AttrNames>
 <Item Value="ImageNameFromDB"/>
 </AttrNames>
 </attributeValues>
.
.
.
 <action IterBinding="ItemsForOrderIterator" id="CreateInsert"
 RequiresUpdateModel="true" Action="createInsertRow"/>
 <list IterBinding="OrdersForCustomerIterator" StaticList="false"
 Uses="LOV_PaymentTypeId" id="PaymentType" DTSupportsMRU="true"/>
</bindings>

In the example, the tree element defines the bindings for the ItemsForOrder table.
The AttrNames element is used to define the columns for which values will be
displayed. The IterBinding attribute references the iterator binding that manages
the data to be displayed in the table. For more information, see Executable Binding
Objects Defined in the Page Definition File and Iterator and Value Bindings for Tables.

The attributeValues elements define the value bindings for text fields on the page. In
the example, the ShortDesc attribute binding will display the value of ShortDesc, which
is defined in the AttrNames element. The IterBinding attribute references the iterator
binding that manages the data to be displayed in the text field. For more information,
see What Happens When You Create a Text Field .

The binding object defined in the action element encapsulates the information needed
to invoke the built-in CreateInsert operation on the ItemsForOrder collection. The
value of true in the RequiresUpdateModel attribute specifies that the model layer
needs to be updated before the operation is executed. For more information, see What
Happens When You Create Command Components Using Operations.

If this operation also raised a contextual event, an event definition would also appear.
If the page contained bindings that consumed an event, the event mapping would
appear. For more information, see Using Contextual Events.

The PaymentType element defines the list binding used to display the list of payment
type codes by using the LOV_PaymentTypeId LOV. For more information about creating
lists using LOVs on view objects, see Creating Databound Selection Lists and
Shuttles .

Executable Binding Objects Defined in the Page Definition File
There are the following types of executable binding objects:

• Iterator: Binds to an iterator that iterates over view object collections. There is one
iterator binding for each collection used on the page. All of the value bindings on

Chapter 18
Working with Page Definition Files

18-33

the page must refer to an iterator binding in order for the component values to be
populated with data at runtime.

When you drop a collection or an attribute of a collection on the page, an iterator
binding is automatically added as an executable. Iterator binding objects bind to
an underlying ADF RowSetIterator object, which manages the current object and
current range information. The iterator binding exposes the current object and
range state to the other binding objects used by the page.

By default, iterator bindings are configured so that any submitted data changes are
cached until the data is committed back to the data source. When a data change
is submitted, any components on the page whose bindings are associated with the
iterator are refreshed to show the changed data. For more information, see What
You May Need to Know About Partial Page Rendering and Iterator Bindings.

The iterator range represents the current set of objects to be displayed on the
page. The maximum number of objects in the current range is defined in the
rangeSize attribute of the iterator. For example, if a collection in the data control
contains products and the iterator range size is 25, the first 25 products in the
collection are displayed on the page. If the user scrolls down, the next set of 25 is
displayed, and so on. If the user scrolls up, the previous set of 25 is displayed. If
your view object uses range paging, then you can configure the iterator binding to
return a set of ranges at one time. For more information, see Using Range Paging
to Efficiently Scroll Through Large Result Sets.

Note:

If you have two pages each with an iterator binding bound to the iterator
on the same view object (which you will if you drop the same collection,
for example, on two different pages), then you should ensure that the
rangeSize attribute is the same for both pages' iterator bindings. If not,
the page with a smaller range size may cause the iterator to reexecute,
causing unexpected results on the other page.

• Method Iterator: Binds to an iterator that iterates over the collections returned by
custom methods in the data control.

A method iterator binding is always related to a method action binding object. The
method action binding encapsulates the details about how to invoke the method
and what parameters (if any) the method is expecting. The method action binding
is itself bound to the method iterator, which provides the data.

You will see method iterator executable binding objects only if you drop a method
return collection or an attribute of a method return collection from a custom
method on the data control. If you are using only application module data controls,
you will see only iterator binding objects.

• Variable Iterator: Binds to an iterator that exposes all the variables in the binding
container to the other bindings. While there is an iterator binding for each
collection, there is only one variable iterator binding for all variables used on the
page. (The variable iterator is like an iterator pointing to a collection that contains
only one data object whose attributes are the binding container variables.)

Page variables are local to the binding container and exist only while the binding
container object exists. When you use a data control method (or an operation)
that requires a parameter that is to be collected from the page, JDeveloper

Chapter 18
Working with Page Definition Files

18-34

automatically defines a variable for the parameter in the page definition file.
Attribute bindings can reference the page variables.

A variable iterator can contain one of two types of variables: variable and
variableUsage. A variable type variable is a simple value holder, while a
variableUsage type variable is a value holder that is related to a view object's
named bind parameter. Defining a variable as a variableUsage type allows it to
inherit the default value and UI control hints from the view object named bind
variable to which it is bound.

• Page: Binds to the template's page definition file (if a template is used). For more
information about how this works with templates, see Using Page Templates.

Note:

You can also use the page element to bind to another page definition
file. However, at runtime, only the current incoming page's (or if the
rendered page is different from the incoming, the rendered page's)
binding container is automatically prepared by the framework during
the current request. Therefore, to successfully access a bound value in
another page from the current page, you must programmatically prepare
that page's binding container in the current request (for example, using
a backing bean). Otherwise, the bound values in that page may not be
available or valid in the current request.

• Search Region: Binds named criteria to the iterator, so that the search can be
executed.

• Task Flow: Instantiates the binding container for a region's task flow.

• Multi Task Flow: Instantiates the binding container for a region's task flow from
an array of task flows. This is useful when you have a page that contains an
unknown number of regions, such as a panelTabbed component where each tab is
a region, and users can add and delete tabs at runtime. For more information, see
Configuring a Page To Render an Unknown Number of Regions.

At runtime, executable bindings are refreshed based on the value of their
Refresh attribute. Refreshing an iterator binding reconnects it with its underlying
RowSetIterator object. Before refreshing any bindings, the ADF runtime evaluates
any Refresh and RefreshCondition attributes specified in the executables. The
Refresh attribute specifies the ADF lifecycle phase within which the executable should
be invoked. The RefreshCondition attribute specifies the conditions under which the
executable should be invoked. You can specify the RefreshCondition value using a
boolean EL expression. If you leave the RefreshCondition attribute blank, it evaluates
to true.

By default, the Refresh value is set to deferred. This means the binding will not be
executed unless its value is accessed (for example by an EL expression on a JSF
page). Once called, it will not reexecute unless any parameter values for the binding
have changed, or if the binding itself has changed.

For more information about how bindings are refreshed and how to set the Refresh
and RefreshCondition attributes, see About the JSF and ADF Page Lifecycles.

The following example illustrates executable binding objects from the Summit ADF
sample application.

Chapter 18
Working with Page Definition Files

18-35

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="OrdersForCustomer" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="OrdersForCustomerIterator" ChangeEventPolicy="ppr"/>
 <iterator Binds="ItemsForOrder" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="ItemsForOrderIterator" ChangeEventPolicy="ppr"/>
 <iterator Binds="InventoryForOrderItem" RangeSize="-1"
 DataControl="BackOfficeAppModuleDataControl"
 id="InventoryForOrderItemIterator" ChangeEventPolicy="ppr"/>
</executables>

In the example, the iterator binding named OrdersForCustomerIterator was created
by dropping the OrdersForCustomer collection on the page as an ADF form.
The iterator binding named ItemsForOrderIterator was created by dropping the
ItemsForOrder collection as a table. The InventoryForOrderItemIterator iterator
binding was created by dropping the InventoryForOrderItem collection as a graph.

The OrdersForCustomer collection has a master-detail relationship with the
ItemsForOrder collection, so the two iterators are automatically synchronized. For
more information, see What Happens at Runtime: ADF Iterator for Master-Detail
Tables and Forms.

The Binds attribute of the iterator element defines the collection the iterator will
iterate over. The RangeSize attribute defines the number of objects the iterator is to
display on the page at one time. A RangeSize value of -1 causes the iterator to display
all the objects from the collection.

Tip:

Normally, an iterator binding's default range size is 25. However, when an
iterator binding is created from the Edit List Binding dialog, the range size
defaults to -1 so that all choices display in the list, not just the first 25.

Performance Tip:

When you want to reduce the number of roundtrips the iterator requires to
fetch the data objects from the view object in the ADF Business Components
layer, you can set the rangeSize attribute to -1, and the objects will be
fetched in a single round trip to the server, rather than in multiple trips as the
user navigates through the objects.

Creating ADF Data Binding EL Expressions
In ADF, when you create a component, JDeveloper creates data binding expressions
for every component. You can either edit these expressions or create your own
expression to bind the component by using the Expression Builder.
To display data from the data model, web page UI components are bound to binding
objects using JSF Expression Language (EL) expressions. These EL expressions
reference a specific binding object in a binding container. At runtime, the JSF runtime

Chapter 18
Creating ADF Data Binding EL Expressions

18-36

evaluates an EL expression and pulls the value from the binding object to populate
the component with data when the page is displayed. If the user updates data in the
UI component, the JSF runtime pushes the value back into the corresponding binding
object based on the same EL expression.

Tip:

There may be cases when you need to use EL expressions within managed
beans. For information on working with EL expressions within managed
beans, see the "Creating EL Expressions" section in Developing Web User
Interfaces with Oracle ADF Faces.

How to Create an ADF Data Binding EL Expression
When you use the Data Controls panel to create a component, the ADF data binding
expressions are created for you. The expressions are added to every component
attribute that will either display data from or reference properties of a binding object.
Each prebuilt expression references the appropriate binding objects defined in the
page definition file. You can edit these binding expressions or create your own, as
long as you adhere to the basic ADF binding expression syntax. ADF data binding
expressions can be added to any component attribute that you want to populate with
data from a binding object.

In JSF pages, a typical ADF data binding EL expression uses the following syntax to
reference any of the different types of binding objects in the binding container:

#{bindings.BindingObject.propertyName}

where:

• bindings is a variable that identifies that the binding object being referenced by
the expression is located in the binding container of the current page. All ADF data
binding EL expressions must start with the bindings variable.

• BindingObject is the ID, or for attributes the name, of the binding object as it is
defined in the page definition file. The binding objectID or name is unique to that
page definition file. An EL expression can reference any binding object in the page
definition file, including parameters, executables, or value bindings.

• propertyName is a variable that determines the default display characteristics
of each databound UI component and sets properties for the binding object at
runtime. There are different binding properties for each type of binding object.
For more information about binding properties, see What You May Need to Know
About ADF Binding Properties.

For example, in the following expression that might appear on a JSF page:

#{bindings.ProductName.inputValue}

the bindings variable references a bound value in the current page's binding
container. The binding object being referenced is ProductName, which is an attribute
binding object. The binding property is inputValue, which returns the value of the first
ProductName attribute.

Chapter 18
Creating ADF Data Binding EL Expressions

18-37

Tip:

While the binding expressions in the page definition file can use either a
dollar sign ($) or hash sign (#) prefix, the EL expressions in JSF pages can
only use the hash sign (#) prefix.

As stated previously, when you use the Data Controls panel to create UI components,
these expressions are built for you. However, you can also manually create them if
you need to. The JDeveloper Expression Builder is a dialog that helps you build EL
expressions by providing lists of binding objects defined in the page definition files, as
well as other valid objects to which a UI component may be bound. It is particularly
useful when creating or editing ADF databound expressions because it provides a
hierarchical list of ADF binding objects and their most commonly used properties. For
information about binding properties, see What You May Need to Know About ADF
Binding Properties.

Opening the Expression Builder from the Properties Window
You can select an item in the visual editor, and then create EL expressions for specific
attributes using the Properties window.

To open the Expression Builder from the Properties window:

1. Select a UI component in the Structure window or the visual editor.

2. In the Properties window, hover the mouse over the property and click the icon
that appears to the right of the property, as shown in Figure 18-17.

Figure 18-17 Icon for Property Menu

3. In the popup menu, choose Expression Builder (or Method Expression Builder)
as shown in Figure 18-18.

Chapter 18
Creating ADF Data Binding EL Expressions

18-38

Figure 18-18 Property Menu

Using the Expression Builder
Once the Expression Builder is open, you can use it to create EL expressions.

Before you begin:

It may be helpful to have an understanding of how to create EL expressions when
using the ADF Model layer. SeeCreating ADF Data Binding EL Expressions.

To use the Expression Builder:

1. Open the Expression Builder dialog as shown in Opening the Expression Builder
from the Properties Window.

2. Use the Expression Builder to edit or create ADF binding expressions using the
following features:

• Use the Variables tree to select items that you want to include in the binding
expression. The tree contains a hierarchical representation of the binding
objects. Each icon in the tree represents various types of binding objects that
you can use in an expression (see Table 18-3 for a description of each icon).

To narrow down the tree, you can either use the dropdown filter or enter
search criteria in the search field. Double-click an item in the tree to move it to
the Expression box.

• Use the operator buttons to add logical or mathematical operators to the
expression.

Tip:

You can also type the expression directly in the Expression box.

Chapter 18
Creating ADF Data Binding EL Expressions

18-39

Table 18-3 Icons Under the ADF Bindings Node of the Expression Builder

Icon Description

Represents the bindings container variable, which references the binding
container of the current page. Opening the bindings node exposes all the
binding objects for the current page.

Represents the data binding variable, which references the entire binding
context (created from all the .cpx files in the application). Opening the
data node exposes all the page definition files in the application.

Represents an action binding object. Opening a node that uses this icon
exposes a list of valid action binding properties.

Represents an iterator binding object. Opening a node that uses this icon
exposes a list of valid iterator binding properties.

Represents an attribute binding object. Opening a node that uses this icon
exposes a list of valid attribute binding properties.

Represents a list binding object. Opening a node that uses this icon
exposes a list of valid list binding properties.

Represents a table or tree binding object. Opening a node that uses this
icon exposes a list of valid table and tree binding properties.

Represents an ADF binding object property. For more information about
ADF properties, see What You May Need to Know About ADF Binding
Properties.

Chapter 18
Creating ADF Data Binding EL Expressions

18-40

Table 18-3 (Cont.) Icons Under the ADF Bindings Node of the Expression
Builder

Icon Description

Represents a parameter binding object.

Represents a bean class.

Represents a method.

What You May Need to Know About ADF Binding Properties
When you create a databound component using the Expression Builder, the EL
expression might reference specific ADF binding properties. At runtime, these binding
properties can define such things as the default display characteristics of a databound
UI component or specific parameters for iterator bindings. The ADF binding properties
are defined by Oracle APIs. For a full list of the available properties for each binding
type, see Oracle ADF Binding Properties.

Values assigned to certain properties are defined in the page definition file. For
example, iterator bindings have a property called RangeSize, which specifies the
number of rows the iterator should display at one time. The value assigned to
RangeSize is specified in the page definition file, as shown in the following example.

<iterator Binds="ItemsForOrder" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="ItemsForOrderIterator" ChangeEventPolicy="ppr"/>

Using Simple UI First Development
In ADF, though you can use the Data Controls panel to design the page and bind
objects, when your page uses declarative components, first add the UI components
and then add the bindings, which can be reused as ADF Faces components.
While the Data Controls panel enables you to design and create bound components
in a single drag-and-drop action, in some cases, it may be preferable to create the
basic UI components first and add the bindings later. For example, if your page will
use declarative components, you will first need to drop the declarative component,
and then bind it to the correct ADF control. Declarative components are reusable,
composite UI components that are made up of other ADF Faces components. Once
imported into a project, declarative components can be dropped onto a page from the

Chapter 18
Using Simple UI First Development

18-41

Components window, similar to standard ADF Faces components. While the entire
declarative component cannot use ADF data binding, you can use ADF data binding
on the individual components that make up the declarative component, once the
declarative component is dropped on the page. For more information about declarative
components, see the "Using Declarative Components" section of Developing Web
User Interfaces with Oracle ADF Faces.

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as using
developed data controls. For more information, see Designing a Page Using
Placeholder Data Controls .

When designing web pages, keep in mind that ADF bindings can be added only to
certain ADF Faces tags or their equivalent JSF HTML tags. Table 18-4 lists the ADF
Faces and JSF tags to which you can later add ADF bindings.

Tip:

To enable the use of JSF Reference Implementation UI component tags
with ADF bindings, you must choose the Include JSF HTML Widgets for
JSF Databinding option in the ADF View Settings of the project properties.
However, using ADF Faces tags, especially with ADF bindings, provides
greater functionality than does using the reference implementation JSF tags.

Table 18-4 Tags That Can Be Used for ADF Bindings

ADF Faces Tags Used in ADF Bindings Equivalent JSF HTML Tags

Text Fields

af:inputText h:inputText

af:outputText h:outputText

af:outputLabel h:outputLabel

af:inputDate n/a

Tables

af:table h:dataTable

Actions

af:button h:commandButton

af:link h:commandLink

af:commandMenuItem n/a

Selection Lists

af:inputListOfValues n/a

Chapter 18
Using Simple UI First Development

18-42

Table 18-4 (Cont.) Tags That Can Be Used for ADF Bindings

ADF Faces Tags Used in ADF Bindings Equivalent JSF HTML Tags

af:selectOneChoice h:selectOneMenu

af:selectOneListbox h:selectOneListbox

af:selecOneRadio h:selectOneRadio

af:selectBooleanCheckbox h:selectBooleanCheckbox

Queries

af:query n/a

af:quickQuery n/a

Trees

af:tree n/a

af:treeTable n/a

Before adding binding to the UI components, ensure that you follow these guidelines:

• When creating the JSF page using the Create JSF JSP wizard, choose the Do
not Automatically Expose UI Components in a Managed Bean option on the
Managed Bean tab.

This option turns off JDeveloper's auto-binding feature, which automatically
associates every UI component in the page to a corresponding property in the
backing bean for eventual programmatic manipulation. If you use the auto-binding
feature, you will have to remove the managed bean bindings later, after you have
added the ADF bindings. The managed bean UI component property bindings do
not affect the ADF bindings, but their presence may be confusing in the JSF code.
For information about managed beans, see Using a Managed Bean in a Fusion
Web Application.

• Add the ADF Faces tag libraries.

While you can add ADF bindings to JSF components, the ADF Faces components
provide greater functionality, especially when combined with ADF bindings.

How to Apply ADF Model Data Binding to Existing UI Components
You apply ADF model binding to components using the Structure window.

Before you begin:

It may be helpful to have an understanding of UI first development. For more
information, see Using Simple UI First Development.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in "Exposing Business Services
with Data Controls" in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page, and add any
components to the page.

Chapter 18
Using Simple UI First Development

18-43

To apply ADF Model data binding:

1. In the Design page of the visual editor, select the UI component to which you want
to add ADF bindings.

The component must be one of the tags listed in Table 18-4. When you select a
component in the visual editor, JDeveloper simultaneously selects that component
tag in the Structure window, as shown in Figure 18-19.

Figure 18-19 The Structure Window in JDeveloper

2. In the Structure window, right-click the UI component, and from the context menu,
choose Bind to ADF Control.

Note:

Your project must already contain data controls for the Bind to ADF
Control menu option to appear. If yours does not, you should consider
using placeholder data controls, as described in Designing a Page Using
Placeholder Data Controls .

3. In the Bind to ADF Control dialog, select the data control to which you want the
UI component bound. JDeveloper will notify you if you choose a control that is not
compatible with the selected UI component.

Chapter 18
Using Simple UI First Development

18-44

What Happens When You Apply ADF Model Data Binding to UI
Components

When you use the Data Controls panel all of the required ADF objects are
automatically created for you, as described in What Happens When You Use the Data
Controls Panel.

Chapter 18
Using Simple UI First Development

18-45

19
Using Validation in the ADF Model Layer

This chapter describes how to use validation rules in the ADF model layer of your
Oracle ADF application.
This chapter contains the following sections:

• About ADF Model Layer Validation

• Defining Validation Rules in the ADF Model Layer

• Customizing Error Handling

About ADF Model Layer Validation
In ADF, if you use data controls in an application that are not based on ADF Business
Components, then you must use the validation rules to ensure that the data entered by
user is validated.
In the model layer, ADF Model validation rules can be set for a binding's attribute on
a particular page. When a user edits or enters data in a field and submits the form,
the bound data is validated against any set rules and conditions. If validation fails, the
application displays an error message.

Note that you don't need to add additional ADF Model validation if you have already
set validation rules in the business domain layer of your entity objects. In a Fusion
web application based on ADF Business Components, you won't need to use ADF
Model validation unless you use data controls other than your application module
data control.

ADF Model Layer Validation Use Cases and Examples
If your application uses data controls that are not based on ADF Business
Components, you can use ADF Model layer validation to ensure the quality of user-
entered data.

19-1

Best Practice:

Use business layer validation whenever possible. However, the following are
examples of when you might need to use model layer validation:

• When your business layer does not support declarative validation.

• When you want to validate before an expensive roundtrip begins (for
example, for a binding to a web service).

• When you need to validate a form created using parameters (for
example, using the executeWithParams operation).

You can also use client-side validation for cases where you want to validate
before a roundtrip to the server. For more information, see the "Adding
Validation" section in Developing Web User Interfaces with Oracle ADF
Faces.

Many of the declarative validation features available for ADF Business Components
objects are also available at the model layer, should your application warrant the use
of model-layer validation in addition to business-layer validation.

Additional Functionality for ADF Model Layer Validation
You may find it helpful to understand other ADF validation features before you use
model layer validation. Following are links to other functionality that may be of interest.

• When you use the ADF Business Components application module data control,
you do not need to use model-layer validation. Consider defining all or most of
your validation rules in the centralized, reusable, and easier to maintain entity
objects of your business layer. For more information, see Defining Validation and
Business Rules Declaratively.

• Many of the declarative validation features available at the page level are also
available at the bean level, which you would implement on the data control
structure file. This can be very useful, because validation rules on the data
control structure file apply to all usages of the data control. For information about
implementing validation rules on the data control structure file, see the "Adding
Business Logic to Data Controls" chapter in the Developing Applications with
Oracle ADF Data Controls.

Defining Validation Rules in the ADF Model Layer
ADF provides a list of validation rules that you can use to validate binding attributes on
the page definition file. You can use the Validation Rules Editor dialog to add, edit, or
delete a validation rule for an attribute.
You can configure ADF Model validation for a binding's attributes on the page
definition file. Validation rules in the model layer are executed for a binding's attribute
on a particular page when the containing form is submitted.

You can optionally set the skipValidation property to true to bypass the ADF
Model validation. You can set skipValidation to skipDataControls to validate the
bound objects without validating the transaction. For example, set skipValidation to
skipDataControls if you have a table action that opens a popup window to accept

Chapter 19
Defining Validation Rules in the ADF Model Layer

19-2

data entries and you want to allow the view layer to validate those entries before the
commit on the table. The skipValidation property can be found in the Properties
window after you have selected the root node of the page definition file in the Structure
window.

How to Add ADF Model Layer Validation
You set ADF Model validation on the page definition file. You define the validation rule,
and set an error message to display when the rule is broken.

Table 19-1 describes the ADF Model validation rules that you can configure for a
binding's attributes.

Table 19-1 ADF Model Validation Rules

Validator Rule Name Description

Compare Compares the attribute's value with a literal value

List Validates whether or not the value is in a list of values

Range Validates whether or not the value is within a range of values

Length Validates the value's character or byte size against a size and
operand (such as greater than or equal to)

Regular Expression Validates the data using Java regular expression syntax

Required Validates whether or not a value exists for the attribute

Before you begin:

It may be helpful to have an understanding of the use of validation rules in the model
layer. For more information, see Defining Validation Rules in the ADF Model Layer.

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
ADF Model Layer Validation.

You will need to complete this task:

• Create a component on the page. The component must have binding attributes.

To create an ADF Model validation rule:

1. In the Applications window, double-click the page definition that contains the
binding for which you want to create a rule.

2. In the Structure window, select the attribute, list, or table binding.

3. In the Properties window, click the More dropdown menu and choose Edit
Validation Rule.

4. In the Validation Rules Editor dialog, expand the binding node, select the attribute
name, and click New.

5. In the Add Validation Rule dialog, select a validation rule and configure the rule as
needed.

6. Click the Failure Handling tab and configure the message to display when the
rule is broken.

Chapter 19
Defining Validation Rules in the ADF Model Layer

19-3

What Happens at Runtime: Model Validation Rules
When a user submits data, as long as the submitted value is a non-null value or
a string value of at least one character, then all validators on a component are
called one at a time. Because the f:validator tag on the component is bound to
the validator property on the binding, any validation routines set on the model are
accessed and executed.

The process then continues to the next component. If all validations are successful,
the Update Model Values phase starts and a local value is used to update the model. If
any validation fails, the current page is redisplayed along with an error message.

What You May Need to Know About Default Error Handling
When exceptions occur, the default behavior is to display only leaf-level errors in
ADF Faces error dialogs. The default error handling mechanism for ADF Controller
retrieves the list of exceptions from the page binding container and determines how to
display each error. If the exception is not a JboException, a Faces error message is
displayed with the exception message.

If the exception is a JboException, the error handling mechanism drills
down recursively into nested exceptions, and displays a single Faces
error message for each unique exception. However, if the exception has
JboWarning.HIDE_DETAIL_EXCEPTIONS_HINT, the error handling mechanism will not
drill down into nested exceptions.

Additionally, the error handling mechanism retrieves a list of binding errors for each
exception and displays a Faces error message for the component associated with the
binding that reported the error.

Customizing Error Handling
In ADF, you can use the ErrorHandlerClass property to set the error handler you want
to use to report error or informational messages. You need not write code for error
messages, but you can use the Properties windows of DataBindings.cpx file where
you can set the error handler.
You can report errors using a custom error handler that extends the default
DCErrorHandlerImpl class. You are not required to write any code to register
your custom exception handler class. Instead, you select the root node of the
DataBindings.cpx file in the Structure window, and then use the Properties window to
set the ErrorHandlerClass property to the fully qualified name of the error handler you
want it to use.

Your custom error handler can contain the following overridable methods:

• reportException(): Called to report any exception that occurs. It can be
overridden to analyze reported exceptions.

• getDisplayMessage(): Returns the message that will be reported to JSF for each
error that occurs. Returning null is the way your custom error handler signals that
a given exception should not be reported to the client.

• getDetailedDisplayMessage(): Returns the detail portion of the message as a
String object or HTML that will be reported to JSF for each error that occurs.

Chapter 19
Customizing Error Handling

19-4

Returning null is the way your custom error handler signals that a given exception
should not be reported to the client.

• skipException(): Returns a boolean depending on whether you want to display
each item from the nested exception in the final error list displayed to the user.
This method override lets you implement logic to check for specifics exception
types and, based on the business scenario, determine whether to display it in the
list.

The following example shows a custom error handler that extends the
DCErrorHandlerImpl class and shows the override for the skipException() method
that is needed to skip exceptions that should not appear in the list displayed to the
user.

package view.controller.fwkext;

import java.sql.SQLIntegrityConstraintViolationException;

import java.util.ArrayList;
import java.util.List;

import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCErrorHandlerImpl;

import oracle.jbo.CSMessageBundle;
import oracle.jbo.DMLConstraintException;
import oracle.jbo.JboException;

public class CustomErrorHandler extends DCErrorHandlerImpl {

 List<ExceptionMapper> exceptionMapperList = new ArrayList<ExceptionMapper>();

 public CustomErrorHandler() {
 super();
 exceptionMapperList.add(new DisableJboExceptionCodesMapper());
 }

 public void reportException(DCBindingContainer bc, Exception ex) {
 for (ExceptionMapper mapper : exceptionMapperList) {
 if (mapper.canMapException(ex)) {
 ex = mapper.mapException(ex);
 }
 }
 super.reportException(bc, ex);
 }

 /**
 * If an exception is a RowValException or a TxnValException and they
 * have nested exceptions, then do not display it. This example shows
 * an implementation that skips the SQLIntegrityConstraintViolationException
 * from displaying in the error final list displayed to the user.
 */
 @Override
 protected boolean skipException(Exception ex) {

 if (ex instanceof DMLConstraintException) {
 return false;
 } else if (ex instanceof SQLIntegrityConstraintViolationException) {
 return true;
 }
 return super.skipException(ex);

Chapter 19
Customizing Error Handling

19-5

 }

}

Your error handler class must have a default constructor that matches the name of
the custom class. For example, if you create a custom handler class MyErrorHandler,
the exception error handler would invoke the default constructor, as shown in the
following example. Following this convention allows dynamic invocation by the class
name alone.

ErrorHandlerClass="viewcontroller.MyErrorHandler"
 public MyErrorHandler()
 {
 super();
 }

How to Customize the Detail Portion of a Message
If you plan to customize and use the detail portion of a message, you can create
a custom error handler and implement the getDetailedDisplayMessage method to
retrieve and process that message. The finalized message will be passed to the view
layer to be integrated with other messages.

To customize the detail portion of a message:

1. Create a custom error handler class that extends the default DCErrorHandlerImpl
class.

2. In that class, override the getDetailedDisplayMessage method that returns a
DCErrorMessage object.

The following example shows an implementation of the
getDetailedDisplayMessage method in the custom error handler class.

public final class MyErrorMessageHandler extends DCErrorHandlerImpl {
 public MyErrorMessageHandler (){
 super();
 }
 public DCErrorMessage getDetailedDisplayMessage(BindingContext ctx,
 RegionBinding ctr,
 Exception ex) {
 ...
 return new MyDCErrorMesssage(ctr, ex);
 }
}

3. Create a custom class that implements the DCErrorMessage interface. The class
must implement the getHTMLText method and the getText method.

You will add code to the getHTMLText method to perform the actual processing, but
you must also implement getText to satisfy the interface requirements.

4. In the getHTMLText implementation, add code to create and process the error
message.

getHTMLText of getDetailedDisplayMessage should return the finalized version of
the error message as an HTML fragment that will be inserted into the HTML code
of the page. For this reason, you should perform all necessary preprocessing on
the text message before the message is returned by getDetailedDisplayMessage.
For instance, you may want to retrieve the localized version of the message or
change the right-to-left ordering of the message before it is returned.

Chapter 19
Customizing Error Handling

19-6

The following example shows an implementation of this interface.

public final class MyDCErrorMesssage implements DCErrorMessage {
 RegionBinding m_regionBinding;
 Exception m_ex;
 public MyDCErrorMesssage(RegionBinding ctr, Exception ex) {
 super();
 this.m_regionBinding = ctr;
 this.m_ex = ex;
 }
 public String getText() {
 ...
 return "Message String";
 }
 public String getHTMLText() {
 ...
 /* Add code to process the message, including localization */
 /* and right-to-left directional requirements. */
 /* Return the message as the finalized HTML fragment.*/
 return "<html>error message details</html>";
 }
}

To format the message using HTML tags, you must enclose the message within
<html></html> tags, as shown in the example. Note that only the following HTML tags
are allowed in error messages:

•

•

• <a>

• <i>

•

•

• <hr>

•

•

•

• <p>

• <tt>

• <big>

• <small>

• <pre>

How to Display an Informational Message from a Custom Error
Handler

You can use an error handler to display an informative message in response to
a warning in an application using custom validation in the ADF Model layer. For

Chapter 19
Customizing Error Handling

19-7

applications that use model layer validation, you need to use a custom error handler at
the application CPX level, for all errors and warnings.

Before you begin:

It may be helpful to have an understanding of how custom validation in the model layer
works. For more information, see Customizing Error Handling.

You may also find it helpful to understand additional functionality that can be added
using other validation features. For more information, see Additional Functionality for
ADF Model Layer Validation.

You must also launch JDeveloper, and open the application to which you want to add
the custom error handler.

To display an informational message

1. In the data model project, create a class that extends JboWarning. For example:

public class InformationalMessage extends JboWarning
{
 public static final String INFO_PROPERTY = "$InformationalMessage$INFO";
 public InformationalMessage(String message)
 {
 super(message, "", new Object[]{INFO_PROPERTY});
 }
}

2. In the application module implementation class, add a method and expose it as a
client method. For example:

public void addInformationMessageTest()
 {
 addWarning
 (new InformationalMessage("Testing. This is an information
message"));
 }

3. In the view controller project, create a customer error handler class, as described
in Customizing Error Handling.

4. Add the customer error handler you created to the data bindings file
(DataBindings.cpx). For example:

<Application xmlns="http://xmlns.oracle.com/adfm/application"
 id="DataBindings" SeparateXMLFiles="false"
 Package="my.view" ClientType="Generic"
 ErrorHandlerClass="my.view.CustomErrorHandler">
 <pageMap>
 <page path="/Test.jspx" usageId="my_view_TestPageDef"/>
 </pageMap>

5. To test the method, you can drop the client application module method onto
a .jspx page as a command button to invoke the information message.

When you run the .jspx file and press the button, the informational message is
displayed.

How to Write an Error Handler to Deal with Multiple Threads
Oracle ADF constructs an instance of the custom error handler for each
BindingContext object that is created. Because Oracle ADF serializes simultaneous

Chapter 19
Customizing Error Handling

19-8

web requests from the same logical end-user session, multiple threads generally will
not use the same error handler at the same time. However, to guarantee a thread-safe
custom error handler, use the setProperty() API on JboException. This method
stores in the exception objects themselves any hints you might need later during the
phase when exceptions are translated to JSF FacesMessage objects for display.

Chapter 19
Customizing Error Handling

19-9

20
Designing a Page Using Placeholder
Data Controls

This chapter describes how to create and use placeholder data controls in an Oracle
ADF application. It shows you how to create placeholder data types, including master-
detail relationships. It also describes how to create and import sample data.
This chapter includes the following sections:

• About Placeholder Data Controls

• Creating Placeholder Data Controls

• Creating Placeholder Data Types

• Using Placeholder Data Controls

About Placeholder Data Controls
ADF provides placeholder data controls that you can use to support the declarative
process and this does not require coding. When the real data controls are ready, you
can rebind the UI components, which makes it easier when you design a complex
page.
Application development is typically divided into two separate processes: technical
implementation and user interface design. More often than not, they are undertaken
by separate teams with very different skill sets. The two teams can work together
either in a data-first approach or a UI-first approach, or with some overlap between
the two. With either approach, the teams usually work together iteratively, refining the
application with each cycle.

In a data-first approach, the model, or data control is built first. Then the designer
creates the layout and page flow by dragging and dropping the data controls onto
pages as UI components. The model data is automatically bound to the components.
This approach requires the data model to be available before the designer can
proceed.

In a UI-first approach, the designer creates the layout using components from the
Components window. When the data controls do become available, UI components
are then bound to them. With this approach, you should be able to see most of
the layout and page flows to make a development evaluation. However, until the
data controls are available and bound to components, the application may not fully
convey the intent of its design. For instance, an application that has a master-detail
relationship is best reviewed when there is actual data that dynamically drives that
relationship.

Placeholder data controls are easy-to-create, yet fully functional, stand-in data
controls that can efficiently speed up the design-development process. UI designers
can use placeholder data controls to create page layouts and page flows without the
need to have real data controls available. These placeholder controls can be loaded
with sample data to realistically simulate application execution for design evaluations.
When the real data controls are ready, the UI components can be easily rebound to
complete the application.

20-1

Creating placeholder data controls is a purely declarative process and does not
require coding. It does not require in-depth knowledge of the underlying model, data
source technology, actual database schema, or any of the complex relationships in
an actual production data control. Placeholder data controls do not require an existing
data source or a database connection. You can define multiple data types with multiple
attributes. You can also define nested master-detail hierarchies between data types.
Placeholder data controls have the same built-in operations such as Execute, Next,
and Create. An implicitly created named criteria item allows the user to create search
forms as if view objects and view criteria were available.

Placeholder Data Controls Use Cases and Examples
For many complex applications, the UI design may actually drive the development of
the model, or data source. In this UI-first scenario, having placeholder data controls
with sample data is essential to properly model the behavior of the application. In
some cases, even if production data controls are available, UI designers may opt to
use placeholder data controls because of their flexibility and ease of use.

Placeholder data controls can be used in many situations. In addition to being used
for design review and development, they can be used to develop realistic runtime
mock-ups for usability studies, or for proof-of-concept requirements. They can be used
to create demos when the data model is not yet ready.

Additional Functionality for Placeholder Data Controls
You may find it helpful to understand some data access features before you start
working with placeholder data controls. Following are links to other functionality that
may be of interest.

• After your initial design with placeholder data controls, when the final data controls
are available, you can simply rebind the components. For more information about
rebinding components, see Creating a Basic Databound Page and Creating ADF
Databound Tables .

• A placeholder data type attribute can be configured to be a list of values (LOV).
For more information about LOVs, see Working with List of Values (LOV) in View
Object Attributes.

• You can create master-detail relationships between placeholder data types,
similar to the master-detail data collections in a standard data control. For more
information on master-detail forms and tables, see Displaying Master-Detail Data .

• When you define placeholder data types in a master-detail hierarchy, JDeveloper
creates view links that define that relationship. For more information about view
links, see Working with Multiple Tables in a Master-Detail Hierarchy.

• Placeholder data controls can be used for the development of search forms. For
more information about query search forms, see Creating ADF Databound Search
Forms .

• You might want to package placeholder data controls into reusable components as
ADF Library JARs. For more information about reusable components and the ADF
Library, see Reusing Application Components .

Chapter 20
About Placeholder Data Controls

20-2

Creating Placeholder Data Controls
ADF provides the menu to create Placeholder Data Controls for a project, which
appears as a node in Data Controls panel with built-in operations node. You can then
customize the Placeholder Data Controls, add them to your page, then rebind them to
real data controls.
You add placeholder data controls to a project using the New Gallery. After the
placeholder data control has been created, it appears as a node in the Data Controls
panel. It has a different icon than do standard data controls. Instead of an Operations
node, the placeholder data control has a Built-in Operations node. Although the Built-in
Operations node contains Commit and Rollback operations, these operations do not
perform commits or rollbacks because there is not an actual data source for the data.

When a data control is initially created, it does not have any data types associated with
it. You will need to manually create the data types as described in section Creating
Placeholder Data Types.

How to Create a Placeholder Data Control
Placeholder data controls are defined at the project level in JDeveloper. You must
already have created a project before you can create placeholder data controls.

Before you begin:

It may be helpful to have an understanding of the options you have for creating
placeholder data controls. For more information, see Creating Placeholder Data
Controls.

You may also find it helpful to understand additional functionality that can be
added after using placeholder data controls. For more information, see Additional
Functionality for Placeholder Data Controls.

To create a placeholder data control:

1. In the Applications window, right-click the project to which you want to add a
placeholder data control and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select Data Controls and then
Placeholder Data Control, and click OK.

3. In the Placeholder Data Control dialog, as shown in Figure 20-1, enter:

• Name: The name of the placeholder data control.

• Package: The package name that will be used to reference the placeholder
data control.

• Description: Optional description of the placeholder data control.

Chapter 20
Creating Placeholder Data Controls

20-3

Figure 20-1 New Placeholder Data Control

4. Click OK.

What Happens When You Create a Placeholder Data Control
When you create a placeholder data control, the package you selected to contain
the data control appears under the project node in the Applications window. A data
control XML file PlaceholderDataControl.xml appears under the package, where
PlaceholderDataControl is the name of the placeholder data control. The following
example shows a sample file called Placeholder01.xml, which was created when the
Placeholder01 data control was created.

<?xml version='1.0' encoding='windows-1252' ?>
<AppModule
 xmlns="http://xmlns.oracle.com/placeholder"
 Name="Placeholder01" >
</AppModule>

JDeveloper also creates a DataControls.dcx file if it has not yet been defined, and
adds entries for the placeholder data control, as shown in the following example.

<?xml version="1.0" encoding="UTF-8" ?>
<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"
 version="12.1.2" id="DataControls"
 Package="model">
 <PlaceholderDataControl SupportsTransactions="true" SupportsFindMode="true"
 SupportsResetState="true" SupportsRangesize="true"
 SupportsSortCollection="true"
 FactoryClass=
 "oracle.adf.model.placeholder.DataControlFactoryImpl"
 id="Placeholder01"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"
 Definition="model.prototype.Placeholder01"
 Package="model.prototype"/>
</DataControlConfigs>

In the Data Controls panel, the placeholder data control appears alongside other data
controls in the root tree. A placeholder data control that does not yet have data types
defined will have only the Commit and Rollback built-in operations available, as shown
in Figure 20-2.

Chapter 20
Creating Placeholder Data Controls

20-4

Figure 20-2 Applications Window and Data Controls Panel

Creating Placeholder Data Types
The placeholder data type is the data collection for the placeholder data control. ADF
provides options to create the placeholder data type, add attributes from an exiting
data type or from a CSV file, add sample data, and configure the placeholder data
type.
A standard data control obtains its data collections and attributes from its underlying
data source in the model or business service layer. For example, an application
module data control obtains its data collections from the view objects and associated
database tables.

For a placeholder data control, instead of data collections, it has placeholder data
types. A placeholder data type is analogous to a data collection. It can be dropped
onto a page to create complex components such as forms, tables, and trees. It also
has a set of attributes that can be dropped onto pages as individual components such
as input text, output text, and select choice. Some attributes may be defined as LOVs.

When you first create a placeholder data control, it is devoid of any data types
because there are no underlying database tables for the placeholder data control
to reference. You must declaratively create one or more placeholder data types. For
each data type, you specify attribute names, types, default UI components, and other
options. You can create multiple data types for a data control, similar to the multiple
data collections in an application module.

After you have created a placeholder data type, it appears as a child node of the
placeholder data control. It also has a Built-in operations node with the standard set of
operations. It has a Named Criteria node that contains an All Queriable Attributes item
that is analogous to the named view criteria of a view object in a standard data control.
You can drag and drop the All Queriable Attributes item onto a page to create a query
or quick query search form. In a standard data control, you can create multiple view
criteria on a view object. Because there is no real view object in a placeholder data
type, only one All Queriable Attributes item is available. For more information about
query search forms, see Creating ADF Databound Search Forms .

Chapter 20
Creating Placeholder Data Types

20-5

You can create master-detail relationships between placeholder data types, similar
to the master-detail data collections in a standard data control. You can drop master-
detail data types onto pages to create master-detail forms and tables. For more
information on master-detail forms and tables, see Displaying Master-Detail Data .

JDeveloper allows you to reuse placeholder data types created for other placeholder
data controls in the same project. When you are creating a data type, you can select
an option to load existing data types from another placeholder data control. If you
select the Import From: Existing Data Type option, the attributes from the imported
data type will be added to the list of attributes.

You can also select an option to import the sample data associated with the imported
data type when the attributes are added.

Note:

Although you do not need sample data until you run the application, you
should add sample data to provide a consistent design time rendering of the
components.

How to Create a Placeholder Data Type
After you have created a placeholder data control, you can proceed to create data
types. You define a name for the data type, and define each of its individual attributes.
For each attribute, you then define its type, format, default UI component, and whether
or not it should be an LOV.

In order to simplify the process of creating placeholder data types, you can select from
a list of four of the most common types: String, Boolean, Date, and Number. Because
placeholder attributes are typed, you can create column labels and include UI control
hints in the design.

If you have a sample data file in comma-separated value (CSV) format, you can create
all the attributes and load sample data using the sample data file import function. You
do not need to create the attributes. JDeveloper will create them for you from the
format of the CSV file, which can optionally contain a list of column headings as the
first row. The attributes default to type String. You can manually reset each attribute
to another type as required. For instructions to import sample data, see How to Import
Attributes and Sample Data to a Placeholder Data Type.

Before you begin:

It may be helpful to have an understanding of the options you have for creating
placeholder data types. For more information, see Creating Placeholder Data Types.

You may also find it helpful to understand additional functionality that can be
added after using placeholder data controls. For more information, see Additional
Functionality for Placeholder Data Controls.

Additionally, you must first create the placeholder data control, as described in How to
Create a Placeholder Data Control.

To create a placeholder data type:

Chapter 20
Creating Placeholder Data Types

20-6

1. In the Applications window, double-click the placeholder data control to which you
want to add a placeholder data type.

2. In the overview editor, in the Data Types section, select the placeholder data
control and click the New Placeholder Data Type icon.

Note:

You can alternatively open the Create Placeholder Data Type dialog by
right-clicking the placeholder data control in the Data Controls panel, and
choosing New Placeholder Data Type.

Figure 20-3 shows the Create Placeholder Data Type dialog.

Figure 20-3 Create Placeholder Data Type Dialog

3. In the Create Placeholder Data Type dialog, enter a file name and package for the
placeholder data type.

4. If you have an existing placeholder data type or a .csv file, from which you want
to import attributes and data, select Import From and select either .CSV File or
Existing Data Type, and then specify the options for the import.

To import from a .csv file:

a. In the File Name field, specify the file from which you want to import, or click
the Browse icon to navigate to and select the file.

b. From the Character Set dropdown list, select the character set that the file
uses.

c. If your file has a header row with the names of the columns, select First row
of the file contains Attribute names to import.

To import from an existing placeholder data type:

Chapter 20
Creating Placeholder Data Types

20-7

a. Expand the tree to locate and select an existing placeholder data type.

b. If the existing data type contains data that you want to import, select Also
Import Sample Data.

5. Click OK.

The placeholder data type is created and opened in the overview editor.

6. In the overview editor, click the Attributes navigation tab to view, add, and edit
attributes for the placeholder data type.

7. Click the Data navigation tab to view, add, and edit sample data for the
placeholder data type.

You need sample data for runtime and for a consistent design time.

How to Add Attributes and Sample Data to a Placeholder Data Type
If you intend to run an application using the placeholder data control, you will need
to add sample data to be displayed during execution. You can add sample data to
the placeholder data type attributes manually or by importing the data from another
placeholder data type or CSV file. Although having sample data is necessary only at
runtime, you should add sample data for a consistent design time rendering of the
components.

If you did not import attributes when you created your placeholder data type, you can
add them using the Attributes page of the overview editor. Also, you can use the Data
page of the overview editor to add sample data to be displayed during execution. Both
the Attributes page and the Data page have an Import button that opens the Import
Placeholder Data Type dialog, which allows you to import attributes and sample data.

Before you begin to add sample data to a placeholder data type, you should have
already created a placeholder data control and a placeholder data type. If you are
entering the data manually, you should have the data ready. If you are loading the data
from a CSV file, you need to have the location of the file. If you are importing from
another placeholder data type, you must have already created the other data type.

Manually Adding Attributes to a Placeholder Data Type
Using the Attributes page of the overview editor, you can add and configure attributes
to a placeholder data type.

Before you begin:

It may be helpful to have an understanding of the options you have for creating
placeholder data types. For more information, see Creating Placeholder Data Types.

You may also find it helpful to understand additional functionality that can be
added after using placeholder data controls. For more information, see Additional
Functionality for Placeholder Data Controls.

Additionally, you must first create the placeholder data control, as described in How to
Create a Placeholder Data Control, and create the placeholder data type, as described
in How to Create a Placeholder Data Type.

To manually add a placeholder data type attribute:

1. In the Applications window, double-click the placeholder data type to which you
want to add attributes.

Chapter 20
Creating Placeholder Data Types

20-8

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, click the Add icon.

4. In the Insert View Attributes dialog, enter a name for the attribute, and click OK.

5. After adding attributes, select an attribute and use the fields beside the attributes
list to configure the selected attribute.

• Name: Enter a name for the attribute.

• Data Type: Select a type for the attribute from the dropdown list. The
supported types are String, Boolean, Date, and Number.

• Default Component: Select a default component for the attribute from the
dropdown list. For an LOV, select Combo Box List of Values. Then click the
Edit icon to configure the LOV. For more information, see How to Configure a
Placeholder Data Type Attribute to Be a List of Values.

• Default Value: Enter the initial value for the attribute.

• Label: Enter a label for the attribute. The label will be used when the
component is displayed.

• Tooltip: Enter text to be displayed as a tooltip for the attribute.

• Format Type: This field is enabled only when the type is Date or Number.
Select a format type from the dropdown list.

• Format: This field is enabled only when a format mask has been defined for
that format type.

• Display Width: Enter the character width to be used by the control that
displays this attribute.

• Searchable: Select this checkbox to make the attribute searchable.

Click the Add icon to add more attributes.

Adding Sample Data Manually
You can use the Sample Data page of the Edit Placeholder Data Type dialog to
manually enter sample data for your placeholder data control.

Before you begin:

It may be helpful to have an understanding of the options you have for creating
placeholder data types. For more information, see Creating Placeholder Data Types.

You may also find it helpful to understand additional functionality that can be
added after using placeholder data controls. For more information, see Additional
Functionality for Placeholder Data Controls.

Before you add sample data to a placeholder data type, you need to perform the
following tasks:

• Create a placeholder data type, as described in How to Create a Placeholder Data
Type.

• Have your list of sample data ready.

To add sample data to a placeholder data type manually:

1. In the Data Controls panel, right-click the placeholder data type to which you want
to add sample data, and choose Open.

Chapter 20
Creating Placeholder Data Types

20-9

2. In the overview editor, click the Data navigation tab.

3. In the Data page, click the Add icon to add a row to the data table, and enter
a value for each attribute. Repeat as necessary until you have entered adequate
sample data.

How to Import Attributes and Sample Data to a Placeholder Data Type
As an alternative to manually entering attributes and sample data for a placeholder
data type, you can import them in a single operation. Using the Attributes page of the
overview editor, you can import attributes from an existing placeholder data type or
from a .csv file.

A .csv (comma-separated values) file is a plain text file containing rows of attribute
values, delimited by commas. A .csv file can optionally have a header row that defines
the names of each attribute.

In the overview editor for a placeholder data type, both the Attributes page and the
Data page have an Import button that opens the Import Placeholder Data Type dialog,
which allows you to import attributes and sample data.

Before you begin:

It may be helpful to have an understanding of the options you have for creating
placeholder data types. For more information, see Creating Placeholder Data Types.

You may also find it helpful to understand additional functionality that can be
added after using placeholder data controls. For more information, see Additional
Functionality for Placeholder Data Controls.

Additionally, you must first create the placeholder data control, as described in How to
Create a Placeholder Data Control, and create the placeholder data type, as described
in How to Create a Placeholder Data Type.

To import attributes into a placeholder data type:

1. In the Applications window, double-click the placeholder data type to which you
want to add attributes.

2. In the overview editor, click the Attributes navigation tab.

3. If you are importing attributes as well as sample data, you must delete any existing
attributes in the placeholder data type.

If you do not remove the existing attributes, JDeveloper imports only the first
columns of data for the number of defined attributes. For example, if you have two
attributes defined in your data type and four columns of sample data in your CSV
file, JDeveloper will import only the first two columns of data.

4. On the Attributes page, click Import.

5. In the Import Placeholder Data Type dialog, specify where you want to import
attributes from.

To use a .csv file:

a. Select Import from .CSV File.

b. In the File Name field, enter the full path and name of the file, or click the
Browse icon to navigate to and select it.

Chapter 20
Creating Placeholder Data Types

20-10

c. From the Character Set dropdown list, select the character set represented in
the specified .csv file.

d. If the .csv file has a header row that contains the names of the attributes,
select First row of the file contains Attribute names to import.

To use an existing placeholder data type:

a. Select Import from an Existing Placeholder Data Type.

b. Expand the available placeholder data controls displayed to see the
placeholder data types they contain, and select the one you want to copy.

Figure 20-4 Import Placeholder Data Type Dialog

6. Select the Also Import Sample Data checkbox to load sample data from the file
or existing placeholder data type.

7. Specify whether you would like to append or overwrite the attributes already
defined for the placeholder data type.

• Select Append to add the imported attributes to the current list of attributes in
the placeholder data type

• Select Overwrite to replace the current attributes with the imported attributes.

8. Click OK.

9. After importing attributes, you can optionally go to the Attributes page and
reconfigure the attributes.

Chapter 20
Creating Placeholder Data Types

20-11

What Happens When You Add Sample Data
Placeholder sample data, whether added manually added or imported, are stored in
message bundle files. The following example shows a sample message bundle with
two rows of five attributes.

model.prototype.SupplierLocationsDataType.SL_0_0=101
model.prototype.SupplierLocationsDataType.SL_0_1=so
model.prototype.SupplierLocationsDataType.SL_0_2=Houston
model.prototype.SupplierLocationsDataType.SL_0_3=TX
model.prototype.SupplierLocationsDataType.SL_0_4=USA
model.prototype.SupplierLocationsDataType.SL_1_0=101
model.prototype.SupplierLocationsDataType.SL_1_1=dw
model.prototype.SupplierLocationsDataType.SL_1_2=Atlanta
model.prototype.SupplierLocationsDataType.SL_1_3=GA
model.prototype.SupplierLocationsDataType.SL_1_4=USA

What Happens When You Create a Placeholder Data Type
When you create a placeholder data type, JDeveloper creates a
PlaceholderDataType.xml file, where PlaceholderDataType is the name of the
placeholder data type you had specified.

The PlaceholderDataType.xml file has the same format as a view object XML file. It
includes the name of the view object and the name and values of each placeholder
attribute that was defined.

The following example shows a PlaceholderDataType.xml for a Supplier data type.
Two attributes are declaratively defined: Supplier_Id and Supplier_Name.

<?xml version='1.0' encoding='windows-1252' ?>
<ViewObject
 xmlns="http://xmlns.oracle.com/placeholder"
 Name="SuppliersDataType"
 InheritPersonalization="merge"
 BindingStyle="OracleName"
 CustomQuery="true">
 <ViewAttribute
 Name="Supplier_Id"
 Type="oracle.jbo.domain.Number"/>
 <ViewAttribute
 Name="Supplier_Name"
 Type="java.lang.String"/>
</ViewObject>

Since a data type is similar to a data collection and is based on a view object, each
data type will have a corresponding PlaceholderDataType.xml file.

JDeveloper also adds entries for each placeholder data type to the
PlaceholderDataControl.xml file. For example, after the Suppliers data type is
created, the data control XML file includes a new ViewUsage entry for the Suppliers
data type, as shown in the following example.

<?xml version="1.0" encoding="windows-1252" ?>
<AppModule
 xmlns="http://xmlns.oracle.com/placeholder"
 Name="Placeholder01"
 InheritPersonalization="merge">

Chapter 20
Creating Placeholder Data Types

20-12

 <ViewUsage
 Name="SuppliersDataType"
 ViewObjectName="model.prototype.SuppliersDataType"/>
</AppModule>

In the Data Controls panel, a placeholder data type node appears under the
placeholder data control. Expanding the node reveals the presence of each of the
attributes, the Built-in Operations node, and the Named Criteria node.

Figure 20-5 shows a placeholder data control as it appears in the Data Controls panel.

Figure 20-5 Data Controls Panel Showing Placeholder Data Control

How to Configure a Placeholder Data Type Attribute to Be a List of
Values

A placeholder data type attribute can be configured to be a list of values (LOV). An
LOV-formatted attribute binds to UI components that display dropdown lists or list
picker dialogs. For more information about LOVs, see Working with List of Values
(LOV) in View Object Attributes.

When you are configuring a placeholder data type attribute, you can select an option
to bring up a dialog to configure that attribute to be an LOV.

If you have only one data source, you can only create a fixed LOV. To create a
dynamic LOV, there must be more than one placeholder data type available to be the
source.

Configuring an Attribute to Be a Fixed LOV
Before you begin, you should determine which attribute you want to be a fixed LOV
and which values should be in the fixed list.

Before you begin:

It may be helpful to have an understanding of the options you have for creating
placeholder data types. For more information, see Creating Placeholder Data Types.

You may also find it helpful to understand additional functionality that can be
added after using placeholder data controls. For more information, see Additional
Functionality for Placeholder Data Controls.

Chapter 20
Creating Placeholder Data Types

20-13

Additionally, you must have already created the placeholder data type for your
placeholder data control.

To configure an attribute to be a fixed LOV:

1. In the Data Controls panel, right-click the placeholder data type and choose Open.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute you want to configure as an LOV.

4. Click the Edit LOV Binding icon next to the Default Component pulldown list.

The Configure List of Values dialog appears, as shown in Figure 20-6.

Figure 20-6 Configure List of Values Dialog for a Fixed LOV

5. In the dialog, select Fixed List.

6. Click the Add icon to add an entry to the list of values.

7. For each entry, enter a label and a value.

When the user selects an item from the list of values, the value entry will be
entered into the input field.

8. Specify the maximum number of the most recently used items that will be
displayed in the dropdown list.

9. From the No Selection Item dropdown list, select an option for how you want the
"no selection" item to be displayed.

For instance, selecting Blank Item (First of List) will display the "no selection"
item as a blank at the beginning of the list.

Chapter 20
Creating Placeholder Data Types

20-14

10. Click OK.

Configuring an Attribute to Be a Dynamic LOV
Using a placeholder data type to serve as the source, you can configure an attribute to
be a dynamic LOV.

Before you begin:

It may be helpful to have an understanding of the options you have for creating
placeholder data types. For more information, see Creating Placeholder Data Types.

You may also find it helpful to understand additional functionality that can be
added after using placeholder data controls. For more information, see Additional
Functionality for Placeholder Data Controls.

Also, you should have already created another placeholder data type to serve as the
source of the dynamic LOV.

To configure an attribute to be a dynamic LOV:

1. In the Data Controls panel, right-click the placeholder data type and choose Open.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute you want to configure as an LOV.

4. Click the Edit LOV Binding icon next to the Default Component pulldown list.

The Configure List of Values dialog appears, as shown in Figure 20-7.

Figure 20-7 Configure List of Values Dialog for a Dynamic LOV

Chapter 20
Creating Placeholder Data Types

20-15

5. In the Configure List of Values dialog, select Dynamic List.

6. Select the list data type with the source attribute. You must have a source
placeholder data type for this selection to be available.

7. Select the list attribute.

8. Shuttle the desired display attributes from the Available list to the Selected list.

9. Select the maximum number of the most recently used items that will be displayed
in the dropdown list.

10. From the No Selection Item dropdown list, select an option for how you want the
"no selection" item to be displayed. For example, selecting Blank Item (First of
List) will display the "no selection" item as a blank at the beginning of the list.

11. Click OK.

How to Create Master-Detail Data Types
You create master-detail relationships between data types in the same way you create
master-detail hierarchies between tables. In a standard data control, you can use view
links to define source and target view objects that would become the master and the
detail objects. For more information about master-detail relationships, see Displaying
Master-Detail Data .

You first create a master data type and its attributes. Then you create a detail data
type as a child of the master data type. You define the source attribute in the master
data type that defines the relationship to the detail data type.

Before you begin:

It may be helpful to have an understanding of the options you have for creating
placeholder data types. For more information, see Creating Placeholder Data Types.

You may also find it helpful to understand additional functionality that can be
added after using placeholder data controls. For more information, see Additional
Functionality for Placeholder Data Controls.

Before you create a placeholder master-detail hierarchy, you must perform the
following tasks:

• Determine the data structure of the master data type and the data structure of the
detail data type.

• Determine which attribute in the master will be the source for the detail data type.

• Create a placeholder data type to be the master, as described in How to Create a
Placeholder Data Type.

To create master-detail hierarchical data types:

1. In the Data Controls panel, right-click the master placeholder data type and
choose New Child Placeholder Data Type.

Figure 20-8 shows the Create Placeholder Data Type dialog for entering detail
data type attributes.

Chapter 20
Creating Placeholder Data Types

20-16

Figure 20-8 Create Child Placeholder Data Type Dialog

2. In the Create Placeholder Data Type dialog, enter a name and package for the
detail data type.

3. From the Join Attribute to Parent dropdown list, select the attribute from the
master data type that will be used to join to the new detail data type.

4. If you have an existing placeholder data type or a .csv file, from which you want
to import attributes and data, select Import From and select either .CSV File or
Existing Data Type, and then specify the options for the import.

To import from a .csv file:

a. In the File Name field, specify the file from which you want to import, or click
the Browse icon to navigate to and select the file.

b. From the Character Set dropdown list, select the character set that the file
uses.

c. If your file has a header row with the names of the columns, select First row
of the file contains Attribute names to import.

To import from an existing placeholder data type:

a. Expand the tree to locate and select an existing placeholder data type.

b. If the existing data type contains data that you want to import, select Also
Import Sample Data.

5. Click OK.

The Data Controls panel displays the detail data type as a child of the master data
type, as shown in Figure 20-9. If you did not import attributes, you can add them now,
as described in How to Add Attributes and Sample Data to a Placeholder Data Type.

Chapter 20
Creating Placeholder Data Types

20-17

Figure 20-9 Master Detail Hierarchy in Placeholder Data Control

What Happens When You Create a Master-Detail Data Type
A master-detail relationship is implemented in the same way as is a standard master-
detail relationship, using view object and view links. When you define placeholder data
types in a master-detail hierarchy, JDeveloper creates a DTLink.xml file that contains
metadata entries for view links that define that relationship. For more information
about view links, see Working with Multiple Tables in a Master-Detail Hierarchy. For
example, in the relationship between the master data type SuppliersDataType and
the detail data type SupplierLocationsDataType associated with a key Supplier_Id,
JDeveloper creates a DTLink.xml file in the form of a view link file to define that
relationship, as shown in the following example.

<?xml version="1.0" encoding="windows-1252" ?>
<ViewLink
 xmlns="http://xmlns.oracle.com/placeholder"
 Name="DTLink"
 InheritPersonalization="merge">
 <ViewLinkDefEnd
 Name="SuppliersDataType"
 Cardinality="1"
 Source="true"
 Owner="model.prototype.SuppliersDataType">
 <AttrArray Name="Attributes">
 <Item Value="model.prototype.SuppliersDataType.Supplier_Id"/>
 </AttrArray>
 </ViewLinkDefEnd>
 <ViewLinkDefEnd
 Name="SupplierLocationsDataType"
 Cardinality="-1"
 Owner="model.prototype.SupplierLocationsDataType">
 <AttrArray Name="Attributes">
 <Item Value="model.prototype.SupplierLocationsDataType.Supplier_Id"/>
 </AttrArray>
 </ViewLinkDefEnd>
</ViewLink>

Using Placeholder Data Controls
You can use the placeholder data controls to create a layout, search form, or to bind
components. After the real data controls are ready, you can rebind the components.

Chapter 20
Using Placeholder Data Controls

20-18

You can also package the placeholder data controls and add to ADF Library JARs and
reuse them.
You use placeholder data controls in the same way you would use standard data
controls. You can drag data types onto pages and use the context menus to drop
the data types as forms, tables, trees, graphs, and other components. You can drop
individual attributes onto pages as text, lists of values, single selections, and other
components. You can use any of the built-in operations such as Create, Execute, and
Next by dropping them as buttons, command links, and menu items.

You can work in several ways to take advantage of placeholder data controls:

• Build a page using the placeholder data controls and rebind to real data controls
later.

• Build a page using components, bind them to placeholder data controls, and
rebind to real data controls later.

• Build a page using some combination of components from the Components
window, components from the placeholder data controls, and then bind or rebind
to the real data controls later.

Limitations of Placeholder Data Controls
You can use placeholder data controls in your application development in many
situations. For most UI design evaluations, placeholder data controls should be able to
fully substitute for real data controls.

There are a few limitations:

• Because data types are not tied to an underlying data source, the Commit and
Rollback operations do not perform real transactions, nor do they update the
cache.

• Placeholder data controls can only be created declaratively. You cannot create
custom methods like you can with a real application module or data control.

• Placeholder data controls cannot be used when there is a need either for custom
data or for filtering or custom code to fetch data. Placeholder data controls will
disable those operations.

Creating Layout
Use the drag-and-drop feature to create the page using the placeholder data controls,
any available real data controls, and components from the Components window. If you
intend to run a page or application that requires real data, enter sample data for your
placeholder data types. If you have a large amount of sample data, you may be able to
create CSV files from the data source and load them into the data type. You may also
use spreadsheets and other tools to create CSV sample data files.

Creating a Search Form
In a standard data control, you can create view criteria on view objects to modify the
query. These view criteria are also used for drag-and-drop creation of query and quick
query search forms. The named view criteria items appear under the Named Criteria
node for a data collection. For more information about query and quick query search
forms, see Creating ADF Databound Search Forms .

Chapter 20
Using Placeholder Data Controls

20-19

For placeholder data controls, there is also a Named Criteria node under each data
type node. An automatically created All Queriable Attributes item appears under this
node and can be used to drag and drop onto pages to create the query or quick query
search forms.

Binding Components
Instead of building the page using the data controls, for instance, if you are unsure of
the shape of your data, you can lay out the page first using the Components window
and later bind it to the data types, attributes, or operations of the placeholder data
controls.

Rebinding Components
After the final data controls are available, you can simply rebind the components.
You can select the component in the Structure window and use the context menu to
open the relevant rebind dialog. You can also drag and drop the data control item
onto the UI component to initiate a rebinding editor. The rebinding procedures are the
same whether the component was originally bound to a placeholder data control or a
standard data control.

For more information about rebinding components, see Creating a Basic Databound
Page and Creating ADF Databound Tables .

Packaging Placeholder Data Controls to ADF Library JARs
A useful feature of placeholder data controls is that they allow parallel development
and division of labor among developers and designers. You may be able to leverage
that further by packaging placeholder data controls into reusable components as
ADF Library JARs. ADF Libraries are JARs that have been packaged to contain all
the necessary artifacts of an ADF component. For more information about reusable
components and the ADF Library, see Reusing Application Components . You can
create libraries of placeholder data controls and distribute them to multiple designers
working on the same UI project. Because they are lightweight, you can even use them
in place of available real data controls for the earlier phases of UI design.

Chapter 20
Using Placeholder Data Controls

20-20

21
Creating ADF REST Data Controls from
ADF RESTful Web Services

This chapter describes how to create data controls for ADF RESTful web services that
are based on ADF Business Components application modules.
This chapter includes the following sections:

• About Data Controls for RESTful Web Services Based on Application Modules

• Consuming Business Components as REST Resources with a REST Data Control

• Using REST Data Controls

• Configuring REST Data Controls Published by Application Modules

About Data Controls for RESTful Web Services Based on
Application Modules

In ADF, using the Data Controls panel, you can create UI components to represent
REST resources and methods through which you can consume the RESTful web
services functionality.
ADF Business Components can be configured to publish RESTful web services. This
enables you to develop applications that use such services published by other parts
of the application or by a different application entirely. Therefore, when you use these
services, you do not have to package the underlying business components with your
application.

To simplify the consumption of RESTful web services that are based on ADF Business
Components, you can use JDeveloper to create connections to these services
and then generate data controls based on the resources encompassed by those
connections. You can then build a client for the RESTful web service by using the
Data Controls panel to create UI components to represent the REST resources and
methods. You do not need to write any code to parse the web service or create a client
web application that implements the service.

Though the web services exposed by application modules are based on REST
principles, when you consume the services using data controls, you interact with
them in much the same way that you would directly with an application module. The
underlying implementation of the pages' data operations are based on REST methods,
but you can build the pages with the same types of data control objects and built-in
operations that you use when creating databound UI components based on application
module data controls.

Though RESTful web services are stateless between requests, applications created
with data controls based on RESTful web services published by application modules
behave in a stateful manner. However, because the information about the state of the
application is contained within the exchanged messages and not on the server, the
application is stateless. User CRUD actions corresponding to HTTP methods (GET,
PATCH, POST, and DELETE) are cached until the user invokes the Commit or Rollback

21-1

operation, at which point the cache is cleared (and the data is committed to the data
source or the changes are discarded).

Note:

This chapter concerns the creation of data controls that are based
on RESTful web services that expose functionality developed with ADF
Business Components. It is also possible to create data controls based on
SOAP-based web services and RESTful web services that are not based
on ADF Business Components. For more information, see "Exposing Web
Services Using the ADF Model Layer" in Developing Applications with Oracle
ADF Data Controls.

REST Web Service Data Control Use Cases and Examples
You can create a data control to consume RESTful web services that are exposed by
ADF Business Components. You then use the data controls to create databound UI
components on a web page to access the service's functionality.

Typically you consume such web services as a way to obtain functionality for an
application without having to develop that functionality yourself. In addition, you do
not need to package the base application modules directly in your application. These
RESTful web services that you consume might be published by a partner, a service
provider, or another development team, or they might be part of a cloud-based service.

Additional Functionality for REST Web Service Data Controls
You may find it helpful to understand other data access features before you start
working with RESTful web services based on ADF Business Components. Following
are links to other functionality that may be of interest.

• For further details on how ADF data controls and data binding work, see Using
ADF Model in a Fusion Web Application.

• For information on designing databound user interfaces by dragging items from
the Data Controls panel and dropping them on pages as UI components, see
Creating a Basic Databound Page.

• For information about publishing RESTful web services based on ADF Business
Components, see Creating RESTful Web Services with Application Modules.

Consuming Business Components as REST Resources with
a REST Data Control

ADF provides a wizard to create an IDE connection for RESTful web services based
on ADF Business Components, which is added to the Resource Window. You can
then use this IDE connection in any application window to consume the RESTful web
services.
The REST data control enables you to access and consume data streams from
specified URIs defined by running RESTful web services that have been published

Chapter 21
Consuming Business Components as REST Resources with a REST Data Control

21-2

by ADF Business Components. There are two ways of creating the connections that
consumes RESTful web services that are based on the ADF Business Components:

1. Create an IDE connection to the describe resource of the RESTful web service
that has been published by the application module and then create a data control
that is based on that connection.

2. Create a REST connection and the data controls together by using the Web
Service Data Control wizard.

How to Create a REST Connection
You use the Create REST Connection dialog to create an IDE connection to
a describe resource for a RESTful web service based on an ADF Business
Components application module. You can access this wizard through the New Gallery
or the Resources window. Any connection that you create with this wizard is added
to the Resources window and can be used to create a data control in any application
workspace.

Before you begin:

It may be helpful to have a general understanding of REST data controls. For more
information, see Consuming Business Components as REST Resources with a REST
Data Control.

You may also find it helpful to understand additional functionality that can be added
using other RESTful web services features. For more information, see Additional
Functionality for REST Web Service Data Controls.

Make sure you have access to the RESTful web service that the data control will
access. To use the describe feature to create a REST connection, the RESTful web
service must be based on an ADF Business Components application module.

To create a REST connection:

1. From the main menu, choose File > New > From Gallery.

2. In the New Gallery, expand General, select Connections and then REST
Connection, and click OK.

3. In the Create REST Connection dialog, enter a name for the connection.

4. Select the IDE Connections radio button.

5. In the URL Endpoint field, enter the URI for the REST resource's describe
object.

Chapter 21
Consuming Business Components as REST Resources with a REST Data Control

21-3

Note:

This URI is composed of the host, port, resource path, and the describe
resource. The resource path typically consists of the context root of the
web service project plus the URL pattern specified in the servlet mapping
in the REST project's web.xml file. Do include the version name and
resource name, but do not include any URL parameters.

For example, you can enter something like the following:

http://service.example.com:7101/WebServiceProjectContextRoot/
rest/VersionName/ResourceName/describe

6. Select the level of authentication from the Authentication Type dropdown list.

None is the default authentication type and disables authentication. Use Digest
when security is desired. In this way, the password will be transmitted across the
network as an MD5 digest of the user's password and cannot be determined by
sniffing network traffic. Basic authentication is primarily only useful when service
access over the network does not require high security.

7. If digest or basic authentication is selected, specify the user name and password
required to access the web site.

8. After you have entered the name and endpoint, you can click Test Connection to
verify the REST connection is valid.

9. Click OK.

What Happens When You Create a REST Connection
The REST connection is created as an IDE connection in JDeveloper and is available
for use in any application that you are developing in the IDE. You can view the
connection in the IDE Connections panel of the Resources window as shown in
Figure 21-1.

Figure 21-1 Resources Window with a REST Connection

How to Create a Data Control From ADF REST Resources
You can create a REST data control by dragging a resource listed under a REST
connection from the Resources window to the Data Controls panel. Unlike with the

Chapter 21
Consuming Business Components as REST Resources with a REST Data Control

21-4

creation of REST data controls based on other types of RESTful web services, you do
not need to go through a complex wizard to configure how the data control exposes
individual resources.

Before you begin:

It may be helpful to have a general understanding of REST data controls. For more
information, see Consuming Business Components as REST Resources with a REST
Data Control.

You may also find it helpful to understand additional functionality that can be added
using other RESTful web services features. For more information, see Additional
Functionality for REST Web Service Data Controls.

You need to complete these tasks:

• Create an application workspace and a project in that workspace. Depending on
how you decide to organize your projects, you can use an existing application
workspace and project or create new ones. For information on creating an
application workspace, see "Creating Applications and Projects" in Developing
Applications with Oracle JDeveloper.

• Create a REST connection as described in How to Create a REST Connection.

To create a REST data control:

1. From the main menu, choose Window > Resources.

2. In the Applications window, select the node for the project where you want to
create the data control.

3. In the Resources window, expand IDE Connections and expand the REST
connection.

4. Select the resource on which you want to base the data control, as shown in
Figure 21-2, and drag it to the Data Controls panel.

Figure 21-2 Resource Selected from RESTful web service Connection

5. In the Confirm Add Resource dialog as shown in Figure 21-3, select the project
where you want to generate the data control and click Add.

Chapter 21
Consuming Business Components as REST Resources with a REST Data Control

21-5

Figure 21-3 Confirm Add Resource Dialog

6. Repeat steps 4 and 5 for each resource that you want to include in the data
control.

How to Create an ADF Data Control Using the Web Service Data
Control Wizard

You can use the Web Service Data Control wizard to create a REST connection
and the data controls together. The REST connection you create will consume the
RESTful web services that are based on the ADF Business Components. Creating
a data control in this way does not require any manual configuration, because the
necessary metadata is provided in the REST service’s describe endpoint.

Before you begin:

It may be helpful to have an understanding of how web service data controls are used
in ADF applications. For more information, see About Web Service Data Controls in
ADF Applications.

It may be helpful to have an understanding of RESTful web services based on ADF
Business Components. For more information, see Creating RESTful Web Services
with Application Modules.

You may also find it helpful to understand additional functionality that can be added
using other web services features. For more information, see Additional Functionality
for Web Service Data Controls in ADF Applications.

You will need to complete these tasks:

• Create the ADF REST resource and deploy it as a RESTful web service, as
described in Creating RESTful Web Services with Application Modules.

To create a REST connection and data control for a RESTful web service using the
Data Control Wizard:

1. In the Applications window, right-click the project in which you want to create a
web service data control and choose New > From Gallery.

2. In the New Gallery, select All Items, scroll down, select Web Service Data
Control (SOAP/REST) (Data Controls), and then click OK.

3. In the Create Web Service Data Control wizard, on the Data Source page, specify
a name for the data control and select the REST radio button.

Chapter 21
Consuming Business Components as REST Resources with a REST Data Control

21-6

You can either create Describe-Based ADF Data Control or Generic Data Control
with manually described features.

4. Select Describe-Based ADF Data Control.

5. Click the Create a new REST connection icon to open the Create REST
Connection dialog.

6. Enter a name for the connection and a describe URI, which is the RESTful web
service that is based on the ADF Business Components. Do not include any
resources or parameters in the URL.

This URI is composed of the host, port, resource path, and the describe resource.
The resource path typically consists of the context root of the web service project
plus the URL pattern specified in the servlet mapping in the REST project's
web.xml file. Do include the version name and resource name, but do not include
any URL parameters. For example, you can enter something like the following:

http://service.example.com:7101/WebServiceProjectContextRoot/rest/
VersionName/ResourceName/describe

7. Select the level of authentication from the Authentication Type dropdown list.
None is the default authentication type and disables authentication. Use Digest
when security is desired. In this way, the password will be transmitted across the
network as an MD5 digest of the user's password and cannot be determined by
sniffing network traffic. Basic authentication is primarily only useful when service
access over the network does not require high security.

Note:

In the Create REST Connection dialog, you can click Test Connection
to verify that you can connect to the URI. However, the URI's server
may be configured to not accept requests on the base URI, meaning that
the test will fail. Regardless of that fact, you can click OK to create the
connection. If you have such a base URI and would like to make sure
that you can connect to the service, you can temporarily add a resource
to the URL, test the connection, and then remove the resource before
clicking OK.

8. Click Next.

9. On the OWSM Policies page, you can optionally set policies for the web service
client as required, and click Next

10. Based on the web service connection that you specified, the Select Resources
page displays the list of resources. You can either select all the resources to
add to the data control, which is the default selection, or select a specific set of
resources to add to the data control.

11. Click Next, and click Finish.

What Happens When You Create a Data Control Based on a REST
Connection

When you create a data control based on a resource encompassed by a REST
connection, JDeveloper creates a data control definition file (DataControls.dcx),

Chapter 21
Consuming Business Components as REST Resources with a REST Data Control

21-7

opens the file in the overview editor, and displays the data control's hierarchy in the
Data Controls panel.

The DataControls.dcx overview editor is populated with collection nodes for each
resource. The Data Controls panel displays those same collection nodes in addition to
subnodes for attributes and operations for those collections.

For example, Figure 21-4 shows a data control with collection object called
DepartmentsView that corresponds with a resource exposed by the RESTful web
service. Its subnodes include attributes of that collection and a nested collection,
which can be used to create a list-of-values (LOV) component. In addition, it exposes
a combination of data control methods and built-in data control operations that are
mapped to standard REST methods.

Figure 21-4 Data Controls Panel with REST Data Control Displayed

For operations that take a parameter of a complex data type, a structured attribute
node also appears.

For more information on the objects displayed in the Data Controls panel, see Using
REST Data Controls.

Using REST Data Controls
Similar to other data controls, you can use the Data Controls panel for the REST data
controls. You can drag an drop the components from the Data Control panel, add
attributes, and configure them.
As with other kinds of data controls, you can design a databound user interface by
dragging an item from the Data Controls panel and dropping it on a page as a specific
UI component. For information on general use of the Data Controls panel, see How to
Use the Data Controls Panel.

In the Data Controls panel, each data control object is represented by an icon.
Table 21-1 describes what each icon represents, where it appears in the Data Controls
panel hierarchy, and what components it can be used to create.

Chapter 21
Using REST Data Controls

21-8

Note:

You can also create data controls based on REST web services that are
not based on ADF Business Components. However, such data controls have
some differences in the exposed methods and resources. For example, the
Commit and Rollback operations are not exposed for REST data controls
that are not based on ADF Business Components. For information on
creating and using REST data controls not based on business components,
see Consuming Web Services Using the ADF Model Layer in Developing
Applications with Oracle ADF Data Controls.

Table 21-1 Data Controls Panel Icons and Object Hierarchy for REST Data Control

Icon Name Description Used to Create...

Data
Control

Represents a data control. You cannot use the data control
itself to create UI components, but you can use the child
objects listed under the data control. There may be more
than one data control, each representing a logical grouping
of data functions.

Serves as a container for the
other objects. Not used to
create anything.

Chapter 21
Using REST Data Controls

21-9

Table 21-1 (Cont.) Data Controls Panel Icons and Object Hierarchy for REST Data Control

Icon Name Description Used to Create...

Method Represents any custom non-HTTP methods that are
exposed as part of the web service.

Note:

When you specify a
HTTP payload method,
the Web Services Data
Control generates a schema
and displays the specified
operations (GET, POST,
PATCH, or DELETE) in
the Data Controls panel.
These payload operations are
represented as Method. If a
Method accepts arguments,
those arguments appear
in a Parameters node as
parameters, nested inside the
method's node.

Note:

While designing a page,
you can use these payload
operation methods on a form
as a command button or link.
When you drop an operation
on a form, the operation
takes the corresponding input
parameters that is already
dropped as input. You can
then bind the form to this
button.

Command components.

For methods that
accept parameters:
command components and
parameterized forms.

See Using Command
Components to Invoke
Functionality in the View
Layer.

Chapter 21
Using REST Data Controls

21-10

Table 21-1 (Cont.) Data Controls Panel Icons and Object Hierarchy for REST Data Control

Icon Name Description Used to Create...

Method
Return

Represents an object that is returned by a web service
method. The returned object can be a single value or a
collection.

A method return appears as a child under the method
that returns it. The objects that appear as children under
a method return can be attributes of the collection,
other methods that perform actions related to the parent
collection, and operations that can be performed on the
parent collection.

When a single-value method return is dropped, the method
is not invoked automatically by the framework. You should
either drop the corresponding method as a button to
invoke the method, or if working with task flows you can
create a method activity for it. For more information about
executables, see Executable Binding Objects Defined in the
Page Definition File.

The same components as for
collections and attributes and
for query forms.

For more information on query
forms, see Creating ADF
Databound Search Forms .

Collection Represents a data collection returned by an operation on
the URL service. Collections appear as children under
method returns, other collections, or structured attributes.
The children under a collection may be attributes, other
collections, custom methods, and built-in operations that
can be performed on the collection.

Forms, tables, graphs,
trees, range navigation
components, and master-
detail components.

See Creating a Basic
Databound Page, Creating
ADF Databound Tables ,
Displaying Master-Detail
Data , and Creating
Databound Chart and Gauge
Components..

Structured
Attribute

Represents a returned object that is a complex type but
not a collection. For example, a structured attribute might
represent a single user assigned to the current service
request.

Note:

If you specify a HTTP
payload method, the data
control generates a schema
for specified operations
(GET, POST, PATCH, or
DELETE) and displays the
input parameters for each
operation separately in the
Data Controls panel. While
designing a page, you can
use these input parameters
for the operations and can
drop on a page as an editable
form.

Label, text field, date, list
of values, and selection list
components

For more information, see
Creating Text Fields Using
Data Control Attributes and
Creating Databound Selection
Lists and Shuttles ..

Chapter 21
Using REST Data Controls

21-11

Table 21-1 (Cont.) Data Controls Panel Icons and Object Hierarchy for REST Data Control

Icon Name Description Used to Create...

Attribute Represents a discrete data element in an object (for
example, an attribute in a row). Attributes appear as
children under the collections or method returns to which
they belong.

Label, text field, and selection
list components.

For more information, see
Creating Text Fields Using
Data Control Attributes.

Operation Represents a built-in data control operation that performs
actions on the parent object. Data control operations are
located in an Operations node under collections and under
the data control's root node.

The following navigation operations are supported: First,
Last, Next, and Previous. Execute is supported for
refreshing queries.

Because REST data controls based on business
components are transactional, any data operations that a
user performs are batched together and not committed to
the data source until the user issues the Commit operation.
Likewise, the Rollback operation is available for the user
to undo any uncommitted changes.

UI command components,
such as buttons, links, and
menus.

See Creating Command
Components Using Data
Control Operations and
Creating an Input Form.

Parameter Represents a parameter value that is declared by the
method under which it appears. Parameters appear in a
node under a method or operation.

Label, text, and selection list
components.

Note:

In order to use the Data Controls panel for a service based on a REST
connection, the service needs to be running and accessible through the
connection. Otherwise the Data Controls panel will not have the information
necessary to display the structure of the service and enable you to create UI
components based on those elements.

Configuring REST Data Controls Published by Application
Modules

In ADF, you can use the overview editor for the DataControls.dcx file to configure
the REST data controls that are based on RESTful web services. This file stores the
metadata and configuration details for the data control that is specific to a resource.
After you create a REST data control based on a RESTful web service that
is published by an ADF Business Components application module, you can use
declarative metadata to configure some aspects the default appearance and behavior
of the UI components created from the data control. The things that you can configure
this way include:

• Attribute default value

Chapter 21
Configuring REST Data Controls Published by Application Modules

21-12

• UI hints for labels, tooltips, number formats, and so on

• List of Value (LOV) objects

• Validation rules

The mechanism for setting this metadata is similar to what is provided for configuring
entity objects and view objects.

How to Configure a REST Data Control
You can make a data control configurable by using the overview editor for the
DataControls.dcx file to create data control structure files that correspond to objects
encompassed by the data control. You can then edit the individual data control
structure files.

Before you begin:

It may be helpful to have a general understanding of data control configuration.
For more information, see Configuring REST Data Controls Published by Application
Modules.

You will need to complete this task:

Create a REST data control, as described in How to Create a Data Control From
ADF REST Resources.

To configure a REST data control:

1. In the Applications window, double-click DataControls.dcx.

2. In the overview editor, select the object that you would like to configure and click
the Edit icon to generate a data control structure file, as shown in Figure 21-5.

Figure 21-5 Overview Editor for the DataControls.dcx File

Note:

To edit a REST data control, it must be based on a REST connection.
If you created the REST data control from a URL connection in a
previous version of JDeveloper, the connection was converted to a
REST connection when you migrated the application.

Chapter 21
Configuring REST Data Controls Published by Application Modules

21-13

3. In the overview editor of the data control structure file, make the desired
modifications.

What Happens When You Edit a Data Control
When you edit a data control, JDeveloper creates a data control structure file that
contains metadata for the affected collection and opens that file in the overview editor,
as shown in Figure 21-6. This file stores configuration data for the data control that is
specific to that resource, such as any UI hints or validators that you have specified for
the data object.

Figure 21-6 Overview Editor for a Data Control Structure File

Note:

REST data controls based on services published by application modules also
inherit some of the UI hints that the developer of those application modules
may have set on the base entity objects and view objects. If you set a UI
hint on the REST data control, that definition takes precedence over any
conflicting ones set at the entity object or view object level.

For more information on UI hints, validation rules, and LOVs, see the following
sections:

• Defining UI Hints for View Objects.

• Using the Built-in Declarative Validation Rules.

• Working with List of Values (LOV) in View Object Attributes.

Chapter 21
Configuring REST Data Controls Published by Application Modules

21-14

What You May Need to Know About Primary Keys in REST Data
Controls

Because a unique REST resource is identified by a specific resource URI rather than
a data attribute, the key for a REST data control based on a service published by an
application module is represented by a generated attribute called canonical. You can
see this indicated by the key icon on the Attributes page of the overview editor for the
data control structure file, as shown in Figure 21-6.

This is important to note if you want to use the setCurrentRowWithKey and
setCurrentRowWithKeyValue operations. These operations require a parameter
(rowKey) that identifies the row you want to set as current. So, rather than using the
primary key of the entity object as you would when configuring an application module
data control, you use the generated canonical attribute.

Chapter 21
Configuring REST Data Controls Published by Application Modules

21-15

22
Consuming ADF RESTful Web Services

This chapter describes the supported HTTP methods, HTTP headers, request URL
parameters, media types, and other concepts of the ADF REST runtime and the
use cases that it supports for making REST API calls on resources exposed by
ADF RESTful web services created for an ADF Business Components Model project.
The information described in this chapter is useful to the ADF Business Components
developer who wants to create RESTful web services for consumption by web service
clients through a REST API.
This chapter includes the following sections:

• About the ADF REST Framework

• Understanding ADF Business Components Resources

• Retrieving the ADF REST Resource Catalog Describe

• Retrieving the ADF REST Resource Describe

• Retrieving Resource Versions

• Retrieving the ADF REST Resource

• Creating a Resource Item

• Updating a Resource Item

• Updating or Creating Resource Items (Upsert)

• Deleting a Resource Item

• Checking for Data Consistency

• Working with Attachments

• Working with LOV

• Working with ADF REST Framework Versions

• Working with Warning and Error Responses

• Advanced Operations

• ADF REST Framework Reference

About the ADF REST Framework
ADF provides a REST framework that supports creating and interacting with resources
and ADF RESTful web services based on ADF Business Components. ADF REST
framework supports the exchange of resource information by client and server during
runtime.
The ADF REST framework is an ADF Model framework that allows Fusion web
application developers to expose a Web API based on the REST architectural
style. The framework itself does not constitute a Web API, but supports creating
and interacting with resources and RESTful web services based on ADF Business
Components business objects. A consequence of being RESTful, is a REST API that
allows client application developers to interact with exposed business objects.

22-1

In the Fusion web application, ADF REST resources acted on by RESTful web
services are backed by view object instances exposed in the data model of the
ADF Business Components Model project. ADF Business Components developers
working in the ADF Model project can decide on the set of attributes to expose from
backing view objects, the actions to make CRUD operations available, and the view
link relationships to preserve for the resulting resource.

The design-time choices made by ADF Business Components developers are
captured in REST resource definition XML files. Web service client developers may
interact with these resource definitions through the REST API supported by the
ADF REST runtime framework. As a result, the consuming service client may invoke
CRUD operations to interact with the REST resources and ADF business objects. The
data is shaped by the resource's backing view object instance, with the parent-child
relationships intact.

ADF REST Resource Use Cases and Examples
Any ADF Business Components developer working in the ADF Model project can
publish ADF REST resources to contribute to the Fusion web application.

Specific runtime features of ADF REST framework that support the exchange of
resource information by client and server include:

• Interacting with the REST resource is supported by separate JSON-based media
type structures for the resource, action execution, and the results of action
execution.

• Passing a custom header to specify the version of the REST API framework that
will be used to process requests. The version header allows you to override the
default version declaration defined by the web application. By specifying the REST
API framework version, the web application developer may opt into framework
enhancements made by Oracle.

• Interacting with the REST resource using standard HTTP request methods,
including GET, POST, PATCH, and DELETE.

• Executing an HTTP method using an X-HTTP-Method-Override header using a
POST request method when client restrictions prevent the use of standard HTTP
methods to interact with the REST resource.

• Merging payload content with the REST resource using a POST method in
combination with a header Upsert-Mode set to true. This action implements create
if the record does not exist or update if the record exists.

• Locating a REST resource item (such as a specific employee) or resource
collection (such as an collection of all employees) is supported by REST-compliant
URI path names based on resource names defined in the ADF Business
Components Model project.

• Obtaining a description of the REST resource, including the resource collection
attributes and available actions, is supported by a specific media type and
describe action.

• Obtaining a error responses in the form of a JSON payload with exception
detail when ADF REST framework version 4 or later is enabled. Alternatively,
with framework version 3 or earlier, error responses are in the form of a simple
message string.

Chapter 22
About the ADF REST Framework

22-2

• Linking to a canonical REST resource is supported when a resource with a super
set of updatable entities is defined. The canonical link supports alternate links for
the backing view object.

• Filtering of the REST resource is supported by query string parameters on the URI
specified by the client to access the specific resource.

• Encoding formats are supported on the REST resource to enable compression
and decompression.

• Content streaming of BLOB and CLOB attributes exposed by the REST resource
is supported by the ADF REST framework.

• Performing data consistency checks while invoking the RESTful web service is
supported by the ADF REST framework. This capability uses version history in the
database to enable clients to manage HTTP payloads according to updates in the
resource itself.

• Passing a custom header to specify the ADF REST framework version (for
example, version 2) with which the ADF REST runtime will use to process the
request. The ADF REST framework version permits service clients to opt into
framework enhancements made by Oracle in subsequent releases of Oracle
JDeveloper.

• Authorizing users to access the REST resource is enabled by ADF Security
permission grants.

Specific design time features of ADF REST framework that affect the availability of
runtime functionality include:

• Registering REST resources with an application-specific resource version name
(or number) to support versioning of REST resources. REST resource versions
are named in the adf-config.xml file for the application.

• Declaring a default ADF REST framework version for individual REST resources
to ensure the ADF REST runtime executes requests using functionality offered
by a particular ADF REST framework version. Declaring a particular framework
version allows service clients to opt into framework enhancements made by
Oracle in subsequent releases of Oracle JDeveloper. The default ADF REST
framework version is declared in the adf-config.xml file for the application. In
JDeveloper starting with release 12.2.1.2.0, versions 1, 2, and 3 exist. In the
release 12.2.1.4.0 and later, versions 1, 2, 3, 4, 5, 6, and 7 exist.

• Defining List of Value (LOV) attributes on the view object backing the resource to
expose LOV accessor links in the URL resource path.

• Defining row finders to locate a resource using the row finder key value in the URL
resource path.

• Defining view instance of the application data model using a super set of
updatable attributes to expose canonical links in the URL resource path.

• Configuring change-indicator attributes on the entity object backing the resource to
enable data consistency checking when making requests to access resources on
the server.

• Configuring a custom content type on the BLOB or CLOB attribute of the view
object backing the resource to support content streaming using a link exposed in
the resource.

• Configuring security to authenticate users before allowing access to the resource.

Chapter 22
About the ADF REST Framework

22-3

Additional Functionality for RESTful Web Services
You may find it helpful to understand related Oracle ADF features before you start
working with RESTful web services. Following are links to supporting functionality that
may be of interest.

• For details about ADF Business Components and creating an ADF Business
Components Model project, see Getting Started with ADF Business Components.

• For details about creating RESTful web services in the ADF Business
Components project, including enabling LOV links, row finders, canonical
resources, change indicators, custom content types for LOB attributes, and
security, see Creating ADF RESTful Web Services with Application Modules.

• For details about using the ADF REST data control to design the user interface,
see Creating ADF REST Data Controls from ADF RESTful Web Services.

About the Resource Samples in This Chapter
This chapter describes typical use cases for interacting with and manipulating
ADF REST resources. All samples are based on DEPARTMENTS, EMPLOYEES,
JOBHISTORY, and JOBS tables in the Oracle HR schema. Figure 22-1 depicts the
view objects generated from these table in the ADF Business Components model
project.

Figure 22-1 REST Sample Project - ADF Business Components View Instances

Sample Project Files and Data Model
As Figure 22-2 shows, the Model project and the business components it defines,
includes the ADF REST resource definition files. JDeveloper also generates the
RESTWebService project to enabling running and testing resources in JDeveloper.

Chapter 22
About the ADF REST Framework

22-4

Figure 22-2 REST Sample Application - ADF Business Components

As Figure 22-3 shows, the Departments resource is backed by the DepartmentsView
view object and the child resource Employees is enabled.

Chapter 22
About the ADF REST Framework

22-5

Figure 22-3 REST Sample Project - Application Module Data Model

Sample Project Resources and Resource Version Identifiers
As Figure 22-4 shows, the application defines three version release names. Each ADF
REST resource is assigned to one of these version identifiers and accessed at runtime
by the version release name. For example, several versions of the Employees resource
were created: one with a limited set of supported operations and another with a more
complete set of operations.

Note that the order of the version identifiers determines the version sequence, with
the most recent version appearing at the top of the list. In the REST samples, where
multiple versions of the Employees resource exist, the release name 11.2 identifies the
latest version.

Figure 22-4 REST Sample Project - Resource Versions

Chapter 22
About the ADF REST Framework

22-6

As Figure 22-3 shows, the application module organizes the created resources by
their assigned version release name. The Employees resource is originally created
in version 11.0 and then revised in subsequent versions 11.1 and 11.2 with the
addition of new mandatory attributes. The Jobs resource added in 11.1 supports
create operations on the Employees resource with LOV-enabled attributes.

Figure 22-5 REST Sample Project - Application Module Resource Names

As Figure 22-6 shows, the Departments resource is backed by the DepartmentsView
view object and the child resources Employees and JobHistory are enabled.

Note that the name of the child resource Employees is derived from the destination
view instance name in the defining view link. In the sample, the destination view
instance was renamed from EmployeesView1 to Employees. This supports accessing
the child resource using the name Employees in the URL resource path instead of the
default name EmployeesView1.

Figure 22-6 REST Sample Project - Departments Resource

Chapter 22
About the ADF REST Framework

22-7

As Figure 22-7 shows, version 11.0 of the Employees root resource is backed by the
EmployeesView view object. Because Employees was created as root resource, it has
no child resource accessors.

Figure 22-7 REST Sample Project - Employees Resource Version 11.0

As Figure 22-8 shows, the EmployeesView view object has multiple resources
defined in version 11.0 of the Employees root resource. The HREmployees and
BenefitsEmployees resource are backed by unique view object shaping definitions
and each of these resource defines the Employees resource as its canonical resource.

Figure 22-8 REST Sample Project - Canonical Employee Resource Version 11.0

Chapter 22
About the ADF REST Framework

22-8

As Figure 22-9 shows, version 11.1 of the Employees root resource adds functionality,
including a Create operation to enable creating resource items using the Jobs
resource for the LOV-enabled EmployeesView attribute JobId. At runtime, the Jobs
resource will supply values for the LOV-enabled attribute JobId without requiring the
context of a row. This version also enables subtype usages in the Employees resource
collection, where the JobId attribute serves as the discriminator for the subtype
resource. At runtime, the Employees resource displays the commission attribute for
employees with the SA_REP (Sales Representative) job ID.

Figure 22-9 REST Sample Project - Employees Resource Version 11.1

As Figure 22-10 shows, version 11.2 of the Employees root resource adds the
EmpByEmailFinder row finder to enable locating employees by their email address.

Figure 22-10 REST Sample Project - Employees Resource Version 11.2

Chapter 22
About the ADF REST Framework

22-9

Entity Object and View Object Customization
AsFigure 22-11 shows, the EmployeesView view object defines the LOV-enabled
attribute JobId. The LOV accessor resource returns the list of jobs by title, and
presents them as choices for the corresponding job ID.

Note that JDeveloper intentionally does not expose LOV accessors in the resource
definition. At runtime the ADF REST runtime automatically nests LOV accessor
resources as children of the resource item's LOV-enabled attribute.

Additionally, Figure 22-11 shows support for creating a new resource item with a
LOV-enabled attribute defined. The EmployeesView associates a specific version of an
LOV accessor resource (identified as v2:Jobs) with the LOV-enabled attribute JobId.
At runtime, the Employees resource describe exposes a link to the LOV resource. The
POST request to create a resource item may be completed with the aid of the LOV
resource, which relies on the view object LOV definition to return the correct values to
the LOV-enabled attribute.

Figure 22-11 REST Sample Project - Employees LOV-Enabled Attribute

As Figure 22-12 shows, the EmployeesView view object defines the EmpByEmailFinder
row finder. The row finder retrieves the employee using the employee's email address
(Email attribute) instead of the employee's ID.

Chapter 22
About the ADF REST Framework

22-10

Note that row finders are exposed on all versions of the resource by default. However,
when the row finder key attribute is defined in a particular resource definition, then it
will be mandatory to use the finder name in the URL resource path. Until the row finder
key is explicitly defined in the resource definition, the URL resource path will require
the key attribute (EmployeeId in this sample).

Figure 22-12 REST Sample Project - Employees Row Finder

As Figure 22-13 shows, the EmployeesView view object defines a custom content
type image/png on the Picture attribute. This content type replaces the default
application/octet-stream content type definition for the attribute and will be the
expected accept type when streaming the image content.

Chapter 22
About the ADF REST Framework

22-11

Figure 22-13 REST Sample Project - Employees BLOB Content Type

As Figure 22-14 shows, the Departments entity object defines the change-indicator
attribute RelState to enable support for data consistency checking. The editor for the
attributes has the Change Indicator and History Column - version number fields
enabled to configure the change indicator.

Chapter 22
About the ADF REST Framework

22-12

Figure 22-14 REST Sample Project - Departments Change Indicator Attribute

Understanding ADF Business Components Resources
With RESTful web services, ADF Business Components view objects are represented
as a resource collection when the RESTful web service is invoked at runtime.
ADF REST resources that service developers create in the ADF Business
Components model project are based on view object instances that the project
application module defines. For example:

• A Departments resource is based on a DepartmentsVO view instance and its
accessor to an EmployeesVO view instance.

• An Employees resource is based on an EmployeesVO view instance.

At runtime, when an action of the RESTful web service is invoked, the payload
returned by the service contains one or more resource collections, comprised of the
row sets queried by the backing view objects and the individual attributes of the
view object rows. The resource collections preserve the relationship of master-detail
coordinating view instances.

As Table 22-1 shows, the resource collection is the RESTful web service payload
representation of a view object instance. The resource items are the rows and
attributes of the payload item object, which in turn correspond to view object rows.

Chapter 22
Understanding ADF Business Components Resources

22-13

Note:

The format of ADF resource collections and contained items are defined
by specific ADF REST media types as JSON-encoded entities. For more
details, see ADF REST Media Types.

Table 22-1 JSON Objects and ADF Business Component Representation

JSON Object ADF Business Component

resource collection View object instance comprised of one or more rows.
Departments, Employees are examples of resource
collections based on DepartmentsVO and EmployeesVO view
instances.

resource item A view object row. The specific department 10 or employee
1012 are examples of resource items from the Departments
and Employees resource collections.

Retrieving the ADF REST Catalog Describe
When you invoke an HTTP GET method in RESTful web service to describe all the
available resources in the resource catalog, it returns JSON objects that contain the
attributes, actions, and links defined in the REST resource definitions for the web
service.
The describe for the RESTful web service resource catalog allows you to identify the
shape and actions allowed on an ADF RESTful web service defined for the service
endpoint. By default the catalog describe request returns a JSON object that contains
the information needed to understand all available public resources, including their
attributes, collections, items, annotations, actions, and links.

The ADF REST framework supports the following catalog describe use cases:

• Retrieve the full resource catalog describe, including all resource details, such as
their attributes, collections, items, annotations, actions, and links.

• Retrieve a minimal resource catalog describe, where the describe details will be
limited to resource titles and links only and children, or nested resources, will be
excluded.

• Retrieve a resource catalog describe (either full or minimal) based on resource
visibility. For example, you can retrieve the describe for only public resources, only
private (unlisted) resources, or both public and private resources.

• Retrieve a resource catalog describe (either full or minimal) but optionally exclude
or include children resources nested within a parent resource and optionally
exclude or include all resource annotations.

To retrieve the catalog describe of all the available, public resources of a specific
version in the application, you append /describe to the version URL.

For example, the following URL returns the describe for the resource catalog of all
available public resources designated as version 11.0 in the identified application:

http://host:port/context-root/rest/11.0/describe

Chapter 22
Retrieving the ADF REST Catalog Describe

22-14

Note:

Executing a GET request to retrieve a resource catalog describe requires
the client to be in the context of a particular version. For information on how
to get the version release names for the service end point, see Retrieving
Resource Versions.

When you do not require an exhaustive describe that returns the full set of information
for all resources in the same request, you can request a minimal describe. For
example, the following URL with query parameter metadataMode set to minimal returns
the describe for all parent resources but the retrieved describe information will be
limited to just the titles and links of the resources:

http://host:port/context-root/rest/11.0/describe?metadataMode=minimal

Additionally, you can append URL query parameters on the request for a minimal
catalog describe to retrieve specific details in the describe. For example, the following
URL with appended query parameters retrieves a minimal catalog describe with all
available children resources nested within their parent resources included.

http://host:port/context-root/rest/11.0/describe?
metadataMode=minimal&includeChildren=true

The following table identifies the URL query parameters the may be used with the
catalog describe request. These query parameters let you control the amount of detail
retrieved in the describe.

Chapter 22
Retrieving the ADF REST Catalog Describe

22-15

Table 22-2 Optional URL Query Parameters for Catalog Describe Requests

URL Query
Parameter

Values Description

metadataMode verbose (default)

minimal

list

Use to retrieve the description of resources with or
without all details. By default, the full catalog is retrieved,
performing an exhaustive describe that returns the
complete set of information for all resources, including
nested children resources. The full catalog describe
therefore includes the following sections of information for
each resource:

title, attributes, collection, item, annotations, children, and
links

Note that annotations must be defined by the ADF REST
resource developer in the application and may not be
present on the resource.

You can improve the readability of a large catalog and
retrieve a shallow catalog limited to the titles and links of
parent resources (does not include children resources) by
appending the URL parameter ?metadataMode=minimal
to the describe request.

If you do not want any metadata in the response but only
self links, you can append ?metadataMode=list to the
describe request.

Optionally, additional parameters may be appended
to the minimal describe request to include children
resources and / or resource annotations, as explained
for the query parameters showAnnotations and
includeChildren. For example, you can append ?
metadataMode=minimal&includeChildren=true to
retrieve a minimal catalog describe with all children
resources included.

showAnnotati
ons

true, false

(default depends
on whether full or
minimal catalog is
retrieved)

Use to either exclude or include resource annotations, as
specified in the application. The default depends on the
metadataMode parameter value:
• By default, a full catalog (metadataMode=verbose)

describe includes annotations. To exclude resource
annotations from the full catalog describe, you can
append ?showAnnotations=false on the describe
request.

• By default, a minimal catalog
(metadataMode=minimal) describe excludes
annotations. To include resource annotations in
the minimal catalog describe, you can append ?
showAnnotations=true on the describe request.

Note that annotations must be defined by the ADF REST
resource developer in the application and may not be
present on the resource

You cannot use this parameter with ?
metadataMode=list.

Chapter 22
Retrieving the ADF REST Catalog Describe

22-16

Table 22-2 (Cont.) Optional URL Query Parameters for Catalog Describe
Requests

URL Query
Parameter

Values Description

includeChild
ren

true, false

(default depends
on whether full or
minimal catalog is
retrieved)

Use to either exclude or include all available children
resources nested within a parent resource. The default
depends on the metadataMode parameter value:
• By default, a full catalog (metadataMode=verbose)

describe includes all children resources. To exclude
children resources from the full catalog describe,
you can append ?includeChildren=false on the
describe request.

• By default, a minimal catalog
(metadataMode=minimal) describe excludes all
children resources. To include children resources
in the minimal catalog describe, you can append ?
includeChildren=true on the describe request.

You cannot use this parameter with ?
metadataMode=list.

include public (default),
unlisted, all

Use to retrieve the description of resources of a certain
visibility, as declared in the application. This URL
parameter values specify including only public resources
(public), only private resources (unlisted), or both
types (all). By default, only resources that are public are
shown in the describe. To view private resources, you must
append either ?include=all or ?include=unlisted on
the describe request.

See How to Hide a Resource from the Catalog Describe.

resources A comma
separated list of
resource
collection names.

Format:<resNam
e1>,<resName2
>

Example: ?
resources=Dep
artments,Empl
oyees

Use to retrieve the description of the named resources to
filter resources at the catalog level.

Retrieving the Full Catalog Describe
ADF REST runtime supports describing all available resources for the application
end point using a GET method and performs an exhaustive describe that returns the
full set of information for all resources, including all children resources nested within
parent resources.

To examine all available resources with full information included in the resource
catalog:

1. Execute the resource catalog describe and locate the names of the resources in
the describe. The children attribute identifies nested resources.

Chapter 22
Retrieving the ADF REST Catalog Describe

22-17

2. Examine these resource objects to understand the shape of each resource:

• attributes specifies the list of available resource collection attributes.

• collection specifies the shape of the collection and specifies finders for row
finder, links, and available actions (including media types).

• item specifies the shape of the instances of the collection and itself specifies
links and available actions.

• children specifies any nested resources (and itself contains attributes,
collection, and item objects).

For example, the describe for a service with Departments and child Employees
resources returns the following objects:

{
 "Resources" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...
 }],
 "collection" : {
 ...
 }],
 "finders" : [{
 }]
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "item" : {
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "children" : {
 "Departments"
 ...
 }],
 ...
 "links" : [{
 }]
 }
}

The following sample describes version 11.0 of all resources in the resource catalog.
Note that the URL version parameter 11.0 may be replaced with an application-
specific version identifier. For more details about specifying resource versions, see
in Retrieving Resource Versions.

Chapter 22
Retrieving the ADF REST Catalog Describe

22-18

Note:

You can use the include query parameter to retrieve the full catalog
describe with resources of a certain visibility. For example, to view both
public and private resources, you can usehttp://server/demo/rest/v1/
describe?include=all. You can use all, unlisted, or public as values
for the include query parameter.

Request

• URL

http://server/demo/rest/11.0/describe

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.description+json

• Payload

{
 "Resources" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25

Chapter 22
Retrieving the ADF REST Catalog Describe

22-19

 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10",
 "lov" : {
 "childRef" : "JobsLOV",
 "attributeMap" : [{
 "source" : "JobTitle",
 "target" : "JobId"
 }],
 "displayAttributes" : ["JobTitle"]
 }
 }, {
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "Salary",
 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 8,
 "scale" : 2
 }, {
 "name" : "Picture",
 "type" : "attachment",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : false,
 "actions" : [{
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "get",
 "method" : "GET",
 "responseType" : ["image/png"]
 }]
 }],
 "collection" : {
 "rangeSize" : 24,
 "finders" : [{
 "name" : "EmpByEmailFinder",
 "title" : "EmployeesByEmailVC",
 "attributes" : [{
 "name" : "Email",

Chapter 22
Retrieving the ADF REST Catalog Describe

22-20

 "type" : "string",
 "updatable" : true,
 "required" : "Optional",
 "queryable" : false
 }]
 }, {
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.0/Employees/{id}/lov/JobsLOV",
 "name" : "JobsLOV",
 "kind" : "collection"
 }, {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Employees/{id}",
 "name" : "canonical",
 "kind" : "item"
 }, {
 "rel" : "enclosure",
 "href" : "http://server/demo/rest/11.0/Employees/enclosure/
Picture",
 "name" : "Picture",
 "kind" : "other"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",

Chapter 22
Retrieving the ADF REST Catalog Describe

22-21

 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "multiplySalary",
 "parameters" : [{
 "name" : "multiplicand",
 "type" : "number",
 "mandatory" : false
 }],
 "resultType" : "number",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.actionresult+json"]
 }]
 },
 "children" : {
 "JobsLOV" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "JobId",
 "type" : "string",
 "updatable" : false,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10
 }, {
 "name" : "JobTitle",
 "type" : "string",
 "updatable" : false,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 35
 }, {
 "name" : "MinSalary",
 "type" : "integer",
 "updatable" : false,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "MaxSalary",
 "type" : "integer",
 "updatable" : false,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 6
 }],
 "collection" : {
 "rangeSize" : 0,
 "finders" : [{
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "JobId",
 "type" : "string",
 "updatable" : false,
 "mandatory" : true,
 "queryable" : true,

Chapter 22
Retrieving the ADF REST Catalog Describe

22-22

 "precision" : 10
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees/{id}/child/
JobsLOV",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees/{id}/child/
JobsLOV/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.0/Employees/{id}",
 "name" : "parent",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Employees/{id}/child/
JobsLOV/{id}",
 "name" : "canonical",
 "kind" : "item"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }]
 },
 "links" : [{

Chapter 22
Retrieving the ADF REST Catalog Describe

22-23

 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees/{id}/child/
JobsLOV/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Employees/{id}/child/
JobsLOV/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Employees/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 },
 "Departments" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "DepartmentName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 30
 }, {
 "name" : "RelState",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true
 }],
 "collection" : {
 "rangeSize" : 24,
 "finders" : [{
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 4
 }]

Chapter 22
Retrieving the ADF REST Catalog Describe

22-24

 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "testImpl",
 "parameters" : [{
 "name" : "testid",
 "type" : "string",
 "mandatory" : false
 }],
 "resultType" : "string",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.actionresult+json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees",
 "name" : "Employees",
 "kind" : "collection",
 "cardinality" : {
 "value" : "1 to *",
 "sourceAttributes" : "DepartmentId",
 "destinationAttributes" : "DepartmentId"
 }
 }, {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/{id}",
 "name" : "canonical",
 "kind" : "item"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {

Chapter 22
Retrieving the ADF REST Catalog Describe

22-25

 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }]
 },
 "children" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10",
 "lov" : {
 "childRef" : "JobsLOV",
 "attributeMap" : [{
 "source" : "JobTitle",
 "target" : "JobId"
 }],
 "displayAttributes" : ["JobTitle"]
 }
 }, {
 "name" : "DepartmentId",
 "type" : "integer",

Chapter 22
Retrieving the ADF REST Catalog Describe

22-26

 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "Salary",
 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 8,
 "scale" : 2
 }, {
 "name" : "Picture",
 "type" : "attachment",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : false,
 "actions" : [{
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "get",
 "method" : "GET",
 "responseType" : ["image/png"]
 }]
 }],
 "collection" : {
 "rangeSize" : 0,
 "finders" : [{
 "name" : "EmpByEmailFinder",
 "title" : "EmployeesByEmailVC",
 "attributes" : [{
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "required" : "Optional",
 "queryable" : false
 }]
 }, {
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/

Chapter 22
Retrieving the ADF REST Catalog Describe

22-27

vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.0/Departments/{id}",
 "name" : "parent",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/{id}",
 "name" : "canonical",
 "kind" : "item"
 }, {
 "rel" : "enclosure",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/{id}/enclosure/Picture",
 "name" : "Picture",
 "kind" : "other"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "multiplySalary",
 "parameters" : [{
 "name" : "multiplicand",
 "type" : "number",
 "mandatory" : false
 }],
 "resultType" : "number",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/

Chapter 22
Retrieving the ADF REST Catalog Describe

22-28

vnd.oracle.adf.actionresult+json"]
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 }
}

Retrieving a Minimal Catalog Describe
ADF REST runtime supports describing all available resources while retrieving a
reduced amount of information for the application end point using a GET method.
The reduced or minimal catalog describe helps improve the readability of the describe
by limiting the resource information to resource titles, links, and available annotations.

To examine the minimal describe for all available resources in the resource catalog:

1. Execute the minimal resource catalog describe and locate the names of the
resources in the describe. Note that nested resources or children resources are
not shown by default.

2. Examine these resource objects links.

For example, the minimal describe for a service with a Departments resource returns
the following objects:

{
 "Resources" : {
 "Departments" : {
 Departments,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/describe",
 "name" : "self",
 "kind" : "describe"
 }]

Chapter 22
Retrieving the ADF REST Catalog Describe

22-29

 },
 ...
 }
}

By default children resources are not included in the minimal describe. Use the
includeChildren query parameter to retrieve the minimal catalog describe with all
available children resources nested within the parent resources. For example, to view
children resources in the minimal describe, you can use a request like the following:

http://server/demo/rest/11.1/describe?
metadataMode=minimal&includeChildren=true

The minimal describe with the includeChildren query parameter set to true for a
service with a Departments resource that includes a child resource Employees returns
the following objects:

{
 "Resources" : {
 "Departments" : {
 Departments,
 "children" : {
 "Employees" : {
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/{id}/child/
Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }]
 }
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/describe",
 "name" : "self",
 "kind" : "describe"
 }]
 },
 ...
 }
}

The following sample retrieves a minimal resource catalog describe, including children
resources, where the Employees resource is nested within the Departments resource
and the JobsLOV resource is nested in the Employees resource.

Request

• URL

http://server/demo/rest/11.1/describe?
metadataMode=minimal&includeChildren=true

• HTTP Method

GET

• Content-Type

none

Chapter 22
Retrieving the ADF REST Catalog Describe

22-30

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.description+json

• Payload

{
 "Resources" : {
 "Employees" : {
 "children" : {
 "JobsLOV" : {
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Employees/{id}/child/
JobsLOV/describe",
 "name" : "self",
 "kind" : "describe"
 }]
 }
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }]
 }
 },
 "Departments" : {
 "children" : {
 "Employees" : {
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/{id}/child/
Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }]
 }
 },
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/describe",
 "name" : "self",
 "kind" : "describe"
 }
]
 }
 }
}

Chapter 22
Retrieving the ADF REST Catalog Describe

22-31

Retrieving the Catalog Describe Based on Resource Visibility
Declaration

ADF REST runtime supports describing all available resources with a URL parameter
that includes resources of a certain visibility for the application end point using a GET
method, optionally including those resources that the application identifies as private.

By default, only resources that are public are shown in the describe. This URL
parameter can specify only public resources, only private (unlisted) resources, or both
types. To view private resources, you must append either ?include=all (both public
and private resources) or ?include=unlisted (only private resources) on the describe
request.

For more information about how the application developer declares visibility in the
resource definition, see How to Hide a Resource from the Catalog Describe.

To view private resources in the resource catalog:

1. Execute the resource catalog describe with the URL parameter ?include=all or ?
include=unlisted and locate the names of the private resources in the describe.

2. Examine these resource objects to understand the shape of each resource:

The following sample retrieves a minimal resource catalog describe, including
both public and private resources, where the Locations resource is configured as
unlisted.

Request

• URL

http://server/demo/rest/11.1/describe?metadataMode=minimal&include=all

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.description+json

• Payload

{
 "Resources" : {
 "Employees" : {
 "links" : [
 {
 "rel" : "self",

Chapter 22
Retrieving the ADF REST Catalog Describe

22-32

 "href" : "http://server/demo/rest/11.1/Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }
]
 },
 "Departments" : {
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/describe",
 "name" : "self",
 "kind" : "describe"
 }
]
 },
 "Locations" : {
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Locations/describe",
 "name" : "self",
 "kind" : "describe"
 }
]
 }
 }
}

Retrieving the ADF REST Resource Describe
When you invoke an HTTP GET method in RESTful web service to describe a single
resource, all the available resources, or the nested resources, it returns a JSON object
that contains the attributes, actions, and links defined in the REST resource definition.
The describe for the RESTful web service allows you to identify the shape and actions
allowed on an ADF RESTful web service. It returns a JSON object that contains the
attributes, actions, and links defined in the REST resource definition.

The ADF REST framework supports the following describe use cases for the service
end point:

• Describe a single resource collection.

• Describe a single resource item.

• Describe a nested resource in a parent-child relationship.

• Describe two or more named resource collections.

• Describe all available resources (resource catalog). For details, see Retrieving the
ADF REST Catalog Describe.

To retrieve the describe, invoke an HTTP GET with /describe appended to the
resource URL.

Chapter 22
Retrieving the ADF REST Resource Describe

22-33

Note:

Executing a GET request to retrieve a resource describe also requires the
client to be in the context of a particular version. For information on how
to get the version release names for the service end point, see Retrieving
Resource Versions.

For example, the following URL returns the describe for the Employees resource of
version 11.0 in the identified application:

http://host:port/context-root/rest/11.0/Employees/describe

To retrieve the describe of all the resources of a specific version in the application, you
append /describe to the version URL.

For example, the following URL returns the describe for all resources of version 11.0
in the identified application:

http://host:port/context-root/rest/11.0/describe

Describing a Resource Collection
The ADF REST runtime supports describing resource collections using a GET method.

To examine a resource collection:

1. Execute the resource collection describe and locate the names of the resources in
the describe.

2. Examine these resource objects to understand the shape of each resource:

• attributes specifies the list of available resource collection attributes.

• collection specifies the shape of the collection and specifies finder for row
finder, links, and available actions (including media types).

• item specifies the shape of the instances of the collection and itself specifies
links and available actions.

• children specifies any nested resources (and itself contains attributes,
collection, and item objects).

For example, the describe for the Departments resource returns the following objects:

{
 "Resources" : {
 "Departments" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...
 }],
 "collection" : {
 ...
 }],
 "finders" : [{
 }]
 "links" : [{
 }]

Chapter 22
Retrieving the ADF REST Resource Describe

22-34

 "actions" : [{
 }]
 },
 "item" : {
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "children" : {
 "Employees"
 ...
 }],
 ...
 "links" : [{
 }]
 }
}

The following sample describes version 11.0 of the Departments resource.

Request

• URL

http://server/demo/rest/11.0/Departments/describe

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.description+json

• Payload

{
 "Resources" : {
 "Departments" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "DepartmentName",
 "type" : "string",
 "updatable" : true,

Chapter 22
Retrieving the ADF REST Resource Describe

22-35

 "mandatory" : true,
 "queryable" : true,
 "precision" : 30
 }, {
 "name" : "RelState",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true
 }],
 "collection" : {
 "rangeSize" : 25,
 "finders" : [{
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 4
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "testImpl",
 "parameters" : [{
 "name" : "testid",
 "type" : "string",
 "mandatory" : false
 }],
 "resultType" : "string",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.actionresult+json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees",
 "name" : "Employees",
 "kind" : "collection",

Chapter 22
Retrieving the ADF REST Resource Describe

22-36

 "cardinality" : {
 "value" : "1 to *",
 "sourceAttributes" : "DepartmentId",
 "destinationAttributes" : "DepartmentId"
 }
 }, {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/{id}",
 "name" : "canonical",
 "kind" : "item"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }]
 },
 "children" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,

Chapter 22
Retrieving the ADF REST Resource Describe

22-37

 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10",
 "lov" : {
 "childRef" : "JobsLOV",
 "attributeMap" : [{
 "source" : "JobTitle",
 "target" : "JobId"
 }],
 "displayAttributes" : ["JobTitle"]
 }
 }, {
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "Salary",
 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 8,
 "scale" : 2
 }, {
 "name" : "Picture",
 "type" : "attachment",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : false,
 "actions" : [{
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "get",
 "method" : "GET",
 "responseType" : ["image/png"]
 }]
 }],
 "collection" : {
 "rangeSize" : 0,
 "finders" : [{
 "name" : "EmpByEmailFinder",
 "title" : "EmployeesByEmailVC",
 "attributes" : [{
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "required" : "Optional",
 "queryable" : false
 }]

Chapter 22
Retrieving the ADF REST Resource Describe

22-38

 }, {
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.0/Departments/{id}",
 "name" : "parent",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/{id}",
 "name" : "canonical",
 "kind" : "item"
 }, {
 "rel" : "enclosure",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/{id}/enclosure/Picture",
 "name" : "Picture",
 "kind" : "other"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/

Chapter 22
Retrieving the ADF REST Resource Describe

22-39

vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "multiplySalary",
 "parameters" : [{
 "name" : "multiplicand",
 "type" : "number",
 "mandatory" : false
 }],
 "resultType" : "number",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.actionresult+json"]
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 }
}

Describing a Resource Item
The ADF REST runtime supports describing a resource item using a GET method.

Chapter 22
Retrieving the ADF REST Resource Describe

22-40

Note that a resource item describe typically provides the same information as the
collection describe. In the case of a polymorphic collection, however, a resource item
describe will have more information than a resource collection describe. Consider, for
example, the polymorphic collection vehicles, where the vehicles resource contains an
item automobile and an item airplane. The description of vehicles will return a general
shape of all vehicles, whereas, a resource item describe of an automobile will return
the specific shape of that object.

To examine a resource item:

1. Execute the resource item describe and locate the names of the resources in the
describe. The children attribute identifies nested resources.

2. Examine the resource item describe to understand its shape.

• attributes specifies the list of available resource collection attributes.

• item specifies links to the item, including defined child collections, and
available actions.

• links specifies describe links.

For example, the describe for a Departments resource item returns the following
objects:

{
 "Resources" : {
 "Departments" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...
 }],
 "item" : {
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "links" : [{
 }]
 }
}

The following sample describes version 11.0 of an instance of the Departments
resource collection.

Note: To recursively include all children of the resource item on the requested
describe, provide the query parameter ?includeChildren=true on the describe URL.

Request

• URL

http://server/demo/rest/11.0/Departments/10/describe

• HTTP Method

GET

• Content-Type

none

• Payload

Chapter 22
Retrieving the ADF REST Resource Describe

22-41

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.description+json

• Payload

{
 "Resources" : {
 "Departments" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "DepartmentName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 30
 }, {
 "name" : "RelState",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true
 }],
 "item" : {
 "links" : [{
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/
Employees",
 "name" : "Employees",
 "kind" : "collection",
 "cardinality" : {
 "value" : "1 to *",
 "sourceAttributes" : "DepartmentId",
 "destinationAttributes" : "DepartmentId"
 }
 }, {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "canonical",
 "kind" : "item"
 }],
 "actions" : [{

Chapter 22
Retrieving the ADF REST Resource Describe

22-42

 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 }
}

Describing a Nested Resource
The ADF REST runtime supports describing an ADF REST nested resource using a
GET method.

To examine nested resources in the resource catalog:

1. Execute the nested resource describe and locate the names of the resources in
the describe. The children attribute identifies nested resources.

2. Examine these resource objects to understand the shape of each resource:

• attributes specifies the list of available resource collection attributes.

• collection specifies the shape of the collection and specifies finder for row
finder, links, and available actions (including media types).

• item specifies the shape of the instances of the collection and itself specifies
links and available actions.

• children specifies the nested resources (and itself contains attributes,
collection, and item objects).

For example, the describe for the nested resources Departments and Employees
returns the following objects:

{
 "Resources" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...

Chapter 22
Retrieving the ADF REST Resource Describe

22-43

 }],
 "collection" : {
 ...
 }],
 "finders" : [{
 }]
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "item" : {
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "children" : {
 "Departments"
 ...
 }],
 ...
 "links" : [{
 }]
 }
}

The following sample (URL1) describes version 11.0 of the Employees resource which
can be found in the context of a Department. The second sample (URL2), describes an
item of the same nested resource Employees, where the ID of the employee identifies
the nested resource item.

Note: To recursively include all children of the resource item on the requested
describe, provide the query parameter ?includeChildren=true on the describe URL.

Requests

• URL 1

http://server/demo/rest/11.0/Departments/10/child/Employees/describe

• URL 2

http://server/demo/rest/11.0/Departments/10/child/Employees/200/
describe

• HTTP Method

GET

• Content-Type

none

• Payload

none

Responses

• HTTP Code

200

• Content-Type

Chapter 22
Retrieving the ADF REST Resource Describe

22-44

application/vnd.oracle.adf.description+json

• Payload 1

{
 "Resources" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10",
 "lov" : {
 "childRef" : "JobsLOV",
 "attributeMap" : [{
 "source" : "JobTitle",
 "target" : "JobId"
 }],
 "displayAttributes" : ["JobTitle"]
 }
 }, {
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "Salary",

Chapter 22
Retrieving the ADF REST Resource Describe

22-45

 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 8,
 "scale" : 2
 }, {
 "name" : "Picture",
 "type" : "attachment",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : false,
 "actions" : [{
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "get",
 "method" : "GET",
 "responseType" : ["image/png"]
 }]
 }],
 "collection" : {
 "rangeSize" : 25,
 "finders" : [{
 "name" : "EmpByEmailFinder",
 "title" : "EmployeesByEmailVC",
 "attributes" : [{
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "required" : "Optional",
 "queryable" : false
 }]
 }, {
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/
Employees",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/

Chapter 22
Retrieving the ADF REST Resource Describe

22-46

vnd.oracle.adf.resourceitem+json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/
Employees/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "parent",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/
Employees/{id}",
 "name" : "canonical",
 "kind" : "item"
 }, {
 "rel" : "enclosure",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/
Employees/enclosure/Picture",
 "name" : "Picture",
 "kind" : "other"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "multiplySalary",
 "parameters" : [{
 "name" : "multiplicand",
 "type" : "number",
 "mandatory" : false
 }],
 "resultType" : "number",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.actionresult+json"]
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/
Employees/describe",
 "name" : "self",

Chapter 22
Retrieving the ADF REST Resource Describe

22-47

 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/
Employees/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 }
}

• Payload 2

{
 "Resources" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10",
 "lov" : {
 "childRef" : "JobsLOV",
 "attributeMap" : [{
 "source" : "JobTitle",
 "target" : "JobId"
 }],
 "displayAttributes" : ["JobTitle"]

Chapter 22
Retrieving the ADF REST Resource Describe

22-48

 }
 }, {
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "Salary",
 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 8,
 "scale" : 2
 }, {
 "name" : "Picture",
 "type" : "attachment",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : false,
 "actions" : [{
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "get",
 "method" : "GET",
 "responseType" : ["image/png"]
 }]
 }],
 "item" : {
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/
Employees/200",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "parent",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/
Employees/200",
 "name" : "canonical",
 "kind" : "item"
 }, {
 "rel" : "enclosure",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/
Employees/200/enclosure/Picture",
 "name" : "Picture",
 "kind" : "other"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]

Chapter 22
Retrieving the ADF REST Resource Describe

22-49

 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "multiplySalary",
 "parameters" : [{
 "name" : "multiplicand",
 "type" : "number",
 "mandatory" : false
 }],
 "resultType" : "number",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.actionresult+json"]
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/
Employees/200/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/
Employees/200/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 }
}

Describing Multiple Resource Collections
REST APIs support describing two or more named resource collections.

To examine the resource collections:

1. Execute the resource collection describe with the named resources using the
resources query parameter.

2. Locate the names of the resources in the describe.

3. Examine these resource objects to understand the shape of each resource:

• attributes specifies the list of available resource collection attributes.

• collection specifies the shape of the collection and specifies finders for row
finder, links, and available actions (including media types).

• item specifies the shape of the instances of the collection and itself specifies
links and available actions.

Chapter 22
Retrieving the ADF REST Resource Describe

22-50

• children specifies any nested resources (and itself contains attributes,
collection, and item objects).

For example, the describe for the Departments resource returns the following objects:

{
 "Resources" : {
 "Departments" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...
 }],
 "collection" : {
 ...
 }],
 "finders" : [{
 }]
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "item" : {
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "children" : {
 "Employees"
 ...
 }],
 ...
 "links" : [{
 }]
 }
}

The following sample uses the resources query parameter to describe version 11.0 of
the Departments and Employees resources named on the request.

Request

• URL

http://server/demo/rest/11.0/Departments/describe?
resources=Departments,Employees

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

Chapter 22
Retrieving the ADF REST Resource Describe

22-51

200

• Content-Type

application/vnd.oracle.adf.description+json

• Payload

{
 "Resources" : {
 "Departments" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "DepartmentName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 30
 }, {
 "name" : "RelState",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true
 }],
 "collection" : {
 "rangeSize" : 25,
 "finders" : [{
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 4
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/

Chapter 22
Retrieving the ADF REST Resource Describe

22-52

vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "testImpl",
 "parameters" : [{
 "name" : "testid",
 "type" : "string",
 "mandatory" : false
 }],
 "resultType" : "string",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.actionresult+json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees",
 "name" : "Employees",
 "kind" : "collection",
 "cardinality" : {
 "value" : "1 to *",
 "sourceAttributes" : "DepartmentId",
 "destinationAttributes" : "DepartmentId"
 }
 }, {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/{id}",
 "name" : "canonical",
 "kind" : "item"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }]
 },
 "children" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,

Chapter 22
Retrieving the ADF REST Resource Describe

22-53

 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10",
 "lov" : {
 "childRef" : "JobsLOV",
 "attributeMap" : [{
 "source" : "JobTitle",
 "target" : "JobId"
 }],
 "displayAttributes" : ["JobTitle"]
 }
 }, {
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "Salary",
 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 8,
 "scale" : 2
 }, {
 "name" : "Picture",
 "type" : "attachment",
 "updatable" : true,
 "mandatory" : false,

Chapter 22
Retrieving the ADF REST Resource Describe

22-54

 "queryable" : false,
 "actions" : [{
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "get",
 "method" : "GET",
 "responseType" : ["image/png"]
 }]
 }],
 "collection" : {
 "rangeSize" : 0,
 "finders" : [{
 "name" : "EmpByEmailFinder",
 "title" : "EmployeesByEmailVC",
 "attributes" : [{
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "required" : "Optional",
 "queryable" : false
 }]
 }, {
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/{id}",
 "name" : "self",
 "kind" : "item"

Chapter 22
Retrieving the ADF REST Resource Describe

22-55

 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.0/Departments/{id}",
 "name" : "parent",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/{id}",
 "name" : "canonical",
 "kind" : "item"
 }, {
 "rel" : "enclosure",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/{id}/enclosure/Picture",
 "name" : "Picture",
 "kind" : "other"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "multiplySalary",
 "parameters" : [{
 "name" : "multiplicand",
 "type" : "number",
 "mandatory" : false
 }],
 "resultType" : "number",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.actionresult+json"]
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }

Chapter 22
Retrieving the ADF REST Resource Describe

22-56

 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10",
 "lov" : {
 "childRef" : "JobsLOV",
 "attributeMap" : [{
 "source" : "JobTitle",
 "target" : "JobId"
 }],
 "displayAttributes" : ["JobTitle"]
 }
 }, {

Chapter 22
Retrieving the ADF REST Resource Describe

22-57

 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "Salary",
 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 8,
 "scale" : 2
 }, {
 "name" : "Picture",
 "type" : "attachment",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : false,
 "actions" : [{
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "get",
 "method" : "GET",
 "responseType" : ["image/png"]
 }]
 }],
 "collection" : {
 "rangeSize" : 0,
 "finders" : [{
 "name" : "EmpByEmailFinder",
 "title" : "EmployeesByEmailVC",
 "attributes" : [{
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "required" : "Optional",
 "queryable" : false
 }]
 }, {
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",

Chapter 22
Retrieving the ADF REST Resource Describe

22-58

 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.0/Departments/{id}",
 "name" : "parent",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/{id}",
 "name" : "canonical",
 "kind" : "item"
 }, {
 "rel" : "enclosure",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/{id}/enclosure/Picture",
 "name" : "Picture",
 "kind" : "other"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "multiplySalary",
 "parameters" : [{
 "name" : "multiplicand",
 "type" : "number",
 "mandatory" : false
 }],
 "resultType" : "number",
 "method" : "POST",

Chapter 22
Retrieving the ADF REST Resource Describe

22-59

 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.actionresult+json"]
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/
Employees/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 }
}

Partially Describing a Nested Resource Collection
The ADF REST runtime supports obtaining a partial describe for a nested resource
using a GET method and the parameter partialDescription to limit the depth of the
hierarchy to the next child resource only.

The partialDescription parameter used with a describe request ensures the
response payload contains only the nested collection to a depth of one nested object
in the nested parent-child hierarchy. The describe for a child of the nested parent
resource is not expand and provides only a link to retrieve that partial describe for the
next resource in the hierarchy.

To examine the partial describe of a nested resource collection and its child resource,
if any:

1. Execute the nested resource collection describe with the partialDescription
parameter and locate the name of the nested resource in the describe.

2. Examine these resource objects to understand the shape of the resource.
Specifically examine the children element to identify the partial describe link
for the next child resource in the resource hierarchy (to a depth of one nested
resource).

• attributes specifies the list of available resource collection attributes.

Chapter 22
Retrieving the ADF REST Resource Describe

22-60

• collection specifies the shape of the collection and specifies finder for row
finder, links, and available actions (including media types).

• item specifies the shape of the instances of the collection and itself specifies
links and available actions.

• children identifies any nested resource to a depth of one object and contains
a describe link with the ?partialDescription parameter to retrieve its partial
description (this child resource describe specifically does not contain the
attributes, collection, and item objects).

For example, the partial describe for the nested Employees resource returns the
following objects. Note that in this sample, the Employees collection contains the child
collection Bonus. The partial describe request limits the depth to the nested resource
and a single child of the nested resource, in this case, Bonus.

{
 "Resources" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...
 }],
 "collection" : {
 ...
 }],
 "finders" : [{
 }]
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "item" : {
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "children" : {
 "Bonus" : {
 "$ref" : "http://server/demo/rest/12.0/Departments/describe?
partialDescription=Employees.Bonus"
 }],
 ...
 "links" : [{
 }]
 }
}

The following sample retrieves a partial describe of version 12.0 of the nested
Employees resource and contains a link to retrieve the partial describe for the next
child in the resource hierarchy, Bonus.

Request

• URL

http://server/demo/rest/12.0/Departments/describe?
partialDescription=Employees

Chapter 22
Retrieving the ADF REST Resource Describe

22-61

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.description+json

• Payload

{
 "Resources" : {
 "Employees" : {
 "discrColumnType" : false,
 "ServiceConfiguration" : {
 "Cache-Control" : "max-age=30"
 },
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 25
 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 25
 }, {
 "name" : "PhoneNumber",

Chapter 22
Retrieving the ADF REST Resource Describe

22-62

 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 20
 }, {
 "name" : "HireDate",
 "type" : "datetime",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "allowChanges" : "always"
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 10
 }, {
 "name" : "Salary",
 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 8,
 "scale" : 2
 }, {
 "name" : "CommissionPct",
 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 2,
 "scale" : 2
 }, {
 "name" : "ManagerId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 6
 }, {
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 4
 }],
 "collection" : {
 "rangeSize" : 0,
 "finders" : [{
 "name" : "PrimaryKey",
 "attributes" : [{

Chapter 22
Retrieving the ADF REST Resource Describe

22-63

 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 6
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/{id}/child/
Employees",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/
vnd.oracle.adf.resourcecollection+json", "application/json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json",
"application/json"],
 "responseType" : ["application/vnd.oracle.adf.resourceitem+json",
"application/json"]
 }, {
 "name" : "upsert",
 "method" : "POST",
 "header" : "Upsert-Mode=true",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json",
"application/json"],
 "responseType" : ["application/vnd.oracle.adf.resourceitem+json",
"application/json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/{id}/child/
Employees/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/12.0/Departments/{id}",
 "name" : "parent",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Departments/{id}/child/
Employees/{id}",
 "name" : "canonical",
 "kind" : "item"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/vnd.oracle.adf.resourceitem+json",

Chapter 22
Retrieving the ADF REST Resource Describe

22-64

"application/json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json",
"application/json"],
 "responseType" : ["application/vnd.oracle.adf.resourceitem+json",
"application/json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }]
 },
 "children" : {
 "Bonus" : {
 "$ref" : "http://server/demo/rest/12.0/Departments/describe?
partialDescription=Employees.Bonus"
 }
 }
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/{id}/child/
Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Departments/{id}/child/
Employees/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 }
}

Describing a Resource Collection with Specified Fields
The ADF REST runtime supports obtaining a limited describe for resource collections
using a GET method and the parameter fields. The fields parameter used with a
describe request ensures the response payload contains only the specified attributes
of the collection.

To examine a resource collection:

1. Execute the resource collection describe and locate the names of the resources in
the describe.

2. Examine these resource objects to understand the shape of each resource:

• attributes specifies the list of available resource collection attributes.

• collection specifies the shape of the collection and specifies finder for row
finder, links, and available actions (including media types).

• item specifies the shape of the instances of the collection and itself specifies
links and available actions.

• children specifies any nested resources (and itself contains attributes,
collection, and item objects).

Chapter 22
Retrieving the ADF REST Resource Describe

22-65

For example, the describe for the Departments resource returns the following objects:

{
 "Resources" : {
 "Departments" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...
 }],
 "collection" : {
 ...
 }],
 "finders" : [{
 }]
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "item" : {
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "children" : {
 "Employees"
 ...
 }],
 ...
 "links" : [{
 }]
 }
}

The following samples show retrieving a limited describe for version 12.0 of the
Departments and nested Employees resources. The first request (URL 1) uses the
fields parameter to retrieve a single attribute of the Departments resource collection.
The second request (URL 2) uses the fields parameter and retrieves all attributes of
the Departments resource collection by specifying the wildcard character (*) and then
also retrieves the single EmployeeId attribute of the nested Employees child resource
collection.

Request

• URL 1

http://server/demo/rest/12.0/Departments/describe?
fields=DepartmentName

URL 2

http://server/demo/rest/12.0/Departments/describe?
fields=*;Employees:EmployeeId

• HTTP Method

GET

• Content-Type

none

Chapter 22
Retrieving the ADF REST Resource Describe

22-66

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.description+json

• Payload 1

{
 "Resources" : {
 "Departments" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "DepartmentName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 30
 }],
 "collection" : {
 "rangeSize" : 25,
 "finders" : [{
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 4
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "upsert",
 "method" : "POST",
 "header" : "Upsert-Mode=true",
 "requestType" : ["application/json", "application/

Chapter 22
Retrieving the ADF REST Resource Describe

22-67

vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, { }]
 },
 "item" : {
 "links" : [{
 "rel" : "child",
 "href" : "http://server/demo/rest/12.0/Departments/{id}/child/
Employees",
 "name" : "Employees",
 "kind" : "collection",
 "cardinality" : {
 "value" : "1 to *",
 "sourceAttributes" : "DepartmentId",
 "destinationAttributes" : "DepartmentId"
 }
 }, {
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Departments/{id}",
 "name" : "canonical",
 "kind" : "item"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }]
 },
 "children" : {
 "Employees" : {
 "$ref" : "http://server/demo/rest/12.0/Departments/describe?
partialDescription=Employees"
 }
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Departments/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]

Chapter 22
Retrieving the ADF REST Resource Describe

22-68

 }
 }
}

Payload 2

{
 "Resources" : {
 "Departments" : {
 "discrColumnType" : false,
 "ServiceConfiguration" : {
 "Cache-Control" : "max-age=30"
 },
 "attributes" : [{
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 4
 }, {
 "name" : "DepartmentName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 30
 }, {
 "name" : "ManagerId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 6
 }, {
 "name" : "LocationId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 4
 }],
 "collection" : {
 "rangeSize" : 25,
 "finders" : [{
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 4
 }]
 }],
 "links" : [{

Chapter 22
Retrieving the ADF REST Resource Describe

22-69

 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/
vnd.oracle.adf.resourcecollection+json", "application/json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json",
"application/json"],
 "responseType" : ["application/vnd.oracle.adf.resourceitem+json",
"application/json"]
 }, {
 "name" : "upsert",
 "method" : "POST",
 "header" : "Upsert-Mode=true",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json",
"application/json"],
 "responseType" : ["application/vnd.oracle.adf.resourceitem+json",
"application/json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "child",
 "href" : "http://server/demo/rest/12.0/Departments/{id}/child/
Employees",
 "name" : "Employees",
 "kind" : "collection",
 "cardinality" : {
 "value" : "1 to *",
 "sourceAttributes" : "DepartmentId",
 "destinationAttributes" : "DepartmentId"
 }
 }, {
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Departments/{id}",
 "name" : "canonical",
 "kind" : "item"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/vnd.oracle.adf.resourceitem+json",
"application/json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json",
"application/json"],
 "responseType" : ["application/vnd.oracle.adf.resourceitem+json",

Chapter 22
Retrieving the ADF REST Resource Describe

22-70

"application/json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }]
 },
 "children" : {
 "Employees" : {
 "discrColumnType" : false,
 "ServiceConfiguration" : {
 "Cache-Control" : "max-age=30"
 },
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 6
 }],
 "collection" : {
 "rangeSize" : 0,
 "finders" : [{
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "allowChanges" : "always",
 "precision" : 6
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/{id}/child/
Employees",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/
vnd.oracle.adf.resourcecollection+json", "application/json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json", "application/json"],
 "responseType" : ["application/
vnd.oracle.adf.resourceitem+json", "application/json"]
 }, {
 "name" : "upsert",
 "method" : "POST",
 "header" : "Upsert-Mode=true",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json", "application/json"],
 "responseType" : ["application/

Chapter 22
Retrieving the ADF REST Resource Describe

22-71

vnd.oracle.adf.resourceitem+json", "application/json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/{id}/child/
Employees/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/12.0/Departments/{id}",
 "name" : "parent",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Departments/{id}/child/
Employees/{id}",
 "name" : "canonical",
 "kind" : "item"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/
vnd.oracle.adf.resourceitem+json", "application/json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/
vnd.oracle.adf.resourceitem+json", "application/json"],
 "responseType" : ["application/
vnd.oracle.adf.resourceitem+json", "application/json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/{id}/child/
Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Departments/{id}/child/
Employees/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",

Chapter 22
Retrieving the ADF REST Resource Describe

22-72

 "href" : "http://server/demo/rest/12.0/Departments/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 }
}

Using ETags in Describe Requests
ETags provide the ability for service clients to determine the metadata changes in
the web server since the last time it fetched the describe. This is accomplished by
returning an ETag header in the response of a describe request.

An ETag is an identifier assigned by a web server to a specific version of a REST
resource describe. If the REST resource describe representation ever changes, a new
and different ETag is assigned. ETags are used in the HTTP header and are unique.
For more information on using ETags, see Checking for Data Consistency.

When the REST resource describe is retrieved, the web server will return the REST
resource's current representation along with its corresponding ETag value, which is
placed in an HTTP response header ETag field. For example:

ETag: "5265766973696F6E33"

The client may cache the representation, along with its ETag. If the client wants to
retrieve the same describe again, it will send its previously saved copy of the ETag
along with the request in a If-None-Match field. For example:

If-None-Match: "5265766973696F6E33"

On this subsequent request, the server compares the client's ETag with the ETag for
the current version of the resource. If the ETag values match, which indicates that the
resource has not changed, then the server sends a response with a HTTP 304 Not
Modified status. This status indicates that the cached version is good for use.

The following samples describe the ETag behavior for the employees resource.

Example 22-1 When ETag Values Match

Request

• URL

/rest/v1/employees/describe

• HTTP Method

GET

• If-None-Match

"5265766973696F6E33"

• Metadata-Context

label=latest

• Payload

Chapter 22
Retrieving the ADF REST Resource Describe

22-73

none

Response

• HTTP Code

304

• ETag

"5265766973696F6E33"

• Metadata-Context

label="Revision3"

• Payload

none

Example 22-2 When ETag Values Do Not Match

Request

• URL

/rest/v1/employees/describe

• HTTP Method

GET

• If-None-Match

 "5265766973696F6E33"

• Metadata-Context

label=latest

• Payload

none

Response

• HTTP Code

200

• ETag

"5265766973696F6E34"

• Metadata-Context

label="Revision4"

• Payload

{
 "Resources" : {
 "employees" : {
 ...
 }
 }
}

Chapter 22
Retrieving the ADF REST Resource Describe

22-74

Note:

ETags are not returned if the request metadata context is not configured to
read the latest MDS label.

Retrieving Resource Versions
In ADF, you can create version identifiers for an ADF REST resource and assign
lifecycle status so that you can manage and update an existing resource definition with
ease.
In JDeveloper, ADF REST resource developers create version identifiers and
associate these identifiers with the resources they create. The use of the version
identifier allows the REST resource developer to manage updating an existing
resource definition. When a resource needs to be updated with a change that is not
backward compatible with the previous version, the resource developer may create a
new version of the resource and assign it a unique version identifier.

The ADF REST runtime supports getting the versions defined in the application, which
can include retrieving all available versions or only a specific version.

Additionally, the REST resource developer can assign a lifecycle status (active,
desupported, deprecated) when they create or update a version identifier. Resources
that have been tagged deprecated are handled as valid resources and that status
has no runtime impact. Whereas, resources that have been tagged with the lifecycle
status desupported will no longer be accessible by the service client and requests for
desupported versions will return the following error message:

JBO-29151: The requested version 'x' has been desupported.

If the service client requests a resource that does not exist for the requested version,
the ADF REST runtime will fallback to a previous version with status active or
deprecated. Thus, if the Departments resource versions 11.0 and 11.1 exist but 11.2
does not, the request for version 11.2 will return the next more recent resource,
version 11.1.

Retrieving All Available Release Version Names
The ADF REST runtime supports retrieving the release version names defined for the
service end point using a GET method.

To examine the release version names:

1. Execute the service end point describe and locate the available release version
names in the describe.

2. Examine these elements to understand the order of the release versions:

• version specifies the version name, as defined in the adf-config.xml file.

• isLatest property specifies the version name of the most recent release
version.

• predecessor-version specifies the link to the previous release version.

• successor-version specifies the link to the next latest release version.

Chapter 22
Retrieving Resource Versions

22-75

• current specifies the link to the most recent release version.

3. Optionally, examine these elements to understand the version of the ADF REST
framework version that will be used to process requests for a specific release
version:

• defaultFrameworkVersion property specifies the default ADF REST
framework version that has been associated with a particular release version,
as optionally defined by the ADF REST resource developer in the adf-
config.xml file. Note that a new ADF REST framework version may introduce
new functionality. Thus, associating a specific framework version with each
release version ensures that service clients interact with the appropriate level
of functionality. See Working with ADF REST Framework Versions.

• allowedFrameworkVersions property specifies the list of ADF REST
framework versions that are supported for a particular release version. Service
clients may override the default framework version with any value in the list by
specifying the value in the REST-Framework-Version header.

For example, the describe for a service end point with two release versions returns the
following objects:

{
 "items" : [
 {
 "version" : "version_identifier_latest",
 "isLatest" : true,
 "adf:extension" : {
 "defaultFrameworkVersion" : "framework_identifier",
 "allowedFrameworkVersions" : ["framework_identifier1",
"framework_identifier2", ...]

 },
 "links" : [
 {
 "rel" : "self",
 ...

 },
 {
 "rel" : "canonical",
 ...

 },
 {
 "rel" : "predecessor-version",
 ...

 },
 {
 "rel" : "describe",
 ...

 }
]
 },
 {
 "version" : "version_identifier_previous",
 "adf:extension" : {
 "defaultFrameworkVersion" : "framework_identifier",
 "allowedFrameworkVersions" : ["framework_identifier1",

Chapter 22
Retrieving Resource Versions

22-76

"framework_identifier2", ...]
 },
 "links" : [
 {
 "rel" : "self",
 ...
 },
 {
 "rel" : "canonical",
 ...
 },
 {
 "rel" : "successor-version",
 ...
 },
 {
 "rel" : "describe",
 ...
 }
]
 }
],
 "links" : [
 ...
 {
 "rel" : "current",
 ...
 }
]
}

The following sample retrieves all available release versions defined in the resource
catalog of the demo application. In the sample, the three release versions are 11.0,
11.1, and 11.2, where 11.2 is the current (or most recent) release version. Note
that links of type predecessor-version and successor-version specify the location
of each release version relative to their position in the list of versions. In the sample,
versions 11.0 and 11.1 are explicitly associated with ADF REST framework version
1 and release version 11.2 is associated with ADF REST framework version 3. Note
that a framework version refers to a specific version of the ADF REST framework,
corresponding to a particular Oracle JDeveloper release, where a new framework
version introduces new functionality.

Request

• URL

http://server/demo/rest

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

Chapter 22
Retrieving Resource Versions

22-77

200

• Content-Type

application/vnd.oracle.adf.description+json

• Payload

{
 "items" : [
 {
 "version" : "11.2",
 "isLatest" : true,
 "adf:extension" : {
 "defaultFrameworkVersion" : "3",
 "allowedFrameworkVersions" : ["1", "2", "3"]
 },
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.2",
 "name" : "self",
 "kind" : "item"
 },
 {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.2",
 "name" : "canonical",
 "kind" : "item"
 },
 {
 "rel" : "predecessor-version",
 "href" : "http://server/demo/rest/11.1",
 "name" : "predecessor-version",
 "kind" : "item"
 },
 {
 "rel" : "describe",
 "href" : "http://server/demo/rest/11.2/describe",
 "name" : "describe",
 "kind" : "describe"
 }
]
 },
 {
 "version" : "11.1",
 "adf:extension" : {
 "defaultFrameworkVersion" : "1",
 "allowedFrameworkVersions" : ["1", "2", "3"]
 },
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1",
 "name" : "self",
 "kind" : "item"
 },
 {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.1",
 "name" : "canonical",
 "kind" : "item"

Chapter 22
Retrieving Resource Versions

22-78

 },
 {
 "rel" : "predecessor-version",
 "href" : "http://server/demo/rest/11.0",
 "name" : "predecessor-version",
 "kind" : "item"
 },
 {
 "rel" : "successor-version",
 "href" : "http://server/demo/rest/11.2",
 "name" : "successor-version",
 "kind" : "item"
 },
 {
 "rel" : "describe",
 "href" : "http://server/demo/rest/11.1/describe",
 "name" : "describe",
 "kind" : "describe"
 }
]
 },
 {
 "version" : "11.0",
 "adf:extension" : {
 "defaultFrameworkVersion" : "1",
 "allowedFrameworkVersions" : ["1", "2", "3"]
 },
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0",
 "name" : "self",
 "kind" : "item"
 },
 {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0",
 "name" : "canonical",
 "kind" : "item"
 },
 {
 "rel" : "successor-version",
 "href" : "http://server/demo/rest/11.1",
 "name" : "successor-version",
 "kind" : "item"
 },
 {
 "rel" : "describe",
 "href" : "http://server/demo/rest/11.0/describe",
 "name" : "describe",
 "kind" : "describe"
 }
]
 }
],
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest",
 "name" : "self",
 "kind" : "collection"

Chapter 22
Retrieving Resource Versions

22-79

 },
 {
 "rel" : "canonical",
 "href" : "http://server/demo/rest",
 "name" : "canonical",
 "kind" : "collection"
 },
 {
 "rel" : "current",
 "href" : "http://server/demo/rest/11.2",
 "name" : "current",
 "kind" : "item"
 }
]
}

Retrieving a Resource By a Specific Version
The ADF REST runtime supports retrieving a specific version of the resource using a
GET method. The specific resource version is one that has been associated at design
time with the resource. Release version identifiers are defined in the Release Version
page of the adf-config.xml overview editor.

The following samples describe two versions of the Departments resource. The first
resource describe (request 1) returns version 11.0 and the second resource describe
(request 2) returns version 11.1. The resource describe for 11.1 shows additional
mandatory attributes HireDate and PhoneNumber have been defined on the resource.

Request Version 1

• URL 1

http://server/demo/rest/11.0/Departments

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.describe+json

• Payload 1

{
 "Resources" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "EmployeeId",

Chapter 22
Retrieving Resource Versions

22-80

 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10",
 }, {
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "Salary",
 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 8,
 "scale" : 2
 }, {
 "name" : "Picture",
 "type" : "attachment",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : false,
 "actions" : [{
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "get",

Chapter 22
Retrieving Resource Versions

22-81

 "method" : "GET",
 "responseType" : ["image/png"]
 }]
 }],
 "collection" : {
 ...
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 ...
 }]
 },
 "item" : {
 "links" : [{
 ...
 }],
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Employees/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 }
}

Request Version 2

• URL 2

http://server/demo/rest/11.1/Departments

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.describe+json

Chapter 22
Retrieving Resource Versions

22-82

• Payload 2

{
 "Resources" : {
 "Employees" : {
 "discrColumnType" : false,
 "title" : "Employees All Attributes",
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10
 }, {
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "Salary",
 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 8,
 "scale" : 2
 }, {
 "name" : "Picture",
 "type" : "attachment",
 "updatable" : true,
 "mandatory" : false,

Chapter 22
Retrieving Resource Versions

22-83

 "queryable" : false,
 "actions" : [{
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "get",
 "method" : "GET",
 "responseType" : ["image/png"]
 }]
 }, {
 "name" : "HireDate",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true
 }, {
 "name" : "PhoneNumber",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }],
 "collection" : {
 ...
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Employees",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 ...
 }]
 },
 "item" : {
 "links" : [{
 ...
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Employees/describe",
 "name" : "self",
 "kind" : "describe"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.1/Employees/describe",
 "name" : "canonical",
 "kind" : "describe"
 }]
 }
 }
}

Chapter 22
Retrieving Resource Versions

22-84

Retrieving the ADF REST Resource
The ADF REST runtime supports the GET method on REST resources to retrieve a
resource or nested resource, page a resource, filter a resource collection with a query,
or sort a resource collection.
The ADF REST runtime supports the following GET method use cases:

• Fetching a resource collection.

• Fetching a paged resource collection.

• Filtering a resource payload using primary key finder parameters.

• Filtering a resource payload using query parameters.

• Fetching a resource item.

• Fetching nested child resources.

• Fetching a sorted resource collection.

• Fetching a resource collection or resource item and grouping item details under
the @context element.

Fetching a Resource Collection
The ADF REST runtime supports fetching a resource collection using a GET method.

The following sample fetches version 11.0 of the Departments resource collection and
five items.

Request

• URL

http://server/sample/rest/11.0/Departments

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",

Chapter 22
Retrieving the ADF REST Resource

22-85

 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 20,
 "DepartmentName" : "Marketing",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/20",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/20",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/20/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 30,
 "DepartmentName" : "Purchasing",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/30",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/30",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/30/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 40,
 "DepartmentName" : "Human Resources",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/40",
 "name" : "Departments",

Chapter 22
Retrieving the ADF REST Resource

22-86

 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/40",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/40/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/50/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }],
 "count" : 5,
 "hasMore" : true,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments",
 "name" : "Departments",
 "kind" : "collection"
 }]
}

Paging a Resource Collection
The ADF REST runtime supports retrieving resource collections with row set
pagination using a GET method. Paging a resource collection with the GET method is
performed using the following URI query parameters:

• limit restricts the number of resources returned inside the resource collection. If
the limit exceeds the resource count, then the framework will return all available
resources. The value is the maximum number of resources to be returned.

• offset defines a zero-based index into the collection (where 0 is the first position).
The index identifies the starting position of the resource collection. If offset
exceeds the resource count, then no resources are returned.

In the following sample, where a Departments resource collection has five items, the
first request (URL1) retrieves two items (at index 0 and 1), and because offset is

Chapter 22
Retrieving the ADF REST Resource

22-87

omitted, the starting position of the response is the first item. To display another set
of resource items, a second request (URL2) may be made with an offset of 2 to
correspond to the third item and a limit of 2 to retrieve only two more items (at index
2 and 3), and the last request (URL3) with an offset of 4 returns the last item of the
five item resource collection (at index 4).

Each time a new set of resource items is retrieved, the hasMore attribute of the
response indicates whether more items may be returned from the collection. In this
example, because the collection contains only five items, the response for URL3
shows hasMore set to false, indicating that the last set of items had been retrieved.

Note that when the limit parameter is omitted from the paging URL, the ADF REST
runtime assumes a limit of 25 (as determined by the default RangeSize value on
the resource's iterator binding definition). In this case, up to twenty-five items will be
returned with each request. For this reason, it is a best practice when paging through
a collection to always include the limit query parameter to ensure only the desired
number of resource items are returned and not more.

Requests

• URL 1

http://server/demo/rest/11.0/Departments?limit=2

• URL 2

http://server/demo/rest/11.0/Departments?offset=2&limit=2

• URL 3

http://server/demo/rest/11.0/Departments?offset=4&limit=2

• HTTP Method

GET

• Content-Type

none

• Payload

none

Responses

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload 1

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {

Chapter 22
Retrieving the ADF REST Resource

22-88

 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 20,
 "DepartmentName" : "Marketing",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/20",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/20",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/20/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }],
 "count" : 2,
 "hasMore" : true,
 "limit" : 2,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments",
 "name" : "Departments",
 "kind" : "collection"
 }]
}

• Payload 2

{
 "items" : [{
 "DepartmentId" : 30,
 "DepartmentName" : "Purchasing",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/30",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/30",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/30/child/Employees",
 "name" : "Employees",

Chapter 22
Retrieving the ADF REST Resource

22-89

 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 40,
 "DepartmentName" : "Human Resources",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/40",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/40",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/40/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }],
 "count" : 2,
 "hasMore" : true,
 "limit" : 2,
 "offset" : 2,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments",
 "name" : "Departments",
 "kind" : "collection"
 }]
}

• Payload 3

{
 "items" : [{
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/50/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }],
 "count" : 1
 "hasMore" : false,
 "limit" : 2
 "offset" : 4,
 "links" : [{

Chapter 22
Retrieving the ADF REST Resource

22-90

 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments",
 "name" : "Departments",
 "kind" : "collection"
 }]
}

Filtering a Resource Collection with Primary Key Values
The ADF REST runtime supports fetching a resource collection using a GET method
and a fixed URL that includes a finder defined by one or more primary key attributes of
the resource. Every view object upon which the resource is based defines at least one
primary key attribute. The ADF REST runtime supports passing primary key values in
the finder query string to filter the collection.

Filtering with a primary key (PK) is performed using the finder query string to specify
one or more primary key values. The finder with primary key query string parameter
format is:

finder=PrimaryKey;<PKattr1>=<PKvalue1>,<PKattr2>=<PKvalue2>,...

For example, a resource collection Employees defines the primary key attribute
EmployeeId. To filter the collection using the primary key finder for a specific employee,
the finder query string may be specified as the following example shows.

finder=PrimaryKey;EmployeeId=101

When the resource is defined by a multi-part primary key, the finder allows you to
pass the corresponding number of primary key values to filter the collection. For
example, a resource collection Inventory might have ProductId and WarehouseId as
its primary key attributes. To filter the collection using the primary key finder for a
specific inventory item, both primary key values must be supplied in the finder query
string as the example below shows.

finder=PrimaryKey;ProductId=8568,WarehouseId=45

The resource collection describe explains the finder and primary key attributes. To
work with the primary key finder:

1. Execute the resource describe and locate the finders attribute in the collection
element. The name attribute identifies the finder as PrimaryKey. Also locate the
name of the primary key attributes under attributes.

2. Execute a GET with the query parameter finder and pass the primary key
attributes using the finder name PrimaryKey.

For example, the Employees resources describe returns the following:

"collection" : {
 "rangeSize" : 24,
 "finders" : [{
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : false
 "precision" : 4,
}]

Chapter 22
Retrieving the ADF REST Resource

22-91

The following sample fetches the Employees collection specified by the finder
PrimaryKey where the EmployeeId attribute value 101 is passed.

Note: To filter the collection by a non-primary key attribute, see Filtering a Resource
Collection with a Row Finder.

Request

• URL

http://server/demo/rest/11.1/Employees?
finder=PrimaryKey;EmployeeId=101

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "items" : [{
 "EmployeeId" : 101,
 "FirstName" : "Neena",
 "LastName" : "Smith",
 "Email" : "NSMITH",
 "JobId" : "AD_VP",
 "DepartmentId" : 90,
 "Salary" : 2000,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.1/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }]
 }],
 "count" : 1,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Employees",

Chapter 22
Retrieving the ADF REST Resource

22-92

 "name" : "Employees",
 "kind" : "collection"
 }]
}

Filtering a Resource Collection with a Query Parameter
The ADF REST runtime supports fetching a resource collection using a GET method
using query parameters.

The resource collection may be queried using expressions that differ in syntax
depending on the ADF REST framework version that has been registered for the ADF
REST service client. For details about the ADF REST framework versions, see What
You May Need to Know About Versioning the ADF REST Runtime Framework.

The following samples are based on two different versions of the Departments
resource. The URL sample showing resource 11.0 reflects the query-by-example
query parameter syntax supported only by version 1 of the ADF REST framework.
While the URL sample showing resource 11.1, reflects the rowmatch query parameter
syntax supported in ADF REST framework version 2 (and later). In both framework
scenarios, the samples fetch fields of the Departments resource collection.

Note:

For a REST web service request, reserved characters that appear in a
query parameter value should be encoded. For example, the + character
in a timestamp value must be encoded as %2B. Additionally, by default,
resource and resource items names used in query parameter operations are
case sensitive. If case insensitive filtering is desired, you may set the flag
restV1QueryCaseSensitive in the adf-config.xml file to false. The default
value of the flag is true which implies case sensitive filtering.

ADF REST Framework Version 2 (and later)

Starting with version 2 of the ADF REST framework, service clients may use an
advanced query syntax, also known as rowmatch expressions, to fetch resources. For
a complete description of the query syntax available in version 2 (and later), What
You May Need to Know About the Advanced Query Syntax in ADF REST Framework
Version 2.

The following sample fetches all departments with at least one employee whose salary
is equal to 10000. This is an example of fetching a parent object (Departments) and
filtering it by a child object attribute (Employees.Salary).

Request Example 1 Made With Framework Version 2

• URL

http://server/demo/rest/11.2/Departments?q=Employees.Salary = 10000

• HTTP Method

GET

• Content-Type

Chapter 22
Retrieving the ADF REST Resource

22-93

none

• Payload

none

Response Example 1 From Framework Version 2

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload

{
 "items" : [{
 "DepartmentId" : 70,
 "DepartmentName" : "Public Relations",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.2/Departments/70",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.2/Departments/70",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.2/Departments/70/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 80,
 "DepartmentName" : "Sales",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.2/Departments/820",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.2/Departments/80",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.2/Departments/80/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }],
 "count" : 2,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",

Chapter 22
Retrieving the ADF REST Resource

22-94

 "href" : "http://server/demo/rest/11.2/Departments",
 "name" : "Departments",
 "kind" : "collection"
 }]
}

The following sample fetches all departments with the numeric ID of 10 or a
department name that begins with the letter "H".

Request Example 2 Made With Framework Version 2

• URL

http://server/demo/rest/11.1/Departments?q=DepartmentId = 10 or
DepartmentName like 'H*'

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response Example 2 From Framework Version 2

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.2/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.2/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.2/Departments/10/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 40,
 "DepartmentName" : "Human Resources",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.2/Departments/40",

Chapter 22
Retrieving the ADF REST Resource

22-95

 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.2/Departments/40",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.2/Departments/40/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }],
 "count" : 2,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.2/Departments",
 "name" : "Departments",
 "kind" : "collection"
 }]
}

ADF REST Framework Version 1

Version 1 of the ADF REST framework supports a query-by-example syntax. No
application configuration changes are required to use this syntax that is supported
only in versions 1. For a description of the query syntax available in version 1 of the
ADF REST framework, see GET Method Operations.

The following sample fetches departments assigned a DepartmentId value less than
30.

Note:

In version 1 of the ADF REST framework, when you create a query with
a string matching filter parameter and the string to match contains a query
syntax reserved word (such as AND or OR), then the quoted string must
be delimited by a space character to separate it from other parameters in
the query expression. For example, the following query attempts to filter on
the quoted string ‘Accounting and Finance’. Since the string contains the
reserved word AND, the string matching filter parameter requires a space
before and after the single quotes to be viable in version 1.

?q=DepartmentName= 'Accounting and Finance'
&fields=DepartmentName,Location

Note that starting in framework version 2, the use of a space character is
no longer required to delimit a string matching filter that contains a reserved
word.

Request Made With Framework Version 1

• URL

Chapter 22
Retrieving the ADF REST Resource

22-96

http://server/demo/rest/11.0/Departments?q=DepartmentId<30

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response From Framework Version 1

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 20,
 "DepartmentName" : "Marketing",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/20",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/20",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/20/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]

Chapter 22
Retrieving the ADF REST Resource

22-97

 }],
 "count" : 2,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments",
 "name" : "Departments",
 "kind" : "collection"
 }]
}

Fetching a Resource Item
The ADF REST runtime supports fetching an item of the resource collection using a
GET method.

The following sample fetches version 11.0 of all fields of an instance of the
Departments resource collection.

Request

• URL

http://server/demo/rest/11.0/Departments/50

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }, {

Chapter 22
Retrieving the ADF REST Resource

22-98

 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/50/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

Fetching Nested Child Resources
The ADF REST runtime supports retrieving nested resources using a GET method.

The payload structure of nested child resource differs depending on the ADF REST
framework version that has been registered for the ADF REST service client. For
details about the ADF REST framework versions, see What You May Need to Know
About Versioning the ADF REST Runtime Framework.

The following samples are based on two different versions of the Employees resource.
The URL samples showing resource 11.0 reflect a response payload structure
supported by ADF REST framework versions 1 and 2. While the URL samples
showing resource 11.1, reflect the response payload structure supported in ADF
REST framework version 3 (and later). In both framework scenarios, the samples fetch
the Employees resource as a child of the Departments resource.

Note that the name used to identify the nested resource is determined at design time
when the resource is created in the ADF Business Components model project. The
default name for nested resources created in the model project is the destination view
instance of the nested resource's defining view link accessor (such as EmployeesView1
for the view link DeptToEmpFkLink). For this reason, it is a best practice for ADF REST
resource developers to rename the resource to something more suitable as a URL
parameter. In the following examples, the resource name was changed to Employees
to follow the naming convention for the parent resource name Departments.

ADF REST Framework Version 3 (and later)

Starting with version 3 of the ADF REST framework, the ADF REST runtime returns
a nested child resource in the response payload as a resource collection, instead of
as an array of resource items. This functionality, available in framework version 3 (and
later), allows service clients to make a request for additional records after determining
how many items were left unfetched in the initial request. The attributes hasMore and
count on the child resource indicate whether more items may be returned from the
resource collection. For details about using the pagination attributes from the response
payload when you opt into ADF REST framework version 3, see Paging a Resource
Collection.

The following sample illustrates functionality for ADF REST framework version 3 (and
later). The response payload represents the nested child resource as a resource
collection, where the collection object includes the hasMore and count attributes. A link
is provided should it be necessary to query the child resource for additional resource
items. In this sample, items of the Employees child resource are fetched with a count
of 3 in the payload. The response payload shows the hasMore attribute is false,
suggesting that no items remain unfetched.

Request Made With Framework Version 3

• URL

http://server/demo/rest/11.1/Departments/50?expand=Employees

Chapter 22
Retrieving the ADF REST Resource

22-99

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response From Framework Version 3

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "Employees" : {
 "items" : [{
 "EmployeeId" : 120,
 "FirstName" : "Matthew",
 "LastName" : "Weiss",
 "Email" : "MWEISS",
 "JobId" : "ST_MAN",
 "DepartmentId" : 50,
 "Salary" : 8000,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/50/child/
Employees/120",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.1/Departments/50/child/
Employees/120",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.1/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }]
 }, {
 "EmployeeId" : 121,
 "FirstName" : "Adam",
 "LastName" : "Fripp",
 "Email" : "AFRIPP",
 "JobId" : "ST_MAN",
 "DepartmentId" : 50,
 "Salary" : 8200,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/50/child/

Chapter 22
Retrieving the ADF REST Resource

22-100

Employees/121",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.1/Departments/50/child/
Employees/121",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.1/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }]
 }, {
 ...
 }]
 }],
 "count" : 3,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/50/child/
Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.1/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }]
}

ADF REST Framework Version 1 or Version 2

Version 1 and version 2 of the ADF REST framework return the nested child resource
expanded in the response payload as an array of resource items. If the resource
collection being fetched is large, you may have to make several requests since the
array of resource items has a limit.

The following samples illustrate functionality for ADF REST framework version 1 and
version 2.

The first request sample (URL 1) retrieves a single child resource item identified by
employee 120. The URL parameter child identifies the relationship of the requested
resource Employees.

The second request (URL 2) shows the use of the query parameter expand to ensure
that all nested Employees resource items will be returned with Departments resource
collection 50.

Chapter 22
Retrieving the ADF REST Resource

22-101

The third request (URL 3) shows the use of accessor dot notation (for example,
Employees.JobHistory) in combination with the query parameter expand to ensure
that all nested JobHistory resource items will be returned with the Employees resource
items for the Departments resource collection 80.

Request Made With Framework Version 1 or Version 2

• URL 1

http://server/demo/rest/11.0/Departments/50/child/Employees/120

• URL 2

http://server/demo/rest/11.0/Departments/50?expand=Employees

• URL 3

http://server/demo/rest/11.0/Departments/80?
expand=Employees.JobHistory&onlyData=true

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response From Framework Version 1 or Version 2

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload 1

{
 "EmployeeId" : 120,
 "FirstName" : "Matthew",
 "LastName" : "Weiss",
 "Email" : "MWEISS",
 "JobId" : "ST_MAN",
 "DepartmentId" : 50,
 "Salary" : 8000,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/50/child/Employees/
120",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/50/child/Employees/
120",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "parent",

Chapter 22
Retrieving the ADF REST Resource

22-102

 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }]
}

• Payload 2

{
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "Employees" : [{
 "EmployeeId" : 120,
 "FirstName" : "Matthew",
 "LastName" : "Weiss",
 "Email" : "MWEISS",
 "JobId" : "ST_MAN",
 "DepartmentId" : 50,
 "Salary" : 8000,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/50/child/Employees/
120",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/50/child/Employees/
120",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }]
 }, {
 "EmployeeId" : 121,
 "FirstName" : "Adam",
 "LastName" : "Fripp",
 "Email" : "AFRIPP",
 "JobId" : "ST_MAN",
 "DepartmentId" : 50,
 "Salary" : 8200,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/50/child/Employees/
121",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/50/child/Employees/
121",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"

Chapter 22
Retrieving the ADF REST Resource

22-103

 }]
 }, {
 ...
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }]
}

• Payload 3

{
 "DepartmentId" : 80,
 "DepartmentName" : "Sales",
 "RelState" : null,
 "Employees" : [
 ...
 {
 "EmployeeId" : 176,
 "FirstName" : "Jonathon",
 "LastName" : "Taylor",
 "Email" : "JTAYLOR",
 "JobId" : "SA_REP",
 "DepartmentId" : 80,
 "Salary" : 8600,
 "CommissionPct" : 0.2,
 "JobHistory" : [
 {
 "EmployeeId" : 176,
 "StartDate" : "2011-03-24",
 "EndDate" : "2012-12-31",
 "JobId" : "SA_REP",
 "DepartmentId" : 80
 },
 {
 "EmployeeId" : 176,
 "StartDate" : "2013-01-01",
 "EndDate" : "2015-03-31",
 "JobId" : "SA_MAN",
 "DepartmentId" : 80
 }
]
 },
 ...
]
}

Sorting a Resource Collection
The ADF REST runtime supports sorting the fetched resource collection using a GET
method.

Chapter 22
Retrieving the ADF REST Resource

22-104

Sorting a resource collection is performed using the orderBy query string parameter in
combination with one or more attribute names. The following optional sort order flags
may be associated with each attribute:

• asc sorts in ascending order. (Default)

• desc sorts in descending order.

The orderBy query string parameter format is:

<orderBy_attribute1_name>:<(asc/desc)>, <orderBy_attribute2_name>:<(asc/
desc)>

Example: attribute1:desc,attribute2

In order to perform case-insensitive sorting on a resource collection using a GET
method, the orderBy query string parameter must follow this format:

upper(<orderBy_attribute1_name>):<(asc)> or
lower(<orderBy_attribute2_name>)

The following sample (URL1) fetches the Departments collection sorted by the
DepartmentName attribute. The second sample (URL2) fetches the child Employees
collection sorted by the salary attribute. Since the sort order flag is not specified for
either request sample, the response is ascending order.

Request

• URL 1

http://server/demo/rest/11.0/Departments?orderBy=DepartmentName

• URL 2

http://server/demo/rest/11.0/Departments/50/child/Employees?
orderBy=Salary

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload 1

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "links" : [{
 "rel" : "self",

Chapter 22
Retrieving the ADF REST Resource

22-105

 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 40,
 "DepartmentName" : "Human Resources",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/40",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/40",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/40/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 20,
 "DepartmentName" : "Marketing",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/20",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/20",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/20/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 30,
 "DepartmentName" : "Purchasing",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/30",
 "name" : "Departments",
 "kind" : "item"
 }, {

Chapter 22
Retrieving the ADF REST Resource

22-106

 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/30",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/30/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/50/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }],
 "count" : 5,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments",
 "name" : "Departments",
 "kind" : "collection"
 }]
}

• Payload 2

{
 "items" : [{
 "EmployeeId" : 132,
 "FirstName" : "TJ",
 "LastName" : "Olson",
 "Email" : "TJOLSON",
 "JobId" : "ST_CLERK",
 "DepartmentId" : 50,
 "Salary" : 2100,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees/132",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Employees/132",
 "name" : "Employees",

Chapter 22
Retrieving the ADF REST Resource

22-107

 "kind" : "item"
 }]
 }, {
 "EmployeeId" : 136,
 "FirstName" : "Hazel",
 "LastName" : "Philtanker",
 "Email" : "HPHILTAN",
 "JobId" : "ST_CLERK",
 "DepartmentId" : 50,
 "Salary" : 3100,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees/136",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Employees/136",
 "name" : "Employees",
 "kind" : "item"
 }]
 }],
 "count" : 2,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

Fetching a Resource with Grouped Context Information
ADF REST runtime supports fetching a resource using a GET method and retrieving
the payload with resource fields and resource item context information, like links,
grouped separately when your request is enabled to use ADF REST framework
version 6.

Starting with version 6 of the ADF REST framework, a @context element is introduced
in the response payload for resource requests to help you to more easily differentiate
between resource fields and the context information of individual items. This element
helps to organize the response payload of the GET request by grouping information
together for each item.

Compared to earlier framework versions (5 and earlier), the following changes to a
GET request payload result with framework version 6 or later:

• A new @context section appears below the list of fields of each item of the
resource and contains identifying information for the item, as well as links.

• A new key element appears within the @context section and contains the unique
identifier of the specific resource item as a string.

• The links section within the @context section no longer list any properties, like
changeIndicator.

Chapter 22
Retrieving the ADF REST Resource

22-108

• The changeIndicator value is moved to ETag, which is under a headers element
within the @context section.

The following sample fetches the Departments resource collection and three items with
context information for each item under the @context element.

Collection Request Example Made With Framework Version 6

• URL

http://server/sample/rest/12.0/Departments

• HTTP Method

GET

• Content-Type

none

• Payload

none

Collection Response Example Made With Framework Version 6

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "@context" : {
 "key" : "1",
 "headers" : {
 "ETag" : "ACED00C78"
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/12.0/Departments/10/child/
Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }
 }, {
 "DepartmentId" : 20,
 "DepartmentName" : "Marketing",

Chapter 22
Retrieving the ADF REST Resource

22-109

 "@context" : {
 "key" : "2",
 "headers" : {
 "ETag" : "ACED00B74"
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/20",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Departments/20",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/12.0/Departments/20/child/
Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }
 }, {
 "DepartmentId" : 30,
 "DepartmentName" : "Purchasing",
 "@context" : {
 "key" : "3",
 "headers" : {
 "ETag" : "ACED001E8"
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/30",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Departments/30",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/12.0/Departments/30/child/
Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }
 }],
 "count" : 3,
 "hasMore" : true,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments",
 "name" : "Departments",
 "kind" : "collection"
 }]
}

Chapter 22
Retrieving the ADF REST Resource

22-110

The following sample fetches all fields of an instance of the Departments resource
collection with context information for each item under the @context element.

Item Request Example Made With Framework Version 6

• URL

http://server/demo/rest/12.0/Departments/50

• HTTP Method

GET

• Content-Type

none

• Payload

none

Item Response Example Made With Framework Version 6

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "@context" : {
 "key" : "1",
 "headers" : {
 "ETag" : "ACED00G26"
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/12.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/12.0/Departments/50",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/12.0/Departments/50/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }
}

Creating a Resource Item
The ADF REST runtime supports the HTTP POST method to create a resource and
child resource item in the REST resource collection.

Chapter 22
Creating a Resource Item

22-111

The ADF REST runtime supports the following creation use cases:

• Creating a resource item in collection.

• Creating a child resource item.

Creating a Resource Item in a Collection
The ADF REST runtime supports creating resource items on an existing resource
collection using a POST method.

Before making a request with the POST method, determine whether the resource item
is defined by an LOV-enabled attribute. If an LOV-enabled attribute is present and
that attribute is defined as mandatory, you must first access the LOV resource on the
resource collection to display the selection list to the end user. For details about how to
access an LOV resource, see Retrieving LOV-Enabled Attribute Values When Creating
a Resource Item.

The following sample creates a new Departments resource collection with a single
item.

Request

• URL

http://server/demo/rest/11.0/Departments

• HTTP Method

POST

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "DepartmentId" : 15,
 "DepartmentName" : "NewDept"
}

Response

• HTTP Code

201

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Location

http://server/demo/rest/Departments/15

• Payload

{
 "DepartmentId" : 15,
 "DepartmentName" : "NewDept",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/15",
 "name" : "Departments",

Chapter 22
Creating a Resource Item

22-112

 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/15",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/15/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

Creating a Child Resource Item
The ADF REST runtime supports creating ADF REST child resource items in one
roundtrip using a POST method. Create will only succeed when both the parent and
child do not exist.

The following samples create nested resource items. The first request sample (URL1)
creates a child resource item identified by employee 999 in an existing Departments
resource. The second request (URL2) creates the parent and child resources.

Request

• URL 1

http://server/demo/rest/11.0/Departments/15/child/Employees

• URL 2

http://server/demo/rest/11.0/Departments

• HTTP Method

POST

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload 1

{
 "EmployeeId": 999,
 "FirstName": "New",
 "LastName": "Guy",
 "Email": "NGUY",
 "JobId": "SA_REP",
 "DepartmentId": 15,
 "Salary": 9999
}

• Payload 2

{
 "DepartmentId": 17,
 "DepartmentName": "NewerDept",
 "Employees": [
 {
 "EmployeeId": 99999,
 "FirstName": "Newer",
 "LastName": "Guy",

Chapter 22
Creating a Resource Item

22-113

 "Email": "NRGUY",
 "JobId": "SA_MAN",
 "DepartmentId": 17,
 "Salary": 10001
 }
]
}

Response

• HTTP Code

201

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Location

http://server/demo/rest/11.0/Departments/15/child/Employees/999

• Payload 1

{
 "EmployeeId" : 999,
 "FirstName" : "New",
 "LastName" : "Guy",
 "Email" : "NGUY",
 "JobId" : "SA_REP",
 "DepartmentId" : 15,
 "Salary" : 9999,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/15/child/Employees/
999",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/15/child/Employees/
999",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.0/Departments/15",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.0/Departments/15/child/
Employees/999/lov/JobsView1",
 "name" : "JobsView1",
 "kind" : "collection"
 }]
}

• Location

http://server/demo/rest/11.0/Departments/17

• Payload 2

Chapter 22
Creating a Resource Item

22-114

{
 "DepartmentId" : 17,
 "DepartmentName" : "NewerDept",
 "Employees" : [{
 "EmployeeId" : 99999,
 "FirstName" : "Newer",
 "LastName" : "Guy",
 "Email" : "NRGUY",
 "JobId" : "SA_MAN",
 "DepartmentId" : 17,
 "Salary" : 10001,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/17/child/Employees/
99999",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/17/child/Employees/
99999",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "http://server/demo/rest/11.0/Departments/17",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.0/Departments/17/child/Employees/
99999/lov/JobsLOV",
 "name" : "JobsLOV",
 "kind" : "collection"
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/17",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/17",
 "name" : "Departments",
 "kind" : "item"
 }]
}

Updating a Resource Item
The ADF REST runtime supports the HTTP PATCH method to update a resource in
the REST resource collection.
The ADF REST runtime supports updating resource items using a PATCH method.
Update will only succeed when the row already exists.

The following sample updates Departments item 15, where DepartmentName is
changed in the request payload.

Request

Chapter 22
Updating a Resource Item

22-115

• URL

http://server/demo/rest/11.0/Departments/15

• HTTP Method

PATCH

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "DepartmentId" : 15,
 "DepartmentName" : "UpdatedDeptName"
}

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "DepartmentId" : 15,
 "DepartmentName" : "UpdatedDeptName",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/15",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/15",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/15/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

Updating or Creating Resource Items (Upsert)
Using a POST method with Upsert mode enabled, the ADF REST runtime supports
updating resource items that exist, and if not, creating the resource items.

You use a POST method with header variable Upsert/true to enable the Upsert
functionality that creates an ADF REST resource if this resource does not exist
or updates the resource if the resource exists. You select the Create and Update
checkboxes on the user interface to enable this action (Upsert). If the header variable
Upsert/true is not provided, or is set to Upsert/false, then the Upsert functionality
is disabled. Also, if only the Create checkbox is selected or only the Update checkbox

Chapter 22
Updating or Creating Resource Items (Upsert)

22-116

is selected, then POST creates or updates a resource if permissions for these actions
are allowed. Note that Upsert will work as intended only if both Create and Update
options are enabled on the resource.

The following sample creates (through Upsert) a new Department resource item with a
child Employee resource item.

Request

• URL

http://server/demoapp/rest/1.0/Departments

• HTTP Method

POST

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• HTTP Header

Upsert-Mode/true

• Payload

{
 "Deptno": 80,
 "Dname": "ENG80",
 "Emp": [{
 "Empno": 8080,
 "Ename": "Smith",
 "Mgr": 8080
 }]
}

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Content Encoding

Null

• Payload

{
 "Deptno": 80,
 "Dname": "ENG80",
 "Emp": [{
 "Empno": 8080,
 "Ename": "Smith",
 "Mgr": 8080
 }]
}

The following sample demonstrates the update process (through Upsert). In the
response payload, a Department (Dept) resource item’s AltKey namely Dname is
utilized. Similarly, the Employee (Emp) child resource item’s Altkey namely Email is
utilized. The Dname Altkey (Dname=ENG80) is used to locate and load the required

Chapter 22
Updating or Creating Resource Items (Upsert)

22-117

Department (Dept 80). The request then updates this Department’s Location (Loc).
The Email Altkey is used to locate and load the Employee child resource item (Emp
8080) and the request payload updates this Employee child resource item’s Sal and
Job attributes. The request payload also contains a second Employee child resource
item (Emp 9080). The Ename key is used to locate this second Employee child
resource item. If found, this second Employee child resource item’s Sal and Job
attributes get updated. If this second Employee child resource item does not exist, the
request payload creates this second Employee child resource item.

Request

• URL

http://server/demoapp/rest/1.0/Departments

• HTTP Method

POST

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• HTTP Header

Upsert-Mode/true

• Payload

{
 "Dname": "ENG80",
 "Loc": "HQ-altkey",
 "Emp": [{
 "Email": "smith@xyz.com",
 "Sal": 8000,
 "Job": "ENGINEER1"
 },
 {
 "Empno": 9080,
 "Ename": "John",
 "Sal": 9000,
 "Job": "SALES1"
 }
]
}

Response

• HTTP Code

200

• Content Type

application/vnd.oracle.adf.resourceitem+json

• Content Encoding

Null

• Payload

{
 "Deptno": 80,
 "Dname": "ENG80",
 "Loc": "HQ-altkey",

Chapter 22
Updating or Creating Resource Items (Upsert)

22-118

 "TrEmpno": null,
 "Emp": [{
 "Empno": 8080,
 "Ename": "Smith",
 "Job": "ENGINEER1",
 "Email": "smith@xyz.com",
 "Hiredate": null,
 "Sal": 8000,
 "Comm": null,
 "Deptno": 80
 },
 {
 "Empno": 9080,
 "Ename": "John",
 "Job": "SALES1",
 "Mgr": 9080,
 "Hiredate": null,
 "Sal": 9000,
 "Comm": null,
 "Deptno": 80
 }
]
}

Deleting a Resource Item
The ADF REST runtime supports the HTTP DELETE method to delete a resource in
the REST resource collection.
The ADF REST runtime supports deleting resource items using a DELETE method.
The framework does not currently support deleting a resource collection.

The following sample (URL1) deletes employee ID 99999 of the Employees resource
collection as a child of the Departments resource item 17. The second request URL
deletes the Departments resource item 17.

Request

• URL 1

http://server/demo/rest/11.0/Departments/17/child/Employees/99999

• URL 2

http://server/demo/rest/11.0/Departments/17

• HTTP Method

DELETE

• Content-Type

none

• Payload

none

Response

• HTTP Code

204

• Content-Type

Chapter 22
Deleting a Resource Item

22-119

none

• Payload

none

Checking for Data Consistency
When updating or retrieving ADF REST resource items using the HTTP method, you
can check data consistency by generating an entity tag with precondition headers
so that the resource item matches the server side resource state before updating or
retrieving.
The ADF REST runtime supports generating an entity tag (ETag) in the response
header when the requested resource has data consistency check enabled. Data
consistency checking is enabled by the ADF Business Components developer who
must configure a change-indicator attribute on the entity object backing the resource.

When entity change indicators are configured on the entity object backing the
resource, the ADF REST runtime will assign a unique value to indicate the state of
each resource on the server side. At runtime, when the row underlying the server side
resource changes, Oracle ADF assigns a new state value to the ETag. The following
header shows the ETag returned with a request to retrieve a Departments resource
item.

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, must-revalidate
Location:
Content-Length: 1069
Content-Type: application/json
ETag: "ACED00057372037200136261636C6520136261636C65237200136261636C652"
Content-Encoding:
Link: <http://server/demo/rest/11.0/Departments/
10>;rel="self";kind="item";name="Departments"

Note:

Note that the ETag and data consistency checking are not automatically
enabled for REST resources. To support generating ETag values, the ADF
Business Components developer must configure a change-indicator enabled
attribute on the entity object backing the resource to be checked. For details
about configuring change indicator attributes for entity objects, see How to
Protect Against Losing Simultaneously Updated Data.

The service client can use the ETag value returned in the header response of each
resource item to create subsequent requests that contain precondition headers (If-
Match/If-None-Match). Based on the specified ETag and the precondition, the server
will evaluate the current resource state and match against the provided ETag. If the
precondition is satisfied, the requested operation is executed; otherwise, a 412 error is
returned. The error payload will contain the current resource in the server side and the
header will also reflect the current ETag value.

To support testing ETag values, the ADF REST framework provides the following
precondition header fields. Usage of these precondition fields forces the framework

Chapter 22
Checking for Data Consistency

22-120

to compare a supplied ETag value against the ETag values of previously requested
items.

• Verify that the client is providing a state (obtained from a previous resource item
response) that matches the current state on the server:

If-Match: "<ETag value from resource item response>"

• Verify that the client is providing a state (obtained from a previous resource item
response) that does not match the current state on the server.

If-None-Match: "<ETag value from resource item response>"

The following are typical use cases when checking for data consistency:

• Check that the resource item matches the server side resource state before
updating

• Retrieve the resource item using the server side resource state when none of the
requested items match any previously requested items

While these use cases involve GET and PATCH methods, the precondition header and
ETag value can be used to check that any HTTP method operation will be applied to
the current state of the resource.

When retrieving a resource collection, an additional custom property changeIndicator
will appear in the response payload of resources with data consistency enabled. This
property contains the current ETag value of each resource item in the requested
collection. The following sample illustrates the changeIndicator property in the links
section of a Departments resource collection. The presence of ETag values in the
resource collection payload is a convenience for the service client that can reduce the
number of requests to obtain the ETag from individual resource items.

Note also the presence of the RelState attribute in the response. This is the
name of the change-indicator attribute that the ADF Business Components developer
configured on the entity object to support data consistency checks. The value of the
attribute reflects the number of times the state has been updated.

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "RelState" : 1,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item",
 "properties" : {
 "changeIndicator" :
"ACED0005737200136A6176612E7574696C2E41727261794C69737

47881D21D99C7619D03000149000473697A65787000000001770400000001737200186F721

636C652E6A626F2E646F6D61696E2E4E7564A362286F0200015B0004646174617400025B45
 27870757200025B42ACF317F8060854E00200007870"
 }
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item",

Chapter 22
Checking for Data Consistency

22-121

 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item",
 "properties" : {
 "changeIndicator" :
"ACED0005737200136A6176612E7574696C2E149000473697A6578
 70000000017704000000017372001B6F7261636C652E6A626F2E646F60000C78"
 }
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/Employees",
 "name" : "Employees",
 "kind" : "collection",
 }]
 }, {
 "DepartmentId" : 20,
 "DepartmentName" : "Marketing",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/20",
 "name" : "Departments",
 "kind" : "item",
 "properties" : {
 "changeIndicator" :
"ACED0005737200136A6176612E7574696C2E41727261794C6973747881D21D99C7619D0300014900
0473697A65787000000001770400000001737200186F7261636C652E6A626F2E646F6D61696E2E4E7
56D626572A5B1371914E0BFDA0200014900096D48617368436F6465787200116F7261636C652E7371
6C2E4E554D424552E90466EE632BE1D5020000787200106F7261636C652E73716C2E446174756D407
8F514A362286F0200015B0004646174617400025B427870757200025B42ACF317F8060854E0020000
787000000002C10A0000000078"
 }
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/20",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/20/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
 }, {
 ...
 }]
 }],
 "count" : 5,
 "hasMore" : true,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments",
 "name" : "Departments",
 "kind" : "collection"
 }]
}

Chapter 22
Checking for Data Consistency

22-122

Checking for Data Consistency When Updating ADF REST Resource
Items

The ADF REST runtime support checking for data consistency when using a PATCH
method to update resource items backed by an ADF Business Components entity
object with a change-indicator attribute enabled.

To check for data consistency using the ETag header and conditional header fields:

1. Query one or more resource items and, for each returned resource item, obtain
the ETag value from the changeIndicator property in the properties section of
the response. When querying multiple resource items, there will not be a single
ETag response header. Instead, the ETag for each of the items in the response will
be in the properties section.

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, must-revalidate
Location:
Content-Length: 861
Content-Type: application/json
ETag: "responseETag123"
Content-Encoding:
Link: <http://server/demo/rest/11.0/Departments/
10>;rel="self";kind="item";name="Departments"
Set-Cookie: JSESSIONID=jXvsJ1GpdkFJV5Jh0yk7D72vPZ42t8tLYDg74NRKFQzXdnsjG9vv!
1113104013; path=/; HttpOnly
X-ORACLE-DMS-ECID:
51f1ff4535af720c:-7e156247:148ec9eeb3b:-8000-00000000000001ad
X-Powered-By: Servlet/2.5 JSP/2.1

{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item",
 "properties" : {
 "changeIndicator" : "responseETag123"
 }
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

2. Update the resource item, using a PATCH request and check for data consistency
by supplying the following conditional header field:

Chapter 22
Checking for Data Consistency

22-123

• If-Match: "<ETag value from resource item response>" to verify that the
state of a requested resource item is current with the previous resource item
response.

The following sample updates the DepartmentName field of the Departments 10
resource item when the If-Match precondition test is satisfied. In the first request
(Request 1), the ETag value responseETag123 is identical to the ETag of the
current Departments 10 resource item on the server side, indicating that the state
of the resource item is consistent with the server side. Consequently, the update to
DepartmentName is allowed.

In the subsequent request (Request 2), however, the ETag supplied in the If-Match
precondition is unchanged and no longer matches the new ETag value the server
has for the Departments 10 resource item. As a consequence of the stale ETag value
used in the second request, the update fails with an HTTP code 412, indicating the
precondition test failed, and the current ETag value responseETag567 is returned in
the response header. This occurs in production web applications when multiple users
simultaneously access the same resource item. For example, when user 1 and user
2 both query the same item, the item has, for example, ETag value 1. Then, if user 1
successfully updates the item with ETag value 1, and user 2 attempts to update the
same item with ETag value 1, the attempt will fail.

Request 1

• URL 1

http://server/demo/rest/11.0/Departments/10

• HTTP Method

PATCH

• Precondition 1

If-Match: "responseETag123"

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload 1

{
 "DepartmentName" : "FirstAttempt_NewDepartmentName"
}

Response 1

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• ETag

responseETag567

• Payload 1

{
 "DepartmentId" : 10,
 "DepartmentName" : "FirstAttempt_NewDepartmentName",

Chapter 22
Checking for Data Consistency

22-124

 "RelState" : null,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item",
 "properties" : {
 "changeIndicator" : "responseETag567"
 }
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

Request 2

• URL 2

http://server/demo/rest/11.0/Departments/10

• HTTP Method

PATCH

• Precondition 2

If-Match: "staleETag789"

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload 2

{
 "DepartmentName" : "SecondAttempt_NewDepartmentName"
}

Response 2

• HTTP Code

412 (Precondition failed)

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• ETag

responseETag567

• Payload 2

{
 "DepartmentId" : 10,
 "DepartmentName" : "FirstAttempt_NewDepartmentName",
 "RelState" : null,
 "links" : [{

Chapter 22
Checking for Data Consistency

22-125

 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item",
 "properties" : {
 "changeIndicator" : "responseETag567"
 }
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

Checking for Data Consistency When Retrieving ADF REST Resource
Items

The ADF REST runtime supports checking for data consistency when using a GET
method to retrieve resource items backed by an ADF Business Components entity
object with a change-indicator attribute enabled.

To check for data consistency using the ETag header and conditional header fields:

1. Query one or more business object items and, for each returned resource item,
obtain the ETag value from the changeIndicator property in the properties
section of the response.

When querying multiple business object items, there will not be a single ETag
response header. In the case of ADF REST framework versions 5 and earlier, the
ETag for each of the items in the response will be in the properties section. In
the case of framework versions 6 and later, the ETag for each of the items will
be in the @context element that serves to group all the information for an item in
one section. The following sample shows the response with a framework version
before version 6 enabled.

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, must-revalidate
Location:
Content-Length: 861
Content-Type: application/json
ETag: "responseETag123"
Content-Encoding:
Link: <http://server/demo/rest/11.0/Departments/
10>;rel="self";kind="item";name="Departments"
Set-Cookie: JSESSIONID=jXvsJ1GpdkFJV5Jh0yk7D72vPZ42t8tLYDg74NRKFQzXdnsjG9vv!
1113104013; path=/; HttpOnly
X-ORACLE-DMS-ECID:
51f1ff4535af720c:-7e156247:148ec9eeb3b:-8000-00000000000001ad
X-Powered-By: Servlet/2.5 JSP/2.1

{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",

Chapter 22
Checking for Data Consistency

22-126

 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item",
 "properties" : {
 "changeIndicator" : "ACED0005737200136A6176612E7574696C2E4"
 }
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

2. Query one or more business object items and check for data consistency by
supplying the following conditional header field

:

• If-None-Match: "<ETag value from resource item response>" to verify
that the state of none of the previously requested resource items is current
with the resource item request.

The following sample retrieves the Departments 10 resource item when the If-None-
Match precondition test is satisfied. In the first request (Request 1), the ETag value
responseETag123 matches the ETag of the previously requested Departments 10
resource item on the server side, indicating that the state of the resource item is
consistent with the server side. Consequently, the precondition fails and there is no
need to return a newer Departments 10 resource item. The request returns with an
HTTP code 304, indicating the state on the server has not been modified.

In the subsequent request (Request 2), however, the ETag unmatchedETagXYZ supplied
in the If-None-Match precondition does not exist on the server. As a consequence,
the precondition succeeds and the Departments 10 resource item is retrieved. The
request returns an HTTP code 200, indicating the state had changed, and the current
(unchanged) ETag value responseETag123 is returned in the response header.

Request 1

• URL 1

http://server/demo/rest/11.0/Departments/10

• HTTP Method

GET

• Precondition 1

If-None-Match: "responseETag123"

• Content-Type

none

• Payload

Chapter 22
Checking for Data Consistency

22-127

none

Response 1

• HTTP Code

304 state not modified

• Content-Type

none

• Payload 1

none

Request 2

• URL 2

http://server/demo/rest/11.0/Departments/10

• HTTP Method

GET

• Precondition 2

If-None-Match: "unmatchedETagXYZ"

• Content-Type

none

• Payload

none

Response 2

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• ETag

responseETag123

• Payload 2 (Made With Framework Version 5 or Earlier)

{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "RelState" : null,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item",
 "properties" : {
 "changeIndicator" : "responseETag123"
 }
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10",

Chapter 22
Checking for Data Consistency

22-128

 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

Payload 2 (Made With Framework Version 6 or Later)

{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "RelState" : null,
 "@context" : {
 "key" : "AB8765BCD",
 "headers" : {
 "ETag" : "responseETag123."
 },
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item",
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Departments/10",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/10/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

Working with Attachments
The ADF REST runtime supports content streaming of custom content that is not
contained in the payload by using a link to the content. You can create LOB content
at the same time that you are creating or retrieving a resource item using the HTTP
methods.
The ADF REST runtime supports content streaming for BLOB or CLOB attributes.

LOB attributes may be handled in the following ways.

• Linked to as custom content that is not contained in the payload itself.

This is the default for BLOB and CLOB attributes and specified in the response
payload using the enclosure link type to point to a resource that cannot be
represented with the supported payload types (such as image/png).

• Encoded into Base64 string format and contained in the request payload itself.

Currently, advanced features (like support for Chunked encoding) are not supported by
the ADF REST runtime. Developers working on an enterprise architecture, may wish

Chapter 22
Working with Attachments

22-129

to investigate the use of specialized content management systems (such as Oracle
WebCenter Content).

Instead of showing the LOB attribute in the attribute section, the response
payload always contains an enclosure link to the content. The following describe
for an Employees resource item defines the BLOB attribute Picture with a default
requestType of application/octet-stream. The enclosure link for the resource item
appears in the items section. The actions section identifies the operations that may
be used to manipulate the content.

{
 "Resources" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...
 }, {
 "name" : "Picture",
 "type" : "attachment",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : false,
 "actions" : [{
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/octet-stream"]
 }]
 }],
 "item" : {
 "links" : [{
 ...
 }, {
 "rel" : "enclosure",
 "href" : "http://server/demo/rest/11.0/Employees/101/enclosure/
Picture",
 "name" : "Picture",
 "kind" : "other"
 }],
 "actions" : [{
 }]
 },
 "links" : [{
 ...
 }]
 }
}

The attribute content type of the resource item can be assigned by the ADF REST
resource developer by configuring the contentType property as a custom property of
the LOB-type attribute. For example, when working with PNG image files, the following
content type can assigned in advance:

• Custom Property: contentType

• Value: image/png

In some use cases the attribute value itself is a link to some external content. When
an attribute is configured this way, it is not only shown in the resource item payload but

Chapter 22
Working with Attachments

22-130

a link that points to the external content is also created. In the resource description,
only the GET action will be available for the external link. You can modify the URL
contained in the attribute value by making a request with an update on the resource
item.

An attribute can be configured by the ADF REST resource developer to generate a link
by adding the following attribute:

• Name: inputHandler

• Value:
oracle.adf.internal.model.rest.core.binding.inputHandler.LinkInputHand
ler

Streaming Attachments Using a Resource Item Enclosure Link
The ADF REST runtime supports streaming content that cannot be contained in the
payload of a resource item by using a link to the content. Supported methods on the
linked content include GET and DELETE. Note that creating LOB content at the same
time that you create a resource item (using a POST method) requires encoding the
content as base64. A sample of how to embed content using base64 can be found in
Replacing LOB Content Using Base64.

To stream content from a link:

1. Retrieve the resource item and locate the enclosure link for the desired attribute.
The item section defines the available links for the attribute.

Alternatively, you can execute the resource describe to identify the enclosure
link generated for resource items. In general, the resource describe contains
other useful information not returned in the GET response payload, including the
expected response type (image/png, for example) and supported actions for the
attribute.

2. Execute an HTTP operation (GET or DELETE) using the link to the LOB content.

The following resource item for Employees 101 shows the enclosure link for the
Picture attribute in the links section.

Note:

The URL that you specify for enclosure should be the enclosure link for the
image and not the URL of the image.

{
 "EmployeeId" : 101,
 "FirstName" : "Neena",
 "LastName" : "Smith",
 "Email" : "NSMITH",
 "JobId" : "AD_VP",
 "DepartmentId" : 90,
 "Salary" : 2000,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees/101",
 "name" : "Employees",

Chapter 22
Working with Attachments

22-131

 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.0/Employees/101/lov/JobsLOV",
 "name" : "JobsLOV",
 "kind" : "collection"
 }, {
 "rel" : "enclosure",
 "href" : "http://server/demo/rest/11.0/Employees/101/enclosure/Picture",
 "name" : "Picture",
 "kind" : "other"
 }]
}

For example, the following sample streams the PNG image associated with employee
101.

Note that by default the request type is application/octet-stream to support a
variety of media types. If the ADF REST resource developer defined the custom
property contentType, the specified request type appears in the resource item
describe.

Request

• URL

http://server/demo/rest/11.0/Employees/101/enclosure/Picture

• HTTP Method

GET

• Content Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

image/png

• Payload

content streamed

Replacing LOB Content Using Base64
The ADF REST runtime allows creating and updating LOB content using a JSON
payload when the content is represented in base64 string format.

Chapter 22
Working with Attachments

22-132

For example, the following sample replaces a PNG image for employee 101. In this
use case, the Picture attribute must be represented in the request payload as String
encoded in base64. Because resource item 101 already exists and only the Picture
attribute is being manipulated, no other attributes need to be specified.

Note that the response payload contains the enclosure link to the Picture attribute.

Request

• URL

http://server/demo/rest/11.0/Employees/101

• HTTP Method

PATCH

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "Picture" : "/9j/4AAQSkZJRgABAAEAYABgAAD//..."
}

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "EmployeeId" : 101,
 "FirstName" : "Neena",
 "LastName" : "Smith",
 "Email" : "NSMITH",
 "JobId" : "AD_VP",
 "DepartmentId" : 90,
 "Salary" : 2000,
 "links" : [{
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.0/Employees/101/lov/JobsLOV",
 "name" : "JobsLOV",
 "kind" : "collection"
 }, {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "enclosure",
 "href" : "http://server/demo/rest/11.0/Employees/101/enclosure/Picture",

Chapter 22
Working with Attachments

22-133

 "name" : "Picture",
 "kind" : "other"
 }]
}

Working with LOV
In ADF, you can retrieve LOV-enabled attributes when you create or retrieve existing
resource items using the HTTP methods. The ADF REST runtime supports retrieving
LOV-enabled attribute values when the resource item does not exist in the resource
collection.
The ADF REST runtime supports the following LOV-enabled attribute use cases.

• Retrieving non-dependent LOV-enabled attribute values for a standalone LOV.

Refer to this use case when you need to allow users to update an LOV-enabled
resource item in the context of a known containing resource item.

• Retrieving nested LOV-enabled attribute values for cascading LOVs.

Refer to this use case when you need to allow users to update a nested LOV
resource item based on a dependent LOV-enabled attribute.

Note that the use case procedure changed starting with ADF REST Framework
version 5. In earlier Framework versions, the REST request depended on the use
case. However, starting with Framework version 5, all LOV use cases, standalone or
cascading, rely on row finders URLs that you enable for static LOV resources.

Retrieving Non-Dependent LOV-Enabled Attribute Values with
Framework Versions 1 Through 4

In ADF REST Framework version 4 and earlier, the runtime supports retrieving the
values from LOV-enabled attributes in the context of a known containing resource item
using a GET method.

In ADF REST Framework versions 4 and earlier, the resource item for an LOV-enabled
attribute nests a child LOV resource URL that you can use to obtain the list of values
that are based on the context of the already known containing resource item.

Note:

Starting with ADF REST Framework version 5, the use of row finder URLs
to populate a LOV resource item is recommended. See Retrieving LOV-
Enabled Attribute Values with Framework Version 5 and Later.

When you need to populate cascading LOV attribute lists, in ADF REST Framework
versions 4 and earlier, see Retrieving Dependent LOV-Enabled Attribute Values with
Framework Versions 1 Through 4.

In Framework version 4 and earlier, to work with LOV-enabled attributes in non-
cascading lists:

1. Execute the resource describe and locate the following details about the LOV:

Chapter 22
Working with LOV

22-134

Under the lov description of a resource attribute, locate the childRef property to
identify the child resource collection that contains the LOV choices. Note that the
resource describe of a LOV child resource does not show the lov description, as
the operation to retrieve LOV-enabled attribute values is not supported on LOV
child resources.

The lov description contains the view object attribute mapping from the resource
item to the LOV child resource collection. The attribute mapping contains one or
more source attributes from the child resource whose values will be copied to
the resource item when an LOV value is selected. An LOV selection could derive
more values in the resource item besides the attribute displaying the LOV. In such
cases, the attribute mapping will identify it as derived = true. Finally, the lov
description identifies which attributes from the child resource collection could be
used for displaying to end users if the results are bound to a user interface.

2. Then, look for the resource item links element and locate the link with a rel
of lov and the href that identifies the corresponding LOV child resource (as
specified in the resource item childRef property).

Tip: The resource describe displays the LOV child resource as a template that
is completed by supplying a specific resource item name from the resource
collection. You may execute a GET to retrieve the resource collection and locate
the working link for the LOV child resource that corresponds to the specific
resource item.

3. Execute a GET using the LOV link and, optionally, use additional filtering to narrow
down the LOV results or to exclude not needed attributes from the payload. You
should always fetch the display attributes listed in the lov description. The display
attribute is the attribute value that allows the end user to make an LOV value
selection from a list of values that they would recognize (such as the list of job
titles). The LOV definition ensures that the correct source attribute is used to
update the resource item when the LOV selection is applied.

For example, the Employees resource collection describe returns the following:

{
 "Resources" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25

Chapter 22
Working with LOV

22-135

 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10",
 "lov" : {
 "childRef" : "JobsLOV",
 "attributeMap" : [{
 "source" : "JobId",
 "target" : "JobId"
 }],
 "displayAttributes" : ["JobTitle"]
 }
 ...

 "item" : {
 "links" : [{
 "rel" : "lov",
 "href" :
 "http://server/demo/rest/11.0/Employees/{id}/lov/JobsLOV",
 "name" : "JobsLOV",
 "kind" : "collection"
 }, {
...

The following sample fetches the values for the LOV display attribute JobTitle from
the JobsLOV resource collection. The query parameters onlyData and fields ensure
the representation is filtered to contain only data in the response payload, where
President and Administration Assistant are examples of the values of the display
attribute JobTitle.

Request Made With Framework Version 4 or Earlier

• URL

http://server/demo/rest/11.0/Employees/101/lov/JobsLOV?
onlyData=true&fields=JobTitle

• HTTP Method

GET

• Content-Type

none

• Payload

Response Returned By Framework Version 4 or Earlier

• HTTP Code

Chapter 22
Working with LOV

22-136

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload

{
 "items" : [{
 "JobTitle" : "President"
 }, {
 "JobTitle" : "Administration Assistant"
 }, {
 "JobTitle" : "Finance Manager"
 }, {
 "JobTitle" : "Accountant"
 }, {
 "JobTitle" : "Accounting Manager"
 }, {
 "JobTitle" : "Public Accountant"
 }],
 "count" : 6,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees/101/lov/JobsLOV",
 "name" : "JobsLOV",
 "kind" : "collection"
 }]
}

Retrieving Dependent LOV-Enabled Attribute Values with Framework
Versions 1 Through 4

In ADF REST Framework version 4 and earlier, the runtime supports retrieving LOV-
enabled attribute values using a GET method when it is necessary to populate
a resource item without a row context, such as when supporting dependent LOV-
enabled attribute lists, also known as cascading LOVs.

In ADF REST Framework versions 1 through 4 the describe provides a static LOV
URL to access the dependent list without the context of a known row, where the
selection the end user makes in one LOV determines the list to display in the nested
LOV. Representing two lists of States and Cities is an example of cascading LOVs,
where the list to display for the Cities LOV child attribute is not know until the
State LOV attribute selection has been made. In this case, the ADF REST resource
developer working in the Model project defines static LOV resources that do not
require a row context to enable access to the nested LOV attribute list in the resource
describe. For details about creating a static LOV resource in the Model project, see
How to Support Create Operations on ADF REST Resources with LOV Attributes.

When you need to populate a non-dependent LOV attribute list (a single LOV) in ADF
REST Framework versions 1 through 4, see Retrieving LOV-Enabled Attribute Values
for Existing Resource Items.

Chapter 22
Working with LOV

22-137

Note:

Starting with ADF REST Framework version 5, the use of row finder URLs
to populate a LOV resource item is recommended. With version 5 enabled,
only top-level LOV resources are supported, where the resource describe
provides no URL to access nested LOV child resources. See Retrieving
LOV-Enabled Attribute Values with Framework Version 5 and Later.

In Framework version 4 and earlier, to work with dependent LOV-enabled attributes:

1. Execute the resource describe and locate the following details about the LOV:

Under the lov description of an attribute, locate the lovResourcePath property to
identify the LOV resource that contains the LOV choices. Note that the resource
describe of a LOV child resource does not show the lov description, as the
operation to retrieve LOV-enabled attribute values is not supported on LOV child
resources.

The lov description contains the attribute mapping from the resource item to
the LOV resource collection. The attribute mapping contains one or more source
attributes from the LOV resource whose values will be copied to the resource item
when an LOV value is selected. An LOV selection could derive more values in the
resource item besides the attribute displaying the LOV. In such cases, the attribute
mapping will identify it as derived = true. Finally, the lov description identifies
which attributes from the LOV resource collection could be used for displaying to
end users if the results are bound to a user interface.

2. Then, look for the resource collection describe links element and locate the link
with a rel of lov and the href that identifies the LOV resource (as specified in the
lovResourcePath property).

Note the lovResourcePath is an array that may specify more than one LOV
resource. The array supports the use case of dependent LOV-enabled attributes
(also called cascading LOVs). For example, the array "lovResourcePath" :
["Countries", "States"] identifies LOV resources Countries and States,
where the LOV list to display the states is dependent on the LOV selection for
countries. To get the values to display for the dependent LOV attribute, you use a
child link from the parent LOV resource collection as follows:

a. Execute a GET using the LOV resource link (where rel: lov and name:
Countries).

b. The end user selects a resource item from the LOV resource collection (for
example, United States).

c. Execute a GET using the child link (rel: child and name: States) in the
selected resource item. This will retrieve a resource collection with the list of
values (states) based on the parent LOV resource (countries).

3. Execute a GET using the LOV resource link and, optionally, use additional
filtering to narrow down the LOV results or to exclude not needed attributes
from the payload. You should always fetch the display attributes listed in the lov
description. The display attribute is the attribute value that allows the end user to
make an LOV value selection from a list of values that they would recognize (such
as the list of job titles).

4. With the cached LOV attribute values from the LOV resource, it is then possible
to display the LOV display attribute in the client user interface where the end

Chapter 22
Working with LOV

22-138

user is expected to enter values to create a new resource item. When enters
the desired values, chooses a value from the displayed LOV for the LOV-enabled
attribute, and then clicks Submit, the client can execute the create request. The
ADF Business Components view object attribute's LOV definition ensures that
the correct source attribute is used to update the resource item when the LOV
selection is applied. For details about submitting a POST request with the payload
that creates a new resource item, see Creating a Resource Item in Collection.

For example, the Employees resource collection describe returns the following:

{
 "Resources" : {
 "Employees" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10",
 "lov" : {
 "childRef" : "JobsLOV",
 "attributeMap" : [{
 "source" : "JobId",
 "target" : "JobId"
 }],
 "displayAttributes" : ["JobTitle"],
 "lovResourcePath" : ["Jobs"]
 }
 ...

Chapter 22
Working with LOV

22-139

 },
 "links" : [{
 ...
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.0/Jobs",
 "name" : "Jobs",
 "kind" : "collection"
 }, {
...

The following sample fetches the values for the LOV display attribute JobTitle from
the Jobs resource collection. The query parameters onlyData and fields ensure
the representation is filtered to contain only data in the response payload, where
President and Administration Assistant are examples of the values of the display
attribute JobTitle.

Request Made With Framework Version 4 or Earlier

• URL

http://server/demo/rest/11.0/Jobs?onlyData=true&fields=JobTitle

• HTTP Method

GET

• Content-Type

none

• Payload

Response Returned By Framework Version 4 or Earlier

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload

{
 "items" : [{
 "JobTitle" : "President"
 }, {
 "JobTitle" : "Administration Assistant"
 }, {
 "JobTitle" : "Finance Manager"
 }, {
 "JobTitle" : "Accountant"
 }, {
 "JobTitle" : "Accounting Manager"
 }, {
 "JobTitle" : "Public Accountant"
 }],
 "count" : 6,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Jobs",

Chapter 22
Working with LOV

22-140

 "name" : "Jobs",
 "kind" : "collection"
 }]
}

Retrieving LOV-Enabled Attribute Values with Framework Version 5
and Later

In ADF REST Framework version 5 and later, the runtime supports retrieving values
from LOV-enabled attributes using a GET method by passing in the containing
resource item which may be either already known or based on a selection made at
runtime in a dependent LOV attribute list.

The row finder URL supports obtaining the LOV list of a single LOV or of cascading
LOVs, where the selection the end user makes in one LOV determines the list to
display in the nested LOV. Representing two lists of States and Cities is an example of
cascading LOVs, where the list to display for the Cities LOV child attribute is not know
until the State LOV attribute selection has been made. In this case, the ADF REST
resource developer working in the Model project defines static LOV resources that do
not require having a row context to enable access to the nested LOV-enabled attribute
list in the resource describe. For details about creating a static LOV resource in the
Model project, see How to Support Create Operations on ADF REST Resources with
LOV Attributes.

The row finder URL that you obtain from the resource describe and pass on a GET
request allows you to submit a bind parameter value to specify the containing resource
and give the LOV-enable attribute its row context. In the case of a cascading LOVs,
once you have retrieved the dependent LOV attribute values, you can populate the
nested LOV list by using a POST request with the retrieved values as the payload.

Note:

Starting with ADF REST Framework version 5, the use of row finder
URLs to populate a LOV resource item is recommended. Unlike earlier
versions of the framework, the use of row finder URLs in the describe
supports both dependent and non-dependent LOVs. For details about
working with LOVs with earlier framework versions, see instead Retrieving
Non-Dependent LOV-Enabled Attribute Values with Framework Versions 1
Through 4 and Retrieving Dependent LOV-Enabled Attribute Values with
Framework Versions 1 Through 4.

In Framework version 5 and later, to work with LOV row finder URLs:

1. Execute the resource describe and locate the following details about the LOV:

Under the lov description of an attribute, locate the childRefForCreate property
to identify the LOV resource that contains the LOV choices.

The lov description contains the attribute mapping from the resource item to
the LOV resource collection. The attribute mapping contains one or more source
attributes from the LOV resource whose values will be copied to the resource item
when an LOV value is selected. An LOV selection could derive more values in the
resource item besides the attribute displaying the LOV. In such cases, the attribute
mapping will identify it as derived = true. Finally, the lov description identifies

Chapter 22
Working with LOV

22-141

which attributes from the LOV resource collection could be used for displaying to
end users if the results are bound to a user interface.

2. Then, look for the resource item describe links element and locate the link with a
rel of lov and the href for the parent LOV list.

3. Execute a GET using the LOV resource link and, optionally, use additional
filtering to narrow down the LOV results or to exclude not needed attributes
from the payload. You should always fetch the display attributes listed in the lov
description. The display attribute is the attribute value that allows the end user to
make an LOV value selection from a list of values that they would recognize (such
as the list of states).

4. With the cached LOV attribute values from the LOV resource, it is then possible
to display the LOV display attribute in the client user interface where the end
user is expected to enter values to create a new resource item. When enters
the desired values, chooses a value from the displayed LOV for the LOV-enabled
attribute, and then clicks Submit, the client can execute the create request. The
ADF Business Components view object attribute's LOV definition ensures that
the correct source attribute is used to update the resource item when the LOV
selection is applied. For details about submitting a POST request with the payload
that creates a new resource item, see Creating a Resource Item in Collection.

5. To get the values to display for a dependent LOV attribute, use a LOV resource
link (as specified in the childRefForCreate property) with parametrized row finder
for the selected resource item. Execute a GET using the LOV resource link (rel:
lov and name: CityLOVForCreate) in the selected resource item. This will retrieve
a resource collection with the list of values (cities) based on the parent LOV
resource (states).

For example, the Address resource collection describe returns the following:

{
 "Resources" : {
 "Address" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...
 }, {
 "name" : "City",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 32,
 "controlType" : "choice",
 "maxLength" : "32",
 "lov" : {
 "childRef" : "CityLOV",
 "childRefForCreate" : "CityLOVForCreate",
 "attributeMap": [{
 "source" : "CityName",
 "target" : "City"
 }],
 "displayAttributes" : ["CityName"],
 }
 }, {

Chapter 22
Working with LOV

22-142

 "name" : "State",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 2,
 "controlType" : "choice",
 "maxLength" : "2",
 "lov" : {
 "childRef" : "StateLOV",
 "childRefForCreate" : "StateLOVForCreate",
 "attributeMap": [{
 "source" : "StateCode",
 "target" : "State"
 }],
 "displayAttributes" : ["StateCode"],
 }
 }, {
 ...
 },
 "item" : {
 "links" : [{
 ...
 }, {
 "rel": "lov",
 "href": "http://server/demo/rest/11.0/Address/{id}/lov/
CityLOV",
 "name": "CityLOV",
 "kind": "collection"},
 }, {
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.0/Cities?
finder=ByStateFinder%3BstateVar%3D{State}",
 "name" : "CityLOVForCreate",
 "kind" : "collection"
 }, {
 }, {
 "rel": "lov",
 "href": "http://server/demo/rest/11.0/Address/{id}/lov/
StateLOV",
 "name": "StateLOV",
 "kind": "collection"},
 }, {
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.0/States",
 "name" : "StateLOVForCreate",
 "kind" : "collection"
 }, {
...

The following sample fetches the values for the parent LOV display attribute
StateCode from the States LOV resource collection. The query parameters onlyData
and fields ensure the representation is filtered to contain only data in the response

Chapter 22
Working with LOV

22-143

payload, where CA and TX are examples of the values of the display attribute
StateCode.

LOV Request Made With Framework Version 5

• URL

http://server/demo/rest/11.0/States?onlyData=true&fields=StateCode

• HTTP Method

GET

• Content-Type

none

• Payload

LOV Response Returned By Framework Version 5

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload

{
 "items" : [{
 "StateCode" : "CA"
 }, {
 "StateCode" : "TX"
 }, {
 "StateCode" : "MS"
 }, {
 ...
 }
]
}

Where the usage involves a cascading LOV, this sample fetches the values for
the dependent LOV with the LOV display attribute CityName from the Cities LOV
resource collection. The row finder takes a parameter for the state name CA returned in
the client for the parent LOV.

Dependent LOV Request Made With Framework Version 5

• URL

http://server/demo/rest/11.0/Cities?
finder=ByStateFinder%3BstateVar%3D{State}"

• HTTP Method

GET

• Content-Type

none

• Payload

Dependent LOV Response Returned By Framework Version 5

Chapter 22
Working with LOV

22-144

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload

{
 "items": [{
 "Statecode": "CA",
 "Cityname": "Tracy"
 }, {
 "Statecode": "CA",
 "Cityname": "Pleasanton"
 }, {
 "Statecode": "CA",
 "Cityname": "Jackson"
 }, {
 "Statecode": "CA",
 "Cityname": "San Jose"
 }, {
 ...
 }
]
}

Working with ADF REST Framework Versions
Service clients may need to pass a different payload format to utilize a new feature or
enhancement, such as the advanced query capabilities offered in version 2 of the ADF
REST runtime framework. A framework version refers to a specific version of the ADF
REST framework available starting in a particular Oracle JDeveloper release.

Being able to specify a framework version to process requests, allows clients to opt
into those features when they are ready.

The ADF REST runtime supports the following use cases for executing requests
according to specific ADF REST framework versions:

• Ability for service clients to specify a framework version that affects the processing
of the payload.

• Ability for service clients to indicate the default framework version (as configured
by the server) to be used.

• Ability for ADF REST resource developers to declare the default framework
version for all URIs under a release version:

– When a request does not specify a framework version, all payloads for
URIs starting with /context/<release-version>/ will assume the default
framework version as declared in the adf-config.xml file.

– When a request specifies a framework version, the specified framework
version will be honored.

Chapter 22
Working with ADF REST Framework Versions

22-145

Service clients may pass the custom header REST-Framework-Version on the REST
resource request to specify the framework version to use to execute the request. The
ADF REST framework version passed in the version header overrides the default
framework declaration defined by the application in the adf-config.xml file by the
REST service developer.

When the service client passes no version header in the request, the ADF REST
runtime uses the default, as defined in the adf-config.xml file. When a default
framework version is not defined and no version header is passed, then the base
version (version 1) of the ADF REST framework is assumed.

The framework version declaration is made by ADF REST resource developers in
the adf-config.xml file for each application-specific resource version name. For
example, the sample following shows resource versions 11.2, 11.1, and 11.0 with
the framework versions 3, 2, and 1 declared.

<versions>
 <version name="11.2" displayName="11.2" restFrameworkVersion="2"/>
 <version name="11.1" displayName="11.1" lifecycle="deprecated"
restFrameworkVersion="1"/>
 <version name="11.0" displayName="11.0" lifecycle="deprecated"
restFrameworkVersion="1"/>
</versions>

In the above example, when the request does not pass a framework version header,
resources 11.0 and 11.1 will use the old payload format, while 11.2 will use the new
payload format. This ensures, in cases where a framework version is not specified in
the request, existing service clients which access resources for a particular release will
not be affected when the ADF REST framework introduces a new payload format; yet
new service clients which access the latest resources may pick up the new payload
format.

For the root resource /context, the default ADF REST framework version for the
latest release will be used.

The service client may want to find out the default framework version for a particular
release. To support this use case, ADF REST will return the default framework
version in the resource version describe, as the following sample shows. Note that
service clients may override the default framework version with another framework
version identifier by specifying the value in the REST-Framework-Version header.
The allowedFrameworkVersions property lists the values of the available framework
versions.

{
 "items" : [
 {
 "version" : "11.2",
 "isLatest" : true,
 "adf:extension" : {
 "defaultFrameworkVersion" : "2",
 "allowedFrameworkVersions" : ["1","2","3","4","5","6","7"]
 },
 "links" : [
 ...

For details about the ADF REST framework functionality supported in each framework
version, see What You May Need to Know About Versioning the ADF REST Runtime
Framework.

Chapter 22
Working with ADF REST Framework Versions

22-146

Retrieving ADF REST Framework Versions for Resource Versions
The ADF REST runtime supports retrieving the version of the ADF REST framework
associated with each application-specific release version name that the service end
point defines using a GET method.

While the release versions named in the REST application are specific to the
application’s REST resources, framework versions designate a change in functionality
of the ADF REST framework and correspond to a particular JDeveloper release.
To ensure the service endpoint exposes the desired level of functionality to service
clients, REST resource developers may optionally assign a framework version to each
REST resource release version name in the application’s adf-config.xml file.

Note:

For details about the ADF REST framework functionality supported in each
framework version, see What You May Need to Know About Versioning the
ADF REST Runtime Framework.

To examine the framework version assigned to the release version names that the
application defines:

1. Execute the service end point describe and locate the available release version
names in the describe.

2. Locate the version property to identify the release version.

3. Examine the associated defaultFrameworkVersion property to understand the
version of the ADF REST framework that will be used to execute requests for the
specific release version:

• defaultFrameworkVersion property specifies the default ADF REST
framework version that has been associated with a particular release version,
as optionally defined by the ADF REST resource developer in the adf-
config.xml file. Note that a new ADF REST framework version may introduce
new functionality. Thus, associating a specific framework version with each
release version ensures that service clients interact with the appropriate level
of functionality. See Working with ADF REST Framework Versions.

4. If you want to override the default framework version, examine the
allowedFrameworkVersions property to understand what versions that you may
use:

• allowedFrameworkVersions property identifies the list of ADF REST
framework versions that are supported for a particular release version. Service
clients may override the default framework version with any value in the list by
specifying the value in the REST-Framework-Version header.

For example, the describe for a service end point with two release versions returns the
following objects, where each release version has been associated with a specific ADF
REST framework version:

{
 "items" : [
 {

Chapter 22
Working with ADF REST Framework Versions

22-147

 "version" : "version_identifier_latest",
 "isLatest" : true,
 "adf:extension" : {
 "defaultFrameworkVersion" : "framework_identifier",
 "allowedFrameworkVersions" : ["framework_identifier1",
"framework_identifier2", ...]
 },
 "links" : [
 {
 "rel" : "self",
 ...

 },
 {
 "rel" : "canonical",
 ...

 },
 {
 "rel" : "predecessor-version",
 ...

 },
 {
 "rel" : "describe",
 ...

 }
]
 },
 {
 "version" : "version_identifier_previous",
 "adf:extension" : {
 "defaultFrameworkVersion" : "framework_identifier",
 "allowedFrameworkVersions" : ["framework_identifier1",
"framework_identifier2", ...]
 },
 "links" : [
 {
 "rel" : "self",
 ...
 },
 {
 "rel" : "canonical",
 ...
 },
 {
 "rel" : "successor-version",
 ...
 },
 {
 "rel" : "describe",
 ...
 }
]
 }
],
 "links" : [
 ...
 {
 "rel" : "current",

Chapter 22
Working with ADF REST Framework Versions

22-148

 ...
 }
]
}

The following sample retrieves all available release versions defined in the resource
catalog of the demo application. In the sample, the three release versions are 11.0,
11.1, and 11.2, where 11.2 is the current (or most recent) release version. In the
sample, versions 11.0 and 11.1 are explicitly associated with ADF REST framework
version 1 and release version 11.2 is associated with ADF REST framework version
2. Note that a framework version refers to a specific version of the ADF REST
framework, available starting in a particular Oracle JDeveloper release.

Request

• URL

http://server/demo/rest

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.description+json

• Payload

{
 "items" : [
 {
 "version" : "11.2",
 "isLatest" : true,
 "adf:extension" : {
 "defaultFrameworkVersion" : "3",
 "allowedFrameworkVersions" : ["1", "2", "3",
"4"]
 },
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.2",
 "name" : "self",
 "kind" : "item"
 },
 {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.2",
 "name" : "canonical",
 "kind" : "item"

Chapter 22
Working with ADF REST Framework Versions

22-149

 },
 {
 "rel" : "predecessor-version",
 "href" : "http://server/demo/rest/11.1",
 "name" : "predecessor-version",
 "kind" : "item"
 },
 {
 "rel" : "describe",
 "href" : "http://server/demo/rest/11.2/describe",
 "name" : "describe",
 "kind" : "describe"
 }
]
 },
 {
 "version" : "11.1",
 "adf:extension" : {
 "defaultFrameworkVersion" : "1",
 "allowedFrameworkVersions" : ["1", "2", "3", "4"]
 },
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1",
 "name" : "self",
 "kind" : "item"
 },
 {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.1",
 "name" : "canonical",
 "kind" : "item"
 },
 {
 "rel" : "predecessor-version",
 "href" : "http://server/demo/rest/11.0",
 "name" : "predecessor-version",
 "kind" : "item"
 },
 {
 "rel" : "successor-version",
 "href" : "http://server/demo/rest/11.2",
 "name" : "successor-version",
 "kind" : "item"
 },
 {
 "rel" : "describe",
 "href" : "http://server/demo/rest/11.1/describe",
 "name" : "describe",
 "kind" : "describe"
 }
]
 },
 {
 "version" : "11.0",
 "adf:extension" : {
 "defaultFrameworkVersion" : "1",
 "allowedFrameworkVersions" : ["1", "2", "3", "4"]
 },
 "links" : [

Chapter 22
Working with ADF REST Framework Versions

22-150

 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0",
 "name" : "self",
 "kind" : "item"
 },
 {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0",
 "name" : "canonical",
 "kind" : "item"
 },
 {
 "rel" : "successor-version",
 "href" : "http://server/demo/rest/11.1",
 "name" : "successor-version",
 "kind" : "item"
 },
 {
 "rel" : "describe",
 "href" : "http://server/demo/rest/11.0/describe",
 "name" : "describe",
 "kind" : "describe"
 }
]
 }
],
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest",
 "name" : "self",
 "kind" : "collection"
 },
 {
 "rel" : "canonical",
 "href" : "http://server/demo/rest",
 "name" : "canonical",
 "kind" : "collection"
 },
 {
 "rel" : "current",
 "href" : "http://server/demo/rest/11.2",
 "name" : "current",
 "kind" : "item"
 }
]
}

Executing a Request Using the Header to Specify the Framework
Version

The ADF REST runtime supports executing individual requests on the service
endpoint using a custom header to affect the processing of the payload with the
functionality specific to a particular ADF REST framework version. The framework
version specified by the custom header overrides the default framework version
declaration that may exist in the client application.

Chapter 22
Working with ADF REST Framework Versions

22-151

Note:

A framework version refers to a specific version of the ADF REST framework
(corresponding to a particular Oracle JDeveloper release). For details about
the ADF REST framework functionality supported in each framework version,
see What You May Need to Know About Versioning the ADF REST Runtime
Framework.

To ensure the service endpoint exposes the desired level of functionality to service
clients, REST resource developers may optionally assign a default ADF REST
framework version to each REST resource version named in the application’s adf-
config.xml file. However, the service client may override the default framework
version and process individual requests using a specified framework version that gets
passed in a custom header. In this case, the ADF REST runtime will ignore the
declared, default framework version.

To process a request using a specific ADF REST framework version, the request must
pass the custom header REST-Framework-Version with the framework version number
specified. For example, the following header specifies framework version 2 will be
used to process the request that passes this version header.

 REST-Framework-Version: 2

If the custom header is omitted on the request, then the ADF REST runtime uses the
application’s default framework version, as defined in the adf-config.xml file. When
the application does not define a default framework version and the request on the
service client omits the version header, then the base version (version 1) of the ADF
REST framework is assumed.

Executing Requests Using the Declared Default Framework Version
The ADF REST runtime supports executing all requests on the service endpoint to
affect the processing of the payload with functionality specific to the declared, default
version of the ADF REST framework.

Note:

A framework version refers to a specific version of the ADF REST framework
(corresponding to a particular Oracle JDeveloper release). For details about
the ADF REST framework functionality supported in each framework version,
see What You May Need to Know About Versioning the ADF REST Runtime
Framework.

To ensure the service endpoint exposes the desired level of functionality to service
clients, REST resource developers may optionally assign a default ADF REST
framework version to each REST resource version named in the application’s adf-
config.xml file. Thus, when the request is made, the ADF REST runtime will process
the request for the particular resource version according to the declaration in the
adf-config.xml file.

Chapter 22
Working with ADF REST Framework Versions

22-152

For example, the following URL specifies resource version 11.2, where the
application’s adf-config.xml file associates this resource version with version 2 of
the ADF REST framework. Because version 2 of the ADF REST framework supports
rowmatch filter expressions, as a result, the ADF REST runtime will process the
request with the appropriate functionality and fetch the departments with names that
begin with SA (for example, SALES) or have a Location of BOSTON.

 http://server/demo/rest/11.2/Departments?q=DepartmentName like 'SA*' or
Location = 'BOSTON'

Note that a service client may override the default framework version and process
individual requests using a specified framework version that gets passed in a custom
header. In this case, the ADF REST runtime will ignore the application default. If the
custom header is omitted on the request, then the ADF REST runtime always uses the
application’s default framework version, as defined in the adf-config.xml file. When
the application does not define a default framework version and the request on the
service client omits the version header, then the base version (version 1) of the ADF
REST framework is assumed.

Working with Warning and Error Responses
Error responses can be obtained in the form of a JSON payload with exception details
when ADF REST framework version 4 or later is enabled. Alternatively, with framework
version 3 or earlier, error responses are in the form of a simple message string.

Warning responses can be obtained in the form of a JSON payload with details when
ADF REST framework version 6 or later is enabled.

In addition to HTTP status codes and error messages, it is possible to obtain
exception details in the response when your request is enabled to use ADF
REST framework version 4 and the request is made for either application/
vnd.oracle.adf.error+json or application/json media types. With framework
version 4, the response will be in the form an exception detail payload which provides
the following benefits to the service client:

• If multiple errors occur in a single request, the details of each error are presented
in a hierarchical structure.

• An application-specific error code may be present that identifies the ADF
exception corresponding to each error.

• An error path may be present that identifies the location of each error in the
request payload structure.

Note:

The exception detail may or may not present certain details, such as the
application-specific error code and the request payload’s error path.

Chapter 22
Working with Warning and Error Responses

22-153

For example, compare the error response for a POST submitted with a payload that
contains the following incorrectly formatted date field when framework version 3 (or
earlier) is enable and when framework version 4 (or later) is enabled.

{ "EmpNum" : 5027,
 "EmpName" : "John",
 "EmpHireDate" : "not a date"
}

Standard Error Response, Version 3 and earlier

Without framework version 4, no response payload is generated and instead only a
single error message that does not reference the request payload will be returned in
the response.

"An instance of type oracle.jbo.domain.Date cannot be created from
string not a date. The string value must be in format YYYY-MM-
DDTHH:MI:SS.sss+hh:mm."

Exception Payload Error Response, Version 4 and later

With framework version 4 enabled, the following exception detail payload is generated
for the response. The payload includes the usual HTTP status code and formats the
details of one or more exceptions in an array structure.

{ "title" : "Bad Request",
 "status" : "400",
 "o:errorDetails" : [{
 "detail" : "An instance of type oracle.jbo.domain.Date cannot be
created from string not a date.
 The string value must be in format YYYY-MM-
DDTHH:MI:SS.sss+hh:mm.",
 "o:errorCode" : "26099",
 "o:errorPath" : "/EmpHireDate"
 }]
 }

Exception Payload Warning Response, Version 6 and later

With framework version 6 enabled, a warning detail payload is generated for the
response similar to the following. The payload includes the usual HTTP status code
and formats the details of the warning in the @context section for each resource item.

"@context" : {
 ...
 }],
 "warnings": [{
 "detail": "Warning from overridden validateEntity method in
DeptImpl : DeptName = ABC or DEF"
 }, {
 "detail": "Attribute set with value 50 for DeptNum in Dept
failed",
 "o:errorCode": "27011",
 "o:errorPath": "/DeptNum"
 }, {

Chapter 22
Working with Warning and Error Responses

22-154

 "detail": "Warning from overridden create method in
DeptViewDefRowImpl"
 }, {
 "detail": "Warning from overridden afterCommit method in
DeptViewImpl"
 }]
 }
}

Understanding the Exception Payload Error Response
The exception detail payload will be generated for an ADF REST error response when
the following conditions exist:

1. ADF REST framework version is version 4.

2. Either application/vnd.oracle.adf.error+json or application/json is an
acceptable media type for the response.

The exception detail payload is a JSON object with the following structure as
determined by the ADF REST framework:

{ "title" : "Message as per HTTP status code",
 "status" : "HTTP error code",
 "o:errorDetails" : [
 ...
 {
 "detail" : "Message of detail error",
 "o:errorCode" : "error code"
 "o:errorPath" : "JSON pointer to the location of the error
in the request payload"
 },
 ...
]
}

You opt into the exception payload as the error responses by using framework version
4 and making a request for either the application/vnd.oracle.adf.error+json
media type or application/json media type.

Note that within the exception payload, o:errorDetails can vary as per the number
and the types of errors encountered. Additionally, the error code and error path are not
guaranteed to be present in the response payload and should not be relied upon by
service clients.

Obtaining the Standard Error Message Response
The ADF REST runtime generates an error message that describes the validation or
system error when the request is made with ADF REST framework versions 1 through
3 enabled.

Before version 4 of the ADF REST framework, the error response returns a single
error message and HTTP status code. Version 4 and later allows service clients to
obtain an error response with a detailed exception payload.

Chapter 22
Working with Warning and Error Responses

22-155

The following sample attempts to create the Departments object with a new
department record. However, for this example the request fails because the record for
the department instance already exists. The response is an error message because
ADF REST framework version 4 (or later) is not enabled.

Request Example Made With Framework Version 3

• URL

http://server/demo/rest/11.2/Departments

• HTTP Method

POST

• Accept Header

application/vnd.oracle.adf.resourceitem+json,application/json

• Payload

{
 "DeptNum" : 50,
 "DeptName" : "SALES",
}

Response Example From Framework Version 3

• HTTP Code

400

• Error Response

A department with the same name already exists. Please provide a
different name.

Obtaining an Exception Payload Error Response
The ADF REST runtime supports obtaining exception details in the response when
your request is enabled to use ADF REST framework version 4 and the request is
made with an appropriate media type.

Starting with version 4 of the REST API framework, web applications may obtain an
error response with a detailed exception payload.

Notice in the exception payload the o:errorDetails array provides the error path for
where the error occurred in the request object; however, these particular details may
not always be available to web applications.

The following sample attempts to create the department object with a new department
item. However, for this example the request fails because the item for the department
already exists.

Request Example 1 Made With Framework Version 4

• URL

http://server/demo/rest/11.2/Departments

• HTTP Method

POST

• Accept Header

Chapter 22
Working with Warning and Error Responses

22-156

application/vnd.oracle.adf.resourceitem+json,application/json

• Payload

{
 "DeptNum" : 50,
 "DeptName" : "SALES",
}

Response Example 1 From Framework Version 4

• HTTP Code

400

• Content-Type

application/json

• Payload

{
 "title" : "Bad Request",
 "status" : "400",
 "o:errorDetails" : [{
 "detail" : "A department with the same name already exists. Please
provide a different name.",
 "o:errorCode" : "Dept_Rule_0"
 }]
}

The following sample attempts to create the department object with a new department
item. However, for this example the request fails because the employee names
entered exceed the number of characters allowed by the validation rule defined for
the EmpName field.

Request Example 2 Made With Framework Version 4

• URL

http://server/demo/rest/11.1/Departments

• HTTP Method

POST

• Accept Header

application/vnd.oracle.adf.resourceitem+json,application/
vnd.oracle.adf.error+json

• Payload

{
 "DeptNum" : 52,
 "DeptName" : "newDept522",
 "Employees" : [{
 "EmpNum" : 501,
 "EmpName" : "MILLERSxxxxxxxxxxxxxxxxx"
 }, {
 "EmpNum" : 502,
 "EmpName" : "JONESPxxxxxxxxxxxxxxxxx"
 }]
}

Response Example 2 From Framework Version 4

Chapter 22
Working with Warning and Error Responses

22-157

• HTTP Code

400

• Content-Type

application/vnd.oracle.adf.error+json

• Payload

{
 "title" : "Bad Request",
 "status" : "400",
 "o:errorDetails" : [{
 "detail" : "Value MILLERSxxxxxxxxxxxxxxxxx for field EmpName exceeds
the maximum length allowed.",
 "o:errorCode" : "27040",
 "o:errorPath" : "/Employees/0/EmpName"
 }, {
 "detail" : "Value JONESPxxxxxxxxxxxxxxxxx for field EmpName exceeds
the maximum length allowed.",
 "o:errorCode" : "27040",
 "o:errorPath" : "/Employees/1/EmpName"
 }]
}

The following sample attempts to perform a batch operation. However, for this
example the batch operation fails for the reasons shown in the exception detail
payload of the error response.

Request Example 3 Made With Framework Version 4

• URL

http://server/demo/rest/11.1

• HTTP Method

POST

• Accept Header

application/vnd.oracle.adf.batch+json,application/
vnd.oracle.adf.error+json

• Payload

{
 "parts": [
 {
 "id": "part1",
 "path": "/Employees",
 "operation": "create",
 "payload" : {
 "EmpNum" : 1299,
 "EmpJob" : "CLERK",
 "EmpMgr" : 7566,
 "EmpHireDate" : null,
 "EmpSal" : 245,
 "EmpComm" : 0,
 "EmpDeptNum" : 30
 }
 },
 {
 "id": "part2",

Chapter 22
Working with Warning and Error Responses

22-158

 "path": "/Employees",
 "operation": "create",
 "payload": {
 "EmpNum" : 7589,
 "EmpName" : "SampleEmpxxxxxxxxxxxxxxxxxx",
 "EmpJob" : "CLERK",
 "EmpMgr" : 7566,
 "EmpHireDate" : null,
 "EmpSal" : 245,
 "EmpComm" : 0,
 "EmpDeptNum" : 30
 }
 },
 {
 "id": "part3",
 "path": "/Departments",
 "operation": "create",
 "payload": {
 "DeptNum" : 52,
 "DeptName" : "newDept522",
 "Employees" : [
 {
 "EmpNum" : 7588,
 "EmpName" : "SampleEmpxxxxxxxxxxxxxxxxxx",
 "EmpJob" : "CLERK",
 "EmpMgr" : 7566,
 "EmpHireDate" : null,
 "EmpSal" : 245,
 "EmpComm" : 0,
 "EmpDeptNum" : 30
 }
]
 }
 },
 {
 "id": "part4",
 "path": "/Departments/10/child/Loc",
 "operation": "get"
 },
 {
 "id": "part5",
 "path": "/Departments?invQP=invVal",
 "operation": "get"
 },
 {
 "id": "part6",
 "path": "/Departments/54",
 "operation": "delete"
 },
 {
 "id": "part7",
 "path": "/1.0/Departments/54",
 "operation": "get"
 }
]
}

Response Example 3 From Framework Version 4

• HTTP Code

400

Chapter 22
Working with Warning and Error Responses

22-159

• Content-Type

application/vnd.oracle.adf.error+json

• Payload

{
 "title" : "Bad Request",
 "status" : "400",
 "o:errorDetails" : [{
 "detail" : "URL request parameter invQP cannot be used in this
context.",
 "o:errorCode" : "27520"
 }, {
 "detail" : "Attribute EmpName in Emp is required.",
 "o:errorCode" : "27014",
 "o:errorPath" : "/parts/0"
 }, {
 "detail" : "Value SampleEmpxxxxxxxxxxxxxxxxxx for field EmpName
exceeds the maximum length allowed.",
 "o:errorCode" : "27040",
 "o:errorPath" : "/parts/1/payload/EmpName"
 }, {
 "detail" : "Attribute EmpName in Emp is required.",
 "o:errorCode" : "27014",
 "o:errorPath" : "/parts/1"
 }, {
 "detail" : "Value SampleEmpxxxxxxxxxxxxxxxxxx for field EmpName
exceeds the maximum length allowed.",
 "o:errorCode" : "27040",
 "o:errorPath" : "/parts/2/payload/Employees/0/EmpName"
 }, {
 "detail" : "Attribute EmpName in
AM.Dept_empWorksIn_deptToEmpQA_EmpViewDef is required.",
 "o:errorCode" : "27014",
 "o:errorPath" : "/parts/2"
 }, {
 "detail" : "Not Found",
 "o:errorCode" : "11404",
 "o:errorPath" : "/parts/3"
 }]
}

Obtaining Warning Messages in the Payload Response
The ADF REST runtime supports obtaining warning details in the response when your
request is enabled to use ADF REST framework version 6 and the request is made
with an appropriate media type.

Starting with version 6 of the REST API framework, web applications may obtain a
warning response with a response payload.

Notice in the exception payload the o:errorPaths element provides the error path
for where the error occurred in the request object; however, these particular details
depend upon validation rules set on the entity object backing the resource.

The following sample attempts to create the department object with a new department
item. However, for this example the request fails because the DeptName for the
department is specified as not allowed in the validation method of the Departments
entity object.

Chapter 22
Working with Warning and Error Responses

22-160

Request Example 1 Made With Framework Version 6

• URL

http://server/demo/rest/12.0/Departments

• HTTP Method

POST

• Accept Header

application/vnd.oracle.adf.resourceitem+json,application/json

• Payload

{
 "DeptNum" : 50,
 "DeptName" : "ABC",
}

Response Example 1 From Framework Version 6

• HTTP Code

201

• Content-Type

application/json

• Payload

...
 "@context" : {
 ...
 }],
 "warnings": [{
 "detail": "Warning from overridden validateEntity method in DeptImpl :
DeptName = ABC or DEF"
 }, {
 "detail": "Attribute set with value 50 for DeptNum in Dept failed",
 "o:errorCode": "27011",
 "o:errorPath": "/DeptNum"
 }, {
 "detail": "Warning from overridden create method in DeptViewDefRowImpl"
 }, {
 "detail": "Warning from overridden afterCommit method in DeptViewImpl"
 }]
 }
}

The following sample attempts to create the department object with a new department
item. However, for this example the request fails because the employee salary entered
does not meet the salary allowed by the validation rule defined for the EmpSalary field.

Request Example 2 Made With Framework Version 6

• URL

http://server/demo/rest/11.1/Departments

• HTTP Method

POST

• Accept Header

Chapter 22
Working with Warning and Error Responses

22-161

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "DeptNum" : 52,
 "DeptName" : "newDept522",
 "Employees" : [{
 "EmpNum" : 501,
 "EmpName" : "MILLER
 "EmpSalary" : "85"
 }
]
}

Response Example 2 From Framework Version 6

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.error+json

• Payload

...
 "@context" : {
 ...
 }],
 "warnings": [{
 "detail": "Warning from Emp entity expressionValidator : Salary value is
< 100.",
 "o:errorCode": "ExcTooLow",
 "o:errorPath": "/Employees/10"
 },]
 }
}

Advanced Operations
You can use the HTTP methods at ADF REST runtime to perform advanced
operations such as fetching a resource collection with a row finder, obtaining a count
of resource items in a resource collection, querying a resource with a filter, and
retrieving LOV attribute values for an existing resource item.
The ADF REST runtime supports the following advanced use cases:

• Retrieving LOV attribute values in the context of an existing resource item.

• Querying a resource with a partial get using filtering to restrict attributes.

• Fetching the resource collection with a row finder.

• Returning just the data of the resource item or resource collection.

• Returning the estimated count of resource items in a resource collection.

• Overriding the HTTP method to perform an update

• Making batch requests.

Chapter 22
Advanced Operations

22-162

Querying With Filtering Attributes (Partial Get)
The ADF REST runtime supports retrieving a subset of fields from resource collections
using a GET method.

The payload structure of nested child resource differs depending on the ADF REST
framework version that has been registered for the ADF REST service client. For
details about the ADF REST framework versions, see What You May Need to Know
About Versioning the ADF REST Runtime Framework.

The following samples are based on two different versions of the Employees resource
and Departments resource. The URL samples showing resource 11.0 reflect a
response payload structure supported by ADF REST framework versions 1 and 2.
While the URL samples showing resource 11.1, reflect the response payload structure
supported in ADF REST framework version 3 (and later). In both framework scenarios,
the samples fetch the Employees resource as a child of the Departments resource.

Note:

SQL SELECT statements executed by the ADF REST resource’s backing
view object are based on how the view object was created. Only view objects
that the ADF Business Components developer creates with declarative
SQL mode enabled support optimized SQL SELECT statements formed
exclusively by the list of attributes named by the query parameter fields.
The SELECT statement executed by non-declarative view objects will
contain all attributes of the view object definition. To gain this runtime
optimization, it is therefore recommended that ADF Business Components
developers create view objects for ADF REST resources using only
declarative SQL mode.

ADF REST Framework Version 3 (and later)

Starting with version 3 of the ADF REST framework, the ADF REST runtime returns
a nested child resource in the response payload as a resource collection, instead of
as an array of resource items. This functionality, available in framework version 3 (and
later), allows service clients to make a request for additional records after determining
how many items were left unfetched in the initial request. The attributes hasMore and
count on the child resource indicate whether more items may be returned from the
resource collection. For details about using the pagination attributes from the response
payload when you opt into ADF REST framework version 3, see Paging a Resource
Collection.

The following sample illustrates functionality for ADF REST framework version 3 (and
later). The response payload represents the nested child resource as a resource
collection, where the collection object includes the hasMore and count attributes. A link
is provided should it be necessary to query the child resource for additional resource
items. In this sample, the response payload shows the hasMore attribute is false,
suggesting that no items remain unfetched on the Employees child resource for either
department 10 or department 20.

Request Made With Framework Version 3

• URL

Chapter 22
Advanced Operations

22-163

http://server/demo/rest/11.1/Departments?
fields=DepartmentId;Employees:FirstName&onlyData=true

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response Made With Framework Version 3

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload

{
 "items" : [{
 "DepartmentId" : 10,
 "Employees" : {
 "items" : [{
 {
 "FirstName" : "Jennifer"
 }
 }],
 "count" : 1,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/10/child/
Employees",
 "name" : "Employees",
 "kind" : "collection"
 },]
 }, {
 "DepartmentId" : 20,
 "Employees" : {
 "items" : [{
 {
 "FirstName" : "Michael"
 },
 {
 "FirstName" : "Pat"
 }
 }],
 "count" : 2,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/20/child/

Chapter 22
Advanced Operations

22-164

Employees",
 "name" : "Employees",
 "kind" : "collection"
 },]
 }, {
 ...
],
 "count" : 25,
 "hasMore" : true,
 "limit" : 25,
 "offset" : 0,
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments",
 "name" : "Departments",
 "kind" : "collection"
 }
]

ADF REST Framework Version 1 or Version 2

Version 1 and version 2 of the ADF REST framework return the nested child resource
expanded in the response payload as an array of resource items. If the resource
collection being fetched is large, several requests will be required to fetch all items.

The following samples fetch the attribute values for instances of the Departments and
Employees collections. The query parameter fields ensures the response payload
contains only the specified attributes. Note that a GET request may return no values
for any resource in the URL that does not specify an attribute value.

The first request (URL 1) fetches the values for an instance of the Employees
collection. The query parameter fields ensures the response payload contains only
the specified attributes: FirstName, LastName, and Email.

The second request (URL 2) fetches the DepartmentId values for instances of the
Departments collection and the FirstName value for employees of each department.
The query parameter onlyData filters the response to hide child links.

The third request (URL 3) fetches the DepartmentId values for instances of the
Departments collection, the FirstName value for employees of each department, and
the JobId history for each employee. The query parameter onlyData again filters the
response to hide child links.

Request 1 Made With Framework Version 1 or 2

• URL 1

http://server/demo/rest/11.0/Employees/101?
fields=FirstName,LastName,Email

• HTTP Method

GET

• Content-Type

none

• Payload

none

Chapter 22
Advanced Operations

22-165

Response 1 From Framework Version 1 or 2

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload 1

{
 "FirstName" : "Neena",
 "LastName" : "Smith",
 "Email" : "NSMITH",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.0/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.0/Employees/101/lov/JobsLOV",
 "name" : "JobsLOV",
 "kind" : "collection"
 }]
}

Request 2 Made With Framework Version 1 or 2

• URL 2

http://server/demo/rest/11.0/Departments?
fields=DepartmentId;Employees:FirstName&onlyData=true

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response 2 From Framework Version 1 or 2

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload 2

{
 "items" : [

Chapter 22
Advanced Operations

22-166

 {
 "DepartmentId" : 10,
 "Employees" : [
 {
 "FirstName" : "Jennifer"
 }
]
 },
 {
 "DepartmentId" : 20,
 "Employees" : [
 {
 "FirstName" : "Michael"
 },
 {
 "FirstName" : "Pat"
 }
]
 },
 {
 "DepartmentId" : 30,
 "Employees" : [
 {
 "FirstName" : "Den"
 },
 {
 "FirstName" : "Alexander"
 },
 {
 "FirstName" : "Shelli"
 },
 {
 "FirstName" : "Sigal"
 },
 {
 "FirstName" : "Guy"
 },
 {
 "FirstName" : "Karen"
 }
]
 },
 {
 "DepartmentId" : 40,
 "Employees" : [
 {
 "FirstName" : "Susan"
 }
]
 },
 ...
],
 "count" : 25,
 "hasMore" : true,
 "limit" : 25,
 "offset" : 0,
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments",
 "name" : "Departments",

Chapter 22
Advanced Operations

22-167

 "kind" : "collection"
 }
]

Request 3 Made With Framework Version 1 or 2

• URL 3

http://server/demo/rest/11.0/Departments?
fields=DepartmentId;Employees:FirstName;Employees.JobHistory:JobId&onl
yData=true

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response 3 From Framework Version 1 or 2

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourcecollection+json

• Payload 3

{
 "items" : [

 {
 "DepartmentId" : 10,
 "Employees" : [
 {
 "FirstName" : "Jennifer",
 "JobHistory" : [
 {
 "JobId" : "AD_ASST"
 },
 {
 "JobId" : "AC_ACCOUNT"
 }
]
 }
]
 },
 {
 "DepartmentId" : 20,
 "Employees" : [
 {
 "FirstName" : "Michael",
 "JobHistory" : [
 {
 "JobId" : "MK_REP"
 }
]
 },

Chapter 22
Advanced Operations

22-168

 {
 "FirstName" : "Pat",
 "JobHistory" : [
 {
 "JobId" : "AD_ASST"
 },
 {
 "JobId" : "AC_ACCOUNT"
 }
]
 }
]
 },
 {
 "DepartmentId" : 30,
 "Employees" : [
 {
 "FirstName" : "Den",
 "JobHistory" : [
 {
 "JobId" : "ST_CLERK"
 }
]
 },
 {
 "FirstName" : "Alexander",
 "JobHistory" : [
 {
 "JobId" : "AD_ASST"
 },
 {
 "JobId" : "AC_ACCOUNT"
 }
]
 },
 {
 "FirstName" : "Shelli",
 "JobHistory" : [
 {
 "JobId" : "AD_ASST"
 },
 {
 "JobId" : "AC_ACCOUNT"
 }
]

]
 ...
],
 "count" : 25,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [
 {
 "rel" : "self",
 "href" : "http://server/demo/rest/11.0/Departments",
 "name" : "Departments",
 "kind" : "collection"
 }

Chapter 22
Advanced Operations

22-169

]
}

Filtering a Resource Collection with a Row Finder
The ADF REST runtime supports applying a row finder to fetch a resource collection
using a GET method. The ADF REST resource developer defines seeded filters called
row finders. The ADF REST runtime supports passing parameters into these filters
and supports using the seeded filters to reduce (or filter) the collection.

Filtering with a row finder is performed using the finder query string to specify one or
more row finder parameter values. The finder with row finder query string parameter
format is:

finder=<rowfinderName>;<attr1>=<value1>,<attr2>=<value2>,...

Example: finder=DeptByName;Dname=ACCOUNTING

The resource collection describe explains the shape of a row finder. To work with the
row finder:

1. Execute the resource describe and locate the finders attribute in the collection
element. The name attribute identifies the row finder definition name. Also locate
the name of the row finder parameter under attributes.

2. Execute a GET with the query parameter finder and pass the row finder name
and parameters.

For example, the Departments resources describe returns the following:

"collection" : {
 "rangeSize" : 25,
 "finders" : [{
 "name" : "EmpByEmailFinder",
 "title" : "EmployeesByEmailVC",
 "attributes" : [{
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "required" : "Optional",
 "queryable" : false
}]

The following sample fetches the Departments collection specified by a row finder
EmpByEmailFinder where the Email attribute value NSMITH is passed.

Request

• URL

http://server/demo/rest/11.1/Employees?
finder=EmpByNameFinder;Email=NSMITH

• HTTP Method

GET

• Content-Type

none

• Payload

Chapter 22
Advanced Operations

22-170

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "items" : [{
 "EmployeeId" : 101,
 "FirstName" : "Neena",
 "LastName" : "Smith",
 "Email" : "NSMITH",
 "JobId" : "AD_VP",
 "DepartmentId" : 90,
 "Salary" : 2000,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.1/Employees/101",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.1/Employees/101/lov/JobsLOV",
 "name" : "JobsLOV",
 "kind" : "collection"
 }]
 }],
 "count" : 1,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

Returning Only Resource Data in a Payload
The ADF REST runtime supports retrieving only the data of resource items using a
GET method of a resource collection or a resource item.

The following sample fetches the values of the Employees collection attributes. The
query parameter onlyData ensures the representation is filtered to contain only data in
the response payload and no links.

Request

Chapter 22
Advanced Operations

22-171

• URL

http://server/demo/rest/11.1/Employees?onlyData=true

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "items" : [{
 "EmployeeId" : 101,
 "FirstName" : "Neena",
 "LastName" : "Smith",
 "Email" : "NSMITH",
 "JobId" : "AD_VP",
 "DepartmentId" : 90,
 "Salary" : 2000
 }, {
 "EmployeeId" : 102,
 "FirstName" : "Lex",
 "LastName" : "De Haan",
 "Email" : "LDEHAAN",
 "JobId" : "AD_VP",
 "DepartmentId" : 90,
 "Salary" : 3000
 }, {
 "EmployeeId" : 103,
 "FirstName" : "Alexander",
 "LastName" : "Hunold",
 "Email" : "AHUNOLD",
 "JobId" : "IT_PROG",
 "DepartmentId" : 60,
 "Salary" : 4000
 }, {
 "EmployeeId" : 104,
 "FirstName" : "Bruce",
 "LastName" : "Ernst",
 "Email" : "BERNST",
 "JobId" : "IT_PROG",
 "DepartmentId" : 60,
 "Salary" : 5000
 }, {
 "EmployeeId" : 105,
 "FirstName" : "David",
 "LastName" : "Austin",

Chapter 22
Advanced Operations

22-172

 "Email" : "DAUSTIN",
 "JobId" : "IT_PROG",
 "DepartmentId" : 60,
 "Salary" : 6000
 }],
 "count" : 5,
 "hasMore" : true,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

Returning the Estimated Count of Resource Items
The ADF REST runtime supports retrieving the estimated item count in the resource
collection.

The following sample estimates the total records and queries the first two items in
the Employee collection. The query parameter totalResults ensures the response
payload contains the totalResults attribute.

Request

• URL

http://server/demo/rest/11.1/Employees?totalResults=true&limit=2

• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "items" : [{
 "EmployeeId" : 101,
 "FirstName" : "Neena",
 "LastName" : "Smith",
 "Email" : "NSMITH",
 "JobId" : "AD_VP",
 "DepartmentId" : 90,
 "Salary" : 2000,

Chapter 22
Advanced Operations

22-173

 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Employees/NSMITH",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.1/Employees/NSMITH",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.1/Employees/NSMITH/lov/JobsLOV",
 "name" : "JobsLOV",
 "kind" : "collection"
 }]
 }, {
 "EmployeeId" : 102,
 "FirstName" : "Lex",
 "LastName" : "De Haan",
 "Email" : "LDEHAAN",
 "JobId" : "AD_VP",
 "DepartmentId" : 90,
 "Salary" : 3000,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Employees/LDEHAAN",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.1/Employees/LDEHAAN",
 "name" : "Employees",
 "kind" : "item"
 }, {
 "rel" : "lov",
 "href" : "http://server/demo/rest/11.1/Employees/LDEHAAN/lov/JobsLOV",
 "name" : "JobsLOV",
 "kind" : "collection"
 }]
 }],
 "totalResults" : 5,
 "count" : 2,
 "hasMore" : true,
 "limit" : 2,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

Overriding the HTTP Method and Performing an Update
Some HTTP servers or clients do not support exposing all the methods in the HTTP
specification. The ADF REST runtime allows you to use the popular POST method to
carry out operations for other methods.

Chapter 22
Advanced Operations

22-174

The following sample uses the POST method to update a Departments resource item
by overriding the PATCH method.

Request

• URL

http://server/demo/rest/11.1/Departments/15

• HTTP Method

POST

• X-HTTP-Method-Override

PATCH

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "DepartmentName": "UpdatedDept",
}

Response

• HTTP Code

200

• Content-Type

application/vnd.oracle.adf.resourceitem+json

• Payload

{
 "DepartmentId" : 15,
 "DepartmentName" : "UpdatedDept",
 "links" : [{
 "rel" : "self",
 "href" : "http://server/demo/rest/11.1/Departments/15",
 "name" : "Departments",
 "kind" : "item"
 }
 }, {
 "rel" : "canonical",
 "href" : "http://server/demo/rest/11.1/Departments/15",
 "name" : "Departments",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "http://server/demo/rest/11.1/Departments/15/child/Employees",
 "name" : "Employees",
 "kind" : "collection"
 }]
}

Making Batch Requests
The ADF REST runtime supports executing multiple operations in a single roundtrip
using a batch request. The data is committed at the end of the request. However, if

Chapter 22
Advanced Operations

22-175

one request part in a batch request fails, then all changes are rolled back and an error
response is returned.

A batch request can consist of a combination of create, update, delete, upsert, and get
requests. The path parameter and the payload needs to be the same as what you use
to invoke the request directly. The get method supports the same URL parameters in
the batch request as a separate HTTP request.

The following sample illustrates a successful batch operation that executes operations
in four parts: 1) update employee 101, 2) update employee 102, 3) update employee
103, 4) query employee 101.

Request

• URL

http://server/demo/rest/11.1

• HTTP Method

POST

• Content-Type

application/vnd.oracle.adf.batch+json

• Payload

{
 "parts": [{
 "id": "part1",
 "path": "/Employees/101",
 "operation": "update",
 "payload": {
 "Salary": 10000
 }
 }, {
 "id": "part2",
 "path": "/Employees/102",
 "operation": "update",
 "payload": {
 "Salary": 10000
 }
 }, {
 "id": "part3",
 "path": "/Employees/103",
 "operation": "update",
 "payload": {
 "Salary": 10000
 }
 }, {
 "id": "part4",
 "path": "/Employees?q=EmployeeId%3D101",
 "operation": "get"
 }]
}

Response

• HTTP Code

200

• Content-Type

Chapter 22
Advanced Operations

22-176

application/vnd.oracle.adf.batch+json

• Payload

{
 "parts": [{
 "id": "part1",
 "path": "http://server/demo/rest/11.1/Employees/101",
 "operation": "update",
 "payload": {
 "EmployeeId": 101,
 "FirstName": "Neena",
 "LastName": "Smith",
 "Email": "NSMITH",
 "JobId": "AD_VP",
 "DepartmentId": 90,
 "Salary": 10000,
 "links": [{
 "rel": "self",
 "href": "http://server/demo/rest/11.1/Employees/101",
 "name": "Employees",
 "kind": "item"
 }, {
 "rel": "canonical",
 "href": "http://server/demo/rest/11.1/Employees/101",
 "name": "Employees",
 "kind": "item"
 }, {
 "rel": "lov",
 "href": "http://server/demo/rest/11.1/Employees/101/lov/
JobsLOV",
 "name": "JobsLOV",
 "kind": "collection"
 }]
 }
 }, {
 "id": "part2",
 "path": "http://server/demo/rest/11.1/Employees/102",
 "operation": "update",
 "payload": {
 "EmployeeId": 102,
 "FirstName": "Lex",
 "LastName": "De Haan",
 "Email": "LDEHAAN",
 "JobId": "AD_VP",
 "DepartmentId": 90,
 "Salary": 10000,
 "links": [{
 "rel": "self",
 "href": "http://server/demo/rest/11.1/Employees/102",
 "name": "Employees",
 "kind": "item"
 }, {
 "rel": "canonical",
 "href": "http://server/demo/rest/11.1/Employees/102",
 "name": "Employees",
 "kind": "item"
 }, {
 "rel": "lov",
 "href": "http://server/demo/rest/11.1/Employees/102/lov/
JobsLOV",
 "name": "JobsLOV",

Chapter 22
Advanced Operations

22-177

 "kind": "collection"
 }]
 }
 }, {
 "id": "part3",
 "path": "http://server/demo/rest/11.1/Employees/103",
 "operation": "update",
 "payload": {
 "EmployeeId": 103,
 "FirstName": "Alexander",
 "LastName": "Hunold",
 "Email": "AHUNOLD",
 "JobId": "IT_PROG",
 "DepartmentId": 60,
 "Salary": 10000,
 "links": [{
 "rel": "self",
 "href": "http://server/demo/rest/11.1/Employees/103",
 "name": "Employees",
 "kind": "item"
 }, {
 "rel": "canonical",
 "href": "http://server/demo/rest/11.1/Employees/103",
 "name": "Employees",
 "kind": "item"
 }, {
 "rel": "lov",
 "href": "http://server/demo/rest/11.1/Employees/103/lov/
JobsLOV",
 "name": "JobsLOV",
 "kind": "collection"
 }]
 }
 }, {
 "id": "part4",
 "path": "http://server/demo/rest/11.1/Employees",
 "operation": "get",
 "payload": {
 "EmployeeId": 101,
 "FirstName": "Neena",
 "LastName": "Smith",
 "Email": "NSMITH",
 "JobId": "AD_VP",
 "DepartmentId": 90,
 "Salary": 10000,
 "links": [{
 "rel": "self",
 "href": "http://server/demo/rest/11.1/Employees/101",
 "name": "Employees",
 "kind": "item"
 }, {
 "rel": "canonical",
 "href": "http://server/demo/rest/11.1/Employees/101",
 "name": "Employees",
 "kind": "item"
 }, {
 "rel": "lov",
 "href": "http://server/demo/rest/11.1/Employees/101/lov/
JobsLOV",
 "name": "JobsLOV",
 "kind": "collection"

Chapter 22
Advanced Operations

22-178

 }]
 }
 }]
}

ADF REST Framework Reference
ADF REST framework supports encoding of HTTP payloads, different media types,
HTTP headers, and methods, so that the communication between the server and
client is seamless and secure.
The ADF REST framework supports HTTP methods, HTTP headers, request URL
parameters, media types, and other concepts to enable making REST API calls on
resources.

ADF REST Describe links Object Structure
links is a JSON object where the value is always a URL link and the link name
is defined according to the rel of the link. The links object is generated for each
resource collection, item, and for the resource itself.

Note that URL links in the resource describe will be generated using a template
placeholder value ({id}) when there is not enough information to determine all parts of
the URL. For example, the following child link provides a URL with the placeholder for
the value of the specific Department resource:

"item" : {
 "links" : [{
 "rel" : "child",
 "href" : "http://server/demo/rest/11.0/Departments/{id}/child/Employees",
 "name" : "Employees",
 "kind" : "collection",
 "cardinality" : {
 "value" : "1 to *",
 "sourceAttributes" : "DepartmentId",
 "destinationAttributes" : "DepartmentId"
 }

rel Attribute Values
The rel attribute defines the type of link relationship between the current resource and
the resource which the link points to. Relationships may be specified by any of the
values shown in Table 22-3.

Table 22-3 Link Relationship in ADF REST Resource Describe

Link Relationship Description

self Always generated for a resource. The href points to the
resource itself or to the resource describe. In the links object,
the link name is self for this rel.

canonical Always generated. The href points to the canonical resource
or to the canonical resource describe. If a canonical resource
is not defined, it will have the same href that self has. In the
links object, the link name is canonical for this rel.

Chapter 22
ADF REST Framework Reference

22-179

Table 22-3 (Cont.) Link Relationship in ADF REST Resource Describe

Link Relationship Description

parent Always generated for a nested resource. The href points to
the self link of the parent resource. In the links object, the
link name is parent for this rel.

child Generated when the resource has nested children. The href
points to the nested collection. In the links object, the link
name is the accessor name for this rel.

lov Generated on a resource item for LOV-enabled (list of values)
attributes. There are two types of href: 1.) on the links
object of the resource item, the href identifies an LOV child
resource (name specified in the childRef property of the
resource item), and 2.) on the links object of the resource
describe, the href identifies a LOV resource (name specified
in the lovResourcePath property on the resource item).

The first type is defined in the model project by an LOV view
accessor and an LOV-enabled attribute backing the resource
item. The second type is defined in the model project by an
LOV resource on the LOV view accessor and the resource is
associated with the LOV-enabled attribute backing the resource
item.

enclosure Generated for BLOB and CLOB attributes by default. This
relationship indicates that the link points to a resource that
cannot be represented with the supported payload types. An
image, that cannot be represented in JSON, is an example of
this relationship.

 Use the enclosure link (can be obtained from resource
item describe, get, or post/patch response) to read/update/
delete content.

external Generated for a resource that exists outside of the framework
domain.

current Generated in the resource version describe when multiple
resource version identifiers exist. The href points to the most
recent version identifier, as defined by the adf-config.xml
version definition.

predecessor-version Generated in the resource version describe when multiple
resource version identifiers exist. The href points to the
previous version identifier, as defined by the adf-config.xml
version definition.

successor-version Generated in the resource version describe when multiple
resource version identifiers exist. The href points to the
next most recent version identifier, as defined by the adf-
config.xml version definition.

describe Generated in the resource version describe. The href points
to the resource catalog describe for all resources of the same
version.

href Attribute Value
The href attribute defines the URL to the linked resource or resource describe.

Chapter 22
ADF REST Framework Reference

22-180

cardinality Attribute Values
The cardinality attribute is an optional attribute that defines the cardinality
between the source resource and the destination resource. This attribute will
be available only when the rel attribute value is child and the resource type
is vnd.oracle.adf.description+json. This cardinality attribute has the following
attributes.

• value: The value of the cardinality. Example: "1 to *"

• sourceAttributes: The attribute in the source resource used to link to the
destination resource.

• destinationAttributes: The attribute in the destination resource used to link to
the source resource.

ADF REST API Framework Versions
A framework version refers to a specific version of the ADF REST framework available
starting in a particular Oracle JDeveloper release.

The ADF REST runtime supports clients to specify a framework version that affects the
processing of the payload or indicate the default framework version (as configured by
the server) to be used. When you specify a framework version to process requests,
it allows clients to opt into those features when they are ready. For example, to
support both rowmatch expressions (offered in framework version 2 and later) and the
query-by-example syntax (version 1 only), you would need to associate framework
version 2 (or later) with a new release version identifier that you define in the web
application. For example, in the URL samples given below, you can preserve the
original functionality for release version 11.0 and expose the new functionality for
version 11.1. This assumes that web application has declared framework version 2
the default on release version 11.1. Alternatively, if your web application will no longer
require the functionality of your current framework version, you may associate the
new framework version with your existing release version identifier. Therefore, you
are not required to increment the release version to make use of a new framework
version. For details about the ADF REST framework functionality supported in each
framework version, see What You May Need to Know About Versioning the ADF REST
Framework.

When a request does not specify a framework version, all payloads for URIs starting
with /context/<release-version>/ will assume the default framework version as
declared in the adf-config.xml file.

Note:

Each ADF REST framework version after version 1 introduces functionality
that the previous framework versions does not support. Thus, when you
choose to opt into a later framework version, the REST API of your
application may introduce backward incompatible changes on the service
client consuming the REST API. In the table below, see the Does Not
Support column for backward compatibility issues.

Chapter 22
ADF REST Framework Reference

22-181

The following table explains the changes for each framework version.

Table 22-4 ADF REST API Framework Versions

REST API
Framework Version

Supports Does Not Support Examples

1 - Default version.
Use to process
requests for web
applications when
no other version is
specified

Supports query-by-
example resource query
syntax

Filtering resource
collections using the
q query parameter is
limited to a query-by-
example.

GET /rest/19.0/Departments?
q=Dname SA*;Loc BOSTON

2 - You must specify
the version for the
request. Only then the
REST API support
the use of expanded
expression syntax to
process the request.

Supports more advanced
query syntax for making
REST API calls.

Interprets q query
parameter value
differently than
Framework version 1.

Supports filtering
resource collections
using rowmatch query
expressions.

Query-by-example
resource query syntax
is not compatible.

Introduces
a backward
incompatible change
to web application
that rely on
Framework version 1.

See What You May Need to Know
About the Advanced Query Syntax in
ADF REST Framework Version 2

3 - The payload
structure represents
nested child resource
as a resource
collection, instead of
an array of items as in
version 1 and 2

Supports retrieving
nested child resources
with payload attributes
that may be used by
the web application to
determine whether more
resource items would be
returned in a subsequent
REST API request.

Supports pagination of
nested child resource
that would otherwise
require more than one
request to fetch.

Exposes functionality that
allows GET operations
to use the ?expand
and ?fields query
parameter to return a
nested child resource as
a resource collection with
the hasMore attribute

Introduces
a backward
incompatible change
to web application
that rely on
Framework version 1
or 2.

See Querying With Filtering Attributes
(Partial Get).

Also see Obtaining the Standard Error
Message Response for error response.

Chapter 22
ADF REST Framework Reference

22-182

Table 22-4 (Cont.) ADF REST API Framework Versions

REST API
Framework Version

Supports Does Not Support Examples

4 – Possible to obtain
exception details in the
response when your
request is enabled to
use REST API
framework version 4
and the request is
made for either
application/
vnd.oracle.adf.er
ror+json or
application/json
media types.

Supports the response
in the form an exception
detail payload that
provides the following
benefits to the web
application:

• Presents the details
of each error in a
hierarchical structure
if multiple errors
occur in a single
request.

• Identifies the
exception
corresponding to
each error by
including an
application specific
error code.

• Presents an error
path that identifies
the location of each
error in the request
payload structure.

The exception detail
may or may
not present certain
details, such as the
application-specific
error code and the
request payload’s
error path.

See Obtaining an Exception Payload
Error Response.

5 - Possible to share
the LOVs that may not
depend on the row
context to filter out
records. Also possible
to share the LOVs with
multiple resources.

LOV resources will be
represented by its own
top-level resource and
the row context LOV
URLs are no longer
returned in the payload
and in the describe.

Removes the
dependency of LOVs
to be nested inside a
resource parameters in
the LOV resource URL.

Enhanced support for
request and response
parameters beyond the
current supported types
of string, number, date,
and boolean.

Nested levels of LOV
resource URL.

GET /rest/v1/Cities?
finder=ByStateFinder;stateName
={State}",

See What You May Need to Know
About Configuring LOV Resources for
Row Finders.

The supported Java types
include java.util.List and
java.util.Map.

Chapter 22
ADF REST Framework Reference

22-183

Table 22-4 (Cont.) ADF REST API Framework Versions

REST API
Framework Version

Supports Does Not Support Examples

6 - Supports
differentiation between
the resource fields
and the item context
information like links
and headers. Also
displays warnings in
the response payload
in the context section
for create/upsert and
update actions.

Non-attribute fields like
links and headers
appear within @context
field in resource item
response object

links field in @context
will no longer have the
properties field.

headers -> ETag has
the changeIndicator
value.

key field under
@context contains the
unique identifier of the
specific resource item as
a string.

warnings field under
@context contains the
validation error details
when a validation rule
has been enabled on
a backing entity object
attribute.

 ...
 "@context" : {
 "key" : "AB8765BCD",
 "headers" : {
 "ETag" : "ACED..."
 ...
 },
 "links": [{
 "rel": "self",
 "href":
 ...
 }]
 "warnings": [{
 "detail": "Warning from
overridden validateEntity method
in DeptImpl : DeptName = ABC"
 }, {
 "detail": "Attribute
set with value 92 for DeptNum in
Dept failed",
 "o:errorCode": "27011",
 "o:errorPath": "/
DeptNum"
 }, {
 "detail": "Warning from
overridden afterCommit method in
DeptViewImpl"
 }, {
 "detail": "Warning from
overridden afterCommit method in
DeptViewImpl"
 }]
 }
}

7 - Provides
an option to
remove row-level LOV
resource descriptions
in describe and from
the resource item
payload links section.

Supports the use of top-
level LOV resource links

Row context LOVs
in the describe and
payloads

ADF REST Payload Compression Support
The HTTP payloads that are exchanged between the server and the client can be
encoded. This feature is enabled when the client specifies an Accept-Encoding: gzip
header or Content-Encoding header in the service request.

To disable encoding support for resources, you may set the custom property
adf.rest.enablecompression to false. In JDeveloper, the property is set in the ADF
configuration file (adf-config.xml) of the Fusion web application.

Chapter 22
ADF REST Framework Reference

22-184

Table 22-5 describes the content-encoding tokens supported by the ADF REST
framework.

Table 22-5 Supported Content-Encoding Tokens

Content-Encoding Description

identity Does not compress the payload. The behavior is the same as
when the encoding is omitted.

x-gzip and gzip Compresses the payload using the format produced by the file
compression program gzip (GNU zip), as described in RFC
1952 [25]. This format is a Lempel-Ziv coding (LZ77) with a
32 bit CRC.

deflate Compresses the payload with a combination of the zlib
format defined in FRC 1950 [31] and the deflate
compression mechanism described in RFC 1951 [29].

ADF REST Media Types
Media types, also called MIME types or content types, define the allowed resource
structure of the payload exchanged between the client and server. All ADF REST
media types are based on JSON. Resources accessed in client applications fall under
the application type and json subtype.

The service client invoking the REST API will interact with the RESTful web service
using one of the media types listed in Table 22-6. The types are defined such that the
media type does not vary with the view object definition backing the resource. Note
that the value of the accept header depends on the context of the invocation. Links to
the JSON token structure of the ADF REST framework media types are provided in
the following table.

Note:

As an alternative to specifying the supported media types, the service client
request accept header can specify application/json when a superset of all
supported media types may be accepted in the response.

Table 22-6 Media Types Supported by the ADF REST Framework

Media Type Invocation Context Description

application/
vnd.oracle.adf.r
esourcecollectio
n+json

GET method Represents the format for all resource collections returned by the
ADF REST runtime.

All attributes are automatically generated by the framework. Only
the content of the items attribute is based on the resource
definition.

For an example, see Describing a Resource Collection.

Chapter 22
ADF REST Framework Reference

22-185

Table 22-6 (Cont.) Media Types Supported by the ADF REST Framework

Media Type Invocation Context Description

application/
vnd.oracle.adf.r
esourceitem+json

GET method

POST method

PATCH method

Represents the format for all resource items returned by the ADF
REST runtime. Also represents the format for a resource item in
a POST or PATCH request payload.

Only the attribute links is automatically generated by the
framework. All the other attributes are based on the resource
definition.

For an example, see Describing a Resource Item.

application/
vnd.oracle.adf.a
ctionresult+json

POST method Describes the result of an action execution.

application/
vnd.oracle.adf.d
escription+json

GET method Describes the resource and its elements.

For an example, see Describing All Available Resources.

.

application/
vnd.oracle.adf.b
atch+json

POST method Describes a set of operations to be performed, where the
operation consists of a set of parts and each part represents a
request. The batch request is executed in one single transaction.

For an example, see Making Batch Requests.

application/
vnd.oracle.adf.v
ersion+json

GET method Describes the result of a request to get all versions of a resource.

For an example, see Retrieving All Available Version Release
Names.

application/
vnd.oracle.adf.e
rror+json

any Describes the exception payload error response for a request
made with an error. To use this media type and obtain the
exception details in an error response payload, the request must
be made with ADF REST framework version 4 (or later) enabled.

For an example, see Obtaining an Exception Payload Error
Response.

ADF REST Data Types
ADF REST data types are mapped by the ADF REST framework between ADF REST
resource items and their backing ADF Business Components entity object attributes.
At runtime, the framework exposes the data type of fetched ADF REST resource items
as the describe attribute type.

Table 22-7 shows the relationship between the ADF Business Components data types
supported on entity object attributes backing the view object of ADF REST resources
and the corresponding ADF REST data types that the ADF REST framework defines.
In general, the framework defines the data type of an ADF REST resource item based
on the SQL type of the attribute backing the resource item, with these two exceptions:

• When the backing attribute is defined as a boolean type map, then the ADF REST
type will always be a boolean.

• When the backing attribute’s Java type is blob or clob, then the ADF REST type
will be an attachment.

Chapter 22
ADF REST Framework Reference

22-186

Table 22-7 Data Types Supported by the ADF REST Framework

ADF Backing Attribute ADF REST Data Type

Where an attribute is configured with one of the following type maps:

oracle.jbo.valuemaps.Boolean10PropertySet

oracle.jbo.valuemaps.BooleanTFPropertySet

oracle.jbo.valuemaps.BooleanYNPropertySet

boolean

Java Class: oracle.jbo.domain.ClobDomain or
oracle.jbo.domain.BlobDomain

attachment

Java Class: java.util.List supported starting in ADF REST
framework version 5

array

Java Class: java.util.Map supported starting in ADF REST framework
version 5

object

SQL type: Char string

SQL type: Number integer

SQL type: Number (precision = *, scale > 0) number

SQL type: Number (precision < 10, scale = 0) integer

SQL type: Number (precision >= 10, scale = 0) integer

SQL type: Date date if Java type is java.sql.Date

time if Java type is java.sql.Time

datetime if Java type is other
(not java.sql.Date and not
java.sql.Time)

The REST service accepts the YYYY-
MM-DDThh:mm:ss.s+hh:mm or YYYY-
MM-DDThh:mm:ss.s-hh:mm format. If
you specify the time without the “:” in
the second part, s+hhmm or s-hhmm, it
fails.

ADF REST HTTP Codes
The ADF REST framework supports the HTTP codes listed in the following table.
The specific code that is returned depends on the HTTP method invoked on the web
service.

Table 22-8 HTTP Codes Supported by the ADF REST Framework

HTTP Code Description

200 OK Request successfully executed and the response has content.

201 Created Resource successfully created. The response contains the
created resource.

204 No Content Request successfully executed and the response doesn't have
content.

304 Not Modified According to the provided ETag, the resource was not modified.

400 Bad Request The request could not be understood by the server due to
malformed syntax.

Chapter 22
ADF REST Framework Reference

22-187

Table 22-8 (Cont.) HTTP Codes Supported by the ADF REST Framework

HTTP Code Description

401 Unauthorized The server is refusing to service the request because the
resource of the request is secured and authentication has not yet
been provided.

404 Not Found The requested resource was not found.

406 Not Acceptable The resource identified by the request is only capable of
generating response entities which have content characteristics
not acceptable according to the accept headers sent in the
request.

412 Precondition
failed

The resource state in the server side doesn't match the provided
ETag.

415 Unsupported Media
Type

The server is refusing to service the request because the entity
of the request is in a format not supported by the requested
resource for the requested method.

500 Internal Server
Error

The server encountered an unexpected condition which prevented
it from fulfilling the request.

ADF REST HTTP Headers Support
The ADF REST framework supports the HTTP headers listed in the following table.

Table 22-9 HTTP Headers Supported by the ADF REST Framework

HTTP Header Name Description

Content-Type Use to specify the content-type of the request/response payload. The
ADF REST runtime is able to interpret (request/response) the media
types, as described in ADF REST Media Types.

Content-Encoding Use to specify the content-encoding of the request/response payload.
The ADF REST runtime is able to parse a compressed request that
uses the encodings, as described in ADF REST Payload Compression
Support.

Accept Use to specify the expected content-type of the response payload. The
ADF REST runtime is able to interpret (request/response) the media
types, as described in ADF REST Media Types.

Accept-Encoding Use to specify the list of acceptable encoded responses. The ADF
REST framework is able to generate a response using the encodings
described in ADF REST Payload Compression Support.

REST-Framework-
Version

Use to specify the version of the ADF REST framework to use
at runtime to process the request. The ADF REST framework
version passed in the version header overrides the default framework
declaration defined by the application in the adf-config.xml file, as
described in Working with ADF REST Framework Versions.

Location Use to identify the URI of a newly created resource. The ADF REST
framework includes the Location header in the response of a POST
to create a new resource. For an example, see Creating a Resource
Item in Collection.

Chapter 22
ADF REST Framework Reference

22-188

Table 22-9 (Cont.) HTTP Headers Supported by the ADF REST Framework

HTTP Header Name Description

ETag Use to compare the state of the resource in a request with the state of
resource on the server. The ADF REST framework supports the ETag
generation for resources backed by an ADF Business Components
entity object that has been configured to use an change-indicator
attribute. See Checking for Data Consistency.

If-Match Use to determine whether the state of the resource in a request is
current with the resource on the server. This header is supported
in order to execute conditional requests. See Checking for Data
Consistency.

If-None-Match Use to determine whether the state of the resource in a request does
not match the current state on the server. This header is supported
in order to execute conditional requests. See Checking for Data
Consistency.

X-HTTP-Method-
Override

Use to execute an action that is otherwise not supported by the server.
This is a custom header (not defined by the HTTP specification) that
contains the name of an HTTP method as its value. This value (if valid)
will be used to define the HTTP method that will be used. This header
will only be considered in a POST request. See Overriding the HTTP
Method and Performing an Update.

X-Requested-By The presence of this header is enforced for every request when
the anti-CSRF mechanism is turned on. The anti-CSRF mechanism
can be turned on by setting the value of the enableAntiCSRF
ResourceServlet init parameter to True. This header is not enforced
if the GET, OPTIONS, and HEAD methods are used. If the header
cannot be found, then 400 (Bad Request) is returned.

Chapter 22
ADF REST Framework Reference

22-189

Table 22-9 (Cont.) HTTP Headers Supported by the ADF REST Framework

HTTP Header Name Description

Cache-Control Use to avoid intermediate proxies to cache/store framework payloads.
This header is configured for every HTTP response. The value, by
default, turns off caching, and the framework sends the response
header: no-cache, no-store, must-revalidate.

However, an application developer may override the default behavior
by configuring the resource definition. The value can be set on the
resource tree and the header will be set accordingly. Currently, Cache-
Control can be configured only as <MaxAge>

<seconds></MaxAge>, if set in the resource tree. The following
sample of a resource definition file shows how to set the value.

<pageDefinition ...>
 <parameters/>
 <executables/>
 <bindings>
 <tree>
 <ServiceConfiguration>
 <CacheControl>
 <MaxAge>30</MaxAge>
 </CacheControl>
 </ServiceConfiguration>
 <nodeDefinition ../>
 </tree>
 </bindings>
</pageDefinition>

The integer value supplied within <MaxAge> is used to create the
Cache-Control string like max-age=30 to specify the resource will
be considered fresh for thirty seconds. This value is also set in the
Cache-Control header in the response for an operation involving any
resource belonging to the resource tree.

If configured on the resource definition, the Cache-Control value is
also shown in the describe, per resource.

Upsert-Mode Use Upsert-Mode:true in a request that uses POST to create a
resource item if the resource item does not exist, or update a resource
item if the resource item exists. Note that a POST request with
Upsert-Mode:false behaves as a POST without the custom header
and performs the CREATE operation exclusively.

Prefer You can use this header to receive only those fields that are included
in the compact view of the response payload. You can specify the
value return=minimal to receive only those fields that are marked
includeInCompactView : true in the response payload. See How
to Control the ADF REST Response Payload Fields.

REST-Pretty-Print There is a reasonable formatting in REST response resulting in a lot
of white space. You can use gzip to transport a zipped up response
content. See ADF REST Payload Compression Support. However, the
extracted content on the client would still contain the white spaces
resulting in processing time on the clients that can be reduced
considerably by using this header. See How to Control the Format of
the ADF REST Response.

Chapter 22
ADF REST Framework Reference

22-190

Table 22-9 (Cont.) HTTP Headers Supported by the ADF REST Framework

HTTP Header Name Description

Metadata-Context A metadata revision that indicates the MDS label to be used at runtime.
A metadata revision is created at the end of an event that updates
mainline metadata; for example, MDS MAR deployment or unified
sandbox publishing.

If your environment is unified sandbox enabled, you must use the
sandbox property in the value, which is treated as the unified
sandbox ID. The Metadata-Context header is honored only if the
ApplSessionFilter is the first filter that initializes ADFContext. The mode
for ADFSessionOptions is always set to EDIT when this header is
present.

If you specify a revision, ADFSessionOptions will be configured
according to the metadata revision.

If you want to execute the REST service in the context of a specific
metadata revision, use the following syntax. This will ensure that the
execution of REST service is isolated from other metadata changes
happening in the application until the REST client is ready to consume
those changes.

Metadata-Context: revision="<metadata revision ID>"

If you wan to test the REST services with changes in a sandbox, use
the following syntax.

Metadata-Context: sandbox="<unified sandbox ID>"

ADF REST HTTP Method and Payload Support
The ADF REST framework supports operations on the following HTTP methods.

• GET

• POST

• PATCH

• DELETE

GET Method Operations
The ADF REST framework supports the following operations using a GET method with
the URI as shown.

• Describe the resource collection, resource item, or resource catalog (when
resource collection and resource item are omitted).

http://server/demo/rest/{version}/[{resourceCollectionPath}|
{resourceItemPath}]/describe

• Retrieve the resource collection representation with or without a query string
parameter.

http://server/demo/rest/{version}/{resourceCollectionPath}[?
{queryStringParam}[&{queryStringParam}]]

Chapter 22
ADF REST Framework Reference

22-191

• Retrieve the resource item representation with or without a query string parameter.

http://server/demo/rest/{version}/{resourceItemPath}[?{queryStringParam}
[&{queryStringParam}]]

• Retrieve a specific version of the resource collection or all available resources
(when version identifier and resource collection are omitted).

http://server/demo/rest/[{version}/{resourceCollectionPath}]

Request Parameters

• The GET method supports query string parameters to query, filter, page, and
sort the resource representation. The supported parameters are listed in the
following tables. All GET method URI parameters can be combined with any other
parameter in the table, except where noted on the expand and field parameters.
Note that query string parameters can only be used on resource media types.
They cannot, for example, be used when describing the resource.

Note:

The results of the GET method or the query syntax may vary depending on
the ADF REST framework version used for a client request. The following
tables specify where the framework version is important to note when
using query string parameters. For additional information about framework
versions, see What You May Need to Know About Versioning the ADF REST
Runtime Framework.

Chapter 22
ADF REST Framework Reference

22-192

Table 22-10 Supported GET Method Query String Parameters Used Only in Resource
Collections

GET URI Parameter Value Description

q

Starting in ADF REST
framework version 2,
q supports complex
rowmatch expressions.

In framework version 1,
the query parameter is
used in the WHERE clause
and contains one or more
query by example-type
expressions, separated by a
semi-colon.

Format: <exp1>;<exp2>

Example: ?q=Deptno>=10
and <= 30;Loc!=NY

Starting in framework 2, for
richer querying support, the
query parameter accepts a
rowmatch expression format
that identifies the specific
rows to retrieve from the
resource. The filter can
be as simple as a single
expression, or you can
create more complex filters
by combining expressions
using the and and or
conjunctions with matching
sets of parentheses for
grouping.

For example, the
following expression uses
conjunction to query the
resource using three
different fields:

(AssignedToId is
null) or ((Priority
<= 2) and (RecordName
like 'TT-99%'))

If a query parameter value
has a special character (like
‘;’, ‘,’, ‘=’ or similar), then
the value (in the expression)
should be enclosed in
quotes to define a literal
value. If the literal value
contains quotes, then, in
addition, the quotes need
to be escaped, as defined
by the framework version, to
be viable:

• Version 1 syntax
encloses the literal
value in double quotes
(") and requires a
backslash (\) to
escape double quote

The resource collection will be queried using the provided
expressions.

Supported operators in framework version 1 and later:

• = (Equal to)
• > (Greater than)
• < (Less than)
• >= (Greater than or equal to)
• <= (Less than or equal to)
• != (Not equal to) framework version 1 only
• AND (And)
• OR (Or)
• NOT (Not)
• LIKE (Like)
Supported operators in framework version 2 and later also
include:

• <> (Not equal to)
• BETWEEN (Between)
• NOT BETWEEN (Not between)
• IN (In)
• NOT IN (Not in)
• IS NULL (Null)
• IS NOT NULL (Not Null)
Allowed special characters in framework version 1:

• " (double quotation mark) to define a literal value for
use where special characters appear in the value

• ' (single quotation mark) to define a literal value for use
where reserved words appear in the value

• \ (backslash) to define an escape character to escape
a double quotation mark (") or single quotation mark/
apostrophe (') character used within a literal value

• * (asterisk) to define a wildcard character
Allowed special characters in framework version 2 and later:

• ' (single quotation mark) to define a literal value or
to define an escape character to escape a single
quotation mark/apostrophe (') character used within a
literal value

• % (percent) to define a wildcard character
For an example of the usage supported in ADF REST
framework version 1 and version 2, see Filtering a
Resource Collection with a Query Parameter.

For examples of rowmatch expressions, see What You May
Need to Know About the Advanced Query Syntax in ADF
REST Framework Version 2.

Chapter 22
ADF REST Framework Reference

22-193

Table 22-10 (Cont.) Supported GET Method Query String Parameters Used Only in Resource
Collections

GET URI Parameter Value Description

characters contained in
the value: ?
q=NickName="\"Bill
y the Kid\""

• Version 2, or later,
syntax encloses the
literal value in single
quotes (') and requires
a single quote to
escape a single quote
character contained in
the value (used as an
apostrophe): ?
q=ListName='Bill''
s list'

Additionally, in version 1, if
the query parameter value
contains a reserved word
(such as AND or OR), then
the value needs to be
enclosed in single quotes
(') and there must be a
space before and after the
quoted string. For example,
the string matching
filter ’Accounting and
Finance’ in the following
query parameter expression
contains the reserved word
AND, and therefore requires
a space before and after the
single quotation marks to be
viable in version 1 syntax:
?q=DepartmentName=
'Accounting and
Finance'
&fields=DepartmentNam
e
Note that starting in
framework version 2, the
use of a space character is
no longer required to delimit
a string matching filter that
contains a reserved word.
For version 1, if the value
contains both a special
character and a reserved
word, then the value
needs to be enclosed in
single quotes ('), and then
enclosed again in double
quotes (") , along with
escaping the double quotes

Chapter 22
ADF REST Framework Reference

22-194

Table 22-10 (Cont.) Supported GET Method Query String Parameters Used Only in Resource
Collections

GET URI Parameter Value Description

contained within the value
with a backslash (\), and
there needs to be a space
before and after the twice-
quoted string. For example:

?q=DepartmentName=
"'\"Accounting\" and
Finance'"
&fields=DepartmentNam
e

For examples of the
rowmatch expression
format, see What You May
Need to Know About the
Advanced Query Syntax
in ADF REST Framework
Version 2.

Chapter 22
ADF REST Framework Reference

22-195

Table 22-10 (Cont.) Supported GET Method Query String Parameters Used Only in Resource
Collections

GET URI Parameter Value Description

finder An expression containing
the primary key attribute
value definition.

Format:
PrimaryKey;<PKattr1>=
<PKval1>,<PKattr2>=<P
Kval2>,...

Example: ?
finder=PrimaryKey;Emp
loyeeId=101

Or:

An expression containing
information about the row
finder and its finder
attributes.

Format:
<rowfinderName>;<attr
1>=<val1>,<attr2>=<va
lue2>

Example: ?
finder=DeptByName;Dna
me=ACCOUNTING

If the finder attribute
value contains any special
character like ‘;’, ‘,’, ‘=’ (or
similar), the value must be
defined as a literal and
enclosed in double quotes.
For example:

?
finder=EmpByName;EmpN
ame="Jones,Bill"

If the finder attribute value
is a literal value (enclosed
in double quotes) and
the value contains double
quotation marks ", the
contained quotation marks
must be preceded by
the backslash escape \
character to be viable as
a finder attribute value. For
example:

?
finder=EmpByName;Nick
Name="\"Billy the
Kid\""

The resource collection will be queried using the provided
primary key and attribute values definitions.

Alternatively, the resource collection will be queried using
the provided row finder and attribute definitions.

Finders with parameters whose type does not belong to
char, date, or number, will be filtered out.

The list of available finders (primary key finder and row
finder) is provided in the describe.

Allowed special characters in framework version 1 and later:

• " (double quotation mark) to define a literal value
• \ (backslash) to define an escape character to escape

a double quotation mark (") character used within a
literal value

For a primary key finder example, see Filtering a Resource
Collection with Primary Key Values.

For a row finder example, see Filtering a Resource
Collection with a Row Finder.

Chapter 22
ADF REST Framework Reference

22-196

Table 22-10 (Cont.) Supported GET Method Query String Parameters Used Only in Resource
Collections

GET URI Parameter Value Description

totalResults boolean

Default: false

The resource collection representation will include the
estimated row count when totalResults=true.

For an example, see Returning the Estimated Count of
Resource Items.

limit integer

Default: Iterator binding
RangeSize property in
the ADF REST resource
definition file.

This parameter restricts the number of resources returned
inside the resource collection. If the limit exceeds the
resource total results, then the framework will return the
available resources.

For an example, see Paging a Resource Collection.

offset integer

Default: 0 (the first position)

Used to define the starting position of the resource
collection. If offset exceeds the resource count, then no
resources are returned.

For an example, see Paging a Resource Collection.

Chapter 22
ADF REST Framework Reference

22-197

Table 22-11 Supported GET Method Query String Parameters Used in Resource Collections or
Resource Items

GET URI Parameter Value Description

fields

Starting in ADF REST
framework version 3
and later, fields
will return children
resource items as a
resource collection to
support pagination of
the collection.

For more information,
see What Happens at
Runtime: Invoking an
ADF REST Framework
Version.

A simple comma separate
list of resource item
attributes.

Format: <attr1>,<attr2>

Example: ?
fields=Dname,DLoc

May be used on child
resources.

Format:
<accessor>:<att1>,<at
t2>

Example: ?
fields=Employees:Firs
tName,LastName

May be used on nested
resources using accessor
dot notation.

Format:
<accessor1>.<accessor
2>:<Attr1>,<Attr2>

Example: ?
fields=Employees.JobH
istory:JobId

Or on both resources in the
nested resource.

Format:
<accessor1>:<Attr1>,<
Attr2>;<accessor1>.<a
ccessor2>:<Attr1>,<At
tr2>

Example: ?
fields=Name,Location;
Employees:FirstName,L
astName

This parameter filters the resource item attributes. Only the
specified attributes are returned.

Note that if a nested resource is queried using the accessor
dot notation (Employees.JobHistory), then attributes
may be specified on both resources. A resource in the
accessor dot notation without a specified attribute will return
no resource item attributes.

Note this parameter cannot be combined with the expand
parameter. If both parameters are provided, only fields
will be considered.

For examples that uses version 1 or 2 of the ADF REST
framework as compared to version 3 (and later), see
Querying With Filtering Attributes (Partial Get).

onlyData boolean

Default: false

The representation will be filtered in order to contain only
data (no links objects, for example).

For an example, see Returning Only Resource Data in a
Payload.

Chapter 22
ADF REST Framework Reference

22-198

Table 22-11 (Cont.) Supported GET Method Query String Parameters Used in Resource
Collections or Resource Items

GET URI Parameter Value Description

expand

Starting in ADF REST
framework version 3
and later, expand
will return children
resource items as a
resource collection to
support pagination of
the collection.

For more information,
see What Happens at
Runtime: Invoking an
ADF REST Framework
Version.

Display all children. Format:
all

Display one or more child
resource using a comma-
separated list of accessors.

Format:
<accessor1>,<accessor
2>

Example: ?
expand=Employees,Loca
lizations

Display nested resources
using the accessor dot
notation.

Format:
<accessor1>.<accessor
2>

Example: ?
expand=Employees.JobH
istory

When this parameter is provided, the specified children are
included in the resource payload (instead of the link).

Note the expand parameter cannot be combined with the
fields parameter. If both parameters are provided, only
fields will be considered.

Note that if a nested resource is queried using the
accessor dot notation (Employees.JobHistory), then
the missing children will be processed implicitly. For
example, ?expand=Employees.JobHistory is the same
as ?expand=Employees,Employees.JobHistory (which
will expand Employees and JobHistory).

For examples that uses version 1 or 2 of the ADF REST
framework as compared to version 3 (and later), see
Fetching Nested Child Resources.

dependency A set of dependency
attributes.

Format:
<attr1>=<val1>,<attr2
>=<value2>

Example:
dependency=ProductId=
2

The dependencies are attributes that are set before and
rolled back after generating the response. Generally, they
are used to preview the effects of an attribute change
as it applies to cascading LOV-enabled attributes. The
dependencies attributes are always set in the resource item
in question.

When a child resource collection is requested and the
dependency parameter is set, the attributes will be set in
the parent resource item before generating the resource
collection payload.

Chapter 22
ADF REST Framework Reference

22-199

Table 22-11 (Cont.) Supported GET Method Query String Parameters Used in Resource
Collections or Resource Items

GET URI Parameter Value Description

orderBy A comma separated list
of order-by attributes with
a sort flag to specify
ascending or descending
order.

Format:
<orderBy_attr1_name>[
:<(asc/desc)>],
<orderBy_attr2_name>[
:<(asc/desc)>]

Example: ?
orderBy=DName:desc,DL
oc

Default: ORDERBY
attributes defined on the
view object query backing
the resource will be applied.

To perform case-insensitive
sorting on a resource
collection, the attribute list
must follow this format,
using either the upper or
lower flag:

upper(<orderBy_attr1_
name>):<(asc)>

or

lower(<orderBy_attr2_
name>)

Sorts a resource collection based on its attributes. If the
asc/desc are not provided (or an invalid value is provided),
asc will be used as default.

By default, the fetched collection will be sorted in a case
sensitive way unless either the upper or lower flag is
specified in the order-by query request.

For an example, see Sorting a Resource Collection.

links A comma separated list
of <rel_name>, where
<rel_name> is a string
representing the relation
type of a link.

Example: self,canonical

When a resource item or a resource collection is requested
and the links query parameter is used, then only those
links with relation types ("rel") matching the values in the
comma-separated parameter value will be shown in the
response.

Note the links parameter cannot be combined with
onlyData when onlyData has a value of true, as there
will be no links section displayed in the payload.

Chapter 22
ADF REST Framework Reference

22-200

Table 22-12 Supported GET Method Query String Parameters Used in Resource Catalog
Describe

GET URI Parameter Value Description

metadataMode verbose (default)

minimal

list

Use to retrieve the description of resources with or without
all details. By default, the full catalog is retrieved, performing
an exhaustive describe that returns the complete set of
information for all resources, including nested children
resources. The full catalog describe therefore includes the
following sections of information for each resource:

title, attributes, collection, item, annotations, children, and
links

Note that annotations must be defined by the ADF REST
resource developer in the application and may not be
present on the resource.

You can improve the readability of a large catalog and
retrieve a shallow catalog limited to the titles and links of
parent resources (does not include children resources) by
appending the URL parameter ?metadataMode=minimal
to the describe request.

If you do not want any metadata in the response but only
self links, you can append ?metadataMode=list to the
describe request.

Optionally, additional parameters may be appended
to the minimal describe request to include children
resources and / or resource annotations, as explained
for the query parameters showAnnotations and
includeChildren. For example, you can append ?
metadataMode=minimal&includeChildren=true to
retrieve a minimal catalog describe with all children
resources included.

For an example, see Retrieving a Minimal Catalog
Describe.

showAnnotations true, false

(default depends on
whether full or minimal
catalog is retrieved)

Use to either exclude or include resource annotations, as
specified in the application. The default depends on the
metadataMode parameter value:

• By default, a full catalog (metadataMode=verbose)
describe includes annotations. To exclude resource
annotations from the full catalog describe, you can
append ?showAnnotations=false on the describe
request.

• By default, a minimal catalog
(metadataMode=minimal) describe excludes
annotations. To include resource annotations in
the minimal catalog describe, you can append ?
showAnnotations=true on the describe request.

Note that annotations must be defined by the ADF REST
resource developer in the application and may not be
present on the resource.

You cannot use this parameter with ?metadataMode=list.

Chapter 22
ADF REST Framework Reference

22-201

Table 22-12 (Cont.) Supported GET Method Query String Parameters Used in Resource Catalog
Describe

GET URI Parameter Value Description

include public (default),

unlisted,

all

Use to retrieve the description of resources of a certain
visibility, as declared in the application. This URL parameter
values specify including only public resources (public),
only private resources (unlisted), or both types (all).
By default, only resources that are public are shown
in the describe. To view private resources, you must
append either ?include=all or ?include=unlisted on
the describe request.

For an example, see Retrieving the Catalog Describe Based
on Resource Visibility Declaration.

For information about how the application developer
declares visibility in the resource definition, see How to Hide
a Resource from the Catalog Describe.

resources A comma separated list of
resource collection names.

Format:<resName1>,<res
Name2>

Example: ?
resources=Departments
,Employees

Use to retrieve the description of the named resources to
filter resources at the catalog level.

Table 22-13 Supported GET Method Query String Parameters Used in Resource Catalog
Describe or Resource Item Describe

GET URI Parameter Value Description

includeChildren true, false

(default depends on
whether full or minimal
catalog is retrieved)

Use to either exclude or include all available children
resources nested within a parent resource. The default
depends on the metadataMode parameter value:

• By default, a full catalog (metadataMode=verbose)
describe includes all children resources. To exclude
children resources from the full catalog describe,
you can append ?includeChildren=false on the
describe request.

• By default, a minimal catalog
(metadataMode=minimal) describe excludes all
children resources. To include children resources
in the minimal catalog describe, you can append ?
includeChildren=true on the describe request.

You cannot use this parameter with ?metadataMode=list.

For a resource catalog describe example, see Retrieving a
Minimal Catalog Describe.

When a resource item describe is requested and ?
includeChildren=true is provided, all children will be
recursively included in the describe. For an example, see
Describing a Resource Item.

Query String Operators Supported by ADF REST Data Types

Chapter 22
ADF REST Framework Reference

22-202

The following table shows the ADF REST data types and the valid operators that
may be used in query parameter strings. Note that the operators BETWEEN, NOT
BETWEEN, IN, NOT IN, and the wildcard character % are available only starting in
ADF REST framework version 2.

Table 22-14 Operators Supported by Data Types in Query (q) Parameter Strings

ADF REST Data Type Supported Operator

integer • = (Equal to)

.../Departments?q=Deptno = 20
• <> (Not equal to)

.../Departments?q=Deptno <> 20
• < (Less than)

.../Departments?q=Deptno < 20
• <= (Less than or equal to)

.../Departments?q=Deptno <= 20
• > (Greater than)

.../Departments?q=Deptno > 30
• >= (Greater than or equal to)

.../Departments?q=Deptno >= 30
• BETWEEN (Between)

.../Departments?q=Deptno BETWEEN 10 AND 30
• NOT BETWEEN (Not between)

.../Departments?q=Deptno NOT BETWEEN 10 and 30
• IN (In)

.../Departments?q=Deptno IN (10, 30)
• NOT IN (Not in)

.../Departments?q=Deptno NOT IN (10, 30)
• IS NULL (Is null)

.../Departments?q=Deptno IS NULL
• NOT NULL (Not null)

.../Departments?q=Deptno NOT NULL

Chapter 22
ADF REST Framework Reference

22-203

Table 22-14 (Cont.) Operators Supported by Data Types in Query (q) Parameter
Strings

ADF REST Data Type Supported Operator

number • = (Equal to)

.../Departments?q=Salary = 3120.99
• <> (Not equal to)

.../Departments?q=Salary <> 3120.99
• < (Less than)

.../Departments?q=Salary < 3120.99
• <= (Less than or equal to)

.../Departments?q=Salary <= 3120.99
• > (Greater than)

.../Departments?q=Salary > 3120.99
• >= (Greater than or equal to)

.../Departments?q=Salary >= 3120.99
• BETWEEN (Between)

.../Departments?q=Salary BETWEEN 2000 AND
3120.99

• NOT BETWEEN (Not between)

.../Departments?q=Salary NOT BETWEEN 2000 and
3120.99

• IN (In)

.../Departments?q=Salary IN (800, 3120.99)
• NOT IN (Not in)

.../Departments?q=Salary NOT IN (800, 3120.99)
• IS NULL (Is null)

.../Departments?q=Salary IS NULL
• NOT NULL (Not null)

.../Departments?q=Salary NOT NULL

Chapter 22
ADF REST Framework Reference

22-204

Table 22-14 (Cont.) Operators Supported by Data Types in Query (q) Parameter
Strings

ADF REST Data Type Supported Operator

string • = (Equal to)

.../Departments?q=DeptName = ’SALES’
• <> (Not equal to)

.../Departments?q=DeptName <> ’SALES’
• LIKE (Like)

.../Departments?q=DeptName LIKE ’SA%’

.../Departments?q=DeptName LIKE ’%ES’

.../Departments?q=UPPER(DeptName) LIKE
UPPER('%e%')

• NOT LIKE (Not like)

.../Departments?q=UPPER(DeptName) NOT LIKE
UPPER('%c%')

• IN (In)

.../Departments?q=DeptName IN ('SALES',
'RESEARCH')

• NOT IN (Not in)

.../Departments?q=DeptName NOT IN ('SALES',
'RESEARCH')

• IS NULL (Is null)

.../Departments?q=DeptName IS NULL
• IS NOT NULL (Is not null)

.../Departments?q=DeptName IS NOT NULL

date • = (Equal to)

.../Employees?q=HireDate = ’1999-01-01’
• <> (Not equal to)

.../Employees?q=HireDate <> ’1999-01-01’
• < (Less than)

.../Employees?q=HireDate < ’1999-01-01’
• <= (Less than or equal to)

.../Employees?q=HireDate <= ’1999-01-01’
• > (Greater than)

.../Employees?q=HireDate > ’1999-01-01’
• >= (Greater than or equal to)

.../Employees?q=HireDate >= ’1999-01-01’
• BETWEEN (Between)

.../Employees?q=HireDate BETWEEN ’1999-01-01’
AND ’2010-01-01’

• NOT BETWEEN (Not between)

.../Employees?q=HireDate NOT
BETWEEN ’1999-01-01’ AND ’2010-01-01’

• IS NULL (Is null)

.../Employees?q=HireDate IS NULL
• NOT NULL (Not null)

.../Employees?q=HireDate NOT NULL

Chapter 22
ADF REST Framework Reference

22-205

Table 22-14 (Cont.) Operators Supported by Data Types in Query (q) Parameter
Strings

ADF REST Data Type Supported Operator

time • = (Equal to)

.../Employees?q=HireTime = '08:30:40'
• <> (Not equal to)

.../Employees?q=HireTime <> ’08:30:40’
• < (Less than)

.../Employees?q=HireTime < ’08:30:40’
• <= (Less than or equal to)

.../Employees?q=HireTime <= ’08:30:40’
• > (Greater than)

.../Employees?q=HireTime > ’08:30:40’
• >= (Greater than or equal to)

.../Employees?q=HireTime >= ’08:30:40’
• BETWEEN (Between)

.../Employees?q=HireTime BETWEEN ’04:30:00’ AND
'08:30:40'

• NOT BETWEEN (Not between)

.../Employees?q=HireTime NOT BETWEEN ’04:30:00’
AND '08:30:40'

• IS NULL (Is null)

.../Employees?q=HireTime IS NULL
• NOT NULL (Not null)

.../Employees?q=HireTime NOT NULL

Chapter 22
ADF REST Framework Reference

22-206

Table 22-14 (Cont.) Operators Supported by Data Types in Query (q) Parameter
Strings

ADF REST Data Type Supported Operator

datetime

Note: Both UTC and
local datetime formats
are supported. The value
returned is determined by
the time zone configured for
the VM.

• = (Equal to)

.../Employees?q=HireDateTime =
'1999-01-01T08:30:40Z'

• <> (Not equal to)

.../Employees?q=HireDateTime
<> ’1999-01-01T08:30:40Z’

• < (Less than)

.../Employees?q=HireDateTime
< ’1999-01-01T08:30:40Z’

• <= (Less than or equal to)

.../Employees?q=HireDateTime
<= ’1999-01-01T08:30:40Z’

• > (Greater than)

.../Employees?q=HireDateTime
> ’1999-01-01T08:30:40Z’

• >= (Greater than or equal to)

.../Employees?q=HireDateTime
>= ’1999-01-01T08:30:40Z’

• BETWEEN (Between)

.../Employees?q=HireDateTime
BETWEEN ’1999-01-01T08:30:40Z’
AND ’1999-12-01T08:30:40Z’

• NOT BETWEEN (Not between)

.../Employees?q=HireDateTime NOT
BETWEEN ’1999-01-01T08:30:40Z’
AND ’1999-12-01T08:30:40Z’

• IS NULL (Is null)

.../Employees?q=HireDateTime IS NULL
• NOT NULL (Not null)

.../Employees?q=HireDateTime NOT NULL

boolean • = ’true’ (true)

.../Employees?q=Active = ’true’
• = ’false’ (false)

.../Employees?q=Active = ’false’
• IS NULL (Is null)

.../Employees?q=Active IS NULL
• NOT NULL (Not null)

.../Employees?q=Active NOT NULL

Media Types Supported

• Request

– None

• Response

Chapter 22
ADF REST Framework Reference

22-207

– application/vnd.oracle.adf.resourcecollection+json: When retrieving a
resource collection.

– application/vnd.oracle.adf.resourceitem+json: When retrieving a
resource item.

– application/vnd.oracle.adf.description+json: When describing a
resource.

– application/vnd.oracle.adf.version+json: When retrieving all available
resource versions.

Use Case Samples

• Retrieving the ADF REST Resource Describe

• Querying With Filtering Attributes (Partial Get)

• Filtering a Resource Collection with a Query Parameter

• Filtering a Resource Collection with Primary Key Values

• Filtering a Resource Collection with a Row Finder

• Checking for Data Consistency When Retrieving ADF REST Resource Items

• Retrieving All Available Version Release Names

• Retrieving a Resource By a Specific Version

• Streaming Attachments Using a Resource Item Enclosure Link

• Retrieving LOV-Enabled Attribute Values for Existing Resource Items

• Returning Only Resource Data in a Payload

• Returning the Estimated Count of Resource Items

ADF REST Framework Version Overview

• What You May Need to Know About Versioning the ADF REST Framework

• What You May Need to Know About the Advanced Query Syntax in ADF REST
Framework Version 2

• What Happens At Runtime: Invoking an ADF REST Framework Version

POST Method Operations
The ADF REST framework supports the following operations using a POST method
with the URI as shown.

• Create a new resource.

http://server/demo/rest/{version}/{resourceCollectionPath}

• Create a parent resource item and create the nested child resource collection in
one roundtrip.

http://server/demo/rest/{version}/{resourceCollectionPath}

• Updating or creating resource items using Upsert-Mode Header

http://server/demoapp/rest/{version}/{resourceCollectionPath}

• Execute an action on a resource collection or resource item.

Chapter 22
ADF REST Framework Reference

22-208

http://server/demo/rest/{version}/{resourceCollectionPath}|
{resourceItemPath}

• Execute an a batch request.

http://server/demo/rest/{version}/{resourceCollectionPath}

Request Parameters

• none

Media Types Supported

• Request

– application/vnd.oracle.adf.resourceitem+json: When creating a resource
or overriding the HTTP method to perform an update.

– application/vnd.oracle.adf.resourceitem+json: When updating or
creating a resource item using Upsert.

– application/vnd.oracle.adf.action+json: When executing an action.

– application/vnd.oracle.adf.batch+json: When executing a batch request.

• Response

– application/vnd.oracle.adf.resourceitem+json: When executing an action
or creating a resource.

– application/vnd.oracle.adf.resourceitem+json: When updating or
creating a resource item using Upsert.

– application/vnd.oracle.adf.actionresult+json: When executing an action
that has an object to return.

– application/vnd.oracle.adf.batch+json: When executing an batch
request.

Use Case Samples

• Creating a Resource Item in Collection

• Creating Child Resource Item

• Streaming Attachments Using a Resource Item Enclosure Link

• Overriding the HTTP Method and Performing an Update

• Making Batch Requests

• Updating or Creating Resource Items Using Upsert

PATCH Method Operations
The ADF REST framework supports the following operation using a PATCH method
with the URI as shown.

• Updating a resource item.

http://server/demo/rest/{version}/{resourceItemPath}

Request Parameters

• none

Media Types Supported

Chapter 22
ADF REST Framework Reference

22-209

• Request

– application/vnd.oracle.adf.resourceitem+json: The resource item to be
updated.

• Response

– application/vnd.oracle.adf.resourceitem+json: The updated resource
item.

Use Case Samples

• Updating a Resource Item

• Checking for Data Consistency When Updating ADF REST Resource Items

• Replacing LOB Content Using Base64

• Overriding the HTTP Method and Performing an Update

DELETE Method
The ADF REST framework supports the following operation using a DELETE method
with the URI as shown.

• Deleting a resource item.

http://server/demo/rest/{version}/{resourceItemPath}

Request Parameters

• none

Media Types Supported

• Request

– none

• Response

– none

Use Case Samples

• Deleting a Resource Item

Chapter 22
ADF REST Framework Reference

22-210

Part IV
Creating ADF Task Flows

This part describes the tasks developers can perform when creating ADF task flows in
the Fusion web application. ADF task flows provide a modular approach for defining
control flow in a Fusion web application.

Part IV contains the following chapters:

• Getting Started with ADF Task Flows

• Working with Task Flow Activities

• Using Parameters in Task Flows

• Using Task Flows as Regions

• Creating Complex Task Flows

• Using Dialogs in Your Application

23
Getting Started with ADF Task Flows

This chapter describes getting started with ADF tasks flows that you can create in
your Fusion web application. In addition to describing how to create ADF task flows,
key ADF task flow features such as activities, control flows, control flow rules, memory
scopes, and bounded and unbounded task flows are described. The chapter also
describes how to refactor, test, and run a finished task flow.
This chapter includes the following sections:

• About ADF Task Flows

• Creating a Task Flow

• Adding Activities to a Task Flow

• Adding Control Flow Rules to Task Flows

• Testing Task Flows

• Refactoring to Create New Task Flows and Task Flow Templates

About ADF Task Flows
An ADF task flow is a graphical representation of the connectivity between the activity
nodes. This method allows you to create a modular set of reusable task flows and
join them through control flow cases to represent an application. The two types of task
flows are, Unbounded task flow and Bounded task flow.

ADF task flows provide a modular approach for defining control flow in a Fusion web
application. Instead of representing an application as a single large JSF page flow,
you can break it up into a collection of reusable task flows. Each task flow contains
a portion of the application's navigational graph. The nodes in the task flows are
activities. An activity node represents a simple logical operation such as displaying a
page, executing application logic, or calling another task flow. The transitions between
the activities are called control flow cases.

Figure 23-1 shows two view activities called Create and Confirm. These view activities
are similar to page nodes within a JSF page flow.

Figure 23-1 ADF Task Flow

The are two types of ADF task flow:

23-1

• Unbounded task flow: A set of activities, control flow rules, and managed beans
that interact to allow a user to complete a task. The unbounded task flow consists
of all activities and control flows in an application that are not included within a
bounded task flow.

• Bounded task flow: A specialized form of task flow that, in contrast to the
unbounded task flow, has a single entry point (an entry point is a view activity that
can be directly requested by a browser) and zero or more exit points. It contains
its own set of private control flow rules, activities, and managed beans. A bounded
task flow allows reuse, parameters, transaction management, reentry, and can
render within an ADF region in a JSF page.

For a description of the activity types that you can add to an unbounded or
bounded task flow see Working with Task Flow Activities .

By default, JDeveloper proposes the following file name for the source file of a
bounded task flow:

task-flow-definitionN.xml

where N is a number that increments each time that you create a new bounded
task flow. You can choose a file name for the bounded task flow. For example, you
might use checkout-task-flow.xml if the purpose of the bounded task flow is to
allow customers to check out from a shopping application.

The source file contains the metadata for the bounded task flow. Multiple bounded
task flows can be included within the same source file using the following
metadata:

<task-flow-definition id="TaskFlowID1">
 ...
 </task-flow-definition>
<task-flow-definition id="TaskFlowID2">
 ...
</task-flow-definition>

However, as JDeveloper's visual editors show one bounded task flow per file, it
makes the modification of bounded task flows easier if you do not include more
than one bounded task flow within the same source file.

A typical application is a combination of the unbounded task flow and one or
more bounded task flows. For example, JDeveloper, by default, creates an empty
unbounded task flow (source file name is adfc-config.xml) when you create an
application using the Fusion Web Application template. At runtime, the Fusion
web application can call bounded task flows from activities that you added to the
unbounded task flow.

As shown in Figure 23-2, the first activity to execute in an application is often a view
activity within the unbounded task flow. A view activity represents a JSF page that
displays as part of the application. The activity shown in Figure 23-2 starts with the
Home view activity and then calls a bounded task flow. The calltoLogin_taskFlow
activity calls a bounded task flow that enables a user to log into the application.

Chapter 23
About ADF Task Flows

23-2

Figure 23-2 Unbounded Task Flow Calling a Bounded Task Flow

You can also design an application in which all application activities reside within
the unbounded flow. This mimics a JSF application, but does not take advantage of
bounded task flow functionality. To take full advantage of task flow functionality, use
bounded task flows.

Table 23-1 describes the advantages that the control flow provided by ADF task
flows offers over the control flow offered by JSF page flow. In certain scenarios you
may need to use JSF page flow. For example, using phase listeners, as described
in Customizing the ADF Page Lifecycle , involves using the JSF page flow's faces-
config.xml configuration file. In general, it is not recommended that you mix JSF page
flow and ADF task flows in your application.

Table 23-1 ADF Task Flow Advantages

JSF Page Flow ADF Task Flow

The entire application must be represented
in a single page navigation file (faces-
config.xml). Although you can have
multiple copies of faces-config.xml in a
project, the application loads these files as
one at runtime.

The application can be broken up into a series of
modular flows that call one another.

All nodes within a JSF page flow must be
JSF pages. No other types of objects can
exist within the JSF page flow.

You can add to the task flow diagram nodes such
as views, method calls, and calls to other task
flows.

Navigation is only between pages. Navigation is between pages as well as other
activities, including routers. See, see Using
Router Activities.

Application fragments cannot be reused. ADF task flows are reusable within the same or
an entirely different application.

After you break up your application into task
flows, you may decide to reuse task flows
containing common functionality.

See, see Reusing Application Components .

There is no shared memory scope between
multiple requests except for session scope.

Shared memory scope (for example, page flow
scope) enables data to be passed between
activities within the task flow. Page flow scope
defines a unique storage area for each instance
of a bounded task flow.

About Unbounded Task Flows
A Fusion web application always contains an ADF unbounded task flow, which
contains the entry point or points to the application. An entry point is a view activity

Chapter 23
About ADF Task Flows

23-3

that can be directly requested by a browser. A Fusion web application only has
one unbounded task flow. By default, the source file for the unbounded task flow
is the adfc-config.xml file. Although you can create additional source files for
unbounded task flows, the application combines all source files at runtime into the
adfc-config.xml file. Figure 23-3 displays the diagram for an unbounded task flow
from an application. This task flow contains a number of view activities that are all
entry points to the application.

Figure 23-3 Unbounded Task Flow

You typically use the unbounded task flow instead of a bounded task flow if:

• You want to take advantage of ADF Controller features not offered by bounded
task flows, such as bookmarkable view activities. For more information, see
Bookmarking View Activities.

• The task flow will not be called by another task flow.

• The application has multiple points of entry. In Figure 23-3, the task flow can be
entered through any of the pages represented by the view activity icons on the
unbounded task flow.

The unbounded task flow cannot declaratively specify parameters. In addition, it
cannot contain a default activity, an activity designated as the first to run in the
unbounded task flow. This is because the unbounded task flow does not have a single
point of entry. To perform any of these requires a bounded task flow.

In order to take advantage of completely declarative ADF Controller transaction and
reentry support, use a bounded task flow rather than the unbounded task flow.

About Bounded Task Flows
An ADF bounded task flow is used to encapsulate a reusable portion of an
application. A bounded task flow is similar to a Java method in that it:

• Has a single entry point

• May accept input parameters

• May generate return values

• Has its own collection of activities and control flow rules

Chapter 23
About ADF Task Flows

23-4

• Has its own memory scope and managed bean lifespan (a page flow scope
instance)

For more information about memory scopes, see What You May Need to Know
About Memory Scope for Task Flows.

• Can determine whether or not it has an isolated data control frame

For more information about access to data control frames, see Sharing Data
Controls Between Task Flows .

• Can define an activity as an exception handling activity

For more information about exception handling in bounded task flows, see
Handling Exceptions in Task Flows.

The createOrder activity in Figure 23-3 is a call to a bounded task flow. The
unbounded task flow can call a bounded task flow, but cannot be called by another
task flow. A bounded task flow can call another bounded task flow, which can call
another and so on. There is no limit to the depth of the calls.

Figure 23-4 shows a bounded task flow.

Figure 23-4 Bounded Task Flow

The reasons for creating a bounded task flow are:

• The bounded task flow always specifies a default activity, a single point of entry
that must execute immediately upon entry of the bounded task flow.

In Figure 23-4, this is the method call activity labeled reconcileOrders. Because
it is the default activity, the method call activity is always invoked before the
bounded task flow renders the page referenced by the order view activity.

Chapter 23
About ADF Task Flows

23-5

• It is reusable. For example, it can be included in other applications requiring a
process to manage or check out orders. The bounded task flow can also be
reused within the same application.

• Any managed beans you use within a bounded can be specified in page flow
scope, so are isolated from the rest of the application. These managed beans
(with page flow scope) are automatically released when the task flow completes.

Table 23-2 summarizes the main features of a bounded task flows.

Table 23-2 Bounded Task Flow Features

Feature Description

Well-defined boundary A bounded task flow consists of its own set of private control
flow rules, activities, and managed beans. A caller requires no
internal knowledge of page names, method calls, child bounded
task flows, managed beans, and control flow rules within the
bounded task flow boundary. Input parameters can be passed
into the bounded task flow, and return values can be passed out
on exit of the bounded task flow. Data controls can be shared
between task flows.

Single point of entry A bounded task flow has a single point of entry, a default activity
that executes before all other activities in the task flow. For more
information, see What You May Need to Know About the Default
Activity in a Bounded Task Flow.

Page flow memory scope You can specify page flow scope as the memory scope for
passing data between activities within the bounded task flow.
Page flow scope defines a unique storage area for each instance
of a bounded task flow. Its lifespan is the bounded task flow,
which is longer than request scope and shorter than session
scope. For more information, see What You May Need to Know
About Memory Scope for Task Flows.

Addressable You can access a bounded task flow by specifying its unique
identifier within the XML source file for the bounded task flow
and the file name of the XML source file. For more information,
see What Happens When You Add a Task Flow Call Activity .

Reuse You can identify an entire group of activities as a single entity, a
bounded task flow, and reuse the bounded task flow in another
application within an ADF region.

You can also reuse an existing bounded task flow simply by
calling it. For example, one task flow can call another bounded
task flow using a task flow call activity or a URL.

In addition, you can use task flow templates to capture common
behaviors for reuse across different bounded task flows. For
more information, see Creating Task Flow Templates .

Parameters and return
values

A caller can pass input parameters to a bounded task flow and
accept return values from it. For more information, see Passing
Parameters to a Bounded Task Flow.

In addition, you can share data controls between bounded task
flows. For more information, see Sharing Data Controls Between
Task Flows .

Chapter 23
About ADF Task Flows

23-6

Table 23-2 (Cont.) Bounded Task Flow Features

Feature Description

Transaction management A bounded task flow can represent a transactional unit of work.
You can declaratively specify options on the bounded task flow
that determine whether, when entering the task flow, the task
flow creates a new transaction, joins an existing one or is
not part of the existing transaction. For more information, see
Managing Transactions in Task Flows.

Reentry You can specify options on the bounded task flow that determine
whether or not it can be reentered. For more information, see
Reentering Bounded Task Flows.

On-demand loading of
metadata

Bounded task flow metadata is loaded on demand when entering
a bounded task flow.

Security You can secure a bounded task flow by defining the privileges
that are required for someone to use it. For more information,
see Enabling ADF Security in a Fusion Web Application.

Understanding the assumptions and constraints listed in Table 23-3 will help you
successfully use ADF task flows, activities and other associated ADF Controller
features.

Table 23-3 ADF Controller Features Assumptions and Constraints

Feature Area Assumption/
Constraint

Description

ADF Controller objects
and diagram UI

JSF view layer ADF Controller operates in a JSF
environment. Oracle's web-based Fusion
web application strategy focuses on JSF as
the sole view layer technology.

ADF Controller objects
and diagram UI

Dependent on Oracle
ADF Faces

ADF Controller extensions are
implemented on top of Oracle ADF Faces.
They are dependent on the ADF Faces
libraries, but ADF Controller can run
against any JSF implementation, providing
these libraries are present.

ADF Controller objects
and diagram UI

Navigation and
state management
encapsulated

ADF Controller encapsulates both
navigation and, to some extent, state
management. JSF and the Servlet API are
still available for the basic management
of state at the application, session, and
request levels.

ADF Controller objects
and diagram UI

Model layer ADF Model layer is used to implement the
application's model layer.

ADF Controller objects
and diagram UI

Dependent on MDS ADF Controller metadata is stored in MDS.
However, MDS is currently not capable of
loading faces-config.xml.

If the customization features that MDS
provides are required, you should use ADF
task flows exclusively in order to define
managed beans and control flow rules.

Chapter 23
About ADF Task Flows

23-7

Table 23-3 (Cont.) ADF Controller Features Assumptions and Constraints

Feature Area Assumption/
Constraint

Description

ADF Controller objects
and diagram UI

No supported migration
path from struts or
model 1

There is no support for a migration from
Struts or Model 1 to the ADF Controller.

However, you can create a new bounded
task flow based on selected pages in a JSF
page flow. For more information, see How
to Create a Task Flow from JSF Pages.

Bounded task flow Exposed as page flow-
scoped state

ADF Controller manages implementation
of a page flow scoped-state. Any auto-
management functions provided by the
framework, such as back button support
and state cleanup function, assume
page flow-scoped data. In order for
an application to fully implement such
functions for all of its pages, the entire
application should be exposed as an ADF
bounded task flow, using nested bounded
task flows as needed. The application
should store any state requiring versioning
within the page flow scope.

Bounded task flow Transactional
boundaries

The developer will use ADF bounded task
flows to manage transaction boundaries.

Page flow scope Access availability
within ADF lifecycle

An application cannot attempt to access
the page flow scope early in the ADF
lifecycle before ADF Controller is ready to
provide it.

Page flow scope is not guaranteed to
be available for access until after Before
and After listeners have executed on the
Restore View phase. ADF Controller uses
before and after listeners on the Restore
View phase to synchronize the server side
state with the request. This is where things
such as browser back-button detection and
bookmark dereference are handled.

Navigation Navigation When using ADF Controller task flows,
perform all application navigation should
be performed using ADF Controller control
flow rules instead of using navigation rules
in faces-config.xml.

Although ADF Controller delegates
navigation handling when no matching
control flow cases are found in ADF
Controller metadata, not all ADF Controller
functionality is guaranteed to work correctly
if navigation is performed by a non-ADF
Controller NavigationHandler.

Chapter 23
About ADF Task Flows

23-8

About Control Flows
A task flow consists of activities and control flow cases that define the transitions
between activities. Figure 23-5 shows a control flow rule, labeled toView2, that defines
the transition between the ViewActivity1 and ViewActivity2 view activities. The
ViewActivity1 view activity displays before the ViewActivity2 view activity when the
task flow in Figure 23-5 executes.

Figure 23-5 Task Flow with Activities and Control Flow Cases

The task flow in Figure 23-5 also contains a method call activity (methodCall1) that
invokes after the ViewActivity2 view activity and before the taskflowCall1 task flow
call activity. In a task flow, you invoke an activity such as a method call activity before
or after a page renders. Invoking a method call activity outside of a particular page can
facilitate reuse because you can reuse the page in other contexts that do not require
the method (for example, a different task flow). For more information about control flow
rules, see Adding Control Flow Rules to Task Flows.

A wildcard control flow rule represents a control flow from-activity-id that contains
a trailing wildcard (foo*) or a single wildcard character (*). Use the single wildcard
character when you want to pass control from any activity in the task flow to the
wildcard control flow rule. Alternatively, use a trailing wildcard when you want to
constrain the activities that can pass control to the wildcard control flow rule.

In Figure 23-6, the wildcard control flow rule contains a single wildcard character,
indicating that control can pass to the activities connected to it in the task flow diagram
from any activity within the task flow.

Chapter 23
About ADF Task Flows

23-9

Figure 23-6 Wildcard Control Flow Rule With Single Wildcard

The trailing wildcard in Figure 23-7 indicates that control flow can pass to the
loginPage view from any valid source activity whose activity-id begins with the
characters summit.

Figure 23-7 Wildcard Control Flow Rule with Trailing Wildcard

For more information about wildcard control flow rules, see How to Add a Wildcard
Control Flow Rule .

ADF Task Flow Use Cases and Examples
Figure 23-8 shows a screen from the Summit sample application for ADF task flows.
End users of the screen invoke a task flow that displays a list of customers. Using
controls exposed on the screen, end users can also invoke a task flow that allows
them to create or to edit an order.

Chapter 23
About ADF Task Flows

23-10

Figure 23-8 Task Flows for Creating and Editing Data

Task flows can also be used to secure your Fusion web application by reducing the
number of access points that you expose to end users. For example, configure an
unbounded task flow to display one page that provides navigation to the remaining
pages in your application. Use bounded task flows for the remaining pages in the
application. By setting the URL Invoke property of these bounded task flows to
url-invoke-disallowed, your application has one access point (the page on the
unbounded task flow). For more information about the URL Invoke property, see How
to Call a Bounded Task Flow Using a URL. For more information about securing your
Fusion web application, see Enabling ADF Security in a Fusion Web Application.

Additional Functionality for ADF Task Flows
You may find it helpful to understand other Oracle ADF features before you configure
or use ADF task flows. Additionally, you may want to read about what you can do with
your task flow configurations. Following are links to other functionality that may be of
interest.

• Task flows can invoke managed beans. For more information about defining
managed beans for use with a task flow, the supported memory scopes, and other
related information, see What You May Need to Know About Memory Scope for
Task Flows and Using a Managed Bean in a Fusion Web Application.

Chapter 23
About ADF Task Flows

23-11

• Task flows are reusable. For more information about reusing functionality in your
application, see Reusing Application Components .

• Task flows can be secured by defining the privileges that are required for someone
to use it. For more information, see Enabling ADF Security in a Fusion Web
Application.

• You can extend the functionality that your task flows implement by writing custom
code. For example, you can write a custom exception handler that a task
flow passes control to when a task flow activity raises an exception. For more
information, see How to Designate Custom Code as an Exception Handler.

Make sure when you write custom code that you do not import packages that are
marked internal, as in the following example:

import oracle.adfinternal.controller.*;

For information about the APIs that you can use to write custom code, see the
following reference documents:

– Java API Reference for Oracle ADF Controller

– Java API Reference for Oracle ADF Faces

Creating a Task Flow
To create an ADF task flow you must identify the activities nodes and the control flow
rules between them. Also, a task flow can be created by joining multiple task flows.
You can use the router activity for branching in the task flow and use the return activity
to exit the task flow.

A task flow is made up of the task flow itself, plus a number of activities with control
flow rules between those activities. In most cases, the majority of the activities are
view activities which represent the different pages in the flow. When some method
or operation needs to be called, for example before a page is rendered, you use a
method call activity with a control flow case from that activity to the appropriate next
activity. When you want to call another task flow, you use a task flow call activity. If the
flow requires some sort of branching, you use a router activity. At the end of a bounded
task flow, you use a return activity which allows the flow to exit and control is sent back
to the flow that called this bounded task flow.

For more detailed information and procedures regarding the individual activities of a
task flow, including the metadata created for each activity and additional configuration
that you can set, see Adding Activities to a Task Flow.

How to Create a Task Flow
The processes for creating bounded and unbounded task flows are similar. The main
difference is that you select the Create as Bounded Task Flow checkbox in the
Create Task Flow dialog to create a bounded task flow.

Chapter 23
Creating a Task Flow

23-12

Note:

When you create a project, you may not need to create the unbounded task
flow for it. If ADF Page Flow is specified as a selected technology on the
Features page of the Project Properties dialog, the new adfc-config.xml file
is automatically created within the project. The adfc-config.xml file is the
main source file for the unbounded task flow.

Before you begin:

It may be helpful to have an understanding of what constitutes a task flow. For more
information, see Creating a Task Flow.

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for ADF Task
Flows.

To create a task flow:

1. In the Applications window, right-click the project in which you want to create the
task flow and choose New > ADF Task Flow.

2. In the Create Task Flow dialog, the Create as Bounded Task Flow checkbox is
selected by default. Deselect it if you want to create to create a source file that will
be incorporated into the application's unbounded task flow.

Deselecting the checkbox automatically changes the default value in the File
Name field. This value will be used to name the XML source file for the task flow
you create. The XML source file contains metadata describing the activities and
control flow rules in the task flow.

Tip:

The default name for the unbounded task flow is adfc-config.xml. The
default name for the source file for a bounded task flow matches the
value specified in the Task Flow ID field.

Because a single project can contain multiple task flows, a number may be added
to the default value in the File Name field in order to give the source file a unique
name, for example, task-flow-definition3.xml.

3. In the Create Task Flow dialog, the Create with Page Fragments checkbox is
selected by default.

Deselect this checkbox if you want the view activities that you add to the task flow
to reference JSF pages that render in the main browser window as the root page.
Leave the Create with Page Fragments checkbox selected if you want the view
activities that you add to the task flow to reference page fragments files (.jsff)
that the task flow displays in an ADF region at runtime. Note that this distinction
does not apply to dialogs that you will invoke from a view activity; you may define
a view activity that references either a JSF page or a page fragment file when you
select Create with Page Fragments.

4. Click OK.

Chapter 23
Creating a Task Flow

23-13

A diagram representing the task flow appears in the editor.

Tip:

You can view a thumbnail of the entire task flow diagram by clicking the
diagram and then choosing Window > Thumbnail from the main menu.

After you create the task flow, you can update it using the diagram, overview, and
source editors. You can also use the Structure window to update the task flow.

Tip:

There are other ways to create task flows, for example, by refactoring
the contents of an existing task flow into a new task flow. For more
information, see Refactoring to Create New Task Flows and Task Flow
Templates.

5. In the ADF Task Flow page of the Components window, from the Component
panel, in the Activities group, drag and drop an activity onto the diagram.

Normally, you would start with a view activity. For more detailed procedures for
adding any type of activity, see How to Add an Activity to a Task Flow.

• If you drag a view activity onto the diagram, you can double-click it to display
the wizard for the JSF page or page fragment that the task flow is configured
to invoke. Use the wizard to define characteristics for the page or page
fragment. For more information, see Using View Activities.

Note:

You can also add a view activity to a task flow by dragging a page
from the Applications window and dropping it on the diagram for the
task flow.

• If you drag a router activity onto the diagram, you can use the Properties
window to create an expression whose evaluation determines which control
flow rule to follow. For more information, see Using Router Activities.

• If you drag a method call activity onto the diagram, you can use the Properties
window to configure the method to call. For more information, see Using
Method Call Activities.

• If you drag a task flow call activity onto the diagram, you can double-click it to
display the Create Bounded Task Flow dialog where you can define settings
for a new bounded task flow. For more information, see Using Task Flow Call
Activities.

• If you are creating a bounded task flow, and you drag a task flow return activity
onto the diagram, you can use the Properties window to configure the activity.
For more information, see Using Task Flow Return Activities .

6. Create control flow cases between the activities (for more information and detailed
procedures, see How to Add a Control Flow Rule to a Task Flow):

Chapter 23
Creating a Task Flow

23-14

a. In the ADF Task Flow page of the Components window, from the Component
panel, in the Control Flow group, choose Control Flow Case.

b. On the diagram, click a source activity, for example a view, and then click
the destination activity. For example in Figure 23-14, two activities have been
linked with a control flow. Both the source (view1) and the destination (view2)
activities are linked.

c. In the Properties window, expand the General section, and choose the
outcome value using either the From Action attribute (if a method determines
the outcome) or the From Outcome attribute (if the outcome can be set as a
String).

7. If you are creating a bounded task flow, you may want to designate one of the
activities as the default activity. This makes sure that this specific activity executes
first whenever the bounded task flow runs. By default, JDeveloper makes the first
activity you add to the task flow the default. To change to a different activity,
right-click the appropriate activity in the diagram and choose Mark Activity >
Default Activity. For more information, see What You May Need to Know About
the Default Activity in a Bounded Task Flow.

What Happens When You Create a Task Flow
A new XML source file is created every time you create a new unbounded or bounded
task flow. By default, the XML source file for the unbounded task flow is called adfc-
config.xml.

As shown in the following example, <adfc-config> appears first as the top-level
element in all ADF Controller XML source files. Bounded task flows, activities and
control flow rules are defined inside the <adfc-config> element. Bounded task flows
are identified within the source file by the <task-flow-definition> metadata element.

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2"
id="__1">
 <task-flow-definition id="task-flow-definition">
 <use-page-fragments/>
 </task-flow-definition>
</adfc-config>

A bounded task flow is identified by its task flow reference, which is comprised of a
unique combination of identifier and document name. Example 23-1 shows a sample
task flow reference within a task flow call activity.

Note:

If you use JDeveloper to create the bounded task flow, specify only one ID
(indicating one bounded task flow) per document.

You assign both identifier and document name when you create the bounded task flow.
As shown in Example 23-1, the identifier is the value in the Task Flow ID field. The
document name is the value in the File Name field.

Chapter 23
Creating a Task Flow

23-15

Example 23-1 Task Flow Reference

<adfc-config xmlns="http://xmlns.oracle.com/adf/Controller" version="1.2">
 <task-flow-definition id="task-flow-definition">
 <use-page-fragments/>
 ...
 <task-flow-call id="taskFlowCall">
 <task-flow-reference>
 <document>/WEB-INF/target-task-flow-definition.xml</document>
 <id>my-task-flow</id>
 </task-flow-reference>
 </task-flow-call>
 ...
 </task-flow-definition>
</adfc-config>

What You May Need to Know About the Default Activity in a Bounded
Task Flow

The default activity is the first activity to execute in a bounded task flow. For example,
the default activity always executes first when a task flow call activity passes control to
the bounded task flow.

Unbounded task flows do not have default activities.

As shown in Figure 23-9, a green circle identifies the default activity in a task flow
diagram.

Figure 23-9 Default Activity in a Bounded Task Flow

The first activity that you add to a new bounded task flow diagram is automatically
identified as the default activity. You can also right-click any activity in the task flow
diagram and choose Mark Activity > Default Activity. The default can be any activity
type and it can be located anywhere in the control flow of the bounded task flow. To
find the default activity, right-click anywhere on the task flow diagram and choose Go
to Default Activity.

A bounded task flow can have only one default activity. If you mark a second activity
as the default, the first is unmarked automatically. To unmark an activity manually,
right-click the activity in the task flow diagram and choose Unmark Activity > Default
Activity.

You should not specify a train stop in the middle of a train as a default activity. For
more information, see Using Train Components in Bounded Task Flows.

Example 23-2 contains sample metadata for a default activity called SurveyPrompt in
a bounded task flow:

Chapter 23
Creating a Task Flow

23-16

Example 23-2 Default Activity Metadata in a Bounded Task Flow

<task-flow-definition id="survey">
 <default-activity>SurveryPrompt</default-activity>
 <view id="SurveryPrompt">
 <page>/SurveryPrompt.jsff</page>
 </view>
 <use-page-fragments/>
</task-flow-definition>

What You May Need to Know About Memory Scope for Task Flows
Each task flow in your Fusion web application defines a pageFlow scope to manage
state. The pageFlow scope begins when the task flow begins and ends when the task
flow ends. A pageFlow scope defines a unique storage area for each instance of a
task flow within an application which is used to pass data values between the activities
in the task flow. When one task flow calls another, the calling task flow cannot access
the called task flow's pageFlow scope. This means, for example, that a UI component
on a page referenced by a task flow's view activity cannot access the pageFlow scope
of another task flow even if this task flow is an ADF region embedded in the same
page as the UI component.

You can define multiple managed beans with task flows. Figure 23-10 shows an
example from the Summit ADF task flow sample application where a bounded task
flow (customers-task-flow-definition.xml) references a managed bean with a
backingBean scope. You can determine the scope assigned to a managed bean.

Figure 23-10 Managed Bean Registered With Task Flow

Table 23-4 lists available scopes for managed beans and describes when it is
appropriate to use each scope in a managed bean that you define with a task flow.
The table lists the scopes in order of their life span. For example, the application scope
has a longer life span than the request scope. For more information about the life span
of object scopes, see About Object Scope Lifecycles.

Chapter 23
Creating a Task Flow

23-17

Table 23-4 Memory Scope for ADF Managed Beans

Scope Description

application The application scope lasts until the application stops. Values that you store in a
managed bean with this scope are available to every session and every request
that uses the application.

Avoid using this scope in a task flow because it persists beyond the life span of
the task flow.

session The session scope begins when a user first accesses a page in the application
and ends when the user's session times out due to inactivity, or when the
application invalidates the session.

Use this scope only for information that is relevant to the whole session, such
as user or context information. Avoid using it to pass values from one task
flow to another. Instead, use parameters to pass values between task flows.
Using parameters gives your task flow a clear contract with other task flows
that call it or are called by it. Another reason to avoid use of session scope is
because it may persist beyond the life span of the task flow. Finally, if an end
user opens multiple browser windows within the same session, session scoped
values are shared across these browser windows. Conflicts can occur between
these browser windows.

pageFlow Choose this scope if you want the managed bean to be accessible across the
activities within a task flow. A managed bean that has a pageFlow scope shares
state with pages from the task flow that access it. A managed bean that has a
pageFlow scope exists for the life span of the task flow.

view Use this scope for managed bean objects that are needed only within the
current view activity and not across view activities.

The life span of this scope begins and ends when the current viewId of a view
port changes. If you specify view, the application retains managed bean objects
used on a page as long as the user continues to interact with the page. These
objects are automatically released when the user leaves the page.

Both JSF and Oracle ADF have an implementation of this scope. In a Fusion
web application, when you use view scope in an EL expression, it resolves to
the Oracle ADF implementation.

request Use request scope when the managed bean does not need to persist longer
than the current request.

backingBean A backing bean is a convention to describe a managed bean that stores
accessors for UI components and event handling code on a JSF page. It exists
for the duration of a request and should not be used to maintain state.

Use this scope if it is possible that your task flow appears in two ADF regions on
the same JSF page and you want to isolate each instance of ADF region.

In scenarios where you have more than one task flow, consider using a naming
convention that assigns a unique name to each managed bean. Adopting this
approach makes sure that you do not attempt to put two managed beans with
the same name from different task flows into backingBean scope.

When you define a managed bean with a task flow, JDeveloper generates entries
similar to the following in the task flow's source file:

<managed-bean id="__15">
 <managed-bean-name id="__16">egBackingBean</managed-bean-name>
 <managed-bean-class id="__13">oracle....egBackingBean</managed-bean-class>
 <managed-bean-scope id="__14">backingBean</managed-bean-scope>
</managed-bean>

Chapter 23
Creating a Task Flow

23-18

The <managed-bean-scope> element holds the value for the scope of the managed
bean (backingBean in the example).

When you bind a UI component to a managed bean, JDeveloper appends Scope to the
scope name in the EL expression that it generates to reference the managed bean.
For example, the binding attribute of a table component that references the managed
bean has the following EL expression:

<af:table id="cartTab"
 ...
 binding="#{backingBeanScope.egBackingBean.table}"
 ...
</af:table>

Restrict the scope of the managed bean that you reference through a UI component's
binding attribute to backingBean or request scope. Instances of UI components cannot
be serialized. Objects in scopes other than backingBean and request are expected
to be serializable. For this reason, you should not bind UI components to managed
beans that have a scope other than backingBean or request. Note that JDeveloper
defaults the binding attribute for UI components and region fragments to use the
backingBean scope.

Note:

Write EL expressions that explicitly qualify the scope to access when writing
EL expressions to access custom scopes unique to Oracle ADF (pageFlow,
backingBean, and view scopes). For example, write an EL expression to
access a pageFlow scope as follows:

#{pageFlowScope.inpTxtBB.uiComponent}

What You May Need to Know About the Source Files for Task Flows
A single application can have multiple unbounded task flow XML source files and
multiple bounded task flow XML source files. The set of files that combine to produce
the unbounded task flow is referred to as the application's ADF Controller bootstrap
configuration files. The unbounded task flow is assembled at runtime by combining
one or more ADF Controller bootstrap configuration files. All activities within the
bootstrap configuration files that are not contained within a bounded task flow are
considered to be within the unbounded task flow.

The names of the source files within a single application must be different. The
example in Figure 23-11 contains two unbounded task flows (adfc-config, adfc-
config1) and a bounded task flow (task-flow-definition).

Chapter 23
Creating a Task Flow

23-19

Figure 23-11 Application with Two Unbounded Task Flow XML Source Files

Adding Activities to a Task Flow
You can modify any ADF task flow once created in the ADF application. You can add
activities by dragging from the activities group from the Component panel and drop it
onto the diagram.

After you create a task flow, you add activities to the task flow and configure
the control flow between the activities. The Components window displays available
activities and control flows. You drag and drop the activities and control flows from the
Components window to the diagram for the task flow. You then configure control flow
between the activities so that the task flow performs the task you want it to perform.

How to Add an Activity to a Task Flow
After you create a task flow, a task flow diagram and the Components window
automatically display. The task flow diagram is a visual editor on which you can add
the activities and control flows for the task flow. You can add them to the diagram by
dragging them from the Components window.

Before you begin:

It may be helpful to have an understanding of what activities you can add to a task
flow. For more information, see Adding Activities to a Task Flow.

You may also find it helpful to understand functionality that can be added to task flows
using other Oracle ADF features. For more information, see Additional Functionality for
ADF Task Flows.

To add an activity to a task flow:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow to which you want to add an activity.

For example, Figure 23-12 shows the editor and the Components window that
automatically appears when you double-click a task flow source file (task-flow-
definition.xml).

Chapter 23
Adding Activities to a Task Flow

23-20

Figure 23-12 Task Flow Diagram

2. In the ADF Task Flow page of the Components window, from the Component
panel, in the Activities group, drag and drop an activity onto the diagram.

• If you drag a view activity onto the diagram, you can double-click it to display
the wizard to create a JSF page or page fragment. For more information, see
Using View Activities.

• If you drag a task flow call activity onto the diagram, you can double-click it to
display the Create Bounded Task Flow dialog where you can define settings
for a new bounded task flow. For more information, see Using Task Flow Call
Activities.

Tip:

Each activity you drag to the task flow diagram can display optional status
icons and a tooltip that provides additional information about the activity.
For example, after you drag a view activity to the task flow diagram, it may
display a warning icon until you associate it with a JSF page.

To turn on the icons, choose Show at the top of the task flow diagram, and
then choose Status and one of the following:

• Error: Displays when there is a problem in the task flow metadata which
prevents it from running. For example, a view activity in the metadata
can contain a <bookmark> or <redirect> element, but not both.

• Warning: Displays when there is a problem in the task flow metadata
that does not prevent the task flow from running.

• Incomplete: Displays when an activity is incomplete. For example, a
view activity that does not have a physical page associated with it or
a task flow call that does not have a task flow reference associated
with it are both considered incomplete activities. The resulting task flow
metadata may prevent it from running.

You can drag your mouse over a secondary icon to read a tooltip describing
the icon's meaning.

Chapter 23
Adding Activities to a Task Flow

23-21

What Happens When You Add an Activity to a Task Flow
As shown in Figure 23-13, the Components window contains separate sections for
components and diagram annotations. The contents of the Components section differ
slightly depending on whether you are creating a bounded or an unbounded task
flow. For example, if you are creating a bounded task flow, the Components section
contains an additional task flow return activity.

Figure 23-13 displays the activities you can add to an unbounded task flow.

Figure 23-13 Activities for an Unbounded Task Flow

Adding Control Flow Rules to Task Flows
ADF control flow rules define the path for the control to pass from one activity
to another in a task flow. You can also define conditional navigation, value based
navigation, or even merge multiple control flows to form a single control flow.

An ADF Controller control flow rule defines how control passes from one activity to
another in a task flow. A control flow rule can contain one or more control flow cases.
A control flow case identifies the activity to which control flow passes. A control case
also has options that allow you to configure conditional navigation (using the <if>
element) and/or limit navigation based on the value of the action from where the
control flow originates (using the from-action element).

An ADF Controller control flow rules are based on JSF navigation rules, but capture
additional information. JSF navigation is always between pages, whereas control flow
rules describe transitions between activities. For example, a control flow rule can
indicate a transition between a view activity and a subsequent method call activity. Or,
it can indicate that control passes from the page (view activity) to another task flow.

The following task flow activities cannot be the source of a control flow rule:

• Save Point Restore

Chapter 23
Adding Control Flow Rules to Task Flows

23-22

• Task Flow Return

• URL View

The basic structure of a control flow rule mimics a JSF navigation rule. Table 23-5
describes how metadata maps from JSF navigation rules to ADF Controller control
flow rules.

Table 23-5 Mapping of JSF Navigation Rules to ADF Controller Control Flow
Rules

JSF Navigation Rule ADF Controller Control Flow Rule

Navigation Rule Control Flow Rule

From View ID From Activity ID

Navigation Case Control Flow Case

From Action From Action

From Outcome From Outcome

If If

To View ID To Activity ID

When using ADF task flows, perform all application navigation using ADF Controller
control flow rules instead of using JSF navigation rules in the faces-config.xml
file. ADF Controller delegates navigation handling when it does not find a matching
control flow case in its metadata. However, not all ADF Controller functionality is
guaranteed to work correctly if navigation is performed by a non-ADF Controller
navigation handler. For more information about how ADF Controller evaluates control
flow rules, see What Happens at Runtime: How Task Flows Evaluate Control Flow
Rules.

Use the task flow diagram as a starting point for creating basic control flows between
activities. Later, you can edit control flow properties in the Structure window, Properties
window or overview editor for the task flow diagram.

Tip:

You can drag and drop an activity onto an existing control flow. This splits the
existing control flow into two, with the activity in the center.

How to Add a Control Flow Rule to a Task Flow
You create a control flow rule by dragging a Control Flow Case from the ADF Task
Flow page of the Components window and dropping it on a source task flow activity
and a target task flow activity.

Before you begin:

It may be helpful to have an understanding of what a control flow rule is. For more
information, see Adding Control Flow Rules to Task Flows.

Chapter 23
Adding Control Flow Rules to Task Flows

23-23

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for ADF Task
Flows.

To add a control flow rule to a task flow:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow where you want to add a control flow rule.

2. In the ADF Task Flow page of the Components window, from the Component
Panel, in the Control Flow group, select Control Flow Case.

3. On the diagram, click a source task flow activity and then click the destination task
flow activity.

In many cases, the source and destination task flow activities will be view
activities. In Figure 23-14, two such task flow activities (view1) and (view2) have
been linked with a control flow case.

Figure 23-14 Control Flow Case

JDeveloper adds the control flow case to the diagram. Each line that JDeveloper
adds between task flow activities represents a control flow case. The arrow
indicates the direction of the control flow case. The From Outcome element
contains a value that can be matched against values specified in the action
attribute of UI components.

4. To change the value of From Outcome, choose the text next to the control flow in
the diagram and overwrite the default wildcard * character.

A useful convention is to cast the control flow rule in the form toDestination or
some other form that describes the purpose of the control flow rule. To define the
control flow shown in Figure 23-14, for instance, you would overwrite the wildcard
with toView2.

5. To change the values of From Activity ID (which identifies the source activity) or
To Activity ID (which identifies the target activity), drag either end of the arrow in
the diagram to a new activity.

Chapter 23
Adding Control Flow Rules to Task Flows

23-24

Tip:

After you choose the control flow in the task flow diagram, you can also
change its properties in the Properties window or the Structure window.
The Structure window is helpful for displaying the relationship between
control rules and cases.

You can also click Control Flows on the overview editor for the task flow
diagram to add cases, as shown in Figure 23-15. To add a case, make
sure that the From Activity (source activity) and the To Activity (target
activity) for the rule have already been added to the task flow.

Figure 23-15 Control Flows on Overview Editor for the Task Flow

6. Optionally, in the Properties window expand the Behavior section, and write an EL
expression in the If field that must evaluate to true before control can pass to the
activity identified by To Activity ID.

How to Add a Wildcard Control Flow Rule
You can add a wildcard control flow rule to an unbounded or bounded task flow. The
steps for adding it are similar to those for adding any activity to a task flow diagram.

Before you begin:

It may be helpful to have an understanding of the control flow rule options available to
you. For more information, see Adding Control Flow Rules to Task Flows.

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for ADF Task
Flows.

To add a wildcard control flow rule:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow where you want to add a wildcard control flow rule.

2. In the ADF Task Flow page of the Components window, from the Component
panel, in the Control Flow group, drag and drop a Wildcard Control Flow Rule
onto the diagram.

3. In the ADF Task Flow page of the Components window, from the Component
panel, in the Control Flow group, select Control Flow Case.

4. In the task flow diagram, drag the control flow case from the wildcard control flow
rule to the target activity.

The target can be any activity type.

5. By default, the label below the wildcard control flow rule is *. This is the value for
the From Activity ID element. To change this value, select the wildcard control

Chapter 23
Adding Control Flow Rules to Task Flows

23-25

flow rule in the diagram. In the Properties window for the wildcard control flow rule,
enter a new value in the From Activity ID field. A useful convention is to cast the
wildcard control flow rule in a form that describes its purpose. For example, enter
project*. The wildcard must be a trailing character in the new label.

Tip:

You can also change the From Activity ID value in the overview editor
for the task flow diagram.

6. Optionally, in the Properties window expand the Behavior section, and write an EL
expression in the If field that must evaluate to true before control can pass to the
activity identified by To Activity ID.

What Happens When You Create a Control Flow Rule
Understanding the elements that define the rules in the source file for the task flow
helps when creating control flow rules directly in the task flow diagram, task flow
overview editor, or Structure window, or when adding them directly in the XML source
file. Example 23-3 shows the general syntax of a control flow rule element in the task
flow source file.

Control flow rules can consist of the following metadata:

• control-flow-rule: A mandatory wrapper element for control flow case elements.

• from-activity-id: The identifier of the activity where the control flow rule
originates, for example, source.

A trailing wildcard (*) character in from-activity-id is supported. The rule
applies to all activities that match the wildcard pattern. For example, login*
matches any logical activity ID name beginning with the literal login. If you specify
a single wildcard character in the metadata (not a trailing wildcard), the control
flow automatically converts to a wildcard control flow rule activity in the diagram.
For more information, see How to Add a Wildcard Control Flow Rule .

• control-flow-case: A mandatory wrapper element for each case in the control
flow rule. Each case defines a different control flow for the same source activity. A
control flow rule must have at least one control flow case.

• from-action: An optional element that limits the application of the rule to
outcomes from the specified action method. The action method is specified as
an EL binding expression, such as #{backing_bean.cancelButton_action}.

In Example 23-3, control passes to destinationActivity only if outcome is
returned from actionmethod.

The value in from-action applies only to a control flow originating from a view
activity, not from any other activity types. Wildcards are not supported in from-
action.

• from-outcome: Identifies a control flow case that will be followed based on a
specific originating activity outcome. All possible originating activity outcomes
should be accommodated with control flow cases.

If you leave both the from-action and the from-outcome elements empty, the
case applies to all outcomes not identified in any other control flow cases defined

Chapter 23
Adding Control Flow Rules to Task Flows

23-26

for the activity, thus creating a default case for the activity. Wildcards are not
supported in from-outcome.

• to-activity-id: A mandatory element that contains the complete identifier of the
activity to which the navigation is routed if the control flow case is performed. Each
control flow case can specify a different to-activity-id.

• if: An optional element that accepts an EL expression as a value. If the EL
expression evaluates to true at runtime, control flow passes to the activity
identified by the to-activity-id element.

Example 23-3 Control Flow Rule Syntax in the Source File

<control-flow-rule>
 <from-activity-id>from-view-activity</from-activity-id>
 <control-flow-case>
 <from-action>actionmethod</from-action>
 <from-outcome>outcome</from-outcome>
 <to-activity-id>destinationActivity</to-activity-id>
 <if>#{myBean.someCondition}</if>
 </control-flow-case>
 <control-flow-case>

 </control_flow-case>
</control-flow-rule>

What Happens at Runtime: How Task Flows Evaluate Control Flow
Rules

At runtime, task flows evaluate control flow rules from the most specific to the least
specific match to determine the next transition between activities. Evaluation is based
on the following priority, which is similar to that for JSF navigation rules:

1. from-activity-id, from-action, from-outcome

2. from-activity-id, from-outcome

3. from-activity-id

ADF Controller first searches for a match in all three elements: from-activity-id,
from-action, and from-outcome. If there is no match, ADF Controller searches for
a match in just the from-activity-id and from-outcome elements. Finally, ADF
Controller searches for a match in the from-activity-id element alone.

If ADF Controller cannot find a control flow rule within its metadata to match a request,
it allows the standard JSF navigation handler to find a match.

The unbounded task flow can have more than one ADF Controller XML source file.
Because control flow rules can be defined in more than one ADF Controller XML
source file, similar rules may be defined in different files. If there is a conflict in which
two or more cases have the same from-activity-id, and the same from-action or
from-outcome values, the last case (as listed in the adfc-config.xml, bootstrap, or
bounded task flow source file) is used. If the conflict is among rules defined in different
source files, the rule in the last source file to be loaded is used.

ADF Controller also implements the following interface with a number of restrictions:

javax.faces.application.ConfigurableNavigationHandler

The restrictions are:

Chapter 23
Adding Control Flow Rules to Task Flows

23-27

• The Map object returned by getNavigationCases() is not modifiable. Any runtime
changes to control flow rules must be made with the customization features
provided with the MDS framework. For more information, see Customizing
Applications with MDS .

• Do not invoke the performNavigation() method after the JSF Invoke Application
phase. This is to make sure that the view ID does not change between the
ADF Prepare Render phase and the JSF Render Response phase. For more
information about how the JSF and ADF phases integrate in the lifecycle of a page
request, see Understanding the Fusion Page Lifecycle .

• The metadata values for a task flow view activity's Bookmark and Redirect
properties populate the corresponding information for the navigation case objects
returned by the getNavigationCases().

Testing Task Flows
ADF task flows, as in any other application, can be tested to debug any issues or test
cases to either fix the issue or to improve its performance. The task flow can be either
tested and then deployed to the WebLogic Server or the test flow can be tested while
the execution is in progress on the WebLogic Server without interrupting the execution.
The running and debugging process is different for different types of task flows.

The procedure for running and debugging task flows differs depending on whether the
task flow is bounded or unbounded, whether it contains pages or page fragments, or
whether it accepts input parameters.

JDeveloper and Oracle ADF provides a number of features that facilitate your testing
of the task flows that you create. Among these is the ability to set ADF declarative
breakpoints on task flow activities. See How to Set and Use Task Flow Activity
Breakpoints. In addition, you can also modify a task flow's metadata for an application
that is currently executing in the Integrated WebLogic Server. The changes that
you make to the task flow can be deployed to the application without stopping the
application and redeploying it to the Integrated WebLogic Server (also known as hot
reloading). To do this, you invoke the make command on the modified task flow
(right-click the task flow and choose Make). This deploys the modified task flow to
the application executing in the Integrated WebLogic Server. For information about hot
reloading, see Reloading Oracle ADF Metadata in Integrated WebLogic Server.

The Create Default Domain dialog appears the first time you run your application
and start a new domain in Integrated WebLogic Server. Use the dialog to define
an administrator password for the new domain. Passwords you enter can be eight
characters or more and must have a numeric character.

How to Run a Bounded Task Flow That Contains Pages
You can run or debug a bounded task flow that contains view activities that are pages.

For information on running a bounded task flow that contains view activities that are
page fragments, see How to Run a Bounded Task Flow That Uses Page Fragments .

Before you begin:

It may be helpful to have an understanding of the factors that affect how you test a
task flow. For more information, see Testing Task Flows.

Chapter 23
Testing Task Flows

23-28

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for ADF Task
Flows.

To run or debug a bounded task flow that uses pages:

• In the task flow diagram, right-click the task flow and choose either Run or Debug.

• You can also run the task flow directly by entering its URL in the browser. For
example:

http://somecompany.com/internalApp/MyApp/faces/
adf.task-flow?adf.tfId=displayHelp&adf.tfDoc=%2FWEB-
INF%2Fdisplayhelp.xml&topic=createPurchaseOrder

For more information, see What You May Need to Know About Calling a Bounded
Task Flow Using a URL.

• In the Applications window, expand the WEB-INF node, right-click the bounded
task flow and choose either Run or Debug.

How to Run a Bounded Task Flow That Uses Page Fragments
Bounded task flows that use page fragments are intended to run only within an ADF
region. A page fragment is a JSF document that renders as content in another JSF
page. For more information, see About Page Fragments and ADF Regions.

Before you begin:

It may help to understand what factors affect how you test a task flow. For more
information, see Testing Task Flows.

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for ADF Task
Flows.

You will need to complete these tasks:

1. Create a JSF page containing a region that binds to the bounded task flow.
JDeveloper automatically creates the region for you in a JSF page when you drop
a bounded task flow containing page fragments on a page. For more information
about creating regions, see Creating an ADF Region.

2. Create a view activity in the project's unbounded task flow that refers to the page.
For more information, see How to Add an Activity to a Task Flow.

To run or debug a bounded task flow that uses page fragments:

• Right-click the view activity in the Applications window or in the task flow diagram
and choose Run.

How to Run a Bounded Task Flow That Has Parameters
Before you run a bounded task flow with parameters, you must first run a bounded
task flow containing pages. For more information, see How to Run a Bounded Task
Flow That Uses Page Fragments .

When you attempt to run or debug a bounded task flow with input parameters defined,
the Set Run Configuration dialog appears, as shown in Figure 23-16. You enter values
that you want to pass to the bounded task flow in this dialog and click OK. For more

Chapter 23
Testing Task Flows

23-29

information about how to define input parameters for a bounded task flow, see Using
Parameters in Task Flows.

Figure 23-16 Set Run Configuration dialog

Before you begin:

It may be helpful to have an understanding of the factors that affect how you test a
task flow. For more information, see Testing Task Flows.

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for ADF Task
Flows.

To run or debug a bounded task flow that has input parameter definitions:

1. In the diagram for the bounded task flow, right-click the task flow and choose
either Run or Debug.

2. In the Input Parameters list of the Set Run Configuration dialog, enter values that
you want to be passed as input parameters to the task flow. If you do not specify a
value, the input parameter is not used when calling the bounded task flow.

Each required input parameter in the list appears with an asterisk, as shown in
Figure 23-16. You must specify the parameter value as a literal string. You cannot
specify an EL expression.

3. Click OK.

How to Run a JSF Page When Testing a Task Flow
You can run a JSF page by right-clicking the page in the Applications window and
choosing Run. However, if the page contains navigation UI components, such as a
button or link, navigation is not guaranteed to work.

Before you begin:

It may be helpful to have an understanding of the factors that affect how you test a
task flow. For more information, see Testing Task Flows.

Chapter 23
Testing Task Flows

23-30

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for ADF Task
Flows.

You will need to complete these tasks:

1. Create a bounded or unbounded task flow.

For more information, see How to Create a Task Flow.

2. Add a view activity to the task flow.

For more information, see How to Add an Activity to a Task Flow.

To run a JSF Page with fully functioning navigation:

1. In the Applications window, drag the JSF page you want to run and drop it onto the
view activity in the task flow diagram.

This associates the view activity with the JSF page.

2. In the diagram, right-click the view activity and choose Run.

How to Run an Unbounded Task Flow
To run or debug an unbounded task flow, you choose a specific view activity with
which to start the unbounded task flow.

Before you begin:

It may be helpful to have an understanding of the factors that affect how you test a
task flow. For more information, see Testing Task Flows.

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for ADF Task
Flows.

To run a view activity in the unbounded task flow:

• In the task flow diagram, right-click the view activity and choose either Run or
Debug.

The unbounded task flow runs beginning with the selected view activity.

• If you have selected something other than a single view activity (or have nothing
selected), you are prompted to choose one in the Set Run Configuration dialog.

How to Set a Run Configuration for a Project
A run configuration contains settings that determine how projects run, such as
specifying the first activity to run in a task flow. You can define one or more run
configurations for a project. Within a run configuration, you can designate an ADF
Controller source file as the default run target. When you run the project, the source
file is the first to run.

Before you begin:

It may be helpful to have an understanding of the factors that affect how you test a
task flow. For more information, see Testing Task Flows.

Chapter 23
Testing Task Flows

23-31

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for ADF Task
Flows.

To define a default task flow run target:

1. In the Applications window, right-click the project where you want to define a
default task flow run target and choose Project Properties.

2. In the Project Properties dialog, select Run/Debug and click New in the Run
Configurations list.

3. In the Create Run Configuration dialog, enter the name for the new run
configuration.

4. If you want to base the new configuration on an existing one, choose a
configuration in the Copy Settings From dropdown list.

5. Click OK to exit the Create Run Configuration dialog.

6. In the Run Configurations list, click Edit.

7. In the Default Run Target field in the Edit Run Configuration dialog, specify a
source file for the task flow that should run first when you run the project.

Once you choose a task flow, you can set a view activity (for the unbounded task
flow) or input parameters (for bounded task flows).

8. In the left panel of the Edit Run Configuration dialog, click ADF Task Flow.

9. In the Task Flow dropdown list, located on the right panel, choose the task flow
containing the run target.

10. If you are running the unbounded task flow, the Edit Run Configuration dialog
displays the View Activity dropdown list where you choose the view activity that
runs first in the application, as shown in Figure 23-17.

Figure 23-17 Edit Run Configuration Dialog

11. Click OK.

The next time you run the project, the saved run configuration will be available in
the Run > Choose Active Run Configuration menu.

If you are running a bounded task flow that has been set up to accept
input parameters, a dialog displays a section for specifying values for all input

Chapter 23
Testing Task Flows

23-32

parameters defined for the bounded task flow. For more information, see How to
Run a Bounded Task Flow That Has Parameters .

What Happens at Runtime: Testing Task Flows
The behavior that you observe when you test a task flow may depend on a number
of factors. For example, if you attempt to run or debug a bounded task flow with input
parameters defined, the Set Run Configuration dialog appears. Also, if it is the first
time that you attempt to test an application in this installation of JDeveloper, the Create
Default Domain dialog appears so that you can start a new domain in Integrated
WebLogic Server.

Refactoring to Create New Task Flows and Task Flow
Templates

ADF task flows allow you to create task flows and task flow templates by reusing the
existing activities, JSF page flows, and JSF pages. The new bounded task flow that
you extract displays in the task flow diagram.

You can convert existing activities, JSF page flows, and JSF pages into new ADF
Controller components such as bounded task flows and task flow templates.

How to Extract a Bounded Task Flow from an Existing Task Flow
You can create a new bounded task flow based on activities you choose in an existing
bounded or unbounded task flow.

Before you begin:

It may be helpful to have an understanding of the factors that affect how you refactor
a task flow. For more information, see Refactoring to Create New Task Flows and Task
Flow Templates.

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for ADF Task
Flows.

To extract a bounded task flow from an existing task flow:

1. In the Applications window, expand the WEB-INF node and double-click the
unbounded or bounded task flow containing the activities you want to extract to
a new bounded task flow.

2. In the task flow diagram, select one or more activities.

Tip:

To select multiple activities in a diagram, click the left mouse button and
drag the cursor over the activities.

You can also press the Ctrl key while selecting each activity.

3. Right-click your selection and choose Extract Task Flow.

Chapter 23
Refactoring to Create New Task Flows and Task Flow Templates

23-33

4. In the Extract Bounded Task Flow dialog, enter a file name for the new bounded
task flow and enter the name of the directory that stores it.

For more information about creating a bounded task flow, see Creating a Task
Flow.

What Happens When You Extract a Bounded Task from an Existing
Task Flow

The new bounded task flow that you extract displays in the task flow diagram.
Table 23-6 describes the properties that JDeveloper automatically sets for the new
bounded task flow.

Table 23-6 Properties Updated in the New Bounded Task Flow

Property Value

Task flow definition ID Value you entered in the File Name field in the Extract Bounded
Task Flow dialog.

Default activity Determined as the destination of all incoming control flow cases.
If more than one destination exists, an error is flagged and the
entire operation is rolled back.

Control flow rules Control flow cases with selected source activities are included
in the new bounded task. A source activity is an activity from
which a control flow leads. The new bounded task flow includes
the following types of control flow cases:

• Both the source and target activities in the control flow case
were selected to create the new task flow.

• Only the source activity was selected to create the new task
flow. Destinations are changed to the corresponding new
task flow return activities added for each outcome.

The following changes automatically occur in the originating task flow (the task flow
containing the activities you selected as the basis for the new task flow):

• A new task flow call activity is added to the originating task flow. The task flow call
activity calls the new bounded task flow.

• The selected activities are removed from the originating task flow.

• Existing control flow cases associated with the activities you selected are removed
from the originating task flow. They are replaced with new control flow cases:

– An incoming control flow case to the old activity is redirected to the new task
flow call activity.

– An outgoing control flow case from the old activity is redirected from the new
task flow call activity.

How to Create a Task Flow from JSF Pages
You can create a new bounded task flow based on selected pages in a JSF page flow.
JDeveloper converts the JSF pages that are part of a flow (that is, those that are linked
by JSF navigation cases) to view activities in the new task flow.

Before you begin:

Chapter 23
Refactoring to Create New Task Flows and Task Flow Templates

23-34

It may be helpful to have an understanding of the factors that affect how you refactor
a task flow. For more information, see Refactoring to Create New Task Flows and Task
Flow Templates.

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for ADF Task
Flows.

To create a new task flow from selected JSF pages in a page flow:

1. In the Applications window, double-click the page flow containing the pages you
want to use in the new bounded task flow.

2. In the task flow diagram, select one or more JSF pages.

Tip:

To select multiple elements in a diagram, click the left mouse button and
drag the cursor over the elements.

You can also press the Ctrl key while selecting each element.

3. Right-click your selection and choose Generate ADF Task Flow.

The Create Task Flow dialog appears, which allows you to create a new
unbounded or bounded task flow.

4. In the Create Task Flow dialog, enter a file name and directory for the task flow.
Clear the Create as Bounded Task checkbox if you want to create an unbounded
task flow.

For more information, see Creating a Task Flow.

5. Click OK.

How to Convert Bounded Task Flows
You can convert an existing bounded task flow to an unbounded task flow or change
whether the views it contains are pages or page fragments. Table 23-7 describes the
results of each conversion.

Table 23-7 Converting Bounded Task Flows

Conversion Result

Bounded task flow to
unbounded task flow

Loses all metadata not valid for unbounded task flows, such as
parameter definitions and transactions.

Bounded task flow to use
JSF pages

Converts page fragments associated with any view activities in
the task flow to JSF pages. Old page fragments are saved if
you select the Keep Page Fragment checkbox. New JSF page
names default to the name of the old page fragment.

Bounded task flow to use
page fragments

Converts all pages associated with view activities in the bounded
task flow to page fragments. Old pages are saved if you select
the Keep Page checkbox. New page fragment names default to
the name of the old page

Before you begin:

Chapter 23
Refactoring to Create New Task Flows and Task Flow Templates

23-35

It may be helpful to have an understanding of the factors that affect how you refactor
a task flow. For more information, see Refactoring to Create New Task Flows and Task
Flow Templates.

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for ADF Task
Flows.

To convert a bounded task flow:

1. In the Applications window, expand the WEB-INF node and double-click the
bounded task flow that you want to convert.

2. In the task flow diagram, right-click anywhere other than on an activity or a control
flow.

3. Choose the appropriate menu option:

• Convert to Unbounded Task Flow

• Convert to Task Flow with Page Fragments

• Convert to Task Flow with Pages

Chapter 23
Refactoring to Create New Task Flows and Task Flow Templates

23-36

24
Working with Task Flow Activities

This chapter describes how to use activities in ADF task flows that you create in your
Fusion web application. The chapter contains detailed information about each task
flow activity type that displays in the Components window in addition to describing the
properties that you can configure for each task flow activity type.
This chapter includes the following sections:

• About Task Flow Activities

• Using View Activities

• Using URL View Activities

• Using Router Activities

• Using Method Call Activities

• Using Task Flow Call Activities

• Using Task Flow Return Activities

• Using Task Flow Activities with Page Definition Files

About Task Flow Activities
The ADF task flow activity is a module or independent set of tasks to be executed to
complete a task. You can add activities to both bounded and unbounded task flows;
however, certain activities can only be added to a bounded task flow.

An activity represents a piece of work that is performed when the task flow runs. It
displays in the task flow's diagram editor as a node. You can add most activities to
both bounded and unbounded task flows, although some activity types can be added
only to bounded task flows.

Figure 24-1 shows the emp-reg-task-flow-definition.xml bounded task flow from
the Summit sample application for ADF task flows. This task flow contains the
following activities:

1. A method call activity that invokes a CreateInsert action

2. A view activity that renders a page fragment where end users can enter general
information about the employee to be created

3. A view activity that renders a page fragment where a confirmation message
appears if the end user successfully creates the new employee

24-1

Figure 24-1 Bounded Task Flow with Task Flow Activities

A task flow consists of activities and control flow cases that define the transitions
between activities. Table 24-1 describes the types of activities and control flows you
can add to a task flow by dragging and dropping from the Components window.

Table 24-1 Task Flow Activities and Control Flows

Icon Component Name Description

Method Call Invokes a method, typically a method on a managed
bean. A method call activity can be placed anywhere
within an application's control flow to invoke application
logic based on control flow rules. See Using Method Call
Activities.

Parent Action Allows a bounded task flow to generate outcomes that
are passed to its parent view activity. Typically used
for a bounded task flow running in an ADF region that
needs to trigger navigation of its parent view activity.
See Navigating Outside an ADF Region's Task Flow.

Router Evaluates an EL expression and returns an outcome
based on the value of the expression. For example, a
router in a credit check task flow might evaluate the
return value from a previous method call and generate
success, failure, or retry outcomes based on various
cases. These outcomes can then be used to route
control to other activities in the task flow. See Using
Router Activities.

Save Point Restore Restores a previous persistent save point, including
application state and data, in an application supporting
save for later functionality. A save point captures a
snapshot of the Fusion web application at a specific
instance. Save point restore enables the application to
restore whatever was captured when the save point was
originally created. See Using Save Points in Task Flows.

Chapter 24
About Task Flow Activities

24-2

Table 24-1 (Cont.) Task Flow Activities and Control Flows

Icon Component Name Description

Task Flow Call Calls a bounded task flow from the unbounded task flow
or another bounded task flow. See Using Task Flow Call
Activities.

Task Flow Return Identifies when a bounded task flow completes and
sends control flow back to the caller. (Available for
bounded task flows only). See Using Task Flow Return
Activities .

URL View Redirects the root view port (for example, a browser
page) to any URL-addressable resource, even from
within the context of an ADF region. For more
information see Using URL View Activities.

View Displays a JSF page or page fragment. Multiple
view activities can represent the same page or same
page fragment. See Using View Activities for more
information. For more information about pages and page
fragments, see Creating a Web Page.

Control Flow Case Identifies how control passes from one activity to the
next in the application. See About Control Flows.

Wildcard Control
Flow Rule

Represents a control flow case that can originate from
any activities whose IDs match a wildcard expression.
For example, it can represent a control case from-
activity-id containing a trailing wildcard such as
foo*. See How to Add a Wildcard Control Flow Rule .

Table 24-2 describes the annotations (notes and attachments) you can add to a task
flow.

Chapter 24
About Task Flow Activities

24-3

Table 24-2 Task Flow Diagram Annotations

Icon Icon Name Description

Note Adds a note to the task flow diagram. You can choose
the note in the diagram to add or edit text.

Note Attachment Attaches an existing note to an activity or a control flow
case in the diagram.

Task Flow Activities Use Cases and Examples
Figure 24-2 shows the diagram for the customer task flow in the Summit ADF task flow
sample application. This task flow uses a number of the activities that a bounded task
flow supports in order to complete a task. For more information about the Summit ADF
sample applications, see Introduction to the ADF Sample Application.

Figure 24-2 Customers Task Flow in the Summit ADF Task Flow Sample
Application

Additional Functionality for Task Flow Activities
You may find it helpful to understand other Oracle ADF features before you configure
or use task flow activities. Additionally, you may want to read about what you can do

Chapter 24
About Task Flow Activities

24-4

with your configured task flows. Following are links to other functionality that may be of
interest.

• Task flows can invoke managed beans. For more information about managed
beans, see Using a Managed Bean in a Fusion Web Application.

• Bounded task flows can be secured by defining the privileges that are required
for someone to use them. For more information, see Enabling ADF Security in a
Fusion Web Application.

• Bounded task flows can be packaged in ADF Library JARs. For more information,
see Packaging a Reusable ADF Component into an ADF Library.

• Task flow activities can be associated with page definition files. For more
information about page definition files, see Working with Page Definition Files.

Using View Activities
The ADF task view activity allows you to display a JSF page or a page fragment.
At runtime, you can transfer the control from one task flow to another. Users can
bookmark a view activity within an unbounded task flow. Also, you can allow users to
visit a URL by configuring a view activity.

One of the primary types of task flow activity is the view activity. A view activity
displays a JSF page or page fragment. A page fragment is a JSF document that
renders as content in another JSF page. Page fragments are typically used in
bounded task flows that can be added to a JSF page as a region, as described in
Creating an ADF Region.

Figure 24-3 shows the index view activity in the Summit ADF task flow sample
application.

Figure 24-3 View Activity

Tip:

Click the + icon in the upper-left part of the view activity to see a thumbnail
preview of the referenced page or page fragment.

XML metadata in the source file of the task flow associates a view activity with
a physical JSF page or page fragment. An id attribute identifies the view activity.

Chapter 24
Using View Activities

24-5

The <page> element identifies the page or page fragment's file name. The following
example shows the metadata that corresponds to the view activity in Figure 24-3:

<view id="index">
 <page>/index.jsf</page>
 </view>

The view activity ID and page name do not have to be the same.

The steps for adding a view activity to a task flow are the same as those for adding
any activity to a task flow diagram. For more information, see How to Add an Activity
to a Task Flow. After you add the view activity, you can double-click it to display a
wizard that allows you to create a new page or page fragment. The wizard allows you
to choose between one of the following two document types for the JSF page or page
fragments that you create:

• Facelets

The file extension for pages in this document type is .jsf and .jsff for page
fragments.

• JSP XML

The file extension for pages in this document type is .jspx and .jsff for page
fragments.

Use one document type only in your task flows. For example, do not use the Facelets
document type for view activities in one task flow and the JSP XML document type for
view activities in another task flow. For more information about the document types,
see Implementing the User Interface with JSF.

You also use the wizard to choose the page layout for the page or page fragment
that you create. For more information about page layouts, see the "Using Quick
Start Layouts" section in Developing Web User Interfaces with Oracle ADF Faces.
In addition, you can specify whether or not to automatically expose UI components on
the page or page fragment in a managed bean. For more information, see Using a
Managed Bean in a Fusion Web Application.

After you complete the wizard, JDeveloper automatically associates the completed
page or page fragment with the view activity. As an alternative to using the wizard,
you can associate a page or page fragment with a view activity by dragging an
existing page or page fragment from the Applications window and dropping it on top
of an existing view activity. If no view activity exists, drag a page or page fragment
to any other location on the diagram. When you drop the page or page fragment,
JDeveloper automatically creates a new view activity associated with the page or page
fragment. During creation, a default id for the view activity is automatically generated
(for example index) based on the name of the page or page fragment.

Passing Control Between View Activities
You can configure view activities in your task flow to pass control to each other at
runtime. For example, to pass control from one view activity (view activity A) to a
second view activity (view activity B), you could configure a command component
(a button or a link) on the page associated with view activity A. Set the command
component's Action attribute to the control flow case from-outcome that corresponds
to the task flow activity that you want to invoke (for example, view activity B).
At runtime, the end user initiates the control flow case by invoking the command

Chapter 24
Using View Activities

24-6

component. You can navigate from a view activity to another activity using either a
constant or dynamic value on the Action attribute of the UI component.

A constant value of the component's Action attribute is an action outcome, as shown
in Figure 24-4, that always triggers the same control flow case. When an end user
clicks the component, the activity specified in the control flow case is performed. There
are no alternative control flows.

Figure 24-4 Edit Property Dialog

A dynamic value of the component's Action attribute is bound to a managed bean
or a method. The value returned by the method binding determines the next control
flow case to invoke. For example, a method might verify user input on a page and
return one value if the input is valid and another value if the input is invalid. Each of
these different action values trigger different navigation cases, causing the application
to navigate to one of two possible target pages.

You can also write an EL expression that must evaluate to true before control passes
to the target view activity. You write the EL expression as a value for the <if> child
element of the control flow case in the task flow. For more information, see How to Add
a Control Flow Rule to a Task Flow.

How to Pass Control Between View Activities
You pass control to a view activity by specifying the value of the control flow
case's from-outcome attribute as the value for the action attribute of the command
component.

Before you begin:

It may be helpful to have an understanding of the options that are available to
you when you configure the passing of control between view activities. For more
information, see Passing Control Between View Activities.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

You will need to complete these tasks:

• Create a target view activity to receive control after an end user invokes the
command component at runtime

• Create a JSF page that will host a command component for the end user to invoke
at runtime

To pass control to a view activity:

Chapter 24
Using View Activities

24-7

1. In the Applications window, double-click the JSF page.

2. In the editor window, use one of the following options to add a UI component to the
JSF page:

• In the ADF Faces page of the Components window, from the General Controls
panel, drag a navigation UI component, such as Button or Link, and drop it
onto the page.

• From the Data Controls panel, drag and drop an operation or a method onto
the JSF page and, from the context menu, choose ADF Button or ADF Link.

3. In the Properties window, expand the Common section, and select Edit in the
dropdown menu that you invoke from the icon that appears when you hover over
the Action property field.

4. In the Edit Property: Action dialog, select Action Outcome and choose a value
from the associated dropdown list.

The list contains the control flow case already defined for the view activity
associated with the page.

Tips:

The action attribute of the UI component can be bound either to a
literal string to hard code a navigation case, or it can be bound to a
method binding expression that points to a method, which takes no
arguments and returns a String. It cannot be bound to any other type
of EL expression.

What Happens When You Pass Control Between View Activities
The following example shows a control flow case defined in the XML source file for a
bounded or unbounded task flow.

<control-flow-rule>
 <from-activity-id>Start</from-activity-id>
 <control-flow-case>
 <from-outcome>toOffices</from-outcome>
 <to-activity-id>WesternOffices</to-activity-id>
 </control-flow-case>
</control-flow-rule>

As shown in Example 24-1, a button on a JSF page associated with the Start view
activity specifies toOffices as the action attribute. When the user clicks the button,
control flow passes to the WesternOffices activity specified as the to-activity-id in
the control flow metadata.

Example 24-1 Static Navigation Button Defined in a View Activity

<af:button text="Go" id="b1" action="toOffices">

Bookmarking View Activities
Bookmarking is available only for view activities within unbounded task flows.

Chapter 24
Using View Activities

24-8

When an end user bookmarks a page associated with a view activity, the URL that
displays in the browser's address field for the view is saved as the bookmark. In most
cases, this URL cannot be used to redisplay the page associated with the view. For
example, the URL may contain state information that cannot be used to redisplay the
page.

The bookmark URL should contain information that enables dynamic content on the
page to be reproduced. For example, if an end user bookmarks a page displaying
a customer's contact information, the bookmark URL needs to contain not only the
page but also some identifier for the customer. This enables contact information for the
same customer to display when the customer returns to the page using the bookmark.

To make sure that the URL for a page displayed in a browser can be used as a
bookmark, identify the view activity associated with the page as bookmarkable.

At runtime, you can identify if a view activity within the unbounded task flow has been
designated as bookmarkable using the isViewBookmarkable() method. The method is
located off the view port context.

After you designate a view activity as bookmarkable, you can optionally specify one
or more URL parameters. The value of url-parameter is an EL expression. The
EL expression specifies where the parameters that will be included in the URL are
retrieved when the bookmarkable URL is generated. The EL expression also stores
a value from the URL when the bookmarkable URL is dereferenced. The converter
option identifies a method that performs conversion and validation when parameters
are passed via bookmarkable view activity URLs.

In addition, you can specify an optional method that is invoked after updating the
application model with submitted URL parameter values and before rendering the view
activity. You can use this method to retrieve additional information based on URL
parameter key values.

The following example contains the URL syntax for a bookmarked view activity.

<server root>/<app_context>/faces/<view activity id>?<param name>=<param
value>&...

The syntax of the URL for the bookmarked view activity is:

• <server root>: Provided by customization at site or administrator level, for
example, http://mycompany.com/internalApp.

• <app context>: The web application context root, for example, myapp. The context
root is the base path of a web application. For example, <app_context> maps to
the physical location of the WEB-INF node on the server.

• faces: The Faces servlet mapping. The value in faces points to the node
containing the faces-config.xml configuration file.

• <view activity id>: The identifier for the bookmarked view activity, for example,
edit-customers.

• <param name>: The name of the bookmarked view activity URL parameter, for
example, customer-id.

• <param value>: The parameter value, derived from an EL expression, for
example, #{pageFlowScope.employee.id}. The value of the EL expression must
be capable of being represented as a string.

Chapter 24
Using View Activities

24-9

Example 24-2 contains a sample URL for a bookmarkable view activity in an
unbounded task flow.

Example 24-2 Sample URL for Bookmarkable View Activity

http://mycompany.com/internalApp/MyApp/faces/edit-customers?customer-
id=1234&...

How to Create a Bookmarkable View Activity
To create a bookmarkable view activity, designate a view activity as bookmarkable,
specify a URL parameter in the bookmark, and specify a method that is executed after
the bookmark is dereferenced.

Before you begin:

It may be helpful to have an understanding of the syntax required to create a
bookmarkable view activity. For more information, see Bookmarking View Activities.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

To designate a view activity as bookmarkable:

1. In the Applications window, expand the WEB-INF node and double-click
the unbounded task flow where you want to designate a view activity as
bookmarkable.

2. In the diagram for the unbounded task flow, choose the view activity that you want
to designate as bookmarkable.

3. In the Properties window, expand the Bookmark section, and select true from the
Bookmark dropdown list.

4. Enter an EL expression in the Method field to specify a method to invoke after
ADF Controller updates the application model with the corresponding bookmark
URL parameter values.

5. To add optional URL parameters to include in the URL for the bookmarked view
activity, click Add and enter the URL parameter in the Bookmark URL Parameters
list:

• Name: the name for the URL parameter.

• Value: A settable EL expression that, when evaluated, specifies the parameter
value, for example, #{pageFlowScope.employeeID}. The value must be
capable of being represented as a string.

The value property is where the parameters to include in the URL are retrieved
from when the bookmarkable URL is generated. In addition, parameters are
stored here when the bookmarkable URL is dereferenced. If the EL expression
returns NULL, the parameter is omitted from the bookmarked view activity URL.
Example 24-2 shows how name and value are used to append a bookmark
parameter to a view activity URL.

• Converter: (optional) Enter a value binding for the bookmark URL parameter
value, for example: #{pageFlowScope.employee.idConverter}.

The object that the EL expression references must implement:
oracle.adf.controller.URLParameterConverter

Chapter 24
Using View Activities

24-10

A URL parameter converter's getAsObject() method takes a single string
value as its input parameter and returns an object of the appropriate type.
ADF Controller invokes the converter method on the URL parameters before
applying the parameter value to the application's model objects. Similarly, the
URL parameter converter's getAsString() method takes an object as its input
parameter and returns a string representation that is used on the URL.

In a JSF application, data values are converted and validated using the
converters and validators specified with the UI components on the submitting
page. In a Fusion web application using a bookmarkable URL, there is no
submitting page to handle conversion and validation. Therefore, you have the
option of designating a converter to use for each URL parameter.

What Happens When You Designate a View as Bookmarkable
When you designate a view activity as bookmarkable, a bookmark element is added to
the metadata for the view activity, as shown in the following example. The bookmark
element can optionally contain metadata specifying URL parameters and a method to
execute after the bookmark is dereferenced.

<view id="employee-view">
 <page>/folderA/folderB/display-employee-info.jsf</page>
 <bookmark>
 <url-parameter>
 <name>employee-id</name>
 <value>#{pageFlowScope.employee.id}</value>
 <converter>#{pageFlowScope.employee.validateId}</converter>
 </url-parameter>
 <method>#{pageFlowScope.employee.queryData}</method>
 </bookmark>
</view>

Specifying HTTP Redirect for a View Activity
You can configure a view activity so that it redirects at runtime to a URL in response
to a client request. This causes ADF Controller to create a new browser URL for the
view activity. The original URL for the view activity is no longer used. You cannot
configure HTTP redirect for a view activity if you have already made the view activity
bookmarkable, as described in Bookmarking View Activities.

How to Specify HTTP Redirect for a View Activity
You set a view activity's redirect property to true.

Before you begin:

It may be helpful to have an understanding of the affect of setting a view activity's
redirect property to true. For more information, see Specifying HTTP Redirect for a
View Activity.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

To specify HTTP redirect for a view activity:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow.

Chapter 24
Using View Activities

24-11

2. In the task flow diagram, select the view activity.

3. In the Properties window, expand the General section, and in the Redirect
dropdown list, select true.

What Happens When You Specify HTTP Redirect for a View Activity
The ADF Controller issues an HTTP redirect in response to a view activity request.
The redirected request creates a new browser URL for the view activity. The original
view URL is no longer used.

When specified, a HTTP redirect occurs in response to a client GET request. For
a client GET, the #{bindings} EL scope is invalid until ADF Controller and ADF
Model set up a new bindings context for the page. Therefore, you cannot use EL
expressions, such as the following, for view activities for which you specified HTTP
redirect:

#{bindings.foo}

Note:

If you want http://www.mycompany.org/x.html to instead display what is at
http://www.mycompany.org/y.html, do not use refresh techniques such as:

<META HTTP-EQUIV=REFRESH CONTENT="1; URL=http://www.example.org/
bar">

This technique could adversely affect back button behavior. If an end user
clicks a browser back button, the refresh occurs again, and navigation is
forward, not backward as expected.

In this situation, use HTTP redirect instead.

Specifying URL Aliases for View Activities
The URL that a Fusion web application renders has a format that is generated at
runtime based on the current context:

• If the view activity is in a bounded task flow, the application renders a URL in the
following format:

http://www.example.com/web-app-context-root/faces/task-flow-id/view-activity-
ID

• If the view activity is in an unbounded task flow, the application renders a URL in
the following format:

http://www.example.com/web-app-context-root/faces/view-activity-ID

In order for end users to see a URL that may have a more meaningful name, you
can specify a URL alias for a view activity. The URL alias value you specify renders
instead of the default generated values. For example, in a task flow that manages data
about fruit, you might have view activities to view and edit information about apples
and oranges. In this scenario, your Fusion web application renders URL aliases like
the following when an end user navigates to the view activity pages for apples and
oranges:

Chapter 24
Using View Activities

24-12

http://www.example.com/web-app-context-root/faces/fruit/apples
http://www.example.com/web-app-context-root/faces/fruit/oranges

You can specify a number of different levels in URL aliases to communicate a
hierarchy to end users. This means that both of the following values are valid for a
view activity's URL alias:

/food/fruit/pineapple
/drink/juice/pineapple

However, the URL alias that you specify must be unique within the task flow that
contains the view activity.

Specify URL aliases for view activities that render JSF pages, not JSF page
fragments. This latter type of document does not render directly in the browser.

How to Specify a URL Alias for a View Activity
You specify a URL alias for a view activity by writing a value for the view activity's
View-ID property (<view-id>).

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you specify a URL alias for a view activity. For more information, see Specifying
URL Aliases for View Activities.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

You will need to complete these tasks:

• Create the view activity that renders a JSF page at runtime

• Create the JSF page that the end user views at runtime

To specify a URL alias for a view activity:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow that contains the view activity for which you want to specify a URL alias.

2. In the diagram for the task flow, select the view activity for which you want to
specify a URL alias.

3. In the Properties window, expand the General section, and enter the URL alias
value in the View-ID field.

For example, enter a value in the following format:

/food/fruit/citrus/lemons

What Happens When You Specify a URL Alias for a View Activity
JDeveloper adds the value that you specify in the View-ID field to the metadata for the
view activity, as shown in the following example.

<view id="view1">
 <page>/view1.jsf</page>
 <view-id>/food/fruit/citrus/lemons</view-id>
 </view>

Chapter 24
Using View Activities

24-13

Using URL View Activities
The ADF task flow activity can display URLs and allow users to navigate to an external
resource when you use the URL view activity. You can use this activity to redirect
users to a location within the same application or you can redirect users to navigate to
a region out of the web application.

You can use a URL view activity to redirect the root view port (for example, a browser
page) to any URL-addressable resource, even from within the context of an ADF
region. URL addressable resources include:

• Bounded task flows

• View activities in the unbounded task flow

• Addresses external to the current web application (for example, http://
www.oracle.com)

To display the resource, you specify an EL expression that evaluates at runtime to
generate the URL to the resource. In addition, you can specify EL expressions that,
when evaluated, are added as parameters and parameter values to the URL.

A URL view activity redirects the client regardless of the view port (root view port or
an ADF region) from which it is executed. The <redirect> element of a view activity
performs in a similar way, except that it can be used only if the view activity is within
the root view port. The <redirect> element is ignored within the context of an ADF
region. See Specifying HTTP Redirect for a View Activity.

Redirecting elsewhere within the same application using URL view activities (not
the <redirect> element) is handled similarly to back button navigation since the
task flow stack is cleaned up. Redirecting out of the web application is handled like
dereferencing a URL to a site external to the application.

How to Add a URL View Activity to a Task Flow
You can add a URL view activity to a bounded or unbounded task flow.

Before you begin:

It may be helpful to have an understanding of the affect of adding a URL view to the
functionality of a task flow. For more information, see Using URL View Activities.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

To add a URL view activity to a task flow:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow to which you want to add a URL view activity.

2. In the ADF Task Flow page of the Components window, from the Components
panel, in the Activities group, drag and drop a URL View onto the diagram.

3. In the Properties window, expand the General section, and enter an ID that
identifies the URL view activity in the Activity ID field.

4. In the URL field, enter an EL expression that returns the URL at runtime. Click the
icon that appears when you hover over the property field to use the Expression
Builder if needed.

Chapter 24
Using URL View Activities

24-14

http://www.oracle.com
http://www.oracle.com

For example, Figure 24-5 shows a URL activity (register) in an
application's myorders-task-flow.xml bounded task flow with an EL expression
(#{myOrdersBean.registerNav}) that retrieves a URL at runtime.

Figure 24-5 URL View Activity

5. Expand the URL Parameters section to add optional URL parameters to include
in the URL:

• Name: A name for the parameter.

• Value: An EL expression that, when evaluated, generates the parameter
value.

• Converter: A settable EL expression that, when evaluated, specifies a
method to perform conversion and validation when parameters are passed
via bookmarkable view activity URLs. For more information, see Bookmarking
View Activities.

What Happens When You Add a URL View Activity to a Task Flow
JDeveloper writes entries similar to those shown in the following example for the URL
view activity in the source file of the task flow.

<url-view id="register">
 <url>#{myOrdersBean.registerNav}</url>
 </url-view>

What You May Need to Know About URL View Activities
Task flow URL view activities can be used within JSF portlets. Create the URL using
one of the following options if you configure a task flow URL view activity for use within
a JSF portlet:

• Invoke one of the following methods from the ControllerContext class in the
oracle.adf.controller package:

– getLocalViewActivityURL()

– getGlobalViewActivityURL()

Do not invoke the encodeActionURL() method from the
ADFPortletContainerExternalContext class with the response
from the getLocalViewActivityURL() or getGlobalViewActivityURL()
methods before you invoke the redirect() method from the
ADFPortletContainerExternalContext class. The getLocalViewActivityURL()

Chapter 24
Using URL View Activities

24-15

and getGlobalViewActivityURL() methods both perform the necessary encoding
of the URL.

• Supply a fully qualified absolute URL.

• Supply a context path relative URL.

• Supply a URL relative to the current view.

A task flow URL view activity in a JSF portlet behaves as follows:

• If the redirect URL refers to a location in the JSF portlet application and does
not contain a queryString parameter named x_DirectLink with a value of true,
the portlet in the containing page navigates to the URL specified in the URL view
activity.

• Otherwise, the client redirects to the URL specified in the URL view activity.

For more information about using a task flow's URL view activity, see Using URL View
Activities.

For information about the methods that you can use to get a URL, see the Java API
Reference for Oracle ADF Controller.

Using Router Activities
While creating a task flow you may need to direct users to the activities based on the
runtime evaluation of EL expressions. The ADF router activity allows you to route such
controls to the appropriate activities.

Use a router activity to route control to activities based on the runtime evaluation
of EL expressions. Figure 24-6 shows a router activity (isCustomerLogin) in the
customer-task-flow-definition.xml task flow from the Summit ADF task flow
sample application that can branch to different control flows leading from it to different
activities.

Figure 24-6 Router for Alternate Control Flow Cases

Chapter 24
Using Router Activities

24-16

Each control flow corresponds to a different router case. Each router case uses the
following elements to choose the activity to which control is next routed:

• expression: an EL expression that evaluates to true or false at runtime.

The router activity returns the outcome that corresponds to the EL expression that
returns true.

• outcome: a value returned by the router activity if the EL expression evaluates to
true, for example, customerLogin.

If the router case outcome matches a from-outcome on a control flow case, control
passes to the activity that the control flow case points to. If none of the cases for
the router activity evaluate to true, or if no router activity cases are specified, the
outcome specified in the router Default Outcome field (if any) is used.

Figure 24-6, for example, shows a router activity that passes control flow based on
the evaluation of an EL expression that determines if the user is logged in and has
a specific application role. If true, control passes to the SetCurrentRowWithKeyValue
method call activity. Otherwise, control passes to the Customers view activity.

Note:

Use a router activity if your routing condition can be expressed in an EL
expression.

Using a router activity allows you to do more when you design the task
flow that contains it. The router activity allows you to show more information
about the condition on the task flow. This makes it more readable and useful
to someone who looks at the diagram for your task flow.

Using a router activity also makes it easier to modify your application later.
For example, you may want to modify or add a routing condition later.

How to Configure Control Flow Using a Router Activity
You define a control flow by dragging a router activity from the Components window
to the diagram for the task flow. You configure the Activity ID and Default Outcome
properties of the router activity and add router cases to the router activity.

Before you begin:

It may be helpful to have an understanding of the properties of a router activity that
can affect functionality. For more information, see Using Router Activities.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

To configure control flow using the router activity:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow where you want to configure a control flow using a router activity.

2. In the ADF Task Flow page of the Components window, from the Components
panel, in the Activities group, drag and drop a Router activity onto the diagram.

Chapter 24
Using Router Activities

24-17

3. In the Properties window, expand the General section and enter values for the
following:

• Activity ID: write a value that identifies the router activity in the task flow's
source file.

• Default Outcome: specify an activity that the router activity passes control to
if no control flow cases evaluate to true or if no control flow case is specified.

4. Click the Add icon for the Cases section and specify values for each router case
that you add:

• Expression: An EL expression that evaluates to true or false at runtime.

For example, to reference the value in an input text field of a view activity,
write an EL expression similar to the following:

#{pageFlowScope.value=='view2'}

If this EL expression returns true, the router activity invokes the outcome that
you specify in the Outcome field.

• Outcome: The outcome the router activity invokes if the EL expression
specified by Expression returns true.

Create a control flow case or a wildcard control flow rule for each outcome in
the diagram of your task flow. For example, for each outcome in a control flow
case, make sure that there is a corresponding from-outcome.

What Happens When You Configure Control Flow Using a Router
Activity

JDeveloper writes values to the source file of the task flow based on the values that
you specify for the properties of the router activity. Example 24-3 shows the values
that appear in the customer-task-flow-definition.xml task flow from the Summit
ADF task flow sample application that branch to different control flows leading from the
router activity to different activities.

At runtime, the router activity passes control to the control flow case specified by
outcome if the EL expression returns true.

Example 24-3 Router Activity in the Summit ADF Task Flow Sample Application

<router id="isCustomerLogin">
 <case id="__4">
 <expression>#{securityContext.userInRole['Application Customer Role']}</expression>
 <outcome>customerLogin</outcome>
 </case>
 <default-outcome>notCustomerLogin</default-outcome>
 </router>
...
<control-flow-case id="__7">
 <from-outcome>customerLogin</from-outcome>
 <to-activity-id>SetCurrentRowWithKeyValue</to-activity-id>
 </control-flow-case>

Chapter 24
Using Router Activities

24-18

Using Method Call Activities
The ADF task flow allows you to call a custom method or invoke a built-in methods
using method call activity. You can define the control flow to and from the method call
activity. The method call outcome can be specified either as a fixed-outcome or as a
to-string outcome.

Use a method call activity to call a custom or built-in method that invokes application
logic from anywhere within an application's control flow. You can specify methods to
perform tasks such as initialization before displaying a page, cleanup after exiting a
page, exception handling, and so on.

Figure 24-7 shows the customers-task-flow-definition.xml task flow from the
Summit ADF task flow sample application where the SetCurrentRowWithKeyValue
method call activity invokes a setCurrentRowWithKeyValues operation from the
BackOfficeAppModuleDataControl data control.

Figure 24-7 Method Call Activity to Set Row

You can set an outcome for the method that specifies a control flow case to pass
control to after the method finishes. You can specify the outcome as either:

• fixed-outcome: On successful completion, the method always returns this single
outcome, for example, success. If the method does not complete successfully,
an outcome is not returned. If the method type is void, you must specify a fixed-
outcome, not a to-string.

• to-string: If specified as true, the outcome is based on calling the
toString() method on the Java object returned by the method. For example, if
toString() returns editBasicInfo, navigation goes to a control flow case named
editBasicInfo.

Chapter 24
Using Method Call Activities

24-19

The following example shows the metadata for the method call activity in Figure 24-7
where the fixed-outcome element specifies setCurrentRowWithKey as the outcome to
return.

<method-call id="SetCurrentRowWithKeyValue">
 <method>#{bindings.setCurrentRowWithKeyValue.execute}</method>
 <outcome>
 <fixed-outcome>setCurrentRowWithKey</fixed-outcome>
 </outcome>

For more information about control flows, see About Control Flows.

How to Add a Method Call Activity
Drag a method call activity from the Components window to the task flow diagram.
You can associate the method call activity with an existing method by dropping a data
control operation from the Data Controls panel directly onto the method call activity in
the task flow diagram.

In the Summit ADF task flow sample application, for example, you could drag a
setCurrentRowWithKey or setCurrentRowWithKeyValues operation to the diagram
from the BackOfficeAppModuleDataControl data control in the Data Controls panel
to create a method call activity that displays or selects the current row in a table.

Note:

Parameters for data control method parameters are defined in the page
definition for the corresponding page rather than within ADF Controller
metadata.

You can also drag methods and operations directly to the task flow diagram. A new
method call activity is created automatically after you drop it on the diagram. You can
specify an EL expression and other options for the method.

Tip:

To identify the method that a method call activity invokes, right-click the
method call activity in the diagram of the task flow and choose Go to
Method. JDeveloper navigates to the method that the method call activity
invokes.

Before you begin:

It may be helpful to have an understanding of how the properties of a method call
activity affect the functionality of a task flow. For more information, see Using Method
Call Activities.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

You will need to complete this task:

Chapter 24
Using Method Call Activities

24-20

Create a bounded or unbounded task flow. For more information, see Creating a
Task Flow.

To add a method call activity to a task flow:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow where you want to add a method call activity.

2. In the ADF Task Flow page of the Components window, from the Components
panel, in the Activities group, drag and drop a method call activity onto the
diagram.

The method call activity optionally displays a default activity ID, methodCalln,
and a warning icon that indicates that a method EL expression has not yet been
specified.

For more information about turning on the warning icons, see How to Add an
Activity to a Task Flow.

3. In the Properties window, expand the General section, and enter an activity ID in
the Activity ID field if you want to change the default value.

If you enter a new value, the new value appears under the method call activity in
the diagram.

4. In the Method field, enter an EL expression that identifies the method to call.

For example, enter an EL binding expression similar to the following:

#{bindings.setCurrentRowWithKeyValue.execute}

Note:

The bindings variable in the EL expression references an ADF Model
binding from the current binding container. In order to specify the
bindings variable, you must specify a binding container definition or page
definition. For more information, see Working with Page Definition Files.

You can also use the Expression Builder shown in Figure 24-8 to build the EL
expression for the method:

a. Choose Method Expression Builder from the context menu that appears
when you click the icon that appears when you over the Method property field.

b. In the Expression Builder dialog, navigate to the method that you want to
invoke and select it.

The Expression Builder dialog should look similar to Figure 24-8. In
Figure 24-8, for example, the EL expression shown at the top of the
Expression Builder references the CreateInsert action binding from the
method call activity in the emp-reg-task-flow-definition.xml task flow of
the Summit ADF task flow sample application.

Chapter 24
Using Method Call Activities

24-21

Figure 24-8 EL Expression for Method in Expression Builder Dialog

c. Click OK.

Tip:

If the method call activity is going to invoke a managed bean
method, double-click the method call activity in the diagram. This
invokes a dialog where you can specify the managed bean method
you want to invoke.

5. In the Properties window, expand the General section, and specify one of the
following in the Outcome group:

• Fixed Outcome: On successful completion, the method always returns this
single outcome, for example, success. If the method does not complete
successfully, an outcome is not returned. If the method type is void, you must
specify a value for Fixed Outcome rather than for to-string.

• tostring(): If you select true, the outcome is based on calling the toString()
method on the Java object returned by the method.

How to Specify Method Parameters and Return Values
You can specify parameters and return values for a method. Figure 24-9 shows
the Properties window with a single parameter defined for a method called
calculateSalesTax. The Value field contains an EL expression that evaluates to the
parameter value at runtime.

Chapter 24
Using Method Call Activities

24-22

Figure 24-9 Method Parameters in a Method Call

If parameters have not already been created by associating the method call activity to
an existing method, add the parameters yourself.

Before you begin:

It may be helpful to have an understanding of how the properties of a method call
activity affect the functionality of a task flow. For more information, see Using Method
Call Activities.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

You will need to complete this task:

Add a method call activity to the task flow diagram, as described in How to Add a
Method Call Activity.

To add method parameters:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow that contains the method call activity to which you want to add method
parameters.

2. In the task flow diagram, select the method call activity.

3. In the Properties window, expand the Parameters section, and click Add to set
the following values for the parameter that you want to add:

• Class: Enter the parameter class, for example, java.lang.Double.

• Value: Enter an EL expression that retrieves the value of the parameter. For
example:

#{pageFlowScope.shoppingCart.totalPurchasePrice}

4. In the Return Value field, enter an EL expression that identifies where to store the
method return value, for example, #{pageFlowScope.Return}.

5. Repeat the above steps to add additional parameters.

What Happens When You Add a Method Call Activity
After you specify parameters and return values for a method, the XML source file is
updated. Example 24-4 shows the SetCurrentRowWithKeyValue method call activity in
the customers-task-flow-definition.xml task flow from the Summit ADF task flow
sample application.

Chapter 24
Using Method Call Activities

24-23

Example 24-4 Method Call Activity in the Summit ADF Sample Application

<method-call id="SetCurrentRowWithKeyValue">
 <method>#{bindings.setCurrentRowWithKeyValue.execute}</method>
 <outcome>
 <fixed-outcome>setCurrentRowWithKey</fixed-outcome>
 </outcome>
 </method-call>

Using Task Flow Call Activities
The ADF task flow allows you to call a bounded task flow, to perform a set of activities,
from a bounded or unbounded task flow. This is helpful when you want a set of activity
to be performed repeatedly in your task flow or you want to perform an activity based
on the outcome of another activity.

You can use a task flow call activity to call a bounded task flow from either the
unbounded task flow or a bounded task flow. A task flow call activity allows you to call
a bounded task flow located within the same or a different application.

The called bounded task flow executes its default activity first. There is no limit to the
number of bounded task flows that can be called. For example, a called bounded task
flow can call another bounded task flow, which can call another, and so on resulting in
the creation of chained task flows where each task flow is a link in a chain of tasks.

To pass parameters into a bounded task flow, you must specify input parameter values
on the task flow call activity. These values must correspond to the input parameter
definitions on the called bounded task flow. For more information, see How to Specify
Input Parameters on a Task Flow Call Activity .

Also note the following:

• The value on the task flow call activity Input Parameter specifies where the value
will be taken from within the calling task flow.

• The value on the Input Parameter Definition for the called task flow specifies
where the value will be stored within the called bounded task flow once it is
passed.

Tip:

When a bounded task flow is associated with a task flow call activity, input
parameters are automatically inserted on the task flow call activity based on
the input parameter definitions defined on the bounded task flow. Therefore,
the application developer needs only to assign values to the task flow call
activity input parameters.

By default, all objects are passed by reference. Primitive types (for example, int,
long, or boolean) are always passed by value.

The technique for passing return values out of the bounded task flow to the caller
is similar to the way that input parameters are passed. For more information, see
Configuring a Return Value from a Bounded Task Flow.

To use a task flow call activity:

Chapter 24
Using Task Flow Call Activities

24-24

1. Call a bounded task flow using a task flow call activity.

2. Specify input parameters on a task flow call activity if you want to pass parameters
into the bounded task flow.

3. Call a bounded task flow in another web application using a URL.

4. Specify before and after listeners on a task flow call activity.

How to Call a Bounded Task Flow Using a Task Flow Call Activity
Add a task flow call activity to the calling bounded or unbounded task flow to call a
bounded task flow.

Before you begin:

It may be helpful to have an understanding of how a task flow call activity interacts with
a task flow. For more information, see Using Task Flow Call Activities.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

To call a bounded task flow using a task flow call activity:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow (calling task flow) to which you are going to add a task flow call activity to call
a bounded task flow.

2. In the ADF Task Flow page of the Components window, from the Components
panel, in the Activities group, drag and drop a Task Flow Call activity onto the
diagram.

3. Choose one of these options to identify the called task flow:

• In the task flow diagram, double-click the task flow call activity.

The Create Bounded Task Flow dialog appears, where you specify options for
creating a new bounded task flow.

• Drag an existing bounded task flow from the Applications window and drop it
on the task flow call activity.

Chapter 24
Using Task Flow Call Activities

24-25

Tips:

You can drop a bounded task flow on a page or page fragment. If the
bounded task flow consists of pages (not page fragments), you can
choose the Task Flow Call as Button or Task Flow Call as Link
menu options that appear to add a button or link component on the
page where you drop the task flow. An end user can click the button
or link to call the task flow. This may in turn automatically generate
the task flow call activity if the page is already associated with an
existing view activity in a task flow.

You cannot drop a bounded task flow from one application to a task
flow diagram contained in another application using the Applications
window, even though both applications appear in the Applications
window. In addition, you cannot drop a bounded task flow contained
in one project onto a task flow diagram contained in another project.

Instead, you can package the bounded task flow in an ADF library,
then reuse it in your current application or project. You can then
drag the bounded task flow from the Resources window or from
the Components window page that is created when you import the
library. For more information, see Using the Resources Window.

• If you know the name of the bounded task flow that you want to invoke,
perform the following steps:

a. In the task flow diagram, select the task flow call activity.

b. In the Properties window, expand the General section, and select Static
from the Task Flow Reference dropdown list.

c. In the Document field, enter the name of the source file for the bounded
task flow to call. For example, called-task-flow-definition.xml.

d. In the ID field, enter the bounded task flow ID contained in the XML source
file for the called bounded task flow, for example, targetTaskFlow.

• If you do not know the name of the bounded task flow to invoke and it is
dependent on an end user selection at runtime, perform the following steps:

a. In the task flow diagram, select the task flow call activity.

b. In the Properties window, expand the General section, and select
Dynamic from the Task Flow Reference dropdown list.

c. Select Expression Builder from the context menu that appears when you
click the icon that appears when you hover over the Dynamic Task Flow
Reference property field.

d. Write an EL expression that identifies the ID of the bounded task flow to
invoke at runtime.

Figure 24-10 shows the customers-task-flow task flow in the Summit ADF
task flow sample application. This task flow contains a task flow call activity
(create-edit-orders-task-flow-definition) that invokes the task flow of the
same name.

Chapter 24
Using Task Flow Call Activities

24-26

Figure 24-10 Task Flow Call Activity That Invokes a Bounded Task Flow

What Happens When You Call a Bounded Task Flow Using a Task
Flow Call Activity

JDeveloper generates metadata entries in the source file for the task flow that
calls the bounded task flow. Example 24-5 shows the metadata that corresponds to
Figure 24-10 from the Summit ADF task flow sample application. At runtime, the task
flow call activity invokes the orders-select-many-items task flow.

Example 24-5 Task Flow Call Activity in the Summit ADF Sample Application

<task-flow-call id="orders-select-many-items">
 <task-flow-reference>
 <document>/WEB-INF/flows/orders/orders-select-many-items.xml</document>
 <id>orders-select-many-items</id>
 </task-flow-reference>
 <run-as-dialog>
 <display-type>
 <inline-popup/>
 </display-type>
 </run-as-dialog>
 </task-flow-call>

How to Specify Input Parameters on a Task Flow Call Activity
The suggested method for mapping parameters between a task flow call activity and
its called bounded task flow is to first specify input parameter definitions for the called
bounded task flow. Then you can drag the bounded task flow from the Applications
window and drop it on the task flow call activity. The task flow call activity input
parameters will be created automatically based on the bounded task flow's input
parameter definition. For more information, see Passing Parameters to a Bounded
Task Flow.

You can, of course, first specify input parameters on the task flow call activity. Even
if you have defined them first, they will automatically be replaced based on the input
parameter definitions of the called bounded task flow, once it is associated with the
task flow call activity.

Chapter 24
Using Task Flow Call Activities

24-27

If you have not yet created the called bounded task flow, you may still find it useful to
specify input parameters on the task flow call activity. Doing so at this point allows you
to identify any input parameters you expect the task flow call activity to eventually map
when calling a bounded task flow.

Before you begin:

It may be helpful to have an understanding of how a task flow call activity interacts with
a task flow. For more information, see Using Task Flow Call Activities.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

To specify input parameters on a task flow call activity:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow that contains the task flow call activity.

2. In the diagram, select the task flow call activity.

3. In the Properties window, expand the Parameters section, and click the Add icon
to specify a new input parameter in the Input Parameters list as follows:

• Name: Enter a name to identify the input parameter.

• Value: Enter an EL expression that identifies the parameter value. The EL
expression identifies where the parameter value will be retrieved from within
the calling task flow. For example, enter an EL expression similar to the
following:

#{pageFlowScope.callingTaskflowParm}

By default, all objects are passed by reference. Primitive types (for example,
int, long, or boolean) are always passed by value.

Click in the Value field and use the dropdown list to use the Expression Builder
if needed.

4. After you have specified an input parameter, you can specify a corresponding
input parameter definition for the called bounded task flow. For more information,
see Passing Parameters to a Bounded Task Flow.

Note:

If you call a task flow without the required input parameter,
the task flow is not executed and an error is logged in the
oracle.adfinternal.controller.activity logger. Therefore, it is
difficult to know the error when a task flow fails to execute.
For a normal task flow call, an ActivityLogicException is thrown if the
required input parameters are missing. When the task flow is invoked in
a region or directly from the URL, without the required input parameters,
the task flow is not processed and displays a blank region or page. In
case of region, the rest of the page is rendered properly.

How to Call a Bounded Task Flow Using a URL
You can call a bounded task flow that does not use page fragments (.jsff) in another
web application using a URL. Use a task flow call activity to call the bounded task

Chapter 24
Using Task Flow Call Activities

24-28

flow that you want to invoke. You write an EL expression for the task flow call activity's
remote-app-url property that, when evaluated, returns a URL.

In addition to writing a value for the remote-app-url property, you specify values for
task flow reference properties that identify the bounded task flow to call. The task flow
reference and the remote-app-url property are combined at runtime to generate a
URL to the called bounded task flow in the remote web application.

You also need to set visibility properties for the bounded task flow in the remote web
application that you want to call so that it invokes when it receives the URL generated
from the task flow call activity in the calling task flow.

Be aware that JSF portlets provide all content from the same web application. As a
result, do not configure your web application to invoke a task flow using a URL if you
plan to use your web application in a JSF portlet.

Note:

If, in JDeveloper's Applications window, you right-click the bounded task flow
that you want to call using a URL and select Run, the bounded task flow
executes as if it were called using a URL at runtime. For this reason, make
sure to set the visibility properties for the bounded task flow even if you want
to execute it as part of testing in JDeveloper.

Before you begin:

It may be helpful to have an understanding of how a task flow call activity interacts with
a task flow. For more information, see Using Task Flow Call Activities.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

To call a bounded task flow using a URL:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow that you want to configure to invoke a bounded task flow in a remote web
application.

2. In the ADF Task Flow page of the Components window, from the Components
panel, in the Activities group, drag a Task Flow Call activity and drop it on the
diagram for the task flow.

3. In the Properties window, expand the General section and specify values to
invoke a bounded task flow.

For more information, see How to Call a Bounded Task Flow Using a Task Flow
Call Activity.

4. For the Remote Application URL property, use the Expression Builder to write
an EL expression that, when evaluated, returns a string with the parts required to
construct a URL of the remote web application. Invoke the Expression Builder by
selecting Expression Builder from the context menu that appears when you click
the icon that appears when you hover over the property field.

For example, the following EL expression invokes a managed bean method that
returns a string with the parts required to construct a URL:

#{myOrdersBean.createOrder}

Chapter 24
Using Task Flow Call Activities

24-29

5. Open the bounded task flow in the remote web application that you want to invoke.

Note:

The bounded task flow you specify cannot use page fragments (.jsff).

6. In the Structure window, right-click the node for the bounded task flow (task-flow-
definition- Task Flow ID) and choose Go to Properties.

7. In the Properties window, expand the General section and select values for the
following:

• URL Invoke: select url-invoke-allowed from the dropdown list if you want to
allow a URL to invoke the bounded task flow. Select url-invoke-disallowed
if you do not want to allow a URL to invoke the bounded task flow. Selecting
this value returns a HTTP 403 status code if a URL attempts to invoke the
bounded task flow. The default value (calculated) allows a URL to invoke
the bounded task flow if the bounded task flow does not specify an initializer
and it has a view activity as its default activity. If the bounded task flow does
not meet these conditions, a HTTP 403 status code is returned. Selecting
url-invoke-allowed or url-invoke-disallowed overrides the default behavior.

• Library Internal: select true if you want the bounded task flow to be internal
when you package it in an ADF Library JAR. The default value is false.

For more information about packaging a bounded task flow in an ADF Library
JAR, see Packaging a Reusable ADF Component into an ADF Library.

8. Save and close the bounded task flow.

What Happens When You Configure a Bounded Task Flow to be
Invoked by a URL

JDeveloper generates metadata entries in the source file of the task flow that invokes
the task flow call activity to the bounded task flow in a remote web application. The
following example shows an entry for a task flow call activity.

<task-flow-call id="createOrder">
 <task-flow-reference>
 <document id="__6">myorders-task-flow.xml</document>
 <id id="__5">myorders-task-flow</id>
 </task-flow-reference>
 <remote-app-url id="__7">#{myOrdersBean.createOrder}</remote-app-url>
 </task-flow-call>

The createOrder method in the previous example returns a string with the URL syntax
required to invoke a bounded task flow. For more information about the URL syntax,
including descriptions of the required parts in the returned string and an example URL,
see What You May Need to Know About Calling a Bounded Task Flow Using a URL.

JDeveloper also generates entries in the source file for the bounded task flow to
invoke when you configure it so it can be called by a URL. The following example
shows sample metadata entries that allow a bounded task flow to be invoked by a
URL.

Chapter 24
Using Task Flow Call Activities

24-30

<task-flow-definition id="task-flow-definition3">
 <visibility id="__2">
 <url-invoke-allowed/>
 <library-internal/>
 </visibility>
 </task-flow-definition>

What You May Need to Know About Calling a Bounded Task Flow
Using a URL

Adding a context parameter in your local application's deployment descriptor may ease
the administration of interaction with a remote web application.

Context Parameter for Remote Web Application

Consider adding a context parameter to the deployment descriptor (web.xml) for your
Fusion web application (local application) if you use a URL to invoke a bounded
task flow in another Fusion web application (remote application). Set the value of the
context parameter to the URL of the remote application. Use the context parameter
name when writing EL expressions in the local application, as shown in the following
example where remoteAppUrl is the name of the context parameter:

#{initParam.remoteAppUrl}

If the URL of the remote application changes, you can update the context parameter to
reference the changed URL.

Object Type for Parameter Converters

Parameter converters, if specified, can be used to convert task flow parameter values
to and from the string representations used in a URL. A parameter converter is an EL
expression that evaluates to an object of the following type:

oracle.adf.controller.UrlParameterConverter

If you do not specify a parameter converter, a default converter checks the
parameters for cross-site-scripting (XSS) attacks. If you know that the parameter
values used in your application contain special characters, you should create your
own implementation of UrlParameterConverter and use it to perform conversion of
the task flow parameter values.

URL Syntax to Invoke a Bounded Task Flow

Typically, you write an EL expression that references a managed bean method which,
in turn, retrieves the required parts of the URL or you could write an EL expression
that returns the URL directly, as shown in the following example.

http://somecompany.com/internalApp/MyApp/faces/adf.task-flow?
adf.tfId=displayHelp&
adf.tfDoc=%2FWEB-INF%2Fdisplayhelp.xml&topic=createPurchaseOrder

Example 24-6 describes the parts of the URL syntax to invoke a bounded task flow.

The following list describes each part of the URL syntax in Example 24-6:

• <server root>: Provided by customization at site or administrator level. For
example:

http://mycompany.com/internalApp

Chapter 24
Using Task Flow Call Activities

24-31

The <server root> value depends on the application server where you deploy
the bounded task flow. The bounded task flow URL is a resource within the JSF
servlet's URL path.

• <app context>: The web application context root, for example, MyApp. The context
root is the base path of a web application.

• faces: Faces servlet mapping.

• adf.task-flow: A reserved keyword that identifies ADF Controller for the remote
web application.

• adf.tfId: A URL parameter that supplies the task flow ID to call.

• <task flow ID>: The identifier of the bounded task flow to call, for example,
displayHelp. This is the same task flow ID that is used when calling locally. Note
that this identifier is not the same as the task flow call activity instance ID. The
parameter value must be represented as a string.

• adf.tfDoc: A URL parameter that supplies the document name containing the
bounded task flow ID to be called.

• <document name>: A document name containing the bounded task flow ID to be
called, for example, %2FWEB-INF%2FtoUppercase%2FdisplayHelp.xml. If you are
handcrafting the bounded task flow URL, you are responsible for the appropriate
encoding.

• <named parameter>: (optional) The name of an input parameter definition for the
called bounded task flow, for example, topic. You must supply all required input
parameter definitions.

• <named parameter value>: (optional) The value of the input parameter.

Note:

URL parameter names that begin with an underscore ('_') are intended for
internal use only and should not be used. Although you may see these
names on URLs generated by ADF Controller, you should not attempt to use
or depend on them.

Example 24-6 URL Syntax for a Call to a Bounded Task Flow Using Named
Parameters

<server root>/<app_context>/faces/adf.task-flow?adf.tfid=<task flow definition
ID>&adf.tfDoc=<document name>&<named parameter>=<named parameter value>

How to Specify Before and After Listeners on a Task Flow Call Activity
Use task flow call activity before and after listeners to identify the start and end of a
bounded task flow. Specifying a listener in the task flow call activity means that the
listener executes on that specific usage of the called bounded task flow.

You specify the listener as an EL expression for a method that will be called upon entry
or exit of a bounded task flow, for example:

<before-listener>#{global.showState}</before-listener}>

The method cannot have parameters.

Chapter 24
Using Task Flow Call Activities

24-32

• Before listener: An EL expression for a Java method called before a bounded task
flow is entered. It is used when the caller needs to know when a bounded task flow
is being initiated.

• After listener: An EL expression for a Java method called after a bounded task
flow returns. It is used when the caller needs to know when a bounded task flow
exits and control flow returns to the caller.

If multiple before listeners or multiple after listeners are specified, they are called in the
order in which they appear in the source document for the unbounded or bounded task
flow. A task flow call activity can have only have before listener and one after listener.

In order for the task flow call after listeners to be called, control flow must return from
the bounded task flow using a control flow rule. If an end user leaves a bounded task
flow using the browser back button or other URL, task flow call after listeners will not
be called. You must use a bounded task flow finalizer to release all acquired resources
and perform cleanup of a bounded task flow that the end user left by clicking a
browser back button.

Before you begin:

It may be helpful to have an understanding of how a task flow call activity interacts with
a task flow. For more information, see Using Task Flow Call Activities.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

To specify a before or after listener on a task flow call activity:

1. In the Applications window, expand the WEB-INF node and double-click the calling
task flow.

2. In the diagram for the calling bounded task flow, select the task flow call activity.

3. In the Properties window, expand the Listeners section and open the Expression
Builder for either the Before Listener property or the After Listener property.
To open the Expression Builder, choose Method Expression Builder from the
context menu that invokes when you click the icon that appears when you hover
over the property field.

Use the Expression Builder to navigate to the Java class that contains the method
for the listener. For example, you might create an EL expression similar to the
following:

#{pageFlowscope.managedBean.methodListener}

4. Click OK.

What Happens When You Add a Task Flow Call Activity
After you add a task flow call activity to a task flow diagram, you must specify a
reference to the called bounded task flow using one of the methods described in How
to Call a Bounded Task Flow Using a Task Flow Call Activity. For example, if you drop
an existing bounded task flow on the task flow call activity, JDeveloper generates the
task flow reference automatically. The task flow reference is used to invoke the called
bounded task flow.

If the task flow reference is static, each task flow reference consists of:

• Document: The name of the XML source file containing the ID of the called
bounded task flow. If Document is not specified, adfc-config.xml is assumed.

Chapter 24
Using Task Flow Call Activities

24-33

The document is a physical XML file and must be accessible via MDS.

• ID: The bounded task flow ID contained in the XML source file for the called
bounded task flow. For example, a called task flow might have an ID called
targetFlow. The same XML source file can contain multiple bounded task flows,
each bounded task flow identified by a unique ID.

Note:

If you use JDeveloper to create the bounded task flow, there is only one
bounded task flow per document.

The following example contains an example static task flow reference within a task
flow call activity. In order to invoke a bounded task flow, you need to know its ID and
the name of the file (<document>) containing the ID.

<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2"
id="__1">
...
 <task-flow-definition id="task-flow-definition">
 <default-activity>view1</default-activity>
 <task-flow-call id="taskFlowCall">
 <task-flow-reference>
 <document>/WEB-INF/called-task-flow-definition.xml</document>
 <id>called-task-flow-definition</id>
 </task-flow-reference>
 </task-flow-call>
 </task-flow-definition>
...
</adfc-config>

The following example shows the metadata that JDeveloper generates for a dynamic
task flow reference within a task flow call activity.

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2"
 id="__1">
 <task-flow-definition id="bounded_tf">
 <default-activity id="__2">taskFlowCall1</default-activity>
 <task-flow-call id="taskFlowCall1">
 <dynamic-task-flow-reference id="__3">#{EL_Expression_Retrieve_
 TaskflowID}</dynamic-task-flow-reference>
 </task-flow-call>
 </task-flow-definition>
</adfc-config>

What Happens at Runtime: How a Task Flow Call Activity Invokes a
Task Flow

The ADF Controller performs the following steps when a bounded task flow is called
using a task flow call activity:

1. Verifies that the user is authorized to call the bounded task flow.

2. Invokes task flow call activity before listener or listeners, if specified (see How to
Specify Before and After Listeners on a Task Flow Call Activity).

Chapter 24
Using Task Flow Call Activities

24-34

3. Evaluates the input parameter values on the bounded task flow.

4. Pushes the called bounded task flow onto the stack and initializes its page flow
scope.

5. Sets input parameter values in the called bounded task flow's context.

6. Invokes a bounded task flow initializer method, if one is specified.

7. Executes the bounded task flow's default activity.

Using Task Flow Return Activities
When the ADF task flow call activity is invoked and after it completes its default
activity, it should return the control back to the invoked application. The task flow
return activity is helpful in identifying and sending the control flow back to the caller
application. This activity can be used only within a bounded task flow.

A task flow return activity identifies the point in an application's control flow where a
bounded task flow completes and sends control flow back to the caller. You can use a
task flow return activity only within a bounded task flow.

A gray circle around a task flow return activity icon indicates that the activity is an exit
point for a bounded task flow. A bounded task flow can have zero to many task flow
return activities. Figure 24-11 shows the orders-select-many-items.xml bounded
task flow in the Summit ADF task flow sample application that contains task flow return
activities named commit and rollback.

Each task flow return activity specifies an outcome that it returns to the calling task
flow. For example, Figure 24-11 shows a task flow return activity in the Summit ADF
task flow sample application. The value for the this task flow return activity's Outcome
Name property is commit.

Figure 24-11 Multiple Task Flow Return Activities

The outcome returned to an invoking task flow depends on the end user action. You
can configure control flow cases in the invoking task flow to determine the next action
by the invoking task flow. Set the From Outcome property of a control flow case to the

Chapter 24
Using Task Flow Return Activities

24-35

value returned by the task flow return activity's outcome to invoke an action based on
that outcome. This determines control flow upon return from the called task flow.

Set a value for the Restore Save Point property to specify if model changes made in
a bounded task flow are saved or discarded when the bounded task flow exits by using
a task flow return activity. Set to true to roll back transactions to the ADF Model save
point that was created when the Fusion web application first entered the bounded task
flow. The default value is false. You can specify a value for this property only if the
bounded task flow on which the task flow return activity is located was entered without
starting a new transaction. See How to Enable Transactions in a Bounded Task Flow .

How to Add a Task Flow Return Activity to a Bounded Task Flow
You drag a task flow return activity from the Components window and drop it on the
diagram for the bounded task flow.

Before you begin:

It may be helpful to have an understanding of how a task flow return activity interacts
with a task flow. For more information, see Using Task Flow Return Activities .

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

To add a task flow return activity to a bounded task flow:

1. In the Applications window, expand the WEB-INF node and double-click the
bounded task flow to which you want to add a task flow return activity.

2. In the ADF Task Flow page of the Components window, from the Components
panel, in the Activities group, drag and drop a Task Flow Return onto the
diagram.

3. In the Properties window, expand the General section, and enter an outcome in
the Name field.

The task flow return activity returns this outcome to the calling task flow when
the current bounded task flow exits. You can specify only one outcome per task
flow return activity. The calling task flow should define control flow rules to handle
control flow upon return. For more information, see How to Add a Control Flow
Rule to a Task Flow.

4. Expand the Behavior section and in the Reentry dropdown list, choose one of the
following options:

• <default> (not outcome dependent): Reentry is not dependent on an
outcome.

• reentry-allowed: Reentry is allowed on any view activity within the bounded
task flow.

• reentry-not-allowed: Reentry of the bounded task flow is not allowed.

If you specify reentry-not-allowed on a bounded task flow, an end user can
still click the browser back button and return to a page within the bounded task
flow. However, if the user does anything on the page such as clicking a button,
an exception (for example, InvalidTaskFlowReentry) is thrown indicating the
bounded task flow was reentered improperly. The actual reentry condition is
identified upon the submit of the reentered page.

Chapter 24
Using Task Flow Return Activities

24-36

For more information about reentering a bounded task flow, see Reentering
Bounded Task Flows.

Your selection defines the default behavior when the bounded task flow is
reentered by an end user clicking a browser's Back button. This selection applies
only if reentry-outcome-dependent has been set on the bounded task flow where
the task flow return activity is located. For more information, see Reentering
Bounded Task Flows.

5. In the End Transaction dropdown list, choose one of the following options:

• commit: Select to commit the existing transaction to the database.

• rollback: Select to roll back the transaction to what it was on entry of the
called task flow. This has the same effect as canceling the transaction, since it
rolls back a new transaction to its initial state when it was started on entry of
the bounded task flow.

If you do not specify commit or rollback, the transaction is left open to be
closed by the calling bounded task flow.

6. In the Restore Save Point dropdown list, select true when either of the following
conditions apply:

• If Always Begin New Transaction (new-transaction) is not selected on the
bounded task flow on which the task flow return activity is located

• ADF model changes made within a bounded task flow should be discarded
when exiting using the task flow call activity. The transaction is rolled back to
the save point created on entry of the bounded task flow.

For more information, see How to Enable Transactions in a Bounded Task Flow .

What Happens When You Add a Task Flow Return Activity to a
Bounded Task Flow

JDeveloper generates metadata entries in the source file of the bounded task flow
for the changes that you configure for the task flow return activity in the Properties
window. The following example shows entries that appear in the orders-select-many-
items.xml task flow of the Summit ADF task flow sample application.

 <task-flow-return id="commit">
 <outcome>
 <name>commit</name>
 <commit/>
 </outcome>
 </task-flow-return>
 <task-flow-return id="rollback">
 <outcome>
 <name>rollback</name>
 <rollback/>
 </outcome>
 </task-flow-return>

Using Task Flow Activities with Page Definition Files
A page definition file defines the binding objects that populate data in the ADF
application at runtime. You can use the page definition files to bind the ADF task
flow activities to data controls.

Chapter 24
Using Task Flow Activities with Page Definition Files

24-37

Page definition files define the binding objects that populate data at runtime. They
are typically used in a Fusion web application to bind page UI components to data
controls. A number of task flow activities can also use page definition files to bind to
data controls. These are:

• Method call

You can drag and drop a data control operation from the Data Controls panel onto
a task flow to create a method call activity or onto an existing method call activity.
In both cases, the method call activity binds to the data control operation.

• Router

Associating a page definition file with a router activity creates a binding container.
At runtime, this binding container makes sure that the router activity references the
correct binding values when it evaluates the router activity cases' EL expressions.
Each router activity case specifies an outcome to return if its EL expression
evaluates to true. For this reason, only add data control operations to the page
definition file that evaluate to true or false.

• Task flow call

Associating a page definition file with a task flow call activity creates a binding
container. At runtime, the binding container is in context when the task flow call
activity passes input parameters. The binding container makes sure that the task
flow call activity references the correct values if it references binding values when
passing input parameters from a calling task flow to a called task flow.

• View

You cannot directly associate a view activity with a page definition file. Instead, you
associate the page that the view activity references.

If you right-click any of the above task flow activities (except view activity) in the
diagrammer for a task flow, JDeveloper displays an option on the context menu that
enables you to create a page definition file (Create Page Definition) if one does not
yet exist. If a page definition file does exist, JDeveloper displays a context menu option
for all task flow activities to go to the page definition file (Go to Page Definition).
JDeveloper also displays a context menu option (Edit Binding) when you right-click a
method call activity that is associated with a page definition file.

A task flow activity that is associated with a page definition file displays an icon in the
lower-right section of the task flow activity icon. Figure 24-12 shows an example for
each of the task flow activities.

Figure 24-12 Task Flow Activities Associated with Page Definition Files

Chapter 24
Using Task Flow Activities with Page Definition Files

24-38

How to Associate a Page Definition File with a Task Flow Activity
JDeveloper provides a context menu option that you can access from the task flow
activity. You use this context menu option to associate the task flow activity with a
page definition file.

Before you begin:

It may be helpful to have an understanding of how task flow activities use page
definition files. For more information, see Using Task Flow Activities with Page
Definition Files.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Task Flow Activities.

To associate a page definition file with a task flow activity:

1. In the Applications window, expand the WEB-INF node and double-click the task
flow that contains the task flow activity with which you want to associate a page
definition file.

2. In the diagram, right-click the task flow activity for which you want to create a page
definition file and choose Create Page Definition.

3. In the resulting page definition file, add the bindings that you want your task flow
activity to reference at runtime.

For more information about page definition files, see Working with Page Definition
Files.

What Happens When You Associate a Page Definition File with a Task
Flow Activity

At design time, JDeveloper generates a page definition file for the task flow
activity. The filename of the page definition file comprises the originating task
flow and either the name of the task flow activity or the data control operation
to invoke. For example, taskflowName_taskflowName_methodCall1PageDef.xml or
taskflowName_taskflowName_CreateInsertPageDef.xml.

JDeveloper also generates an EL expression from the task flow activity to the binding
in the created page definition file. The following example shows a method call activity
that references a CreateInsert action binding.

<method-call id="CreateInsert">
 <method>#{bindings.CreateInsert.execute}</method>
 <outcome>
 <fixed-outcome>CreateInsert</fixed-outcome>
 </outcome>
 </method-call>

At runtime, a binding container makes sure that a task flow activities' EL expressions
reference the correct value.

Chapter 24
Using Task Flow Activities with Page Definition Files

24-39

25
Using Parameters in Task Flows

This chapter describes how to configure parameters in view activities and in ADF
bounded task flows that you create in the Fusion web application. Using these
capabilities allows you to manipulate data in task flows, share data between task flows
across one or more transactions, and configure return values to return from one task
flow to another task flow.
This chapter includes the following sections:

• About Using Parameters in Task Flows

• Passing Parameters to a View Activity

• Passing Parameters to a Bounded Task Flow

• Configuring a Return Value from a Bounded Task Flow

About Using Parameters in Task Flows
When used with an ADF task flow, parameters allow you to expand the horizon of the
task flow from its default activity to multiple activities. For example, you can manipulate
the data in task flows and share data between multiple task flows.

A task flow´s ability to accept input parameters and return parameter values allow
you to manipulate data in task flows and share data between task flows. Using these
abilities, you can optimize the reuse of task flows in your Fusion web application.

You can use view activity input page parameters as aliases. The alias allows you to
map bounded task flow input parameters to page parameters. The view activity input
page parameters map managed beans and any information available to the calling
task flow to a managed bean on the page itself. To pass values out of view activities,
store values in pageFlow scope or managed beans. For information about using view
activities in a task flow, see Using View Activities.

For example, a page might specify #{pageFlowScope.empNo} as a page parameter and
a bounded task flow might specify #{pageFlowScope.employeeID} as the value of an
input parameter definition.

The from-value on the view activity input page parameter would be
#{pageFlowScope.employeeID} and the to-value would be #{pageFlowScope.empNo}.
This enables reuse of both the page definition and bounded task flow because you do
not have to redefine parameters for every context in which each is used.

Other values contained within the task flow can be mapped to input page parameters,
not just bounded task flow input parameter definition values.

Task Flow Parameters Use Cases and Examples
Figure 25-1 shows a task flow that defines an input parameter definition to hold
information about a user in a pageFlow scope.

25-1

Figure 25-1 Task Flow Defining an Input Parameter

Additional Functionality for Task Flows Using Parameters
You may find it helpful to understand other Oracle ADF features before you configure
or use a task flow with parameters. Additionally, you may want to read about what you
can do with your configured task flows. Following are links to other functionality that
may be of interest.

• Data controls can be shared between task flows. For more information about
sharing data controls, see Sharing Data Controls Between Task Flows .

• A task flow can access a managed bean that is registered with it. For more
information about managed beans and task flows, see Using a Managed Bean in a
Fusion Web Application.

• Bounded task flows can be secured by defining the privileges that are required
for someone to use them. For more information, see Enabling ADF Security in a
Fusion Web Application.

Passing Parameters to a View Activity
In the cases where you want to pass the value from one activity to another without
modifying the value, the ADF task flow view activity is useful. You can either pass a
parameter to a value or a value to a managed bean using an EL expression or a literal
expression.

Figure 25-2 illustrates how to configure an input page parameter mapping. You can
pass a parameter to the Employee activity as a pageFlowScope value or a value on
a managed bean. You can pass a parameter to the Employee activity using an EL
expression or a literal expression. The Employee activity, in turn, can pass a value to
the Target activity by specifying the value it wants to pass to the Target activity in the
to-value element.

Figure 25-2 Task Flow with Two Activities

Chapter 25
Passing Parameters to a View Activity

25-2

How to Pass Parameters to a View Activity
You add one or more input page parameters to the view activity that you want to pass
parameters to.

Before you begin:

It may be helpful to have an understanding of the configuration options available
to you before you define an input page parameter for a view activity. For more
information, see Passing Parameters to a View Activity.

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for Task Flows
Using Parameters.

To define an input page parameter for a view activity:

1. In the Applications window, double-click the task flow that contains the view
activity to which you want to pass a parameter.

2. Select the view activity in the diagram for the task flow and, in the Properties
window, expand the Page Parameters category.

3. In the Input Page Parameters list, click the Add icon and enter values as follows:

• From Value: write an EL expression that, when evaluated, specifies where the
view activity retrieves the value for the input page parameter. For example,
write an EL expression similar to the following:

#{pageFlowScope.EmployeeID}

You can configure the view activity to retrieve a value that is input to the task
flow if you write an EL expression for From Value that corresponds to the
value for the input parameter that you defined for the task flow, as described in
How to Pass an Input Parameter to a Bounded Task Flow.

• To Value: write an EL expression, that when evaluated, specifies where the
page associated with the view activity can retrieve the value of the input page
parameter. For example, write an EL expression similar to the following:

#{pageFlowScope.EmployeeNo}

What Happens When You Pass Parameters to a View Activity
JDeveloper writes entries to the source file of the task flow at design time, as
illustrated in the following example.

<view id="reducedAccess">
 <page>/secured/Information.jsf</page>
 <input-page-parameter>
 <from-value>#{res['infoUsage.reducedAccess.messageHeader']}</from-value>
 <to-value>#{pageFlowScope.infoPageHeaderText}</to-value>
 </input-page-parameter>
 <input-page-parameter>
 <from-value>#{res['infoUsage.reducedAccess.messageHeader']}</from-value>
 <to-value>#{pageFlowScope.infoPageMsg}</to-value>
 </input-page-parameter>
 <input-page-parameter>
 <from-value>info</from-value>
 <to-value>#{pageFlowScope.infoPageType}</to-value>

Chapter 25
Passing Parameters to a View Activity

25-3

 </input-page-parameter>
 </view>

At runtime, the view activity retrieves the value of the input parameter from the location
you specified in the <from-value> element. The view activity makes the value of
the parameter available to its associated page in the location you specified in the
<to-value> element.

What You May Need to Know About Specifying Parameter Values
You can specify parameter values using standard EL expressions if you call a bounded
task flow using a task flow call activity or you render the bounded task flow in an ADF
region or an ADF dynamic region. For example, you can specify parameters using the
following syntax for EL expressions:

• #{bindings.bindingId.inputValue}

• #{CustomerBean.zipCode}

The following example shows the metadata for a task flow binding that renders in an
ADF region.

<taskFlow id="Department1" taskFlowId="/WEB-INF/Department.xml#Department"
 xmlns="http://xmlns.oracle.com/adf/Controller/binding">
 <parameters>
 <parameter id="DepartmentId" value="#{bindings.DepartmentId.inputValue}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
</taskFlow>

Appending inputValue to the EL expression makes sure that you assign the
parameter the value of the binding rather than the actual binding object.

Passing Parameters to a Bounded Task Flow
From an ADF task flow, you can call a bounded task flow and pass values to it. The
bounded task flow can accept the values through input parameters or from a task flow
binding. You must specify one or more input parameters and parameter definitions in
the task flow invoking the bounded task flow.

A called bounded task flow can accept input parameters from the task flow that calls
it or from a task flow binding. To pass an input parameter to a bounded task flow, you
specify one or more:

• Input parameters on the task flow call activity in the calling task flow

Input parameters specify where the calling task flow stores parameter values.

• Input parameter definitions on the called bounded task flow

Input parameter definitions specify where the called bounded task flow can
retrieve parameter values at runtime.

Specify the same name for the input parameter that you define on the task flow call
activity in the calling task flow and the input parameter definition on the called bounded
task flow. Do this so you can map input parameter values to the called bounded task
flow.

Chapter 25
Passing Parameters to a Bounded Task Flow

25-4

If you do not specify an EL expression to reference the value of the input parameter,
the EL expression for value defaults to the following at runtime:

#{pageFlowScope.parmName}

where parmName is the value you entered for the input parameter name.

In an input parameter definition for a called bounded task flow, you can specify an
input parameter as required. If the input parameter does not receive a value at runtime
or design time, the task flow raises a warning in a log file of the Fusion web application
that contains the task flow. An input parameter that you do not specify as required can
be ignored during task flow call activity creation.

Task flow call activity input parameters can be passed by reference or passed by value
when calling a task flow using a task flow call activity unless you are calling a task flow
in an ADF region. If the task flow renders in an ADF region, the task flow call activity
passes the input parameters by reference. By default, primitive types (for example,
int, long, or boolean) are passed by value (pass-by-value).

The Pass By Value checkbox applies only to objects, not primitives and is used to
override the default setting of passing by reference. Mixing the two, however, can
lead to unexpected behavior in cases where parameters reference each other. If input
parameter A on the task flow call activity is passed by value and if input parameter B
on the task flow call activity is passed by reference, and B has a reference to A, the
result can be two different instances of A and B.

How to Pass an Input Parameter to a Bounded Task Flow, describes how to pass an
input parameter from a calling task flow to a called bounded task flow using a task flow
call activity. Although you can pass parameter values from any activity on the calling
task flow, the passed parameter in How to Pass an Input Parameter to a Bounded
Task Flow contains the value of an input text field on a page in the calling task flow.

If you call a bounded task flow using a URL rather than a task flow call activity, you
pass parameters and values on the URL itself. See How to Call a Bounded Task Flow
Using a URL.

Instead of explicitly passing data controls as parameters between task flows, you
can simply share them by specifying the data-control-scope option on the called
bounded task flow. For more information, see Sharing Data Controls Between Task
Flows .

A called task flow can also return values to the task flow that called it when it exits. For
more information about returning values from a bounded task flow, see Configuring a
Return Value from a Bounded Task Flow.

How to Pass an Input Parameter to a Bounded Task Flow
You define values on the calling task flow and the called task flow.

Before you begin:

• It may be helpful to have an understanding of the configuration options available to
you before you configure a bounded task flow to receive an input parameter. For
more information, see Passing Parameters to a Bounded Task Flow.

• You may also find it helpful to understand functionality that can be added using
other task flow features. For more information, see Additional Functionality for
Task Flows Using Parameters.

Chapter 25
Passing Parameters to a Bounded Task Flow

25-5

You will need to complete these tasks:

• Create a calling and called task flow

The calling task flow can be bounded or unbounded. The called task flow must
be bounded. For more information about creating task flows, see Creating a Task
Flow.

• Add a task flow call activity to the calling task flow

Figure 25-3 shows an example where the view activity passes control to the task
flow call activity.

Figure 25-3 Calling Task Flow

To pass an input parameter to a bounded task flow:

1. In the Applications window, double-click the JSF page that contains an input
component where an end user enters a value that gets passed to a bounded
task flow as a parameter at runtime.

The JSF page that you open should be referenced by a view activity in the calling
task flow.

2. Select an input text component on the JSF page where an end user enters a value
at runtime.

3. In the Properties window, expand the Common section and enter a value for the
input text component in the Value field.

You can specify the value as an EL expression, for example
#{pageFlowScope.inputValue}.

4. In the Applications window, double-click the task flow that is going to be called.

5. In the editor window, click the Overview tab.

6. In the overview editor, click the Parameters navigation tab and then click the Add
icon to define a new entry in the Input Parameter Definition section.

7. In the Name field, enter a name for the parameter, for example, inputParm1.

8. In the Value field, enter an EL expression where the parameter value is stored and
referenced, for example, #{pageFlowScope.inputValue}.

9. In the Applications window, double-click the calling task flow that contains the task
flow call activity to invoke the called bounded task flow.

10. In the Applications window, drag the called bounded task flow and drop it on top of
the task flow call activity that is located in the diagram of the calling task flow.

Dropping a bounded task flow on top of a task flow call activity in a diagram
automatically creates a task flow reference to the bounded task flow. As shown
in Figure 25-4, the Properties window for the task flow call activity, the task
flow reference contains the bounded task flow ID and a document name. The
bounded task flow ID (id) is an attribute of the bounded task flow's <task-flow-

Chapter 25
Passing Parameters to a Bounded Task Flow

25-6

definition> element. The document name points to the source file for the task
flow that contains the ID.

Figure 25-4 Task Flow Reference

11. In the Properties window for the task flow call activity, expand the Parameters
section to view the Input Parameters section.

12. Enter a name that identifies the input parameter.

Because you dropped the bounded task flow on a task flow call activity having
defined input parameters, the name should already be specified. You must keep
the same input parameter name.

13. Enter a parameter value, for example, #{pageFlowScope.parm1}.

The value on the task flow call activity input parameter specifies where the calling
task flow stores parameter values.

The value on the input parameter definition for the called task flow specifies where
the value will be retrieved from for use within the called bounded task flow once it
is passed.

14. At runtime, the called task flow is able to use the input parameter. Since you
specified pageFlowScope as the value in the input parameter definition for the
called task flow, you can use the parameter value anywhere in the called bounded
task flow. For example, you can pass it to a view activity on the called bounded
task flow. For more information, see What Happens When You Pass Control
Between View Activities.

What Happens When You Pass an Input Parameter to a Bounded
Task Flow

JDeveloper writes entries to the source files for the calling task flow and called task
flow based on the values that you select. Example 25-1 shows an input parameter
definition specified on a a bounded task flow.

Example 25-2 shows the input parameter metadata for the task flow call activity that
calls the bounded task flow shown in Example 25-1. At runtime, the task flow call
activity calls the bounded task flow and passes it the value specified by its value
element.

Example 25-1 Input Parameter Definition

<task-flow-definition id="sourceTaskflow">
...
 <input-parameter-definition>
 <name>inputParameter1</name>
 <value>#{pageFlowScope.parmValue1}</value>

Chapter 25
Passing Parameters to a Bounded Task Flow

25-7

 <class>java.lang.String</class>
 </input-parameter-definition>
...
</task-flow-definition>

Example 25-2 Input Parameter on Task Flow Call Activity

<task-flow-call id="taskFlowCall1">
...
 <input-parameter>
 <name>inputParameter1</name>
 <value>#{pageFlowScope.newCustomer}</value>
 <pass-by-value/>
 </input-parameter>
...
</task-flow-call>

Configuring a Return Value from a Bounded Task Flow
A bounded task flow can be invoked from an ADF task flow and values can be
passed to it. The bounded task flow, upon processing the values submitted, returns a
parameter value to the task flow that has called it. The return value is in addition to the
outcome activity that the bounded task flow returns to the calling task flow. You must
add return value definitions in the bounded task flow and return values on the calling
task flow.

You can configure a bounded task flow to return a parameter value to the task flow
that calls it. The value that the bounded task flow returns is in addition to the outcome
that it returns to the caller when the bounded task flow invokes a task flow return
activity, as described in Using Task Flow Return Activities . To return a value, you must
configure:

• Return value definitions on the called bounded task flow

The return value definition specifies where you store the value that you want to
return from the called bounded task flow.

• Return values on the task flow call activity in the calling task flow to identify where
the calling task flow can find the returned value

You can configure the calling task flow to ignore return value definition from the called
task flow by not identifying any return values on the task flow call activity in the calling
task flow.

The task flow call activity returns values by reference. For this reason, you do not need
to make a copy of the values that you want to return to the calling task flow.

How to Configure a Return Value from a Bounded Task Flow
You configure a return value definition on the called task flow and add a parameter
to the task flow call activity in the calling task flow that retrieves the return value at
runtime.

Before you begin:

It may be helpful to have an understanding of the interaction between the calling task
flow and the called task flow. For more information, see Configuring a Return Value
from a Bounded Task Flow.

Chapter 25
Configuring a Return Value from a Bounded Task Flow

25-8

You may also find it helpful to understand functionality that can be added using other
task flow features and parameters. For more information, see Additional Functionality
for Task Flows Using Parameters.

You will need to complete this task:

Create a bounded or unbounded task flow (calling task flow) and a bounded task
flow (called task flow). For more information, see Creating a Task Flow.

To configure a return value from a called bounded task flow:

1. In the Applications window, double-click the called task flow.

2. In the editor window, click the Overview tab.

3. In the overview editor, click the Parameters navigation tab.

4. In the Parameters page, click the Add icon for the Return Value Definitions
section and add values as follows to define a return value:

• Name: Enter a name to identify the return value. For example, returnValue1.

• Class: Enter a Java class that defines the data type of the return value. The
default value is java.lang.String.

• Value: Enter an EL expression that specifies where to read the return value
from. For example, enter an EL expression similar to the following:

#{pageFlowScope.ReturnValueDefinition}

5. In the Applications window, double-click the calling task flow.

6. In the ADF Task Flow page of the Components window, from the Components
panel, in the Activities group, drag and drop a task call activity onto the diagram.

7. In the Properties window for the task flow activity, expand the Parameters section,
click the Add icon next to the Return Values entry and add values as follows to
define a return value:

• Name: Enter a name to identify the return value. For example, returnValue1.

The value you enter must match the value you entered for the Name field
when you defined the return value definition in Step 4.

• Value: Enter an EL expression that specifies where to store the return value.
For example, enter an EL expression similar to the following:

#{pageFlowScope.ReturnValueDefinition}

The value you enter must match the value you entered for the Value field
when you defined the return value definition in Step 4.

What Happens When You Configure a Return Value from a Bounded
Task Flow

At design time, JDeveloper writes entries to the source files for the task flows that
you configured. The following example shows an entry that JDeveloper writes to the
source file for the calling task flow.

<task-flow-call id="taskFlowCall1">
 <return-value id="__3">
 <name id="__4">returnValue1</name>
 <value id="__2">#{pageFlowScope.ReturnValueDefinition}</value>

Chapter 25
Configuring a Return Value from a Bounded Task Flow

25-9

 </return-value>
 </task-flow-call>

The following example shows entries that JDeveloper writes to the source file for the
called task flow.

<return-value-definition id="__2">
 <name id="__3">returnValue1</name>
 <value>#{pageFlowScope.ReturnValueDefinition}/</value>
 <class>java.lang.String</class>
 </return-value-definition>

At runtime, the called task flow returns a value. If configured to do so, the task flow call
activity in the calling task flow retrieves this value.

Chapter 25
Configuring a Return Value from a Bounded Task Flow

25-10

26
Using Task Flows as Regions

This chapter describes how to render ADF task flows in pages or page fragments
using ADF regions in your Fusion web application. Key features such as the ability
to specify parameters, how to refresh or activate an ADF region, navigate to a parent
page, and create dynamic ADF regions are also described.
This chapter includes the following sections:

• About Using Task Flows in ADF Regions

• Creating an ADF Region

• Specifying Parameters for an ADF Region

• Specifying Parameters for ADF Regions Using Parameter Maps

• Configuring an ADF Region to Refresh

• Configuring Activation of an ADF Region

• Navigating Outside an ADF Region's Task Flow

• Configuring Transaction Management in an ADF Region

• Creating ADF Dynamic Regions

• Adding Additional Task Flows to an ADF Dynamic Region

• Configuring a Page To Render an Unknown Number of Regions

• Handling Access to Secured Task Flows by Unauthorized Users

• Creating Remote Regions in a Fusion Web Application

About Using Task Flows in ADF Regions
An ADF page fragment or a JSF page with af:region tag is the ADF region where you
can execute a bounded task flow. You can use these ADF regions to add pieces of
application functionality in the bounded task flow and reuse this packaged functionality
throughout the application. The ADF regions are not dependent on a parent page.

You can execute a bounded task flow in a JSF page or page fragment (.jsff) by using
an ADF region. A primary reason for executing a bounded task flow as an ADF region
is reuse. You can isolate specific pieces of application functionality in a bounded task
flow and an ADF region in order to reuse it throughout the application. You can extract,
configure, and package application functionality within a bounded task flow so that
it can be added to other pages using an ADF region. ADF regions can be reused
wherever needed, which means they are not dependent on a parent page. This also
means that you can isolate the presentation of the parent pages from the ADF region;
menus, buttons, and navigation areas are not affected by what is displayed in the ADF
region. If you modify a bounded task flow, the changes apply to any ADF region that
uses the task flow.

An ADF region comprises the following:

26-1

• An af:region tag that appears in the page or page fragment where you render the
region

• An instance object that implements RegionModel from the following package:

oracle.adf.view.rich.model

For more information about RegionModel, see the Java API Reference for Oracle
ADF Faces

• One or other of the following:

– A task flow binding (taskFlow) in the page definition that identifies the
bounded task flow to use in the ADF region

– A multi task flow binding (multiTaskFlow) in the page definition that identifies
a list of bounded task flows to use in the ADF region

When first rendered, the ADF region's content is that of the first view activity in
the bounded task flow. The view activities used in the bounded task flow must be
associated with page fragments, not pages.

You can pass values to the ADF region using task flow binding input parameters
or contextual events. In addition, you can configure the task flow binding's
parametersMap property to determine what input parameters the task flow binding
passes from the bounded task flow to the ADF region.

ADF regions can be configured so that you determine when the region activates or
refreshes. You can also configure an ADF region and a bounded task flow so that
navigation control stops in the bounded task flow and passes to the page that contains
the ADF region. Finally, you can create dynamic regions (ADF dynamic regions) where
the task flow binding determines at runtime what bounded task flow renders in the
region and configure a dynamic region link so that end users can change the bounded
task flow that renders in the ADF dynamic region at runtime.

Figure 26-1 shows how an ADF region references a bounded task flow using a task
flow binding in the page definition file of the page that hosts the ADF region.

Figure 26-1 ADF Region Referencing a Bounded Task Flow

Chapter 26
About Using Task Flows in ADF Regions

26-2

About Page Fragments and ADF Regions
A page fragment is a JSF document (file extension is .jsff) that renders as content in
another JSF page. A page fragment should not have more than one root component.
Wrapping multiple root components in a single root component helps you to optimize
the display performance of the page fragment. In addition, if a page fragment has only
one visual root component and a popup component (which is invisible to end users
until invoked), consider wrapping these components in a single root component. For
example, place the popup component in a panelStretchLayout component's bottom
facet with the bottomHeight attribute set to 0 pixels.

If a page fragment has more than one root component, the Fusion web application
logs a message at runtime, as shown in the following example, where r1 identifies the
ADF region that renders the page fragment.

<RegionRenderer> <encodeAll> The region component with id: r1 has detected a page
 fragment with multiple root components. Fragments with more than one root
 component may not display correctly in a region and may have a negative impact
 on performance. It is recommended that you restructure the page fragment to have
 a single root component.

Apart from having only one root component element, a page fragment must not
contain any of the following tags:

• <af:document>

• <f:view>

• <f:form>

• <html>

• <head>

• <body>

These tags can only appear once in a document and do not support nesting in a JSF
page. For example, a page fragment embedded in a page cannot have an <html> tag
because the JSF page already has one.

The following example shows a simple page fragment. Unlike a JSF page, it contains
no <f:view> or <f:form> tags.

<?xml version='1.0' encoding='UTF-8'?>
<ui:composition xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <af:button text="button 1" id="b1"/>
</ui:composition>

You must nest a page fragment that you include in another JSF page within a region
(af:region tag). A bounded task flow that you add to a JSF page as a region cannot
call pages; it must call page fragments.

About View Ports and ADF Regions
A view port is a display area capable of navigating independently of other view ports.
A browser window and an ADF region are both examples of view ports. The root view
port displays the main page in a browser window. The root view port may have child
view ports, for example, regions on the page, but does not have a parent view port.

Chapter 26
About Using Task Flows in ADF Regions

26-3

Java classes that implement the ViewPortContext interface in the
oracle.adf.controller package get you more information about view ports. For
more information, see the Java API Reference for Oracle ADF Controller.

Task Flows and ADF Region Use Cases and Examples
Figure 26-2 shows the General Information page fragment (GeneralInfo.jsff) from
the edit-customer-task-flow-definition.xml task flow in the Summit sample
application for ADF task flows. This task flow renders in an ADF region and displays
information about customers in a series of page fragments that authenticated users
can navigate through and edit using the provided controls. For more information about
creating this type of region, see Creating an ADF Region.

Figure 26-2 ADF Region in the Summit ADF Task Flow Sample Application

Figure 26-2 also shows links (labeled Register as Employee and Register as
Customer) that invoke different task flows in the ADF dynamic region that the
showDetailItem component labeled Welcome renders. For more information about
creating this type of region, see Creating ADF Dynamic Regions.

Figure 26-3 shows the edit-customer-task-flow-definition.xml task flow in
JDeveloper. It contains three view activities to display information about customers
to end users.

Chapter 26
About Using Task Flows in ADF Regions

26-4

Figure 26-3 Edit Customer Task Flow in ADF Summit Application for ADF Task
Flows

Additional Functionality for Task Flows that Render in ADF Regions
You may find it helpful to understand how a task flow that renders in an ADF region
interacts with other task flow and ADF functionality. Following are links to other
functionality that may be of interest.

• You can set security on a bounded task flow that displays in an ADF region and
associated page definitions. If an end user displays a page that contains an ADF
region that the user is not authorized to view, the contents of the ADF region do
not display. No authentication mechanism is triggered. For more information, see
Enabling ADF Security in a Fusion Web Application.

• Task flows can invoke managed beans. For more information about managed
beans, see Using a Managed Bean in a Fusion Web Application.

• You can use contextual events to exchange information with a bounded task flow.
For more information, see Using Contextual Events.

Creating an ADF Region
You can create an ADF region in a JSF Page or an ADF page fragment by adding
af:region tag. The ADF region must contain at least one view activity or one task flow
call activity to the page where you want to render the ADF region.

You create an ADF region by dragging and dropping a bounded task flow that contains
at least one view activity or one task flow call activity to the page where you want to
render the ADF region. This makes sure that the ADF region you create has content to
display at runtime.

The bounded task flow's view activities must be associated with page fragments
(.jsff). If you attempt to drag and drop a bounded task flow that is associated with
pages rather than page fragments, JDeveloper does not display the context menu that
allows you to create an ADF region. You can convert a bound task flow that uses
pages to use page fragments. See How to Convert Bounded Task Flows .

The context menu that appears to create an ADF region presents options to create
a nondynamic and a dynamic region. A dynamic region (ADF dynamic region)
determines the bounded task flow that it renders at runtime. For information about
creating an ADF dynamic region, see Creating ADF Dynamic Regions. You determine
at design time the bounded task flow that a nondynamic region (ADF region) displays.

Chapter 26
Creating an ADF Region

26-5

How to Create an ADF Region
Drag a bounded task flow from the Applications window to the page where you want to
render an ADF region.

Before you begin:

It may be helpful to have an understanding of the requirements for a bounded task
flow that you use in an ADF region. For more information, see Creating an ADF
Region.

You may also find it helpful to understand functionality that can be added using other
task flow features and ADF region features. For more information, see Additional
Functionality for Task Flows that Render in ADF Regions.

You will need to complete these tasks:

• Create a bounded task flow with one or more view activities associated with page
fragments or one task flow call activity to a task flow with view activities.

For more information, see Creating a Task Flow.

• Create a JSF page to host the ADF region.

For more information, see the "How to Create JSF Pages" section of Developing
Web User Interfaces with Oracle ADF Faces.

To create an ADF region:

1. In the Applications window, double-click the JSF page where you want to locate
the ADF region.

2. From the Applications window, drag and drop the bounded task flow onto the JSF
page, and from the context menu, choose Create > Region.

3. If the Edit Task Flow Binding dialog appears, click OK.

The Edit Task Flow Binding dialog appears if the bounded task flow that you drop
on the JSF page has an input parameter defined, as described in How to Pass an
Input Parameter to a Bounded Task Flow.

For more information about specifying parameters for an ADF region, see
Specifying Parameters for an ADF Region.

Figure 26-4 Edit Task Flow Binding Dialog for an ADF Region

Chapter 26
Creating an ADF Region

26-6

4. In the Structure window, right-click the node for the ADF region that you added
(af:region) and choose Go to Properties.

5. Review or modify (as appropriate) the following fields which JDeveloper
automatically populates with default values in the Properties window for the ADF
region:

• Id: An ID that the JSF page uses to reference the ADF region, for example, r1.

• Value: An EL reference to the ADF region model, for example,
#{bindings.region1.regionModel}. This is the region model that describes
the behavior of the region.

• Rendered: If true (the default value), the ADF region renders when the JSF
page renders.

6. For information about how to map parameters between the view activity
associated with the JSF page and the ADF region, see Specifying Parameters
for an ADF Region.

What Happens When You Create an ADF Region
When you drop a bounded task flow onto a JSF page to create an ADF region,
JDeveloper adds an af:region tag to the page. The af:region tag references an
object that implements RegionModel. The following example shows the af:region
tag that appears in the Customers.jsff page fragment of the Summit ADF task flow
sample application.

<af:region value="#{bindings.editcustomertaskflowdefinition1.regionModel}"
 id="r2"/>

JDeveloper also adds a task flow binding to the page definition file of the page that
hosts the ADF region. The following example shows a sample of the metadata that
JDeveloper adds. The task flow binding provides a bridge between the ADF region
and the bounded task flow. It binds a specific instance of an ADF region to its
associated bounded task flow and maintains all information specific to the bounded
task flow. The taskFlowId attribute specifies the directory path and the name of the
source file for the bounded task flow.

<taskFlow id="editcustomertaskflowdefinition1"
 taskFlowId="/WEB-INF/flows/edit-customer-task-flow-definition.xml#edit
 -customer-task-flow-definition"
 activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding"/>

The bounded task flow preserves all of the data bindings when you drop it on the JSF
page. At runtime, a request for a JSF page containing an ADF region initially handles
like any other request for a JSF page. As the JSF page definition executes, data loads
in to the JSF page. When the component tree for the parent JSF page encounters the
<af:region> tag, it executes it in order to determine the first page fragment of content
to display. Once it determine the first page fragment of content, it adds the appropriate
UI components from the page fragment to the component tree for the parent JSF
page.

The task flow binding creates an object for its task flow that implements the following
interface in order to get the current view activity:

oracle.adf.controller.ViewPortContext

Chapter 26
Creating an ADF Region

26-7

The task flow binding's taskFlowId attribute can also reference an EL expression that
evaluates to one of the following:

• java.lang.String

• oracle.adf.controller.TaskFlowId

You use this capability if you create an ADF dynamic region. For more information, see
Creating ADF Dynamic Regions.

Specifying Parameters for an ADF Region
You may need to transfer values to the ADF region for the input parameters defined for
a bounded task flow in that region. For this, you can the input parameters (defined in
the ADF region) to the task flow binding the ADF region. You can also access the input
parameters in the memory scopes, managed beans, or the ADF binding layer by using
EL expressions in the ADF region.

You can make input parameters that you defined for a bounded task flow available
to an ADF region by adding them to the task flow binding that the ADF region
references. Use EL expressions to reference input parameters available in memory
scopes, managed beans, or the ADF binding layer.

Specifying input parameters is one method of providing information to an ADF region.
An alternative method is to use contextual events. The nature of the information that
you want to provide to the ADF region determines the method you choose to provide
the information. For example, choose:

• Input parameters if the required information is at the beginning of the task flow and
a change in the value of this information requires a restart of the task flow.

For example, you have a page that contains a table of employees. An ADF region
on that page contains a task flow to enroll a selected employee in a benefits
program. A change in the selected employee requires that you restart the benefits
enrollment task flow from the beginning for the newly selected employee. Using
input parameters to the task flow is the right decision for this use case.

You can pass input parameters by reference or by value. If you pass by reference,
an update on the main page for the selected employee's information, such as last
name, is automatically reflected in the task flow running in the ADF region without
restarting the task flow.

• Contextual events if you can only determine the information to exchange after the
start of a task flow and a change in the information does not require a restart
of the task flow. For example, the Inventory Control tab in the Summit ADF task
flow sample application uses contextual events to display the appropriate chart for
product inventory in one region in response to the product that a user selects in
another region. For more information, see Using Contextual Events.

For information about creating an ADF region and adding task flow bindings, see
Creating an ADF Region. For information about how to define an input parameter for a
bounded task flow, see Passing Parameters to a Bounded Task Flow.

How to Specify Parameters for an ADF Region
Use EL expressions to specify parameters available in memory scopes, managed
beans, or the ADF binding layer as input for the ADF region.

Chapter 26
Specifying Parameters for an ADF Region

26-8

Before you begin:

It may be helpful to have an understanding of the requirements for specifying
parameters for an ADF region. For more information, see Specifying Parameters for
an ADF Region.

You may also find it helpful to understand functionality that can be added using other
task flow features and ADF region features. For more information, see Additional
Functionality for Task Flows that Render in ADF Regions.

To specify input parameters for an ADF region:

1. In the Applications window, right-click the JSF page that holds the ADF region and
choose Go to Page Definition.

2. In the overview editor, click the Bindings and Executables navigation tab, select
the task flow binding for which you want to specify parameters and click the Edit
icon.

3. In the Edit Task Flow Binding dialog, write EL expressions that retrieve the values
of each input parameter you want to specify for the ADF region. Note that you
must write an EL expression for parameters that you defined as required. For
example, write an EL expression similar to the following:

#{pageFlowScope.inputParameter1}

Figure 26-5 shows the Edit Task Flow Binding dialog where the Input Parameters
section lists a number of input parameters that were defined for the bounded task,
as described in Passing Parameters to a Bounded Task Flow.

Note:

You can write an EL expression that references a list of input parameters
specified in a managed bean using the Input Parameters Map field of the
Edit Task Flow Binding dialog. For more information about implementing
this functionality, see Specifying Parameters for ADF Regions Using
Parameter Maps.

Figure 26-5 Edit Task Flow Binding Dialog

Chapter 26
Specifying Parameters for an ADF Region

26-9

4. Click OK.

What Happens When You Specify Parameters for an ADF Region
JDeveloper writes entries that are child elements of the taskFlow element in the page
definition of the JSF page, as illustrated in the following example.

<taskFlow id="tflow_tf11"
 taskFlowId="/WEB-INF/tflow_tf1.xml#tflow_tf1"
 activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="inputParameter1"
 value="#{pageFlowScope.inputParameter1}"/>
 <parameter id="inputParameter2"
 value="#{pageFlowScope.inputParameter2}"/>
 </parameters>
</taskFlow>

At runtime, the values specified by the EL expression in the value attribute are
passed to the ADF region.

Specifying Parameters for ADF Regions Using Parameter
Maps

A parameter map object on a managed bean specifies the keys mapping to the
values that you want to input to the ADF region. As you define the parameters in the
parameter maps, the space required to specify them in the task flow binding element
or to specify them in multiple task flow bindings in the page definition for the pages is
reduced.

In addition (or as an alternative) to listing all the input parameters on the task flow
binding, as described in Specifying Parameters for an ADF Region, you can use the
parametersMap property of the task flow binding to specify a parameter map object on
a managed bean. The parameter map object that you reference must be of a type that
implements the following interface:

java.util.Map

The parameter map object that you reference specifies keys that map to the values
you want to input to the ADF region. Using this approach reduces the number of
parameter child elements that appear under the task flow binding (taskFlow) element
or the multi task flow binding (multiTaskFlow) in the page definition for the page. This
approach also allows you more flexibility in determining what input parameters pass to
the ADF region. In particular, it provides a way to pass parameters to ADF dynamic
regions as the number of input parameters can differ between the different task flow
bindings in an ADF dynamic region. See Creating ADF Dynamic Regions.

You can configure an ADF region or an ADF dynamic region's task flow binding
to reference a parameter map. You can also configure a multi task flow binding to
reference a parameter map. Make sure that the name of an input parameter you
define for a bounded task flow matches the name of a key that you define in the
parameter map object.

If you specify a parameter with the same id attribute in a <parameter> element and in
a <parametersMap> element, the <parametersMap> element always takes precedence.

Chapter 26
Specifying Parameters for ADF Regions Using Parameter Maps

26-10

This is because the <parametersMap> element may need to override the static value
of the parameter if you create an ADF dynamic region, as described in Creating ADF
Dynamic Regions.

How to Create a Parameter Map to Specify Input Parameters for an
ADF Region

You configure the task flow binding's parametersMap property to reference the
parameter map object that defines the key-value pairs you want to pass to the ADF
region.

Before you begin:

It may be helpful to have an understanding of the configuration options available to
you when passing input parameters to an ADF region. For more information, see
Specifying Parameters for ADF Regions Using Parameter Maps.

You may also find it helpful to understand functionality that can be added using other
task flow and ADF region features. For more information, see Additional Functionality
for Task Flows that Render in ADF Regions.

You will need to complete this task:

Create a managed bean or edit an existing managed bean so that it returns an
object that implements the java.util.Map interface. Configure the managed bean
so the object returns key-value pairs with the values that you want to pass to the
ADF region. For more information about managed beans, see Using a Managed
Bean in a Fusion Web Application.

To create a parameter map to specify input parameters for an ADF region:

1. In the Applications window, right-click the JSF page that holds the ADF region and
choose Go to Page Definition.

2. In the overview editor, click the Bindings and Executables navigation tab, select
the task flow binding or multi task flow binding for which you want to specify a
parameter map, and then click the Edit icon.

The type of task flow binding that you select determines the dialog that appears.

3. In the Edit Task Flow Binding dialog or the Edit Multi Task Flow Binding dialog,
select Expression Builder from the Input Parameters Map dropdown menu.

4. Write or build an EL expression that references a parameter map. For example,
write an EL expression similar to the following:

#{pageFlowScope.userInfoBean.parameterMap}

5. Click OK.

What Happens When You Create a Parameter Map to Specify Input
Parameters

At runtime, the task flow binding or multi task flow binding evaluates the EL expression
specified for its parametersMap property. It returns values to the ADF region from the
managed bean for keys that match the name of the input parameters defined for the
bounded task flow that render in the ADF region.

Chapter 26
Specifying Parameters for ADF Regions Using Parameter Maps

26-11

Example 26-1 shows code snippets from a managed bean that puts two values
(isLoggedIn and principalName) into a parameter map named parameterMap.

Figure 26-6 shows the Edit Task Flow Binding dialog after you close the Expression
Builder dialog, having specified the parameter map object (parameterMap) shown in
Example 26-1. The Input Parameters field in the Edit Task Flow Binding dialog
lists the input parameters defined for the bounded task flow associated with this
ADF region (checkout-flow). The task flow binding retrieves the values for these
parameters from the managed bean shown in Example 26-1.

Figure 26-6 EL Expression Referencing Parameter Map on Task Flow Binding

The following example shows the metadata that appears for the task flow binding in
the page definition file of the page that renders the ADF region. The metadata for the
task flow binding references both the bounded task flow (taskFlowId attribute) and the
managed bean (parametersMap).

<taskFlow id="checkoutflow1"
 taskFlowId="/WEB-INF/checkout-flow.xml#checkout-flow"
 activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding"
 parametersMap="#{pageFlowScope.userInfoBean.parameterMap}"/>

You specify the <parameterMap> element in the page definition.

Chapter 26
Specifying Parameters for ADF Regions Using Parameter Maps

26-12

Note:

If you specify Refresh="ifNeeded", parameters are not supported in the
<parameterMap> element. The only condition that determines whether the
region need to be refreshed is the boolean value returned by the evaluation
of RefreshCondition. For more information, see What You May Need to
Know About Configuring an ADF Region to Refresh.

Example 26-1 Managed Bean Defining a Parameter Map

import java.util.HashMap;
import java.util.Map;

public class UserInfoBean {
 private Map<String, Object> parameterMap = new HashMap<String, Object>();

 public Map getParameterMap() {

 parameterMap.put("isLoggedIn", getSecurity().isAuthenticated());
 parameterMap.put("principalName", getSecurity().getPrincipalName());
 return parameterMap;
 }
}

Configuring an ADF Region to Refresh
The ADF region refreshes when the parent page binding is first displayed. For
future refreshes you must configure one of these task flow binding attributes:
taskFlowID, Refresh or RefreshCondition, RefreshCondition="#{EL.expression}", or
Refresh="ifNeeded".

You can configure when an ADF region refreshes and whether it invokes a task flow.
An ADF region can only invoke a task flow when the ADF region is in an active state.
An ADF region in an inactive state cannot invoke a task flow and returns a null value
for the ID of the referenced task flow to the parent page.

How to Configure the Refresh of an ADF Region
You set values for the task flow binding of the task flow associated with the ADF region
to determine when an ADF region switches from an inactive to an active state and to
determine when an ADF region refreshes.

Before you begin:

It may be helpful to have an understanding of the requirements for a bounded task
flow that you use in an ADF region. For more information, see Configuring an ADF
Region to Refresh.

You may also find it helpful to understand functionality that can be added using other
task flow features and ADF region features. For more information, see Additional
Functionality for Task Flows that Render in ADF Regions.

To configure the refreshing of an ADF Region:

Chapter 26
Configuring an ADF Region to Refresh

26-13

1. In the Applications window, select the page that contains the ADF region, right-
click and choose Go to Page Definition.

2. In the page definition file, select the task flow binding or multi task flowing binding
in the Executables section, as illustrated in Figure 26-7.

Figure 26-7 Task Flow Binding

3. Choose the appropriate option to refresh the ADF region.

• Refresh if the value of a task flow binding parameter changes.

In the Properties window, select ifNeeded from the Refresh dropdown list.

Do not select ifNeeded if you want to set a value for the RefreshCondition
property and can guarantee that the property evaluates to true only once. The
RefreshCondition property will not be evaluated if you select ifNeeded for the
Refresh property.

• Refresh if a condition that you specify returns true. In the Properties window,
write an EL expression that guarantees that true is returned only once and
that returns a boolean in the RefreshCondition field. If the EL expression
returns true, the ADF region refreshes. If the EL expression returns true
more than once for each task flow refresh, page content may fail to load.

Note:

Use ifNeeded when possible. The usage of RefreshCondition is
not recommended unless there is a good reason. For example, use
RefreshCondition only when the application passes parameters to
the task flow binding using a dynamic parameter map and when the
application can guarantee RefreshCondition evaluates true exactly
once when it refreshes the ADF task flow. For more information, see
What You May Need to Know About Configuring an ADF Region to
Refresh.

4. In the Properties window, select a value from the activation dropdown list, as
described in the following list:

• conditional: activates the ADF region if the EL expression set as a value for
the task flow binding active property returns true.

• deferred: select this option if your application uses Facelets XHTML pages
in the view layer and you want to activate the ADF region when a Facelets
XHTML page first requests a viewID. If your application uses JSP technology

Chapter 26
Configuring an ADF Region to Refresh

26-14

in the view layer, selecting this option has the same effect as selecting
immediate (the ADF region activates immediately) provided that the parent
component for the ADF region is not a popup or panelTabbed component that
has its childCreation attribute set to deferred. If this latter scenario occurs,
the parent component (popup or panelTabbed) determines behavior.

Use this option if your application uses Facelets XHTML pages. For more
information about Facelets with ADF Faces, see the "Getting Started with
ADF Faces and JDeveloper" chapter in Developing Web User Interfaces with
Oracle ADF Faces.

• immediate: activates the ADF region immediately. This is the default value.

The value that you select in the dropdown list determines when an ADF region
switches from an inactive to an active state. An ADF region must have an active
state before it can invoke a task flow.

5. If you selected conditional as the value for the activation property, write an EL
expression that returns a boolean value at runtime for the active property. If the EL
expression returns true, the ADF region invokes the task flow.

6. (Optional) For the processRegionForRefresh property, write an EL expression
to determine if the region should participate in a refresh operation. If the
EL expression evaluates to false, the region binding and its children will
not be refreshed. This check is performed before the region activation, the
RefreshCondition property, or input parameters are evaluated. If the EL
expression evaluates to true or if you do not write an EL expression for
the processRegionForRefresh property, the region will be included in refresh
operations and the behavior that you specify for the activation dropdown list will
be invoked. Writing an EL expression for the processRegionForRefresh property
does not prevent the region from being rendered.

What You May Need to Know About Configuring an ADF Region to
Refresh

An ADF region initially refreshes when the parent JSF page on which the region
is located first displays. During the initial refresh, any ADF region task flow binding
parameter values are passed in from the parent page. The parameter values are used
to display the initial page fragment within the ADF region. If the bounded task flow
relies on input parameter values that are not available when the page is first created,
make sure that your task flow behaves correctly if the input parameter values are null
by, for example, using a NullPointerException object. Alternatively (or additionally),
make sure that the task flow does not activate until the input parameters become
available by configuring the task flow binding's active property.

An ADF region task flow binding can be refreshed again based on one of the following
task flow binding attributes:

• taskFlowId

This attribute specifies the directory path and the name of the source file for the
bounded task flow. The ADF region refreshes if this attribute value changes.

• Neither Refresh or RefreshCondition attributes are specified (default)

If neither the Refresh or RefreshCondition task flow binding attribute is specified,
the ADF region is refreshed only once at the time the parent page is first displayed
unless you configure a value for the task flow binding's active property.

Chapter 26
Configuring an ADF Region to Refresh

26-15

• RefreshCondition="#{EL.expression}"

The RefreshCondition must evaluate to a boolean value, and the EL expression
must return true just one time for each task flow refresh. This means the
expression cannot be a reference to a state variable; instead, it must be a call
to a method that possesses the internal check of the return value. If no check
is implemented in the method call and the expression is allowed to return true
more than once, then during the refresh of a dynamic region, the application will
display the error "The content of this page failed to load as expected because data
transmission was interrupted".

Note:

A dynamic region may fail to load unless the application can guarantee
that the RefreshCondition expression evaluates to true only once for
each task flow refresh. For example, assume you have assigned an
expression to the refresh condition for the task flow definition. If the
EL expression evaluates to true, the region model defined by the
controller is refreshed and, as a result, the client ID index for the region
is incremented. This will cause any operation that expects the original
client ID for the region to fail as it does not find the expected ID. One
such operations is streaming of table row data.

At the time the RefreshCondition is evaluated, if the variable bindings is used
within the EL Expression, the context refers to the binding container of the parent
page, not the page fragment displayed within the ADF region. RefreshCondition
is independent of the change of value of binding parameters. If the task flow
binding parameters do not change, nothing within the ADF region will change.
The expression is evaluated during the PrepareRender phase of the ADF page
lifecycle. For more information, see Understanding the Fusion Page Lifecycle .

• Refresh="ifNeeded"

Any change to a task flow binding parameter value causes the ADF region
to refresh. If the ADF region task flow binding does not have parameters,
Refresh="ifNeeded" is equivalent to not specifying the Refresh attribute.

Refresh="ifNeeded" is not supported if you pass parameters to the task
flow binding using a dynamic parameter map. You must instead use the
RefreshCondition="#{EL.Expression}".

For more information about specifying parameter values using a parameter map,
see Specifying Parameters for ADF Regions Using Parameter Maps.

The Refresh="ifNeeded" property takes precedence over RefreshCondition
and RefreshCondition will not be evaluated if you set Refresh="ifNeeded".
When possible, use the Refresh="ifNeeded" property to control region refresh
behavior and to avoid the page content loading failure that can result when
RefreshCondition="#{EL.expression}" evaluates to true more than once for each
task flow refresh.

The following example contains a sample task flow binding located within the page
definition of a page on which an ADF region has been added.

<taskFlow id="Department1" taskFlowId="/WEB-INF/Department#Department"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">

Chapter 26
Configuring an ADF Region to Refresh

26-16

 <parameters>
 <parameter id="DepartmentId" value="#{bindings.DepartmentId.inputValue}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
</taskFlow>

You do not need to refresh an ADF region to refresh the data controls inside the ADF
region. During the ADF lifecycle, the refresh events telling the iterators to update will
be propagated to the binding container of the current page of the ADF region.

What You May Need to Know About Refreshing an ADF Region
When a binding container hierarchy is refreshed, the region binding code evaluates
the input parameter values and compare the new values with the previous values for
the region binding only if the region binding has a refresh condition set to ifNeeded.
See Configuring an ADF Region to Refresh. If a parameter value is changed, the
region is refreshed. For example, if a region displays the employee details of an
employee and if any of the details of the employee is changed, then region refreshes
and displays the details for the selected employee.

Additionally, if you have added support for childCreation attribute set to
lazyUncached on various UI components, the ADF view prunes the portions of the
view tree and those portions are not included in the active view tree and are not
visible. During the refresh of binding container hierarchy, the ADF controller evaluates
the input parameters for all the regions that were pruned and are not visible in the
active view tree of the page layout. The operations on the corresponding binding
containers that are not in active tree view might result in poor performance.

To avoid refreshing the regions that are not visible in the active tree view, set
the oracle.adfinternal.controller.regionPruning parameter value to true. This
parameter checks if the region is part of the active view tree before evaluating if the
input parameter values are modified. The region will then be refreshed only if the
region is part of the active view tree and one or more parameter values are modified.

This property uses the Trinidad property service, therefore, you can set this property
using the Fusion Apps property mechanism. Alternatively, you can enable this property
using the adf-settings.xml file.

<adf-properties-settings
xmlns="http://xmlns.oracle.com/adf/properties/settings">
 <properties>
 <property>
 <name>oracle.adfinternal.controller.regionPruning</name>
 <default-value>true</default-value>
 </property>
 </properties>
 </adf-properties-settings>

Configuring Activation of an ADF Region
The ADF regions can be configured to be activated at the appropriate time. This is
helpful to optimize the performance of the task flow binding these regions. You can set
the activation of the region either as conditional, deferred, or immediate based on your
requirement.

You can configure when an ADF region activates. This has the effect of determining
when the task flows contained in ADF regions activate. Configuring the activation of

Chapter 26
Configuring Activation of an ADF Region

26-17

ADF regions can optimize the performance of a Fusion web application's page. For
example, a page that contains 5 ADF regions may reference 5 task flows. You may not
want these 5 task flows to execute simultaneously when the Fusion web application
page loads so you configure an activation property to determine when a task flow
executes.

How to Configure Activation of an ADF Region
You configure the activation property for the task flow binding associated with the
ADF region to determine when to activate the ADF region.

Before you begin:

It may be helpful to have an understanding of the configuration options for activating
an ADF region. For more information, see Configuring Activation of an ADF Region.

You may also find it helpful to understand functionality that can be added using other
task flow features and ADF region features. For more information, see Additional
Functionality for Task Flows that Render in ADF Regions.

To configure the activation of an ADF region:

1. In the Applications window, select the page that contains the ADF region(s), right-
click and choose Go to Page Definition.

2. In the page definition file, select the task flow binding or multi task flow binding in
the Executables section, as illustrated in Figure 26-8.

Figure 26-8 Task Flow Bindings for ADF Region Configured for Activation

3. In the Properties window, select a value from the activation dropdown list, as
described in the following list:

• conditional: activates the ADF region if the EL expression set as a value for
the task flow binding active property returns true.

• deferred: select this option if your application uses Facelets XHTML pages
in the view layer and you want to activate the ADF region when a Facelets
XHTML page first requests a viewID. If your application uses JSP technology
in the view layer, selecting this option has the same effect as selecting
immediate (the ADF region activates immediately).

Use this option if your application uses Facelets XHTML pages. For more
information about Facelets with ADF Faces, see the "Getting Started with

Chapter 26
Configuring Activation of an ADF Region

26-18

ADF Faces and JDeveloper" chapter in Developing Web User Interfaces with
Oracle ADF Faces.

• immediate: activates the ADF region immediately. This is the default value.

The value that you select in the dropdown list determines when an ADF region
switches from an inactive to an active state. An ADF region must have an active
state before it can invoke a task flow.

4. If you selected conditional as the value in the activation dropdown list, write an
EL expression that returns a boolean value at runtime for the active property. If
the EL expression returns true, the ADF region invokes the task flow. If the EL
expression returns false, the ADF region deactivates a task flow that was active
in the ADF region.

What Happens When You Configure Activation of an ADF Region
The behavior of the ADF region at runtime depends on the options that you set for the
activation property.

Figure 26-9 shows the default behavior where all task flows in ADF regions execute
when the page loads the ADF regions (Tab # 1, Tab # 2, Tab # 3).

Figure 26-9 Default Activation of ADF Regions

Figure 26-10 shows an example where the activation property was set to deferred
and the application uses Facelets. The regions in Tab # 1 and Tab # 2 have an active
state because the end user navigated to these regions. The region in Tab # 3 is
inactive.

Figure 26-10 Deferred Activation of ADF Regions

Figure 26-11 shows an example where the activation property was set to
conditional and the active property to an EL expression that returns a boolean

Chapter 26
Configuring Activation of an ADF Region

26-19

value at runtime. The region in Tab # 1 is in an active state because the EL expression
specified for the active property returns true. The regions in Tab # 2 and Tab # 3 are
inactive because the EL expression specified for the active property returns false.

Note that the following events occur if a region deactivates a task flow (the value
returned by the active property changes from true to false):

• A task flow with an active transaction rolls back the transaction.

For more information about transaction options in task flows, see Managing
Transactions in Task Flows.

• If a task flow has a data control frame with a data-control-scope value of
isolated, the task flow releases the data control frame and any data controls
in the data control frame.

For more information about data controls, see Sharing Data Controls Between
Task Flows and What You May Need to Know About Sharing Data Controls and
Managing Transactions.

• ADF Controller releases the view port data structures for the region (including
pageFlow and view scopes).

For more information about view ports, see About View Ports and ADF Regions.
For more information about memory scopes, see What You May Need to Know
About Memory Scope for Task Flows.

Figure 26-11 Conditional Activation of ADF Regions

Navigating Outside an ADF Region's Task Flow
You can navigate out of the ADF region and then display the parent view activity of
the task flow that binds the region, or you can display the root page of its application.
To do so, you must expose the properties (parent-outcome and root-outcome) of the
parent action activity that you configure.

A bounded task flow running in an ADF region may need to trigger navigation of its
parent view activity or to navigate to the root page of its application. The parent action
activity exposes properties (parent-outcome and root-outcome) that you configure if
you want to implement either of these use cases.

For example, you might specify a value for parent-outcome if you have a page that
displays employee information and an ADF region that contains an enroll button for an
employee. After the enroll page completes and the ADF region returns, the employee
information page refreshes with the next employee.

Chapter 26
Navigating Outside an ADF Region's Task Flow

26-20

Note:

An ADF region does not maintain state when you navigate away from the
region.

How to Trigger Navigation Outside of an ADF Region's Task Flow
You add a parent action activity to the bounded task that runs in the ADF region and
configure it so that it navigates to the parent's view activity.

Before you begin:

It may be helpful to have an understanding of the configuration options for activating
an ADF region. For more information, see Configuring Activation of an ADF Region.

You may also find it helpful to understand functionality that can be added using other
task flow features and ADF region features. For more information, see Additional
Functionality for Task Flows that Render in ADF Regions.

To trigger navigation outside of an ADF region's task flow:

1. In the Applications window, double-click the bounded task flow that runs in the
ADF region.

2. In the ADF Task Flow page of the Components window, from the Component
panel, in the Activities group, drag and drop a Parent Action onto the diagram for
the bounded task flow.

3. Select the parent action activity in the diagram for the bounded task flow.

4. In the Properties window, choose the appropriate option:

• Parent Outcome: enter a literal value or write an EL expression that returns
an outcome so that the parent action activity navigates to the parent view
activity. The outcome is then used to navigate the parent view activity's task
flow rather than navigating the ADF region's bounded task flow.

The parent view activity's task flow should contain a control flow case or
wildcard control flow rule that accepts the value you specify for parent-
outcome.

• Root Outcome: enter a literal value or write an EL expression that returns an
outcome so that the parent action activity navigates to the root page of the
application.

For example, to navigate from an ADF region to the home page in
your application, you specify a value for Root Outcome, as illustrated in
Figure 26-12.

Chapter 26
Navigating Outside an ADF Region's Task Flow

26-21

Figure 26-12 Navigating to Home Page

Note:

Parent Outcome and Root Outcome are mutually exclusive.

5. (Optional) In the Outcome field, enter a literal value that specifies an outcome
for control flow within the ADF region after the parent action activity adds parent-
outcome or root-outcome to the appropriate queue.

Specifying an outcome element is useful in cases where the parent view activity or
root page does not navigate as a result of the parent-outcome or root-outcome
sent by the parent action activity. In addition, the ADF region should not continue
to display the same view. If you do not specify a value for outcome, the ADF
region's viewId remains unchanged.

What Happens When You Configure Navigation Outside a Task Flow
At design time, JDeveloper writes entries to the source file for the bounded task flow
based on the property values you set for the parent action activity. The following
example shows sample entries that JDeveloper generates when you write a literal
value for the Parent Outcome and Outcome properties of the parent action activity.

<parent-action id="parentAction1">
 <parent-outcome>parent_outcome</parent-outcome>
 <outcome id="__2">outcome</outcome>
</parent-action>

The following example shows sample entries that JDeveloper generates when you
write a literal value for the Root Outcome and Outcome properties of the parent action
activity.

<parent-action id="parentAction1">
 <root-outcome>root_outcome</root-outcome>
 <outcome id="__2">outcome</outcome>
</parent-action>

At runtime, when navigation in an ADF region’s bounded task flow encounters a
parent view activity, the parent view activity’s outcome is queued and the current
navigation operation in the ADF region’s bounded task flow continues. Once the
current navigation operation completes, the queued outcome triggers a new navigation
operation on the parent. If, for example, the next activity in the bounded task flow of
the ADF region is a method call activity and the parent action activity navigates to

Chapter 26
Navigating Outside an ADF Region's Task Flow

26-22

a task flow that also includes a method call activity, the method call activity in the
bounded task flow of the ADF region executes first.

What You May Need to Know About How a Page Determines the
Capabilities of an ADF Region

In some cases, a page may need to determine the capabilities currently available
within one of the ADF regions that it contains. For example, the page may need
to initiate control flow within the ADF region based on its current state using the
queueActionEventInRegion() method. Region capabilities are used by a parent
page to identify the current outcomes of one of its regions based on the region's
current state. They identify to the parent page whether or not an outcome is possible
within the region.

The following scenario describes how region capabilities might typically be used in an
application:

1. An ADF region within a page displays its associated page fragment.

2. A user selects a button or performs some other action in the ADF region.

3. The parent page identifies the outcomes (region capabilities) for the ADF region.

4. The parent page updates its buttons based on the ADF region capabilities.

The syntax of an EL expression to determine an ADF region's capabilities is as
follows:

#{bindings.[regionId].regionModel.capabilities['outcome']}

where regionId is the ID of the ADF region component on the page and outcome is
the possible outcome being verified within the ADF region.

Region capabilities require the availability of the specified ADF region's regionModel
through an EL expression. The EL expression should never access bindings in any
other binding container other than the current binding container. Region capabilities
cannot be used in some cases. For example, a nested ADF region where a
regionModel cannot be reached within the current binding container. This is because
a nested region's nested binding container might not yet exist or might have already
been released.

Configuring Transaction Management in an ADF Region
The ADF task flow allows you to optionally choose if you want to allow a task flow to
share or isolate its data controls with a calling talk flow. For this, you must set a value
for the data-control-scope property of the bounded task flow. You can also rollback or
commit the changes made by the calling task flow by exposing the methods by the
DataControlFrame interface of the ADF Model layer.

In the ADF Controller layer, bounded task flows optionally provide their own abstract
implementation of transactions over the underlying ADF Model layer, as described in
Managing Transactions in Task Flows. You can choose whether a task flow shares
or isolates its data controls with a calling task flow by setting a value for its data-
control-scope property, as described in Sharing Data Controls Between Task Flows .
Whether a task flow creates a new transaction depends on the values you choose for
the transaction and data-control-scope properties, as described in What You May
Need to Know About Sharing Data Controls and Managing Transactions.

Chapter 26
Configuring Transaction Management in an ADF Region

26-23

If, for example, you share a task flow's data control with a calling task flow, a new
transaction is created at the ADF Controller layer level if you configure the task
flow's transaction option to Always Begin New Transaction (new-transaction)
or to Use Existing Transaction If Possible (requires-transaction). The requires-
transaction option creates a new transaction only if a transaction does not already
exist. The created transaction has the same lifespan as the ADF region that renders
the task flow. This may cause behavior that you do not intend when the task flow
renders in an ADF region. For example, if an ADF region refreshes, it restarts the task
flow that it renders and causes the following events to occur:

• Discards the current view port that the ADF region uses

Note:

Save points require a root view port to work. For more information
about view ports, see About View Ports and ADF Regions. For more
information about save points, see Using Save Points in Task Flows.

• Releases the data control that the task flow uses

This may cause the loss of changes made in the parent page of the calling task
flow because it shares the data control of the task flow that renders in the ADF
region.

• Executes a commit or rollback if the End Transaction property of the task flow's
task flow return activity specifies one of these actions. For more information, see
Using Task Flow Return Activities .

There are a number of ways to prevent the inadvertent termination of a task flow's
transaction by the refresh of an ADF region. All these options disassociate the lifespan
of the transaction in the task flow that renders in an ADF region from the lifespan
of the ADF region. These options make sure that the region's parent page owns the
transaction and/or that the transaction starts before the region renders. Choose the
most appropriate option for your application:

• Set the transaction option on the task flow that renders in the ADF region
to Always Use Existing Transaction (requires-existing-transaction). This
throws an exception if a transaction does not exist and prevents the ADF region
from owning the transaction.

• Set the calling task flow's transaction option to Always Begin New Transaction
(new-transaction) so that the lifespan of the transaction is associated with the
lifespan of the parent page.

• Invoke the DataControlFrame interface's beginTransaction() method in the
action that navigates to the parent page that contains the region.

• Configure a method call activity that invokes the DataControlFrame interface's
beginTransaction() method from a managed bean with a request scope before
navigating to the parent page of the ADF region.

The following code begins a transaction:

 public void beginTransaction()
 {
 BindingContext context = BindingContext.getCurrent();

 String dcFrameName = context.getCurrentDataControlFrame();

Chapter 26
Configuring Transaction Management in an ADF Region

26-24

 DataControlFrame dcFrame = context.findDataControlFrame(dcFrameName);
 dcFrame.beginTransaction(new TransactionProperties());
 }

If you share the data controls of a task flow with a calling task flow, use the rollback
or commit options exposed by the task flow's task flow return activity to commit
or rollback changes rather than programmatically use the methods exposed by the
ADF Model layer's DataControlFrame interface. Using the methods exposed by the
DataControlFrame interface closes the transaction and may cause the task flow that
renders in the ADF region to create a new transaction.

Creating ADF Dynamic Regions
An ADF dynamic region is determined by the taskFlowId attribute of the binding task
flow at runtime. This is helpful when you want to run the task flows based on the user
choice at runtime. You can add additional bounded task flows to the dynamic region by
creating ADF dynamic region links.

An ADF dynamic region is an ADF region where the task flow binding dynamically
determines the value of its taskFlowId attribute at runtime. This allows the Fusion web
application to determine which bounded task flow to execute within the ADF dynamic
region based on the result of evaluation of the task flow binding's taskFlowId attribute.

Figure 26-13 shows a runtime example from the Summit ADF task flow sample
application where the index.jsf page renders a different registration task flow in
the showDetailItem component labeled Welcome in response to the link component
that the end user clicks. For example, if the end user clicks Register as Employee,
the application renders the emp-reg-task-flow-definition.xml task flow in the ADF
dynamic region. If the end user clicks Register as Customer, the application renders
the edit-customer-task-flow-definition.xml task flow in the ADF dynamic region.

At runtime, the ADF dynamic region swaps the task flows that it renders during the
Prepare Render lifecycle phase. To give components from a previous task flow the
opportunity to participate smoothly in the lifecycle phases, do not navigate off the
regionModel until the JSF Invoke Application lifecycle phase. It is good practice,
therefore, not to navigate a task flow in a dynamic region in response to contextual
events. For information about lifecycle phases, see Understanding the Fusion Page
Lifecycle , and for information about contextual events, see Using Contextual Events.

Figure 26-13 ADF Dynamic Region in the Summit ADF Task Flow Sample
Application

Chapter 26
Creating ADF Dynamic Regions

26-25

You create an ADF dynamic region by dragging and dropping a bounded task flow to
the page where you want to render the ADF dynamic region. The view activities in the
bounded task flow must be associated with page fragments (.jsff).

If you attempt to drag and drop a bounded task flow that is associated with pages
rather than page fragments, JDeveloper does not display the context menu that allows
you to create an ADF dynamic region. You can convert a bound task flow that uses
pages to use page fragments. See How to Convert Bounded Task Flows .

After you create an ADF dynamic region, you can add additional bounded task flows
to the dynamic region by creating ADF dynamic region links, as described in Adding
Additional Task Flows to an ADF Dynamic Region.

How to Create an ADF Dynamic Region
Drag and drop bounded task flows to the page where you want to render the ADF
dynamic region.

Before you begin:

It may be helpful to have an understanding of the configuration options available to
you when creating an ADF dynamic region. For more information, see Creating ADF
Dynamic Regions.

You may also find it helpful to understand other functionality that can be added
using other task flow and ADF region features. For more information, see Additional
Functionality for Task Flows that Render in ADF Regions.

To create an ADF dynamic region:

1. In the Applications window, double-click the JSF page where you want to create
the ADF dynamic region.

2. From the Applications window, drag and drop the first bounded task flow onto the
JSF page, and from the context menu, choose Create > Dynamic Region.

3. Choose the appropriate option in the Choose Managed Bean for Dynamic Region
dialog:

• If you want an existing managed bean to store the bounded task flow's ID,
select an existing managed bean from the Managed Bean dropdown list.

The managed bean passes the value of the bounded task flow's ID into the
task flow binding of the ADF dynamic region. Make sure that the managed
bean you select is not used by another ADF dynamic region.

• If no managed bean exists for the page, click the Add icon next to the
Managed Bean dropdown list to create a new one. Enter values in the dialog
that appears as follows:

• a. Bean Name: Enter a name for the new managed bean. For example,
enter DynamicRegionBean.

b. Class Name: Enter the name of the new managed bean class.

c. Package: Enter the name of the package that is to contain the managed
bean or browse to locate it.

d. Extends: Enter the name of the Java class that the managed bean
extends. The default value is java.lang.Object.

Chapter 26
Creating ADF Dynamic Regions

26-26

e. Scope: This field is read-only and its value is set to backingBean. For
more information about the memory scope for managed beans, see What
You May Need to Know About Memory Scope for Task Flows.

f. Click OK to close the dialogs where you configure the managed bean.

4. Choose the appropriate option in the Edit Task Flow Binding dialog:

• Click OK if you do not want specify input parameters or an input parameter
map for the ADF dynamic region.

• Specify input parameters for the ADF dynamic region.

For more information, see Specifying Parameters for an ADF Region.

Figure 26-14 shows the Edit Task Flow Binding dialog that appears after you
configure a managed bean.

Note:

You can write an EL expression that references a list of input parameters
specified in a managed bean using the Input Parameters Map field of the
Edit Task Flow Binding dialog. For more information about implementing
this functionality, see Specifying Parameters for ADF Regions Using
Parameter Maps.

Figure 26-14 Edit Task Flow Binding Dialog for an ADF Dynamic Region

5. Click OK.

What Happens When You Create an ADF Dynamic Region
When you drop a bounded task flow onto a JSF page to create an ADF dynamic
region, JDeveloper adds an af:region tag to the page. The af:region tag contains a
reference to a task flow binding. The following example shows the af:region tag that
renders the ADF dynamic region in the index.jsf page of the Summit ADF task flow
sample application.

<af:region value="#{bindings.dynamicRegion1.regionModel}" id="r4"
 rendered="#{WelcomePageBean.isRegistration}"/>

Chapter 26
Creating ADF Dynamic Regions

26-27

JDeveloper also adds a task flow binding to the page definition file of the page
that hosts the ADF dynamic region. The following example shows a sample of the
metadata that JDeveloper adds. The task flow binding provides a bridge between the
ADF dynamic region and the bounded task flow. It binds the ADF dynamic region to
the bounded task flow and maintains all information specific to the bounded task flow.

<taskFlow id="dynamicRegion1"
 taskFlowId="${WelcomePageBean.dynamicTaskFlowId}"
 activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding"/>

The taskFlowId attribute in the task flow binding metadata specifies the managed
bean that determines at runtime what bounded task flow to associate with the ADF
dynamic region. JDeveloper creates this managed bean or modifies an existing
managed bean to store this data. The following example shows extracts of the code
that JDeveloper writes to the managed bean.

import oracle.adf.controller.TaskFlowId;
 ...
 private String taskFlowId = "/directoryPath/toTaskFlow";
 ...
 public TaskFlowId getDynamicTaskFlowId() {
 return TaskFlowId.parse(taskFlowId);
 }
...

At runtime, the managed bean stores the value of the bounded task flow's ID
(taskFlowId) that displays inside the ADF dynamic region. The managed bean swaps
the different bounded task flows into the task flow binding of the ADF dynamic region.

When an ADF dynamic region reinitializes, the Fusion web application must reinitialize
the task flow binding associated with the ADF dynamic region. This includes
evaluating if there are new input parameters and input parameter values to pass to
the ADF dynamic region.

Adding Additional Task Flows to an ADF Dynamic Region
The ADF dynamic region helps you to display data from different task flows without
navigating away from the current display area. This action is triggered by the end user
by clicking a command component. This is possible as the ADF dynamic region has
the ability to swap a bounded task flow with another bounded task flow.

An ADF dynamic region link swaps a bounded task flow for another bounded task flow
within an ADF dynamic region. An end user clicks a command component (a button or
a link) to update the ADF dynamic region with the new bounded task flow.

For example, a bounded task flow in the ADF dynamic region displays general
information about an employee such as an ID and photo. When the end user clicks
a link command component labeled Details, the ADF dynamic region updates with a
table containing more information about the employee from another bounded task flow.
The end user's action (clicking the link) invokes a method on the ADF dynamic region's
managed bean. The value of the new bounded task flow is passed to the method, and
the ADF dynamic region refreshes with the new bounded task flow. The new bounded
task flow now displays within the ADF dynamic region.

By default, a ADF dynamic region link swaps another bounded task flow in for the
original, but cannot swap back to the original. To toggle back to the original bounded

Chapter 26
Adding Additional Task Flows to an ADF Dynamic Region

26-28

task flow, you could add a second ADF dynamic region link on the page that, when
clicked, swaps the current task flow back to the original one.

You can add an ADF dynamic region link if you already have at least one ADF
dynamic region on a page and are adding a new bounded task flow as an ADF
dynamic region to the same page. After you drop the bounded task flow on the page
and choose to create an ADF dynamic region link, a menu displays all of the dynamic
regions currently on the page, as shown in Figure 26-15.

A list of the current dynamic regions in a document appears when you choose
Dynamic Region Link from the menu that appears after you drag and drop a
bounded task that you want to add as an option to an existing dynamic region in
the document, as shown in Figure 26-15.

Figure 26-15 ADF Dynamic Region Link Menu

Use this menu to select the ADF dynamic region within which you want to display the
contents of the bounded task flow.

Tip:

You can use the values in the dynamic region link in other UI components.
For example, you could create a selection list in which each of the items in
the list links to a different bounded task flow. All of the linked bounded task
flows would display in the same dynamic region. The links perform a method
in the class behind the managed bean created to swap the bounded task
flow it displays.

How to Create an ADF Dynamic Region Link
You drag and drop a bounded task flow to a page that already contains an ADF
dynamic region and you select Dynamic Region Link on the context menu that
appears to view a list of ADF dynamic regions to which you can create a link.

Before you begin:

It may be helpful to have an understanding of the configuration required before you
attempt to create an ADF dynamic region link. For more information, see Adding
Additional Task Flows to an ADF Dynamic Region.

You may also find it helpful to understand functionality that can be added using other
task flow and ADF region features. For more information, see Additional Functionality
for Task Flows that Render in ADF Regions.

Chapter 26
Adding Additional Task Flows to an ADF Dynamic Region

26-29

You will need to complete this task:

Add at least one ADF dynamic region to the JSF page where you are going to
create an ADF dynamic region link. For information about adding an ADF dynamic
region to a JSF page, see Creating ADF Dynamic Regions.

To create an ADF dynamic region link:

1. In the Applications window, double-click the JSF page where you want to create
the ADF dynamic region link.

2. From the Applications window, drag and drop a bounded task flow onto the JSF
page and, from the context menu, choose Dynamic Region Link.

Note:

The view activities of the bounded task flow must be associated with
page fragments. You can convert a bounded task flow that uses pages to
use page fragments. For more information, see How to Convert Bounded
Task Flows .

3. In the context menu that displays a list of the ADF dynamic regions that have
already been added to the page, select the name of the ADF dynamic region in
which you want to display the contents of the bounded task flow.

4. Click OK.

What Happens When You Create an ADF Dynamic Region
JDeveloper adds a link to the page, as shown in the following example. JDeveloper
also updates the managed bean for the ADF dynamic region and updates the
corresponding task flow binding with any new parameters.

<af:link text="region2" action="#{RegionBean.region2}"
 id="dynamicRegionLink1"/>

Configuring a Page To Render an Unknown Number of
Regions

At times you may not know how many ADF regions might need to be rendered at
runtime. This can be handled at design time by configuring the mutiTaskFlow element
of the JSF page definition file.

You can configure a page at design time when you do not know the number of regions
that render in the page at runtime. For example, you want to add or remove regions
to tabs using the panelTabbed component. Each tab that you add or remove renders a
region that references a bounded task flow.

To implement this functionality, you configure the JSF page definition file's
multiTaskFlow element to reference a list of task flow bindings contained in a
managed bean of the following type:

oracle.adf.controller.binding.TaskFlowBindingAttributes

Chapter 26
Configuring a Page To Render an Unknown Number of Regions

26-30

The following example shows the code for the class of a managed bean named
MultiBean that returns a list containing two task flows.

package view;

import java.util.ArrayList;
import java.util.List;

import oracle.adf.controller.TaskFlowId;
import oracle.adf.controller.binding.TaskFlowBindingAttributes;

public class MultiBean {
 private List<TaskFlowBindingAttributes> mTaskFlowBindingAttrs = new
 ArrayList<TaskFlowBindingAttributes>(5);

 public MultiBean() {
 TaskFlowBindingAttributes tfAttr = new TaskFlowBindingAttributes();
 tfAttr.setId("region1");
 tfAttr.setTaskFlowId(new TaskFlowId("/WEB-INF/r1.xml", "r1"));
 mTaskFlowBindingAttrs.add(tfAttr);

 tfAttr = new TaskFlowBindingAttributes();
 tfAttr.setId("region2");
 tfAttr.setTaskFlowId(new TaskFlowId("/WEB-INF/r2.xml", "r2"));
 mTaskFlowBindingAttrs.add(tfAttr);

 }

 public List<TaskFlowBindingAttributes> getTaskFlowList() {
 return mTaskFlowBindingAttrs;
 }
}

For more information about the TaskFlowBindingAttributes class, see the Java API
Reference for Oracle ADF Controller.

At runtime, the multiTaskFlow binding references a list of one or more task flows that
an end user can add or remove to the page using command components that you also
expose. Figure 26-16 shows the relationships between the different parts that make up
this use case.

Note:

The page fragments that the bounded task flows render must use the
Facelets document type.

Chapter 26
Configuring a Page To Render an Unknown Number of Regions

26-31

Figure 26-16 ADF Regions Derived from a Multi Task Flow Binding

How to Configure a Page to Render an Unknown Number of Regions
Configure the JSF page definition file's multiTaskFlow element to reference a list
of bounded task flows. This list can be modified at runtime by adding or removing
elements of type TaskFlowBindingAttributes.

Before you begin:

It may be helpful to have an understanding of the configuration options available to
you when configuring a page to render an unknown number of ADF regions. For more
information, see Configuring a Page To Render an Unknown Number of Regions.

You may also find it helpful to understand other functionality that can be added using
other task flow and ADF region features. For more information, see Task Flows and
ADF Region Use Cases and Examples.

You will need to complete this task:

Create a managed bean with a pageFlow scope that returns a list of type
TaskFlowBindingAttributes. For more information about how to create a
managed bean, see How to Use a Managed Bean to Store Information.

To configure a page to render an unknown number of regions:

1. In the Applications window, right-click the JSF page where you want to add or
remove ADF regions at runtime and choose Go to Page Definition.

2. If a confirmation dialog appears, click Yes.

3. In the overview editor, click the Binding and Executables tab, and then click the
Add icon in the Executables section.

4. In the Insert Item dialog, select ADF Task Flow Bindings from the dropdown
menu, then select multiTaskFlow as the item to create and click OK.

5. In the Insert multiTaskFlow dialog, enter the following values:

• id*: Enter a unique ID for the multi task flow binding.

Chapter 26
Configuring a Page To Render an Unknown Number of Regions

26-32

• taskFlowList *: Enter an EL expression that returns the list of
TaskFlowBindingAttributes to return at runtime. For example, enter an EL
expression similar to the following:

#{pageFlowScope.multiBean.taskFlowList}

6. In the Applications window, double-click the JSF page where you want end users
to add or remove ADF regions at runtime.

7. In the ADF Faces page of the Components window, from the Operations panel,
drag and drop a For Each onto the component in the Structure window that you
want to enclose the For Each component.

8. In the Properties window for the For Each component, enter values in the following
fields:

• Items: Enter an EL expression that references the method that return the list
of task flow bindings from the multi task flow binding runtime object.

For example, enter an EL expression similar to the following:

#{bindings.multiRegion1.taskFlowBindingList}

• Var: Enter a value to identify the list of task flow bindings.

9. In the JSF page that contains the For Each component, insert a Region
component inside the For Each component that references the Region
component's region model using an EL expression, as shown in the following
example.

<af:forEach var="tf" items="#{bindings.multiRegion1.taskFlowBindingList}">
 <af:panelBox text="#{tf.name}" id="pb1">
 <f:facet name="toolbar"/>
 <af:region value="#{tf.regionModel}" id="r1"/>
 </af:panelBox>
</af:forEach>

What Happens When You Configure a Page to Render an Unknown
Number of Regions

Metadata similar to that shown in the following example appears in the JSF page
definition file for the multi task flow binding.

<multiTaskFlow id="multiRegion1"
 taskFlowList="${pageFlowScope.multiBean.taskFlowList}" activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding"/>

The taskFlowList attribute in the multi task flow binding metadata specifies the
managed bean. The managed bean stores the list of objects describing the task flows
that can be added to the page at runtime.

What You May Need to Know About Configuring a Page to Render an
Unknown Number of Regions

• While there is no limit to the number of remote regions that you can render
in a JSF page, use this capability with caution. For simple pages, where tabs
are not used, regions may be combined in the page such that the maximum
number of regions is determined by the design of the region and the view object
queries it executes. Alternatively, for complex pages that use tabs, limit the use

Chapter 26
Configuring a Page To Render an Unknown Number of Regions

26-33

of regions to achieve best performance. For complex tabbed pages, ADF will not
deactivate task flow transactions once a region is loaded. When switching tabs,
the ongoing transaction must be stopped to achieve best performance. For details
about the interaction between task flows and regions, see Configuring Transaction
Management in an ADF Region.

• Each task flow binding inherits attributes defined for the multi task flow
binding unless you override this behavior using the methods exposed by
TaskFlowBindingAttributes.

• Each task flow binding inherits parameters defined in the multi task flow binding
in addition to those defined using the parametersMap property, as described in
Specifying Parameters for ADF Regions Using Parameter Maps.

Handling Access to Secured Task Flows by Unauthorized
Users

When an ADF region is accessed by a user without access permission, a blank area
is displayed. You can handle this by invoking a task flow that can display appropriate
information or message to the user.

A bounded task flow does not render in an ADF region if it is invoked by a user who
does not have the security permissions to access it. The region renders a blank area
in place of the requested task flow when this occurs. This may confuse your users as it
does not provide feedback as to why the task flow that they attempted to invoke does
not appear. To improve the user experience, you can specify an alternative bounded
task flow to render when a user attempts to access a bounded task for which they
do not have the required security permissions. You can, for example, configure the
alternative bounded task flow to display a page to inform users that they do not have
the necessary security permissions. A more complex approach may be to render a
bounded task flow that takes the users step-by-step through the process to request the
necessary permissions from their system administrator.

Configure the level of security for the alternative bounded task flow to make sure
that users can view it should they fail to access a bounded task flow for which they
do not have security permissions. This may involve making the alternative bounded
task flow public, as described in How to Make an ADF Resource Public. For more
information about securing your Fusion web application, including bounded task flows,
see Enabling ADF Security in a Fusion Web Application.

How to Handle Access to Secured Task Flows by Unauthorized Users
You configure an alternative bounded task flow with the content that you want to
display to users when they cannot access a bounded task flow because of a lack
of security permissions. You specify the alternative bounded task flow as the value
for the Unauthorized Region Taskflow property in your Fusion web application's adf-
config.xml file.

Before you begin:

It may be helpful to have an understanding of why you may need to display a
message to users without security permissions for a task flow. For more information,
see Handling Access to Secured Task Flows by Unauthorized Users.

Chapter 26
Handling Access to Secured Task Flows by Unauthorized Users

26-34

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Task Flows
that Render in ADF Regions.

You will need to complete these tasks:

1. Create an alternative bounded task flow to display to users when they cannot
access a bounded task flow for which they do not have security permissions.

For more information about creating a bounded task flow, see Creating a Task
Flow.

2. Configure this task flow so that users can access it.

For more information, see How to Make an ADF Resource Public.

To display messages to users without security permissions for task flows:

1. In the Application Resources panel, expand the Descriptors and ADF META-INF
nodes, and then double-click the adf-config.xml file.

2. In the overview editor, click the Controller navigation tab.

3. In the Controller page, in the Unauthorized Region Taskflow field, enter the name
of the bounded task flow to invoke or click Browse to select it.

What Happens When You Handle Access to Secured Task Flows by
Unauthorized Users

JDeveloper writes the name of the bounded task flow that you selected as a value
for the <unauthorized-region-taskflow> element in the adf-config.xml file, as
illustrated in the following example.

<?xml version="1.0" encoding="windows-1252" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:config="http://xmlns.oracle.com/bc4j/configuration"
 xmlns:adf="http://xmlns.oracle.com/adf/config/properties">
...
<adf-controller-config xmlns="http://xmlns.oracle.com/adf/controller/config">
 <unauthorized-region-taskflow>/WEB-INF/task-flow-definition.xml
 </unauthorized-region-taskflow>
 </adf-controller-config>
...
</adf-config>

At runtime, the Fusion web application renders this alternative bounded task flow when
users attempt to invoke a bounded task flow for which they do not have security
permissions.

Creating Remote Regions in a Fusion Web Application
You can create an ADF remote region by invoking a task flow of a Fusion web
application outside of your own application. The bounded task flow (producer)
producing the remote region must have data-control-scope property set to isolated
value. The task flow consuming the remote region is the consumer. A remote region
can be consumed by more than one consumer task flows allowing you to reuse the
remote region.

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-35

You create a remote region by invoking a task flow from another Fusion web
application (the producer) in a page of your Fusion web application (the consumer).
Creating a remote region allows you to reuse coarse-grained functionality in task flows
that have their own data control frame rather than develop multiple task flows that
implement the same functionality. It also offers performance, interactivity and ease-of-
implementation advantages compared to implementing a JSF portlet in JSF pages
that render ADF Faces components. At runtime, your consumer application invokes
and renders a remote invocable task flow from the producer application. A remote
invocable task flow may be consumed by multiple applications.

A task flow from a producer application that you configure to be invoked remotely
must be a bounded task flow that renders page fragments. It must also have a value
of isolated for the data-control-scope property and include the remote-invocable
property. All of the transaction options that can be used when the data-control-
scope property has a value of isolated can be configured for a task flow from a
producer application that you configure to be invoked remotely. The producer and
consumer applications do not share the transaction as the option chosen for the
remote invocable task flow in the producer application determines the transaction
behavior. For more information about the transaction options for task flows, see
Managing Transactions in Task Flows.

Note:

The functionality described here, describing how to create a remote region
to render a bounded task flow displaying JSF page fragments (.jsff) from
another Fusion web application, differs to the functionality described in How
to Call a Bounded Task Flow Using a URL. The latter section describes how
you invoke a bounded task flow that renders JSF pages from another Fusion
web application in a JSF page of your Fusion web application.

The producer and consumers application must run on the same version of Oracle
ADF. That is, you cannot invoke a remote invocable task flow from a producer
application that runs on one version of Oracle ADF and render it in a remote region of
a consumer application that runs on a different version of Oracle ADF. If you attempt
this type of implementation, the consumer application displays the following message
to the user who attempts to launch the producer application:

Remote region error: Version of the richclient on the producer at "[producer
URL]" is incompatible with this consumer.
Consumer version: [Consumer Version] Producer version: [Producer Version]

The task flow from the producer application that you configure to be invoked remotely
must not:

• Render ADF Faces components that use the Active Data Service

For more information about the Active Data Service, see Using the Active Data
Service .

• Invoke a remote invocable task flow from another application that produces remote
invocable task flows. That is, you cannot configure a consumer application to
invoke a remote invocable task flow from a producer application that invokes a
remote invocable task flow from another producer application. A remote region
cannot be nested inside another remote region.

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-36

• Invoke external dialogs, as described in:

– Running a Bounded Task Flow in a Modal Dialog. The bounded task flows
that run inside these external modal dialogs must reference pages, not page
fragments.

– Using the ADF Faces Dialog Framework Instead of Bounded Task Flows.

• Use save points, as described in Using Save Points in Task Flows.

• Implement drag and drop functionality, as described in the "Adding Drag and Drop
Functionality" chapter in Developing Web User Interfaces with Oracle ADF Faces.

• Be invoked through an iFrame. Only use Oracle ADF functionality to create a
remote region.

• Assume its input parameters are pass-by-reference and visible to its caller. In
a remote region implementation, a copy of all parameter values is sent to the
producer of the remote invocable task flow (pass-by-value) because this producer
typically resides in a different web application to the consumer application.

In addition, all of the following objects associated with the remote invocable task flow
must be serializable:

• Input parameters and return parameter values defined for the task flow

• Exceptions that the task flow throws

• Any payload data that a contextual event passes

Figure 26-17 illustrates an example scenario where consumer applications render
remote regions that invoke remote invocable task flows from a producer application.

Figure 26-17 Applications Rendering Remote Regions

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-37

Implementing the functionality described so far requires the completion of the following
tasks:

• In the application that produces the task flows:

– Configure the application's Enable Remote Region producer support
property

– Set the Remote Invocable property on the task flows that you want to render
in a remote region

– Configure the following properties for contextual events the application
publishes that broadcast events to consumers in the consumer application:

* Set dispatchMode to remote

* Write an EL expression for customPayload that references a serializable
object

* Specify the type of the custom payload for the object

Configuring these properties results in the following entries for the contextual
event in the page definition where you publish the contextual event. For more
information about contextual events, see Using Contextual Events.

<event name="valueChangeEvent" dispatchMode="remote"
 customPayload="<EL to a serializable object>"
customPayloadType=<type of the custom payload> />

For more information about publishing the events to a remote consumer, see
How to Publish Contextual Events.

– Consider setting session timeout to a value greater than the session timeout of
the consumer application so that you prevent the display of a session timeout
warning from the producer application to the consumer application's end
users. For more information about configuring session timeout, see Managing
the HttpSession in Fusion Web Applications.

• In the application that consumes the task flows from the producer application:

– Configure the application's Enable Remote Region consumer support
property

– Add the remote invocable task flows to the JSF pages where you want to
render remote regions

Tip:

While there is no limit to the number of remote regions that
you can render in a JSF page, use this capability with caution.
For simple pages, where tabs are not used, regions may be
combined in the page such that the maximum number of regions
is determined by the design of the region and the view object
queries it executes. Alternatively, for complex pages that use tabs,
limit the use of regions to achieve best performance. For complex
tabbed pages, ADF will not deactivate task flow transactions once
a region is loaded. When switching tabs, the ongoing transaction
must be stopped to achieve best performance. For details about
the interaction between task flows and regions, see Configuring
Transaction Management in an ADF Region.

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-38

The TaskFlowProducer project in the Summit standalone sample applications for
Oracle ADF contains a remote invocable task flow that can be consumed by a
consumer application. Run the RemoteViewer.jsf page in the TaskFlowProducer
project to deploy the sample application that contains the remote invocable task flow.
Once you deploy this sample application, you can consume the remote invocable task
flow, as described in How to Configure an Application to Render Remote Regions.

For more information about the Summit standalone sample applications for Oracle
ADF, see Running the Standalone Samples from the SummitADF_Examples
Workspace.

How to Configure an Application to Produce Task Flows for Use in
Remote Regions

You configure the project in the application that produces the task flows. You also
configure each task flow in the project that you want to render in a remote region so
that it can be invoked remotely and does not share data control frames with calling
task flows.

Before you begin:

It may be helpful to have an understanding of the configuration required before you
attempt to configure an application to produce task flows for use in remote regions. For
more information, see Creating Remote Regions in a Fusion Web Application.

You may also find it helpful to understand functionality that can be added using other
task flow and ADF region features. For more information, see Additional Functionality
for Task Flows that Render in ADF Regions.

To configure an application to produce task flows for remote regions:

1. In the Applications window, right-click the project that you want to configure to
produce remote invocable task flows and choose Project Properties.

2. Click the ADF Task Flow node and select the Enable Remote Region producer
support checkbox.

3. Select Allow Unauthenticated Remote Region Query servlet requests if, at
runtime, you want to permit users of the consumer application to query the servlet
(rtfquery) in the producer application for the list of remote invocable task flows
without providing user credentials. Also select this checkbox if you want to view
the list of available remote invocable task flows from the producer application while
developing the consumer application in JDeveloper (design time).

Leave this checkbox clear to add a security constraint to the producer
application's web.xml file that requires users who submit requests to rtfquery
be authenticated. This is the default option. For more information, see What You
May Need to Know About Securing Remote Regions.

4. In the Applications window, double-click the task flow that you want to be invoked
remotely.

5. In the overview editor, click the General navigation tab and expand the Visibility
section.

6. Select the Remote Invocable checkbox.

7. Click the Behavior navigation tab, expand the Transaction section, and select
Isolated from the Share data controls with calling task flow dropdown list.

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-39

For more information about sharing data controls, see Sharing Data Controls
Between Task Flows .

8. Repeat Steps 4 to 7 for each task flow that you want to be remote invocable so
that it can render in a remote region.

What Happens When You Produce Task Flows for Use in Remote
Regions

When you configure an application to produce remote invocable task flows,
JDeveloper creates and/or modifies the following files:

• The application's web.xml file

• The application's policy store (the jazn-data.xml file)

• The source file of the task flow that you configure to be remote invocable

JDeveloper defines an ADF security policy in your producer application's jazn-
data.xml file, as shown in the following example. JDeveloper creates this file if
it does not exist in the producer application. This ADF security policy specifies a
permission grant to grant access to a bootstrap page that acts as a container for the
remote invocable task flow. You must define access policies for the individual remote
invocable task flows that you want to appear in the bootstrap page by specifying
permission grants. For more information, see How to Define Policies for ADF Bounded
Task Flows. For more information about ADF Security, see Enabling ADF Security in a
Fusion Web Application.

...
<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.internal.core.principals.JpsAnonymousRoleImpl</class>
 <name>anonymous-role</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.share.security.authorization.RegionPermission</class>
 <name>oracle.adfinternal.view.rich.bootstrap.remoteRegionBootstrapPageDef</name>
 <actions>view</actions>
 </permission>
 </permissions>
 </grant>
</jazn-policy>
...

JDeveloper also inserts the following properties in the source file of a task flow that
you configure to be remote invocable when you set its remote-invocable property to
true and the data-control-scope property to isolated, as shown in the following
example. Setting the data-control-scope property to isolated means that the task
flow will have its own data control frame at runtime. For more information about data
controls and task flows, see Sharing Data Controls Between Task Flows .

...
<data-control-scope>

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-40

 <isolated/>
</data-control-scope>
...
<visibility>
 <remote-invocable/>
</visibility>
...

The entries that JDeveloper adds or configures in the application's web.xml file
include:

• Filters (and associated filter mappings) named remoteApplication,
ServletADFFilter, ADFLibraryFilter and adfBindings

• Servlets (and associated servlet mappings) named Faces Servlet,
adflibResources and rtfqueryServlet

Example 26-2 shows these entries in a producer application configured to produce
task flows for remote regions. In addition to the entries shown in Example 26-2,
JDeveloper also generates a <security-constraint> and <login-config> element
when you configure an application to produce remote invocable task flows. These
elements are not shown in Example 26-2. For information about the values specified
for these elements, see What You May Need to Know About Securing Remote
Regions.

Note:

In the web.xml file, make sure that the remoteApplication filter appears:

• Immediately after the JpsFilter filter if this latter filter is configured.

For more information about the JpsFilter filter, see What You May Need
to Know About ADF Authentication.

• Before the ADFLibraryFilter filter, as shown in Example 26-2.

Example 26-2 Entries in the web.xml File of an Application Producing Remote Invocable Task
Flows

<filter>
 <filter-name>remoteApplication</filter-name>
 <filter-class>oracle.adfinternal.view.rich.remote.RemoteApplicationFilter</filter-class>
</filter>
...
<filter>
 <filter-name>ADFLibraryFilter</filter-name>
 <filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>
</filter>
...
<filter-mapping>
 <filter-name>remoteApplication</filter-name>
 <url-pattern>/rr/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
...
<filter-mapping>
 <filter-name>ADFLibraryFilter</filter-name>
 <url-pattern>/*</url-pattern>

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-41

 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
...
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
...
<!-- The remote region query servlet. -->
<servlet>
 <servlet-name>rtfqueryServlet</servlet-name>
 <servlet-class>oracle.adfinternal.controller.rtfquery.RemoteTaskFlowQueryServlet</servlet-
class>
 <load-on-startup>1</load-on-startup>
</servlet>
...
<!-- The servlet name here should be the same as the Faces Servlet. -->
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/rr/*</url-pattern>
</servlet-mapping>
...
<servlet-mapping>
 <servlet-name>rtfqueryServlet</servlet-name>
 <url-pattern>/rtfquery</url-pattern>
</servlet-mapping>

What You May Need to Know About Securing Remote Regions
By default, JDeveloper adds the <security-constraint> element shown in the
following example when you configure an application to produce remote invocable
task flows for remote regions. This security constraint restricts access to the remote
region query servlet (rtfquery) to those users who have the role specified by the
<role-name> element.

<security-constraint>
 <web-resource-collection>
 <web-resource-name>rtfquery</web-resource-name>
 <url-pattern>/rtfquery</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>valid-users</role-name>
 </auth-constraint>
</security-constraint>

You can remove this constraint from the web.xml file by selecting the Allow
Unauthenticated Remote Region Query servlet requests checkbox when you
configure an application to produce remote invocable task flows. For more information
about how to access this checkbox, see How to Configure an Application to Produce
Task Flows for Use in Remote Regions.

JDeveloper also generates the authentication mechanism shown in the following
example when you configure an application to produce remote invocable task flows.
This authentication mechanism determines if access to an ADF resource (for example,
a task flow) that has been secured is permitted. The value CLIENT-CERT must appear
here so that the producer application can authenticate clients that request access to

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-42

a secured resource. The producer application ignores this setting if a client requests
access to a non-secured resource.

<login-config>
 <auth-method>CLIENT-CERT,FORM</auth-method>
 <realm-name>Identity Assertion</realm-name>
</login-config>

In producer applications that define the security constraint (the default behavior), the
value for the <auth-method> element in the associated authentication mechanism
must at a minimum include CLIENT-CERT. If you make other changes that modify your
web.xml file (for example, configuring ADF Security) after you configure an application
to produce remote invocable task flows, you might overwrite the values required to
make remote invocable task flows accessible to authenticated users. Verify the values
specified for the security constraint and the authentication mechanism to make sure
they are valid.

For more information about security, see Enabling ADF Security in a Fusion Web
Application.

How to Configure an Application to Render Remote Regions
In the Fusion web application that you want to render remote regions, you configure
a project so that it can consume remote invocable task flows from the producer
application. You also create a connection to the producer application.

Once you have created this connection, you can drag a remote invocable task
flow from wherever you defined the connection (Resources window or Application
Resources panel) and drop it on the JSF page or page fragment where you want the
remote region to render at runtime in your consumer application's page. The producer
application of the remote invocable task flow that you want to invoke must be running
in order for the remote invocable task flow to appear in the connection.

Before you begin:

It may be helpful to have an understanding of the configuration required before you
attempt to configure an application to render remote regions. For more information,
see Creating Remote Regions in a Fusion Web Application.

You may also find it helpful to understand functionality that can be added using other
task flow and ADF region features. For more information, see Additional Functionality
for Task Flows that Render in ADF Regions.

To configure an application to render a remote region:

1. In the Applications window, right-click the project that you want to configure to
render a remote region and choose Project Properties.

2. Click the ADF Task Flow node and select the Enable Remote Region consumer
support checkbox.

3. In the Resources window, click New, select New Connection and then Remote
Region Producer.

4. In the Create Remote Region Connection dialog, select Application Resources
if you want the connection to be available only within the application. Select
Resources window if you want the connection to be available to other
applications using the Resources window.

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-43

5. In the Name field, enter a name that the application will use to identify the
connection to the producer application of the remote invocable task flows.

6. In the URL Endpoint field of the Query URL section, enter the URL endpoint
for the Fusion web application that produces the remote invocable task flows.
Typically, this URL has a format similar to the following:

http://<host>:port/<context root>/rtfquery

where rtfquery is the servlet that provides the list of remote invocable task flows
in the producer application.

7. Click Test Connection to verify that the URL endpoint is valid.

8. In the URL Endpoint field of the Invoke URL section, enter the URL endpoint
of the Fusion web application that produces the remote invocable task flows.
Typically, this URL has a format similar to the following:

http://<host>:port/<context root>/rr

where rr is the url-pattern specified for the remoteApplication filter in the
web.xml file of the Fusion web application that produces the remote invocable task
flows.

9. If you know that the producer application requires user credentials before it will
allow the consumer application access a remote invocable task flow, select the
Always Send User Identity checkbox. This generates an identity token that
the consumer application transmits to the producer application during the initial
connection.

Leave the Always Send User Identity checkbox clear if you do not know if the
producer application requires user credentials. For more information, see What
Happens at Runtime: How an Application Renders Remote Regions.

10. Click Test Connection to verify that the URL endpoint is valid and click OK.

11. Expand the Remote Region Producer node and drag the remote invocable task
flow that you want your Fusion web application to invoke and drop it on the JSF
page or page fragment where you want it to render in a remote region at runtime.

12. In the context menu that appears, select the type of region that you want to create
in the page (Region or Dynamic Region).

If you select Dynamic Region, you need to choose or create a managed bean
that determines at runtime what bounded task flow to render in the ADF dynamic
region. For more information, see Creating ADF Dynamic Regions.

13. In the Edit Task Flow Binding dialog, from the Remote Connection dropdown
list, select the connection to the Fusion web application that produces the remote
invocable task flow that you defined in Step 5.

Typically, this is selected by default.

14. Click OK.

What Happens When You Configure an Application to Render Remote
Regions

JDeveloper adds a context parameter to the application's web.xml file when you
enable remote region consumer support in the project that consumes remote
invocable task flows, as shown in the following example.

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-44

<context-param>
 <param-name>oracle.adf.view.rich.remote.AUTH_PROVIDER</param-name>
 <param-value>oracle.adf.view.rich.remote.security.ADFAuthorizationProvider</param-value>
</context-param>

This context parameter specifies the default authorization provider that is configured to
work with ADF Security. You can add an alternative authorization provider by creating
an object that implements the following interface:

oracle.adf.view.rich.remote.AuthorizationProvider

When you drag and drop a remote invocable task flow to the JSF page or page
fragment in your application, JDeveloper adds an af:region tag to the JSF page and
a task flow binding to the page definition file of the JSF page. These additions are
similar to those generated when you drag and drop a task flow from the Applications
window to a JSF page in the same application. One difference is that when you drag
and drop a remote invocable task flow to a JSF page, the task flow binding that is
added to the page definition file of the JSF page includes a remoteConnectionName
attribute that references the connection name of the producer application, as shown in
Example 26-3.

The task flow binding's remoteConnectionName attribute can also reference an EL
expression that returns the name of the connection to the producer application
at runtime. This is useful, for example, if the name of the producer application
changes and you want to refresh the ADF region in response to this event. For more
information, see Configuring an ADF Region to Refresh.

For more information about the entries that JDeveloper generates when you create an
ADF region or an ADF dynamic region, see What Happens When You Create an ADF
Region , and What Happens When You Create an ADF Dynamic Region.

Example 26-3 Metadata Added to Page Definition to Create a Task Flow Binding

<taskFlow id="dynamicRegion2"
 taskFlowId="${viewScope.ParentActionRegion.dynamicTaskFlowId}"
 activation="deferred" remoteConnectionName="RemoteAppProducingTFs"
 xmlns="http://xmlns.oracle.com/adf/controller/binding"/>

What Happens at Runtime: How an Application Renders Remote
Regions

The initial runtime behavior of the applications that you have configured to produce
remote invocable task flows and render remote regions depends on the security-
related options configured for the producer application:

• It requires user credentials from the consumer application before it permits access
to the rtfquery servlet to retrieve the list of task flows that can be invoked
remotely.

In this scenario, the producer application responds to the initial request with an
error code. In response, the consumer application generates an encrypted identity
token that it transmits to the producer application. The producer application uses
this identity token to authenticate the consumer application and, if successful,
serves the consumer application's request.

If you know in advance that the producer application requires user credentials,
you can make the consumer application submit the encrypted identity token with
the initial connection by selecting the Always Send User Identity checkbox, as

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-45

described in How to Configure an Application to Render Remote Regions. This
optimizes the connection process.

• It allows unauthenticated requests to the rtfquery servlet.

The consumer application retrieves the list of remote invocable task flows from the
rtfquery servlet that the producer application configures to be invoked remotely.

After accessing the remote invocable task flow from the producer application, the
consumer application renders the content from the task flow in an ADF region (the
remote region) that is configured for this purpose. The appearance of this content is
defined by the style properties in the ADF skin of the consumer application. The style
properties in this ADF skin must match the style properties defined in the producer
application's ADF skin. For more information, see What You May Need to Know About
ADF Skins and Remote Regions.

If the consumer application invalidates the session that it established with the producer
application, the producer application rolls back any transaction that is in progress at
the time that the consumer application invalidates the session. Examples of events
that can cause the consumer application to invalidate a session include:

• Reaching the time specified for session timeout in the consumer application

• An end user logging out of the consumer application

• An end user clicking the browser's back button

• Navigation to a different page that does not render the remote region

How to Add Custom Error Messages for Remote Regions
A variety of error messages appear in the consumer application if an error occurs in
a remote region implementation. For example, you may see a message similar to that
shown in Figure 26-18.

Figure 26-18 Error Message for Remote Region

The following examples show log messages that correspond to the message that
appears in Figure 26-18.

...
<oracle.adf.view> <RegionRenderer> <_logError> <RR_HTTP_ERROR>
...
...
<oracle.adf.view> <RegionRenderer> <_logError> <Jan 29, 2014 12:50:51 PM
oracle.adfinternal.view.faces.renderkit.rich.RegionRenderer _logError
ALL: Remote Region error #2: An uncaught exception was thrown on the producer at "http://
127.0.0.1:7101/prod/rr/" while trying to run an ADF Taskflow.
>

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-46

oracle.adf.controller.ControllerException: ADFC-14032: A required remote task flow input
parameter value was not specified. Requested remote taskFlowId
 '/WEB-INF/task-flow-definition.xml#task-flow-definition'; requested from
'localhost.localdomain'.
 at
oracle.adf.controller.internal.binding.TaskFlowRegionModelRemoteProducer.createRegionViewPortCont
ext(TaskFlowRegionModelRemoteProducer.java:173)
 at
oracle.adf.controller.internal.binding.TaskFlowRegionModelViewPort.getViewPort(TaskFlowRegionMode
lViewPort.java:649)
...

In many scenarios, the message in Figure 26-18 and log file entries may be sufficient
to diagnose and resolve an issue with a remote region implementation. In other
scenarios, you may want to present additional information to communicate to end
users. Figure 26-19 shows a revised version of the consumer application page in
Figure 26-18 that now displays additional information, such as the error type and the
location of the producer application. Configuring your consumer application to show
additional information, as in Figure 26-19, requires you to add a context parameter to
the web.xml file of your consumer application and to write a Java class in the same
application that extends RemoteRegionErrorListener from the following package:

oracle.adf.view.rich.model

Figure 26-19 Custom Error Message for Remote Region

To add a custom error message for a remote region:

1. In the user interface project of the consumer application, create a Java class that
extends the oracle.adf.view.rich.model.RemoteRegionErrorListener class.

The following example shows a Java class that listens for errors on a remote
region and returns a string with details of the error message.

package example;

import oracle.adf.view.rich.model.RemoteRegionErrorEvent;
import oracle.adf.view.rich.model.RemoteRegionErrorListener;
import oracle.adf.view.rich.model.RemoteRegionHttpErrorEvent;

public class MyRemoteRegionErrorListener extends RemoteRegionErrorListener {

 @Override
 public String getAdditionalUserInformation(RemoteRegionErrorEvent event)
{

 RemoteRegionErrorEvent.Type type = event.getErrorType();
 StringBuilder sb =
 new StringBuilder().append("Received a(n) ").append(type);

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-47

 if (RemoteRegionErrorEvent.Type.HTTP_ERROR.equals(type)) {
 sb.append(" number
").append(((RemoteRegionHttpErrorEvent)event).getHttpErrorCode());
 }

 sb.append(" from ").append(event.getProducerURL());

 String viewId = event.getViewID();
 if (null != viewId) {
 sb.append(" for viewId ").append(viewId);
 }

 return sb.toString();
 }
}

2. In the Applications window, in the user interface project, expand the Web Content
and WEB-INF nodes, and then double-click web.xml.

3. In the overview editor for the web.xml file, click the Application navigation tab
and in the Context Initialization Parameters section, click the Create icon to add a
parameter that references the Java class you created in Step 1 as follows:

Name: Enter the context parameter
oracle.adf.view.rich.REMOTE_REGION_ERROR_LISTENER.

Value: Enter the path to the Java class that you created in Step 1. For example, to
reference the class in Step 1, enter example.MyRemoteRegionErrorListener.

What You May Need to Know About ADF Skins and Remote Regions
The style properties in the ADF skins of the consumer and producer applications must
match in order for the remote region to render. If the ADF skins do not match, the
remote region does not render its content. If the ADF skins match, the remote region
renders and uses the consumer application's ADF skin to determine the look and feel.

If mismatches occur between the ADF skins for the consumer and producer
applications, you need to modify one or both ADF skins so no mismatches occurs.
Where mismatches occur the consumer application's client displays a message similar
to the following:

Unable to retrieve content. Please see "Remote Region Error #1" in the
server logs for more information.

The server logs refers to messages that appear in the log files of the application server
for the consumer application. These log messages may provide information that you
can use to identify mismatches between ADF skins or to diagnose issues with the
ADF skin. The following list describes issues that result in the consumer application
generating log messages:

• ADF_FACES-30209 identifies a mismatch between the ADF skins. It means that
while the producer application can find the skin that the consumer application
uses, the ADF skins are not the same. A message similar to the following appears:

Remote Region Error #1: Producer at "http://myproducer.com/rr" does
not have a skin that matches this consumer. Consumer skin information:
{...} Producer skin information: {...}.

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-48

The ADF skin information provided contains a checksum of the ADF skins and
lists all of the skinning extensions (including checksum) and features employed
by each ADF skin. The consumer and producer applications should have the
same ADF skins and extensions. Using this data may help identify if there are
differences between the two applications.

• ADF_FACES-30210 indicates that the producer application does not contain the
ADF skin that the consumer application uses. A message similar to the following
appears:

Remote Region Error #1: Producer at "http://myproducer.com/rr" does
not have the following skin: "simple"

• Producer application does not have a skin factory. This means that the producer
application is not configured properly and cannot find an instance object that
extends SkinFactory from the following package:

org.apache.myfaces.trinidad.skin

A message similar to the following appears:

Remote Region Error #1: No skin factory available on the producer at
"http://yourproducer.com/rr"

The consumer application logs the skin debug information using a VERBOSE setting.

Note:

The context parameter
oracle.adf.view.rich.remote.PRODUCER_STYLESHEET_DEBUG_LEVEL that
determines the level of log output is deprecated in release 12.2.1.4.0.

For a general overview of ADF skins, see the "Customizing the Appearance Using
Styles and Skins" chapter in Developing Web User Interfaces with Oracle ADF Faces.

Chapter 26
Creating Remote Regions in a Fusion Web Application

26-49

27
Creating Complex Task Flows

This chapter describes how to use advanced features of ADF task flows that you
create in Fusion web applications. These include the ability to define transaction
options for a task flow, configure reentry options to a task flow for a user that
previously exited, handle exceptions, configure save points for your task flow, use ADF
Faces components such as train, and create task flows from task flow templates.
This chapter includes the following sections:

• About Creating Complex Task Flows

• Sharing Data Controls Between Task Flows

• Managing Transactions in Task Flows

• Reentering Bounded Task Flows

• Handling Exceptions in Task Flows

• Configuring Your Application to Use Save Points

• Using Save Points in Task Flows

• Minimizing the Number of Active Root View Ports in an Application

• Using Train Components in Bounded Task Flows

• Creating Task Flow Templates

• Creating a Page Hierarchy Using Task Flows

• Reporting Incidents to the Diagnostic Framework

About Creating Complex Task Flows
ADF task flows allow you to add features such as handling exceptions, reentry to the
bounded task flow, using save points, and so on. Such task flows can be used to
perform advance and complex activities.

After creating a task flow, adding activities to it, and configuring control flow between
the activities, you can extend the task flow´s functionality by adding some of the
features described in the following list:

• Bounded task flows can be configured to include additional transactional
management facilities beyond those provided by the underlying data controls so
that a Fusion web application can commit or roll back the data controls associated
with the task flow's activities as a group.

• Reentry options can be configured for bounded task flows to determine the
response if a user clicks the browser's back button.

• Task flows contain a number of features that allow you to proactively handle
exceptions. In addition, you can write custom code to handle exceptions thrown by
a task flow.

• Task flows can also be configured to capture the state of a Fusion web
application at a particular instance using save points. These allow you to save

27-1

the application's state if, for example, a user leaves a page without finalizing a
task.

• Train components are ADF Faces components that render navigation items to
guide a user through a multistep process. You can configure a bounded task flow
to render these navigation items by default for the view activities in a task flow.

• Task flow templates can serve as a starting point for the creation of task flows that
share common elements.

• Create a page hierarchy from the view activities that the default unbounded task
flow in your application (and additional task flows in the application) reference.

• Invoke initializers and finalizers when a bounded task flow is entered and exited.
An initializer is custom code that is invoked when a bounded task flow is entered.
A finalizer is custom code that is invoked when a bounded task flow is exited
via a task flow return activity or because an exception occurred. The finalizer
is a method on a managed bean. Common finalizer tasks include releasing all
resources acquired by the bounded task flow and performing cleanup before
exiting the task flow.

You specify both the initializer and the finalizer as an EL expression for a method
on a managed bean, for example:

#{pageFlowScope.modelBean.releaseResources}

There are two techniques for running initializer code at the beginning of the
bounded task flow, depending on whether or not the task flow may be reentered
via a browser back button:

– No reentry via back button expected: Designate a method call activity as
the default activity (first to execute) in the bounded task flow. The method
call activity calls a custom method containing the initializer code. See Using
Method Call Activities and What You May Need to Know About the Browser
Back Button and Navigating Through Records.

– Back button reentry possible: Specify an initializer method using an option
on the bounded task flow metadata. See Creating a Task Flow. Use this
technique if you expect that a user may reenter the task flow using a browser
back button. In such a case, the designated default activity for the bounded
task flow may never be called, but a method designated using the Initializer
method will.

Complex Task Flows Use Cases and Examples
Figure 27-1 shows the Structure window for a task flow that implements many of the
use cases discussed in About Creating Complex Task Flows. For example, it specifies
an error page to handle errors, makes use of the ADF Faces train component to
render navigation items, and specifies two task flow return activities that either commit
or roll back changes that the task flow makes as part of transaction management.

Chapter 27
About Creating Complex Task Flows

27-2

Figure 27-1 Task Flow in the Structure Window

Additional Functionality for Complex Task Flows
You may find it helpful to understand other Oracle ADF features before you configure
or use task flows. Additionally, you may want to read about what you can do with your
task flows. Following are links to other functionality that may be of interest.

• You can specify exception handlers to manage errors that occur during execution
of task flows. For more information about error handling, see Customizing Error
Handling.

• Task flow save points can save application state. For more information about
application state management, see Using State Management in a Fusion Web
Application.

• Bounded task flows can be secured by defining the privileges that are required
for someone to use them. For more information, see Enabling ADF Security in a
Fusion Web Application.

• You can use Business Process Execution Language (BPEL) with task flows to:

– Invoke a BPEL process from an unbounded or bounded task flow to perform a
function or use services

– Call a bounded task flow from a BPEL process in order to model user
interactions with a web interface

You can use a task flow method call activity to invoke a managed bean method or
a web service that interacts with a BPEL process. For more information about the
task flow method call activity, see Using Method Call Activities.

• You can write custom code that extends your task flows. For example, you can
write custom code to invoke when a task flow throws an exception, as described
in How to Designate Custom Code as an Exception Handler. For information about
the APIs that you can use to write custom code, see the following reference
documents:

Chapter 27
About Creating Complex Task Flows

27-3

– Java API Reference for Oracle ADF Controller

– Java API Reference for Oracle ADF Faces

Sharing Data Controls Between Task Flows
ADF task flows allow you to share data controls between one or more task flows.
Either an instance of the data control or two separate, isolated, data controls can
be shared. This can be used for making transaction management options when
committing or rolling back. To share the data controls you must set a data-control-
scope value to shared or isolated on the called bounded task flow.

When one task flow calls another, the task flows can either share an instance of a
data control, or create two separate isolated instances of the same data control so the
task flows can maintain independent state. The internal object that task flows use to
share their data controls or to store their own isolated data control is known as a data
control frame.

Task flows making use of the task flow transaction management options when
committing or rolling back use the data control frame to know which data controls
to perform the transaction operations on. A data control frame is created at runtime
for your application's unbounded task flow and any bounded task flow with a data-
control-scope value of isolated. When a task flow specifies a data-control-scope
value of shared, the called task flow uses the data control frame of the calling task
flow rather than creating its own. This allows the called task flow to share data
control instances attached to the data control frame. Alternatively, if a called task
flow specifies a data-control-scope value of isolated, a new data control frame is
created and a new instance of any data controls used by the bounded task flow will be
attached to the newly-created data control frame.

To specify whether data controls are shared between the calling and called task flows,
you must set a data-control-scope value of either shared or isolated on the called
bounded task flow. The default value is shared.

If data-control-scope is set to shared on both the calling and called bounded task
flow, the data control frame used will be the one for the calling task flow.

In Figure 27-2, the bounded task flows BTF1, BTF2, and BTF3 use the data control
frame created for the application's unbounded task flow (UTF1) because these
bounded task flows all have a data-control-scope value of shared. In contrast,
the bounded task flow BTF4 uses a different data control frame because it has a
data-control-scope value of isolated. It shares this data control frame with the
bounded task flow that it calls (BTF5) because this latter bounded task flow has a
data-control-scope value of shared.

Figure 27-2 Sharing and Isolating Data Control Frames

Chapter 27
Sharing Data Controls Between Task Flows

27-4

The value that you set for the data-control-scope element of a called task flow
determines if a calling task flow and a called task flow share flow data controls. Other
factors, such as whether a task flow renders in a page or page fragment, do not
change this behavior.

How to Share a Data Control Between Task Flows
You share data controls between task flows by specifying a value for the data-
control-scope element of the called task flow.

Before you begin:

It may be helpful to have an understanding of the properties that determine how
you share data controls between task flows. For more information, see Sharing Data
Controls Between Task Flows .

You may also find it helpful to understand functionality that can be added using other
task flow features. For more information, see Additional Functionality for Complex Task
Flows.

To share a data control between task flows:

1. In the Applications window, double-click the called task flow.

2. In the Properties window expand the Behavior section and select Shared from
the Share data controls with calling task flow list.

Note:

After you select Shared from the Share data controls with calling task
flow list, you may need to configure transaction options for the task flow.
For more information, see What You May Need to Know About Sharing
Data Controls and Managing Transactions.

What Happens When You Share a Data Control Between Task Flows
JDeveloper writes an entry in the source file for the called task flow when you select
Shared from the Share data controls with calling task flow list, as illustrated in the
following example.

<task-flow-definition id="task-flow-definition">
 ...
 <data-control-scope id="__1">
 <shared/>
 </data-control-scope>
 ...
 </task-flow-definition>

What Happens at Runtime: How Task Flows Share Data Controls
An end user can open the same application more than once in different browser
windows or browser tabs. If an end user does this, each window or tab has its own
view port, and each window or tab is isolated from all other windows or tabs within the
same HTTP session. As a result, the windows or tabs do not share data controls and,

Chapter 27
Sharing Data Controls Between Task Flows

27-5

therefore, state. The windows or tabs start with a new data control frame as if they
were running with an isolated data control scope. The exception to this rule is if an
end user opens a modal dialog in a secondary browser window, then the primary and
secondary browser windows have the same server-side state and share data controls.
For more information about using modal dialogs, see Running a Bounded Task Flow in
a Modal Dialog. For more information about view ports, see About View Ports and ADF
Regions.

Data controls are not instantiated until needed. One of two things can occur when a
parent task flow calls a child task flow that specifies data-control-scope as shared
(the default) and references a data control named D:

1. If a data control named D already exists in the parent task flow's data control
frame, then the child task flow's reference to D resolves to the existing data control
named D that is in scope.

2. If a data control named D does not exist in the parent task flow's data control
frame, then Oracle ADF instantiates the first data control named D that it finds
when performing a top-down search through the DataBindings.cpx files.

The above rules are unlikely to be applied because most applications define data
controls with unique names. However, if a task flow from an application calls a task
flow in an ADF Library JAR, the application and the ADF Library JAR task flows may
reference data controls that use the same names.

If, when the parent task flow calls the child task flow, the data control D from the
parent task flow's ADF Library JAR is already instantiated, then the child task flow
uses it. If it is not already instantiated, then the data control D from the parent task
flow will be instantiated using the first reference for this data control name found during
a top-down search through the DataBindings.cpx files. In particular, in this task flow
calling scenario, the child task flow's data control D will not be instantiated.

Another scenario to consider is where a task flow in a JSF page calls a task flow that
renders in a region in the JSF page. If the calling task flow in the JSF page instantiates
a data control D before the region renders in the page, the calling task flow's data
control D is used. However, if the region is the first databound component in the JSF
page, the called task flow's data control D will be instantiated and used.

For more information about data controls, see Exposing Application Modules with ADF
Data Controls. For more information about the DataBindings.cpx file, see Working
with the DataBindings.cpx File .

Managing Transactions in Task Flows
The transactions on the ADF bounded task flows can be managed by configuring the
transaction type. If No Controller Transaction is chosen, then no transaction such as
begin, commit, or roll back is performed. If one of these options: Always Begin New
Transaction, Always Use Existing Transaction, or Use Existing Transaction if Possible
is chosen then the transaction will either create a new transaction, participate in the
exiting transaction, or if a transaction is in progress, then the task flow participates
in this existing transaction or the task flow will create a new transaction when the
bounded task flow is initiated.

In the context of systems relating to databases, a transaction is a persisted collection
of work items that can be committed or rolled back together as a group. ADF, through
technologies such as ADF Business Components, offers all the advantages that
transactions provide. However, support for transactions does not stop at the ADF

Chapter 27
Managing Transactions in Task Flows

27-6

Model layer. In the ADF Controller layer, bounded task flows optionally provide their
own abstract implementation of transactions over the underlying ADF Model layer.
This implementation allows you to control transactions from the task flow and also
declaratively manage the transaction boundaries.

The transaction options that you can configure on a called bounded task flow can be
grouped into two categories:

• You choose the No Controller Transaction option so the called bounded task
flow does not perform a transaction operation (begin, commit, or roll back a
transaction).

• You use one of the following ADF task flow transaction management options:

– Always Begin New Transaction: A new transaction starts when the bounded
task flow is entered, regardless of whether or not a transaction is in progress.
The new transaction completes when the bounded task flow exits.

– Always Use Existing Transaction: When called, the bounded task flow
participates in an existing transaction already in progress.

– Use Existing Transaction If Possible: When called, the bounded task flow
either participates in an existing transaction if one exists, or starts a new
transaction upon entry of the bounded task flow if one does not exist.

If a called bounded task flow starts a new ADF task flow transaction (based on
the transaction option that you selected), you can specify whether the transaction
commits or rolls back when the task flow returns to its caller. The commit and
rollback options are set on the task flow return activity that returns control back to
the calling task flow. The same task flow that starts a transaction must also resolve the
transaction.

In a called bounded task flow, you can specify two different return task flow activities
that result in either committing or rolling back a transaction in the called bounded task
flow. Each of the task flow return activities pass control back to the same calling task
flow. The difference is that one task flow return activity specifies the commit option,
while the other specifies the rollback option. Figure 27-3 shows the orders-select-
many-items.xml task flow from the Summit ADF task flow sample application. If
transaction processing successfully completes, control flow passes to the commit task
flow return activity, which specifies options to commit the transaction. If the transaction
is cancelled before completion, the rollback task flow activity specifies options to roll
back the transaction.

Figure 27-3 Task Flow Return Activities in Called Bounded Task Flow

Chapter 27
Managing Transactions in Task Flows

27-7

Use the restore-save-point option on the task flow return activity if you want to
discard the changes an end user makes within a called bounded task flow when
the called bounded task flow exits. ADF Controller rolls back to the previous ADF
Model save point that was created when the bounded task flow was entered. The
restore-save-point option applies only to cases when a bounded task flow is
entered by joining an existing transaction (either the requires-existing-transaction
or requires-transaction option is also specified) and a save point is created upon
entry.

If you use the ADF task flow transaction management features that commit and
rollback the data controls associated with the data control frame of the current task
flow, you must use task flow return activities with their End Transaction property set
to commit or rollback, or programmatically commit the associated data control frame.
Alternatively if you use the No Controller Transaction setting or you only want to
commit or rollback one data control, use the associated commit or rollback operations
from the Data Controls panel or programmatically execute the associated commit and
rollback bindings.

In the Summit sample application for ADF task flows, a number of task flows create
transactions. For example, the orders-select-many-items.xml task flow uses the
ADF task flow transaction management's Use Existing Transaction if Possible
option. This task flow allows an end user to add multiple items to an order and commit
or rollback this change when the end user interacts with the showshuttle.jsf page
shown in Figure 27-4.

Figure 27-4 Task Flow Transaction

Chapter 27
Managing Transactions in Task Flows

27-8

How to Enable Transactions in a Bounded Task Flow
You define the transaction options on a bounded task flow that is called by another
task flow. Add a task flow return activity on the called bounded task flow that returns
control to the task flow that calls the bounded task flow.

Before you begin:

It may be helpful to have an understanding of what a transaction is and how you can
configure it. For more information, see Managing Transactions in Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To enable a bounded task flow to run as a transaction:

1. In the Applications window, double-click the called bounded task flow.

2. In the editor window, click the Overview tab

3. In the overview editor, click the Behavior navigation tab.

4. In the Behavior page, expand the Transaction section and choose one of the
following from the dropdown list:

• No Controller Transaction: The called bounded task flow does not perform a
transaction operation (begin, commit, or roll back a transaction).

• Always Use Existing Transaction: When called, the bounded task flow
participates in an existing transaction already in progress.

• Use Existing Transaction If Possible: When called, the bounded task flow
either participates in an existing transaction if one exists, or starts a new
transaction upon entry of the bounded task flow if one does not exist.

• Always Begin New Transaction: A new transaction starts when the bounded
task flow is entered, regardless of whether or not a transaction is in progress.
The new transaction completes when the bounded task flow exits.

Note:

After choosing a transaction option, you may also need to configure
the Share data controls with calling task flow option (data-control-
scope) for the bounded task flow to determine whether there are
any interactions between the options. For more information, see What
You May Need to Know About Sharing Data Controls and Managing
Transactions.

5. Optionally, select Isolated from the Share data controls with calling task flow
checkbox (data-control-scope) so that data controls are not shared with the
calling task flow if you chose Always Begin New Transaction in Step 4.

The default behavior is to share data controls. For more information, see What You
May Need to Know About Sharing Data Controls and Managing Transactions.

Chapter 27
Managing Transactions in Task Flows

27-9

6. Optionally, select the No save point on task flow entry checkbox to prevent the
creation of an ADF Model save point on task flow entry if you chose one of the
following options in Step 4:

• Always Use Existing Transaction

• Use Existing Transaction If Possible

An ADF Model save point is a saved snapshot of ADF Model state. Selecting the
No save point on task flow entry checkbox means that overhead associated
with a save point is not created for the transaction.

7. Select the task flow return activity in the called bounded task flow.

8. In the Properties window, expand the Behavior section.

9. If the called bounded task flow supports creation of a new transaction (bounded
task flow specifies Use Existing Transaction If Possible or Always Begin
New Transaction options), select one of the following in the End Transaction
dropdown list:

• commit: Select to commit the existing transaction to the database.

• rollback: Select to roll back a new transaction to its initial state on task flow
entry. This has the same effect as cancelling the transaction.

10. In the Restore Save Point dropdown list, select true if you want changes the user
makes within the called bounded task flow to be discarded when the task flow
exits. The save point that was created upon task flow entry will be restored.

What Happens When You Specify Transaction Options
Example 27-1 shows the metadata for transaction options on a called bounded task
flow. The <new-transaction> element indicates that a new transaction always starts
when the called bounded task flow is invoked. The <new-transaction> element is
generated when you select Always Begin New Transaction value in the Transaction
section's dropdown list.

Example 27-1 also shows the metadata for transaction options on the task flow
return activity on the called task flow. The <commit/> element commits the existing
transaction to the database. The <outcome> element specifies a literal outcome, for
example, success, that is returned to the caller when the bounded task flow exits.
The calling ADF task flow can define control flow rules based on this outcome. For
more information about defining control flow upon return, see Using Task Flow Return
Activities .

Example 27-1 Called Bounded Task Flow Metadata

 <task-flow-definition id="trans-taskflow-definition">
 <default-activity>taskFlowReturn1</default-activity>
 <transaction>
 <new-transaction/>
 </transaction>
 <task-flow-return id="taskFlowReturn1">
 <outcome>
 <name>success</name>
 <commit/>
 </outcome>
 </task-flow-return>
 </task-flow-definition>

Chapter 27
Managing Transactions in Task Flows

27-10

What You May Need to Know About Sharing Data Controls and
Managing Transactions

Data controls cannot be shared across more than one transaction at the same time.
If your task flow is involved in managing transactions, the value you select for the
data-control-scope option may affect the transaction option settings for a bounded
task flow. Table 27-1 describes how these options interact.

The ADF Model layer exposes the DataControlFrame interface to manage
a transaction in which the data controls within the frame participate. The
DataControlFrame interface exposes methods such as:

• beginTransaction()

• commit()

• rollback()

Similarly, ADF Controller allows a task flow to demarcate a transaction boundary, to
begin a transaction at task flow entry, and to either commit or roll back the transaction
on task flow exit. It does this by invoking methods exposed by ADF Model layer's
DataControlFrame interface.

ADF Controller supports the transaction options listed in Table 27-1. The behavior of
these transaction options depends on whether you select Shared or Isolated from
the Share data controls with calling task flow list (XML element: <data-control-
scope>) in the overview editor for a task flow.

Table 27-1 Transaction Settings Behavior

Transaction Setting Share Data Control Scope Isolate Data Control Scope

No Controller Transaction The DataControlFrame is shared
without the bounded task flow
performing a transaction operation
on it (begin, commit, or roll
back a transaction). The existing
transaction state of the data control
frame remains and may be altered
by other bounded task flows that
share the same data control frame.

A new DataControlFrame
is created without an open
transaction.

Always Begin New Transaction
XML element: <new-transaction/>

Begins a new transaction if one is
not already open and throws an
exception if one is already open.

Always begins a new transaction.

Always Use Existing Transaction
XML element: <requires-existing-
transaction/>

Throws an exception if the
transaction is not already open.

Invalid. The checkbox cannot be
selected.

Use Existing Transaction if Possible
XML element: <requires-
transaction/>

Begins a new transaction if one is
not already open.

Always begins a new transaction.

A number of examples illustrate how bounded task flows interact when you configure
different combinations of values for the data control scope and transaction properties
described in Table 27-1:

Chapter 27
Managing Transactions in Task Flows

27-11

• Isolate two bounded task flow transactions completely so that they can be
committed or rolled back separately. For more information, see Creating
Completely Separate Transactions.

• Guarantee that two bounded task flows share a transaction to save connection
resources and stop the transaction if the called bounded task flow cannot join
the transaction of the calling bounded task flow. For more information, see
Guaranteeing a Called Bounded Task Joins an Existing Transaction.

• Call a bounded task flow that joins the transaction of the calling bounded task flow
if one exists and, if not, creates its own transaction. For more information, see
Using an Existing Transaction if Possible.

The above list describes common use cases rather than all possible configuration
options.

Creating Completely Separate Transactions
Figure 27-5 shows a number of task flows that are configured to create separate
transactions. Two bounded task flows are chained together in Figure 27-5 yet maintain
completely separate transactions. This implementation may be appropriate where you
have a call center agent taking an order from a customer and entering the order details
in your application. At some point near the end of the order process, the customer
realizes that the delivery address that they have provided is incorrect. To assist the
call center agent, you designed your application so that it updates and commits the
delivery address in a separate transaction to the transaction for the order details (order
number, quantity, and so on). In the scenario where the customer wishes to modify
the delivery address, the call center agent does not need to roll back changes to the
order details in order to modify the delivery address because a separate transaction
manages the order details.

In Figure 27-5, the unbounded task flow calls Bounded Task Flow #1. This results in
the creation of Data Control Frame #1 because Bounded Task Flow #1 is configured
as follows:

• A data-control-scope value of isolated

• Always Begin New Transaction

Bounded Task Flow #1 exposes attributes from two different view objects as data
control fields (viewObject1.X and viewObject2.Y). X and Y are initially set to 10 and 20
respectively. The end user, while accessing Bounded Task Flow #1, updates X from 10
to 30 and leaves Y unchanged. This marks the transaction as changed or "dirty". That
is, there are changes in the transaction that must be committed or rolled back.

Bounded Task Flow #1 calls Bounded Task Flow #2. The application creates Data
Control Frame #2 because Bounded Task Flow #2 is configured as follows:

• A data-control-scope value of isolated

• Always Begin New Transaction

Note that the transaction of Data Control Frame #1 has yet to be committed and that
Data Control Frame #2 has a separate database connection and a separate task flow
transaction. As a result, the initial values of the data control fields X and Y in Bounded
Task Flow #2 are 10 and 20. The end user, while accessing Bounded Task Flow #2,
updates Y to 40 and leaves X unchanged. This marks the transaction for Bounded
Task Flow #2 as dirty. Bounded Task Flow #2 next calls a task flow return activity that
commits the change to Y to the database and returns control to Bounded Task Flow

Chapter 27
Managing Transactions in Task Flows

27-12

#1. As Bounded Task Flow #2 did not modify the value of X, no change for this data
control field occurs.

Because Bounded Task Flow #1 has a separate data control frame (Data Control
Frame #1) and transaction, the values of the data control fields X and Y in Bounded
Task Flow #1 remain at 30 and 20, their values when Bounded Task Flow #1 called
Bounded Task Flow #2. Bounded Task Flow #1 now calls a task flow return activity (set
to commit), saving the value of X to the database. The value of Y remains unchanged
because Bounded Task #1's transaction did not modify the value of Y.

On returning to the unbounded task flow and refreshing the values of X and Y from the
database, the updated values of 30 and 40 are returned.

Figure 27-5 Completely Separate Transactions

Guaranteeing a Called Bounded Task Joins an Existing Transaction
Figure 27-6 shows two bounded task flows in a configuration that guarantees that the
second bounded task flow joins the transaction of the first bounded task flow that calls
it. An example scenario where such an implementation may be appropriate is if your
application creates invoices and, separately, the individual lines of the invoice. When
creating an invoice line, it does not make sense that an invoice line is created without
the parent invoice that is to contain the invoice line. If you were to build two separate
task flows to create the invoice and invoice lines, the invoice line task flow needs
to enforce that it wants to join a transaction of the calling task flow, in this case the
invoice task flow, rather than creating a separate transaction.

Chapter 27
Managing Transactions in Task Flows

27-13

Figure 27-6 illustrates how the above use case can be addressed by configuring
an unbounded task flow that calls a bounded task flow (Bounded Task Flow #1).
The unbounded task flow has its own data control frame (Data Control Frame #1).
Bounded Task Flow #1 starts a transaction and also has a data control frame (Data
Control Frame #0) because it is configured as follows:

• A data-control-scope value of isolated

• Always Begin New Transaction

Bounded Task Flow #1 exposes attributes from two different view objects as data
control fields (viewObject1.X and viewObject2.Y). X and Y are initially set to 10 and 20
respectively. The end user, while accessing Bounded Task Flow #1, updates X from
10 to 30 and leaves Y unchanged. This marks Task Flow Transaction A associated
with Data Control Frame #1 as changed or "dirty". That is, there are changes in the
transaction that must be committed or rolled back.

Bounded Task Flow #1 calls Bounded Task Flow #2. Bounded Task Flow #2 is
configured as follows:

• A data-control-scope value of shared

• Always Use Existing Transaction

Because of this configuration, no new data control frames are created. Bounded Task
Flow #2 uses the same data control frame (Data Control Frame #1) as Bounded
Task Flow #1. The changes applied to X in Bounded Task Flow #1 are visible to
Bounded Task Flow #2. Updates made to Y in Bounded Task Flow #2 are visible to
Bounded Task Flow #1 when it receives control back from Bounded Task Flow #2 after
it executes a task flow return activity that specifies a commit. This update to Y is visible
in Bounded Task Flow #1 because of the shared data control scope, not because of
the commit option that the task flow return activity of Bounded Task Flow #2 specifies.

Remember that the commit and rollback options of a task flow return activity are only
valid for the bounded task flow that starts a transaction. That is why the commit of
Bounded Task Flow #1´s task flow return activity finalizes changes in the database and
not Bounded Task Flow #2.

Chapter 27
Managing Transactions in Task Flows

27-14

Figure 27-6 Guaranteed Joined Transactions

Unbounded Task Flow

Data Control

Frame #0

Data Control

Frame #1

Data Control

Frame #1

Bounded Task Flow #1

Isolated Data Control Scope

Always Begin New Transaction

Bounded Task Flow #2

Shared Data Control Scope

Always Use Existing Transaction

viewObject1.X = 30

viewObject2.Y = 20

Update:

viewObject2.Y = 40

viewObject1.X = 30

viewObject2.Y = 40

Task Flow Return Commit

End

Start
viewObject1.X = 10

viewObject2.Y = 20

Update:

viewObject1.X = 30

T
ra

n
s
a

c
ti
o

n
 D

ir
ty

Call

T
a

s
k
 F

lo
w

 T
ra

n
s
a

c
ti
o

n
 A

viewObject1.X = 30

viewObject2.Y = 20

viewObject1.X = 30

viewObject2.Y = 40

viewObject1.X = 30

viewObject2.Y = 40

viewObject1.X = 30

viewObject2.Y = 40

Call

Task Flow Return Commit

Data Control

Frame #1

Data ControlData ControlData Control

Frame #1Frame #1Frame #1

Data Control

Frame #1

Using an Existing Transaction if Possible
Guaranteeing a Called Bounded Task Joins an Existing Transaction, described how to
configure a bounded task flow to call a second bounded task flow and guarantee that
the called bounded task flow joins the transaction of the calling bounded task flow. The
effect of changing the configuration of the calling bounded task flow to have:

• A data-control-scope value of isolated

• No Controller Transaction

while leaving the called bounded task flow unchanged is to stop execution of the
bounded task flows and throw the following error message at runtime:

ADFC-00006: Existing transaction is required when calling task flow ''{0}''

The above scenario illustrates the benefit of configuring the called bounded task flow
as follows:

• A data-control-scope value of shared

• Use Existing Transaction if Possible

This latter configuration means that the called bounded task flow creates a transaction
if the calling bounded task flow has not created a transaction.

Chapter 27
Managing Transactions in Task Flows

27-15

Another configuration option for a called bounded task that guarantees it creates its
own transaction is to configure it as follows:

• A data-control-scope value of isolated

• Use Existing Transaction if Possible

This causes the called bounded task flow to create its own transaction regardless of
the transaction options that you configure for the calling bounded task flow. The effect
is the same as if you set the called bounded task flow to use Always Begin New
Transaction.

What You May Need to Know About ADF Business Component
Database Connections and Task Flow Transaction Options

ADF Controller shares the ADF Business Component application modules' database
connections in an application that has more than one root application module (and
each application module has a database connection) where task flow transaction
options combine to share connections. That is, you configured a set of chained task
flows in your application that have a have a data-control-scope value of shared in
combination with the following transaction options:

• Always Begin New Transaction

• Always Use Existing Transaction

• Use Existing Transaction if Possible

When a user configures an ADF Controller to share a single transaction between
task flows, by default Oracle ADF manages the application module instances of the
various data controls as separate root application modules. These application modules
share a single database connection and each application module is considered as
an individual root application module that has its own unique configuration as defined
during design time.

This implementation helps to reduce the number of database connections that each
user creates and, as a result, makes the application more scalable. This is particularly
useful when you add task flows and root application modules to your application
through ADF Library JARs.

Users can override this default behavior and enforce nesting of the
application modules under a single root application module by setting the
oracle.adfm.useSharedTransactionForFrame property of the root application module
to false in the adf-config.xml file. In such case, the nested application modules
configuration settings will be based on the root application module configuration.
Since it is difficult to determine the root application module, the configuration
settings may be arbitrary. Hence, users must have a valid use case to set the
oracle.adfm.useSharedTransactionForFrame property to false.

A set of chained task flows is where task flows call other task flows so that your
application contains a chain with two or more task flows. For example, in Figure 27-2
the unbounded task flow UTF1 calls the bounded task flow BTF1 that in turn calls the
bounded task flow BTF2, and so on.

Chapter 27
Managing Transactions in Task Flows

27-16

Note:

Remember to configure your application's chained task flows to use a data-
control-scope value of isolated if you do not want root application modules
to share database connections.

However, you may want to configure different behavior where you want to have
separate root application modules connect to different data sources within the same
data model project. For example, you may want to show data from two different
database systems or you need to connect to two different schemas in the same
database.

To implement this last scenario (have the root application modules maintain their own
database connections), you set the transaction property's value to No Controller
Transaction (the default value) for the task flows in your application. This makes sure
that each root application module manages its own database connection in isolation
and that the ADF Controller does not manage the transaction behavior of the ADF
Business Components.

Reentering Bounded Task Flows
ADF task flows allow you to control the reentry to the bounded task flow. By setting
the value of the task-flow-reentry to reentry-allowed, reentry-not-allowed, or reentry-
outcome-dependent you can either allow users, not allow users, or allow users based
on the previous outcome of the bounded task flow to reenter the bounded task flow
when users click on the back button of the navigation window.

To deal with cases in which the end user clicks the back button to navigate back into
a bounded task flow that was already exited, you can specify task-flow-reentry
options for the bounded task flow. These options specify whether a page in the
bounded task flow can be reentered.

Upon reentry, bounded task flow input parameters are evaluated using the current
state of the application, not the application state existing at the time of the original
bounded task flow entry.

How to Set Reentry Behavior
You can set reentry behavior on a bounded task flow by specifying task-flow-reentry
options.

Before you begin:

It may be helpful to have an understanding of what reentry options you can configure
for a bounded task flow. For more information, see Reentering Bounded Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To set reentry behavior:

1. In the Applications window, double-click the bounded task flow.

Chapter 27
Reentering Bounded Task Flows

27-17

2. In the editor window, click the Overview tab.

3. In the overview editor, click the Behavior navigation tab.

4. In the Behavior page, choose one of the following from the Task Flow Reentry
dropdown list:

• reentry-allowed: Reentry is allowed on any view activity within the bounded
task flow.

• reentry-not-allowed: Reentry of the bounded task flow is not allowed. If you
specify reentry-not-allowed on a bounded task flow, an end user can still
click the browser back button and return to a page within the bounded task
flow. However, if the user does anything on the page such as clicking a button,
an exception (for example, InvalidTaskFlowReentry) is thrown indicating the
bounded task flow was reentered improperly. The actual reentry condition is
identified upon the submit of the reentered page.

You can set up an exception handler to display the exception and route control
flow in order to navigate to the default activity of the called bounded task flow.
If the bounded task flow was not called from another bounded task flow, a
normal web error is posted and handled as specified in the web.xml file.

• reentry-outcome-dependent: Reentry of a bounded task flow using the
browser back button is dependent on the outcome that was received when the
same bounded task flow was previously exited via task flow return activities.
If specified, any task flow return activities on the called bounded task flow
must also specify either reentry-allowed or reentry-not-allowed to define
outcome-dependent reentry behavior.

If you choose this option, the user can navigate to a task flow using a
back button based solely on how the user originally exited the task flow. For
example, a task flow representing a shopping cart can be reentered if the user
exited by canceling an order, but not if the user exited by completing the order.

How to Set Outcome-Dependent Options
You can set outcome-dependent options on bounded task flows that have specified the
reentry-outcome-dependent option, as described in How to Set Reentry Behavior .

Before you begin:

It may be helpful to have an understanding of what reentry options you can configure
for a bounded task flow. For more information, see Reentering Bounded Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To set outcome-dependent options:

1. In the Applications window, double-click the bounded task flow.

2. In the task flow diagram for the bounded task flow, select the task flow return
activity.

For information about adding a task flow return activity, see Using Task Flow
Return Activities .

3. In the Properties window, expand the General section and enter the name of a
literal outcome, for example, success or failure in the Name field.

Chapter 27
Reentering Bounded Task Flows

27-18

4. Expand the Behavior section and choose one of the following options in the
Reentry dropdown list:

• reentry-allowed: Reentry is allowed on any view activity within the bounded
task flow.

• reentry-not-allowed: Reentry of the bounded task flow is not allowed. If you
specify reentry-not-allowed on a bounded task flow, an end user can still
click the browser back button and return to a page within the bounded task
flow. However, if the user does anything on the page such as clicking a button,
an exception (for example, InvalidTaskFlowReentry) is thrown indicating the
bounded task flow was reentered improperly. The actual reentry condition is
identified upon the submit of the reentered page.

You can set up an exception handler to display the exception and route control
flow in order to navigate to the default activity of the called bounded task flow.
If the bounded task flow was not called from another bounded task flow, a
normal web error is posted and handled as specified in the web.xml file.

What Happens When You Configure a Bounded Task Flow for Reentry
JDeveloper updates the task flow's metadata with the configuration options that you
specify for reentry. The following example shows a task flow that has been configured
to allow reentry based on a specific outcome.

<task-flow-definition id="task-flow-definition1">
 <default-activity>view1</default-activity>
 <task-flow-reentry>
 <reentry-outcome-dependent/>
 </task-flow-reentry>
 <view id="view1">
 <page>/page1.jsf</page>
 </view>
 <task-flow-return id="taskFlowReturn1">
 <outcome>
 <name>taskFlowReturn1</name>
 <reentry-allowed/>
 </outcome>
 </task-flow-return>
</task-flow-definition>

At runtime, the following events occur to a task flow that is configured to allow reentry:

• The task flow is reentered if the user invokes a component that, in turn, invokes a
HTTP POST or GET method.

• The task flow's managed bean values in pageFlow scope are not restored to the
values they had when the task flow exited.

• If the reentered task flow defines input parameters, as described in Using
Parameters in Task Flows, their values are recreated using the current state of
the parent task flow at the time that the task flow is reentered.

Handling Exceptions in Task Flows
Exceptions to the normal flow of application activities can occur during ADF application
runtime. ADF task flows allow you to handle such exceptions. You can designate one

Chapter 27
Handling Exceptions in Task Flows

27-19

activity to handle exceptions in a bounded or unbounded task flow as an exception
handler.

During execution of a task flow, exceptions can occur that may require some kind of
exception handling, for example:

• A method call activity throws an exception.

• A custom method you have written as a task flow initializer or finalizer throws an
exception.

• A user is not authorized to execute the activity.

To handle exceptions thrown from an activity or caused by some other type of ADF
Controller error, you can designate one activity in a bounded or unbounded task flow
as an exception handler.

When a task flow throws an exception, control flow passes to the designated exception
handling activity. For example, the exception handling activity might be a view activity
that displays an error message. Alternatively, the activity might be a router activity that
passes control flow to a method based on an EL expression that evaluates the type of
exception. For example:

#{controllerContext.currentViewPort.exceptionData.class.name ==
'oracle.adf.controller.ControllerException'}

After control flow passes to the exception handling activity, flow from the exception
handling activity uses standard control flow rules. For example, you designate a router
activity as the exception handling activity. At runtime, the task flow passes control
to the exception handling activity (in this example, a router activity) in response to
an exception. In addition to designating the router activity as an exception handler,
you can define task flow control cases that the router invokes based on the type of
exception that it has to handle. This allows you to manage your end user's application
session gracefully when an exception occurs. See About Control Flows.

You can optionally specify an exception handler for both bounded and unbounded task
flows. Each task flow can have only a single exception handler. However, a task flow
called from another task flow can have a different exception handler from that of the
caller. In addition, a region on a page can have a different exception handler from
that of the task flow containing the page. The exception handler activity can be any
supported activity type, for example, a view or router activity.

If a bounded task flow does not have a designated exception handler activity, control
passes to an exception handler activity in a calling bounded task flow, if there is
a calling task flow and if it contains an exception handler activity. The exception is
propagated up the task flow stack until either an exception handler activity or the top-
level unbounded task flow is reached. If no exception handler is found, the exception is
propagated to the web container.

If a bounded task flow does have a designated exception handler activity, make sure
the exception handler activity leaves the application in a valid state after it handles an
exception. One way to do this is to redirect to a view activity in the same task flow after
the exception handler activity.

Other modules, such as ADF Model, also provide exception handling capabilities. In
certain scenarios this can determine the way that your application handles exceptions.
For example, a databound method activity is a method activity that has a page
definition and an EL expression with the following format:

#{bindings.somebindingname.execute}

Chapter 27
Handling Exceptions in Task Flows

27-20

where somebindingname is a method binding defined in the page definition.

An exception thrown by any type of binding is caught by ADF Model which calls the
reportException() method and stores the exception in the binding container. Later,
when the page renders, the error displays in the page.

When a method activity invokes a method binding, there is no page to display an error
that the exception raises because the exception occurs during navigation between two
pages. To make the application aware of an error, Oracle ADF rethrows the exception
so that it is caught by ADF Controller's exception handler mechanism that navigates to
an exception handler activity if one exists.

Keep this in mind, particularly if you decide to override methods, such as the
reportException() method, described in Customizing Error Handling, because in that
scenario both ADF Controller and ADF Model exception handlers will be called.

How to Designate an Activity as an Exception Handler
You can designate an exception handler activity for a bounded task flow running as
an ADF region. If an exception occurs in the bounded task flow and it is not handled
by the task flow's exception handler, the exception is not propagated up the task flow
stack of the parent page. Instead, it becomes an unhandled exception.

Before you begin:

It may be helpful to have an understanding of what exception handling options you
can configure for a task flow. For more information, see Handling Exceptions in Task
Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To designate an activity as an exception handler for a task flow:

1. In the Applications window, double-click the task flow where you want to designate
an activity as an exception handler.

2. In the task flow diagram, right-click the activity and choose Mark Activity >
Exception Handler.

A red exclamation point is superimposed on the activity in the task flow to indicate
that it is an exception handler. Figure 27-7 shows an example.

Figure 27-7 Example of an Activity Designated as an Exception Handler

3. To unmark the activity, right-click the activity in the task flow diagram, and choose
Unmark Activity > Exception Handler.

If you mark an activity as an exception handler in a task flow that already has a
designated exception handler, the old handler is unmarked.

Chapter 27
Handling Exceptions in Task Flows

27-21

What Happens When You Designate an Activity as an Exception
Handler

After you designate an activity to be the exception handling activity for a task flow,
JDeveloper updates the task flow metadata with an <exception-handler> element
that specifies the ID of the activity, as shown in Example 27-2.

Example 27-2 <exception-handler> element

<exception-handler>activityID</exception-handler>

How to Designate Custom Code as an Exception Handler
Rather than designate a task flow activity as the activity to invoke, you can write
custom code to invoke when a task flow throws an exception. This requires you to:

• Write a Java class that extends the class ExceptionHandler from the following
package:

oracle.adf.view.rich.context.ExceptionHandler

• Register the Java class that you write as a service in the .adf\META-INF directory
of your Fusion web application

The following example shows custom code that checks if an exception thrown by a
task flow corresponds to a particular type of error message (ADF_FACES-30108). If it
does, the custom code redirects the task flow to the faces/SessionExpired.jsf page.

package oracle.summit.frmwkext;

import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.event.PhaseId;
import oracle.adf.view.rich.context.ExceptionHandler;

public class CustomExceptionHandler extends ExceptionHandler {

 public CustomExceptionHandler() {
 super();
 }

 public void handleException(FacesContext facesContext, Throwable throwable,
 PhaseId phaseId) throws Throwable {

 String error_message;
 error_message = throwable.getMessage();

 if (error_message != null &&
 error_message.indexOf("ADF_FACES-30108") > -1) {
 ExternalContext ectx = facesContext.getExternalContext();
 ectx.redirect("faces/SessionExpired.jsf");
 }

 else {
 //Code to execute if the if condition is not met
 throw Throwable
 }

Chapter 27
Handling Exceptions in Task Flows

27-22

 }
}

For information about the APIs that you can use to write custom code, see the
following reference documents:

• Java API Reference for Oracle ADF Controller

• Java API Reference for Oracle ADF Faces

Before you begin:

It may be helpful to have an understanding of what exception handling options you
can configure for a task flow. For more information, see Handling Exceptions in Task
Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To designate custom code as an exception handler:

1. In the .adf\META-INF directory of your application, create a directory named
services so that you have the following directory path:

application_root\.adf\META-INF\services

where application_root refers to the root directory of application.

2. Create a text file named oracle.adf.view.rich.context.ExceptionHandler in the
services folder.

3. Write the package name and class name of the custom code
that you wrote to handle exceptions in the text file named
oracle.adf.view.rich.context.ExceptionHandler.

For example, write code similar to the following:

oracle.summit.frmwkext.CustomExceptionHandler

4. Save and close the text file.

What Happens When You Designate Custom Code as an Exception
Handler

At runtime, the task flow passes control to the custom code that you specified if the
task flow throws an exception.

What You May Need to Know About Handling Exceptions During
Transactions

Designate an exception handling activity for a bounded task flow that is enabled to
run as a transaction. A Fusion web application attempts to commit a transaction if
you set commit as the value for a task flow return activity's End Transaction property
on a bounded task flow that runs as a transaction. If an exception occurs when
the Fusion web application attempts to commit a transaction, the exception handling
activity receives control and provides the end user with an opportunity to correct the
exception. You can use the exception handling activity (for example, a view activity)
to display a warning message to an end user with information about how to correct

Chapter 27
Handling Exceptions in Task Flows

27-23

the exception and how to recommit the transaction. For information about enabling
a bounded task flow as a transaction and setting commit as a value for the End
Transaction property, see How to Enable Transactions in a Bounded Task Flow .

What You May Need to Know About Handling Validation Errors
For validation errors on a JSF page, you can rely on standard JSF to attach
validator error messages to specific components on a page or to the whole page.
A component-level validator typically attaches an error message inline with the specific
UI component. There is no need to pass control to an exception handler activity.

In addition, your application should define validation logic on data controls that are
executed during the Validate Model Updates phase of the JSF lifecycle. In this
way, data errors are found as they are submitted to the server without waiting until
attempting the final commit.

Validations done during the Validate Model Updates phase typically do not have direct
access to the UI components because the intention is to validate the model after
the model has been updated. These validations are often things like checking to see
whether dependent fields are synchronized. In these cases, the error message is
usually attached to the whole page, which this logic can access.

You should attach errors detected during the Validate Model Updates phase to the
JSF page, and call FacesContext.renderResponse(). This signals that following this
phase, the current (submitting) page should be rendered showing the attached error
messages. There is no need to pass control to an exception handler activity.

For more information, see Implementing Validation and Business Rules
Programmatically.

Configuring Your Application to Use Save Points
To use save points with ADF task flows, you need to define a value for the
<savepoint-datasource> element in the adf-config.xml file. This element is used
to specify the JNDI name of the data source containing the database table of
the save points. To create this database table, you need to run the SQL script
adfc_create_save_point_table.sql. To delete the expired save points, you need to run
the SQL script adfc_cleanup_save_point_table.sql.

Before you can add save points to a task flow, as described in Using Save Points in
Task Flows, and configure related functionality, you need to make sure that the Fusion
web application allows save points. To do this, you define a value for the <savepoint-
datasource> element in the adf-config.xml file to specify the JNDI name for the data
source that contains the save points' database table. You may also need to run a SQL
script (adfc_create_save_point_table.sql), as described in What You May Need to
Know About the Database Table for Save Points, to create the database table that
stores save points. Once your Fusion web application starts using save points, you
can use another SQL script (adfc_cleanup_save_point_table.sql) to delete expired
save points.

How to Configure Your Fusion Web Application to Use Save Points
You define a value for the <savepoint-datasource> element in your application's
adf-config.xml file to specify the JNDI name for the data source that contains the

Chapter 27
Configuring Your Application to Use Save Points

27-24

save points' database table. Optionally, you can also specify an expiration time for
save points.

Before you begin:

It may be helpful to have an understanding of what save point options you can
configure for a task flow. For more information, see Configuring Your Application to
Use Save Points.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To configure your Fusion web application to allow save points:

1. In the Application Resources panel, expand the Descriptors and ADF META-INF
nodes, and then double-click adf-config.xml.

2. In the overview editor, click the Controller navigation tab and then expand the
Savepoints section to write a value for the Data Source property that specifies the
JNDI name for the data source that contains the database table for save points.

For example, write the following:

java:comp/env/jdbc/Connection1DS

where Connection1 is the JDeveloper connection name.

3. Optionally, write a value in seconds for the Expiration property to specify the time
between when a task flow creates a save point and when the save point manager
removes it. The default value is 86400 seconds.

For more information, see What You May Need to Know About the Time-to-Live
Period for a Save Point .

4. Save the adf-config.xml file.

What Happens When You Configure a Fusion Web Application to Use
Save Points

JDeveloper generates an entry, similar to the following example, in the adf-
config.xml file to specify the JNDI name for the data source that contains the save
points' database table.

<adf-controller-config xmlns="http://xmlns.oracle.com/adf/controller/config">
 ...
 <savepoint-datasource>
 java:comp/env/jdbc/Connection1DS
 </savepoint-datasource>
 <savepoint-expiration>
 86399
 </savepoint-expiration>
 </adf-controller-config>

For more information about the adf-config.xml file, see adf-config.xml.

Chapter 27
Configuring Your Application to Use Save Points

27-25

What You May Need to Know About the Database Table for Save
Points

A database table named ORADFCSAVPT stores save points. If this database table does
not exist, it is created the first time that a save point is created if your Fusion web
application has the necessary permissions to create a database table. If your Fusion
web application does not have the necessary permissions, you or an administrator
with the necessary permissions can use SQL scripts to create and maintain the
ORADFCSAVPT database table. These SQL scripts are:

• adfc_cleanup_save_point_table.sql

Each save point in the ORADFCSAVPT database table has an expiration date. Use
this script to delete save points that have passed their expiration date.

• adfc_create_save_point_table.sql

Use this script to create the ORADFCSAVPT database table that stores save points.

You can find these SQL scripts in the following directory of your JDeveloper
installation:

jdev_install\oracle_common\common\sql

Using Save Points in Task Flows
The ADF task flow allows you to save the current state of the application and restore
the state for a later use by using save point. To invoke these save points you need to
add a method call activity in the bounded task flow.

You can configure a task flow to capture the state of a Fusion web application
at a particular instance creating what is called a save point. This allows you to
save application state if, for example, a user leaves a page without finalizing it. The
application state can be restored at a later point.

Table 27-2 describes what information a save point captures.

Table 27-2 Saved Application State Information

Saved State
Information

Description

User Interface
State

UI state of the current page, including selected tabs, selected checkboxes, selected table rows,
and table column sort order.

This state assumes the end user cannot select the browser back button on save point restore.

Chapter 27
Using Save Points in Task Flows

27-26

Table 27-2 (Cont.) Saved Application State Information

Saved State
Information

Description

Managed Beans State information saved in several possible memory scopes, including session and page flow
scope. The managed beans must be serializable in order to be saved. If you have page
flow scope beans that are not serializable and you attempt to create a save point, a runtime
exception occurs.

Request scope is not supported since its lifespan is a single HTTP request and its lifespan
cannot be used to store cross request application state.

Save points will not save and restore application-scoped managed beans since they are not
passivated in failover scenarios. Therefore, the application is always responsible for making
sure that all required application-scoped state is available.

Potential naming conflicts for managed beans already existing within the session scope at
restore time will not occur because multiple managed beans using the same name should not
be implemented within an application.

Navigation State Task flow call stack, which ADF Controller maintains as one task flow calls another at runtime.

The task flow call stack tracks where the end user is in the application and the navigation path
for getting there. The task flow stack also identifies the starting point of any persisted data
transactions originated for the end user.

ADF Model State Fusion web applications use ADF Model to represent the persisted data model and business
logic service providers. The ADF Model holds any data model updates made from when the
current bounded task flow begins. The model layer determines any limits on the saved state
lifetime. For more information, see SeeUsing State Management in a Fusion Web Application.

You add a method call activity to a bounded task flow that invokes a createSavePoint
method to create save points. Later, you use a save point restore activity to restore
application state and data associated with the created save points.

The same save point can be used if a user repeatedly performs a save for later on
a task flow instance that executes in one session within the same browser window.
The new save point overwrites the existing save point when a user performs a save
for later following navigation from page to page in a task flow. For information about
restoring a save point, see How to Restore a Save Point.

You can specify the createSavePoint method exposed by the currentViewPort node
of ADF Controller Objects in the Expression Builder. Alternatively, you can write a
custom method that updates the save point with the values of attributes you specify in
your custom method, as illustrated in the following example.

package viewController;

import java.io.Serializable;

import oracle.adf.controller.ControllerContext;
import oracle.adf.controller.savepoint.SavePointManager;

public class SaveForLater implements Serializable {
 public SaveForLater() {
 super();
 }

 public String saveTaskFlow() {
 ControllerContext cc = ControllerContext.getInstance();
 if (cc != null) {
 SavePointManager mgr = cc.getSavePointManager();

Chapter 27
Using Save Points in Task Flows

27-27

 if (mgr != null) {
 String id = mgr.createSavePoint();
 System.out.println("Save point is being set " + id);
 ...

The SavePointListener interface exposes methods that notify clients when save point
events occur. The following package contains the SavePointListener interface:

oracle.adf.controller.savepoint

Note:

All save points created inside a bounded task flow are deleted when the
bounded task flow exits.

How to Add a Save Point to a Task Flow
You drag and drop a method call activity to the task flow diagram and configure it to
invoke the createSavePoint method or to invoke a custom method if you created one.

Before you begin:

It may be helpful to have an understanding of what save point options you can
configure for a task flow. For more information, see Using Save Points in Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

You will need to complete this task:

Confirm that your Fusion web application leaves the value of the jbo.locking.mode
property set to the default value optimistic. This is required if you use a save
point in a Fusion web application. The value pessimistic causes an old session to
lock until the session has timed out. In pessimistic mode, if you run an application
and change data without committing changes to the database, you may get an
error when you create a save point and try to restore it at a later point. For
information about the jbo.locking.mode property, see How to Confirm That Fusion
Web Applications Use Optimistic Locking.

To add a save point to a task flow:

1. In the Applications window, double-click the bounded task flow where you want to
add a save point.

2. In the ADF Task Flow page of the Components window, from the Component
panel, in the Activities group, drag and drop a Method Call onto the diagram.

3. In the Properties window, expand the General node and write an EL expression
in the Method field to specify the save point method that the method call activity
invokes. If needed, select Method Expression Builder in the dropdown menu
that you invoke from the icon that appears when you hover over the property field.

If you use the Expression Builder to specify the createSavePoint method
exposed by the currentViewPort node of ADF Controller Objects, the resulting
EL expression is similar to the following:

Chapter 27
Using Save Points in Task Flows

27-28

#{controllerContext.currentViewPort.createSavePoint}

4. Use a control flow to connect the method call activity with other activities in the
bounded task flow.

For more information, see How to Add a Control Flow Rule to a Task Flow.

5. Optionally, configure save point options in the Fusion web application's adf-
config.xml file to determine, for example, if implicit save points can be created
for the application.

For more information, see How to Enable Implicit Save Points.

What Happens When You Add Save Points to a Task Flow
JDeveloper generates entries similar to those shown in the following example in
the task flow's source file when you configure a method call activity to invoke the
createSavePoint method.

<method-call id="methodCall1">
 <method id="__3">#{controllerContext.currentViewPort.createSavePoint}</
method>
</method-call>

How to Restore a Save Point
Use the save point restore activity to restore a previously persisted save point for
an application. The save point restore activity uses the save point that was originally
created by invoking the createSavePoint method to identify the save point to restore.

You can obtain a list of the current persisted save points with createSavePoint.
However, ADF Controller does not determine which save points to restore. A user
must select the save point from a list or the application developer must select it
programmatically. The savepoint ID is then passed to a save point restore activity to
perform the restore.

Before you begin:

It may be helpful to have an understanding of what save point options you can
configure for a task flow. For more information, see Using Save Points in Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To add a save point restore activity to a bounded or unbounded task flow:

1. In the Applications window, double-click the task flow where you want to add the
save point restore activity.

2. In the ADF Task Flow page of the Components window, from the Components
panel, in the Activities group, drag and drop a Save Point Restore onto the
diagram.

3. In the Properties window, expand the General section and write an EL expression
in the Save Point ID field that, when evaluated, retrieves the save point that was
originally created when the createSavePoint method was invoked.

If you use the Expression Builder to specify the getSavePoint method of ADF
Controller Objects, the resulting EL expression is similar to the following:

Chapter 27
Using Save Points in Task Flows

27-29

#{SessionScope.myBean.savepointID}

What Happens When You Restore a Save Point
JDeveloper generates entries similar to those in the following example in the task
flow's source file when you add a save point restore activity that gets a save point ID.

<save-point-restore id="savePointRestore1">
 <save-point-id id="__4">#{sessionScope.myBean.savepointID}</save-point-id>
</save-point-restore>

How to Use the Save Point Restore Finalizer
When using the save point restore activity, you may need to invoke application-specific
logic as part of restoring the application state. You can write an EL expression for the
Save Point Restore Finalizer property of a bounded task flow that specifies a finalizer
method. The bounded task flow invokes the specified method after the task flow's state
has been restored. It performs any necessary logic to make sure that the application's
state is correct before proceeding with the restore.

Before you begin:

It may be helpful to have an understanding of what save point options you can
configure for a task flow. For more information, see Using Save Points in Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To use the save point restore finalizer:

1. In the Applications window, double-click the bounded task flow that you want to
use a save point restore finalizer.

2. In the Structure window, right-click the node for the bounded task flow (task-flow-
definition) and choose Go to Properties.

3. In the Properties window, expand the General section, and select Expression
Builder in the dropdown list that you invoke from the icon that appears when you
hover over the Save Point Restore Finalizer property field.

4. Write an EL expression that specifies the finalizer method to invoke.

What Happens When a Task Flow Invokes a Save Point Restore
Finalizer

JDeveloper generates entries similar to those in the following example in the task
flow's source file when you write an EL expression for the Save Point Restore Finalizer
property.

<task-flow-definition id="task-flow-definition1">
 <save-point-restore-finalizer id="__2">#{sessionScope.MyBean.invokeFinalizer}
 </save-point-restore-finalizer>
 </task-flow-definition>

Chapter 27
Using Save Points in Task Flows

27-30

How to Enable Implicit Save Points
A save point in a task flow can be categorized as implicit or explicit. An explicit save
point requires an end user action before a bounded or unbounded task flow creates a
save point. For example, an end user clicks a button that invokes a method call activity
that, in turn, creates a save point.

An implicit save point can only originate from a bounded task flow. It includes
everything from when the originating task flow creates a save point. It occurs when
data is saved automatically because:

• A session times out due to end user inactivity.

• An end user logs out without saving the data.

• An end user closes the only browser window, thus logging out of the application.

• An end user navigates away from the current application using control flow rules
(for example, uses a link component to go to an external URL) and having
unsaved data.

Enabling implicit save points requires you to add an element to your Fusion web
application's adf-config.xml file and to make the bounded task flow critical.

You configure the adf-config.xml file in your application and the bounded task flow(s)
for which you want to create implicit save points. Enabling implicit save points involves
a performance cost because your Fusion web application has to do extra work that it
would otherwise not do. This is why you have to explicitly enable implicit save points in
your application and specify the task flows to which it applies.

Before you begin:

It may be helpful to have an understanding of what save point options you can
configure for a task flow. For more information, see Using Save Points in Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To enable implicit save points:

1. In the Application Resources panel, expand the Descriptors and ADF META-INF
nodes, and then double-click adf-config.xml.

2. In the overview editor, click the Controller navigation tab and then expand the
Savepoints section and select the Enable Implicit Savepoints checkbox.

JDeveloper generates the following entry in the adf-config.xml file:

<adf-controller-config xmlns="http://xmlns.oracle.com/adf/controller/config">
 ...
 <enable-implicit-savepoints>true</enable-implicit-savepoints>
</adf-controller-config>

For more information about the adf-config.xml file, see adfc-config.xml.

3. In the Applications window, double-click the bounded task flow.

4. In the editor window, click the Overview tab.

Chapter 27
Using Save Points in Task Flows

27-31

5. In the overview editor, click the Behavior navigation tab and select the Critical
checkbox.

What You May Need to Know About Enabling Implicit Save Points
If multiple windows are open when the implicit save point is created, a different save
point is created for each browser window. This includes everything from the root view
port of the browser window on down. You can write an EL expression for the Method
property of a method call activity to retrieve the list of implicit save points using the
savePointManager node under ADF Controller Objects. The resulting EL expression is
similar to the following:

ControllerContext.savePointManager.listSavePointIds

Implicit save points are generated only if a critical task flow is present in any of the
page flow stacks for any view port under the current root view port. An implicit save
point is not generated if the request is for an ADF Controller resource, such as:

• Task flow call activity

• Task flow return activity

• Save point restore activity

• A dialog

Implicit save points are deleted when the task flow at the bottom of the stack
completes or a new implicit save point is generated, whichever comes earlier.

What You May Need to Know About the Time-to-Live Period for a
Save Point

An application-level property (savepoint-expiration) that is defined in the adf-
config.xml file determines the period between when a task flow creates a save point
and when the save point manager removes it (time-to-live period). The default value is
86400 seconds (24 hours).

You can change the time-to-live period for individual save points by calling the
setSavePointTimeToLive method on an instance of SavePointManger from the
following package:

oracle.adf.controller.savepoint

An instance of SavePointManager can be obtained as follows:

SavePointManager mgr = ControllerContext.getInstance().getSavePointManager();

The following example shows the syntax for the setSavePointTimeToLive method.

 public void setSavePointTimeToLive(long timeInSeconds) {
 }

If you supply a value for the setSavePointTimeToLive method argument
(timeInSeconds) equal to or less than zero, the default value is used (86400).

The SavePointManger defines methods that help you manage save points. For
example, it defines getSavePoint and removeSavePoint methods that can retrieve
and remove save points. Note that the removeSavePoint method does not get

Chapter 27
Using Save Points in Task Flows

27-32

called automatically when a save point expires. You must explicitly call the
removeSavePoint method to remove save points (including expired save points) from
the ORADFCSAVPT database table. Alternatively, Oracle ADF provides a SQL script
(adfc_cleanup_save_point_table.sql) that removes expired save points. For more
information, see What You May Need to Know About the Database Table for Save
Points.

Consider calling the setSavePointTimeToLive method at the same time that you call
the method to create save points. For more information about the SavePointManger,
see the Java API Reference for Oracle ADF Controller.

Minimizing the Number of Active Root View Ports in an
Application

The ADF task flow allows you to limit the number of active root view ports in an
application by setting a value for the Maximum Root View Ports property (<max-root-
view-ports>) in the adf-config.xml of the application. Setting the limit may prevent the
denial-of-service attacks. Setting the value to -1 allows unlimited view ports; however,
the default value is 20.

You can minimize the number of active root view ports in an application by specifying
a value for the Maximum Root View Ports property (<max-root-view-ports>) in the
application's adf-config.xml file. This limits the memory footprint of the application
and can help to prevent denial-of-service attacks.

The default value is 20. The lowest permissible value is 5. To prevent accidental
misuse, the application ignores any value below 5 and enforces a value of 5.

Specify a value of -1 if you want to disable this feature and allow an unlimited number
of active root view ports in the application.

How to Minimize the Number of Active Root View Ports
You specify a value for the <max-root-view-ports> property in the application's adf-
config.xml file.

Before you begin:

It may be helpful to have an understanding of what <max-root-view-ports> options
you can configure. For more information, see Using Save Points in Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To minimize the number of active root view ports:

1. With the Fusion web application open in JDeveloper, open the Application
Resources pane in the Applications window.

2. Expand Descriptors, then expand ADF META-INF.

3. Right-click adf-config.xml and choose Open from the context menu.

4. On the Controller page of the overview editor, write a value for the Maximum Root
View Ports property to specify the maximum number of active root view ports for
the application.

Chapter 27
Minimizing the Number of Active Root View Ports in an Application

27-33

5. Save the adf-config.xml file.

What Happens When You Minimize the Number of Active Root View
Ports

JDeveloper generates an entry, similar to that illustrated in the following example, in
the adf-config.xml file to specify the maximum number of active root view ports for
the application.

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:config="http://xmlns.oracle.com/bc4j/configuration"
 xmlns:adf="http://xmlns.oracle.com/adf/config/properties">
 ...
 <adf-controller-config xmlns="http://xmlns.oracle.com/adf/controller/config">
 <max-root-view-ports>
 19
 </max-root-view-ports>
 </adf-controller-config>
</adf-config>

At runtime, once the specified root view port limit is reached, any request to
create a new root view port automatically expires the least-recently-used root view
port first. Attempts to subsequently use the expired root view port result in a
ViewExpiredException.

Using Train Components in Bounded Task Flows
By integrating a train with an ADF task flow, you can allow users to go through a
multistep process. The train and trainButtonBar components allow you to create a user
interface that can render the train functionality in the task flow view activities. This
feature allows you to branch out using router activities and control flow cases in the
task flow.

You can create a task flow as a train. This allows you to create a user interface where
you navigate end users through a multistep process. ADF Faces provides the user
interface components that render the train functionality in the task flow view activities
that appears to the end user. These components are the train and trainButtonBar
components. Figure 27-8shows a runtime view of the edit-customer-task-flow-
definition.xml task flow from the Summit ADF task flow sample application. This
task flow uses the train and trainButtonBar components to navigate an end user
through the task of editing a customer's data.

Chapter 27
Using Train Components in Bounded Task Flows

27-34

Figure 27-8 Train and Train Button Bar Components in a Task Flow

The train component in Figure 27-8 renders three train stops. Each stop corresponds
to a page fragment in the edit-customer-task-flow-definition.xml task flow where
the end user can enter and review information to complete the task of editing a
customer's data. Figure 27-8 shows the Address train stop where the end user enters
an address for postage. The other stops are:

• General Information

• Comments

The Train Button Bar component, also shown in Figure 27-8, is optional and provides
additional controls to navigate between the train stops. This component can be used in
conjunction with the train component to provide multiple ways to navigate through train
stops.

Bounded task flows and task flow templates can make use of these train components
if you select the Create Train checkbox on the dialogs provided by JDeveloper to
create a bounded task flow or a task flow template. A bounded task flow or a task flow
template can render one train only. If you want to use multiple trains, create a separate
bounded task flow or task flow template for each train.

Figure 27-9 displays an extract from the design-time view of the task flow where you
can see the view activities that render at runtime as train stops in Figure 27-8.

The dotted lines connecting the view activities indicates the sequence in which the
end user navigates between the view activities when the view activities render as train
stops.

Figure 27-9 Task Flow Configured to Render as a Train

JDeveloper displays a context menu with options to change the position of the activity
when your right-click a view activity or task flow call activity that is configured as a train
stop, as illustrated in Figure 27-10.

Chapter 27
Using Train Components in Bounded Task Flows

27-35

Figure 27-10 Context Menu to Edit a Train Stop

Configure a task flow call activity as a train stop when you want to group a number
of activities as a train stop or call a child train stop. For example, there are cases
when other task flow activities, such as router and method call activities, should be
considered part of a train stop along with the corresponding view activity. A method
call activity might need to precede a view activity for initialization purposes. When
grouped this way, the activities can be performed as a set each time the train stop is
visited. See Grouping Task Flow Activities to Execute Between Train Stops .

Branching using router activities and control flow cases is supported on the task flow
diagram containing the train, as well as in child bounded task flows called from the
train.

Creating a Task Flow as a Train
You need to configure a bounded task flow to use train components before you can
implement the type of functionality discussed in Using Train Components in Bounded
Task Flows. Use one of the methods outlined in the following list to configure a
bounded task flow to use train components:

• Select the Create Train checkbox in the dialog that appears when you create a
new bounded task flow or task flow template.

For more information, see Creating a Task Flow or Creating Task Flow Templates .

• Right-click an existing bounded task flow in the diagram and choose Train >
Create Train.

• Open an existing bounded task flow in the overview editor, click the Behavior
navigation tab and select the Train checkbox.

Once you have configured the bounded task flow to use train components, you drag
and drop the task flow activities that you want to render in the train to the diagram in
the bounded task flow.

How to Create a Train in a Bounded Task Flow
You drag and drop the task flow activities that you want to render in the train to the
diagram for the bounded task flow.

Chapter 27
Using Train Components in Bounded Task Flows

27-36

Before you begin:

It may be helpful to have an understanding of the configuration options that you can
configure for a train. For more information, see Creating a Task Flow as a Train .

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

You will need to complete this task:

Configure the bounded task flow to use train components, as described in Using
Train Components in Bounded Task Flows.

To create a train in a bounded task flow:

1. In the Applications window, double-click the bounded task flow or task flow
template where you want to render train stops.

2. Drag each view activity or JSF page you want to include in the train to the diagram
for the bounded task flow.

• If you drag a JSF page, JDeveloper automatically adds a view activity to the
diagram. You drag a JSF page that you want to include from the Applications
window to the diagram for the bounded task flow.

• If you drag a view activity to the diagram, you can double-click it to invoke the
dialog to create a new JSF page. To drag a view activity, in the ADF Task Flow
page of the Components window, from the Component panel, in the Activities
group, drag and drop a View onto the diagram.

You can reorder the train stop sequence at a later point. For more information, see
Disabling the Sequential Behavior of Train Stops in a Train.

3. In the diagram for the bounded task flow, double-click each view activity that you
want to define as a train stop.

A dialog appears to create a new JSF page if the view activity is not yet associated
with a JSF page. Use the dialog to create a new JSF page.

If the view activity is already associated with a JSF page, the JSF page opens.

4. In the ADF Faces page of the Components window, from the General Controls
panel, in the Location group, drag a Train, and, optionally, a Train Button Bar
component and drop it on the JSF page.

You must manually add each Train and Train Button Bar component that you want
to appear in a task flow view activity. Consider using a page template. For more
information, see Using Page Templates.

What Happens When You Create a Task Flow as a Train
JDeveloper writes the <train/> element to the source file for the bounded task flow
or task flow template that you enable as a train, using one of the methods outlined in
Creating a Task Flow as a Train .

JDeveloper writes entries to the JSF page where you add train and trainButtonBar
components. The following example shows code snippets from the GeneralInfo.jsff
page fragment in the Summit ADF task flow sample application. Both types of train
component bind to instances of the train model object (trainModel).

Chapter 27
Using Train Components in Bounded Task Flows

27-37

 <af:train
value="#{controllerContext.currentViewPort.taskFlowContext.trainModel}"
 id="t1"/>
 ...
 <af:trainButtonBar
value="#{controllerContext.currentViewPort.taskFlowContext.trainModel}"
 id="tbb1"/>

Dotted lines appear between each view activity that you add to the bounded task flow
and define as a train stop, as illustrated in Figure 27-9. The dotted lines indicate the
order in which the bounded task flow navigates through the train stops. JDeveloper
defines the sequence in the order that you add the view activities to the bounded
task flow. You can change the sequence. For more information, see Disabling the
Sequential Behavior of Train Stops in a Train. You can also skip a train stop. For more
information, see Configuring a Train to Skip a Train Stop.

Invoking a Child Bounded Task Flow from a Train Stop
An alternative approach to grouping task flow activities in one train stop, as described
in Grouping Task Flow Activities to Execute Between Train Stops , is to create another
bounded task flow as a train that you invoke from your current bounded task flow. This
bounded task flow is referred to as a child bounded task flow. You configure the
parent bounded task flow to invoke it using a task flow call activity. To implement this
functionality, you:

• Create a child bounded task flow as a train

• Add the task flow activities that you want end users to access from the train stop
on the parent bounded task flow to the child bounded task flow

• Designate a task flow call activity as a train stop in the parent bounded task flow to
invoke the child bounded task flow

• Add a task flow return activity to the child bounded task flow that returns control to
the parent bounded task flow once the child bounded task flow finishes execution

Task flow activities in the child bounded task flow execute together regardless of
whether the end user visits the train stop for the first time or returns at a later point.
Nonview task flow activities in the child bounded task flow typically precede the view
activity in the child bounded task flow's flow control. You can invoke a child bounded
task flow from a bounded task flow that itself is a child to another bounded task flow.

How to Invoke a Child Bounded Task Flow From a Train Stop
You create a bounded task flow as a train, add task flow activities to it, and configure a
task flow call activity on the parent bounded task flow to invoke it.

Before you begin:

It may be helpful to have an understanding of the configuration options that you
can configure for a child bounded task flow that you invoke from a train. For more
information, see Invoking a Child Bounded Task Flow from a Train Stop.

You may also find it helpful to read about the additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

You will need to complete this task:

Chapter 27
Using Train Components in Bounded Task Flows

27-38

Create a bounded task flow as a train. This is a child bounded task flow that is to
be invoked from a task flow call activity in the parent task flow. Add the task flow
activities that you require to it. For more information, see Creating a Task Flow as a
Train .

To invoke a child bounded task flow from a train stop:

1. In the Applications window, double-click the bounded task flow that is the child
bounded task flow configured as a train.

2. In the ADF Task Flow page of the Components window, from the ADF Task
Flow panel, in the Activities group, drag and drop a Task Flow Return onto the
diagram.

3. Configure the task flow return activity to return control to the parent task flow when
the child bounded task flow finishes execution.

For more information, see Using Task Flow Return Activities .

4. In the Applications window, double-click the parent bounded task flow that is going
to invoke the child bounded task flow.

For more information, see Creating a Task Flow as a Train .

5. In the ADF Task Flow page of the Components window, from the ADF Task Flow
panel, in the Activities group, drag and drop a Task Flow Call onto the diagram.

6. Configure the task flow call activity to invoke the child bounded task flow that you
configured in Steps 1 to 3.

For more information, see Using Task Flow Call Activities.

Grouping Task Flow Activities to Execute Between Train Stops
You can group task flow activities together to form a single train stop. For example, a
train stop that renders as Address at runtime might group together the following task
flow activities:

• defineAddress view activity

• createAddress method call activity

• addressDetails view activity

Each time a user visits the runtime Address train stop, the task flow would provide
access to the task flow activities listed previously. The defineAddresses view activity
renders the train stop and the associated defineAddresses.jsff page fragment.
The defineAddresses.jsff page fragment, in turn, exposes a button to invoke the
createAddress method call activity. This method call activity validates user input in
the Address page and defines an outcome that (optionally) passes control to the
addressDetails view activity. The addressDetails view activity renders the Address
Information page at runtime where an end user may choose to enter additional
addresses.

Chapter 27
Using Train Components in Bounded Task Flows

27-39

Figure 27-11 Task Flow Activities Grouped into One Train Stop

The train considers all task flow activities that lead from the first nonview activity
through the next view activity to be part of the train. Make sure that all task flow
activities, except for view and task flow call activities, for the train stop follow the view
or task flow call activity that you define as a train stop.

You can also group task flow activities to execute between train stops.
Figure 27-12 shows a possible configuration where a method call activity
(doSomethingBeforePage2) invokes before control flow passes to page2. The
callMethodBeforePage2 wildcard control flow rule passes control to the
doSomethingBeforePage2 method call activity. This method call activity defines a fixed
outcome (continue) that passes control to the next train stop (page2) in the train.

Figure 27-12 Method Call Activity Between Train Stops

Chapter 27
Using Train Components in Bounded Task Flows

27-40

Disabling the Sequential Behavior of Train Stops in a Train
By default, train stops are sequential. This means end users can select a train stop
only after visiting the previous train stop in the train. Figure 27-13 shows a train
component that a registration task flow renders. End users cannot visit the Payment
options and Review train stops until they first visit the Address train stop. All train
stops in this train are sequential.

Figure 27-13 Sequential Train Stops in a Task Flow

You can change this default behavior (make a train stop nonsequential) by configuring
the view activity that renders the train stop to make it nonsequential.

How to Disable the Sequential Behavior of a Train
You write a value for the task flow view activity's sequential property that evaluates to
false at runtime.

Before you begin:

It may be helpful to have an understanding of the configuration options that you can
configure for a train. For more information, see Using Train Components in Bounded
Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To disable the sequential behavior of a train stop:

1. In the Applications window, double-click the bounded task flow containing the view
activity that renders the train stop.

2. In the diagram for the bounded task flow, select the view activity.

3. In the Properties window, expand the Train Stop section and write a value in the
Sequential field to determine if the train stop is sequential or nonsequential.

Write false or write an EL expression that resolves to false at runtime to make
the train stop nonsequential. For example, write an EL expression similar to the
following:

#{myTrainModel.isSequential}

What Happens When You Disable the Sequential Behavior of a Train Stop
JDeveloper writes an entry to the source file for the bounded task flow, as illustrated in
the following example.

<view id="paymentOptionDetails">
 <page>/account/paymentOptionDetails.jsff</page>

Chapter 27
Using Train Components in Bounded Task Flows

27-41

 <train-stop id="__1">
 <sequential>#{myTrainModel.isSequential}</sequential>
 </train-stop>
</view>

Figure 27-14 shows the corresponding runtime view when the value specified for
sequential evaluates to false. End users can now navigate directly to payment
options by clicking the Payment options train stop.

Figure 27-14 Train with a Nonsequential Train Stop

Changing the Label of a Train Stop
You can configure a train stop to display a label that you define. The label that you
define can be a static value or a value in a resource bundle that you reference using
an EL expression, for example. For more information about using localized strings,
see the "Internationalizing and Localizing Pages" chapter of Developing Web User
Interfaces with Oracle ADF Faces.

How to Change the Label of a Train Stop
You change the label of a train stop by configuring a value for the view activity's
Display Name property.

Before you begin:

It may be helpful to have an understanding of the configuration options that you can
configure for a train. For more information, see Using Train Components in Bounded
Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To change the label of a train stop:

1. In the Applications window, double-click the bounded task flow containing the view
activity that renders the train stop.

2. In the diagram for the bounded task flow, select the view activity.

3. In the Properties window, expand the Description section and write a value in the
Display Name to specify the label that the train stop renders at runtime.

Write a literal value or write an EL expression that references a value in a resource
bundle to render at runtime.

Chapter 27
Using Train Components in Bounded Task Flows

27-42

What Happens When You Change the Label of a Train Stop
JDeveloper writes an entry to the source file for the bounded task flow, as illustrated in
the following example from the edit-customer-task-flow-definition.xml bounded
task flow in the Summit ADF task flow sample application.

<view id="GeneralInfo"> <page>/customers/GeneralInfo.jsff</page>
 <train-stop>
 <display-name>General Information</display-name>
 <sequential>false</sequential>
 </train-stop></view>

At runtime, the Fusion web application displays the value you specified for the
display-name property as the label for the train stop.

Configuring a Train to Skip a Train Stop
You can configure a train so that it skips an individual train stop. At runtime, the Fusion
web application disables the train stop that you configure to skip. The end user can
only navigate to the next train stop in the train.

Implement this functionality if you want the train to execute at a train stop other than
the first train stop. For example, configure train stops 1 and 2 to skip if you want
to execute train stop 3 first. Use this approach rather than defining the view activity
associated with the train stop as the default activity, as discussed in What You May
Need to Know About the Default Activity in a Bounded Task Flow.

How to Configure a Train to Skip a Train Stop
You write a value for the view activity's skip property that evaluates to true at runtime.

Before you begin:

It may be helpful to have an understanding of the configuration options that you can
configure for a train. For more information, see Using Train Components in Bounded
Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To configure a train to skip a train stop:

1. In the Applications window, double-click the bounded task flow containing the view
activity that renders the train stop.

2. In the diagram for the bounded task flow, select the view activity.

3. In the Properties window, expand the Train Stop and write a value in the Skip
field to determine if the train navigates to the train stop or skips it.

Write true or write an EL expression that resolves to true at runtime to make
the train skip the train stop. For example, write an EL expression similar to the
following:

#{myTrainModel.shouldSkip}

Chapter 27
Using Train Components in Bounded Task Flows

27-43

What Happens When You Configure a Train to Skip a Train Stop
JDeveloper writes an entry to the source file for the bounded task flow, as illustrated in
the following example.

 <view id="defineAddresses">
 <display-name>Address</display-name>
 <page>/account/defineAddresses.jsff</page>
 <train-stop>
 <display-name>Address</display-name>
 <skip>#{myTrainModel.shouldSkip}</skip>
 </train-stop>
</view>

Figure 27-15 shows the corresponding runtime view when the value specified for skip
evaluates to true. End users must now navigate to the next train stop in the train
(Payment options) if the train is sequential.

Figure 27-15 Train Configured to Skip a Train Stop

Creating Task Flow Templates
When you have a repeated set of ADF task flow activities, control flows, input
parameters, and managed beans, you can create ADF task flow templates for reuse. A
template serves as a starting point when creating a new bounded task flow. However,
you can create templates for unbounded task flows.

You can create task flow templates for yourself or other application developers to use
as a starting point when creating new bounded task flows. Unbounded task flows
cannot be created using task flow templates. A bounded task flow created from a
task flow template will have definitions for the same set of task flow activities, control
flows, input parameters, and managed beans as the task flow template. For example,
Figure 27-16 shows a bounded task flow that has been created from a task flow
template. The view1 and view2 view activities plus the goToView2 control flow in this
bounded task flow have been defined in the task flow template while the start and
view3 view activities have been defined in the bounded task flow itself.

Chapter 27
Creating Task Flow Templates

27-44

Figure 27-16 Bounded Task Flow Displaying Activities Defined in Task Flow Template

An example use case for a task flow template is where you define a task flow activity
as an exception handler on a bounded task flow. The task flow activity could be a
view activity associated with a page that you display to end users when an exception
occurs. Rather than define this view activity in each bounded task flow, you define it in
a task flow template and select the task flow template when you create new bounded
task flows. For information about exception handling, see Handling Exceptions in Task
Flows.

You can base a new task flow template on an existing task flow template. You can also
refactor an existing bounded task flow to create a new task flow template. See How to
Convert Bounded Task Flows .

When you create a bounded task flow or another task flow template based on a task
flow template, you can specify that subsequent changes you make to a task flow
template be automatically propagated to bounded task flows and templates. To do this,
you select the Update the Task Flow When the Template Changes checkbox in the
dialog that you use to create a bounded task flow or a template. Subsequent changes
that you make to the task flow template (add new view activities, for example) get
propagated to the bounded task flows. You can change, update, or disassociate the
parent task flow template of a child bounded task flow or task flow template at any
point during development of the child.

At runtime, the contents of a child bounded task flow or a child task flow template
combine with the contents of the parent task flow template if you selected the Update
the Task Flow When the Template Changes checkbox when creating the child.
The child task flow and task flow template override the parent task flow template
when conflict occurs, even if you selected the Update the Task Flow When the
Template Changes checkbox when creating the child task flow or task flow template.
For example, you create a parent task flow template to use as a train, as described
in Using Train Components in Bounded Task Flows, and then create a bounded task
flow based on this task flow template. Later, you disable the train component on the
parent task flow template. The child task flow overrides the parent task flow template
and continues to execute as a train.

Table 27-3 describes in more detail how ADF Controller resolves conflicts between
parent task flow templates and child task flows and child task flow templates.

Chapter 27
Creating Task Flow Templates

27-45

Table 27-3 Conflict Resolution between Parent Templates and Child Task Flows

Bounded Task Flow
Metadata

Combination Algorithm

Default activity Child bounded task flow or child task flow template overrides
parent task flow template.

Transaction Child bounded task flow or child task flow template overrides
parent task flow template as an entire block of metadata,
including all subordinate elements.

Task flow reentry Child bounded task flow or child task flow template overrides
parent task flow template as an entire block of metadata,
including all subordinate elements.

Control flow rules Combination algorithm occurs at the control flow case level,
not the control flow rule level. Control flow cases fall into the
following categories:

• Both from action and from outcome specified
• Only from action specified
• Only from outcome specified
• Neither from action nor from outcome specified
Each of these categories is merged additively. The child
bounded task flow or template overrides parent task flow
template for identical matches within each of the four categories.

Input parameter definitions Child bounded task flow or child task flow template overrides
parent task flow template for identical input parameter definition
names.

Return value definitions Child bounded task flow or child task flow template overrides
parent task flow template for identical return value definition
names.

Activities Child bounded task flow or child task flow template overrides
parent task flow template for identical activity IDs.

Managed beans Child bounded task flow or child task flow template overrides
parent task flow template for identical managed bean names.

Initializer Child bounded task flow or child task flow template overrides
parent task flow template.

Finalizer Child bounded task flow or child task flow template overrides
parent task flow template.

Critical Child bounded task flow or child task flow template overrides
parent task flow template.

Use page fragments Child bounded task flow or child task flow template overrides
parent task flow template.

Exception handler Child bounded task flow or child task flow template overrides
parent task flow template.

Security - permission Child bounded task flow or child task flow template overrides
parent task flow template.

Privilege maps are additive. Child bounded task flow or child
task flow template overrides parent task flow template for
identical privilege map operations.

Security - transport
guarantee

Child bounded task flow or child task flow template overrides
parent task flow template.

Chapter 27
Creating Task Flow Templates

27-46

Table 27-3 (Cont.) Conflict Resolution between Parent Templates and Child
Task Flows

Bounded Task Flow
Metadata

Combination Algorithm

Train Child bounded task flow or child task flow template overrides
parent task flow template.

Validations at both design time and runtime verify that the resulting parent-child
extension hierarchy does not involve cycles of the same task flow template.

How to Create a Task Flow Template
You create a task flow template by selecting ADF Task Flow Template from the New
Gallery.

Before you begin:

It may be helpful to have an understanding of what task flow template options you can
configure. For more information, see Creating Task Flow Templates .

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To create a task flow template:

1. In the Applications window, right-click the project where you want to create the
task flow template and choose New > From Gallery.

2. In the New Gallery, expand Web Tier, select JSF/Facelets and then ADF Task
Flow Template, and click OK.

3. In the Create ADF Task Flow Template dialog, choose the appropriate options:

• File Name: Accept the default value proposed by JDeveloper or enter a new
file name. The value is used to name the XML source file for the task flow
template you create. The source file includes the activities and control flow
rules that are in the task flow template. The default name for the XML source
file is task-flow-template.xml.

• Create with Page Fragments: Leave this checkbox selected (the default) if
you expect that a bounded task flow based on the template will be used as an
ADF region. Clear the checkbox if you want to add JSF pages instead of JSF
page fragments to a task flow based on the task flow template.

4. Click OK.

What Happens When You Create a Task Flow Template
As shown in the following example, an XML file is created each time you create a
new task flow template using JDeveloper. You can find the XML file in the Applications
window in the location that you specified in the Directory field of the Create ADF Task
Flow Template dialog, for example,.../WEB-INF.

Chapter 27
Creating Task Flow Templates

27-47

The contents of the XML source file for the task flow template can be similar to those
of a bounded task flow. One difference is the inclusion of the <task-flow-template>
tag.

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2"
id="__1">
 <task-flow-template id="task-flow-template">
 <default-activity>view1</default-activity>
 <view id="view1">view1.jsff</view>
 </task-flow-template>
</adfc-config>

What You May Need to Know About Task Flow Templates
If you use a task flow template that contains bindings, you must change the
component IDs of task flows based on the task flow template. Doing this makes sure
that the IDs are unique. Task flows generated from the template inherit the same ID as
the template. This may cause an exception at runtime. For more information, see How
to Use ADF Data Binding in ADF Page Templates.

If your Fusion web application has configured ADF security, you have to make grants
on both the task flow template and task flows that use the template. Usually, the grant
on the task flow template is to the anonymous-role application role so that the grant
that really matters is on the task flow, but not always. For more information about ADF
security, see Enabling ADF Security in a Fusion Web Application.

Creating a Page Hierarchy Using Task Flows
The page hierarchy is a useful way of organizing the JSF pages in your Fusion
web application. You can create a page hierarchy for ADF task flows using ADF
Controller or using an XMLMenuModel implementation. You can allow users to access
information on the pages by navigating a path of links.

Creating a page hierarchy is a useful way of organizing the JSF pages in your Fusion
web application so that end users can more easily navigate the application. End users
access information on the pages by navigating a path of links. Figure 27-17 shows a
sample page hierarchy that allows the user to navigate between the home page of a
Fusion application, a Human Resource page, and a Payroll page.

Figure 27-17 Page Hierarchy

Chapter 27
Creating a Page Hierarchy Using Task Flows

27-48

To navigate this hierarchy, an end user clicks links on each page to drill down or
up to another level of the hierarchy. For example, clicking Human Resources on
the Fusion App home page displays the Human Resources page hierarchy shown in
Figure 27-17. Clicking the link on the Benefits tab displays the page hierarchy shown
in Figure 27-18.

Figure 27-18 Benefits Page

The user can click links on the Benefits page to display other pages, for example, the
Medical, Dental or Vision pages. The breadcrumbs on each page indicate where the
current page fits in the hierarchy. The user can click each node in a breadcrumb to
navigate to other pages in the hierarchy. The bold tab labels match the path to the
current page shown by the breadcrumbs.

Pages referenced by view activities in a bounded task flow can also be included in
any page hierarchy that you generate. Figure 27-19 shows the runtime view of a page
hierarchy that renders view activities referenced by a bounded task flow.

Figure 27-19 Runtime Menu Hierarchy Including a Bounded Task Flow

You can use ADF Controller with an XMLMenuModel implementation to create the
previously discussed page hierarchies. If you do, JDeveloper generates the following
for you:

• Control flow metadata that determines the view or page to display when an end
user selects a menu item

Chapter 27
Creating a Page Hierarchy Using Task Flows

27-49

• An XMLMenuModel metadata file

• Default navigation widgets such as Previous and Next buttons

• Breadcrumbs

• Managed bean configuration

If you decide not to use ADF Controller, you can create the page hierarchy using an
XMLMenuModel implementation. For information about this method of building a page
hierarchy, see Using a Menu Model to Create a Page Hierarchy.

How to Create a Page Hierarchy
Create an unbounded task flow or open an existing one. Add view activities or
bounded task flows to the unbounded task flow. Each view activity or bounded task
flow that you add to the unbounded task flow contains references to pages to appear
in the proposed page hierarchy. Use JDeveloper's Create ADF Menu Model dialog to
generate an XMLMenuModel metadata file. Organize the item nodes in the generated
XMLMenuModel metadata file to create the page hierarchy you want. Connect submenus
to parent menus to finalize the hierarchy.

Figure 27-20 shows an example page hierarchy that consists of view activities:

• The top-level menu (Home Page) is the root parent page. It contains a single tab
that links to the Human Resources submenu.

In JDeveloper, Home Page page is represented as an item node and Human
Resources page as a shared node.

• Human Resources has four tab links to Payroll, Time, Labor, and Benefits
pages.

In this menu, Human Resources is a group node that references child item nodes
(Payroll, Time, and Labor) and a shared node (Benefits) that references the
Benefits submenu.

• Benefits is a group node that references child item nodes (Medical, Dental, and
Vision) pages.

Figure 27-20 Menu Hierarchy

Chapter 27
Creating a Page Hierarchy Using Task Flows

27-50

Note:

It is possible to create the entire menu hierarchy in one menu model.
However, breaking a menu hierarchy into submenus makes maintenance
easier. In addition, breaking the menu hierarchy into smaller submenu
models enables each separate development organization to develop its own
menu. These separate menus can later be combined using shared nodes to
create the complete menu hierarchy.

Figure 27-21 shows the corresponding design-time view in JDeveloper of the
unbounded and bounded task flows that render the page hierarchy shown in
Figure 27-19. The unbounded task flow (adfc-config.xml) contains a view activity
(view1) and a task flow call activity (task-flow-definition) that invokes the bounded
task flow (task-flow-definition.xml) shown in the lower part of Figure 27-21.

Figure 27-21 Design Time Menu Hierarchy Including a Bounded Task Flow

How to Create an XMLMenuModel Metadata File
You use JDeveloper's Create ADF Menu Model dialog to generate an XMLMenuModel
metadata file once you have defined what menus (unbounded task flows) and nodes
(pages) you want to appear in the final page hierarchy.

Before you begin:

It may be helpful to have an understanding of what page hierarchy options you can
configure. For more information, see Creating a Page Hierarchy Using Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

Chapter 27
Creating a Page Hierarchy Using Task Flows

27-51

You will need to complete these tasks:

1. Create an unbounded task flow for each menu in the final page hierarchy.

For example, to achieve the page hierarchy illustrated in Figure 27-20, you create
two unbounded task flows (Human Resources menu and Benefits menu).

For more information about creating an unbounded task flow, see How to Create a
Task Flow.

Tip:

Prefix the name of the file for unbounded task flows that you create with
adfc- to help you to identify the file as the source of an unbounded task
flow, as opposed to a bounded task flow.

2. Add view activities that reference pages to each unbounded task flow. The pages
referenced by the view activities correspond to the menu nodes in the menu.

For example, the Benefits menu contains one group node (benefits) and three
item nodes (medical, dental and vision) so you add four view activities to the
unbounded task flow for the Benefits menu, as illustrated in Figure 27-22.

Figure 27-22 View Activities on a Task Flow

Do not add view activities for menus that include other menus using shared nodes.
For example, the Human Resources menu in Figure 27-20 has a tab called
Benefits that references the Benefits menu using a shared node. The bounded
task flow for the Benefits menu already includes a view activity for Benefits so
there is no need to add a view activity to the bounded task flow for the Human
Resources menu.

For more information about view activities, see Using View Activities.

Note:

If the page hierarchy includes pages referenced by a bounded task flow,
add a task flow call activity to the unbounded task flow that calls the
bounded task flow.

To create the XMLMenuModel metadata file:

1. In the Applications window, right-click the file(s) for each of the unbounded task
flows you created and choose Create ADF Menu Model.

Chapter 27
Creating a Page Hierarchy Using Task Flows

27-52

2. In the Create ADF Menu Model dialog, enter a file name for the XMLMenuModel
metadata file and a directory to store it.

3. Click OK.

How to Create a Submenu with a Hierarchy of Group and Child Nodes
You open the XMLMenuModel metadata file you created and convert the item nodes that
you want to make group nodes to group nodes. You then create a hierarchy where a
group node is a parent to one or more item nodes.

Before you begin:

It may be helpful to have an understanding of what page hierarchy options you can
configure. For more information, see Creating a Page Hierarchy Using Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To create a submenu with a hierarchy of group and item nodes:

1. In the Applications window, double-click the XMLMenuModel metadata file.

An item node appears in the Structure window for each view activity in the
unbounded task flow. By default, no hierarchy is defined.

2. In the Structure window, drag and drop the item nodes to become child nodes of
the item node that you are going to convert to a group node.

Each item node that you convert to a group node must have at least one child
item node. For example, to create the menu hierarchy in Figure 27-20, you convert
the item node for Benefits to a group node, you drag and drop the item nodes for
Medical, Dental, and Vision so that they become child nodes of the Benefit item
node.

3. In the Structure window, right-click the parent item node and choose Convert To
groupNode.

4. In the groupNode Properties dialog, in the id field, enter a new identifier or accept
the default value.

The identifier must be unique among all of the nodes in all of the XMLMenuModel
metadata files. It is good practice to specify a value that identifies the node. For
example, if you change the Benefits node to a group node, you can update its
default ID, itemNode_benefits, to groupNode_benefits.

5. In the idref field, enter the ID of one of the other nodes in the menu, for example,
itemNode_Medical.

The value you enter can be an ID of a child item node that is a group node or an
item node.

6. Enter or change the existing default value in the label field to match what you want
to appear at runtime.

For example, you might change label_benefits to Benefits.

7. Accept the rest of the default values in the fields and click Finish

A Confirm Convert dialog asks if you want to delete the action and focusViewID
attributes on the groupNode element. Group nodes do not use these attributes,
always click OK

Chapter 27
Creating a Page Hierarchy Using Task Flows

27-53

8. Click OK

How to Attach a Menu Hierarchy to Another Menu Hierarchy
You use a shared node element to link two menus together. For example, the
Human Resources menu shown in the menu hierarchy in Figure 27-20 contains four
submenus (Payroll, Time, Labor, and Benefits). The Benefits submenu is itself a menu
with submenu entries. In the XMLMenuModel metadata file for the Human Resources
menu, you convert the item node for the Benefits submenu to a shared node. You
write an EL expression for an attribute (ref) of the newly created shared node that
references the XMLMenuModel metadata file for the Benefits menu.

Before you begin:

It may be helpful to have an understanding of what page hierarchy options you can
configure. For more information, see Creating a Page Hierarchy Using Task Flows.

You may also find it helpful to read about additional functionality that you can add
using other task flow features. For more information, see Additional Functionality for
Complex Task Flows.

To attach a menu hierarchy to another hierarchy using a shared node:

1. In the Applications window, double-click the XMLMenuModel metadata file for the
menu that is going to reference the other menu.

2. In the Structure window, select a node, right-click and select the appropriate menu
options to insert a sharedNode element.

3. In the Insert sharedNode dialog, in the ref field, enter an EL expression to
reference the XMLMenuModel metadata file for the other menu.

4. Click OK.

Note:

If your page hierarchy has more than one unbounded task flow,
make sure that the file name for each additional unbounded task
flow appears as a value for the <metadata-resources> element in the
adfc_config.xml file. For more information, see What Happens When
You Create a Page Hierarchy.

What Happens When You Create a Page Hierarchy
Changes occur in a number of different files when you create a page hierarchy.

Changes to the adfc-config.xml File

When you create a new unbounded task flow, JDeveloper automatically adds a
reference in the adfc-config.xml file to the source file for the newly created
unbounded task flow. In the following example, adfc-unbounded_tflow.xml is the
name of the source file for a newly created unbounded task flow.

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2"
 id="__1">

Chapter 27
Creating a Page Hierarchy Using Task Flows

27-54

 <metadata-resource id="__2">
 /WEB-INF/adfc-unbounded_tflow.xml
 </metadata-resource>
</adfc-config>

For more information about adfc-config.xml, see adfc-config.xml.

At runtime, the Fusion web application loads the adfc-config.xml file when it first
starts. The adfc-config.xml file can contain:

• ADF navigation metadata for an unbounded task flow

• ADF activity metadata for an unbounded task flow

• Managed bean definitions used by ADF activities

XMLMenuModel Metadata File

JDeveloper generates an XMLMenuModel metadata file with nodes for each of the view
activities that you added to the unbounded task flow, as illustrated in the following
example.

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu">
 <groupNode id="groupNode_benenfits" label="Benefits" idref="itemNode_medical">
 <itemNode id="itemNode_medical" label="label_medical"
 action="adfMenu_medical" focusViewId="/medical"/>
 <itemNode id="itemNode_dental" label="label_dental" action="adfMenu_dental"
 focusViewId="/dental"/>
 <itemNode id="itemNode_vision" label="label_vision" action="adfMenu_vision"
 focusViewId="/vision"/>
 </groupNode>
</menu>

Diagram for an Unbounded Task Flow

JDeveloper updates the file for the unbounded task flow with the control flow rules and
managed beans used to navigate the page hierarchy. Figure 27-23 shows the updated
unbounded task flow in the diagrammer that corresponds to the unbounded task flow
in Figure 27-22.

Figure 27-23 Updated Unbounded Task Flow

Chapter 27
Creating a Page Hierarchy Using Task Flows

27-55

Reporting Incidents to the Oracle Fusion Middleware
Diagnostic Framework

An Oracle Fusion Middleware Diagnostic Framework enables you to collect and
retrieve information about incidents that occur in Fusion web applications. You can use
the collected information to troubleshoot problems or to send it to Oracle Support for
resolution. ADF Controller can report incidents, such as version information, hierarchy
of the ADF binding container, metadata and so on, to this framework.

The Diagnostic Framework collects and manages information about incidents that
occur in Fusion web applications. ADF Controller can report incidents to this
framework. You can use this information to resolve problems or send it to Oracle
Support for resolution. Examples of the information that the ADF Controller reports to
the Diagnostic Framework when an incident occurs include the following:

• Version information

• Information about the view port hierarchy, including page flow stack entries

• Hierarchy of the ADF binding container

• Metadata information, for example the list of files that contribute to the unbounded
task flow

Furthermore, information about recent events within the runtime of the ADF Controller
can also be sent to the Diagnostic Framework. Examples of these events includes
permission checks, region refreshes, navigation between activities, and the retrieval
of metadata from the Oracle Metadata Services (MDS) framework. Sending this latter
category of information (events within the runtime of ADF Controller) requires you to
enable QuickTrace, a mechanism that Oracle Fusion Middleware provides to enable
fine-grained logging to memory. For information about QuickTrace, including how
to specify the history (number) of recent events that ADF Controller sends to the
Diagnostic Framework, see Configuring and Using QuickTrace. For information about
using the Diagnostic Framework, see Diagnosing Problems.

Chapter 27
Reporting Incidents to the Oracle Fusion Middleware Diagnostic Framework

27-56

28
Using Dialogs in Your Application

This chapter describes how to create dialogs in your Fusion web application. It
describes how you can use ADF Controller and task flows to create dialogs or,
alternatively, use the ADF Faces dialog framework.
This chapter includes the following sections:

• About Using Dialogs in Your Application

• Running a Bounded Task Flow in a Modal Dialog

• Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

About Using Dialogs in Your Application
ADF dialogs are the secondary windows that can display additional information
external to the browser window displaying the current page. You can also use modal
dialogs that allows users to work on both primary and secondary windows at the same
time.

Use dialogs if you want to show information to end users in a secondary browser
window external to the browser window that displays the end user's current page. For
example, you want to display help information to end users to assist them with a task
in the primary browser window or you want end users to choose a value from a list
of values. The help information example is a use case where a modeless dialog is
appropriate. A modeless dialog allows end users work in both the primary window
and the dialog at the same time. For the use case where you want an end user to
choose a value, a modal dialog is more appropriate. A modal dialog prevents an end
user accessing the page that invoked the dialog until they execute an action requested
by the dialog (for example, choose a value).

Use the ADF Faces dialog framework if you want to configure modeless dialogs for
your end users. If you plan to configure modal dialogs for your end users, configure an
ADF Controller bounded task flow to invoke one or more dialogs. You can define view
activities that reference either a JSF page or a page fragment file (.jsff) to invoke a
dialog.

Using Dialogs in Your Application Use Cases and Examples
Running a Bounded Task Flow in a Modal Dialog describes how you can run a
bounded task flow in a modal dialog to retrieve input from an end user, and return to
a view activity that called the bounded task with the retrieved input. If your application
does not use ADF Controller task flows or you want to use modeless dialogs, Using
the ADF Faces Dialog Framework Instead of Bounded Task Flows, describes how you
can use the ADF Faces dialog framework to render one or more pages in a dialog.

Additional Functionality for Using Dialogs in Your Application
You may find it helpful to understand other Oracle ADF features before you configure
or use dialogs in your application. Additionally, you may want to read about what you

28-1

can do with the dialogs you configure. Following are links to other functionality that
may be of interest.

• If your application uses ADF Controller task flows, you may find it helpful to
understand more about the features that task flows offer. For more information,
see Getting Started with ADF Task Flows .

• For more information about ADF Faces components, see Developing Web User
Interfaces with Oracle ADF Faces.

• You can also write custom code for your dialogs using the APIs provided by Oracle
ADF. Make sure when you write custom code that you do not import packages that
are marked internal, as in this example:

import oracle.adfinternal.controller.*;

For information about the APIs that you can use to write custom code, see the
following reference documents:

– Java API Reference for Oracle ADF Controller

– Java API Reference for Oracle ADF Faces

Running a Bounded Task Flow in a Modal Dialog
In the cases where you want to accept the values from a user and return the
application to an activity, running an ADF bounded task flow in a modal dialog is
appropriate to be used. The modal dialogs can be used in the ADF Controller and task
flows by specifying the dialog:syntax in the control flow rules.

You can configure a bounded task flow to run in a modal dialog, retrieve input from
an end user, and return to the view activity that called the bounded task flow with the
retrieved input. The bounded task flow that you configure must reference pages, not
page fragments.

Figure 28-1 shows an example of the configuration required from the Summit sample
application for ADF task flows. The task flow in create-edit-orders-task-flow-
definition contains a view activity (Orders) from where the end user invokes the
orders-select-many-items.xml task flow that renders a modal dialog. For more
information, see How to Run a Bounded Task Flow in a Modal Dialog.

When the end user closes the dialog, control and any modified values return to the
launch page in the calling task flow in create-edit-orders-task-flow-definition.
For more information, see How to Return a Value From a Modal Dialog.

In addition, you can configure the application to refresh part of the launch page after
the modal dialog returns control. For more information, see How to Refresh a Page
After a Modal Dialog Returns.

Chapter 28
Running a Bounded Task Flow in a Modal Dialog

28-2

Figure 28-1 Task Flow Activities to Invoke a Modal Dialog in Summit ADF
Sample Application

How to Run a Bounded Task Flow in a Modal Dialog
You add a view activity and a task flow call activity to an existing task flow. The view
activity invokes a page where an end user can invoke an action that, in turn, invokes
the bounded task flow to appear in a modal dialog.

Before you begin:

It may be helpful to have an understanding of how the attributes you configure affect
the functionality of a bounded task flow in a modal dialog. For more information, see
Running a Bounded Task Flow in a Modal Dialog.

Chapter 28
Running a Bounded Task Flow in a Modal Dialog

28-3

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Using
Dialogs in Your Application.

To run a bounded task flow in a modal dialog box:

1. In the Applications window, double-click the existing task flow.

2. In the diagram for the task flow, double-click the view activity to open the
associated page.

3. Select the command component that the end user clicks at runtime to invoke the
bounded task flow as a modal dialog box (for example, a button component).

4. In the Properties window, expand the Common section and enter the control flow
case to invoke the bounded task flow in the Action field.

For example, selectmultipleitems in Figure 28-1.

5. From the UseWindow dropdown list, select true to invoke the bounded task flow
in a popup dialog.

6. In the diagram for the existing task flow, select the task flow call activity.

7. In the Properties window, expand the Behavior section and select true from the
Run As Dialog dropdown list to run the bounded task flow as a dialog.

The bounded task flow that the task flow activity calls can now behave as a dialog;
it can be invoked by the command component you configured in Steps 3 to 5 and
can return a value to the view activity that renders the command component, as
described in How to Return a Value From a Modal Dialog. Note that you need to
make these other changes to run a bounded task flow in a modal dialog. Setting
the run-as-dialog attribute to true is not sufficient.

8. Select external-window (the default value) from the Display Type dropdown list
if you want to render the dialog in an external browser window or inline-popup if
you want to render the dialog in the same browser window.

How to Return a Value From a Modal Dialog
You can configure a bounded task flow that renders in a modal dialog to return a
value to the view activity that invoked the bounded task flow when the end user
dismisses the modal dialog. The returned value can, for example, be displayed in an
input component on the page associated with the view activity.

You must configure the bounded task flow that is called by the task flow call activity
to declare input parameters and return values. For more information, see Passing
Parameters to a Bounded Task Flow.

You specify a method binding for a method with one argument (a return event) as
the value for the returnListener attribute of the command component (for example,
a button component). The returnListener attribute sets this value in the input
component on the page associated with the view activity. Specify a backing bean for
the input component and set the input component's partialTrigger attribute to the ID
of the command component.

You also need to specify:

• A return value definition on the called bounded task flow to indicate where to take
the return value from upon exit of the called bounded task flow.

Chapter 28
Running a Bounded Task Flow in a Modal Dialog

28-4

• Return values on the task flow call activity in the existing task flow to indicate
where the existing task flow can find return values.

For more information, see Configuring a Return Value from a Bounded Task Flow.

For more information about creating backing beans, input components, and command
components, see the "Using Input Components and Defining Forms" chapter in
Developing Web User Interfaces with Oracle ADF Faces.

Before you begin:

It may be helpful to have an understanding of how the attributes you configure affect
the functionality of bounded task flows in modal dialogs. For more information, see
Running a Bounded Task Flow in a Modal Dialog.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Using
Dialogs in Your Application.

You will need to complete this task:

Configure a bounded task flow to run in a modal dialog. For more information, see
How to Run a Bounded Task Flow in a Modal Dialog.

To specify a return value:

1. In the Applications window, double-click the task flow that contains the task flow
call activity to invoke the bounded task flow to render in a modal dialog.

2. In the diagram editor, select the task flow call activity.

3. In the Properties window, expand the Behavior section and select true from the
Run As Dialog dropdown list.

4. In the Dialog Return Value field, enter the name of the return value definition you
specified for the target bounded task flow.

For information about how to specify the return value definition on a bounded task
flow, see Configuring a Return Value from a Bounded Task Flow.

5. In the Applications window, double-click the page that launches the modal dialog.

6. In the design editor, select the input component and, in the Properties window,
expand the Behavior section to specify an EL expression in the PartialTriggers
field.

The EL expression you specify identifies the command component, accepts the
return value of the command component, and specifies a backing bean. For
example, enter an EL expression with syntax similar to the following:

#{pageFlowScope.backingBean.gotoModalDialog}

where gotoModalDialog identifies the command component.

7. In the design editor, select the command component and, in the Properties
window, expand the Behavior section and enter an EL expression that references
a return listener method in the page's backing bean as a value in the
ReturnListener field.

The return listener method you specify processes the return event that is
generated when an end user dismisses the modal dialog. In the Summit ADF
task flow sample application, the command component in the Orders.jsff page
fragment specifies the following EL expression:

Chapter 28
Running a Bounded Task Flow in a Modal Dialog

28-5

#{viewScope.OrdersBackingBean.onShuttleTaskFlowReturn}

How to Refresh a Page After a Modal Dialog Returns
You can configure the page from where end users invoke a modal dialog to refresh
after end users close the modal dialog. You may want to configure this behavior if
the modal dialog returns a value or end users edit existing data in the page through
controls in the modal dialog.

You implement this functionality by configuring the command component that invokes
the modal dialog to listen for a return event. When it receives the return event, it
invokes a backing bean method that executes a partial page render event on your
page. The following example shows a button component that invokes a modal dialog
and listens for a return event.

<af:button text="Edit"
 id="b1" binding="#{backingBeanScope.backing_launch_page.b1}"
 action="edit" useWindow="true"
 returnListener="#{backingBeanScope.backing_launch_page.backFromPopup}"/>

The button component's returnListener attributes listens for the return event from
invoking the modal dialog. When it receives the return event, it invokes a backing bean
method similar to the following example.

public void backFromPopup(ReturnEvent returnEvent) {
 AdfFacesContext adfFacesContext;
 adfFacesContext = AdfFacesContext.getCurrentInstance();
 adfFacesContext.addPartialTarget(this.getF1());
}

The backing bean method (backFromPopup) takes the return event as an argument
and, in our example, invokes a partial page render event on a form in the page.

Before you begin:

It may be helpful to have an understanding of how you configure other options for
modal dialogs that you invoke from a page associated with a view activity in a task
flow. For more information, see Running a Bounded Task Flow in a Modal Dialog.

You may also find it helpful to understand other functionality that can be added
using other task flow and dialog framework features. For more information, see Using
Dialogs in Your Application Use Cases and Examples.

To refresh a page after a modal dialog returns:

1. In the Applications window, double-click the task flow that invokes the bounded
task flow that renders in a modal dialog.

2. In the diagram, double-click the view activity that references the page where your
end user invokes a command component to launch the modal dialog.

3. In the design editor, select the command component.

4. In the Properties window, expand the Behavior section and, from the
ReturnListener field under the Secondary Window label, select Edit from the
icon that appears when you hover over the property field to specify the name of
the backing bean method that you want JDeveloper to generate.

5. In the Edit Property: ReturnListener dialog, click New beside the Managed Bean
field.

Chapter 28
Running a Bounded Task Flow in a Modal Dialog

28-6

6. In the Create Managed Bean dialog, name the bean and the class, set the bean's
scope, and click OK.

7. In the Edit Property: ReturnListener dialog, click New beside the Method field.

8. In the Create Method dialog, name the method and click OK.

9. In the Edit Property: ReturnListener dialog, click OK.

10. In the Applications window, expand Application Sources and then expand the
package that contains the backing bean class and method that you created in
Steps 3 to 9.

11. Write a method body to invoke a partial page render event on your page.

What You May Need to Know About Dialogs in an Application that
Uses Task Flows

If your Fusion web application renders modeless dialogs (non modal dialogs without
task flows) and also uses ADF Controller features, such as task flows, you specify the
dialog:syntax in the control flow rules of the application's adfc-config.xml file rather
than the faces-config.xml file. Specify dialog:syntax in navigation rules within the
faces-config.xml file if your Fusion web application does not use ADF Controller
features, as described in Using the ADF Faces Dialog Framework Instead of Bounded
Task Flows.

The following example shows what you can specify in the adfc-config.xml file. Note
that although this example references a JSP page, you can define a view activity that
invokes either a JSF page or a page fragment file.

<?xml version="1.0" encoding="windows-1252" ?>
 <adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2"
id="__1">
 <view id="view1"
 <page>/view1.jsf</page>
 </view>
 <view id="dialog">
 <page>/dialog/untitled1.jsf</page>
 </view>
 <control-flow-rule>
 <from-activity-id>test</from-activity-id>
 <control-flow-case>
 <from-outcome>dialog:test</from-outcome
 <to-activity-id>dialog</to-activity-id>
 </control-flow-case>
</adfc-config>

Using the ADF Faces Dialog Framework Instead of
Bounded Task Flows

The ADF Faces dialog framework displays a page or a series of pages in a new
browser window. To create modal and modeless dialogs in an application using ADF
Faces dialog framework, you must define a JSF navigation rule to open a dialog,
create the JSF page from which the dialog is opened, and create dialog page and
return dialog values.

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-7

You can use the ADF Faces dialog framework to create modal and modeless dialogs
in an application that does not use ADF Controller and task flows. The dialog
framework enables you to display a page or series of pages in a new browser window
instead of displaying it in the same window (using the same view ID) as the current
page. There may also be cases where you want to use a series of inline dialogs,
that is, dialogs that are part of the parent page, but that have a flow of their own,
but that do not use a separate view ID. This is important for applications that do not
support popups such as, for example, applications that run on client devices or that
use the Active Data Service described in Using the Active Data Service . Ordinarily,
you would need to use JavaScript to open the dialog and manage the process. With
the dialog framework, ADF Faces makes it easy to open a new browser window as
well as manage dialogs and processes without using JavaScript.

Note:

If your application uses the Fusion technology stack with ADF Controller,
then you should use task flows to create dialogs launched in a separate
window, or multiple dialog processes. See Running a Bounded Task Flow in
a Modal Dialog.

Consider a simple application that requires users to log in to see their orders.
Figure 28-2 shows the page flow for the application, which consists of five
pages: login.jspx, orders.jspx, new_account.jspx, account_details.jspx, and
error.jspx.

Figure 28-2 Page Flow of an External Dialog Sample Application

When an existing user logs in successfully, the application displays the Orders page,
which shows the user's orders, if any. When a user does not log in successfully, the
Error page displays in a separate popup dialog window, as shown in Figure 28-3.

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-8

Figure 28-3 Error Page Popup

On the Error page there is a Cancel button. When the user clicks Cancel, the popup
dialog closes and the application returns to the Login page and the original flow, as
shown in Figure 28-4.

Figure 28-4 Login Page

When a new user clicks the New User link on the Login page, the New Account page
displays in a popup dialog in a new window, as shown in Figure 28-5.

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-9

Figure 28-5 New Account Page in a Separate Window

After entering information such as first name and last name, the user then clicks the
Details button to display the Account Details page in the same popup dialog, as
shown in Figure 28-6. In the Account Details page, the user enters other information
and confirms a password for the new login account. There are two buttons on the
Account Details page: Cancel and Done.

Figure 28-6 Account Details Page in a Popup Dialog

If the new user decides not to proceed with creating a new login account and clicks
Cancel, the popup dialog closes and the application returns to the Login page. If the
new user clicks Done, the popup dialog closes and the application returns to the Login
page where the Username field is now populated with the user's first name, as shown
in Figure 28-7. The new user can then proceed to enter the new password and log in
successfully.

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-10

Figure 28-7 LogIn Page with Username Field Populated

Note:

The dialog framework should not be used to have more than one dialog open
at a time, or to launch dialogs that have a life span outside of the life span of
the base page.

To make it easy to support dialog page flows in your applications, ADF Faces has
built in the dialog functionality to action components (such as commandMenuItem and
button). For ADF Faces to know whether or not to open a page in a new flow from an
action component, the following conditions must exist:

• There must be a JSF navigation rule with an outcome that begins with dialog:.

• The command component's action outcome must begin with dialog:.

• The useWindow attribute on the command component must be true.

Note:

If the useWindow attribute is false, or if you configure the popup to be a
separate window (and not inline) and the client device does not support
popups, ADF Faces automatically shows the page in the current window
instead of using a popup window; code changes are not required to facilitate
this action.

The page that displays in a dialog is an ordinary JSF page, but for purposes of
explaining how to implement external dialogs in this chapter, a page that displays in a
popup dialog is called the dialog page, and a page from which the dialog is opened is
called the originating page. A dialog process starts when the originating page opens
a dialog (which can contain one dialog page or a series of dialog pages), and ends
when the user dismisses the dialog and returns to the originating page.

To create a dialog page flow in an application:

1. Define a JSF navigation rule for opening a dialog.

2. Create the JSF page from which a dialog is opened.

3. Create the dialog page and return a dialog value.

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-11

4. Optional: Pass a value into a dialog.

5. Handle the return value.

The tasks can be performed in any order.

How to Define a JSF Navigation Rule for Opening a Dialog
You manage the navigation into a dialog flow by defining a standard JSF navigation
rule with a special dialog: outcome.

To define a navigation rule to open a dialog:

1. In the Applications window, expand the WEB-INF node and double-click adfc-
config.xml.

2. In the diagram editor, create a page flow for your originating page and dialog
pages.

For more information, see How to Add a Control Flow Rule to a Task Flow.

3. When creating navigation rules to the dialog pages, the outcome must begin
with dialog:. For example, in the login sample application shown in Figure 28-2,
the outcome from the Login page to the New Account dialog page is
dialog:newAccount.

At runtime, the dialog navigation rules on their own simply show the specified pages in
the originating page. But when used with command components with dialog: action
outcomes and with useWindow attributes set to true, ADF Faces opens the pages in
dialogs.

How to Create the JSF Page That Opens a Dialog
In the originating page, you need to use a command component to launch the dialog.
The command component's action value needs to be the outcome to the dialog that is
to be launched.

Before you begin:

It may be helpful to have an understanding of how the attributes you configure affect
the functionality of the ADF Faces dialog framework. For more information, see About
Using Dialogs in Your Application.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Using
Dialogs in Your Application.

You will need to complete this task:

You also need to create the JSF page that opens a dialog. For more information,
see the "Creating a View Page" section in Developing Web User Interfaces with
Oracle ADF Faces.

To create the JSF Page that opens a dialog:

1. In the Applications window, double-click the JSF page.

2. In the ADF Faces page of the Components window, from the General Controls
panel, drag and drop a command component (for example, a Button) onto the
JSF page.

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-12

For more information about adding a command component to a page, see
the "Using Buttons and Links for Navigation" section in Developing Web User
Interfaces with Oracle ADF Faces.

Note the following when setting the attributes on the command component:

• Action: Set the action attribute to the outcome that navigates to the dialog, as
created in How to Define a JSF Navigation Rule for Opening a Dialog.

Tip:

The action value can be either a static string or the return of a
method on a managed bean.

For example, the action attribute on the command component of the Login
page is bound to a method that determines whether to navigate to the Orders
page or to the Error dialog page, based on the returned outcome. If the
method returns dialog:error, the error dialog opens. If the method returns
success, the user navigates to the Orders page.

• ActionListener: As an alternative to setting the action attribute, configure
the actionListener attribute to invoke the launchDialog method from an
instance of the following class:

oracle.adf.view.rich.context.AdfFacesContext

For more information about the launchDialog method and the
AdfFacesContext class, see the Java API Reference for Oracle ADF Faces.

• UseWindow: Set to true to have the dialog open.

Tip:

When set to false, ADF Faces shows the dialog page in the current
window after preserving all of the state of the current page. You do
not have to write any code to facilitate this.

• WindowHeight and WindowWidth: Set the desired size of the dialog window.
These values will set the contentWidth and contentHeight attributes on the
popup component for the dialog.

Tip:

While the user can change the values of these attributes at runtime,
the values will not be retained once the user leaves the page
unless you configure your application to use change persistence. For
information about enabling and using change persistence, see the
"Allowing User Customization on JSF Pages" chapter in Developing
Web User Interfaces with Oracle ADF Faces.

• PartialSubmit: Set to true. This prevents the originating page from reloading
(and hence being visible only momentarily) when the popup dialog is
displayed.

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-13

• WindowEmbedStyle: Set to inlineDocument if you want the dialog to open
in a popup that belongs to the originating page. Set to window if you want the
dialog to open in a separate browser.

• WindowModalityType: Set to applicationModal if you want the dialog to be
modal. Modal dialogs do not allow the user to return to the originating page
until the dialog has been dismissed. Set to modeless if you want the user to be
able to go back and forth between the originating page and the dialog.

When a command component is about to open a dialog, it delivers a LaunchEvent
event. The LaunchEvent event stores information about the component that is
responsible for opening a popup dialog, and the root of the component tree to display
when the dialog process starts. A LaunchEvent can also pass a map of parameters
into the dialog. For more information, see How to Pass a Value into a Dialog.

How to Create the Dialog Page and Return a Dialog Value
A dialog page is just like any other JSF page, with one exception. In a dialog page,
you must provide a way to tell ADF Faces when the dialog process finishes, that is,
when the user dismisses the dialog or series of dialogs.

For example, the New Account page and Account Details page belong in the same
dialog process. A dialog process can have as many pages as you desire, you only
need to notify the framework that the dialog process has ended once.

You do this declaratively using the returnActionListener tag as a child to
the command component used to close the dialog. However, if you need to
provide a return value or other action event processing, you can bind the
actionListener attribute on the command component to a method that calls the
AdfFacesContext.returnFromDialog() method. This method lets you send back a
return value in the form of a java.lang.Object or a java.util.Map of parameters.
You do not have to know where you are returning the value to - ADF Faces
automatically takes care of it.

At runtime, the AdfFacesContext.returnFromDialog() method tells ADF Faces when
the user dismisses the dialog. This method can be called whether the dialog page is
shown in a popup dialog or in the main window. If a popup dialog is used, ADF Faces
automatically closes it.

Before you begin:

It may be helpful to have an understanding of how the attributes you configure affect
the functionality of the ADF Faces dialog framework. For more information, see About
Using Dialogs in Your Application.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Using
Dialogs in Your Application.

To close a dialog window and optionally return a value:

1. In the Applications window, double-click the dialog page.

2. In the ADF Faces page of the Components window, from the General Controls
panel, drag and drop a command component (for example, a Button) onto the
dialog page.

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-14

For more information about adding a command component to a page, see
the "Using Buttons and Links for Navigation" section in Developing Web User
Interfaces with Oracle ADF Faces.

3. If the command component will be used to close the window, in the Properties
window, expand the Behavior section and select true from the Immediate
dropdown list.

4. If the command component will be used to navigate to another page in the
dialog process, configure the command component as though it were standard
navigation. To do this, in the Properties window, expand the Common section and
select false from the UseWindow dropdown list. This causes the next page to
display in the same dialog window, preserving the state of the previous page.

5. If you need to end the dialog process and close the dialog, but do not need
to return a value, in the Components window, from the Operations panel, in the
Listeners group, drag a Return Action Listener and drop it as a child to the
command component.

The returnActionListener tag calls the returnFromDialog method on the
AdfFacesContext object - no backing bean code is needed.

No attributes are used with the af:returnActionListener tag. The immediate
attribute on the af:button component is set to true if the user clicks Cancel
without entering values in the required Password and Confirm Password fields,
the default JSF ActionListener can execute during the Apply Request Values
phase instead of the Invoke Application phase, thus bypassing input validation.
For more information, see the "Using the JSF Lifecycle with ADF Faces" chapter in
Developing Web User Interfaces with Oracle ADF Faces.

6. If you need to end the dialog process and do need to return a value, create
a method on a managed bean that handles the action event and returns the
needed values using the returnFromDialog method on the current instance of
AdfFacesContext.

Note:

The AdfFacesContext.returnFromDialog() method returns null. This is
all that is needed in the backing bean to handle the Cancel action event.

For example, when the user clicks Done on the Account Details page, the process
ends and returns the user input values. The following example shows the code
for the event handler method to which the Done button binds. The method gets
the customer information, then either creates a Faces message for an incorrect
password, or sets the values on the new customer object and return that object.

public void done(ActionEvent e)
{
 AdfFacesContext afContext = AdfFacesContext.getCurrentInstance();
 String firstname = afContext.getPageFlowScope().get("firstname").toString();
 String lastname = afContext.getPageFlowScope().get("lastname").toString();
 String street = afContext.getPageFlowScope().get("street").toString();
 String zipCode = afContext.getPageFlowScope().get("zipCode").toString();
 String country = afContext.getPageFlowScope().get("country").toString();
 String password = afContext.getPageFlowScope().get("password").toString();
 String confirmPassword =
 afContext.getPageFlowScope().get("confirmPassword").toString();

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-15

 if (!password.equals(confirmPassword))
 {
 FacesMessage fm = new FacesMessage();
 fm.setSummary("Confirm Password");
 fm.setDetail("You've entered an incorrect password. Please verify that you've
 entered a correct password!");
 FacesContext.getCurrentInstance().addMessage(null, fm);
 }
 else
 {
 //Get the return value
 Customer cst = new Customer();
 cst.setFirstName(firstname);
 cst.setLastName(lastname);
 cst.setStreet(street);
 cst.setPostalCode(zipCode);
 cst.setCountry(country);
 cst.setPassword(password);
 // And return it
 afContext.getCurrentInstance().returnFromDialog(cst, null);
 }
}

What Happens at Runtime: How to Raise the Return Event from the
Dialog

When the dialog is dismissed, ADF Faces generates a return event (ReturnEvent).
The AdfFacesContext.returnFromDialog() method sends a return value as a
property of the return event. The return event is delivered to the return listener
(ReturnListener) that is registered on the command component that opened the
dialog (for example, the New User link on the Login page). How you handle the return
value is described in How to Handle the Return Value.

How to Pass a Value into a Dialog
To pass a value into a dialog, you use a LaunchListener listener bound to a handler
method for the LaunchEvent. You can use the getDialogParameters() method to add
a parameter to a Map using a key-value pair.

Before you begin:

It may be helpful to have an understanding of how the attributes you configure affect
the functionality of the ADF Faces dialog framework. For more information, see About
Using Dialogs in Your Application.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Using
Dialogs in Your Application.

To pass a value into a dialog:

1. In the Applications window, double-click the JSF page that contains the command
component used to navigate to the dialog page.

2. In the design editor, select the command component used to navigate to the dialog
page.

3. In the Properties window, expand the Behavior section.

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-16

4. From the icon that appears when you hover over the LaunchListener property
field, select Edit.

5. In the Edit Property: LaunchListener dialog, click New beside the Managed Bean
field.

6. In the Create Managed Bean dialog, name the bean and the class, set the bean's
scope, and click OK.

7. In the Edit Property: LaunchListener dialog, click New beside the Method field.

8. In the Create Method dialog, name the method and click OK and click OK to close
the Edit Property: LaunchListener dialog.

9. In the Applications window, expand Application Sources and then expand the
package that contains the bean class and method that you created in Steps 3 to 8.

10. In the source editor, write a handler method for the LaunchEvent that uses the
getDialogParameters method to get the parameters from a dialog.

For example, in the sample application, a new user can enter a name in the
Username field on the Login page, and then click the New User? link. When the
New Account dialog page displays in a popup dialog, the First Name input field
is automatically populated with the name that was entered in the Login page. To
accomplish this, you create a handler that uses the getDialogParameters method
to put the value of the username field into the dialog, as shown in the following
example.

public void handleLaunch(LaunchEvent event)
{
 //Pass the current value of the field into the dialog
 Object usr = username;
 event.getDialogParameters().put("firstname", getUsername());
}
// Use by inputText value binding
private String username;
public String getUsername()
{
 return username;
}
public void setUsername(String username)
{
 this.username = username;
}

11. In the Applications window, double-click the dialog page.

12. On the dialog page, use the pageFlowScope object to retrieve the key and value
via a special EL expression in the format #{pageFlowScope.someKey}, as shown in
the following example.

<af:inputText label="First name" value="#{pageFlowScope.firstname}"/>

What Happens at Runtime: How the LaunchEvent is Handled
In ADF Faces, a process always gets a copy of all the values that are in
the pageFlowScope of the page from which a dialog is launched. When the
getDialogParameters() method has added parameters to a Map, those parameters
also become available in pageFlowScope, and any page in the dialog process can get
the values out of pageFlowScope by referring to the pageFlowScope objects via EL
expressions.

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-17

Note:

Unlike sessionScope, pageFlowScope values are visible only in the
current page flow or process. If the user opens a new window and
starts navigating, that series of windows has its own process; values
stored in each window remain independent. Clicking on the browser's
Back button automatically resets pageFlowScope to its original state.
When you return from a process the pageFlowScope is back to the
way it was before the process started. To pass values out of a
process you use AdfFacesContext.returnFromDialog(), sessionScope or
applicationScope.

How to Handle the Return Value
To handle a return value once the dialog is dismissed, you define a return listener
on the command component that launched the dialog. For example, in the sample
application, once a new user enters information, that information needs to be handled
once the dialog process is complete.

Before you begin:

It may be helpful to have an understanding of how the attributes you configure affect
the functionality of the ADF Faces dialog framework. For more information, see About
Using Dialogs in Your Application.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for Using
Dialogs in Your Application.

To handle the return value:

1. In the Applications window, double-click the JSF page that contains the command
component used to navigate to the dialog page.

2. In the design editor, select the command component used to navigate to the dialog
page.

3. In the Properties window, expand the Behavior section.

4. From the icon that appears when you hover over the ReturnListener property
field, select Edit.

5. In the Edit Property: ReturnListener dialog, click New beside the Managed Bean
field.

6. In the Create Managed Bean dialog, name the bean and the class, set the bean's
scope, and click OK.

7. In the Edit Property: ReturnListener dialog, click New beside the Method field.

8. In the Create Method dialog, name the method and click OK and click OK to close
the Edit Property: LaunchListener dialog.

9. In the Applications window, expand Application Sources and then expand the
package that contains the bean class and method that you created in Steps 3 to 8.

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-18

10. In the source editor, write a handler method for the returnEvent. You use the
getReturnValue() method to retrieve the return value, because the return value is
automatically added as a property of the ReturnEvent.

The following example shows the code for the return listener method that handles
the return value.

public void handleReturn(ReturnEvent event)
{
 if (event.getReturnValue() != null)
 {
 Customer cst;
 String name;
 String psw;
 cst = (Customer)event.getReturnValue();
 name = cst.getFirstName();
 psw = cst.getPassword();
 CustomerList.getCustomers().add(cst);
 inputText1.setSubmittedValue(null);
 inputText1.setValue(name);
 inputText2.setSubmittedValue(null);
 inputText2.setValue(psw);
 }
}

What Happens at Runtime: How the Launching Component Handles
the ReturnEvent

At runtime in the sample application, when ADF Faces delivers a ReturnEvent to the
ReturnListener registered on the link component, the handleReturn() method is
called and the return value is processed accordingly. The new user is added to a
customer list, and as a convenience to the user any previously submitted values in the
Login page are cleared and the input fields are populated with the new information.

Chapter 28
Using the ADF Faces Dialog Framework Instead of Bounded Task Flows

28-19

Part V
Creating a Databound Web User Interface

This part describes how to design the user interface of the Fusion web application
using ADF Faces components.

Part V contains the following chapters:

• Getting Started with Your Web Interface

• Understanding the Fusion Page Lifecycle

• Creating a Basic Databound Page

• Creating ADF Databound Tables

• Using Command Components to Invoke Functionality in the View Layer

• Displaying Master-Detail Data

• Creating Databound Selection Lists and Shuttles

• Creating ADF Databound Search Forms

• Creating Databound Calendar and Carousel Components

• Creating Databound Chart, Picto Chart, and Gauge Components

• Creating Databound NBox Components

• Creating Databound Pivot Table and Pivot Filter Bar Components

• Creating Databound Geographic and Thematic Map Components

• Creating Databound Gantt Chart and Timeline Components

• Creating Databound Hierarchy Viewer, Treemap, and Sunburst Components

• Creating Databound Diagram Components

• Creating Databound Tag Cloud Components

• Using Contextual Events

29
Getting Started with Your Web Interface

This chapter describes how to get started with ADF data controls to create databound
UI components, using ADF Faces components in the Fusion web application. It
describes how to use page templates and page fragments to build a page. It also
describes how to use managed beans to store logic for the page.
This chapter includes the following sections:

• About Developing a Web Application with ADF Faces

• Using Page Templates

• Creating a Web Page

• Using a Managed Bean in a Fusion Web Application

About Developing a Web Application with ADF Faces
ADF Faces is a set of Ajax-enabled JavaServer Faces (JSF) components that can be
used to develop web applications with a minimal amount of hand-coded Javascript.
You can use ADF Model data binding during the development of the web application
that provides additional functionality.

Most of what you need to know to get started with your web interface is covered in
Introduction to ADF Faces in Developing Web User Interfaces with Oracle ADF Faces.
However, using the ADF Model layer for data binding instead of JSF managed beans
provides additional functionality, such as the ability to declaratively bind components
to your business services. For information on what ADF Model can provide, see Using
ADF Model in a Fusion Web Application.

This chapter provides a high-level overview of the web interface development process
as detailed in the Faces guide, and also provides information about the additional
functionality available when you use ADF Model data binding.

Following the development process outlined in Introduction to Building Fusion Web
Applications with Oracle ADF, developing a web application with ADF Faces and using
ADF Model for data binding involves the following steps:

• Creating ADF Faces templates for your pages (optional)

• Creating the individual pages and page fragments for regions to be used within a
page

• Creating any needed managed beans

Additionally, the lifecycle of a Fusion web application is different from that of a
standard JSF or ADF Faces application. For information about how the lifecycle works,
see Understanding the Fusion Page Lifecycle .

Managed beans are Java classes that give you the flexibility to add UI level code to
your pages and task flows. You can use them for functions such as front end data
manipulation and event handling.

29-1

ADF Faces page templates provides structure, consistency, and reusability for building
web pages. You can create a page template and apply it to several pages for a
consistent look and feel. It saves you time and effort because you do not need to
layout the same elements each time you create a page.

Page Template and Managed Beans Use Cases and Examples
In the create-edit-orders-task-flow-definition, the ShuttleBean is used for code
to support a shuttle component to shuttle the available products from the leading
list to the selected products in the trailing list. The managed bean contains the
code necessary to populate the available products list and the selected products list.
Figure 29-1 shows the managed beans used in the create-edit-orders-task-flow-
definition.

Figure 29-1 Managed Beans in the create-edit-orders-task-flow-definition

Additional Functionality for Page Templates and Managed Beans
You may find it helpful to understand other Oracle ADF features before you configure
or use the ADF Model layer. Additionally, you may want to read about what you can do
with your model layer configurations. Following are links to other functionality that may
be of interest.

• For more information about using page templates, see Using ADF Model in a
Fusion Web Application, and the How to Create a Page Template section of
Developing Web User Interfaces with Oracle ADF Faces.

• For more information about managed beans in a standard JSF application,
see the Java EE tutorial on the Oracle Technology Network website (http://
www.oracle.com/technetwork/java/javaee/overview/index.html). For more
information about managed beans and scope values, see About Object Scope
Lifecycles.

Using Page Templates
ADF Page templates let you define entire page layouts, including values for certain
attributes of the page. You can use any of the quick layout designs or you can create
your own layout for a template.

Chapter 29
Using Page Templates

29-2

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html

As you design the flow of your application, you can begin to think about the design
of your pages. To ensure consistency throughout your application, you use ADF
page templates. These page templates provide structure and consistency for other
developers building web pages. Page templates typically contain static areas which
cannot be changed when they are used, and dynamic areas, where developers can
place content specific to the page they are building.

For example, a page template can provide a top area for branding and navigation,
a bottom area for copyright information, and a center area for the main content of
the page. Page developers do not need to do anything to the branding and copyright
information when they use the template. They need only to develop the main content
area.

In addition to using ADF Faces components to build a page template, you can add
attributes to the template definition. These attributes provide placeholders for specific
information that the page developer needs to provide when using the page template.
For instance, if you have added an attribute for a welcome message and when page
developers use this page template, they can add a different welcome message for
each page.

You can also add facet references to the page template. These references act as
placeholders for content on the page. Figure 29-2 shows a rendition of how facets can
be used in a page template.

Figure 29-2 Facets in the Page Template

In this page template, facet references are used inside four different panelSplitter
components. When the home page was created using this page template, the
navigational links were placed in the Header facet and the accordion panels that
hold the navigation trees and search panels were placed in the Start facet. The cart

Chapter 29
Using Page Templates

29-3

summary was placed in the End facet, and the main portion of the page was placed in
the Center facet. The copyright information was placed in the Bottom facet.

When you choose to add databound components to a page template, an associated
page definition file and the other metadata files that support ADF Model layer data
binding are created. Each component is bound in the same fashion as for standard
JSF pages, as described in Using ADF Model in a Fusion Web Application. You can
also create model parameters for the page template. The values for these parameters
can then be set at runtime by the calling page.

For example, if you wanted a list of products to appear on each page that uses the
page template, you could drag and drop the Name attribute of the ProductVO collection
as a list. Or, if you wanted the pages to display the currently selected product Id, you
could create a model parameter for the page template that would evaluate to that
product's Id.

Note:

Page templates are primarily a project artifact. While they can be reused
between projects and applications, they are not fully self-contained and will
always have some dependencies to external resources, for example, any
ADF data binding, Strings from a message bundle, images, and managed
beans.

If a page template does not contain databound components, it can be referenced
dynamically by the calling page using an EL expression. That is, the page template
to be used can be determined at runtime. For instance, a page may use templateA
or templateB based on user selection. When you add a page template to a page,
an af:pageTemplate tag is added to the page. The af:pageTemplate tag includes a
viewId attribute that specifies the page template the page will use. You can set viewId
with an EL expression to a managed bean method that returns the page template Id,
as shown in the following example.

<af:pageTemplate
 id="pt1"
 viewId="#{myBean.templateViewId}"

If the page template has databound components, setting the viewId with an EL
expression is not enough. Because databound components require access to the
binding container, you must specify the page template as well as its associated binding
container.

For databound page templates, you use the pageTemplateModel to manage both the
page template Id and the associated binding container. In the JSF page, instead of
using the viewId attribute, you set the value attribute to the pageTemplateModel. You
must also modify the page executable section of the calling page's page definition
file and create a managed bean with methods to process the page template Ids.
For detailed instructions, see How to Add a Databound Page Template to a Page
Dynamically.

Chapter 29
Using Page Templates

29-4

How to Use ADF Data Binding in ADF Page Templates
Creating a page template for use in an application that uses ADF Business
Components and ADF Model layer data binding is the same as creating a standard
ADF Faces page template, as documented in the Using Page Templates section
of Developing Web User Interfaces with Oracle ADF Faces. Once you create the
template, you can drag and drop items from the Data Controls panel. JDeveloper
automatically adds the page definition file when you drag and drop items from this
panel.

The Create a Page Template wizard also allows you to create model parameters for
use by the template.

Before you begin:

It may help to understand the options that are available to you when you create a
basic page template. For more information, see Using Page Templates.

You may also find it useful to understand additional functionality that can be used with
page templates. For more information, see Additional Functionality for Page Templates
and Managed Beans.

You will need to complete this task:

Create a page template that uses ADF Business Components and ADF Model
layer data binding by following the instructions in the How to Create a Page
Template section of Developing Web User Interfaces with Oracle ADF Faces.
However, do not complete the dialog

To add model parameters to a template:

1. In the Data Binding page of the Create a Page Template wizard, select Create
Page Definition File.

Note:

You only need to select this checkbox if you wish to add parameters.
JDeveloper automatically adds the page definition file when you drag
and drop items from the Data Controls panel.

2. Click the Add icon.

3. Enter the following for the parameter:

• Id: Enter a name for the parameter.

• Value: Enter a value or an EL expression that can resolve to a value. If
needed, click the Invoke Expression Builder (...) button to open the Expression
Builder. You can use this to build the expression. For more information about
EL expressions and the EL expression builder, see Creating ADF Data Binding
EL Expressions.

• Option: Select the option that determines how the parameter value will be
specified.

– optional: The binding definition's value is used only if the parameter is not
specifically set by the caller. This is the default.

Chapter 29
Using Page Templates

29-5

– final: The binding definition has the expression to access the value that
should be used for this parameter.

– mandatory: The parameter value has to be set by the caller.

• Read Only: Select if the parameter's value is to be read-only and should not
be overwritten

4. Create more parameters as needed. Use the order buttons to arrange the
parameters into the order in which you want them to be evaluated.

You can now use the Data Controls panel to add databound UI components to the
page, as you would for a standard JSF page, as described in the remaining chapters
in this part of the book.

Note:

If your template contains any method actions bound to a method iterator, you
cannot change the value of the refresh attribute on the iterator to anything
other than Default. If set to anything other than Default, the method will not
execute.

What Happens When You Use ADF Model Layer Bindings on a Page
Template

When you add ADF databound components to a template or create model parameters
for a template, a page definition file is created for the template, and any model
parameters are added to that file.

Note:

This section describes what happens for a statically assigned page template.
For information about dynamic templates, see How to Add a Databound
Page Template to a Page Dynamically.

The following example shows what the page definition file for a template for which you
created a productId model parameter might look like.

<parameters>
 <parameter id="productID" readonly="true"
 value="#{bindings.productId.inputValue}"/>
</parameters>
<executables/>
<bindings/>

Parameter binding objects declare the parameters that the page evaluates at the
beginning of a request. For more information about binding objects and the ADF
lifecycle, see Using ADF Model in a Fusion Web Application. However, since a
template itself is never executed, the page that uses the template (the calling page)
must access the binding objects created for the template (including parameters or any

Chapter 29
Using Page Templates

29-6

other type of binding objects created by dragging and dropping objects from the Data
Controls panel onto the template).

In order to access the template's binding objects, the page definition file for the
calling page must instantiate the binding container represented by the template's page
definition file. As a result, a reference to the template's page definition is inserted as
an executable into the calling page's page definition file, as shown in the following
example.

<executables>
 <page path="oracle.summt.view.pageDefs.MyTemplatePageDef"
 id="pageTemplateBinding"/>
</executables>

In this example, the calling page was built using the MyTemplate template. Because
the page definition file for the MyTemplate template appears as an executable for the
calling page, when the calling page's binding container is instantiated, it will in turn
instantiate the MyTemplatePageDef's binding container, thus allowing access to the
parameter values or any other databound values.

Because there is an ID for this reference (in this case, pageTemplateBinding), the
calling page can have components that are able to access values from the template.
When you create a JSF page from a template, instead of you having to repeat the
code contained within the template, you can use the af:pageTemplate tag on the
calling page. This tag contains the path to the template JSF page.

Additionally, when the template contains any ADF data binding, the value of that tag is
the ID set for the calling page's reference to the template's page definition, as shown
in the following example.

<af:pageTemplate viewId="/MyTemplate.jspx"
 value="#{bindings.pageTemplateBinding}".../>

How to Add a Databound Page Template to a Page Dynamically
You can dynamically add a page template without databound components by using an
EL expression to select the page template. For more information on how to do this,
see Using Page Templates.

You can also statically add a page template with databound components. For more
information on how to do this, see How to Use ADF Data Binding in ADF Page
Templates.

This section describes how to dynamically add a page template with databound
components to a page. For more information, see Using Page Templates.

You use the pageTemplateModel to dynamically manage a page template and its
binding container. You use an EL expression in the page definition file to set the page
template Id. You create managed bean methods to return the page template Id.

Before you begin:

It may help to understand the options that are available to you when you create a
basic page template. For more information, see Using Page Templates.

You may also find it useful to understand additional functionality that can be used with
page templates. For more information, see Additional Functionality for Page Templates
and Managed Beans.

Chapter 29
Using Page Templates

29-7

You will need to complete this task:

Create a page template that uses ADF Business Components and ADF Model
layer data binding as described in How to Use ADF Data Binding in ADF Page
Templates.

To add a databound page template to a page dynamically:

1. In the JSF page source editor, remove the viewId attribute and change
the value attribute to the pageTemplateModel. You do not need to create a
pageTemplateModel explicitly. You can use the pageTemplateModel from the
corresponding page definition file's page executable binding. For example, for a
page executable binding called pageTemplate1, you would add the following line
under the af:pageTemplate tag:

value="#{bindings.pageTemplate1.templateModel}"/>

2. In the page definition file <executable> section, make the following changes to the
<page> section:

• Remove the path attribute. It is no longer needed. The pageTemplateModel
manages databound components' access to the binding container.

• Change the id attribute to the page executable binding. In this example, it is
pageTemplate1.

• Add a Refresh attribute and set it to ifNeeded.

• Add a viewId attribute and set it to an EL expression with a managed bean
method that returns the current page template Id.

For example, for a page executable binding of pageTemplate1, the id attribute
would also be pageTemplate1:

<executables>
 <page id="pageTemplate1"
 viewId="#{myBean.templateViewId}"
 Refresh="ifNeeded"/>
 ...
</executables>

3. Create a pageFlowScope managed bean with a method that returns the current
page template Id.

The managed bean code should be similar to that in the following example. In this
example, gettemplateViewId() obtains the user's page template selection and
returns the page template Id. setMDTemplateViewId() sets the page template to
be MDPageTemplate and setPopupTemplateViewId() sets the page template to be
PopupPageTemplate.

public class myClass {
 final private String MDPageTemplate = "/MDPageTemplate.jspx";
 final private String PopupPageTemplate = "/PopupPageTemplate.jspx";
 private String templateViewId;

 public myClass() {
 super();
 templateViewId = MDPageTemplate;
 }
 public String gettemplateViewId() {
 return templateViewId;
 }
 public void setMDTemplateViewId(ActionEvent ae) {

Chapter 29
Using Page Templates

29-8

 templateViewId = MDPageTemplate;
 }
 public void setPopupTemplateViewId(ActionEvent ae) {
 templateViewId = PopupPageTemplate;
 }
}

What Happens at Runtime: How Pages Use Templates
When a page is created using a template that contains ADF data binding, like a
page without a template, the page definition file is used to create the page. During
the lifecycle, the binding container for page template is also created and the UI
components and biding for both the page and template are processed.

Specifically, the following happens:

1. The calling page follows the standard JSF/ADF lifecycle, as documented in
Understanding the Fusion Page Lifecycle. As the page enters the Restore View
phase, the URL for the calling page is sent to the binding context, which finds the
corresponding page definition file.

2. During the Initialize Context phase, the binding container for the calling page is
created based on the page definition file.

3. During the Prepare Model phase, the page template executable is refreshed. At
this point, the binding container for the template is created based on the template's
page definition file, and added to the binding context.

4. The lifecycle continues, with UI components and bindings from both the page and
the template being processed.

Creating a Web Page
During the development of a Fusion web application, web pages are built using page
templates and page fragments. You can create a web page using the Create JSF
Page dialog and you can also secure web pages within the ADF Security framework.

You can create pages either by double-clicking a view activity in a task flow or by
using the New Gallery. When creating the page (or dropping a view activity onto a task
flow), you can choose to create the page as a JSF JSP or as a JSF JSP fragment.
JSF fragments provide a simple way to create reusable page content in a project, and
are what you use when you wish to use task flows as regions on a page. When you
modify a JSF page fragment, the JSF pages that consume the page fragment are
automatically updated.

Note:

Although JDeveloper supports XHTML files to be used in applications that
use Facelets, the faces-config.xml and adfc-config.xml diagrammers do
not support XHTML. In order to add navigation to these files, you have to
manually edit the code by clicking the Source tab.

When you begin adding content to your page, you typically use the Components
window and Data Controls panel of JDeveloper. The Components window contains

Chapter 29
Creating a Web Page

29-9

all the ADF Faces components needed to declaratively design your page. Once you
have the basic layout components placed on the page, you can then drag and drop
items from the Data Controls panel to create ADF Model databound UI components.
The remaining chapters in this part of the book explain in detail the different types of
databound components and pages you can create using ADF Model data binding.

How to Create a Web Page
You create web pages using the Create JSF Page dialog.

Before you begin:

It may be helpful to have an understanding of the different options when creating a
page. For more information, see Creating a Web Page.

To create a web page:

1. In the Applications window, right-click the node (directory) where you would like
the page to be saved, and choose New > Page.

2. Complete the Create JSF Page dialog. For help, click Help in the dialog.

For more information on the templates available and what happens when you create
the page, see Creating a View Page section in Developing Web User Interfaces with
Oracle ADF Faces.

What You May Need to Know About Creating Blank Web Pages
When you create a new blank web page, the generated code might differ depending
on the type of project you are working in and the tag libraries that have been imported
in the project. For example, if you are working in a project created from the Custom
Project template and you select the Create Blank Page option in the Create JSF page
dialog, the generated code might not include ADF Faces tags as it would under similar
circumstances in the UI project of an ADF Fusion Web Application workspace.

If you want to create a page without a pre-defined layout that includes ADF Faces
tags, it might be easiest to select the Copy Quick Start Layout option in the Create
JSF page dialog and select a simple layout. Selecting this option will trigger the
importing of the ADF Faces tag library into the project. In addition, any subsequent
pages that you create in the project, even those created with the Create Blank Page
option selected, will use ADF Faces tags.

What You May Need to Know About Securing a Web Page
When creating web pages, you should have a plan for how you will apply security to
them.

To secure a web page within the ADF Security framework, you actually secure the
page's page definition file. If the page is within a bounded task flow, you secure the
bounded task flow (and the security policies applied to that bounded task flow apply
to all of the pages within the task flow). If a page is within a bounded task flow, you
should not apply security policies to the page definition file, as that could enable a user
to access the page directly.

For more information on securing web pages, see Defining ADF Security Policies.

Chapter 29
Creating a Web Page

29-10

Using a Managed Bean in a Fusion Web Application
A standard JSF application includes one or more managed beans, each of which can
be associated with the components used in a particular page. Managed Beans must
be registered in the configuration files of JSF application or Fusion web application.

Managed beans are Java classes that you register with the application using various
configuration files. When the JSF application starts up, it parses these configuration
files, and the beans listed within them are made available. The managed beans can
be referenced in an EL expression, allowing access to the beans' properties and
methods. Whenever a managed bean is referenced for the first time and it does not
already exist, the Managed Bean Creation Facility instantiates the bean by calling
the default constructor method on it. If any properties are also declared, they are
populated with the declared default values.

Often, managed beans handle events or some manipulation of data that is best
handled at the front end. For a more complete description of how managed
beans are used in a standard JSF application, see the Java EE tutorial on
the Oracle Technology Network website (http://www.oracle.com/technetwork/java/
javaee/overview/index.html).

Best Practice:

Use managed beans to store logic that is related to the UI rendering only. All
application data and processing should be handled by logic in the business
layer of the application. Similar to how you store data-related logic in the
database using PL/SQL rather than a Java class, the rule of thumb in a
Fusion web application is to store business-related logic in the middle tier.
This way, you can expose this logic as business service methods, which can
then become accessible to the ADF Model layer and be available for data
binding.

In an application that uses ADF data binding and ADF task flows, managed beans
are registered in different configuration files from those used for a standard JSF
application. In a standard JSF application, managed beans are registered in the
faces-config.xml configuration file. In a Fusion web application, managed beans can
be registered in the faces-config.xml file, the adfc-config.xml file, or a task flow
definition file. Which configuration file you use to register a managed bean depends
on what will need to access that bean, whether or not it needs to be customized at
runtime, what the bean's scope is, and in what order all the beans in the application
need to be instantiated. Table 29-1 describes how registering a bean in each type of
configuration file affects the bean.

Note:

Fusion web applications take advantage of the functionality provided by ADF
task flows. Managed beans accessed within the task flow definition must be
registered in that task flow's definition file and not in the faces-config.xml
file.

Chapter 29
Using a Managed Bean in a Fusion Web Application

29-11

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html

Table 29-1 Effects of Managed Bean Configuration Placement

Managed Bean Placement Effect

adfc-config.xml • Managed beans can be of any scope. However, any backing
beans for page fragments or declarative components should
use BackingBean scope. For information regarding scope,
see About Object Scope Lifecycles.

• When executing within an unbounded task flow, faces-
config.xml will be checked for managed bean definitions
before the adfc-config.xml file.

• Lookup precedence is enforced per scope. Request-scoped
managed beans take precedence over session-scoped
managed beans. Therefore, a request-scoped managed
bean named foo in the adfc-config.xml file will take
precedence over a session-scoped managed bean named
foo in the current task flow definition file.

• Already instantiated beans take precedence over new
instances being instantiated. Therefore, an existing session-
scoped managed bean named foo will always take
precedence over a request-scoped bean named foo
defined in the current task flow definition file.

Task flow definition file • Managed bean can be of any scope. However, managed
beans of pageFlow scope or view scope that are to be
accessed within the task flow definition must be defined
within the task flow definition file. Any backing beans for
page fragments in a task flow should use BackingBean
scope.

• Managed bean definitions within task flow definition files will
be visible only to activities executing within the same task
flow.

• When executing within a bounded task flow, faces-
config.xml will be checked for managed bean definitions
before the currently executing task flow definition. If no
match is found in either location, adfc-config.xml
and other bootstrap configuration files will be consulted.
However, this lookup in other adfc-config.xml and
bootstrap configuration files will only occur for session- or
application-scoped managed beans.

• Lookup precedence is enforced per scope. Request-scoped
managed beans take precedence over session-scoped
managed beans. Therefore, a request-scoped managed
bean named foo in the adfc-config.xml file will take
precedence over a session-scoped managed bean named
foo in the current task flow definition file.

• Already instantiated beans take precedence over new
instances being instantiated. Therefore, an existing session-
scoped managed bean named foo will always take
precedence over a request-scoped bean named foo
registered in the current task flow definition file.

• Customizations are allowed.

Chapter 29
Using a Managed Bean in a Fusion Web Application

29-12

Table 29-1 (Cont.) Effects of Managed Bean Configuration Placement

Managed Bean Placement Effect

faces-config.xml • Managed beans can be of any scope other than pageFlow
scope or view scope.

• When searching for any managed bean, the faces-
config.xml file is always consulted first. Other
configuration files will be searched only if a match is
not found. Therefore, beans registered in the faces-
config.xml file will always win any naming conflict
resolution.

• No customizations can be made.

As a general rule for Fusion web applications, a bean that may be used in more than
one page or task flow, or one that is used by pages within the main unbounded task
flow (adfc-config), should be registered in the adfc-config.xml configuration file.
A managed bean that will be used only by a specific task flow should be registered
in that task flow's definition file. There should be no beans registered in the faces-
config.xml file.

Note:

If you create managed beans from dialogs within JDeveloper, the bean is
registered in the adfc-config.xml file, if it exists.

For example, in the Summit sample application for Oracle ADF, the ShuttleBean
is a managed bean used by the showshuttle page to handle the selections in the
shuttle component on that page. Because it is used solely within the create-edit-
orders-task-flow-definition task flow, it is registered in the create-edit-orders-
task-flow-definition definition file.

You can create a managed bean for use within a task flow (either the default adfc-
config flow or any bounded task flow). For more information regarding managed
beans and how they are used as backing beans for JSF pages, see Creating and
Using Managed Beans in Developing Web User Interfaces with Oracle ADF Faces.

How to Use a Managed Bean to Store Information
Within the editors for a task flow definition, you can create a managed bean and
register it with the JSF application at the same time.

Before you begin:

It may help to understand the options that are available to you when you create a
managed bean. For more information, see Using a Managed Bean in a Fusion Web
Application.

You may also find it useful to understand additional functionality that can be used
with managed beans. For more information, see Additional Functionality for Page
Templates and Managed Beans.

You will need to complete this task:

Chapter 29
Using a Managed Bean in a Fusion Web Application

29-13

Create the configuration file (if it doesn't already exist) that you want the managed
bean to be associated with. This can be faces-config.xml, adfc-config.xml, or a
bounded task flow definition file.

To create a managed bean for adfc-config.xml or a task flow:

1. In the Applications window, double-click either the adfc-config.xml file or any
other task flow definition file.

2. In the overview editor, click the Managed Beans navigation tab. Figure 29-3
shows the editor for the adfc-config.xml file.

Figure 29-3 Managed Beans in the adfc-config.xml File

3. In the Managed Bean page, click the Add icon to add a row to the Managed
Beans table.

4. In the fields, enter the following:

• Name: A name for the bean.

• Class: If the corresponding class has already been created for the bean, use
the browse (...) button for the managed-bean-class field to search for and
select the class. If a class does not exist, enter the name you'd like to use. Be
sure to include any package names as well. You can then use the drop-down
menu to choose Generate Class, and the Java file will be created for you.

• Scope: The bean's scope. For more information about the different object
scopes, see About Object Scope Lifecycles.

Chapter 29
Using a Managed Bean in a Fusion Web Application

29-14

Note:

When determining what scope to register a managed bean with or to
store a value in, keep the following in mind:

– Always try to use the narrowest scope possible.

– If your managed bean takes part in component binding by
accepting and returning component instances (that is, if UI
components on the page use the binding attribute to bind to
component properties on the bean), then the managed bean
must be stored in BackingBean scope. If it can't be stored in
one of those scopes (for example, if it needs to be stored in
sessionScope for high availability reasons), then instead of using
component binding, you need to use the ComponentReference
API. For more information, see the What You May Need to
Know About Component Bindings and Managed Beans section
of Developing Web User Interfaces with Oracle ADF Faces

– Use the sessionScope scope only for information that is relevant
to the whole session, such as user or context information. Avoid
using the sessionScope scope to pass values from one page to
another.

– You can also set the scope to none. While not technically
a scope, none means that the bean will not live within any
particular scope, but will instead be instantiated each time it is
referenced. You should set a bean's scope to none when it is
referenced by another bean.

5. You can optionally add needed properties for the bean. With the bean selected in
the Managed Beans table, click the Add icon for the Managed Properties table.
Enter a property name (other fields are optional).

Note:

While you can declare managed properties using this editor, the
corresponding code is not generated on the Java class. You will need
to add that code by creating private member fields of the appropriate
type and then using the Generate Accessors menu item on the context
menu of the source editor to generate the corresponding getter and
setter methods for these bean properties.

What Happens When You Create a Managed Bean
When you use the configuration editor to create a managed bean and elect to
generate the Java file, JDeveloper creates a stub class with the given name and a
default constructor. The following example shows the code added to the MyBean class
stored in the view package.

package view;

Chapter 29
Using a Managed Bean in a Fusion Web Application

29-15

public class MyBean {
 public MyBean() {
 }
}

You now need to add the logic required by your task flow or page. You can then refer
to that logic using an EL expression that refers to the managed-bean-name value given
to the managed bean. For example, to access the myInfo property on the bean, the EL
expression would be:

#{my_bean.myInfo}

JDeveloper also adds a managed-bean element to the appropriate task definition file.
The following shows the managed-bean element created for the MyBean class.

<managed-bean>
 <managed-bean-name>my_bean</managed-bean-name>
 <managed-bean-class>view.MyBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

How to Set Managed Bean Memory Scopes in a Server-Cluster
Environment

Typically, in an application that runs in a clustered environment, a portion of the
application's state is serialized and copied to another server or a data store at the end
of each request so that the state is available to other servers in the cluster.

Note:

If the managed bean will be calling set and get methods on ADF Faces
components, you cannot serialize the managed beans because ADF Faces
components are not serializable. You will need to access the ADF Faces
components in another way.

When you are designing an application to run in a clustered environment, you must:

• Ensure that all managed beans with a lifespan longer than one request
are serializable (that is, they implement the java.io.Serializable interface).
Specifically, beans stored in session scope, page flow scope, and view scope
need to be serializable.

Tip:

To identify failures with objects stored in page flow scope and view
scope, use writeObject(). This method provides additional information
in an exception about the object and scope that failed to serialize.
Additional information might be a region's page flow scope and the key
of the object.

• Make sure that the framework is aware of changes to managed beans stored in
ADF scopes (view scope and page flow scope).

Chapter 29
Using a Managed Bean in a Fusion Web Application

29-16

When a value within a managed bean in either view scope or page flow scope is
modified, the application needs to notify the framework so that it can ensure that the
bean's new value is replicated.

In this example, an attribute of an object in view scope is modified.

Map<String, Object> viewScope =
 AdfFacesContext.getCurrentInstance().getViewScope();
MyObject obj = (MyObject)viewScope.get("myObjectName");
Obj.setFoo("newValue");

Without additional code, the framework will be unaware of this change and it will
not know that a new value needs to be replicated within the cluster. To inform the
framework that an object in an ADF scope has been modified and that replication
is needed, use the markScopeDirty() method, as shown in the following example.
The markScopeDirty() method accepts only viewScope and pageFlowScope as
parameters.

 ControllerContext ctx = ControllerContext.getInstance();
 ctx.markScopeDirty(viewScope);

This code is needed for any request that modifies an existing object in one of the
ADF scopes. If the scope itself is modified by the scope's put(), remove(), or clear()
methods, it is not necessary to notify the framework.

If an application is not deployed to a clustered environment, the tracking of changes
to ADF memory scopes is not needed, and by default, this functionality is disabled.
To enable ADF Controller to track changes to ADF memory scopes and replicate
the page flow scope and view scope within the server cluster, set the <adf-scope-ha-
support> parameter in the adf-config.xml file to true. Because scope replication has
a small performance overhead, it should be enabled only for applications running in a
server-cluster environment.

The folllowing shows adf-scope-ha-support set to true in the adf-config.xml file.

<?xml version="1.0" encoding="US-ASCII" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:adfc="http://xmlns.oracle.com/adf/controller/config">
 <adfc:adf-controller-config>
 ...
 <adfc:adf-scope-ha-support>true</adfc:adf-scope-ha-support>
 ...
 </adfc:adf-controller-config>
 ...
</adf-config>

Chapter 29
Using a Managed Bean in a Fusion Web Application

29-17

30
Understanding the Fusion Page Lifecycle

This chapter describes the ADF page lifecycle, its phases, and how to best use the
lifecycle within a Fusion web application.
This chapter includes the following sections:

• About the Fusion Page Lifecycle

• About the JSF and ADF Page Lifecycles

• About Object Scope Lifecycles

• Customizing the ADF Page Lifecycle

About the Fusion Page Lifecycle
The Fusion page lifecycle provides support for a web page to interact with ADF Model
data bindings. You can learn about the sequence of events that occur while processing
a web page request using JSF and Oracle ADF.

When a JSF page is submitted and a new page is requested, the JSF page request
lifecycle is invoked. This lifecycle handles the submission of values on the page,
validation for components on the current page, navigation to and display of the
components on the resulting page, as well as saving and restoring state. The JSF
lifecycle phases use a UI component tree to manage the display of the components.
This tree is a runtime representation of a JSF page: each UI component tag in a page
corresponds to a UI component instance in the tree.

The FacesServlet object manages the page request lifecycle in JSF applications.
The FacesServlet object creates an object called FacesContext, which contains the
information necessary for request processing, and invokes an object that executes the
lifecycle.

In addition to the JSF lifecycle, the ADF Faces and ADF page lifecycle are also run.
The ADF Faces lifecycle extends the JSF lifecycle, providing additional functionality,
such as a client-side value lifecycle, a subform component that allows you to create
independent submittable sections on a page without the drawbacks (for example,
lost user edits) of using multiple forms on a single page, and additional scopes. For
information about both the JSF lifecycle and the ADF Faces lifecycle, including what
you can do with the lifecycle for your application, see Using the JSF Lifecycle with
ADF Faces.

The ADF page lifecycle handles preparing and updating the data model, validating the
data at the model layer, and executing methods on the business layer. The ADF page
lifecycle uses the binding container to make data available for easy referencing by the
page during the current page request.

The combined JSF and ADF page lifecycle is only one sequence within a larger
sequence of events that begins when an HTTP request arrives at the application
server and continues until the page is returned to the client. This overall sequence of
events can be called the web page lifecycle. It follows processing through the model,
view, and controller layers as defined by the MVC architecture. The page lifecycle is

30-1

not a rigidly defined set of events, but is rather a set of events for a typical use case.
Figure 30-1 shows a sequence diagram of the lifecycle of a web page request using
JSF and Oracle ADF in tandem.

Figure 30-1 Lifecycle of a Web Page Request Using JSF and Oracle ADF

The basic flow of processing a web page request using JSF and Oracle ADF happens
as follows:

1. A web request for http://yourserver/yourapp/faces/some.jsp arrives from the
client to the application server.

2. The ADFBindingFilter object looks for the ADF binding context in the HTTP
session, and if it is not yet present, initializes it for the first time. Some of the
functions of the ADFBindingFilter include finding the name of the binding context
metadata file, and finding and constructing an instance of each data control.

3. The ADFBindingFilter object invokes the beginRequest() method on each
data control participating in the request. This method gives the data control a
notification at the start of every request so that it can perform any necessary
setup.

4. The JSF Lifecycle object, which is responsible for orchestrating the standard
processing phases of each request, notifies the ADFPhaseListener class during
each phase of the lifecycle, so that it can perform custom processing to coordinate
the JSF lifecycle with the ADF Model data binding layer. For information about the
details of the JSF and ADF page lifecycle phases, see About the JSF and ADF
Page Lifecycles.

Chapter 30
About the Fusion Page Lifecycle

30-2

Note:

The FacesServlet class (in javax.faces.webapp), configured in the
web.xml file of a JSF application, is responsible for initially creating
the JSF Lifecycle class (in javax.faces.lifecycle) to handle each
request. However, since it is the Lifecycle class that does all the
interesting work, the FacesServlet class is not shown in the diagram.

5. The ADFPhaseListener object creates an ADF PageLifecycle object to handle
each request and delegates the appropriate before and after phase methods to
corresponding methods in the ADF PageLifecycle class. If the binding container
for the page has never been used before during the user's session, it is created.

6. The first time an application module data control is referenced during the
request, it acquires an instance of the application module from the application
module pool.

7. The JSF Lifecycle object forwards control to the page to be rendered.

8. The UI components on the page access value bindings and iterator bindings in the
page's binding container and render the formatted output to appear in the browser.

9. The ADFBindingFilter object invokes the endRequest() method on each data
control participating in the request. This method gives a data control notification
at the end of every request, so that they can perform any necessary resource
cleanup.

10. An application module data control uses the endRequest notification to release the
instance of the application module back to the application module pool.

11. The user sees the resulting page in the browser.

The ADF page lifecycle also contains phases that are defined simply to notify ADF
page lifecycle listeners before and after the corresponding JSF phase is executed (that
is, there is no implementation for these phases). These phases allow you to create
custom listeners and register them with any phase of both the JSF and ADF page
lifecycles, so that you can customize the ADF page lifecycle if needed, both globally or
at the page level.

About the JSF and ADF Page Lifecycles
The JSF and ADF page lifecycles perform a sequence of events that begins when an
HTTP request arrives at the application server and continues until the page is returned
to the client. You can learn about the different phases of a page lifecycle in a JSF
application that uses an ADF Model.

Figure 30-2 shows a high-level view of the combined JSF and ADF page lifecycles.

Chapter 30
About the JSF and ADF Page Lifecycles

30-3

Figure 30-2 JSF and ADF Page Lifecycles

Say for example, you have a page with some text displayed in an input text component
and a button. When that page is first rendered, the component tree is built during
the Restore View phase and then the lifecycle goes straight to the Render Response
phase, as the components are rendered. When the user clicks the button, the full
lifecycle is invoked. The component tree is rebuilt, the input text component extracts
any new value during the Apply Request Values phase and Process Validations phase,
and if there is an error, for example due to validation, then the lifecycle jumps to the
Render Response phase. Otherwise, the model is then updated with the new value
during the Update Model phase, and then any application processing associated with
the button (such as navigation), is executed during the Invoke Application phase.

Figure 30-3 shows the details of how the JSF and ADF Faces and ADF Model phases
integrate in the lifecycle of a page request.

Chapter 30
About the JSF and ADF Page Lifecycles

30-4

Figure 30-3 Lifecycle of a Page Request in a Fusion Web Application

In a JSF application that uses ADF Model, the phases in the page lifecycle are as
follows:

• Restore View: The URL for the requested page is passed to the bindingContext
object, which finds the page definition file that matches the URL. The component
tree of the requested page is either newly built or restored. All the component tags,
event handlers, converters, and validators on the submitted page have access to
the FacesContext instance. If the component tree is empty, (that is, there is no
data from the submitted page), the page lifecycle proceeds directly to the Render
Response phase.

If any discrepancies between the request state and the server-side state are
detected, an error will is thrown and the page lifecycle jumps to the Render
Response phase.

• JSF Restore View: Provides before and after phase events for the Restore View
phase. You can create a listener and register it with the before or after event of this
phase, and the application will behave as if the listener were registered with the
Restore View phase. The Initialize Context phase of the ADF Model page lifecycle
listens for the after(JSF Restore View) event and then executes. ADF Controller

Chapter 30
About the JSF and ADF Page Lifecycles

30-5

uses listeners for the before and after events of this phase to synchronize the
server-side state with the request. For example, it is in this phase that browser
back button detection and bookmark reference are handled. After the before and
after listeners are executed, the page flow scope is available.

• Initialize Context: The page definition file is used to create the bindingContainer
object, which is the runtime representation of the page definition file for
the requested page. The LifecycleContext class used to persist information
throughout the ADF page lifecycle phases is instantiated and initialized with values
for the associated request, binding container, and lifecycle.

• Prepare Model: The ADF page lifecycle enters the Prepare Model phase
by calling the BindingContainer.refresh(PREPARE_MODEL) method. During the
Prepare Model phase, BindingContainer page parameters are prepared and then
evaluated. If parameters for a task flow exist, they are passed into the flow.

Next, any executables that have their refresh property set to prepareModel are
refreshed based on the order of entry in the page definition file's <executables>
section and on the evaluation of their RefreshCondition properties (if present).
When an executable leads to an iterator binding refresh, the corresponding data
control will be executed, and that leads to execution of one or more collections in
the service objects. If an iterator binding fails to refresh, a JBO exception will be
thrown and the data will not be available to display. For more information about the
RefreshCondition property, see pageNamePageDef.xml.

If the incoming request contains no POST data or query parameters, then the
lifecycle forwards to the Render Response phase.

If the page was created using a template, and that template contains bindings
using ADF Model, the template's page definition file is used to create the binding
container for the template. The container is then added to the binding context.

If any taskFlow executable bindings exist (for example, if the page contains a
region), the taskFlow binding creates an ADF Controller ViewPortContext object
for the task flow, and any nested binding containers for pages in the flow are then
executed.

• Apply Request Values: Each component in the tree extracts new values from the
request parameters (using its decode method) and stores those values locally.
Most associated events are queued for later processing. If you have set a
component's immediate attribute to true, then the validation, conversion, and
events associated with the component are processed during this phase and
the lifecycle skips the Process Validations, Update Model Values, and Invoke
Application phases. Additionally, any associated iterators are invoked. For more
information about ADF Faces validation and conversion, see the Validating and
Converting Input chapter in Developing Web User Interfaces with Oracle ADF
Faces.

• JSF Apply Request Values: Provides before and after phase events for the Apply
Request Values phase. You can create a listener and register it with the before or
after event of this phase, and the application will behave as if the listener were
registered with the Apply Request Values phase.

• Process Validations: Local values of components are converted and validated
on the client. If there are errors, the lifecycle jumps to the Render Response
phase. At the end of this phase, new component values are set, any validation
or conversion error messages and events are queued on FacesContext, and any
value change events are delivered. Exceptions are also caught by the binding
container and cached.

Chapter 30
About the JSF and ADF Page Lifecycles

30-6

• JSF Process Validations: Provides before and after phase events for the Process
Validations phase. You can create a listener and register it with the before or
after event of this phase, and the application will behave as if the listener were
registered with the Process Validations phase.

• Update Model Values: The component's validated local values are moved to
the model and the local copies are discarded. For any updateable components
(such as an inputText component), corresponding iterators are refreshed, if the
refresh condition is set to the default (deferred) and the refresh condition (if any)
evaluates to true.

If you are using a backing bean for a JSF page to manage your UI components,
any UI attributes bound to a backing bean property will also be refreshed in this
phase.

• JSF Update Model Values: Provides before and after phase events for the Update
Model Values phase. You can create a listener and register it with the before or
after event of this phase, and the application will behave as if the listener were
registered with the Update Model Values phase.

• Validate Model Updates: The updated model is now validated against any
validation routines set on the model. Exceptions are caught by the binding
container and cached.

• Invoke Application: Any action bindings for command components or events are
invoked.

• JSF Invoke Application: Provides before and after phase events for the Invoke
Application phase. You can create a listener and register it with the before or
after event of this phase, and the application will behave as if the listener were
registered with the Invoke Application phase.

• Metadata Commit: Changes to runtime metadata are committed. This phase
stores any runtime changes made to the application using the Metadata Service
(MDS). For more information about using MDS to persist runtime changes, see
Customizing Applications with MDS.

• Initialize Context (only if navigation occurred in the Invoke Application lifecycle):
The Initialize Context phase listens for the beforeJSFRenderResponse event to
execute. The page definition file for the next page is initialized.

• Prepare Model (only if navigation occurred in the Invoke Application lifecycle): Any
page parameters contained in the next page's definition are set.

• Prepare Render: The binding container is refreshed to allow for any changes
that may have occurred in the Apply Request Values or Validation phases.
Any iterators that correspond to read-only components (such as an outputText
component) are refreshed. Any dynamic regions are switched, if needed.
The prepareRender event is sent to all registered listeners, as is the
afterJSFRenderResponse event.

Note:

Instead of displaying prepareRender as a valid phase for a
selection, JDeveloper displays renderModel, which represents the
refresh(RENDER_MODEL) method called on the binding container.

Chapter 30
About the JSF and ADF Page Lifecycles

30-7

• Render Response: The components in the tree are rendered as the Java EE web
container traverses the tags in the page. State information is saved for subsequent
requests and the Restore View phase.

In order to lessen the wait time required to display both a page and any associated
data, certain ADF Faces components such as the table component, use data
streaming for their initial request. When a page contains one or more of these
components, the page goes through the normal lifecycle. However, instead of
fetching the data during that request, a special separate request is run. Because
the page has just rendered, only the Render Response phase executes for the
components that use data streaming, and the corresponding data is fetched
and displayed. If the user's action (for example scrolling in a table), causes a
subsequent data fetch another request is executed. Collection-based components,
such as tables, trees, tree tables, and data visualization components all use data
streaming.

• JSF Render Response: Provides before and after phase events for the Render
Response phase. You can create a listener and register it with the before or
after event of this phase, and the application will behave as if the listener were
registered with the Render Response phase.

What You May Need to Know About Partial Page Rendering and
Iterator Bindings

ADF Faces provides an optimized lifecycle that you can use when you want the
page request lifecycle (including conversion and validation) to be run only for certain
components on a page, usually for components whose values have changed.

One way to use the optimized lifecycle is to manually set up dependencies so that
the events from one component act as triggers for another component, known as the
target. When any event occurs on the trigger component, the lifecycle is run on any
target components, as well as on any child components of both the trigger and the
target, causing only those components to be rerendered. This is considered a partial
page rendering (PPR)

The following example shows radio buttons as triggers and a panelGroupLayout
component that contains the output text to be the target (the panelGroupLayout
component must be the target because the outputText component may not always
be rendered).

<af:form>
 <af:inputText label="Required Field" required="true"/>
 <af:selectBooleanRadio id="show" autoSubmit="true"
text="Show"
 value="#{validate.show}"/>
 <af:selectBooleanRadio id="hide" autoSubmit="true" text="Hide"
 value="#{validate.hide}"/>
 <af:panelGroupLayout partialTriggers="show hide" id="panel">
 <af:outputText value="You can see me!" rendered="#{validate.show}"/>
 </af:panelGroupLayout>
</af:form>

Because the autoSubmit attribute is set to true on the radio buttons, when they
are selected, a SelectionEvent is fired. Because the panelGroupLayout component
is set to be a target for both radio components, when that event is fired, only the
selectOneRadio (the trigger), the panelGroupLayout component (the trigger's target),
and its child component (the outputText component) are processed through the

Chapter 30
About the JSF and ADF Page Lifecycles

30-8

lifecycle. Because the outputText component is configured to render only when the
Show radio button is selected, the user is able to select that radio button and see the
output text, without having to enter text into the required input field above the radio
buttons.

Instead of having to set partial triggers and targets within code manually, the ADF
Faces framework provides automatic PPR. Automatic PPR happens when an event
has a corresponding event root component, or when the component itself is an event
root. An event root component determines the boundaries of PPR. For example, the
attributeChangeEvent considers the inputText component that invokes the event,
its event root. Therefore, in the previous example, when the value changes for the
inputText component, because it is the initial boundary for the PPR, the lifecycle
would be run only on that inputText component and any child components.

Along with event roots, by default for Fusion web applications, automatic PPR also
occurs for all UI components associated with the same iterator binding. All associated
components refresh whenever any one of them has a value change event. This
functionality is controlled by setting the changeEventPolicy attribute for iterators to
ppr. By default, this is set globally.

For example, say you create a number of inputText components using
the Data Controls panel (for example, when you create a form). When the
attributeChangeEvent occurs on one of those inputText components, because
the other inputText components are associated with the same iterator, all those
inputText components will also be refreshed.

Another example might be a page that contains a panelSplitter component, where
the left part of the splitter contains a form to create a new customer (created by
dropping a form using the Customer collection), and the right part of the splitter
contains instructions for using the form. Because the bindings for the inputText
components that make up the form are all associated with the Customer iterator,
anytime the form is submitted and a value for one of the inputText components
has changed, only the inputText components associated with the Customer will be
processed through the lifecycle. The rest of the page, including the instructions in the
right side of the splitter, will not be refreshed.

Note:

In order for automatic PPR to happen, the event and event root component
must be listed in Table 5-1 of the Events and Partial Page Rendering section
of Developing Web User Interfaces with Oracle ADF Faces. If it is not listed,
you will need to set up PPR manually, as described in the Using Partial
Triggers section of the same guide.

For example, say you create a form and a table from the same data control
collection. The form shows the details for a row of data, while the table
shows all rows in a collection, with the row currently displayed in the form
shown as selected. When you click the Next button on the form, you want
the table to refresh to show the new row as selected. Because the selection
event is not supported by automatic PPR, the table will not refresh, even
though the table and form both use the same iterator. You will need to set the
Next and Previous buttons to be triggers of PPR for the target table.

Chapter 30
About the JSF and ADF Page Lifecycles

30-9

Note:

Only UI components that have a control binding defined in the page definition
file associated with the configured iterator will be refreshed.

If you directly access the iterator from a managed bean and expose iterator
values to UI components through that bean, then automatic PPR will not
happen for those UI components. In these cases, you need to configure PPR
manually. For more information, see the Using Partial Triggers section of
Developing Web User Interfaces with Oracle ADF Faces.

By default, all new applications use global PPR. You do not have to set it. You can
however, override the setting in the page definition file for a page.

Before you begin:

It may be helpful to have an understanding of partial page rendering. For more
information, see What You May Need to Know About Partial Page Rendering and
Iterator Bindings.

To set iterator bindings to use PPR:

1. To set a specific iterator binding to use or not use PPR, open the associated
page definition file, select the iterator, and in the Properties window, set
ChangeEventPolicy.

2. To set all iterator bindings to use PPR:

a. In the Applications Resource panel, expand the Descriptors and ADF META-
INF nodes, and then double click adf-config.xml.

b. In the overview editor, click the Model navigation tab, and then select Default
Change Event Policy is Partial Page Rendering (PPR).

For more information about how the ADF Faces framework uses PPR, see the
Rerendering Partial Page Content chapter in Developing Web User Interfaces with
Oracle ADF Faces.

What You May Need to Know About Task Flows and the Lifecycle
Task flows are initially refreshed when the parent binding container (the one
associated with the page) is refreshed. This happens in the Prepare Model phase.
On a subsequent request, the task flow will be refreshed during the Prepare Render
phase, depending on its refresh and refreshCondition attributes and its parameter
value.

Note:

Any child page fragment's page definition still handles the refresh of the
bindings of the child page fragments.

Chapter 30
About the JSF and ADF Page Lifecycles

30-10

Tip:

If you have a region on a page that is not initially disclosed (for example,
a popup dialog), the parameters still need to be available when the parent
page is rendered, even though the region might not be displayed. If a region
requires parameters, but those parameter values will not be available when
the parent page is rendered, then you should use dynamic regions. If the
parameters are null, an empty task flow can be used until the parameters for
the region are ready and that region can display. To swap in an empty task
flow, you set the dynamic region's taskFlowId attribute to an empty string.

If you set an EL expression as the value of the refreshCondition attribute, it will
be evaluated during the Prepare Render phase of the lifecycle. When the expression
evaluates to true, the task flow will be refreshed again. When refreshCondition
evaluates to false, the behavior is the same as if the refreshCondition had not been
specified.

Note:

If the variable bindings is used within the EL expression, the context refers
to the binding container of the parent page, not the page fragment displayed
within the region.

The valid values for the refresh property of a task flow executable are as follows:

• default: The region will be refreshed only once, when the parent page is first
displayed.

• ifNeeded: Refreshes the region only if there has been a change to taskFlow
binding parameter values. If the taskFlow binding does not have parameters,
then ifNeeded is equivalent to the default. When ifNeeded is used, the
refreshCondition attribute is not considered.

Note:

Setting the refresh attribute to ifNeeded takes precedence over
any value for the refreshCondition attribute. Also note that
ifNeeded is not supported when you pass parameters to the
taskFlow binding using a dynamic parameter Map. Instead, use
refreshCondition="#{EL.Expression}".

Because the only job of the taskFlow binding is to refresh its parameters, setting
Refresh to always does not make sense. If the taskFlow binding's parameters don't
change, there is no reason to refresh the ADF region.

Note that the child page fragment's page definition still handles the refresh of the
bindings of the child page fragments.

Chapter 30
About the JSF and ADF Page Lifecycles

30-11

About Object Scope Lifecycles
When an object is created in a JSF application, it defines or defaults to a given scope;
this object scope describes how widely it is available and who has access to it. You
can use the standard JSF scopes or the ADF Faces scopes that are available for an
object in a JSF application.

At runtime, ADF objects such as the binding container and managed beans are
instantiated. Each of these objects has a defined lifespan set by its scope attribute.
You can access a scope as a java.util.Map from the RequestContext API. For
example, to access an object named foo in the request scope, you would use the
expression #{requestScope.foo}.

Object scopes are analogous to global and local variable scopes in programming
languages. The wider the scope, the higher and longer the availability of an object.
During their life, these objects may expose certain interfaces, hold information, or pass
variables and parameters to other objects. For example, a managed bean defined
in session scope will be available for use during multiple page requests. However, a
managed bean defined in request scope will only be available for the duration of one
page request.

There are six types of scopes in a Fusion web application:

• Application scope: The object is available for the duration of the application.

• Session scope: The object is available for the duration of the session.

Note:

There is no window uniqueness for session scope, all windows in the
session share the same session scope instance. If you are concerned
about multiple windows being able to access the same object (for
example to ensure that managed beans do not conflict across windows),
you should use a scope that is window-specific, such as page flow or
view scope.

• Page flow scope: The object is available for the duration of a task flow. As its
name suggests, page flow scope is specific to an instance of a task flow (bounded
or unbounded). So if you have a page with two or more regions (created by a
task flow), separate instances of the page flow scope will exist for each region.
Additionally, if the user opens the page with the regions in separate browser tabs,
a separate instance of the page flow scope bean will be instantiated for each
browser tab.

Note:

Because this is not a standard JSF scope, EL expressions must explicitly
include the scope to reference bean. For example, to reference the
MyBean managed bean from the pageFlowScope scope, your expression
would be #{pageFlowScope.MyBean}.

Chapter 30
About Object Scope Lifecycles

30-12

• Request scope: The object is available from the time an HTTP request is made
until a response is sent back to the client.

• Backing bean scope: Used for managed beans for page fragments and declarative
components only, the object is available from the time an HTTP request is made
until a response is sent back to the client. This scope is needed for fragments
and declarative components because there may be more than one page fragment
or declarative component on a page, and to prevent collisions, any values must
be kept in separate scope instances. Therefore, any managed bean for a page
fragment or declarative component must use backing bean scope.

Note:

Because this is not a standard JSF scope, EL expressions must explicitly
include the scope to reference bean. For example, to reference the
MyBean managed bean from the backing bean scope, your expression
would be #{backingBeanScope.MyBean}.

• View scope: The object is available until the view ID for the current view activity
changes. This scope can be used to hold values for a given page. However, unlike
request scope, which can be used to store a value needed from one page to the
next, anything stored in view scope will be lost once the view ID changes.

Note:

Both JSF and ADF Faces have an implementation of view scope. Only
the ADF Faces view scope survives page redirects and refreshes. In a
Fusion web application, when you use viewScope in an expression, it
resolves to the ADF Faces view scope.

Because this view scope is not a standard JSF scope, EL expressions
must explicitly include the scope to reference bean. For example,
to reference the MyBean managed bean from the view scope, your
expression would be #{viewScope.MyBean}.

Note:

When you create objects (such as a managed bean) that require you to
define a scope, you can set the scope to none, meaning that it will not
live within any particular scope, but will instead be instantiated each time
it is referenced.

By default, the binding container and the binding objects it contains are defined in
session scope. However, the values referenced by value bindings and iterator bindings
are undefined between requests and for scalability reasons do not remain in session
scope. Therefore, the values that binding objects refer to are valid only during a
request in which that binding container has been prepared by the ADF lifecycle. What
stays in session scope are only the binding container and binding objects themselves.

Figure 30-4 shows the time period during which each type of scope is valid.

Chapter 30
About Object Scope Lifecycles

30-13

Figure 30-4 Relationship Between Scopes and Page Flow

When determining what scope to register a managed bean with, always try to use the
narrowest scope possible. Only use the session scope for information that is relevant
to the whole session, such as user or context information. Avoid using session scope
to pass values from one task flow to another. When creating a managed bean for a
page fragment or a declarative component, you must use backing bean scope.

Managed beans can be registered in either the adfc-config.xml or the configuration
file for a specific task flow. For more information about using managed beans in a
Fusion application, see Using a Managed Bean in a Fusion Web Application.

Note:

Do not register managed beans in the faces-config.xml in a Fusion web
application.

What You May Need to Know About Object Scopes and Task Flows
When determining what scope to use for variables within a task flow, you should
use any of the scope options other than application or session scope. These two
scopes will persist objects in memory beyond the life of the task flow and therefore
compromise the encapsulation and reusable aspects of a task flow. In addition,

Chapter 30
About Object Scope Lifecycles

30-14

application and session scopes may keep objects in memory longer than needed,
causing unneeded overhead.

When you need to pass data values between activities within a task flow, you should
use page flow scope. View scope should be used for variables that are needed only
within the current view activity, not across view activities. Request scope should be
used when the scope does not need to persist longer than the current request. It is
the only scope that should be used to store UI component information. Lastly, backing
bean scope must be used for backing beans in your task flow if there is a possibility
that your task flow will appear in two region components or declarative components on
the same page and you would like to achieve region instance isolations.

Customizing the ADF Page Lifecycle
The ADF page lifecycle performs a sequence of events that occur while processing a
web page request using JSF and Oracle ADF. You can create and register a custom
phase listeners to customize the ADF page lifecycle.

The ADF lifecycle contains clearly defined phases that notify ADF lifecycle listeners
before and after the corresponding JSF phase is executed. You can customize this
lifecycle by creating a custom phase listener that invokes your needed code, and then
registering it with the lifecycle to execute during one of these phases.

Note:

An application cannot have multiple phase listener instances. An initial
ADFPhaseListener instance is, by default, registered in the META-INF/
faces-config.xml configuration file. Registering, for example, a customized
subclass of the ADFPhaseListener creates a second instance. In this
scenario, only the instance that was most recently registered is used.

The following warning message indicates when an instance has been
replaced by a newer one: "ADFc: Replacing the ADF Page Lifecycle
implementation with class name of the new listener."

How to Create a Custom Phase Listener
To create a custom phase listener, you must create a listener class that implements
the PagePhaseListener interface. You then add methods that execute code either
before or after the phase that the code needs to execute.

The following example contains a template that you can modify to create a custom
phase listener. See How to Generate Custom Classes, for more information about
creating a class in JDeveloper.

public class MyPagePhaseListener implements PagePhaseListener
{
 public void afterPhase(PagePhaseEvent event)
 {
 System.out.println("In afterPhase " + event.getPhaseId());
 }

 public void beforePhase(PagePhaseEvent event)

Chapter 30
Customizing the ADF Page Lifecycle

30-15

 {
 System.out.println("In beforePhase " + event.getPhaseId());
 }
}

Once you create the custom listener class, you need to register it with the phase in
which the class needs to be invoked. You can either register it globally (so that the
whole application can use it), or you can register it only for a single page.

How to Register a Listener Globally
To customize the ADF lifecycle globally, register your custom phase listener by editing
the adf-settings.xml configuration file. The adf-settings.xml file is shared by
several ADF components, including ADF Controller, to store configuration information.

To register the listener in adf-settings.xml:

1. In the Applications window, beneath the META-INF node, double-click the adf-
settings.xml file.

2. In the editor window, click the Source tab

3. In the source editor, scroll down to <adfc-controller-config xmlns= "http://
xmlns.oracle.com/adf/controller/config">

If this entry does not exist, add it to the file.

4. Enter the remaining elements shown in italics:

 <?xml version="1.0" encoding="US-ASCII" ?> <adf-config xmlns="http://
xmlns.oracle.com/adf/config">
 .
 .
 .
 <adfc-controller-config xmlns="http://xmlns.oracle.com/adf/controller/
config">
 <lifecycle>
 <phase-listener>
 <listener-id>MyPagePhaseListener</listener-id>
 <class>mypackage.MyPagePhaseListener</class>
 </phase-listener>
 </lifecycle>
 </adfc-controller-config>
 .
 .
 .
</adf-config>

5. Add values for the following elements:

• <listener-id> A unique identifier for the listener (you can use the fully
qualified class name)

• <class> The class name of the listener

What You May Need to Know About Listener Order
You can specify multiple phase listeners in the adf-settings.xml and, optionally, the
relative order in which they are called. When registering a new listener in the file, you
determine the position in the list of listeners using two parameters:

Chapter 30
Customizing the ADF Page Lifecycle

30-16

• beforeIdSet: The listener is called before any of the listeners specified in
beforeIdSet

• afterIdSet: The listener is called after any of the listeners specified in afterIdSet

The following example contains an example configuration file in which multiple
listeners have been registered for an application.

<lifecycle>
 <phase-listener>
 <listener-id>MyPhaseListener</listener-id>
 <class>view.myPhaseListener</class>
 <after-id-set>
 <listener-id>ListenerA</listener-id>
 <listener-id>ListenerC</listener-id>
 </after-id-set>
 <before-id-set>
 <listener-id>ListenerB</listener-id>
 <listener-id>ListenerM</listener-id>
 <listener-id>ListenerY</listener-id>
 </before-id-set>
 </phase-listener>
</lifecycle>

In the example, MyPhaseListener is a registered listener that executes after listeners A
and C but before listeners B, M, and Y. To execute MyPhaseListener after listener B,
move the <listener-id> element for listener B under the <after-id-set> element.

How to Register a Lifecycle Listener for a Single Page
To customize the lifecycle of a single page, you set the ControllerClass attribute on
the page definition file. This listener will be valid only for the lifecycle of the particular
page described by the page definition. For more information about the page definition
file and its role in a Fusion web application, see Working with Page Definition Files.

You specify a different controller class depending on whether it is for a standard JSF
page or a page fragment.

To customize the ADF Lifecycle for a single page or page fragment:

1. In the Applications window, right-click the page or page fragment and choose Go
To Page Definition.

2. In the Structure window, select the page definition node.

3. In the Properties window, click the icon that appears when you hover over the
ControllerClass field, and choose Edit.

4. Click the Hierarchy tab and navigate to the appropriate controller class for the
page or page fragment. Following are the controller classes to use for different
types of pages:

• Standard JSF page - specify
oracle.adf.controller.v2.lifecycle.PageController

If you need to receive afterPhase/beforePhase events, specify
oracle.adf.controller.v2.lifecycle.PagePhaseListener

• Page fragment - specify oracle.adf.model.RegionController

Chapter 30
Customizing the ADF Page Lifecycle

30-17

Tip:

You can specify the value of the page definition's ControllerClass
attribute as a fully qualified class name or you can enter an EL
expression that resolves to a class directly in the ControllerClass field.

When using an EL expression for the value of the ControllerClass
attribute, the Structure window may show a warning indicating that e
"#{YourExpression}" is not a valid class. You can safely ignore this
warning.

Chapter 30
Customizing the ADF Page Lifecycle

30-18

31
Creating a Basic Databound Page

This chapter describes how to create databound forms in the Fusion web application
with data modeled from ADF Business Components, using ADF data controls and
ADF Faces components. It describes how to create text fields from individual
attributes, generate entire forms from collections for editing and creating new records,
and create dynamic forms.
This chapter includes the following sections:

• About Creating a Basic Databound Page

• Creating Text Fields Using Data Control Attributes

• Creating Basic Forms Using Data Control Collections

• Creating Command Components Using Data Control Operations

• Incorporating Range Navigation into Forms

• Creating a Form to Edit an Existing Record

• Using Parameters to Create a Form

• Creating an Input Form

• Creating a Form with Dynamic Components

• Modifying the UI Components and Bindings on a Form

About Creating a Basic Databound Page
A simple data bound web UI helps you to get a feel of the visual and declarative
development experience offered by the JDeveloper IDE along with Oracle ADF
framework. You can drag and drop UI components as per your requirement.

You can create UI pages that allow you to display and collect information using data
controls created for your business services. For example, using the Data Controls
panel, you can drag an attribute for an item, and then choose to display the value
either as output text or as an input text field with a label. JDeveloper creates all the
necessary JSF tags and binding code needed to display and update the associated
data. For more information about the Data Controls panel and the declarative binding
experience, see Using ADF Model in a Fusion Web Application.

In addition to being able to drop individual attributes, you can drop all attributes for
an object at once as a form, table, or single-column list view. This chapter includes
information on creating forms that display values, forms that allow users to edit values,
and forms that collect values (input forms). For information on creating tables and list
views, see Creating ADF Databound Tables .

Once you drop the UI components, you can then drop built-in operations as command
UI components that allow you to navigate through the records in a collection or
that allow users to operate on the data, such as committing, deleting, or creating a
record. For example, you can create a button that allows users to delete data objects
displayed in the form. You can also modify the default components to suit your needs.

31-1

ADF Databound Form Use Cases and Examples
You use forms when you need to collect or display a row of data. For example, the
Summit sample application for Oracle ADF contains a panel that allows users to
update information about their customers as shown in Figure 31-1. This form was
created by dragging and dropping the Customers collection from the Data Controls
panel and then selecting the fields to display.

Figure 31-1 Customer General Information Form in the Summit ADF Sample
Application

When you create a form, you can also choose to add navigation, so that the user can
navigate quickly between records, as shown in Figure 31-2.

Figure 31-2 Navigate Between Records in a Form

You can also add command buttons that invoke processing on the row displayed in the
form. For example, you can change values for a record and save those changes in an
edit form, or you can create an input form that allows users to create a new record.
Figure 31-3 shows an input form where a user can create a new order.

Chapter 31
About Creating a Basic Databound Page

31-2

Figure 31-3 Input Form

Note:

When the attributes to display in a form are only available at runtime, you
can create a dynamic form. For more information, see Creating a Form with
Dynamic Components.

Additional Functionality for Databound Pages
You may find it helpful to understand other Oracle ADF features before you implement
your databound pages. Following are links to other functionality that you may find
useful.

• ADF view objects: Much of how the components display and function in the form
is controlled by the corresponding view objects. See Defining SQL Queries Using
View Objects.

• ADF application modules: The Data Controls panel, from which you drag
databound components to your pages, is populated with representations of view
objects that you have added to application modules. See Implementing Business
Services with Application Modules.

• Adapter-based data controls: If you are using other types of business services,
such as EJB components or web services, you can create data controls for those
business services as described in Creating and Configuring EJB Data Controls in
Developing Applications with Oracle ADF Data Controls.

• ADF Model and data binding: When you create forms in an ADF web application,
you use ADF Model and data binding. See Using ADF Model in a Fusion Web
Application.

• ADF Faces: You also use ADF Faces UI components. For detailed information
about developing with ADF Faces, see Introduction to ADF Faces in Developing
Web User Interfaces with Oracle ADF Faces.

• Advanced UI controls: Basic forms use input and output components. You
can also use more advanced components, such as lists, tables, trees, search
forms, LOV components, graphs, gauges, treemaps, and more. See the remaining
chapters in Creating a Databound Web User Interface .

Chapter 31
About Creating a Basic Databound Page

31-3

• Task flows: If your form takes part in a transaction, for example an input form,
then you may need to use an ADF task flow to invoke certain operations before or
after the form is rendered. See Creating ADF Task Flows .

• Page lifecycle: For information about how forms work with the page lifecycle, see
Understanding the Fusion Page Lifecycle .

• Validation: You may want certain fields to be validated before they are submitted
to the data store. See Defining Validation and Business Rules Declaratively and
Using Validation in the ADF Model Layer .

• Active data: If your application uses active data, then you can have the data in
your UI components update automatically, whenever the data in the data source
changes. See Using the Active Data Service .

Creating Text Fields Using Data Control Attributes
The Data Controls panel helps you to create text fields that can display or update an
attribute. A page definition file is created for the page (if one does not already exist)
after you drag an attribute onto a JSF page and drop it as a UI component.

JDeveloper allows you to create text fields declaratively in a WYSIWYG development
environment for your JSF pages, meaning you can design most aspects of your pages
without needing to look at the code. When you drag and drop items from the Data
Controls panel, JDeveloper declaratively binds ADF Faces text UI components to
attributes on a data control using an attribute binding.

How to Create a Text Field
To create an individual text field that can display or update an attribute, you drag and
drop an attribute of a collection from the Data Controls panel. For ADF Business
Components, the Data Controls panel is populated with elements of your data model
that you have defined in at least one application module.

Before you begin:

It may be helpful to have a general understanding of using data control attributes to
create text fields. For more information, see Creating Text Fields Using Data Control
Attributes.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in Exposing Business Services
with Data Controls in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To create a databound text field:

1. From the Data Controls panel, select an attribute from a collection. For a
description of the icons that represent attributes and other objects in the Data
Controls panel, see Using the Data Controls Panel.

For example, Figure 31-4 shows the LastName attribute under the Customers
collection of the BackOfficeAppModuleDataControl data control in the Summit

Chapter 31
Creating Text Fields Using Data Control Attributes

31-4

ADF sample application. This is the attribute to drop to display, update, or insert
the customer's last name.

Figure 31-4 Attributes Associated with a Collection in the Data Controls
Panel

2. Drag the attribute onto the page, and from the context menu choose the type of UI
component to display or collect the attribute value, as shown in Figure 31-5.

Figure 31-5 Context Menu When Dropping Attributes on a Page

For an attribute, you are given the following choices:

• Text:

– ADF Input Text w/ Label: Creates an ADF Faces inputText component
in which the label attribute is populated. In addition, a nested validator
component is created, which you can use to add client-side validation.

Tip:

For more information about the various attributes of the
inputText component, see the Using Input Components and
Defining Forms chapter of Developing Web User Interfaces with
Oracle ADF Faces.

Chapter 31
Creating Text Fields Using Data Control Attributes

31-5

– ADF Input Text: Creates an ADF Faces inputText component without a
label. In addition, a nested validator component is generated, which you
can use for client-side validation.

– ADF Output Text w/ Label: Creates a panelLabelAndMessage component
that holds an ADF Faces outputText component. The label attribute on
the panelLabelAndMessage component is populated.

– ADF Output Text: Creates an ADF Faces outputText component.

– ADF Output Formatted w/Label: Same as ADF Output Text w/Label,
but uses an outputFormatted component instead of an outputText
component. The outputFormatted component allows you to add a limited
amount of HTML formatting. For more information, see the Displaying
Output Text and Formatted Output Text section of Developing Web User
Interfaces with Oracle ADF Faces.

– ADF Output Formatted: Same as ADF Output Formatted w/Label, but
without the label.

– ADF Label: An ADF Faces outputLabel component.

• List of Values: Creates ADF LOV lists. For more information about how
these lists work for Business Components, see Working with List of Values
(LOV) in View Object Attributes. For more information on how these lists
work for adapter-based data controls, see Creating List of Values Objects in
Developing Applications with Oracle ADF Data Controls. For more information
about using the lists on a JSF page, see Creating a Selection List.

• Single selections: Creates single selection lists. For more information about
creating lists on a JSF page, see Creating a Selection List.

Note:

These selections are your choices by default. However, the list of
components available to use for an attribute can be configured as a
control hint on the associated entity or view object. For more information,
see Defining Attribute Control Hints for Entity Objects and Defining
UI Hints for View Objects. For information on adding control hints for
adapter-based data controls, see How to Set UI Hints on Attributes in
Developing Applications with Oracle ADF Data Controls.

For the purposes of this chapter, only the text components (and not the lists) will
be discussed.

What Happens When You Create a Text Field
Among other things, when you drag an attribute onto a JSF page and drop it as a UI
component, a page definition file is created for the page (if one does not already exist).
For a complete account of what happens when you drag an attribute onto a page, see
What Happens When You Use the Data Controls Panel. Bindings for the iterator and
attributes are created and added to the page definition file. Additionally, the necessary
JSPX or JSF page code for the UI component is added to the JSF page.

Chapter 31
Creating Text Fields Using Data Control Attributes

31-6

Iterator Bindings Created in the Page Definition File
Whenever you create UI components on a page by dropping an item that is part of a
collection from the Data Controls panel (or you drop the whole collection as a form or
table), JDeveloper creates an iterator binding if it does not already exist. An iterator
binding references an iterator for the data collection, which facilitates iterating over its
data objects. It also manages currency and state for the data objects in the collection.
An iterator binding does not actually access the data. Instead, it simply exposes the
object that can access the data and it specifies the current data object in the collection.
Other bindings then refer to the iterator binding in order to return data for the current
object or to perform an action on the object's data. Note that the iterator binding is not
an iterator. It is a binding to an iterator. In the case of ADF Business Components, the
actual iterator is the default row set iterator for the default row set of the view object
instance in the application module's data model.

For example, if you drop the LastName attribute of the Customers collection,
JDeveloper creates an iterator binding for the Customers collection.

Tip:

There is one iterator binding created for each collection. This means that
when you drop two attributes from the same collection (or drop the collection
twice), they use the same binding. One advantage of this behavior is that the
currency of components stays in sync. For example, if the page has a table
and a form dropped from the same collection, the form will show the record
of the selected row in the table. If you need the binding to behave differently
for the different components, you need to manually create separate iterator
bindings.

The iterator binding's rangeSize attribute determines how many rows of data are
fetched from a data control each time the iterator binding is accessed. This attribute
gives you a relative set of 1-n rows positioned at some absolute starting location in
the overall row set. When you create the iterator binding by dragging an attribute or
collection on to a page, the attribute is initially set to 25. For more information about
using this attribute, see Iterator RangeSize Attribute Defined. The following example
shows the iterator binding created when you drop an attribute from the Customers
collection.

<executables>
 <iterator Binds="Customers" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="Customers"/>
</executables>

For information regarding the iterator binding element attributes, see Oracle ADF
Binding Properties.

This metadata allows the ADF binding container to access the attribute values.
Because the iterator binding is an executable, by default, it is invoked when the
page is loaded, thereby allowing the iterator to access and iterate over the Customers
collection. This means that the iterator will manage all the Customers objects in the
collection, including determining the current Customers object or range of Customers
objects.

Chapter 31
Creating Text Fields Using Data Control Attributes

31-7

Value Bindings Created in the Page Definition File
When you drop an attribute from the Data Controls panel, JDeveloper creates an
attribute binding that is used to bind the UI component to the attribute's value. This
type of binding presents the value of an attribute for a single object in the current row
in the collection. Value bindings can be used both to display and to collect attribute
values.

For example, if you drop the LastName attribute under the Customers collection as an
ADF Output Text w/Label widget onto a page, JDeveloper creates an attribute binding
for the LastName attribute. This allows the binding to access the attribute value of the
current record. The following example shows the attribute binding for LastName created
when you drop the attribute from the Customers collection. Note that the attribute value
references the iterator named CustomersIterator.

<bindings>
 ...
 <attributeValues IterBinding="CustomersIterator"
 id=""LastName
 <AttrNames>
 <Item Value="LastName">
 </AttrNames>
 </attributeValues>
</bindings>

For information regarding the attribute binding element properties, see Oracle ADF
Binding Properties.

Component Tags Created in JSF Page
When you create a text field by dropping an attribute from the Data Controls panel,
JDeveloper creates the UI component associated with the widget dropped by writing
the corresponding tag to the JSF page.

For example, when you drop the LastName attribute as an Output Text w/Label
widget, JDeveloper inserts the tags for a panelLabelAndMessage component and an
outputText component. It creates an EL expression that binds the label attribute
of the panelLabelAndMessage component to the label property of hints created for
the LastName's binding. This expression evaluates to the label hint set on the view
object (for more information about hints, see Defining UI Hints for View Objects). It
creates another expression that binds the outputText component's value attribute to
the inputValue property of the LastName binding, which evaluates to the value of the
LastName attribute for the current row. An ID is also automatically generated for both
components.

Tip:

JDeveloper automatically generates IDs for all ADF Faces components. You
can override these values as needed.

The following example shows the code generated on the JSF page when you drop the
LastName attribute as an Output Text w/Label widget.

Chapter 31
Creating Text Fields Using Data Control Attributes

31-8

<af:panelLabelAndMessage label="#{bindings.LastName.hints.label}" id="plam1">
 <af:outputText value="#{bindings.LastName.inputValue}" id="ot1"/>
</af:panelLabelAndMessage>

If instead you drop the LastName attribute as an Input Text w/Label widget, JDeveloper
creates an inputText component. As the following example shows, the value is
bound to the inputValue property of the LastName binding. Additionally, the following
properties are also set:

• label: Bound to the object's label UI hint.

• required: Bound to the object's mandatory property.

• columns: Bound to the object's displayWidth UI hint, which determines how wide
the text box will be.

• maximumLength: Bound to the object's precision property, which determines the
maximum number of characters per line that can be entered into the field.

• shortDesc: Bound to the tooltip UI hint.

In addition, JDeveloper nests a validator tag within the inputText component. You
can use this tag to create client-side validation rules to supplement any validation rules
that exist in the model or business service layers.

<af:inputText value="#{bindings.LastName.inputValue}"
 label="#{bindings.LastName.hints.label}"
 required="#{bindings.LastName.hints.mandatory}"
 columns="#{bindings.LastName.hints.displayWidth}"
 maximumLength="#{bindings.LastName.hints.precision}">
 shortDesc="#{bindings.LastName.hints.tooltip}" id="it1">
 <f:validator binding="#{bindings.LastName.validator}"/>
</af:inputText>

For further information regarding the validator and converter tags, see the
Validating and Converting Input chapter of Developing Web User Interfaces with
Oracle ADF Faces.

You can change any of these values to suit your needs. For example, the mandatory
control hint on the view object is set to false by default, which means that the
required attribute on the component will evaluate to false as well. You can override
this value by setting the required attribute on the component to true. If you decide
that all instances of the attribute should be mandatory, then you can change the
control hint on the view object, and all instances will then be required. For more
information about these properties, see Oracle ADF Binding Properties. For more
information on changing these properties at the entity object level, see Setting
Attribute Properties. For more information on changing these properties at the view
object level, see How to Edit a View Object.

Creating Basic Forms Using Data Control Collections
A basic form helps you to created a page and display data from a collection. The Data
Controls panel helps you to drag and drop a collection to create a form. You can also
modify the data present in the form.

Instead of dropping each of the individual attributes of a collection to create a form,
you can drop the collection node to create a form from multiple attributes in the
collection.

Chapter 31
Creating Basic Forms Using Data Control Collections

31-9

For example, you could create a page that displays basic information about customers
in the Summit ADF sample application by dragging and dropping the Customers
collection.

You can also create forms that provide more functionality than simply displaying data
from a collection. For information about creating a form that allows a user to update
data, see Creating a Form to Edit an Existing Record. For information about creating
forms that allow users to create a new object for the collection, see Creating an Input
Form. You can also create search forms. For more information, see Creating ADF
Databound Search Forms .

How to Create a Form Using a Data Control Collection
When you create a form using a data control, you bind the UI components to the
attributes on the corresponding object in the data control. JDeveloper allows you to do
this declaratively by dragging and dropping a collection from the Data Controls panel.

Before you begin:

It may be helpful to have an understanding of basic databound forms. For more
information, see Creating Basic Forms Using Data Control Collections.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Pages.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in Exposing Business Services
with Data Controls in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To create a basic form:

1. From the Data Controls panel, select the collection that represents the data
you wish to display. Figure 31-6 shows the Customers collection for the
BackOfficeAppModuleDataControl data control.

Chapter 31
Creating Basic Forms Using Data Control Collections

31-10

Figure 31-6 CustomerVO Object in the Data Controls Panel

2. Drag the collection onto the page, and from the context menu choose ADF Form.

Figure 31-7 Context Menu When Dropping a Collection to a Page

3. In the Create Form dialog, configure your form.

• You can exclude attributes from appearing in the form.

Chapter 31
Creating Basic Forms Using Data Control Collections

31-11

• If you do not select the Read-Only Form checkbox, ADF inputText
components are used for most attributes. Each inputText component has the
label attribute populated. By default, the label obtains its value from a binding
to the label property on the associated binding object.

Attributes that are dates use the InputDate component.

If a control type control hint has been created for an attribute, or if the attribute
has been configured to be a list, then the component set by the hint is used
instead.

InputText components contain a validator tag that allows you to set up
client-side validation for the attribute. If the attribute is a number or a date, a
converter is also included.

Tip:

For more information about the various attributes of the inputText
component, see the Using Input Components and Defining Forms
chapter of Developing Web User Interfaces with Oracle ADF Faces.

• If you select the Read-Only Form checkbox, read-only outputText
components are used. Since the form is meant to display data, no validator
tags are added (though converters are included). Attributes of type Date
use the outputText component when in a read-only form. All components
are placed inside panelLabelAndMessage components, which have the label
attribute populated, and are placed inside a panelFormLayout component.
This ensures that the labels are aligned appropriately with the outputText
components at runtime.

• You can elect to include navigational controls that allow users to navigate
through all the data objects in the collection. For more information, see
Incorporating Range Navigation into Forms.

• You can also include a Submit button to submit the HTML form and apply the
data in the form to the bindings as part of the JSF/ADF page lifecycle. For
additional help in using the dialog, click Help.

4. If you are building a form that allows users to update data, you now need to drag
and drop an operation that will commit the changes to update the record. For more
information, see Creating a Form to Edit an Existing Record.

Note:

If you select the Fields Generated at Runtime in the Create Form dialog,
the attributes to display are determined at runtime based on configuration
of the business service. For more information, see Creating a Form with
Dynamic Components.

Chapter 31
Creating Basic Forms Using Data Control Collections

31-12

What Happens When You Create a Form Using a Data Control
Collection

Dropping an object as a form from the Data Controls panel has a similar effect as
dropping a single attribute, except that multiple attribute bindings and associated UI
components are created and all UI components are placed inside a panelFormLayout
component. The attributes on the UI components (such as value) are bound to
properties on that attribute's binding object (such as inputValue) or to the values of
control hints set on the corresponding business object. The following example shows
some of the code generated on the JSF page when you drop the Customers collection
as a default ADF Form.

Note:

If an attribute is marked as hidden on the associated view or entity object,
then no corresponding UI is created for it.

<af:panelFormLayout id="pfl1">
 <af:inputText value="#{bindings.Id.inputValue}"
 label="#{bindings.Id.hints.label}"
 required="#{bindings.Id.hints.mandatory}"
 columns="#{bindings.Id.hints.displayWidth}"
 maximumLength="#{bindings.Id.hints.precision}"
 shortDesc="#{bindings.Id.hints.tooltip}" id="it1">
 <f:validator binding="#{bindings.Id.validator}"/>
 <af:convertNumber groupingUsed="false" pattern="#{bindings.Id.format}"/>
 </af:inputText>
 <af:inputText value="#{bindings.Name.inputValue}"
 label="#{bindings.Name.hints.label}"
 required="#{bindings.Name.hints.mandatory}"
 columns="#{bindings.Name.hints.displayWidth}"
 maximumLength="#{bindings.Name.hints.precision}"
 shortDesc="#{bindings.Name.hints.tooltip}" id="it2">
 <f:validator binding="#{bindings.Name.validator}"/>
 </af:inputText>
 <af:inputText value="#{bindings.Phone.inputValue}"
 label="#{bindings.Phone.hints.label}"
 required="#{bindings.Phone.hints.mandatory}"
 columns="#{bindings.Phone.hints.displayWidth}"
 maximumLength="#{bindings.Phone.hints.precision}"
 shortDesc="#{bindings.Phone.hints.tooltip}" id="it3">
 <f:validator binding="#{bindings.Phone.validator}"/>
 </af:inputText>
. . .
</af:panelFormLayout>

For more information about the code that is generated when you drop an item from the
Data Controls panel, see What Happens When You Create a Text Field .

When you choose to create an input form using an object that contains a defined
list of values (LOV), then a selectOneChoice component is created instead of an
inputText component. For example, the CustomerVO view object contains defined
LOVs for the CountryId and CreditRatingId attributes. When you drop the Customers

Chapter 31
Creating Basic Forms Using Data Control Collections

31-13

data control object as an ADF Form, a dropdown list showing all values is created for
each LOV (instead of an empty input text field). For more information about how these
lists work, see Working with List of Values (LOV) in View Object Attributes. For more
information on how these lists work for adapter-based data controls, see Creating List
of Values Objects in Developing Applications with Oracle ADF Data Controls. For more
information about using the lists on a JSF page, see Creating a Selection List.

Note:

If the object contains a structured attribute (an attribute that is neither a Java
primitive type nor a collection), that attribute will not appear in the dialog,
and it will not have a corresponding component in the form. You will need to
create those fields manually.

Creating Command Components Using Data Control
Operations

Command components are represented by the UICommand component, which
performs an action when it is activated. The Data Controls panel helps you to drag
and drop a command component based on a data control operation to a page.

In addition to providing a representation of your data objects, the Data Controls
panel also has nodes that represent standard operations for use in a form. These
built-in operations enable you to declaratively handle common form functions such as
navigating between records and committing changes to a database. Most operations
are available for individual data collections in a data control. The Commit and Rollback
operations are available on the whole data control. When you drag an operation from
the Data Controls panel to a page, you are prompted to choose what kind of command
component to create, such as a button or a link.

Figure 31-8 shows the operations available for the Countries collection in the Summit
ADF sample application.

Chapter 31
Creating Command Components Using Data Control Operations

31-14

Figure 31-8 Data Control Collection Operations

This section shows how to create command components from built-in data control
operations. For information on other ways you can use command components in a
databound page, see Using Command Components to Invoke Functionality in the
View Layer.

How to Create Command Components From Operations
To create a command component based on a data control operation, you drag and
drop the operation from the Data Controls panel to a page.

Before You Begin:

It may be helpful to have a general understanding of using data control operations
to create command components. For more information, see Creating Command
Components Using Data Control Operations.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in Exposing Business Services
with Data Controls in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To create a command component from an operation:

1. From the Data Controls panel, drag the operation onto the page.

2. From the ensuing context menu, choose either ADF Button or ADF Link.

Chapter 31
Creating Command Components Using Data Control Operations

31-15

What Happens When You Create Command Components Using
Operations

When you drop an operation to create a command component, JDeveloper:

• Defines an action binding in the page definition file for the associated operation

• Configures the iterator binding to use partial page rendering for the collection

• Inserts code in the JSF page for the command component

Action Bindings Created for Operations
Action bindings execute business logic. For example, they can invoke operations on
the action binding object. These operations operate on the iterator or on the data
control itself.

Like value bindings, action bindings for operations contain a reference to the iterator
binding when the action binding is bound to one of the iterator-level actions, such
as Next or Previous. These types of actions are performed by the iterator, which
determines the current object and can therefore determine the correct object to display
when a navigation button is clicked. Action bindings to actions that are not at the
iterator level, such as custom methods on an application module or the commit or
rollback operations, will not contain this reference.

Action bindings use the RequiresUpdateModel property, which determines whether or
not the model needs to be updated before the action is executed. In the case of
navigation operations, by default this property is set to true, which means that any
changes made at the view layer must be moved to the model before navigation can
occur.

The following example shows the action bindings for the navigation operations.

<action IterBinding="CustomersIterator" id="First"
 RequiresUpdateModel="true" Action="first"/>
<action IterBinding="CustomersIterator" id="Previous"
 RequiresUpdateModel="true" Action="previous"/>
<action IterBinding="CustomersIterator" id="Next"
 RequiresUpdateModel="true" Action="next"/>
<action IterBinding="CustomersIterator" id="Last"
 RequiresUpdateModel="true" Action="last"/>

Iterator RangeSize Attribute Defined
Iterator bindings have a rangeSize attribute that the binding uses to determine the
number of data objects to make available for the page for each iteration. This attribute
helps in situations when the number of objects in the data source is quite large.
Instead of returning all objects, the iterator binding returns only a set number, which
then become accessible to the other bindings. Once the iterator reaches the end of the
range, it accesses the next set. The following example shows the default range size
for the Customers iterator.

<iterator Binds="Customers" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="CustomersIterator"
 ChangeEventPolicy="ppr"/>

Chapter 31
Creating Command Components Using Data Control Operations

31-16

Note:

This rangeSize attribute is not the same as the rows attribute on a table
component. For more information, see Table 32-1.

When the iterator binding is initially generated, the RangeSize attribute is set to 25.
This means that a user can view 25 objects, navigating back and forth between them,
without needing to access the data source. The iterator keeps track of the current
object. Once a user clicks a button that requires a new range (for example, clicking the
Next button on object number 25), the binding object executes its associated method
against the iterator, and the iterator retrieves another set of 25 records. The bindings
then work with that set. You can change this setting as needed. You can set it to -1
to have the full record set returned. If the RangeSize attribute is not specified, the full
record set is returned.

EL Expressions Created to Bind to Operations
When you create command components using data control operations, JDeveloper
creates an EL expression that binds a command button's actionListener attribute to
the execute property of the action binding for the given operation.

At runtime an action binding will be an instance of the FacesCtrlActionBinding
class, which extends the core JUCtrlActionBinding implementation class. The
FacesCtrlActionBinding class adds the following methods:

• public void execute(ActionEvent event): This is the method that is referenced
in the actionListener property, for example #{bindings.First.execute}.

This expression causes the binding's operation to be invoked on the iterator
when a user clicks the button. For example, the First command button's
actionListener attribute is bound to the execute method on the First action
binding.

• public String outcome(): This can be referenced in an Action property, for
example #{bindings.Next.outcome}.

This can be used for the result of a method action binding (once converted to a
String) as a JSF navigation outcome to determine the next page to navigate to.

Note:

Using the outcome method on the action binding breaks the separation
between the view-controller layer and the model layer, so it should be
rarely used.

Every action binding for an operation has an enabled boolean property that Oracle
ADF sets to false when the operation should not be invoked. By default, JDeveloper
binds the UI component's disabled attribute to this value to determine whether or not
the component should be enabled. For example, the UI component for the First button
has the following as the value for its disabled attribute:

#{!bindings.First.enabled}

Chapter 31
Creating Command Components Using Data Control Operations

31-17

This expression evaluates to true whenever the binding is not enabled, that is,
when the operation should not be invoked, thereby disabling the button. In this
example, because the framework will set the enabled property on the binding to
false whenever the first record is being shown, the First button will automatically be
disabled because its disabled attribute is set to be true whenever enabled is False.
For more information about the enabled property, see Oracle ADF Binding Properties.

The following example shows the code generated after dropping the Create and
Delete operations as buttons on a page.

<af:button actionListener="#{bindings.Create.execute}" text="Create"
 disabled="#{!bindings.Create.enabled}" id="b5"/>
<af:button actionListener="#{bindings.Delete.execute}" text="Delete"
 disabled="#{!bindings.Delete.enabled}" id="b6"/>

What Happens at Runtime: How Action Events and Action Listeners
Work

When the user clicks a command component, the form is submitted and then an action
event is fired. Action events might affect only the user interface (for example, a link
to change the locale, causing different field prompts to display), or they might involve
some logic processing in the back end (for example, a button to navigate to the next
record). That event object then takes information about the current data object from
the iterator and then passes it to the action binding's method, which is bound to the
command component through its actionListener attribute.

Note:

An action listener is a class that registers to be notified when a command
component fires an action event. An action listener contains an action
listener method that processes the action event object passed to it by the
command component.

For example, when the user clicks a Delete button that was created from the
ADF Delete operation, an action event is fired. This event object stores currency
information about the current data object, taken from the iterator. Because the
component's actionListener attribute is bound to the execute method of the Delete
action binding, the Delete operation is invoked when the event fires. This method
takes the currency information passed in the event object to determine which data
object to delete.

Typically, the actionListener property's value is in the form of an EL expression. For
example, if the value of the actionListener attribute is {bindings.Delete.execute},
the execute() method of the Delete action binding is called.

What You May Need to Know About Overriding Declarative Methods
When you drop an operation or method as a command button, JDeveloper binds the
button to the execute method for the operation or method. However, there may be
occasions when you need to add logic before or after the existing logic. JDeveloper
allows you to add logic to a declarative operation by creating a new method and
property on a managed bean that provides access to the binding container. By default,

Chapter 31
Creating Command Components Using Data Control Operations

31-18

this generated code executes the operation or method. You can then add logic
before or after this code. JDeveloper automatically binds the command component
to this new method, instead of to the execute property on the original operation or
method. Now when the user clicks the button, the new method is executed. For more
information, see Overriding Declarative Methods.

Incorporating Range Navigation into Forms
You may choose to include navigational controls when you create an ADF Form. By
default, JDeveloper creates First, Last, Previous, and Next buttons to navigate within
the collection. You can also include navigational buttons manually, as required.

When you create an ADF Form, if you choose to include navigational controls,
JDeveloper includes ADF Faces command components bound to existing navigational
logic on the data control. This built-in logic allows the user to navigate through all the
data objects in the collection. For example,Figure 31-9 shows a form that would be
created if you drag the Countries collection and drop it as an ADF Form that uses
navigation.

Figure 31-9 Navigation in a Form

Table 31-1 shows the built-in navigation operations provided on data controls and the
result of invoking the operation or executing an event bound to the operation. For more
information about action events, see What Happens at Runtime: How Action Events
and Action Listeners Work .

Table 31-1 Built-in Navigation Operations

Operation When invoked, the associated iterator binding will...

First Move its current pointer to the beginning of the result set.

Last Move its current pointer to the end of the result set.

Previous Move its current pointer to the preceding object in the result set. If this
object is outside the current range, the range is scrolled backward a number
of objects equal to the range size.

Next Move its current pointer to the next object in the result set. If this object is
outside the current range, the range is scrolled forward a number of objects
equal to the range size.

Previous Set Move the range backward a number of objects equal to the range size
attribute.

Next Set Move the range forward a number of objects equal to the range size
attribute.

Chapter 31
Incorporating Range Navigation into Forms

31-19

How to Manually Insert Navigation Controls into a Form
By default, when you choose to include navigation when creating a form using the
Data Controls panel, JDeveloper creates First, Last, Previous, and Next buttons that
allow the user to navigate within the collection.

You can also add navigation buttons to an existing form manually.

Before you begin:

It may be helpful to have an understanding of navigation controls. For more
information, see Incorporating Range Navigation into Forms.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Pages.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in Exposing Business Services
with Data Controls in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To manually add navigation buttons:

1. From the Data Controls panel, select the operation associated with the collection
of objects on which you wish the operation to execute, and drag it onto the JSF
page.

For example, if you want to navigate forward through a collection of countries,
you would drag the Next operation associated with the Countries collection.
Figure 31-8 shows the operations associated with the Countries collection.

2. From the ensuing context menu, choose either ADF Button or ADF Link.

Tip:

You can also drop the First, Previous, Next, and Last buttons at once. To
do so, drag the corresponding collection, and from the context menu, choose
Navigation > ADF Navigation Buttons.

What Happens When You Manually Add Navigation Buttons
When you drop a navigation operation from the Data Controls panel, JDeveloper:

• Defines an action binding in the page definition file for the associated operations

• Configures the iterator binding to use partial page rendering for the collection

• Inserts code in the JSF page for the command components

• Inserts the partialSubmit attribute for the component in the JSF page and sets
it to true in order to fire a partial page request when the button is clicked. For

Chapter 31
Incorporating Range Navigation into Forms

31-20

more information, see the Using Partial Triggers section of Developing Web User
Interfaces with Oracle ADF Faces.

For more information on code generated for command components, see What
Happens When You Create Command Components Using Operations.

The following example shows the code generated on the JSF page for navigation
operation buttons.

<f:facet name="footer">
 <af:panelGroupLayout>
 <af:button actionListener="#{bindings.First.execute}"
 text="First"
 disabled="#{!bindings.First.enabled}"
 partialSubmit="true" id="cb1"/>
 <af:button actionListener="#{bindings.Previous.execute}"
 text="Previous"
 disabled="#{!bindings.Previous.enabled}"
 partialSubmit="true" id="cb2"/>
 <af:button actionListener="#{bindings.Next.execute}"
 text="Next"
 disabled="#{!bindings.Next.enabled}"
 partialSubmit="true" id="cb3"/>
 <af:button actionListener="#{bindings.Last.execute}"
 text="Last"
 disabled="#{!bindings.Last.enabled}"
 partialSubmit="true" id="cb4"/>
 </af:panelGroupLayoutr>
 </f:facet>

What Happens at Runtime: Navigation Controls
When the user clicks a navigation control button, an action event is fired. That event
object then takes information about the current data object from the iterator and
then passes it to the operation's method, which is bound to the button through its
actionListener attribute.

For more information, see What Happens at Runtime: How Action Events and Action
Listeners Work .

In addition, when a user clicks a navigation button, only those components associated
with the same iterator as the button's action binding are processed through the
lifecycle. For more information, see What You May Need to Know About Partial Page
Rendering and Iterator Bindings.

What You May Need to Know About the Browser Back Button and
Navigating Through Records

You must use the navigation buttons to navigate through the records displayed in a
form; you cannot use the browser's back or forward buttons. Because navigation forms
automatically use PPR, only part of the page goes through the lifecycle, meaning that
when you click a navigation button, the components displaying the data are refreshed
and display new data, and you actually remain on the same page. Therefore, when
you click the browser's back button, you will be returned to the page that was rendered
before the page with the form, instead of to the previous record displayed in the form.

Chapter 31
Incorporating Range Navigation into Forms

31-21

For example, say you are on a page that contains a link to view all current orders.
When you click the link, you navigate to a page with a form and the first order, Order
#101, is displayed. You then click Next and Order #102 is displayed. You click Next
again, and Order #103 is displayed. If you click the browser's back button, you will not
be shown Order #102. Instead, you will be returned to the page that contained the link
to view all current orders.

What You May Need to Know About the CacheResults Property
When you create a navigable form using the Data Controls panel, the CacheResults
property on the associated iterator is set to true. This ensures that the iterator's state,
including currency information, is cached between requests, allowing it to determine
the current object. If this property is set to false, navigation will not work.

Creating a Form to Edit an Existing Record
Edit forms allow you to make amendments to the existing data in the form. In order to
create an edit form, you need to drop a collection on your page as a form and then
drop the appropriate operations as command components.

You can create a form that allows a user to edit the current data, and then commit
those changes to the data source. To do this, you use operations that can modify data
records associated with the collection or the data control itself to create command
buttons. For example, you can use the Delete operation to create a button that allows
a user to delete a record from the current range.

For data controls based on ADF Business Components or on EJB session beans
that have an explicit commit model, it is important to note that these operations are
executed only against objects in the ADF cache. You need to use the Commit operation
on the root data control to actually commit any changes to the data source. You use
the data control's Rollback operation to roll back any changes made to the cached
object. If the page is part of a transaction within a bounded task flow, you would most
likely use these operations to resolve the transaction in a task flow return activity. See
Managing Transactions in Task Flows.

How to Create an Edit Form
To create an edit form, you drop a collection on your page as a form and then drop the
appropriate operations as command components.

Before you begin:

It may be helpful to have an understanding of creating edit forms. For more
information, see Creating a Form to Edit an Existing Record.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Pages.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in Exposing Business Services
with Data Controls in Developing Applications with Oracle ADF Data Controls.

Chapter 31
Creating a Form to Edit an Existing Record

31-22

• Create a JSF page as described in Creating a Web Page.

To create an edit form:

1. From the Data Controls panel, drag the collection for which you wish to create the
form, and choose ADF Form from the context menu.

This creates a form using inputText components, which will allow the user to edit
the data in the fields.

2. In the Create Form dialog, set the fields and buttons that you would like added to
the form and click OK.

3. Optionally, from the Data Controls panel, select any additional operation
associated with the collection that you would like to add to the form, drag it to
the page, and choose ADF Button or ADF Link from the context menu.

For example, if you want to be able to delete a country, you would select the
Delete operation associated with the Countries collection. Figure 31-10 shows
the operations associated with the Countries collection.

Figure 31-10 Operations Associated with a Collection

4. Add operations to the page to save or cancel changes.

If the page is not part of a transaction within a bounded task flow, then you need to
create buttons that allow the user either to commit or roll back the changes. From
the Data Controls panel, drag the Commit and Rollback operations associated
with the root-level data control, and drop them as either a command button or
a command link. Figure 31-11 shows the commit and rollback operations for the
BackOfficeAppModuleDataControl data control.

Chapter 31
Creating a Form to Edit an Existing Record

31-23

Figure 31-11 Commit and Rollback Operations for a Data Control

If the page is part of a transaction within a bounded task flow, then you can
simply enter Commit and Rollback as the values for the transaction resolution
when creating the task flow return activity. For more information, see Managing
Transactions in Task Flows.

If you are basing the form on a data control that is based on business services
other than ADF Business Components, the Commit and Rollback operations might
not be available. For more information, see What You May Need to Know About
Working With Data Controls for Stateless Business Services.

5. Optionally, change the autoSubmit property of each editable field to true.

Doing so enables any user changes to be submitted to the page when tabbing out
of the field and thus enabling the Commit and Rollback operations, if they have not
already been enabled by another sequence of events, such as a change to a field
plus a button click.

You can access the autoSubmit property for a field by selecting the field and then
scrolling to the Behavior section in the Properties window.

Tip:

If the same page on which you create your edit form also has a table
created from the same collection as the form, the table and the form use
the same iterator binding, which enables the user to select the record to edit
in the form by selecting a row in the table. For more information on creating
databound tables, see Creating a Basic Table.

What Happens When You Create Edit Forms
For information on what happens when you drop a collection on to a page, see What
Happens When You Create a Form Using a Data Control Collection.

Dropping any data control operation as a command button causes code generation
similar to when you drop navigation operations. For more information, see What
Happens When You Create Command Components Using Operations.

The only difference is that the action bindings for the Commit and Rollback operations
do not require a reference to the iterator, because they execute a method on the
application module (the data control itself), as opposed to the iterator. Note that the
Rollback action has the RequiresUpdateModel property set to false. This is because
the model should not be updated before the operation is executed, since all changes

Chapter 31
Creating a Form to Edit an Existing Record

31-24

need to be discarded. The following example shows the action bindings generated in
the page definition file for these operations.

<action id="Commit" RequiresUpdateModel="true" Action="commitTransaction"
 DataControl="BackOfficeAppModuleDataControl"/>
<action id="Rollback" RequiresUpdateModel="false"
 Action="rollbackTransaction"
 DataControl="BackOfficeAppModuleDataControl"/>

Table 31-2 shows the built-in non-navigation operations provided on data controls and
data control objects, along with the result of invoking the operation or executing an
event bound to the operation. For more information about action events, see What
Happens at Runtime: How Action Events and Action Listeners Work .

Table 31-2 More Built-in Operations

Operation When invoked, the associated iterator binding will...

CreateInsert Creates a row directly before the current row, inserts the new record
into the row set, then moves the current row pointer to the new row.
Note that the range does not move, meaning that the last row in the
range may now be excluded from the range. For more information
about using the CreateInsert operation to create objects, see
Creating an Input Form.

Note: CreateInsert is only available for data controls based on ADF
Business Components application modules.

Create Creates a row directly before the current row, then moves the current
row pointer to the new row. Note that the range does not move,
meaning that the last row in the range may now be excluded from
the range.

For data controls based on application modules and most other
business services, the record will not be inserted into the row set,
preventing a blank row should the user navigate away without actually
creating data. The new row will be created when the user submits
the data. For more information, see What You May Need to Know
About Create and CreateInsert. However, for JPA-based data controls,
the Create operation does insert data into the row set and can be
configured to persist the data. For more information, see Data Control
Built-in Operations in Developing Applications with Oracle ADF Data
Controls.

CreateWith
Parameters

Same as the CreateInsert operation (the new record is inserted into
the row set). However, it uses named parameters to create the object.

Note: Create With Parameters is only available for data controls
based on ADF Business Components application modules.

Delete Deletes the current row from the cache and moves the current row
pointer to the next row in the result set. Note that the range does not
move, meaning that a row may be added to the end of the range. If
the last row is deleted, the current row pointer moves to the preceding
row. If there are no more rows in the collection, the enabled attribute is
set to disabled.

RemoveRowWithKey Uses the row key as a String converted from the value specified by
the input field to remove the data object in the bound data collection.

Chapter 31
Creating a Form to Edit an Existing Record

31-25

Table 31-2 (Cont.) More Built-in Operations

Operation When invoked, the associated iterator binding will...

SetCurrentRowWithK
ey

Sets the row key as a String converted from the value specified by
the input field. The row key is used to set the currency of the data
object in the bound data collection. For an example of when this is
used, see What You May Need to Know About Setting the Current
Row in a Table.

SetCurrentRowWithK
eyValue

Sets the current object on the iterator, given a key's value. For more
information, see What You May Need to Know About Setting the
Current Row in a Table.

ExecuteWithParams Refreshes the data collection by first assigning new values to the
named bind variables passed as parameters, then (re)executing the
view object's query. You would use this operation in the same manner
as you would use the CreateInsert operation to create an input
form. For more information, see Creating an Input Form.

This operation appears only for view objects that have defined one or
more named bind variables at design time. For more information, see
Working with Bind Variables.

For EJB and bean data controls, this operation is only available
on data control collection objects that are based on parameterized
queries.

Commit Causes all items currently in the cache to be committed to the
database.

Rollback Clears the cache and returns the transaction and iterator to the initial
state. Resets the ActionListener method.

Execute and Find These operations are used only in search forms. See Creating ADF
Databound Search Forms for more information.

What You May Need to Know About Working With Data Controls for
Stateless Business Services

When you create user interfaces based on ADF Business Components services, any
data changes that a user makes are not propagated to the underlying database until
the user triggers the Commit operation through a command component.

For user interfaces that are based on data controls for stateless business services,
such as stateless EJB session beans or RESTful web services, the Commit and
Rollback operations are not available. In such cases, you can use custom methods to
handle interactions with the underlying database. In the case of EJB data controls, any
persistEntity and mergeEntity methods in the session bean are exposed through
the Data Controls panel, and you can create command components from them. For
more information, see About Commit Models for EJB Session Beans in Developing
Applications with Oracle ADF Data Controls.

Using Parameters to Create a Form
You can create ADF parameter forms using different mechanisms. You need to gather
information about the creation of the ADF Parameter Form using ExecuteWithParams
operation.

Chapter 31
Using Parameters to Create a Form

31-26

In Oracle ADF, there are several ways that you can create a form where the record
that is displayed is determined by an input parameter. The following are some of those
mechanisms:

• Create an ADF Parameter Form based on a data control collection's
ExecuteWithParams operation or on a custom method that takes parameters.

• Pass a parameter to the form through a task flow.

• Nest a setPropertyListener tag within a command component and provide
application logic within a managed bean to access the parameters and invoke
any needed logic.

This section covers the creation of ADF parameter forms based on the
ExecuteWithParams operation. For information on passing parameters to a form
through a task flow, see Using Parameters in Task Flows and Specifying Parameters
for an ADF Region. For information on using the setPropertyListener tag, see
Setting Parameter Values Using a Command Component.

The ExecuteWithParams operation is available only for data control objects that contain
parameters, such as those based on view objects containing bind variables and
those based on JPA-based beans that contain named queries with parameters. For
example, the Summit ADF sample application contains a view object instance called
SalesPeople, which is based on the EmpVO view object, which contains the bind
variable TitleIdBind. So, as shown in Figure 31-12, the SalesPeople object contains
an ExecuteWithParams operation with a subnode for the TitleIdBind parameter.

Figure 31-12 ExecuteWithParams Operation in the Data Controls Panel

View object bind variables and JPA parameterized queries allow you to supply
attribute values at runtime to the view object or view criteria. The ExecuteWithParams
operation refreshes the data collection by first assigning new values to the named bind
variables passed as parameters, then (re)executing the view object's query. For more
information about bind variables in view objects, see Working with Bind Variables.
For more information on named parameters in JPA queries, see EJB Data Control
Prerequisites and Considerations in Developing Applications with Oracle ADF Data
Controls.

How to Create a Form Using Parameters
To create a form using parameters, you drop the ExecuteWithParams operation of a
collection on to a page as an ADF Parameter Form and then drop the collection itself
as an ADF Form.

Chapter 31
Using Parameters to Create a Form

31-27

Before you begin:

It may be helpful to have an understanding of creating parameter forms. For more
information, see Using Parameters to Create a Form.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Pages.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

Alternatively, if you are using another type of business service, create a data
control for that business service as described in Exposing Business Services with
Data Controls in Developing Applications with Oracle ADF Data Controls.

• Add bind variables to the view criteria definition as described in How to Add
WHERE Clause Bind Variables to a View Object Definition.

For JPA-based data controls you can create named queries in the session bean
or service facade that specify named parameters. For more information, see EJB
Data Control Prerequisites and Considerations in Developing Applications with
Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To create a parameter form based on the ExecuteWithParams operation:

1. From the Data Controls panel, drag the ExecuteWithParams operation for the
collection for which you wish to create the form, and choose ADF Parameter
Form from the context menu.

2. In the Create Form dialog, select the parameters on which you want users to be
able to query and click OK.

3. From the Data Controls panel, drag the corresponding collection, and drop it as
the type of table or form that you want to display the results of the query based on
the user input.

Note:

You can also declaratively incorporate selection lists into parameter
forms. To create a selection list, drag a parameter node that is a child
of the ExecuteWithParams operation on to the form. Then drag the
ExecuteWithParams operation and drop it as a button.

What Happens When You Create a Parameter Form
When you drop the ExecuteWithParams operation as a parameter form, JDeveloper:

• Inserts code in the JSF page for the form using inputText components bound to
the attribute bindings, and a button component bound to the ExecuteWithParams
operation.

• Defines the following in the page definition file:

Chapter 31
Using Parameters to Create a Form

31-28

– A variable iterator for the attributes to use to access the variables (as opposed
to a collection's iterator which is used for other forms).

– A variableUsage variable for each parameter to hold the data values. These
variables inherit the default value and UI control hints from the view object
named bind variables to which they are bound. The variables are local,
meaning they live only during a single request. Though they are carried across
subsequent post-backs to the same form, they are forgotten (and re-initialized)
when a user navigates to some other page.

– An action binding for the operation that contains NamedData elements for each
parameter. Each NamedData element is bound to a corresponding variable.
These bindings allow the operation to access the value for the parameter upon
execution.

– Attribute bindings for the associated attributes.

The following example shows the executables and bindings in the page definition
file that are created by dropping the SalesPeople collection's ExecuteWithParams
operation on a page.

<executables>
 <variableIterator id="variables">
 <variableUsage DataControl="BackOfficeAppModuleDataControl"
 Binds="SalesPeople.variablesMap.TitleIdBind"
 Name="ExecuteWithParams_TitleIdBind" IsQueriable="false"/>
 </variableIterator>
 <iterator Binds="SalesPeople" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="SalesPeopleIterator"/>
</executables>
<bindings>
 <action IterBinding="SalesPeopleIterator" id="ExecuteWithParams"
 RequiresUpdateModel="true"
 Action="executeWithParams">
 <NamedData NDName="TitleIdBind" NDType="java.lang.Integer"
 NDValue="${bindings.ExecuteWithParams_TitleIdBind}"/>
 </action>
 <attributeValues IterBinding="variables" id="TitleIdBind">
 <AttrNames>
 <Item Value="ExecuteWithParams_TitleIdBind"/>
 </AttrNames>
 </attributeValues>
</bindings>

When you drop the collection that will be used to display the results of the parameter
form, code is generated for a basic form, as described in What Happens When You
Create a Form Using a Data Control Collection. In addition, if you use a table to
display the results, the partialTriggers property on table is set to the command
button in the parameter form.

What Happens at Runtime: How Parameters are Populated
When the page is rendered, the framework checks if the page is being rendered
for the first time and if the exception list has any items. If both are false, then
the framework executes the ExecuteWithParams action binding. This action binding
executes the query, taking the values of the named data elements as values for the
needed parameters.

Chapter 31
Using Parameters to Create a Form

31-29

Creating an Input Form
An input form is similar to an edit form that helps you to enter information for a new
record. In order to create a basic input form, you need to first create an edit form and
add a command component for creating new records.

You can create a form that allows a user to enter information for a new record and then
commit that record to the data source. Creating a basic input form is similar to creating
an edit form, except that the input form also contains the CreateInsert operation,
which causes a blank row to be inserted into the row set which the user can then
populate using a form.

You can create a simple input form by dragging and dropping a collection and the
appropriate operations from the Data Controls panel on to a page. However, you might
need to employ a selection of other techniques to control the user workflow and insert
other form processing logic. Such techniques may include:

• Using parameters in ADF task flows to pass values with which to pre-populate
given attributes of a new record. For more information, see Passing Parameters to
a View Activity.

• Using task flow return activities to set the transaction boundary in the UI, as shown
in Using Task Flow Return Activities .

• Embedding operations in task flow method calls, as shown in Passing Parameters
to a Bounded Task Flow.

• Using managed beans to carry out some operations as shown in Overriding
Declarative Methods.

• Incorporating the form into a region in a task flow as shown in Using Task Flows as
Regions .

• Incorporating the form into a multi-step flow, as shown in Using Train Components
in Bounded Task Flows.

• Placing the form inside a dialog as shown in Running a Bounded Task Flow in a
Modal Dialog.

• Using save points as described inManaging Transactions in Task Flows.

The following section shows how to create a basic input form and provides information
on a couple of variants.

How to Create an Input Form
Creating a basic input form involves creating an edit form and adding a command
component for creating new records.

Before you begin:

It may be helpful to have an understanding of input forms. For more information, see
Creating an Input Form.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Pages.

You will need to complete this task:

Chapter 31
Creating an Input Form

31-30

Create an edit form as described in How to Create an Edit Form.

To create an input form:

1. In the Data Controls panel, expand the node for the collection object on which the
form is based.

2. Expand the collection's Operations node and drag the CreateInsert operation to
the edit form.

Note:

The CreateInsert operation is available only for data controls based on ADF
Business Components application modules. If your data control is based
on another business service, use the Create operation instead. For more
information on the differences between the two, see Table 31-2.

Creating an Input Form Using a Bounded Task Flow
You can use a task flow to provide the workflow for input forms. Instead of using
command components to create new objects, you use a method call activity in the
task flow or a method in a managed bean. Instead of using a command component to
commit changes, you use a task flow return activity.

For example, you can use a method call activity in a task flow to call a data control
object's CreateInsert operation and then pass control to a view activity that displays a
form where the user can enter the data.

To create an input form within a bounded task flow:

1. Create a bounded task flow as described in Creating a Task Flow.

2. In the Properties window, set the Transaction property to Always Begin New
Transaction.

For more information, see Managing Transactions in Task Flows.

3. In the bounded task flow, add a method call activity.

For more information, see Using Method Call Activities.

4. From the Data Controls panel, drag the CreateInsert operation associated with
the collection for which you are creating the form and drop it on the method
activity.

5. With the method call activity still selected, in the Properties window, enter a string
for the fixed-outcome property. After dropping the CreateInsert operation on to
the method call activity, this value is set to CreateInsert, but you may want to
change it to something more specific.

6. In the overview editor for the task flow, add a view activity that represents the page
for the input form. For information on adding view activities, see Adding Activities
to a Task Flow.

7. Add a control flow case from the method activity to the view activity.

8. With the control flow case still selected in the design editor, in the Properties
window, make sure that the from-outcome property of the control flow case is the

Chapter 31
Creating an Input Form

31-31

same as the value of the fixed-outcome property of the method activity set in Step
5.

9. Open the page for the view activity in the design editor, and from the Data Controls
panel, drag the collection for which the form will be used to create a new record,
and choose ADF Form from the context menu.

10. In the task flow, add a return activity. This return activity must execute the commit
operation on the data control. For these procedures, see Using Task Flow Return
Activities .

Using a Commit Button Instead of a Return Activity Within a Task Flow
Generally you should use a return activity to call the Commit operation. However,
there might be cases where you need to use a command component for the Commit
operation, such as when the task flow contains data managed by more than one data
control or you need to commit the data before the end of the flow.

To create an input form that has a Commit button within the form:

1. Create an input form as described in Creating an Input Form Using a Bounded
Task Flow, but without setting the task flow return activity.

2. In the Data Controls panel, drag the Commit operation for the data control that
contains the collection associated with the input form, and drop it as a command
button.

3. In the Structure window, select the command button for the commit operation.

4. In the Properties window, set the action to the outcome string that will navigate
back to the method activity. You then need to add a control flow case from the
page back to the activity, using the same outcome value.

5. Set the command button's disabled property to false.

By default, JDeveloper binds the disabled attribute of the button to the enabled
property of the binding, causing the button to be disabled when the enabled
property is set to false. For this binding, the enabled property is false until an
update has been posted. For the purposes of an input form, the button should
always be enabled, since there will be no changes posted before the user needs
to create the new object.

Creating an Input Form That Allows Multiple Entries in a Single Transaction
If you want the user to be able to create multiple entries before committing to the
database, do the following:

To enable an input form to allow multiple entries in a single transaction:

1. Create an input form as described in Creating an Input Form Using a Bounded
Task Flow

2. In the task flow, add another control flow case from the view activity back to the
method activity, and enter a value for the from-outcome method. For example, you
might enter createAnother.

3. Drag and drop a command component from the Components window onto the
page, and set the action attribute to the from-outcome just created. This will
cause the task flow to return to the method activity and reinvoke the CreateInsert
operation.

Chapter 31
Creating an Input Form

31-32

What Happens When You Create an Input Form
When you use an ADF Form to create an input form, JDeveloper:

• Creates an iterator binding for the collection and an action binding for the
CreateInsert operation in the page definition for the method activity. The
CreateInsert operation is responsible for creating a row in the row set and
populating the data source with the entered data. In the page definition for
the page, JDeveloper creates an iterator binding for the collection and attribute
bindings for each of the attributes of the object in the collection, as for any other
form. If you created command buttons or links using the Commit and Rollback
operations, JDeveloper also creates action bindings for those operations.

• Inserts code in the JSF page for the form using ADF Faces inputText
components, and in the case of the operations, button components.

What Happens at Runtime: CreateInsert Action from the Method
Activity

When the CreateInsert button is clicked (or a method corresponding to that
operation is called), the CreateInsert action binding is invoked, which executes the
CreateInsertRow action, and a new blank instance for the collection is created.

Note:

When you use a task flow method activity to the call the CreateInsert
operation, the method activity's binding container skips validation for required
attributes during routing from the method activity to the view activity, allowing
the blank instance to be displayed in the form on the page.

What You May Need to Know About Displaying Sequence Numbers
Because the Create action is executed before the page is displayed, if you are
populating the primary key using sequences, the next number in the sequence will
appear in the input text field, unlike the rest of the fields, which are blank. The
sequence number is displayed because the associated entity class contains a method
that uses an eager fetch to generate a sequence of numbers for the primary key
attribute. The eager fetch populates the value as the row is created. Therefore, using
sequences works as expected with input forms.

However, if instead you've configured the attribute's type to DBSequence (which uses a
database trigger to generate the sequence), the number would not be populated until
the object is committed to the database. In this case, the user would see a negative
number as a placeholder. To avoid this, you can use the following EL expression for
the Rendered attribute of the input text field:

#{bindings.EmployeeId.inputValue.value > 0}

This expression will display the component only when the value is greater than zero,
which will not be the case before it is committed. Similarly, you can simply set the

Chapter 31
Creating an Input Form

31-33

Rendered attribute to false. However, then the page will never display the input text
field component for the primary key.

What You May Need to Know About Input Forms Backed By Stateless
Services

If the data control on which your input form is based is a data control for a stateless
business service, there is no built-in Commit operation for you to use to save changes
back to the data source.

Instead, you need to use a custom method to save to the database. For more
information, see What You May Need to Know About Working With Data Controls
for Stateless Business Services .

Creating a Form with Dynamic Components
A form can be created dynamically. ADF Faces dynamic components are used to
create a form that can display different data each time you run it.

Instead of creating static databound forms where you provide tags for each component
directly in the page, you can use a dynamic component to create forms where
the binding metadata and the components used to display the bound content are
determined at runtime.

This section provides information on creating databound dynamic forms. You can also
use the dynamic component to create databound tables. See Creating a Table with
Dynamic Components.

For information on the dynamic form component, including how to create a custom
data model, see Determining Components at Runtime in Developing Web User
Interfaces with Oracle ADF Faces.

About Dynamic Components
ADF Faces provides the af:dynamicComponent tag that you can use to create model-
driven forms and tables where the binding metadata and the tags used to display the
bound content are determined at runtime.

The dynamic building of the bindings provides the following possibilities:

• Enables you to create pages where the fields displayed and the ADF Faces
components used to display them are determined by the data model. Any changes
to the data model, such as additional columns or changed UI hints are reflected in
the page without having to redesign the page. For more information about UI hints
on view objects, see Defining UI Hints for View Objects.

• Enables you to create pages based on polymorphic view objects, in which the
fields available for a given record can differ depending on the record's base entity
object. Since the fields to display are determined at runtime, you do not have to
include fields in the page that may not apply to certain records or do coding in
the view layer to adjust the fields that are displayed for a given record. For more
information about building business components that work with multiple row types,
see Defining Polymorphic View Objects.

Chapter 31
Creating a Form with Dynamic Components

31-34

You set display information using UI hints on a view object instead of configuring the
information in the Create Form or Create Table dialog when you drop the control onto
the page. Then if you want to change how the data displays, you need only change it
on the view object, and all dynamic components bound to that view object will change
their display accordingly.

Figure 31-13 shows a dynamic form at runtime that was designed by setting UI
hints for attributes on the CustomerVO view object and then dropping the Customers
data control collection as a dynamic form. Among the UI hints set were LABEL and
DISPLAYHINT (the latter of which can be set to Hide in order to not include the given
attribute in the dynamic form).

Figure 31-13 Dynamic Form Displays Based on Hints Set on the View Object

The following ADF Faces components can be rendered at runtime when you use
af:dynamicComponent at design time:

• af:inputText

• af:inputDate

• af:inputListOfValues

• af:selectOneChoice

• af:selectManyChoice

• af:selectOneListbox

• af:selectManyListbox

• af:selectOneRadio

• af:selectBooleanRadio

• af:selectBooleanCheckbox

• af:selectManyCheckbox

How to Create a Dynamic Form
To create a dynamic form, you drop a collection from the data controls panel as an
ADF Form and specify that the fields be generated dynamically.

Before you begin:

Chapter 31
Creating a Form with Dynamic Components

31-35

It may be helpful to have an understanding of dynamic forms. See Creating a Form
with Dynamic Components.

If you want to take advantage of dynamic forms to display records that contain
varying attributes, you first need to have data objects that contain that capability.
For information on creating view objects with this capability, see Defining Polymorphic
View Objects.

You may also find it helpful to understand other ADF functionality and features. See
Additional Functionality for Databound Pages.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in "Exposing Business Services
with Data Controls" in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

UI hints determine things such as the type of UI component to use to display the
attribute, the label, the tooltip, whether the field should be automatically submitted,
etc. You can also determine whether a given attribute is displayed or hidden. For the
procedure to create UI hints, see Defining UI Hints for View Objects.

To create a dynamic form:

1. Set UI hints on the view object or data control structure definition file that
corresponds to the collection for which you are creating the dynamic form.

2. Optionally, for the Category hint on each view object attribute, specify a category
or click the New Category icon to create a new category.

Any attributes that have the same category can be grouped together in dynamic
forms that you create based on that view object.

3. Optionally, for any categories that you have created set the UI hints for the
category's label and tooltip. These can be set in the UI Categories tab of the
view object's overview editor.

4. From the Data Controls panel, select the collection that represents the view object.

5. Drag the collection onto the page, and from the context menu, choose ADF Form.

6. In the Create Form dialog, select the Fields Generated at Runtime checkbox.

7. If you have specified any categories for attributes, select the Include Field
Groups checkbox in order for the form to group the attributes according to those
categories.

What Happens When You Create Dynamic Forms
When you drop a collection as a dynamic form on a page, the following things happen:

• The page definition is populated with a variableIterator binding, an iterator
binding to the iterator, and a tree value binding.

• The JSF page is populated with one or more af:iterator and
af:dynamicComponent tags. In addition, if the Include Field Groups option is
selected, af:switcher and af:group tags are added.

Chapter 31
Creating a Form with Dynamic Components

31-36

Bindings Created for the Dynamic Form
The page definition file for a dynamic form contains the following executables and
bindings:

• variableIterator: an internal iterator that contains variables declared for the
binding container.

• iterator: the iterator binding for the collection. For more information on iterator
bindings, see Iterator Bindings Created in the Page Definition File.

• tree: the value binding for the attributes of the collection. Unlike a standard form,
which has individual value bindings for each attribute set at design time, a dynamic
form uses a single tree value binding to encompass the attributes that are exposed
at runtime.

Tree value bindings are also used for databound tables (both standard and
dynamic). For more information, see Iterator and Value Bindings for Tables.

The following example shows the bindings for a page that contains a dynamic form
component based on the Customers collection.

<executables>
 <variableIterator id="variables"/>
 <iterator
Binds="SummitAppModuleDataControl.dataProvider.BackOfficeAM.Customers"
 DataControl="SummitAppModuleDataControl" RangeSize="25"
id="CustomersIterator"/>
</executables>
<bindings>
 <tree IterBinding="CustomersIterator" id="Customers">
 <nodeDefinition DefName="oracle.summit.model.views.CustomerVO"
Name="Customers0"/>
 </tree>
</bindings>

Tags Created for a Dynamic Form without Grouping
In the JSF page, JDeveloper inserts an af:iterator tag, within which it nests an
af:dynamicComponent tag. The af:iterator tag loops through all of the attributes that
are exposed by the collection at runtime and uses the af:dynamicComponent tag to
render the appropriate component for each attribute on the page.

The following example shows the code that is generated when you drop the Customers
data control object as a dynamic form (but do not select the Include Field Groups
option).

<af:panelFormLayout id="pfl1">
 <af:iterator id="i1" value="#{bindings.Customers.attributesModel.attributes}"
 var="attr">
 <af:dynamicComponent id="d2" attributeModel="#{attr}">
 value="#{bindings[attr.containerName]
[attr.name].inputValue}"/>
 </af:iterator>
</af:panelFormLayout>

The value attribute of the af:iterator tag uses an EL expression that evaluates
to the attributesModel.attributes property of the collection's tree binding. The
attributesModel property is used to retrieve the data object's attributes and their

Chapter 31
Creating a Form with Dynamic Components

31-37

metadata, such as component type, label, tooltip, and other properties of the real
component to be rendered. The attributes property of attributesModel signifies that
a flat (unhierarchical) list of displayable attributes and their metadata is provided.

The attributeModel attribute of the dynamicComponent tag is bound to the EL
expression #{attr}, which references the variable that is defined in the iterator's
var attribute and that serves as a pointer to the current attribute of the data
control collection and its corresponding metadata. The EL expression for the
dynamicComponent's value attribute also references the variable attr.

Tags Created for a Dynamic Form with Grouping
If you have selected the Include Field Groups checkbox in the Create Form dialog,
the generated JSF page includes the af:switcher and af:group tags, in addition to
the tags described in Tags Created for a Dynamic Form without Grouping.

The af:switcher tag is nested directly within a an af:iterator tag. Within the
af:switcher tag are nested f:facet tags named GROUP and ATTRIBUTE. The GROUP
facet contains an af:group tag, within which is an afoutputText tag to display the
group name and an iterator tag, which contains an af:dynamicComponent tag. The
ATTRIBUTE facet only contains an af:dynamicComponent tag.

For each attribute that the high-level iterator iterates over, the switcher dynamically
determines whether to render a group or a component for the individual attribute. If it
renders a group, the iterator within the group then is used to render the components
for the attributes within that group.

The following example shows the code that is generated if you create a dynamic form
based on the Customers collection and choose to include field groups.

<af:panelFormLayout id="pfl1">
 <af:iterator id="i1"

value="#{bindings.Customers.attributesModel.hierarchicalAttributes}"
 var="attr">
 <af:switcher id="sw1" facetName="#{attr.descriptorType}"
 defaultFacet="ATTRIBUTE">
 <f:facet name="GROUP">
 <af:group title="#{attr.label}" id="g1">
 <af:outputText value="#{attr.name}" id="ot1"/>
 <af:iterator id="gi1" value="#{attr.descriptors}"
 var="nestedAttr">
 <af:dynamicComponent id="gd1"
 attributeModel="#{nestedAttr}"/>
 </af:iterator>
 </af:group>
 </f:facet>
 <f:facet name="ATTRIBUTE">
 <af:dynamicComponent id="ad1" attributeModel="#{attr}"/>
 </f:facet>
 </af:switcher>
 </af:iterator>
</af:panelFormLayout>

The value attribute of the af:iterator tag uses an EL expression that evaluates
to the attributesModel.hierarchicalAttributes property of the collection's tree
binding. The attributesModel property is used to retrieve the data object's attributes
and their metadata, such as component type, label, tooltip, and other properties of the

Chapter 31
Creating a Form with Dynamic Components

31-38

real component to be rendered. The hierarchicalAttributes property signifies that a
hierarchical list of displayable attributes and their metadata is provided, including any
categories that have been set for any attributes in the UI hints.

The attributeModel attribute of the af:dynamicComponent tag is set to the EL
expression #{attr}, which references the variable that is defined in the iterator's var
attribute and that serves as a pointer to the current attribute (or category) of the data
control collection and its corresponding metadata.

What Happens at Runtime: How Attribute Values Are Dynamically
Determined

When a page with dynamic components is rendered, the bindings are created just as
they are when items are dropped from the Data Controls panel at design time, except
that they are created at runtime.

At runtime, the iterator iterates over the set of attributes and instantiates
a dynamicComponent for each attribute. The dynamic component uses its
attributeModel property to obtain information from the iterator about the current
attribute, such as label and control type. Each dynamicComponent then renders a
component based on the metadata that is returned for the attribute.

If the DISPLAYHINT UI hint for an attribute is set to Hide, no component for the attribute
is rendered.

If the dynamic form is created from a data control object that is based on a
polymorphic view object, the rendered components depend on the row type for the
currently selected record.

How to Apply Validators and Converters to a Dynamic Component
By default, standard ADF Faces converters and validators are applied to the
components generated at runtime when using dynamic components. For example,
converterDateTime converters are applied to components based on attributes of type
TimeStamp.

If you need to add more specific validation or conversion to a component, you can do
so by adding ADF Faces validator and converter tags to the source for the dynamic
component and use the tags' disabled attribute to determine on which attributes the
validators and converters are applied.

Before you begin:

It may be helpful to have an understanding of dynamic forms. For more information,
see Creating a Form with Dynamic Components.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Pages.

You will need to complete this task:

Create a dynamic form as shown in How to Create a Dynamic Form or a dynamic
table as shown in How to Create a Dynamic Table.

To manually insert an ADF Faces validator or converter into a dynamic form:

1. Open the page containing the dynamic component in the source editor.

Chapter 31
Creating a Form with Dynamic Components

31-39

2. Within the af:dynamicComponent tag, insert any validator and converter
components that you want to use.

3. Within the each validator and converter tag, insert the disabled attribute and bind
it to an EL expression that disables the tag for all attributes except for those to
which you want to apply it.

For example, the following expression would enable a validator only for the
Hiredate attribute:

#{attr.name == 'Hiredate' ? false : true}

The following example shows a dynamic component with two validators and two
converters applied.

<af:panelFormLayout id="pfl1">
 <af:iterator id="i1" value="#{bindings.EmpVO1.attributesModel.attributes}"
 var="attr">
 <af:dynamicComponent
 value="#{bindings[attr.containerName][attr.name].inputValue}"
 attributeModel="#{attr}" id="dc1"/>
 <af:convertDateTime disabled="#{attr.name == 'Hiredate' ? false : true}"
 pattern="yyyy/MM/dd"/>
 <af:convertNumber disabled="#{attr.name == 'Sal' ? false : true}"
 pattern="#,###,###" />
 <af:validateLength disabled="#{attr.name == 'Job' ? false : true}"
 maximum="10" hintMaximum="maxmum length is 10"/>
 <af:validateLongRange disabled="#{attr.name == 'Sal' ? false : true}"
 minimum="1000"/>
 </af:dynamicComponent>
 </af:iterator>
</af:panelFormLayout>

What You May Need to Know About Mixing Dynamic Components with
Static Components

When you create a dynamic form, you essentially create a block of components that
are rendered dynamically. It is possible place static components before and after that
block of components, but you can not intersperse static components within that block.

The following example illustrates the granularity of mixing static and dynamic
components that is possible. It consists of three af:group tags, the first and third
of which contain static content and the second of which contains an af:iterator tag
with a nested af:dynamicComponent tag.

<af:group title="static before dynamic" id="g1">
 <af:separator id="sp2"/>
 <af:inputText value="#{bindings.Empno.inputValue}" label="Static Empno"
 required="#{bindings.Empno.hints.mandatory}"
 columns="#{bindings.Empno.hints.displayWidth}"
 maximumLength="#{bindings.Empno.hints.precision}"
 shortDesc="#{bindings.Empno.hints.tooltip}" id="it1">
 <f:validator binding="#{bindings.Empno.validator}"/>
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.Empno.format}"/>
 </af:inputText>
</af:group>
<af:group title="dynamic part" id="g2">
 <af:separator id="sp3"/>
 <af:panelFormLayout id="pfl1">

Chapter 31
Creating a Form with Dynamic Components

31-40

 <af:iterator id="i1"
value="#{bindings.EmpVO1.attributesModel.attributes}"
 var="attr">
 <af:dynamicComponent
 value="#{bindings[attr.containerName]
[attr.name].inputValue}"
 id="dc1" attributeModel="#{attr}"/>
 </af:iterator>
 </af:panelFormLayout>
</af:group>
<af:group title="static after dynamic" id="g3">
 <af:separator id="sp4"/>
 <af:inputText value="#{bindings.Ename.inputValue}" label="Static Ename"
 required="#{bindings.Ename.hints.mandatory}"
 columns="#{bindings.Ename.hints.displayWidth}"
 maximumLength="#{bindings.Ename.hints.precision}"
 shortDesc="#{bindings.Ename.hints.tooltip}" id="it2">
 <f:validator binding="#{bindings.Ename.validator}"/>
 </af:inputText>
</af:group>
<af:button text="Back" id="cbb1" action="back"/>

How to Programmatically Set Dynamic Component Behavior
If you have any custom processing that you need to do to determine how the dynamic
component is rendered, you can do so in a managed bean and then bind the dynamic
component's attributeModel property to the appropriate bean method.

Before you begin:

It may be helpful to have an understanding of dynamic forms. For more information,
see Creating a Form with Dynamic Components.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Pages.

You will need to complete this task:

Create a dynamic form as shown in How to Create a Dynamic Form or a dynamic
table as shown in How to Create a Dynamic Table.

For information about creating managed beans see Using a Managed Bean in a
Fusion Web Application

To programmatically set a dynamic component's behavior:

1. In the UI project that contains the dynamic component, create a Java class that
extends the oracle.adf.view.rich.model.BaseAttributeDescriptor class.

As the following example shows a sample class that adds a method to apply a
custom style to the label for the Sal attribute.

public class CustomizedDescriptor extends BaseAttributeDescriptor
{
 public CustomizedDescriptor(BaseAttributeDescriptor base)
 {
 _base = base;
 }

 public Object getLabelStyle()
 {

Chapter 31
Creating a Form with Dynamic Components

31-41

 if (getName().equals("Sal"))
 return "color:red; font-weight:bold";
 else
 return null;
 }

2. Create a managed bean for the page.

3. In the managed bean, create a method that returns an instance of the custom
descriptor. As the following example shows such a method.

public CustomizedDescriptor getCustomizedAttributes(String attrName)
 {
 // create value expression for "#{attrName}" and evaluate it to get object
 // of "attr"
 BaseAttributeDescriptor attrMetadata = null;
 Class klass = null;

 try
 {
 klass =
ClassLoaderUtils.loadClass("oracle.adf.view.rich.model.BaseAttributeDescripto
r");
 }
 catch (ClassNotFoundException e)
 {
 throw new RuntimeException("Can not find class
oracle.adf.view.rich.model.BaseAttributeDescriptor");
 }

 FacesContext facesContext = FacesContext.getCurrentInstance();
 ELContext elContext = facesContext.getELContext();
 ValueExpression valueExpression = createValueExpression(attrName, klass);

 if (valueExpression != null)
 attrMetadata =
(BaseAttributeDescriptor)valueExpression.getValue(elContext);

 return new CustomizedDescriptor(attrMetadata);
 }

4. In the source editor for the page containing the dynamic component, bind the
dynamic component's attributeModel property to the managed bean method that
returns the customized attribute descriptor.

As the following example shows an af:dynamicComponent tag where its
attributeModel attribute has been set to an EL expression that references the
getCustomizedAttributes method of the attributeCustomBean managed bean.

<af:panelFormLayout id="pfl1">
 <af:iterator id="i1" value="#{bindings.EmpVO1.attributesModel.attributes}"
 var="attr">
 <af:dynamicComponent value="#{bindings[attr.containerName]
[attr.name].inputValue}"
attributeModel="#{attributeCustomBean.getCustomizedAttributes('attr')}" /
>
 </af:iterator>
</af:panelFormLayout>

Chapter 31
Creating a Form with Dynamic Components

31-42

How to Access a Dynamic Component Programmatically
If you need to access a dynamic component instance programmatically to make
changes based on a user action, you can do so by using a managed bean.

Before you begin:

It may be helpful to have an understanding of dynamic forms. For more information,
see Creating a Form with Dynamic Components.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Pages.

You will need to complete this task:

Create a dynamic form as shown in How to Create a Dynamic Form or a dynamic
table as shown in How to Create a Dynamic Table.

To programmatically access a dynamic component's binding instance:

1. Create a managed bean method that identifies dynamic component, casts the
component to RichDynamicComponent, and then applies any changes.

For more information, see Using a Managed Bean in a Fusion Web Application.

2. In the page containing the dynamic component, add a command component to the
page and bind its actionListener property to the managed bean method.

The following example shows a managed bean method that changes the label style for
a dynamic component.

public void changeLabelColor (ActionEvent event)
 {
 UIComponent component = event.getComponent().getParent();
 component = component.findComponent("pfl1");

 while(component != null)
 {
 if(component.getId().equals("it1"))
 {
 RichDynamicComponent rdc = (RichDynamicComponent)component;
 rdc.setLabelStyle("color:red");
 break;
 }
 else
 component = component.getChildren().get(0);
 }
 }

How to Access a Dynamic Component's Binding Instance
Programmatically

If you need to access a runtime binding instance of a dynamic component
programmatically, you can do so using a managed bean.

Before you begin:

It may be helpful to have an understanding of dynamic forms. For more information,
see Creating a Form with Dynamic Components.

Chapter 31
Creating a Form with Dynamic Components

31-43

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Pages.

You will need to complete this task:

Create a dynamic form as shown in How to Create a Dynamic Form or a dynamic
table as shown in How to Create a Dynamic Table.

To access a dynamic component's binding instance programmatically:

1. Create a managed bean method that accesses the binding container through the
FacesContext, gets the AttributesModel, and then applies the desired business
logic.

For more information, see Using a Managed Bean in a Fusion Web Application.

2. In the page containing the dynamic component, add a command component to the
page and bind its actionListener property to the managed bean method.

The following example illustrates a managed bean method that will set the DeptNo
value of the current row to 9999.

public void setValueThroughBinding(ActionEvent event)
 {
 // get binding container
 FacesContext facesContext = FacesContext.getCurrentInstance();
 ELContext elContext = facesContext.getELContext();
 ValueExpression valueExpression = createValueExpression("bindings",
 DCBindingContainer.class);
 DCBindingContainer binding = (DCBindingContainer)
 valueExpression.getValue(elContext);

 // get AttributesModel and attribute metadata list
 valueExpression = createValueExpression("bindings.EmpVO1.attributesModel",
 AttributesModel.class);
 AttributesModel attributesModel = (AttributesModel)
 valueExpression.getValue(elContext);
 List<BaseAttributeDescriptor> attrList = attributesModel.getAttributes();

 // get AttributeMetadata for "Empno"
 BaseAttributeDescriptor deptNoAttributeBase = null;
 FacesAttributeDescriptor deptNoAttribute = null;
 for (BaseAttributeDescriptor attrDescriptor: attrList)
 {
 if ("Comm".equals(attrDescriptor.getName()))
 {
 deptNoAttributeBase = attrDescriptor;
 break;
 }
 }

 deptNoAttribute = (FacesAttributeDescriptor)deptNoAttributeBase;
 if (deptNoAttribute == null || deptNoAttribute.getContainerName() == null)
 {
 System.out.println("AttributesModel of Empno or its model name");
 System.out.println("can not be found.");
 return;
 }

 // get Deptno attribute value binding, set input value
 JUFormBinding fb = (JUFormBinding) binding.findExecutableBinding((String)
 deptNoAttribute.getContainerName());

Chapter 31
Creating a Form with Dynamic Components

31-44

 JUCtrlValueBinding valueBinding = (JUCtrlValueBinding)

fb.getControlBinding(deptNoAttribute.getName());
 valueBinding.setInputValue(Integer.valueOf(9999));

 System.out.println("Found JUCtrlValueBinding " + deptNoAttribute.getName()");
 System.out.println("set its value to 9999.");
 }

Modifying the UI Components and Bindings on a Form
The Data Controls panel is used to modify any type of form (except a dynamic
form) and ADF bindings on a form. You can customize the display of the UI as per
requirement.

Once you use the Data Controls panel to create any type of form (except a dynamic
form), you can then delete attributes, change the order in which they are displayed,
change the component used to display data, and change the attribute to which the
components are bound.

Note:

You cannot change how a dynamic form displays using the following
procedures. You must change display information on the view object or entity
object instead.

How to Modify the UI Components and Bindings
You can modify certain aspects of the default components dropped from the Data
Controls panel. You can use the Structure window to change the order in which
components are displayed, to add new components or change existing components,
or to delete components. You can use the Properties window to change or delete
bindings, or to change the label displayed for a component.

Before you begin:

It may be helpful to have a general understanding of working with UI components after
they have been generated. For more information, see Modifying the UI Components
and Bindings on a Form.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Pages.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in Exposing Business Services
with Data Controls in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To modify default components and bindings:

Chapter 31
Modifying the UI Components and Bindings on a Form

31-45

1. Use the Structure window to do the following:

• Change the order of the UI components by dragging them up or down the
tree. A black line with an arrowhead denotes where the UI component will be
placed.

• Add a UI component. Right-click an existing UI component in the Structure
window and choose to place the new component before, after, or inside the
selected component. You then choose from a list of UI components.

• Bind a UI component. Right-click an existing UI component in the Structure
window and choose Bind to ADF Control. You can then select the object to
which you want your component bound.

• Rebind a UI component. Right-click an existing UI component in the Structure
window and choose Rebind to another ADF Control. You can then select the
new control object to which you want your component bound.

• Delete a UI component. Right-click the component and choose Delete. If you
wish to keep the component, but delete the binding, you need to use the
Properties window. See the second bullet point in Step 2.

2. With the UI component selected in the Structure window, you can then do the
following in the Properties window:

• Add a non-ADF binding for the UI component. Enter an EL expression in the
Value field, or use the dropdown menu and choose Edit.

• Delete a binding for the UI component by deleting the EL expression.

• Change the label for the UI component. By default, the label is bound to the
binding's label property of its hint. This property allows your page to use the
UI control hints for labels that you have defined for your entity object attributes
or view object attributes. The UI hints allow you to change the value once and
have it appear the same on all pages that display the label.

You can change the label just for the current page. To do so, select the label
attribute. You can enter text or an EL expression to bind the label value to
something else, for example, a key in a properties or resource file.

For example, the inputText component used to display the name of a product
might have the following for its Label attribute:

#{bindings.ProductName.hints.label}

However, you could change the expression to instead bind to a key in a
properties file, for example:

#{properties['productName']}

In this example, properties is a variable defined in the JSF page used to load
a properties file.

What Happens When You Modify Attributes and Bindings
When you modify how an attribute is displayed by moving or changing the UI
component, JDeveloper changes the corresponding code on the JSF page. When you
use the binding editors to add or change a binding, JDeveloper adds the code to the
JSF page, and also adds the appropriate elements to the page definition file.

Chapter 31
Modifying the UI Components and Bindings on a Form

31-46

32
Creating ADF Databound Tables

This chapter describes how to create tables with data modeled from ADF Business
Components, using ADF data controls and ADF Faces components, including editable
tables, input tables, and dynamic tables.
This chapter includes the following sections:

• About Creating ADF Databound Tables

• Creating a Basic Table

• Creating an Editable Table

• Creating an Input Table

• Creating a List View of a Collection

• Creating a Table with Dynamic Components

• Modifying the Attributes Displayed in the Table

About Creating ADF Databound Tables
A table is used to display tabular data. You can bind the ADF Faces table component
to the complete collection of data objects at a time from the collection. You can create
and modify data in the table.

Unlike forms, tables allow you to display more than one data object from a collection at
a time.

You can create tables that simply display data, or you can create tables that allow you
to edit or create data. Once you drop a collection as a table, you can add command
buttons bound to actions that execute some logic on a selected row. You can also
modify the default components to suit your needs.

You can also display a collection of objects in a list that uses a grid to display each
object's attributes, similar to a simple table.

ADF Databound Tables Use Cases and Examples
Figure 32-1 shows the Products table on the Inventory Control tab of the Summit
sample application for Oracle ADF. This table is used to display all of the products in
the inventory and enables the user to select a product to see its inventory status in an
adjoining graph.

32-1

Figure 32-1 Read-only Table

You can create a table that simply displays information, as shown in Figure 32-1, or
you can allow the user to edit the information and create new records, as shown in
Figure 32-2.

Figure 32-2 Edit Table

Additional Functionality for Databound Tables
You may find it helpful to understand other ADF Faces features before you implement
your table and tree components. Additionally, once you have added a tree or table
component to your page, you may find that you need to add functionality such as
validation and accessibility. Following are links to other functionality that table and tree
components can use.

• ADF view objects: Much of how the components display and function in the table
is controlled by the corresponding view objects. See Defining SQL Queries Using
View Objects.

• ADF application modules: The Data Controls panel, from which you drag
databound components to your pages, is populated with representations of view
objects that you have added to application modules. See Implementing Business
Services with Application Modules.

• Adapter-based data controls: If you are using other types of business services,
such as EJB components or web services, you can create data control for those

Chapter 32
About Creating ADF Databound Tables

32-2

business services as described in Creating and Configuring EJB Data Controls of
the Developing Applications with Oracle ADF Data Controls.

• ADF Model and data binding: When you create databound tables in an ADF web
application, you use ADF Model and data binding. See Using ADF Model in a
Fusion Web Application.

• ADF Faces: For detailed information about developing with ADF Faces, see
Introduction to ADF Faces in Developing Web User Interfaces with Oracle ADF
Faces.

• Command buttons: You may want to add command button or links that invoke
some functionality against the data set. For more advanced functionality than
what is covered in this chapter, see Using Command Components to Invoke
Functionality in the View Layer.

• Filtered tables: You can create tables that provide filtering, in effect executing a
query-by-example search against the data in the table. See Creating Standalone
Filtered Search Tables from Named View Criteria.

• Task flows: If your table takes part in a transaction, for example an input table,
then you may need to use an ADF task flow to invoke certain operations before or
after the table is rendered. See Creating ADF Task Flows .

• Validation: You may want certain fields to be validated before they are submitted
to the data store. See Defining Validation and Business Rules Declaratively and
Using Validation in the ADF Model Layer .

• Active data: If your application uses active data, then you can have the data in
your tables and trees update automatically, whenever the data in the data source
changes. See Using the Active Data Service .

Note:

If you wish to use active data, and your application uses ADF Business
Components, then your tables must conform to the following:

– The binding represents homogeneous data (that is, only one rule),
although an accessor can still access a like accessor.

– The binding rule contains a single attribute.

– The table does not use filtering.

– The tree component's nodeStamp facet contains a single outputText
tag and contains no other tags.

Creating a Basic Table
In order to create a table using data control, you need to bind the ADF Faces table
component to a collection of data objects. With the help of JDeveloper, you can
perform this declaratively by dragging and dropping a collection from the Data Controls
panel.

Unlike with forms where you bind the individual UI components that make up a form to
the individual attributes on the collection, with a table you bind the ADF Faces table
component to the complete collection or to a range of n data objects at a time from
the collection. The individual components used to display the data in the columns are

Chapter 32
Creating a Basic Table

32-3

then bound to the attributes. The iterator binding handles displaying the correct data
for each object, while the table component handles displaying each object in a row.
JDeveloper allows you to do this declaratively, so that you don't need to write any
code.

How to Create a Basic Table
To create a table using a data control, you bind the table component to a collection.
JDeveloper allows you to do this declaratively by dragging and dropping a collection
from the Data Controls panel.

Before you begin:

It may be helpful to have an understanding of ADF Faces databound tables. For more
information, see Creating a Basic Table.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Tables.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in Exposing Business Services
with Data Controls in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To create a databound table:

1. From the Data Controls panel, select a collection.

For example, to create a simple table in the Summit ADF sample application that
displays all of the customers, you would select the Customers collection.

2. Drag the collection onto a JSF page, and from the context menu, choose Table/
List View > ADF Table.

3. The Create Table dialog shows each attribute in the collection, and allows you to
determine how these attributes will behave and appear as columns in your table.

Using this dialog, you can do the following:

• Make the table read-only.

• Allow the ADF Model layer to handle selection by selecting the Single Row
or Multiple Rows radio button. Selecting either of these options means that
the iterator binding will access the iterator to determine the selected row or
rows. Select one of these options unless you do not want the table to allow
selection.

• Allow the ADF Model layer to handle column sorting by selecting the Enabling
Sorting checkbox. Selecting this option means that the iterator binding will
access the iterator, which will perform an order-by query to determine the
order. Select this option unless you do not want to allow column sorting.

• Allow the columns in the table to be filtered using entered criteria by selecting
the Enabling Filtering checkbox. Selecting this option allows the user to
enter criteria in text fields above each column. That criteria is then used to
build a Query-by-Example (QBE) search on the collection, so that the table

Chapter 32
Creating a Basic Table

32-4

will display only the results returned by the query. For more information, see
Creating Standalone Filtered Search Tables from Named View Criteria.

Note:

For JPA-based data controls, filtering does not work on tables
that are created from nested collections in the data control. If you
drop such a collection on a page, you should leave this checkbox
unselected to avoid runtime errors. For more information on JPA-
based data controls, see About EJB Data Controls in Developing
Applications with Oracle ADF Data Controls.

• Group columns for selected attributes together under a parent column, by
selecting the desired attributes (shown as rows in the dialog), and clicking the
Group button. Figure 32-3 shows how five grouped columns appear in the
visual editor after the table is created.

Figure 32-3 Grouped Columns in an ADF Faces Table

• Change the display label for a column. By default, the label is bound to the
labels property for any control hint defined for the attribute on the table
binding. This binding allows you to change the value of a label text once on
the view object, and have the change appear the same on all pages that
display the label.

Instead of using this default, you can enter text or an EL expression to bind the
label value to something else, for example, a key in a resource file.

• Change the value binding for a column. You can change the column to be
bound to a different attribute. If you simply want to rearrange the columns,
you should use the order buttons. If you do change the attribute binding for a
column, the label for the column also changes.

• Change the UI component used to display an attribute. The UI components
are set based on the table you selected when you dropped the collection onto
the page, on the type of the corresponding attribute (for example, inputDate
components are used for attributes that are dates), and on whether or not
default components were set as control hints on the corresponding view
object. You can change to another component using the dropdown list.

Tip:

If one of the attributes for your table is also a primary key, you may
want to choose a UI component that will not allow a user to change
the value.

Chapter 32
Creating a Basic Table

32-5

Tip:

If you want to use a component that is not listed in the dropdown
menu, use this dialog to select the outputText component, and then
manually add the other tag to the page.

• Change the order of the columns using the order buttons.

• Add a column using the Add icon. There's no limit to the number of columns
you can add. When you first click the icon, JDeveloper adds a new column
line at the bottom of the dialog and populates it with the values from the first
attribute in the bound collection; subsequent new columns are populated with
values from the next attribute in the sequence, and so on.

• Delete a column using the Delete icon.

• Make the table dynamic by selecting the Generate columns dynamically at
runtime checkbox. For more information on dynamic tables, see Creating a
Table with Dynamic Components.

4. Once the table is dropped on the page, you can use the Properties window to set
other display properties of the table. For example, you may want to set the width
of the table to a certain percentage or size. For more information about display
properties, see the Using Tables, Trees, and Other Collection-Based Components
chapter of Developing Web User Interfaces with Oracle ADF Faces.

Tip:

When you set the table width to 100%, the table will not include borders,
so the actual width of the table will be larger. To have the table set to
100% of the container width, expand the Style section of the Properties
window, select the Box tab, and set the Border Width attribute to 0
pixels.

5. By default, the table will enforce delayed scrolling behavior which waits until the
user stops scrolling and the position of the scroller is established to scroll the
table rows. You can use the Property window that you display for the table iterator
binding to configure smooth scrolling behavior. For more information, see What
You May Need to Know About Table Scrolling Behavior and Row Count.

6. If you want the user to be able to edit information in the table and save any
changes, you need to provide a way to submit and persist those changes. For
more information, see Creating an Editable Table. For procedures on creating
tables that allow users to input data, see Creating an Input Table.

What Happens When You Create a Table
Dropping a table from the Data Controls panel has the same effect as dropping a text
field or form. Briefly, JDeveloper does the following:

• Creates the bindings for the table and adds the bindings to the page definition file

• Adds the necessary code for the UI components to the JSF page

For more information, see What Happens When You Create a Text Field .

Chapter 32
Creating a Basic Table

32-6

Iterator and Value Bindings for Tables
When you drop a table from the Data Controls panel, a tree value binding is created.
A tree consists of a hierarchy of nodes, where each subnode is a branch off a higher
level node. In the case of a table, it is a flattened hierarchy, where each attribute
(column) is a subnode off the table. Like an attribute binding used in forms, the tree
value binding references the iterator binding, while the iterator binding references
an iterator for the data collection, which facilitates iterating over the data objects in
the collection. Instead of creating a separate binding for each attribute, only the tree
binding to the table node is created. In the tree binding, the AttrNames element within
the nodeDefinition element contains a child element for each attribute that you want
to be available for display or reference in each row of the table.

The tree value binding is an instance of the FacesCtrlHierBinding class that extends
the core JUCtrlHierBinding class to add two JSF specific properties:

• collectionModel: Returns the data wrapped by an object that extends the
javax.faces.model.DataModel object that JSF and ADF Faces use for collection-
valued components like tables.

• treeModel: Extends collectionModel to return data that is hierarchical in nature.
For more information, see Displaying Master-Detail Data.

The following example shows the value binding for the table created when you drop
the Summit sample application for ADF task flows's ProductVO1 collection.

<bindings>
 <tree IterBinding="ProductVO1Iterator" id="ProductVO1">
 <nodeDefinition
 DefName="oracle.summit.model.views.ProductVO"
 Name="ProductVO10">
 <AttrNames>
 <Item Value="Id"/>
 <Item Value="Name"/>
 <Item Value="ShortDesc"/>
 <Item Value="LongtextId"/>
 <Item Value="ImageId"/>
 <Item Value="SuggestedWhlslPrice"/>
 <Item Value="WhlslUnits"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

Only the table component needs to be bound to the model (as opposed to the columns
or the text components within the individual cells), because only the table needs
access to the data. The tree binding for the table drills down to the individual structure
attributes in the table, and the table columns can then derive their information from the
table component.

Code on the JSF Page for an ADF Faces Table
When you use the Data Controls panel to drop a table onto a JSF page, JDeveloper
inserts an ADF Faces table component, which contains an ADF Faces column
component for each attribute named in the table binding. Each column then contains
another component (such as an inputText or outputText component) bound to the

Chapter 32
Creating a Basic Table

32-7

attribute's value. Each column's heading is bound to the labels property for the control
hint of the attribute.

Tip:

If an attribute is marked as hidden on the associated view or entity object, no
corresponding UI is created for it.

The following example shows a code excerpt from a table created by dropping the
ProductsVO1 collection as a read- only table.

<af:table value="#{bindings.ProductVO1.collectionModel}" var="row"
 rows="#{bindings.ProductVO1.rangeSize}"
 emptyText="#{bindings.ProductVO1.viewable ? 'No data to display.' :
'Access Denied.'}"
 fetchSize="#{bindings.ProductVO1.rangeSize}" rowBandingInterval="0"
 selectedRowKeys="#{bindings.ProductVO1.collectionModel.selectedRow}"
 selectionListener="#{bindings.ProductVO1.collectionModel.makeCurrent}"
 rowSelection="single" id="t1">
 <af:column headerText="#{bindings.ProductVO1.hints.Id.label}" id="c1">
 <af:outputText value="#{row.Id}"
 shortDesc="#{bindings.ProductVO1.hints.Id.tooltip}"
 id="ot1">
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.ProductVO1.hints.Id.format}"/>
 </af:outputText>
 </af:column>
 <af:column headerText="#{bindings.ProductVO1.hints.Name.label}" id="c2">
 <af:outputText value="#{row.Name}"
 shortDesc="#{bindings.ProductVO1.hints.Name.tooltip}"
 id="ot2"/>
 </af:column>
 <af:column headerText="#{bindings.ProductVO1.hints.ShortDesc.label}" id="c3">
 <af:outputText value="#{row.ShortDesc}"
 shortDesc="#{bindings.ProductVO1.hints.ShortDesc.tooltip}"
 id="ot3"/>
 </af:column>
.
.
.
</af:table>

The tree binding iterates over the data exposed by the iterator binding. Note that
the table's value is bound to the collectionModel property, which accesses the
collectionModel object. The table wraps the result set from the iterator binding in
a collectionModel object. The collectionModel allows each item in the collection to
be available within the table component using the var attribute.

In the example, the table iterates over the rows in the current range of the ProductVO1
iterator binding. The iterator binding binds to a row set iterator that keeps track of
the current row. When you set the var attribute on the table to row, each column then
accesses the current data object for the current row presented to the table tag using
the row variable, as shown for the value of the af:outputText tag:

<af:outputText value="#{row.Id}"/>

Chapter 32
Creating a Basic Table

32-8

When you drop an ADF Table and do not specify it as a read-only table, input
components are generated instead of output components, as shown in the following
example. The value of the input component is implicitly bound to a specific row
in the binding container through the bindings property, instead of being bound to
the row variable. Additionally, JDeveloper adds validator components for each input
component. By using the bindings property, any raised exception can be linked to the
corresponding binding object or objects. The controller iterates through all exceptions
in the binding container and retrieves the binding object to get the client ID when
creating FacesMessage objects. This retrieval allows the table to display errors for
specific cells. This strategy is used for all input components, including selection
components such as lists.

<af:table value="#{bindings.ProductVO1.collectionModel}" var="row"
 rows="#{bindings.ProductVO1.rangeSize}"
 emptyText="#{bindings.ProductVO1.viewable ? 'No data to display.' :
 'Access Denied.'}"
 fetchSize="#{bindings.ProductVO1.rangeSize}" rowBandingInterval="0"
 id="t1">
 <af:column headerText="#{bindings.ProductVO1.hints.Id.label}" id="c1">
 <af:inputText value="#{row.bindings.Id.inputValue}"
 label="#{bindings.ProductVO1.hints.Id.label}"
 required="#{bindings.ProductVO1.hints.Id.mandatory}"
 columns="#{bindings.ProductVO1.hints.Id.displayWidth}"
 maximumLength="#{bindings.ProductVO1.hints.Id.precision}"
 shortDesc="#{bindings.ProductVO1.hints.Id.tooltip}"
 id="it1">
 <f:validator binding="#{row.bindings.Id.validator}"/>
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.ProductVO1.hints.Id.format}"/>
 </af:inputText>
 </af:column>

For more information about using ADF Faces validators and converters, see the
Validating and Converting Input chapter of Developing Web User Interfaces with
Oracle ADF Faces.

Table 32-1 shows the other attributes defined by default for ADF Faces tables created
using the Data Controls panel.

Table 32-1 ADF Faces Table Attributes and Populated Values

Attribute Description Default Value

rows Determines how
many rows to display
at one time.

An EL expression that, by default, evaluates
to the rangeSize property of the associated
iterator binding, which determines how many
rows of data are fetched from a data control
at one time. Note that the value of the rows
attribute must be equal to or less than the
corresponding iterator's rangeSize value, as
the table cannot display more rows than are
returned.

first Index of the first row
in a range (based on
0).

An EL expression that evaluates to the
rangeStart property of the associated iterator
binding.

Chapter 32
Creating a Basic Table

32-9

Table 32-1 (Cont.) ADF Faces Table Attributes and Populated Values

Attribute Description Default Value

emptyText Text to display when
there are no rows to
return.

An EL expression that evaluates to the
viewable property on the iterator. If the table
is viewable, the attribute displays No data to
display when no objects are returned. If the
table is not viewable (for example, if there are
authorization restrictions set against the table),
it displays Access Denied.

fetchSize Number of rows of
data fetched from the
data source.

An EL expression that, by default, evaluates
to the rangeSize property of the associated
iterator binding. For more information about the
rangeSize property, see Iterator RangeSize
Attribute Defined. This attribute can be set to a
larger number than the rows attribute.

Note that to improve scrolling behavior in
a table, when the table's iterator binding is
expected to manage a data set consisting
of over 200 items, and the view object is
configured to use range paging, the iterator
actually returns a set of ranges instead of
just one range. For more information about
using range paging for view objects, see Using
Range Paging to Efficiently Scroll Through
Large Result Sets. For more information on
range paging for JPA-based data controls,
see Paginated Fetching of Data in EJB Data
Controls in Developing Applications with Oracle
ADF Data Controls.

selectedRowKeys The selection state
for the table.

An EL expression that by default, evaluates to
the selected row on the collection model.

selectionListener Reference to a
method that listens
for a selection event.

An EL expression that by default, evaluates
to the makeCurrent method on the collection
model.

rowSelection Determines whether
rows are selectable.

Set to single to allow one row to be selected
at a time. Set to multiple to allow more than
one row to be selected.

Column Attributes

sortProperty Determines the
property on which to
sort the column.

Set to the columns corresponding attribute
binding value.

sortable Determines whether
a column can be
sorted.

Set to false. When set to true, the iterator
binding will access the iterator to determine the
order.

headerText Determines the text
displayed at the top
of the column.

An EL expression that, by default, evaluates to
the label control hint set on the corresponding
attribute.

Chapter 32
Creating a Basic Table

32-10

What You May Need to Know About Setting the Current Row in a
Table

When you use tables in an application and you allow the ADF Model layer to manage
row selection, the current row is determined by the iterator. When a user selects a row
in an ADF Faces table, the row in the table is shaded, and the component notifies the
iterator of the selected row. To do this, the selectedRowKeys attribute of the table is
bound to the collection model's selected row, as shown in the following example.

<af:table value="#{bindings.ProductVO1.collectionModel}" var="row"
.
.
.
 selectedRowKeys="#{bindings.ProductVO1.collectionModel.selectedRow}"
 selectionListener="#{bindings.ProductVO1.collectionModel.makeCurrent}"
 rowSelection="single">

This binding binds the selected keys in the table to the selected row of the collection
model. The selectionListener attribute is then bound to the collection model's
makeCurrent property. This binding makes the selected row of the collection the
current row of the iterator.

Note:

If you create a custom selection listener, you must create a method
binding to the makeCurrent property on the collection model (for
example #{binding.Products.collectionModel.makeCurrent}) and invoke
this method binding in the custom selection listener before any custom logic.

Although a table can handle selection automatically, there may be cases where you
need to programmatically set the current row for an object on an iterator.

You can call the getKey() method on any view row to get a Key object that
encapsulates the one or more key attributes that identify the row. You can also use
a Key object to find a view row in a row set using the findByKey() method. At runtime,
when either the setCurrentRowWithKey or the setCurrentRowWithKeyValue built-in
operation is invoked by name by the data binding layer, the findByKey() method is
used to find the row based on the value passed in as a parameter before the found
row is set as the current row.

The setCurrentRowWithKey and setCurrentRowWithKeyValue operations both expect
a parameter named rowKey, but they differ precisely by what each expects that rowKey
parameter value to be at runtime:

setCurrentRowWithKey Operation
setCurrentRowWithKey expects the rowKey parameter value to be the serialized
string representation of a view row key. This is a hexadecimal-encoded string that
looks similar to this:

000200000002C20200000002C102000000010000010A5AB7DAD9

Chapter 32
Creating a Basic Table

32-11

The serialized string representation of a key encodes all of the key attributes that
might comprise a view row's key in a way that can be conveniently passed as a single
value in a browser URL string or form parameter. At runtime, if you inadvertently
pass a parameter value that is not a legal serialized string key, you may receive
exceptions like oracle.jbo.InvalidParamException or java.io.EOFException as a
result. In your web page, you can access the value of the serialized string key of a
row by referencing the rowKeyStr property of an ADF control binding (for example.
#{bindings.SomeAttrName.rowKeyStr}) or the row variable of an ADF Faces table
(e.g. #{row.rowKeyStr}).

setCurrentRowWithKeyValue Operation
The setCurrentRowWithKeyValue operation expects the rowKey parameter value to
be the literal value representing the key of the view row. For example, its value would
be simply "201" to find product number 201.

Note:

If you write custom code in an application module class and need to find a
row based on a serialized string key passed from the client, you can use
the getRowFromKey() method in the JboUtil class in the oracle.jbo.client
package:

static public Row getRowFromKey(RowSetIterator rsi, String sKey)

The first parameter is the view object instance in which you'd like to find the
row. The second parameter is the serialized string format of the key.

What You May Need to Know About Getting Row Data
Programmatically

CollectionModel supports a version of the getRowData method that takes a row key
parameter and thus allows you to get row data without changing currency.

For example, you can replace this code:

CollectionModelInstance.setRowKey(RowKeyInstance);
JUCtrlHierNodeBinding rowData = (JUCtrlHierNodeBinding)
 CollectionModelInstance.getRowData();

with this code:

JUCtrlHierNodeBinding rowData = (JUCtrlHierNodeBinding)
 CollectionModelInstance.getRowData(RowKeyInstance);

This is particularly useful when your view object uses range paging, since it enables
you to avoid having to use the setRowKey method. (If you use setRowKey, you might
also need to provide custom code to ensure that the row that you specify with that
method is within the current range of rows.)

Chapter 32
Creating a Basic Table

32-12

What You May Need to Know About Table Scrolling Behavior and Row
Count

When you add the table component to a page, you size the table to display fewer rows
than the fetch size set on the backing view object and therefore only a portion of the
total row count. At runtime, when the user scrolls through the result set and the total
number of rows is much larger than table rows, it is usually desirable to wait until the
user stops scrolling and the final position of the scroller is established to render the
corresponding rows. This default behavior is called delayed scrolling because the table
rows don’t change until the position of the scroller is established. In contrast, when few
fetches are needed to scroll through the result set (because the row count is a small
multiple of the backing view object’s fetch size), smooth scrolling may be desired to
allow the user to view table rows corresponding to the changing position of the scroller.

You can configure the desired table scrolling behavior using the RowCountThreshold
attribute on the table’s iterator binding. The default attribute value (0) gets the
estimated row count when the table is first rendered and supports delayed scrolling
through a large result set. In this case, the size of the scroller will be determined from
the start and will not change as the user scrolls through the result set.

To support smooth scrolling, set the RowCountThreshold attribute on the iterator
binding of the table component to a value less than 0 (for example, -1). This will
enforce smooth scrolling through a small result set and defer getting an estimated row
count until the last set of rows is fetched. In this case, the scroller size and position
will be determined by the number of rows fetched by the table, and the scroller will get
smaller as the user scrolls through the result set.

Alternatively, you can set the RowCountThreshold attribute to a value greater than 0
when you want to configure a threshold for smooth scrolling to begin. When the table
renders, it executes the estimated row count and if the row count is less than the value
you specify, the framework will enforce the default behavior (delay row scrolling until
the scroller position is established). If the estimated row count exceeds the threshold
value, the table enforces the smooth scrolling behavior.

Creating an Editable Table
The process of creating an editable table is similar to that of a basic table apart from
the addition of command buttons bound to operations. You can add an ADF Faces
component if you need your table to contain a toolbar and place the command buttons
on it.

You can create a table that allows the user to edit information within the table, and
then commit those changes to the data source. You can use built-in data control
operations to create command buttons for changing the data, and place those buttons
in a toolbar in the table. For example, you might use the Delete operation to create a
button that allows a user to delete a record from the current range.

It is important to note that the collection-specific operations are executed only against
objects in the ADF cache. You need to use the Commit operation on the root data
control to actually commit any changes to the data source. You use the data control's
Rollback operation to roll back any changes made to the cached object. If the page
is part of a transaction within a bounded task flow, you would most likely use these
operations to resolve the transaction in a task flow return activity. See Managing
Transactions in Task Flows.

Chapter 32
Creating an Editable Table

32-13

Note:

For data controls which do not have the Commit and Rollback operations
available, such as data controls based on web services or stateless EJB
session beans, you need to provide custom methods to save the data to
the data source. For JPA-based data controls, you can use the mergeEntity
or persistEntity methods to save changes, but these methods only work
on a single row. For more information on working with JPA-based data
controls, see About Commit Models for EJB Session Beans in Developing
Applications with Oracle ADF Data Controls.

When you decide to use editable components to display your data, you have the
option of the table displaying all rows as editable immediately, or displaying all rows as
read-only until the user double-clicks within the row. Figure 32-4 shows a table whose
rows all have editable fields. The page renders using the components that were added
to the page (for example, inputText and inputDate, components).

Figure 32-4 Table with Editable Fields

Figure 32-5 shows the same table, but configured so that the user must double-click
(or single-click if the row is already selected) a row in order to edit or enter data. Note
that outputText components are used to display the data in the nonselected rows,
even though the same input components as in Figure 32-4 were used to build the
page. The only row that actually renders those components is the row selected for
editing.

Figure 32-5 Click to Edit a Row

For more information about how ADF Faces table components handle editing, see
Editing Data in Tables, Trees, and Tree Tables in Developing Web User Interfaces with
Oracle ADF Faces.

Chapter 32
Creating an Editable Table

32-14

How to Create an Editable Table
To create an editable table, you follow similar procedures to creating a basic table,
then you add command buttons bound to operations. However, in order for the table
to contain a toolbar, you need to add an ADF Faces component that associates the
toolbar with the items in the collection used to build the table.

Before you begin:

It may be helpful to have an understanding of editable databound tables. For more
information, see Creating an Editable Table.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Tables.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in Exposing Business Services
with Data Controls in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To create an editable table:

1. From the Data Controls panel, select a collection.

For example, to create a simple table in the Summit ADF task flow sample
application that will allow you to edit products in the system, you would select
the ProductVO1 collection.

2. Drag the collection onto a JSF page, and from the context menu, choose Table /
List View > ADF Table.

This creates an editable table using input components.

3. Use the ensuing Create Table dialog to determine how the attributes should
behave and appear as columns in your table. Be sure to select the Single Row or
Multiple Rows radio button in order to allow the user to select a row to edit.

For more information about using this dialog to configure the table, see How to
Create a Basic Table.

4. With the table selected in the Structure window, expand the Behavior section of
the Properties window and set the EditingMode attribute. If you want all the rows
to be editable select editAll. If you want the user to click into a row to make it
editable, select clickToEdit.

5. From the Structure window, right-click the table component and choose Surround
With.

6. In the Surround With dialog, ensure that ADF Faces is selected in the dropdown
list, select the Panel Collection component, and click OK.

The panelCollection component's toolbar facet will hold the toolbar which, in
turn, will hold the command components used to update the data.

7. In the Structure window, right-click the panelCollection's f:facet - toolbar facet
node and choose Insert inside f:facet - toolbar > Toolbar.

Chapter 32
Creating an Editable Table

32-15

This creates a toolbar that already contains a default menu that allows users to
change how the table is displayed and a Detach link that detaches the entire
table and displays it such that it occupies the majority of the space in the browser
window. For more information about the panelCollection component, see the
Displaying Table Menus, Toolbars, and Status Bars section of Developing Web
User Interfaces with Oracle ADF Faces.

8. From the Data Controls panel, select the operation associated with the collection
of objects on which you wish the operation to execute, drag it onto the toolbar
component in the Structure window, and choose Create > ADF Button from the
context menu. This will place the databound command component inside the
toolbar.

For example, if you want to be able to delete a product record, you would drag the
Delete operation associated with the ProductVO1 collection. Figure 32-6 shows
the operations associated with he ProductVO1 collection.

Figure 32-6 Operations Associated with a Collection

9. If you need a button for submitting changes to the cache, right-click the af:toolbar
component in the Structure window and choose Insert Inside Toolbar > Button.

Chapter 32
Creating an Editable Table

32-16

Note:

You can use other means to submit changes to the cache, such as
setting the autoSubmit property to true for the input components in the
table. For more information, see Using Partial Triggers in Developing
Web User Interfaces with Oracle ADF Faces.

10. If the page is not part of a transaction within a bounded task flow, then you need to
create buttons that allow the user to either commit or rollback the changes. From
the Data Controls panel, drag the Commit and Rollback operations associated with
the root-level data control, and drop them as either a button or link into the toolbar.

Figure 32-7 shows the commit and roll back operations for the
BackOfficeAppModuleDataControl data control.

Figure 32-7 Commit and Rollback Operations for a Data Control

If the page is part of a transaction within a bounded task flow, then you can
simply enter Commit and Rollback as the values for the transaction resolution
when creating the task flow return activity. For more information, see Managing
Transactions in Task Flows.

Tip:

To create a table that allows you to insert a new record into the data store,
see Creating an Input Table.

What Happens When You Create an Editable Table
Creating an editable table is similar to creating a form used to edit records. Action
bindings are created for the operations dropped from the Data Controls panel.
For details, see What Happens When You Create Command Components Using
Operations.

Creating an Input Table
In order to create an input table, you need to first create an editable table and add a
command component for creating new blank rows used to create new records.

Chapter 32
Creating an Input Table

32-17

You can create a table that allows users to insert a new blank row into a table and then
add values for each column (any default values set on the corresponding entity or view
object will be automatically populated).

How to Create an Input Table
When you create an input table, you want the user to see the new blank row in the
context of the other rows within the current row set. To allow this insertion, you use
the CreateInsert operation. As opposed to the Create operation, the CreateInsert
operation actually creates the new row within the row set instead of only in the cache.
In addition, you need to configure the table to respond to that user action. ADF Faces
components can be set so that one component refreshes based on an interaction with
another component, without the whole page needing to be refreshed. This is known as
partial page rendering.

Note:

The CreateInsert operation is not available for adapter-based data controls,
such as those based web services or Java classes. However, for JPA-based
data controls, the Create operation adds the new row to the row set
like CreateInsert does for data controls based on application modules.
For more information, see Data Control Built-in Operations in Developing
Applications with Oracle ADF Data Controls.

Before you begin:

It may be helpful to have an understanding of ADF Faces input tables. For more
information, see Creating an Input Table.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Tables.

You will need to complete these tasks:

• Create an editable table, as described in Creating an Editable Table.

• If your table is not part of a bounded task flow, include buttons bound to the
Commit and Rollback operations.

To create an input table:

1. From the Data Controls panel, drag the CreateInsert operation associated with
the dropped collection and drop it as a toolbar button into the toolbar. You may
want to change the ID to something more recognizable, such as CreateNewRow.
This will make it easier to identify when you need to select it as the partial trigger.

Chapter 32
Creating an Input Table

32-18

Note:

If the collection is a child to another collection (for example, in the
Summit ADF sample application the OrdersForCustomer collection
is a child to the Customers collection), then instead of using the
CreateInsert operation, you need to use the Create with Parameters
operation so that the record to create for the child collection is
associated with the parent collection.

2. In the Structure window, select the table component. In the Properties window,
expand the Behavior section.

3. In the Properties window, mouse over the PartialTriggers attribute, click the
dropdown menu, and choose Edit.

4. In the Edit Property dialog, expand the toolbar facet for the panelCollection
component and then expand the toolbar that contains the CreateInsert command
component. Select that component and shuttle it to the Selected panel. Click OK.
This sets that component to be the trigger that will cause the table to refresh.

What Happens When You Create an Input Table
When you use the CreateInsert operation to create an input table, JDeveloper:

• Creates an iterator binding for the collection, an action binding for the
CreateInsert operation, and attribute bindings for the table. The CreateInsert
operation is responsible for creating the new row in the row set. If you created
command buttons or links using the Commit and Rollback operations, JDeveloper
also creates an action bindings for those operations.

• Inserts code in the JSF page for the table using ADF Faces table, column, and
inputText components, and in the case of the operations, button components.

The following example shows the page definition file for an input table created from the
ProductVO1 collection (some attributes were deleted in the Create Table dialog when
the collection was dropped).

<executables>
 <iterator Binds="ProductVO1" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
id="ProductVO1Iterator"/>
</executables>
 <tree IterBinding="ProductVO1Iterator" id="ProductVO1">
 <nodeDefinition
 DefName="oracle.summit.model.views.ProductVO"
 Name="ProductVO10">
 <AttrNames>
 <Item Value="Id"/>
 <Item Value="Name"/>
 <Item Value="ShortDesc"/>
 <Item Value="LongtextId"/>
 <Item Value="ImageId"/>
 <Item Value="SuggestedWhlslPrice"/>
 <Item Value="WhlslUnits"/>
 </AttrNames>
 </nodeDefinition>
 </tree>

Chapter 32
Creating an Input Table

32-19

 <action IterBinding="ProductVOIterator" id="CreateInsert"
 RequiresUpdateModel="true" Action="createInsertRow"/>
 <action id="Commit" RequiresUpdateModel="true" Action="commitTransaction"
 DataControl="BackOfficeAppModuleDataControl"/>
 <action id="Rollback" RequiresUpdateModel="false"
 Action="rollbackTransaction"
 DataControl="BackOfficeAppModuleDataControl"/>
</bindings>

The following example shows the code added to the JSF page that provides partial
page rendering, using the CreateInsert command toolbar button as the trigger to
refresh the table.

<af:form>
 <af:panelCollection id="pc1">
 <f:facet name="menus"/>
 <f:facet name="toolbar">
 <af:toolbar id="tb1">
 <af:button actionListener="#{bindings.CreateInsert.execute}"
 text="CreateInsert"
 disabled="#{!bindings.CreateInsert.enabled}"
 id="CreateInsert"/>
 <af:button actionListener="#{bindings.Commit.execute}"
 text="Commit"
 disabled="false" id="b2"/>
 <af:button actionListener="#{bindings.Rollback.execute}"
 text="Rollback"
 disabled="#{!bindings.Rollback.enabled}"
 immediate="true" id="b3">
 <af:resetActionListener/>
 </af:button>
 </af:toolbar>
 </f:facet>
 <f:facet name="statusbar"/>
 <af:table value="#{bindings.ProductVO1.collectionModel}" var="row"
 rows="#{bindings.ProductVO1.rangeSize}"
 emptyText="#{bindings.ProductVO1.viewable ? \'No data to
display.\' :
 \'Access Denied.\'}"
 fetchSize="#{bindings.ProductVO1.rangeSize}"
 rowSelection="single" partialTriggers="CreateInsert" id="t1">
 <af:column sortProperty="Id" sortable="false"
 headerText="#{bindings.ProductVO1.hints.Id.label}"
 id="c1">
 <af:inputText value="#{row.ProductId}" simple="true"
 required="#{bindings.ProductVO1.hints.Id.mandatory}"
 columns="#{bindings.ProductVO1.hints.Id.displayWidth}"
 maximuumLength="#{bindings.ProductVO1.hints.Id.precision}"
 id="it1"/>
 </af:column>
.
.
.
 </af:table>
 </af:panelCollection>
</af:form>

Chapter 32
Creating an Input Table

32-20

What Happens at Runtime: How CreateInsert and Partial Page
Refresh Work

When the button bound to the CreateInsert operation is invoked, the action executes,
and a new instance for the collection is created and inserted as the page is
rerendered. Because the button was configured to be a trigger that causes the table
to refresh, the table redraws with the new empty row shown at the top. When the user
clicks the button bound to the Commit action, the newly created rows in the row set
are inserted into the database. For more information about partial page refresh, see
the Rerendering Partial Page Content chapter in Developing Web User Interfaces with
Oracle ADF Faces.

What You May Need to Know About Creating a Row and Sorting
Columns

If your table columns allow sorting, and the user has sorted on a column before
inserting a new row, then that new row will not be sorted. To have the column sort with
the new row, the user must first sort the column opposite to the desired sort, and then
resort. This is because the table assumes the column is already sorted, so clicking on
the desired sort order first will have no effect on the column.

For example, say a user had sorted a column in ascending order, and then added a
new row. Initially, that row appears at the top. If the user first clicks to sort the column
again in ascending order, the table will not resort, as it assumes the column is already
in ascending order. The user must first sort on descending order and then ascending
order.

If you want the data to automatically sort on a specific column in a specific order
after inserting a row, then programmatically queue a SortEvent after the commit, and
implement a handler to execute the sort.

If you want to allow sorting on a column for which the view object attribute is defined
by a custom domain data type, you must implement the compareTo() method for the
table's sort button click event:

public int compareTo(Object theObject)

The method will return 0 for values that are equal, less then 0 if the current object
is less than theObject, and greater than 0 if the current object is greater. The object
comparison for attributes behaves just like String comparisons.

What You May Need to Know About Create and CreateInsert
When you use the Create or CreateInsert operation to declaratively create a new
row, it performs the following lines of code:

// create a new row for the view object
Row newRow = yourViewObject.createRow();
// mark the row as being "initialized", but not yet new
newRow.setNewRowState(Row.STATUS_INITIALIZED);

However, if you are using the CreateInsert operation, it performs the additional line of
code to insert the row into the row set:

Chapter 32
Creating an Input Table

32-21

// insert the new row into the view object's default rowset
yourViewObject.insertRow(newRow);

When you create a row in an entity-based view object, the Transaction object
associated with the current application module immediately takes note of the fact.
The new entity row that gets created behind the view row is already part of the
Transaction's list of pending changes. When a newly created row is marked as having
the initialized state, it is removed from the Transaction's pending changes list and is
considered a blank row in which the end user has not yet entered any data values.
The term initialized is appropriate since the end user will see the new row initialized
with any default values that the underlying entity object has defined. If the user never
enters any data into any attribute of that initialized row, then it is as if the row never
existed. At transaction commit time, since that row is not part of the Transaction's
pending changes list, no INSERT statement will be attempted for it.

As soon as at least one attribute in an initialized row is set, it automatically transitions
from the initialized status to the new status (Row.STATUS_NEW). At that time, the
underlying entity row is enrolled in the Transaction's list of pending changes, and
the new row will be permanently saved the next time you commit the transaction.

Note:

If the end user performs steps that result in creating many initialized rows
but never populating them, it might seem likely to cause a slow memory leak.
However, the memory used by an initialized row that never transitions to the
new state will eventually be reclaimed by the Java virtual machine's garbage
collector.

What You May Need to Know About Saving Multiple Rows in a
JPA-Based Data Control

EJB data controls and JPA-based bean data controls do not have the built-in
CreateInsert operation available. However, it is possible to replicate the behavior
of CreateInsert with the Create operation in these data controls by setting the data
control's EagerPersist property to true. This property is set to true by default for data
controls based on stateful session beans that use container-managed transactions
and an explicit commit model. For more information, see About Commit Models for
EJB Session Beans in Developing Applications with Oracle ADF Data Controls

Creating a List View of a Collection
The listview component uses a model to display data in a list. You can choose
between a panelGroupLayout or a panelGridLayout component to arrange the
components for your list item.

You can use the listView component when you need to display a collection of objects
in a list. The attributes of each object are displayed in a group or grid within a single
row and single column. Figure 32-8 shows a collection of products displayed using a
listView component.

Chapter 32
Creating a List View of a Collection

32-22

Figure 32-8 A Collection Displayed in a List in a Single Column

In this listView, a child listItem component contains a panelGridLayout component
that, in turn, contains outputFormatted components that display the data and a button
component that allows users to delete the item. The listView component is bound to
the collection, in the same way that a table is bound to a collection, using the value
attribute. The listItem component is a direct child to the listView component, and
is the container for the components that display the data, in the same way that the
column component holds the data components for a table.

If your collection has a master-detail relationship with another collection, you can
group the child collection under the parent collection using grouping functionality in the
listView component. For more information, see Using List Views to Display Master-
Detail Objects.

For complete information about the listView and listItem components, see the
Displaying a Collection in a List section of the Developing Web User Interfaces
with Oracle ADF Faces. For complete information about using the panelGridLayout
component to group items in grid within the list (as shown in Figure 32-8), see the
Arranging Content in a Grid section of the Developing Web User Interfaces with Oracle
ADF Faces. You can also use a panelGroupLayout component to group components
when you don't need a grid layout. For more information, see the Grouping Related
Items section of the Developing Web User Interfaces with Oracle ADF Faces.

How to Create a Databound List View
You use the Create List View wizard to create your list. This wizard allows you to
choose between a panelGroupLayout or a panelGridLayout component to arrange the

Chapter 32
Creating a List View of a Collection

32-23

components for your list item. If you are creating the list for a child of a master-detail
relationship, you can also use the wizard to configure the headers for the list.

Before you begin:

It may be helpful to have an understanding of ADF Faces list views. For more
information, see Creating a List View of a Collection.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Tables.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in Exposing Business Services
with Data Controls in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To create a list view:

1. From the Data Controls panel, drag a collection onto the page and choose Table/
List View > ADF List View. If you want to create a list with headers from a parent
collection, drag a collection that is a child to another collection.

2. Use the Create List View wizard to select your layout component to organize your
display of the data, and to select the attributes and components to display. If you
are creating a group, on the first page of the wizard, select Include header using
parent collection.

For more information about using the wizard, press the F1 key or click Help.

3. Use the Properties window to further configure the layout components.

For complete information about using the panelGridLayout component, see the
Arranging Content in a Grid section of the Developing Web User Interfaces with
Oracle ADF Faces. For more information about the panelGroupLayout component,
see the Grouping Related Items section of the Developing Web User Interfaces
with Oracle ADF Faces.

What Happens When You Create a Databound List View
When you use the wizard to create a listView component, JDeveloper creates and
configures the listView, listItem, and layout components. The bindings are the
same as for a table—the listView component is bound to the collection dropped from
the Data Controls panel. The value of the var attribute on this component is used by
the outputFormatted components to access the data, in the same way as a table. For
more information about the page definition code and the JSP code for collections, see
What Happens When You Create a Table.

The following example shows the page code for the simple table shown in Figure 32-8.

<af:listView value="#{bindings.SProductView1.collectionModel}" var="item"
 emptyText="#{bindings.SProductView1.viewable ? 'No data to display.'
 : 'Access Denied.'}"
 fetchSize="#{bindings.SProductView1.rangeSize}" id="lv1">
 <af:listItem id="li1">
 <af:panelGridLayout id="pgl2" dimensionsFrom="parent">
 <af:gridRow marginTop="5px" height="15px" id="gr2">

Chapter 32
Creating a List View of a Collection

32-24

 <af:gridCell marginStart="5px" width="50%" id="gc2">
 <af:panelLabelAndMessage label="Product:" id="plam1"
 inlineStyle="font-
weight:bold;">
 <af:outputFormatted
 value="#{item.bindings.Name.inputValue}"
id="of1"/>
 </af:panelLabelAndMessage>
 </af:gridCell>
 <af:gridCell marginStart="5px" width="50%" marginEnd="5px"
 id="gc3"/>
 </af:gridRow>
 <af:gridRow marginTop="5px" height="15px" id="gr3">
 <af:gridCell marginStart="5px" width="50%" id="gc4">
 <af:panelLabelAndMessage label="ID:" id="plam2">
 <af:outputFormatted
value="#{item.bindings.Id.inputValue}"
 id="of2">
 <af:convertNumber groupingUsed="false"

pattern="#{bindings.SProductView1.hints.Id.format}"/>
 </af:outputFormatted>
 </af:panelLabelAndMessage>
 </af:gridCell>
 <af:gridCell marginStart="5px" width="50%" marginEnd="5px"
 id="gc5">
 <af:button actionListener="#{bindings.Delete.execute}"
 text="Delete Product"
 disabled="#{!bindings.Delete.enabled}" id="b1"/>
 </af:gridCell>
 </af:gridRow>
 <af:gridRow marginTop="5px" height="15px" marginBottom="5px"
id="gr4">
 <af:gridCell marginStart="5px" width="50%" id="gc6">
 <af:panelLabelAndMessage label="Suggested Wholesale:"
 id="plam3">
 <af:outputFormatted

value="#{item.bindings.SuggestedWhlslPrice.inputValue}"
 id="of3">
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.SProductView1.hints.SuggestedWhlslPrice.format}"/>
 </af:outputFormatted>
 </af:panelLabelAndMessage>
 </af:gridCell>
 <af:gridCell marginStart="5px" width="50%" marginEnd="5px"
 id="gc7"/>
 </af:gridRow>
 </af:panelGridLayout>
 </af:listItem>
</af:listView>

Creating a Table with Dynamic Components
A table can be created using ADF Faces dynamic components. The dynamic
component in the table helps you to determine the binding metadata and the tags
used to display the bound content each time you run it.

Instead of creating static databound tables where you provide tags for each
component directly in the page, you can use a dynamic component to create tables

Chapter 32
Creating a Table with Dynamic Components

32-25

where the binding metadata, columns, and the components used to display the bound
content are determined at runtime.

Figure 32-9 shows a dynamic table at runtime that was created by setting UI hints for
attributes on the CustomerVO view object and then dropping the Customers data control
collection as a dynamic table. Among the UI hints set were LABEL and DISPLAYHINT
(the latter of which can be set to Hide in order to not include the given attribute in the
dynamic form).

Figure 32-9 Dynamic Table Including a Column Group Based on Category Hint

For more general information on dynamic components, see About Dynamic
Components.

How to Create a Dynamic Table
To create a dynamic table, you drop a collection from the data controls panel as an
ADF Table and specify that the fields be generated dynamically.

Before you begin:

It may be helpful to have an understanding of the dynamic component feature and
dynamic databound tables. For more information, see About Dynamic Components
and Creating a Table with Dynamic Components.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Tables.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module. Alternatively, if you are using another type of business service, create a
data control for that business service as described in Exposing Business Services
with Data Controls in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

UI hints determine things such as the type of UI component to use to display the
attribute, the label, the tooltip, whether the field should be automatically submitted, and
so forth. You can also determine whether a given attribute is displayed or hidden. For
the procedure to create UI hints, see Defining UI Hints for View Objects.

To create a dynamic table:

Chapter 32
Creating a Table with Dynamic Components

32-26

1. Set UI Hints either on the view object or on the data control structure definition file
that corresponds to the collection for which you are creating the dynamic form.

2. Optionally, for the Category hint on each view object attribute, specify a category
or click the New Category icon to create a new category.

Any attributes that have the same category can be grouped together in dynamic
tables that you create based on that view object.

3. Optionally, for any categories that you have created set the UI hints for the
category's label and tooltip. These can be set in the UI Categories tab of the
view object's overview editor.

4. From the Data Controls panel, select the collection that represents the view object.

5. Drag the collection onto the page, and from the context menu, choose Table/List
View > ADF Table.

6. In the Create Table dialog, select the Generate columns dynamically at runtime
checkbox.

7. If you have specified any categories for attributes select the Include Column
Groups checkbox in order for the form to organize the display of columns into
any checkbox in order for the table to group the columns according to those
categories.

What Happens When You Use Dynamic Components
When you drop a collection as a dynamic table on a page, the following things happen:

• The page definition is populated with a variableIterator binding, an iterator
binding to the iterator, and a tree value binding. See Bindings Created for the
Dynamic Form.

• The JSF page is populated with an af:table tag and one or more af:iterator,
af:column and af:dynamicComponent tags. In addition, if the Include Column
Groups option is selected, af:switcher and af:group tags are added.

Tags Created for a Dynamic Table without Grouping
In the JSF page, JDeveloper inserts an af:table tag, within which it nests an
af:iterator tag that iterates over the attributes of the collection. Within that
af:iterator tag is nested an af:column tag, which contains an af:dynamicComponent
tag. The af:dynamicComponent in turn displays the appropriate component for each
column as determined at runtime.

The following example shows the code that is generated when you drop the Countries
data control object as a dynamic table (but do not select the Include Column Groups
option).

<af:table value="#{bindings.Countries.collectionModel}" var="row"
 rows="#{bindings.Countries.rangeSize}"
 emptyText="#{bindings.Countries.viewable ? 'No data to display.' :
 'Access Denied.'}"
 rowBandingInterval="0" fetchSize="#{bindings.Countries.rangeSize}"
 id="t1">
 <af:iterator id="i1"
 value="#{bindings.Countries.attributesModel.attributes}"
 var="column">
 <af:column headerText="#{column.label}" id="c1">

Chapter 32
Creating a Table with Dynamic Components

32-27

 <af:dynamicComponent id="d2" attributeModel="#{column}"

value="#{row.bindings[column.name].inputValue}"/>
 </af:column>
 </af:iterator>
</af:table>

The value attribute of the af:iterator tag uses an EL expression that evaluates
to the attributesModel.attributes property of the collection's tree binding. The
attributesModel property is used to retrieve the data object's attributes and their
metadata, such as component type, label, tooltip, and other properties of the real
component to be rendered. The attributes property of attributesModel signifies that
a flat (unhierarchical) list of displayable attributes and their metadata is provided.

The attributeModel attribute of the af:dynamicComponent tag is bound to the
EL expression #{column}, which references the variable that is defined in the
iterator's var attribute and that serves as a pointer to the current attribute of the
data control collection and its corresponding metadata. The EL expression for the
dynamicComponent's value attribute also references the variable column.

Tags Created for a Dynamic Table with Grouping
If you have selected the Include Column Groups checkbox in the Create Table
dialog, the generated JSF page includes the af:switcher and af:group tags, in
addition to the tags described in Tags Created for a Dynamic Table without Grouping.

The af:switcher tag is nested directly within an af:column tag. Within the
af:switcher tag are nested facet tags named GROUP and ATTRIBUTE. The GROUP
facet contains an af:group tag, within which is an af:outputText tag to display
the group name and an af:iterator tag, which contains an af:column tag that in
turn contains an af:dynamicComponent tag. The ATTRIBUTE facet only contains an
af:dynamicComponent tag.

For each attribute that the high-level iterator iterates over, the switcher dynamically
determines whether to render a group or a column. If it renders a group, the iterator
within the group then is used to render the columns within that group.

The following example shows the code that is generated if you create a dynamic form
based on the Countries collection and choose to include column groups.

<af:table value="#{bindings.Countries.collectionModel}" var="row"
 rows="#{bindings.Countries.rangeSize}"
 emptyText="#{bindings.Countries.viewable ? 'No data to display.' :
'Access Denied.'}"
 rowBandingInterval="0" fetchSize="#{bindings.Countries.rangeSize}"
 id="t1">
 <af:iterator id="i1"

value="#{bindings.Countries.attributesModel.hierarchicalAttributes}"
 var="column">
 <af:column headerText="#{column.label}" id="c1">
 <af:switcher id="sw1" facetName="#{column.descriptorType}"
 defaultFacet="ATTRIBUTE">
 <f:facet name="GROUP">
 <af:iterator id="gi1" value="#{column.descriptors}"
 var="nestedCol">
 <af:column headerText="#{nestedCol.label}" id="c2">
 <af:dynamicComponent id="gd1"

Chapter 32
Creating a Table with Dynamic Components

32-28

 attributeModel="#{nestedCol}"

value="#{row.bindings[nestedCol.name].inputValue}"/>
 </af:column>
 </af:iterator>
 </f:facet>
 <f:facet name="ATTRIBUTE">
 <af:dynamicComponent id="ad1" attributeModel="#{column}"
 value="#{row.bindings[column.name].inputValue}"/>
 </f:facet>
 </af:switcher>
 </af:column>
 </af:iterator>
</af:table>

The value attribute of the af:iterator tag uses an EL expression that evaluates
to the attributesModel.hierarchicalAttributes property of the collection's tree
binding. The attributesModel property is used to retrieve the data object's attributes
and their metadata, such as component type, label, tooltip, and other properties of the
real component to be rendered. The hierarchicalAttributes property signifies that a
hierarchical list of displayable attributes and their metadata is provided, including any
categories that have been set for any attributes in the UI hints.

The attributeModel attribute of the af:dynamicComponent tag is set to the EL
expression #{column}, which references the variable that is defined in the iterator's
var attribute and that serves as a pointer to the current column (or category) of the
data control collection and its corresponding metadata.

What Happens at Runtime: How Attribute Values Are Dynamically
Determined

When a page with dynamic components is rendered, the bindings are created just as
they are when items are dropped from the Data Controls panel at design time, except
that they are created at runtime. For more information, see What Happens at Runtime:
How Attribute Values Are Dynamically Determined.

How to Create a Dynamic Table with a detailStamp Facet
You can create a dynamic table that displays master content and includes
detailStamp facet that enables a user to display detail for a given record. The
detail content is obtained through the dynamic component's bindings to a view link
accessor on the master view object. Figure 32-10 shows a part of a dynamic table
that contains such a detail facet. For more information on using detailStamp facets in
tables, see Adding Hidden Capabilities to a Table in Developing Web User Interfaces
with Oracle ADF Faces.

Chapter 32
Creating a Table with Dynamic Components

32-29

Figure 32-10 Dynamic Table with detailStamp Facet

Before you begin:

It may be helpful to have an understanding of dynamic tables. See Creating a Table
with Dynamic Components.

You may also find it helpful to understand other ADF functionality and features. See
Additional Functionality for Databound Tables.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects and view
links that establish the desired master-detail hierarchy, as described in How to
Create a Master-Detail Hierarchy Based on View Objects Alone.

• Create a dynamic table as shown in How to Create a Dynamic Table.

To create a dynamic table with a detailStamp facet:

1. In the source editor for the JSF page, insert a f:facet tag within the dynamic
table's af:table tag.

2. Within the f:facet tag, insert an af:panelFormLayout tag.

3. Within the af:panelFormLayout tag, insert an af:iterator tag.

4. Bind the iterator's value attribute to the
attributesModel.getLinkedViewAttributes(LinkedViewName) property of your
data object, where LinkedViewName is the name of a view link accessor that
accesses the detail content.

5. Within the af:iterator tag, insert an af:dynamicComponent tag.

6. Bind the af:dynamicComponent tag's attributeModel attribute to the value of the
af:iterator tag's var attribute.

7. Bind the af:dynamicComponent tag's value attribute to an expression that returns
the detail data for the selected row.

The following example shows the JSF page code for a dynamic table that uses a
detailStamp facet to display data retrieved through a view link accessor.

<af:table value="#{bindings.EmpVO3.collectionModel}" var="row" id="t1" ...>
 <f:facet name="detailStamp">

Chapter 32
Creating a Table with Dynamic Components

32-30

 <af:panelForm id="pgl1" layout="vertical">
 <af:iterator id="iter3" var="detail"

value="#{bindings.EmpVO3.attributesModel.getLinkedViewAttributes('DeptView')}">
 <af:dynamicComponent
value="#{row['DeptView'].bindings[detail.name].inputValue}"/>
attributeModel="#{detail}" id="dc1"/>
 </af:iterator>
 </af:panelForm>
 </f:facet>
 <af:iterator id="itr1" var="column"
 value="#{bindings.EmpVO3.attributesModel.attributes}">
 <af:column headerText="#{column.label}" id="dcc1">
 <af:dynamicComponent value="#{row.bindings[column.name].inputValue}"
attributeModel="#{column}" id="dc1"/>
 </af:column>
 </af:iterator>
</af:table>

Modifying the Attributes Displayed in the Table
You can modify and delete attributes displayed in a table that you don’t want to see in
the UI.

Once you use the Data Controls panel to create a table, you can then delete attributes,
change the order in which they are displayed, change the component used to display
them, and change the attribute binding for the component. You can also add new
attributes, or rebind the table to a new data control.

How to Modify the Displayed Attributes
You can modify the following aspects of a table that was created using the Data
Controls panel:

• Change the binding for the label of a column

• Change the UI component bound to an attribute

• Add or delete columns that represent the attributes

• Reorder the columns in the table

• Enable selection and sorting

Before you begin:

It may be helpful to have an understanding of modifying databound tables. For more
information, see Modifying the Attributes Displayed in the Table.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Tables.

You will need to complete this task:

Create a databound table as described in Creating a Basic Table.

To change the attributes for a table:

1. In the Structure window, select the table component.

Chapter 32
Modifying the Attributes Displayed in the Table

32-31

2. In the Properties window, expand the Columns section to change, add, or
delete the attributes that are displayed as columns. You can also change the UI
component used within the column to display the data.

3. Expand other sections of the Properties window to change the display and
behavior of the table, such as filtering and sorting.

How to Change the Binding for a Table
Instead of modifying a binding, you can completely change the object to which the
table is bound.

Before you begin:

It may be helpful to have an understanding of modifying databound tables. For more
information, see Modifying the Attributes Displayed in the Table.

You may also find it helpful to understand other ADF functionality and features. For
more information, see Additional Functionality for Databound Tables.

You will need to complete this task:

• Create a databound table as described in Creating a Basic Table.

To rebind a table:

1. Right-click the table in the Structure window and choose Rebind to Another ADF
Control.

2. In the Bind to ADF Control dialog, select the new collection to which you want to
bind the table.

Note that changing the binding for the table will also change the binding for all
the columns. You can then use the procedures in How to Modify the Displayed
Attributes to modify those bindings.

Tip:

You can also rebind a table by dragging a different view object on top of the
existing table.

What Happens When You Modify Bindings or Displayed Attributes
When you simply modify how an attribute is displayed by moving the UI component
or changing the UI component, JDeveloper changes the corresponding code on the
JSF page. When you use the binding editors to add or change a binding, JDeveloper
adds the code to the JSF page, and also adds the appropriate elements to the page
definition file.

Chapter 32
Modifying the Attributes Displayed in the Table

32-32

33
Using Command Components to Invoke
Functionality in the View Layer

This chapter describes how to invoke custom methods on ADF Business Components
using ADF Faces command components and ADF Model data bindings in the Fusion
web application. Specifically, it describes how you can use ADF Faces components
to invoke ADF Business Components client interface methods, including how to pass
parameters to a method and how to override the declarative method created when you
drag and drop a method from the Data Controls panel.
This chapter includes the following sections:

• About Command Components

• Creating Command Components to Execute Methods

• Setting Parameter Values Using a Command Component

• Overriding Declarative Methods

About Command Components
Command components are represented by the UICommand component, which
performs an action when it is activated. ADF Faces command components deliver
action events when the components are activated.

Once you create a basic page and add navigation capabilities, you may want to add
more complex features, such as passing parameters between pages or providing the
ability to override declarative actions. Oracle ADF provides many features that allow
you to add this complex functionality using very little actual code.

Some of the implementation methods in this chapter are intended for page-level
designs. You may be able to perform many of the same functions by using task flows.
See Getting Started with ADF Task Flows.

Command Component Use Cases and Examples
You can use command components to perform an action, such as passing parameters,
overriding declarative actions, or performing some logic. You can bind a command
component to a custom method in the Data Controls panel. For example, if you have
a custom method called deleteOrderItem(), you can create a button bound to this
method so that when the user presses this button, the order item will be deleted.

You can also use the setPropertyListener tag within a command component to
assign values when an event fires. For example, assume you have a button that
initiates a search and displays the results on another page depending on a parameter
value stored in a managed bean. You can use the setPropertyListener property to
pass this parameter value to the method that checks this value.

33-1

You can add code to a declarative method that is bound to a command component.
For example, after you have created a declarative Commit button, you can add code to
a managed bean and then override the Commit operation for additional processing

Additional Functionality for Command Components
You may find it helpful to understand other Oracle ADF features before you work
with command components. Following are links to other functionality that may be of
interest.

• For information about creating custom methods that can be added to the page
as a command component, see Customizing an Application Module with Service
Methods and Publishing Custom Service Methods to UI Clients.

• For information about creating command components from operations, see What
Happens When You Create Command Components Using Operations.

• If you want to use EL expressions in your methods, see EL Expressions Created
to Bind to Operations.

• For more information about the command button's actionListener attribute, see
What Happens at Runtime: How Action Events and Action Listeners Work.

• For more information about ADF bindings, see Using ADF Model in a Fusion Web
Application.

• If you are using task flows, you can use the task flow parameter passing
mechanism. For more information, see Using Parameters in Task Flows.

• If you considering using task flow call methods, see Using Method Call Activities.

• If you are using managed beans, see Using a Managed Bean in a Fusion Web
Application.

Creating Command Components to Execute Methods
The Data Controls panel contains custom methods that invoke application logic from
anywhere within an ADF application's control flow. You can drag a method and drop it
as a command button to execute the method.

When your application contains custom methods, these methods appear in the Data
Controls panel. You can then drag these methods and drop them as command
buttons. When a user clicks the button, the method is executed.

For more information about creating custom methods, see Customizing an Application
Module with Service Methods, and Publishing Custom Service Methods to UI Clients.

Note:

If you are using task flows, you can call methods directly from the task flow
definition. For more information, see Using Method Call Activities.

For example, the ItemsForOrder view object in the Summit sample application for
Oracle ADF contains the deleteOrderItem() method. This method updates the

Chapter 33
Creating Command Components to Execute Methods

33-2

items in the shopping cart. To allow the user to execute this method, you drag the
deleteOrderItem() method from the Data Controls panel, as shown in Figure 33-1.

Figure 33-1 Methods in the Data Controls Panel

In order to perform the required business logic, many methods require a value
for their parameter or parameters. This means that when you create a button
bound to the method, you need to create an EL expression to specify where the
value for the parameter(s) is to be retrieved from. For example, if you use the
populateInventoryForProduct(String productId) method, you need to configure
the method action binding to retrieve a product ID so that the method can display the
inventory for the product with that ID.

How to Create a Command Component Bound to a Custom Method
You create a command component bound to custom method by dragging the custom
method from the Data Controls panel to a form.

Before you begin:

It may be helpful to have an understanding of custom methods. For more information,
see Creating Command Components to Execute Methods.

You may also find it helpful to understand functionality that can be added using
other command components. For more information, see Additional Functionality for
Command Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects and
any custom methods that you want in your data model, as described in Creating
and Modifying an Application Module. Alternatively, if you are using another type
of business service, create a data control for that business service as described
in Exposing Business Services with Data Controls in Developing Applications with
Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To create a command component bound to a custom method:

1. From the Data Controls panel, drag the method onto the page.

Chapter 33
Creating Command Components to Execute Methods

33-3

Tip:

If you are dropping a button for a method that needs to work with data in
a table or form, that button must be dropped inside the table or form.

2. From the context menu, choose Create > Methods > ADF Button.

If the method takes parameters, the Edit Action Binding dialog opens. In the Edit
Action Binding dialog, enter values for each parameter or click the Show EL
Expression Builder menu selection in the Value column of Parameters to launch
the EL Expression Builder.

What Happens When You Create Command Components Using a
Method

When you drop a method as a command button, JDeveloper:

• Defines a method action binding for the method.

• If the method takes any parameters, JDeveloper creates NamedData elements that
hold the parameter values.

• Inserts code in the JSF page for the ADF Faces command component.

• Binds the button to the method using actionListener.

• Uses the return value from the method call.

Action Bindings
JDeveloper adds an action binding for the method. Action bindings use the
RequiresUpdateModel property, which determines whether or not the model needs
to be updated before the action is executed. For command operations, this property is
set to true by default, which means that any changes made at the view layer must be
moved to the model before the operation is executed.

Method Parameters
When you drop a method that takes parameters onto a JSF page, JDeveloper creates
a method action binding. This binding is what causes the method to be executed when
a user clicks the command component. When the method requires parameters to run,
JDeveloper also creates NamedData elements for each parameter. These elements
represent the parameters of the method.

For example, in the Summit sample application for ADF task flows, the
populateInventoryForProduct(String) method action binding contains a NamedData
element for the String parameter. This element is bound to the value specified when
you created the action binding. The following example shows the method action
binding created when you drop the populateInventoryForProduct(String) method,
and bind the String parameter (named productId) to the appropriate variable.

<methodAction id="populateInventoryForProduct" RequiresUpdateModel="true"
 Action="invokeMethod"
 MethodName="populateInventoryForProduct" IsViewObjectMethod="true"
 DataControl="BackOfficeAppModuleDataControl"

Chapter 33
Creating Command Components to Execute Methods

33-4

 InstanceName="data.BackOfficeAppModuleDataControl.InventoryVO1">
 <NamedData NDName="productId" NDType="java.lang.String"/>
</methodAction>

ADF Faces Component Code
JDeveloper adds code for the ADF Faces component to the JSF page. This code is
similar to the code for any other command button, as described in EL Expressions
Created to Bind to Operations. However, instead of being bound to the execute
method of the action binding for a built-in operation, the button is bound to the execute
method of the method action binding for the method that was dropped.

EL Expressions Used to Bind to Methods
Like creating command buttons using operations, when you create a command button
using a method, JDeveloper binds the button to the method using the actionListener
attribute. The button is bound to the execute property of the action binding for the
given method using an EL expression. This EL expression causes the binding's
method to be invoked on the application module. For more information about the
command button's actionListener attribute, see What Happens at Runtime: How
Action Events and Action Listeners Work.

Tip:

Instead of binding a button to the execute method on the action binding,
you can bind the button to the method in a backing bean that overrides the
execute method. Doing so allows you to add logic before or after the original
method runs. For more information, see Overriding Declarative Methods.

Like navigation operations, the disabled property on the button uses an EL
expression to determine whether or not to display the button. The following
example shows the EL expression used to bind the command button to the
populateInventoryForProduct(String) method.

<af:button actionListener="#{bindings.populateInventoryForProduct.execute}"
 text="populateInventoryForProduct"
 disabled="#{!
bindings.populateInventoryForProduct.enabled}"
 id="b1"/>

Tip:

When you drop a command button component onto the page, JDeveloper
automatically gives it an ID based on the number of the same type of
component that was previously dropped. For example, b1 and b2 for the first
two buttons dropped. If you change the ID to something more descriptive,
you must manually update any references to it in any EL expressions in the
page.

Chapter 33
Creating Command Components to Execute Methods

33-5

Using the Return Value from a Method Call
You can also use the return value from a method call. The following example shows a
custom method that returns a string value.

/**
 * Custom method.
*/
 public String getHelloString() {
 return ("Hello World");
 }

The following example shows the code in the JSF page for the command button and
an outputText component.

<af:button actionListener="#{bindings.getHelloString.execute}"
 text="getHelloString"
 disabled="#{!bindings.getHelloString.enabled}"
 id="helloButtonId"/>
<af:outputText value="#{bindings.return.inputValue}"
 id="helloOutputId"/>

When the user clicks the command button, it calls the custom method. The method
returns the string "Hello World" to be shown as the value of the outputText
component.

What Happens at Runtime: Command Button Method Bindings
When the user clicks the button, the method binding causes the associated
method to be invoked, passing in the value bound to the NamedData element
as the parameter. For example, if a user clicks a button bound to the
populateInventoryForProduct(String productId) method, the method takes the
value of the productId parameter and displays the inventory for that product.

Setting Parameter Values Using a Command Component
In order to determine complex ADF application functionality, you may need to set
parameters to an action on a page. A managed bean can be used to successfully pass
the parameter and a method on the bean checks the parameter.

There may be cases where an action on one page needs to set parameters that will
be used to determine application functionality. For example, you can create a search
button on one page that will navigate to a results table on another page. But the
results table will display only if a parameter value is false.

You can use a managed bean to pass this parameter between the pages, and to
contain the method that is used to check the value of this parameter. The managed
bean is instantiated as the search page is rendered, and a method on the bean checks
that parameter. If it is null (which it will be the first time the page is rendered), the
bean sets the value to true.

For more information about creating custom methods, see Customizing an Application
Module with Service Methods, and Publishing Custom Service Methods to UI Clients.

Chapter 33
Setting Parameter Values Using a Command Component

33-6

Note:

If you are using task flows, you can use the task flow parameter passing
mechanism. See Using Parameters in Task Flows.

A setPropertyListener component with type property set to action, which is nested
in the command button that executed this search, is then used to set this flag to
false, thus causing the results table to display once the search is executed. For
information about using managed beans, see Using a Managed Bean in a Fusion Web
Application.

How to Set Parameters Using setPropertyListener Within a Command
Component

You can use the setPropertyListener component to set values on other objects. This
component must be a child of a command component.

Before you begin:

It may be helpful to have an understanding of how setPropertyListener and
managed bean can be used to set a value. For more information, see Setting
Parameter Values Using a Command Component.

You may also find it helpful to understand functionality that can be added using
other command components. For more information, see Additional Functionality for
Command Components.

You will need to complete this task:

• Create an application module that contains instances of the view objects and any
custom methods that you want in your data model, as described in Creating and
Modifying an Application Module. Alternatively, if you are using another type of
business service, create a data control for that business service as described in
Exposing Business Services with Data Controls in Developing Applications with
Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To use the setPropertyListener component:

1. In the Applications window, double-click the web page that contains the command
component to which you want to add the listener.

2. In the design editor for the page, right-click the command component and choose
Insert Inside Button > ADF Faces.

3. In the Insert ADF Faces Item dialog, select Set Property Listener and click OK.

4. In the Insert Set Property Listener dialog, enter the parameter value in the From
field.

You can bring up an expression builder for this field by hovering to the right of the
field, clicking the icon that appears, and choosing Expression Builder.

5. Enter the parameter target in the To field.

Chapter 33
Setting Parameter Values Using a Command Component

33-7

You can bring up an expression builder for this field by hovering to the right of the
field, clicking the icon that appears, and choosing Expression Builder.

Tip:

Consider storing the parameter value on a managed bean or in scope
instead of setting it directly on the resulting page's page definition file. By
setting it directly on the next page, you lose the ability to easily change
navigation in the future. For more information, see Using a Managed
Bean in a Fusion Web Application. Additionally, the data in a binding
container is valid only during the request in which the container was
prepared. The data may change between the time you set it and the time
the next page is rendered.

6. From the Type dropdown menu, select Action.

7. Click OK.

What Happens When You Set Parameters Using a
setPropertyListener

The setPropertyListener component lets the command component set a value
before it navigates to the next page. When you set the from attribute either to the
source of the value you need to pass or to the actual value, the component will be
able to access that value. When you set the to attribute to a target, the command
component is able to set the value on the target. The following example shows the
code on the JSF page for a command component that takes the value false and sets
it as the value of the initialSearch flag on the searchResults managed bean.

<af:button actionListener="#{bindings.Execute.execute}"
 text=Search>
 <af:setPropertyListener from="#{false}"
 to="#{searchResults.initialSearch}"/>
 type="action"/>
</af:button>

What Happens at Runtime: setPropertyListener for a Command
Component

When a user clicks the command component, before navigation occurs, the
setPropertyListener component sets the parameter value. As the example in
What Happens When You Set Parameters Using a setPropertyListener illustrates,
the setPropertyListener takes the value false and sets it as the value for the
initialSearch attribute on the searchResults managed bean. Now, any component
that needs to know this value in determining whether or not to render can access it
using the EL expression #{searchResults.initialSearch}.

Overriding Declarative Methods
You can override the functionality of an existing declarative method to define a
behavior that is specific to the method requirement. In order to add logic after or before

Chapter 33
Overriding Declarative Methods

33-8

the declarative method , you will need a new method and property on a managed bean
that provides access to the associated action binding.

When you drop an operation or method as a command button, JDeveloper binds the
button to the execute method for the operation or method. However, there may be
occasions when you need to add logic before or after the existing logic.

Note:

If you are using task flows, you can call custom methods from the task flow.
For more information, see Getting Started with ADF Task Flows.

JDeveloper allows you to add logic to a declarative operation by creating a new
method and property on a managed bean that provides access to the binding
container. By default, this generated code executes the operation or method. You
can then add logic before or after this code. JDeveloper automatically binds the
command component to this new method, instead of to the execute property on the
original operation or method. Now when the user clicks the button, the new method is
executed.

For example, in the Customers.jsff fragment of the Summit ADF task flow sample
application, you can click the New icon to create a new order. However, the declarative
CreateInsert operation requires additional processing. When the button is clicked, a
new tab needs to be displayed showing the order details. To provide this processing,
logic is added to the createNewOrder method in the CustomersBackingBean managed
bean.

In order to override a declarative method, you must have a managed bean to hold
the new method to which the command component will be bound. If your page has
a backing bean associated with it, JDeveloper adds the code needed to access the
binding object to this backing bean. If your page does not have a backing bean,
JDeveloper asks you to create one.

How to Override a Declarative Method
You can add a command component and override its declarative methods using a
managed bean.

Before you begin:

It may be helpful to have an understanding of how to override declarative methods.
For more information, see Overriding Declarative Methods.

You may also find it helpful to understand functionality that can be added using
other command components. For more information, see Additional Functionality for
Command Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects and any
custom methods that you want in your data model, as described in Creating and
Modifying an Application Module. Alternatively, if you are using another type of
business service, create a data control for that business service as described in

Chapter 33
Overriding Declarative Methods

33-9

Exposing Business Services with Data Controls in Developing Applications with
Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

Note:

You cannot override the declarative method if the command component
currently has an EL expression as its value for the Action attribute, because
JDeveloper will not overwrite an EL expression. You must remove this value
before continuing.

To override a declarative method:

1. Drag the operation or method to be overridden onto the JSF page and drop it as a
UI command component.

The component is created and bound to the associated binding object in the ADF
Model layer with the ActionListener attribute.

For more information about creating command components using methods on the
Data Controls panel, see Creating Command Components to Execute Methods.

For more information about creating command components from operations, see
What Happens When You Create Command Components Using Operations.

2. On the JSF page, double-click the component.

3. In the Bind Action Property dialog, identify the backing bean and the method to
which you want to bind the component, using one of the following techniques:

• If auto-binding has been enabled on the page (by selecting the Automatically
Expose UI Components in a New Managed Bean option that is available on
the Managed Bean tab of the Create JSF Page wizard), the backing bean is
already selected for you.

– To create a new method, enter a name for the method in the Method field,
which initially displays a default name.

or

– To use an existing method, select a method from the dropdown list in the
Method field.

– Select Use ADF Binding for Generation.

• If the page is not using auto-binding, you can select from an existing backing
bean or create a new one.

– Click New to create a new backing bean. In the Create Managed Bean
dialog, name the bean and the class, and set the bean's scope.

or

– Select an existing backing bean and method from the dropdown lists.

Figure 33-2 shows the Bind Action Property dialog with a method from a
managed bean specified for the method binding.

Chapter 33
Overriding Declarative Methods

33-10

Figure 33-2 Bind Action Property Dialog

Note:

Whenever there is a value for the ActionListener attribute on the
command component, JDeveloper understands that the button is bound
to the execute property of a binding. If you have removed that binding,
you will not be given the choice to generate the ADF binding code. You
will need to insert the code manually, or to set a dummy value for the
ActionListener before double-clicking the command component.

4. After identifying the backing bean and method, click OK in the Bind Action
Property dialog

The managed bean opens in the source editor. The following example shows the
code inserted into the bean in the Summit ADF task flow sample application. In
this example, a command button is bound to the CreateInsert operation.

public void createNewOrder() {
 BindingContainer bindings = getBindings();
 OperationBinding operationBinding =
 bindings.getOperationBinding("CreateInsert");
 Object result = operationBinding.execute();
 if (!operationBinding.getErrors().isEmpty()) {
 return null;
 }
}

5. You can now add logic either before or after the binding object is accessed, as
shown by the code in bold in the following example.

public void createNewOrder() {
//This method is called when creating a new order
//to create the record and switch the tab
 getSdi3().setDisclosed(false);
 getSdi4().setDisclosed(true);
 BindingContainer bindings = getBindings();
 OperationBinding operationBinding =
 bindings.getOperationBinding("CreateInsert");
 operationBinding.execute();
 AdfFacesContext adfFacesContext =
AdfFacesContext.getCurrentInstance();

Chapter 33
Overriding Declarative Methods

33-11

 adfFacesContext.addPartialTarget(getSdi4());
}

In addition to any processing logic, you may also want to write conditional logic
to return one of multiple outcomes. For example, you might want to return null
if there is an error in the processing, or another outcome value if the processing
was successful. A return value of null causes the navigation handler to forgo
evaluating navigation cases and to immediately redisplay the current page.

Tip:

To trigger a specific navigation case, the outcome value returned by the
method must exactly match the outcome value in the navigation rule,
including case.

The command button is now bound to this new method using the Action attribute
instead of the ActionListener attribute. If a value had previously existed for the
Action attribute (such as an outcome string), that value is added as the return for
the new method. If there was no value, the return is kept as null.

What Happens When You Override a Declarative Method
When you override a declarative method, JDeveloper adds a managed property to
your backing bean with the managed property value of #{bindings} (the reference
to the binding container), and it adds a strongly typed bean property to your class
of the BindingContainer type, which the JSF runtime will then set with the value
of the managed property expression #{bindings}. JDeveloper also adds logic to the
UI command action method. This logic includes the strongly typed getBindings()
method used to access the current binding container.

The code does the following:

• Accesses the binding container.

• Finds the binding for the associated method, and executes it.

• Adds a return for the method that can be used for navigation. By default, the
return is null. If an outcome string had previously existed for the button's Action
attribute, that attribute is used as the return value. You can change this code as
needed.

JDeveloper automatically rebinds the UI command component to the new method
using the Action attribute, instead of the ActionListener attribute. The following
example shows the code when a CreateInsert operation is declaratively added to a
page.

<af:button actionListener="#{bindings.CreateInsert.execute}"
 text="CreateInsert"
 disabled="#{!bindings.CreateInsert.enabled}"/>

The following example shows the code for the button tag after the method on the
page's backing bean is overridden. Note that the action attribute is now bound to the
backing bean's method.

Chapter 33
Overriding Declarative Methods

33-12

<af:button text="New"
 action="#{backingBeanScope.CustomersBackingBean.createNewOrder}"/>

Tip:

If when you click the button that uses the overridden method you receive this
error:

SEVERE: Managed bean main_bean could not be created The scope of
the referenced object: '#{bindings}' is shorter than the referring
object

it is because the managed bean that contains the overriding method has a
scope that is greater than request (that is, either session or application).
Because the data in the binding container referenced in the method has a
scope of request, the scope of this managed bean must be set to the same
or a lesser scope.

Chapter 33
Overriding Declarative Methods

33-13

34
Displaying Master-Detail Data

This chapter describes how to create master-detail objects with data modeled from
ADF Business Components, using ADF data controls and ADF Faces components. It
describes how to display master-detail data by using prebuilt master-detail widgets,
tables, trees and tree tables and how to work with selection events.
This chapter includes the following sections:

• About Displaying Master-Detail Data

• Prerequisites for Master-Detail Tables, Forms, and Trees

• Using Tables and Forms to Display Master-Detail Objects

• Using Trees to Display Master-Detail Objects

• Using Tree Tables to Display Master-Detail Objects

• Using List Views to Display Master-Detail Objects

• About Selection Events in Trees and Tree Tables

For information about using a selection list to populate a collection with a key value
from a related master or detail collection, see Creating Databound Selection Lists and
Shuttles .

About Displaying Master-Detail Data
A master-detail relationship is a one-to-many type relationship. Master-detail
relationships using Oracle ADF allows you to view data from related tables at the
same time.

There are many instances where data needs to be presented in a hierarchical manner.
In a master-detail relationship, when the user changes the selected item in the
master data object, the data set displayed in the detail data object changes with it. For
example, selecting the television categories in the master object would display all the
models of televisions in the detail object.

When using ADF Model in combination with ADF Faces UI components, you can
declaratively create master-detail pages that display the data from multiple objects
simultaneously when those objects have a master-detail relationship defined. ADF
iterator bindings automatically manage the synchronization of the detail data objects
displayed for a selected master data object.

In ADF Business Components, a master-detail relationship is established when a
view link is created to associate two view object instances. As described in About
View Objects, a view link represents the relationship between two view objects,
which is usually, but not necessarily, based on a foreign-key relationship between
the underlying data tables. The view link associates a row of one view object instance
(the master object) with one or more rows of another view object instance (the detail
object).

34-1

Master-Detail Tables, Forms, and Trees Use Cases and Examples
When objects have a master-detail relationship, you can declaratively create pages
that display the data from both objects simultaneously. For example, the page shown
in Figure 34-1 displays an entry for a customer in a form at the top of the page and
a table of the customer's orders at the bottom of the page. This is possible because
the objects have a master-detail relationship. In this example, the Customers view
object is the master object and OrdersForCustomer is the detail object. ADF iterators
automatically manage the synchronization of the detail data objects displayed for a
selected master data object. Iterator bindings simplify building user interfaces that
allow scrolling and paging through collections of data and drilling-down from summary
to detail information.

Figure 34-1 Master Form and Detail Table

You display master and detail objects in forms, tables, trees, and tree tables. You can
display these objects on the same page or on separate pages. For example, you can
display the master object in a table on one page and detail objects in a read-only form
on another page.

A master object can have many detail objects, and each detail object can in turn have
its own detail objects, down to many levels of depth. If one of the detail objects in this
hierarchy is dropped from the Applications window as a master-detail form on a page,
only its immediate parent master object displays on the page. The hierarchy will not
display all the way up to the topmost parent object.

If you display the detail object as a tree or tree table object, it is possible to display the
entire hierarchy with multiple levels of depth, starting with the topmost master object,
and traversing detail children objects at each node.

Chapter 34
About Displaying Master-Detail Data

34-2

Figure 34-1 shows an example of a master form with detail table. When the user
navigates through the customers using the command buttons, the table lists the orders
that the customer has made.

Figure 34-2 shows a tree that has two levels of nodes. You can use trees to display
hierarchical information. In this example, a tree is used to display customers grouped
by countries. The user can expand nodes to traverse down a branch of the tree to
access the leaf items.

Figure 34-2 Multi-level Tree

Figure 34-3 shows the same grouping of customers by country, but using a tree table
instead of a tree. In addition to the hierarchical node levels of a tree, a tree table can
also display column information for each node. You can also focus on subtrees as well
as collapsing and expanding the elements.

Figure 34-3 Tree Table

Additional Functionality for Master-Detail Tables, Forms, and Trees
You may find it helpful to understand other Oracle ADF features before you configure
or use the ADF Model layer. Additionally, you may want to read about what you can do
with your model layer configurations. Following are links to other functionality that may
be of interest.

• ADF view objects and view links: Much of how the components display and
function in the form is controlled by the corresponding view objects. For more
information about creating view objects and establishing a master-detail hierarchy

Chapter 34
About Displaying Master-Detail Data

34-3

in your data model with view links, see Working with Multiple Tables in a Master-
Detail Hierarchy.

• ADF application modules: The Data Controls panel, from which you drag
databound components to your pages, is populated with representations of view
objects that you have added to application modules. See Implementing Business
Services with Application Modules.

• Adapter-based data controls: If you are using other types of business services,
such as EJB components or web services, you can create data control for those
business services as described in Creating and Configuring EJB Data Controls of
the Developing Applications with Oracle ADF Data Controls.

• ADF Model and data binding: When you create forms in an ADF web application,
you use ADF Model and data binding. See Using ADF Model in a Fusion Web
Application.

• ADF Faces: You also use ADF Faces UI components. For detailed information
about developing with ADF Faces, see Introduction to ADF Faces in Developing
Web User Interfaces with Oracle ADF Faces.

• ADF forms and tables: If you want to modify the default forms or tables, see
Creating Basic Forms Using Data Control Collections or Creating a Basic Table.

• Task flows: If your form takes part in a transaction, then you may need to use an
ADF task flow to invoke certain operations before or after the form is rendered.
See Creating ADF Task Flows.

• Event handling: You may need to write listener methods to process client-side
events. See Handling Events in Developing Web User Interfaces with Oracle ADF
Faces.

• Managed beans: You may need to create managed beans for event handling
and other front-end processing. For information about creating and using managed
beans, see Using a Managed Bean in a Fusion Web Application.

Prerequisites for Master-Detail Tables, Forms, and Trees
A master-detail relationship relates two view object instances by a view link. A view
link represents the relationship between two view objects, which is usually, but not
necessarily, based on a foreign-key relationship between the underlying data tables,
forms, and trees.

Master-detail tables, forms, trees, and tree tables require a master-detail relationship
to be established in the data model. That master-detail relationship is then reflected in
the Data Controls panel, from where you can drag and drop objects to declaratively
create pages that display master-detail data.

In an ADF Business Components application, you indicate a master-detail relationship
by creating a view link between two view objects. Then you add the master view object
and the detail view object instances to the application module data model. For more
information, see How to Enable Active Master-Detail Coordination in the Data Model.

Chapter 34
Prerequisites for Master-Detail Tables, Forms, and Trees

34-4

Note:

For data controls based on other business services, such as web services
or EJB session beans, the master-detail relationship is typically inferred from
standard mechanisms within those services, such as definition files for web
services or JoinColumn annotations in JPA-based beans.

For example, in the Summit sample application for Oracle ADF, there is a view
link from the CustomerVO view object to the OrdVO view object based on the
CustomerId attribute, both contained in the application module data model, as shown
in Figure 34-4. A change in the current row of the master view object instance causes
the row set of the detail view object instance to refresh to include the details for the
current master.

Figure 34-4 View Link between CustomerVO and OrdVO View Objects

Note:

In the Summit ADF sample application, the view link between the
CustomerVO view object and OrdVO view object is a one-way relationship.
If the view link were bidirectional and both sets of master and detail view
objects were added to the application module data model, then the Data
Controls panel would also display the OrdersForCustomer collection at the
same node level as the Customers collection, and the detail instance of the
OrdersForCustomer collection as a child of the Customers collection.

Chapter 34
Prerequisites for Master-Detail Tables, Forms, and Trees

34-5

How to Identify Master-Detail Objects on the Data Controls Panel
You can identify master-detail objects by looking at the hierarchy in the Data Controls
panel.

Before you begin:

It may help to understand the basics of master-detail relationships. For more
information, see Prerequisites for Master-Detail Tables, Forms, and Trees.

You may also find it useful to understand additional functionality that can be used with
master-detail tables and trees. For more information, see Additional Functionality for
Master-Detail Tables, Forms, and Trees.

You will need to complete this task:

• Create an application module that contains instances of the view objects and
view links that establish the desired master-detail hierarchy, as described in
Creating and Modifying an Application Module. Alternatively, if you are using
another type of business service, create a data control for that business service
as described in Exposing Business Services with Data Controls in Developing
Applications with Oracle ADF Data Controls.

To identify master-detail objects:

• In the Applications window, open the Data Controls panel, expand any collection
nodes, and look for collection child nodes of those collections.

Any child collection node of a collection node represents the detail part of a master-
detail relationship with the parent node. A parent collection can be part of a master-
detail relationship with multiple child collections. And collections can be nested in
multiple layers, meaning that a collection can be the detail part of one master-detail
relationship and the master part of another master-detail relationship.

Figure 34-5 shows two master-detail related collections in the Data Controls panel of
the Summit ADF sample application. The Customers collection is an instance of the
CustomerVO view object, and the OrdersForCustomer collection, which appears as a
child of the Customers collection, is an instance of the OrdVO view object.

Note:

The master-detail hierarchy displayed in the Data Controls panel does not
reflect the cardinality of the relationship (that is, one-to-many, one-to-one,
many-to-many). The hierarchy simply shows which collection (the master) is
being use to retrieve one or more objects from another collection (the detail).

Chapter 34
Prerequisites for Master-Detail Tables, Forms, and Trees

34-6

Figure 34-5 Master-Detail Objects in the Data Controls Panel

The master-detail hierarchy on the Data Controls panel reflects the hierarchy defined
in the application module data model, as shown in Figure 34-4. For more information
about the icons displayed on the Data Controls panel, see How to Use the Data
Controls Panel.

Using Tables and Forms to Display Master-Detail Objects
The Data Controls panel enables you to create both the master and detail widgets on
one page with a single declarative action using prebuilt master-detail forms and tables.
If you do not want to use the prebuilt master-detail widgets, you can drag and drop
the master and detail objects individually from the Data Controls panel as tables and
forms.

You can create master-detail functionality on a page with form and table components.
You can do so either by creating individual form and table components or by using
pre-built widgets that encompass both the master and detail components.

The pre-built widgets enable you to create a read-only master-detail browse page in
a single declarative action using the Data Controls panel. All you have to do is drop
the detail collection on the page and choose the type of widget you want to use.
The generated components include range navigation that enables the end user to
scroll through the data objects in collections. You can delete unwanted attributes by
removing the text field or column from the page.

Figure 34-6 shows an example of prebuilt master-detail widget, which displays general
order information in a form at the top of the page and order details in a table at the
bottom of the page. When the user clicks the Next button to scroll through the records
in the master data at the top of the page, the page automatically updates to display the
detail data for the currently displayed master record.

Chapter 34
Using Tables and Forms to Display Master-Detail Objects

34-7

Figure 34-6 Prebuilt Data Controls Panel Master-Detail Widget

There are some cases when the pre-built master-detail UI components that
JDeveloper provides cannot provide the functionality you require. For example,
you may need to make a component editable or bind components programatically
instead of using the master-detail UI components. In these cases, you can create
master-detail pages by creating forms and tables separately. When components are
created from a collection and nested collection, the nested collection's iterator binding
manages coordination between the master and detail component automatically. See
How to Create Master-Detail Forms from Separate Components and How to Display
Master-Detail Components on Separate Pages.

Note:

You can also use the detailStamp facet of a master table to display
the detail for selected rows. See How to Create a Dynamic Table with a
detailStamp Facet for information on doing so with a dynamic component.

How to Display Master-Detail Objects in Tables and Forms Using
Master-Detail Widgets

The Data Controls panel enables you to create both the master and detail widgets on
one page with a single declarative action using prebuilt master-detail forms and tables.
These prebuilt master-detail widgets are read-only. For information about displaying

Chapter 34
Using Tables and Forms to Display Master-Detail Objects

34-8

master and detail data on separate pages, see How to Create Master-Detail Forms
from Separate Components. For information about displaying master and detail data
on separate pages, see How to Display Master-Detail Components on Separate
Pages.

Before you begin:

It may help to understand the options that are available to you when you create a
master-detail table and form. For more information, see Using Tables and Forms to
Display Master-Detail Objects.

You may also find it useful to understand additional functionality that can be used with
master-detail tables and trees. For more information, see Additional Functionality for
Master-Detail Tables, Forms, and Trees.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects and view
links that establish the desired master-detail hierarchy, as described in Creating
and Modifying an Application Module. Alternatively, if you are using another type
of business service, create a data control for that business service as described
in Exposing Business Services with Data Controls in Developing Applications with
Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To create a master-detail page using the prebuilt ADF master-detail forms and tables:

1. From the Data Controls panel, locate the detail object, as described in How to
Identify Master-Detail Objects on the Data Controls Panel.

2. Drag and drop the detail object onto the JSF page.

3. From the Master-Detail submenu of the context menu, choose one of the
following components:

• ADF Master Table, Detail Form: Displays the master objects in a read-only
table and the detail objects in a read-only form under the table.

When a specific data object is selected in the master table, the first related
detail data object is displayed in the form below it. The user must use the form
navigation to scroll through each subsequent detail data object.

• ADF Master Form, Detail Table: Displays the master objects in a read-only
form and the detail objects in a read-only table under the form.

When a specific master data object is displayed in the form, the related detail
data objects are displayed in a table below it.

• ADF Master Form, Detail Form: Displays the master and detail objects in
separate read-only forms.

When a specific master data object is displayed in the top form, the first
related detail data object is displayed in the form below it. The user must use
the form navigation to scroll through each subsequent detail data object.

• ADF Master Table, Detail Table: Displays the master and detail objects in
separate read-only tables.

When a specific master data object is selected in the top table, the first set of
related detail data objects is displayed in the table below it.

Chapter 34
Using Tables and Forms to Display Master-Detail Objects

34-9

If you want to modify the default forms or tables, see Modifying the UI
Components and Bindings on a Form and Modifying the Attributes Displayed in
the Table.

How to Create Master-Detail Forms from Separate Components
Instead of using the pre-built master-detail widgets to create master-detail forms, you
can create table and form components separately from data control objects that have
a master-detail relationship and take advantage of the detail object's iterator bindings
to provide the master-detail coordination. Creating master-detail forms from separate
components enables you more flexibility in how the components and their bindings are
generated.

Before you begin:

It may help to understand the options that are available to you when you create a
master-detail table and form. For more information, see Using Tables and Forms to
Display Master-Detail Objects.

You may also find it useful to understand additional functionality that can be used with
master-detail tables and trees. For more information, see Additional Functionality for
Master-Detail Tables, Forms, and Trees.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects and view
links that establish the desired master-detail hierarchy, as described in How to
Create a Master-Detail Hierarchy Based on View Objects Alone. Alternatively, if
you are using another type of business service, create a data control for that
business service as described in Exposing Business Services with Data Controls
in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To create a master-detail form with individual components:

1. Create the detail widget by dragging a child collection from the Data Controls
panel and dropping it as a table or a form on the JSF page or fragment that
corresponds to the detail view activity. For more information, see How to Identify
Master-Detail Objects on the Data Controls Panel.

For more information on creation of the individual components, see Creating Basic
Forms Using Data Control Collections and Creating a Basic Table.

2. Create the master widget by dragging the collection that is the parent of the
collection in step 1 and dropping it as a table or a form on the JSF page or
fragment that corresponds to the master view activity.

What Happens When You Create Master-Detail Tables and Forms
When you drag and drop a collection from the Data Controls panel, JDeveloper does
many things for you, including adding code to the JSF page and the corresponding
entries in the page definition file. For a general description of what happens and what
is created when you use the Data Controls panel, see What Happens When You Use
the Data Controls Panel.

Chapter 34
Using Tables and Forms to Display Master-Detail Objects

34-10

Code Generated in a Master-Detail JSF Page
The JSF code generated for a prebuilt master-detail widget is similar to the JSF code
generated when you use the Data Controls panel to create a read-only form or table. If
you are building your own master-detail widgets, you might want to consider including
similar components that are automatically included in the prebuilt master-detail tables
and forms.

The tables and forms in the prebuilt master-detail widgets include a panelHeader tag
that contains the name of the data control populating the master form or table. You
can change this label as needed using a string or an EL expression that binds to a
resource bundle.

If there is more than one object in a collection, a form in a prebuilt master-detail
widget includes four button tags for range navigation: First, Previous, Next, and
Last. These range navigation buttons enable the user to scroll through the objects
in the collection. The actionListener attribute of each button is bound to a data
control operation, which performs the navigation. The execute property used in the
actionListener binding, invokes the operation when the button is clicked. (If the
form displays a single object, JDeveloper automatically omits the range navigation
components.) For more information about range navigation, see Incorporating Range
Navigation into Forms.

Tip:

If you drop an ADF Master Table, Detail Form or ADF Master Table,
Detail Table widget on the page, the parent tag of the detail component
(for example, panelHeader tag or table tag) automatically has the
partialTriggers attribute set to the id of the master component (see How
to Create an Input Table for more information about partial triggers). At
runtime, the partialTriggers attribute causes only the detail component
to be rerendered when the user makes a selection in the master component,
which is called partial page rendering. Partial page rendering is used
because only the detail component needs to be rerendered to display the
new data. The table does not need to be rerendered when the user simply
makes a selection in the facet.

Binding Objects Defined in a Master-Detail Page Definition File
The following example shows the page definition file created for a master-detail page
that was created by dropping the OrdersFromCustomer collection, which is a detail
object under the Customers object, on the page as an ADF Master Form, Detail
Table.

The executables element defines two iterators: one for the master object and one
for the detail object. At runtime, the data model and the row set iterator for the
detail view object instance keep the row set of the detail view object refreshed to the
correct set of rows for the current master row as that current row changes. For more
information, see What Happens at Runtime: ADF Iterator for Master-Detail Tables and
Forms.

Chapter 34
Using Tables and Forms to Display Master-Detail Objects

34-11

The bindings element defines the value bindings for the form and the table.
The attribute bindings that populate the text fields in the form are defined in the
attributeValues elements. The id attribute of the attributeValues element contains
the name of each data attribute, and the IterBinding attribute references an iterator
binding to display data from the master object in the text fields.

The range navigation buttons in the form are bound to the action bindings defined
in the action elements. As in the attribute bindings, the IterBinding attribute of the
action binding references the iterator binding for the master object.

The table, which displays the detail data, is bound to the table binding object defined
in the table element. The IterBinding attribute references the iterator binding for the
detail object.

For more information about the elements and attributes of the page definition file, see
pageNamePageDef.xml.

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="Customers" RangeSize="25"
DataControl="BackOfficeAppModuleDataControl" id="CustomersIterator"
 ChangeEventPolicy="ppr"/>
 <iterator Binds="OrdersForCustomer" RangeSize="25"
DataControl="BackOfficeAppModuleDataControl"
 id="OrdersForCustomerIterator" ChangeEventPolicy="ppr"/>
</executables>
<bindings>
 <action IterBinding="CustomersIterator" id="First" RequiresUpdateModel="true"
Action="first"/>
 <action IterBinding="CustomersIterator" id="Previous"
RequiresUpdateModel="true" Action="previous"/>
 <action IterBinding="CustomersIterator" id="Next" RequiresUpdateModel="true"
Action="next"/>
 <action IterBinding="CustomersIterator" id="Last" RequiresUpdateModel="true"
Action="last"/>
 <attributeValues IterBinding="CustomersIterator" id="Id">
 <AttrNames>
 <Item Value="Id"/>
 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="CustomersIterator" id="Name">
 <AttrNames>
 <Item Value="Name"/>
 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="CustomersIterator" id="Phone">
 <AttrNames>
 <Item Value="Phone"/>
 </AttrNames>
 </attributeValues>
. . .
 <tree IterBinding="OrdersForCustomerIterator" id="OrdersForCustomer">
 <nodeDefinition DefName="oracle.summit.model.views.OrdVO"
 Name="OrdersForCustomer0">
 <AttrNames>
 <Item Value="Id"/>
 <Item Value="CustomerId"/>
 <Item Value="DateOrdered"/>
...
 </AttrNames>
 </nodeDefinition>

Chapter 34
Using Tables and Forms to Display Master-Detail Objects

34-12

 </tree>
</bindings>

Note:

For data controls that are based on other types of business services, such
as EJB session beans, accessorIterator elements are used instead of
iterator elements to handle the iterator binding.

What Happens at Runtime: ADF Iterator for Master-Detail Tables and
Forms

At runtime, an ADF iterator determines which row from the master table object to
display in the master-detail form. When the form first displays, the first master table
object row appears highlighted in the master section of the form. Detail table rows that
are associated with the master row display in the detail section of the form.

As described in Binding Objects Defined in a Master-Detail Page Definition File,
ADF iterators are associated with underlying rowsetIterator objects. These iterators
manage which data objects, or rows, currently display on a page. At runtime, the row
set iterators manage the data displayed in the master and detail components.

Both the master and detail row set iterators listen to row set navigation events, such as
the user clicking the range navigation buttons, and display the appropriate row in the
UI. In the case of the default master-detail components, the row set navigation events
are the command buttons on a form (First, Previous, Next, Last).

The row set iterator for the detail collection manages the synchronization of the detail
data with the master data. Because of the underlying view link from the master view
object to the detail view object, the detail row set iterator listens for row navigation
events in both the master and detail collections. If a row set navigation event occurs in
the master collection, the detail row set iterator automatically executes and returns the
detail rows related to the current master row.

How to Display Master-Detail Components on Separate Pages
The default master-detail components display the master-detail data on a single page.
However, using the master and detail objects on the Data Controls panel, you can
also display the collections on separate pages (or on separate fragments on the same
page), and still have the binding iterators manage the synchronization of the master
and detail objects.

Before you begin:

It may help to understand the options that are available to you when you create a
master-detail table and form. For more information, see Using Tables and Forms to
Display Master-Detail Objects.

You may also find it useful to understand additional functionality that can be used with
master-detail tables and trees. For more information, see Additional Functionality for
Master-Detail Tables, Forms, and Trees.

You will need to complete this task:

Chapter 34
Using Tables and Forms to Display Master-Detail Objects

34-13

• Create an application module that contains instances of the view objects and view
links that establish the desired master-detail hierarchy, as described in How to
Create a Master-Detail Hierarchy Based on View Objects Alone. Alternatively, if
you are using another type of business service, create a data control for that
business service as described in Exposing Business Services with Data Controls
in Developing Applications with Oracle ADF Data Controls.

To create master and detail objects on separate pages:

1. Create an ADF task flow as described in How to Create a Task Flow.

If you plan to use page fragments to hold the master and detail components,
select the Create with Page Fragments checkbox in this step.

2. Add two view activities to the task flow, one for the master view and one for the
detail view, as described in How to Add an Activity to a Task Flow.

3. In the task flow definition file, add a control flow case from the master view to the
detail view, and a control flow case to return from the detail view to the master
view. For more information, see How to Add a Control Flow Rule to a Task Flow.

4. Create two JSF pages or two JSF fragments to hold the master and detail
components.

You can create a page or fragment for a view activity by clicking on the view
activity in the overview editor for task flow.

If you already have pages or fragments that you want to map to the view activities,
you can do so by selecting the view activity in the overview editor for the task flow,
navigating to the Properties window, and specifying the JSF page or fragment in
the Page property.

5. Create the detail component by dragging a child collection from the Data Controls
panel and dropping it as a table or a form on the JSF page or fragment that
corresponds to the detail view activity. For more information, see How to Identify
Master-Detail Objects on the Data Controls Panel.

For more information on creating forms and tables, see Creating Basic Forms
Using Data Control Collections and Creating a Basic Table.

6. Create the master component by dragging the collection that is the parent of the
collection in step 5 and dropping it as a table or a form on the JSF page or
fragment that corresponds to the master view activity.

7. Add command buttons or links to each page.

8. In the action attribute of each button, specify the control flow case that is used to
navigate to the other page. You can get this value from the from-outcome property
of the corresponding control flow case.

For example, in the Summit ADF sample application, the Customers.jsff fragment
contains a table created from the OrdersFromCustomer collection. That table serves
as both a detail view of customer orders and a master view for the Order Items
table that is created from the ItemsFromOrder collection and is located in Orders.jsff
(and appears on the Order tab). Figure 34-7 shows the Orders table as a detail
view for a customer, and Figure 34-8 shows the order that is selected in that table
and displays that order's detail. Though the OrdersFromCustomer collection is used
in both the Customers.jsff and Orders.jsff fragments, it does not have to be
used in both places to maintain master-detail coordination. The iterator binding for
the ItemsFromOrder maintains the master -detail coordination, even across the page
fragments.

Chapter 34
Using Tables and Forms to Display Master-Detail Objects

34-14

Figure 34-7 Master View on One Page Fragment

Figure 34-8 Detail View on a Separate Page Fragment

Using Trees to Display Master-Detail Objects
The ADF Faces tree component can be used to display model-driven master-detail
data relationships in a hierarchical manner. In this case, the parent node of the tree
indicates the master object, while the child nodes of the tree are detail objects.

In addition to tables and forms, you can also display master-detail data in hierarchical
trees. The ADF Faces tree component is used to display hierarchical data. It can
display multiple root nodes that are populated by a binding on a master object. Each
root node in the tree may have any number of branches, which are populated by
bindings on detail objects. A tree can have multiple levels of nodes, each representing

Chapter 34
Using Trees to Display Master-Detail Objects

34-15

a detail object of the parent node. Each node in the tree is indented to show its level in
the hierarchy.

The tree component includes mechanisms for expanding and collapsing the tree
nodes; however, it does not have focusing capability. If you need to use focusing,
consider using the ADF Faces treeTable component (for more information, see Using
Tree Tables to Display Master-Detail Objects). By default, the icon for each node in the
tree is a folder; however, you can use your own icons for each level of nodes in the
hierarchy.

Figure 34-9 shows an example of a tree located in the Customers.jsff fragment of
the Summit ADF sample application. The tree displays two levels of nodes: root and
branch. The root nodes display countries. The branch nodes display customers.

Figure 34-9 Databound ADF Faces Tree

How to Display Master-Detail Objects in Trees
A tree consists of a hierarchy of nodes, where each subnode is a branch off a higher
level node. Each node level in a databound ADF Faces tree component is populated
by a different data collection. In JDeveloper, you define a databound tree using the
Edit Tree Binding dialog, which enables you to define the rules for populating each
node level in the tree. There must be one rule for each node level in the hierarchy.
Each rule defines the following node-level properties:

• The data collection that populates that node level

• The attributes from the data collection that are displayed at that node level

To enable creation of the Customers tree in the Summit ADF sample application as
shown in Figure 34-9, a view object, CountryVO was first created to return a list of
countries. Another view object, CustomerVO was then created to return customers.
And a view link was created from CountryVO to CustomerVO in order to establish a
master-detail relationship.

In this case, it is also possible to add a third-level and fourth-level nodes, since
CustomerVO has a view link to the view object OrdVO, and OrdVO has a view link to
ItemVO.

In the case where a branch of the tree is recursive, a single view object accompanied
by a self-referential view link must be defined in the data model project. For example,
take a collection defined by EmployeesView, where the root node of each branch is
specified by the ManagerId attribute and the child nodes of the same branch are the
employees (also known as "direct reports") who are related to the ManagerId. The

Chapter 34
Using Trees to Display Master-Detail Objects

34-16

source and destination view object named by the self-referential view link are both
defined as EmployeesView, but the destination can be renamed to DirectReports for
clarify. For more information about creating self-referential view links, see How to
Create a Recursive Master-Detail Hierarchy for an Entity-Based View Object.

Note:

When your business services are based on ADF Business Components, you
can programmatically access a master view object's view link accessor
attribute to return a detail object to be displayed as a branch of the current
node level. For information about view link accessors, see How to Access
the Detail Collection Using the View Link Accessor.

Before you begin:

It may help to understand the options that are available to you when you create
a master-detail table and form. For more information, see Using Trees to Display
Master-Detail Objects.

You may also find it useful to understand additional functionality that can be used with
master-detail tables and trees. For more information, see Additional Functionality for
Master-Detail Tables, Forms, and Trees.

You will need to complete these tasks:

• Create the master-detail view objects and view links in the data model project,
optimize the performance of row set access for tree components, and add the
master view object (and optionally the detail view object) to the application
module. For details about setting the optimization flag Retain Row Set, see
Optimizing View Link Accessor Access to Display Master-Detail Data. For
information on creating the master-detail hierarchy and adding it to the application
module, see How to Create a Master-Detail Hierarchy Based on View Objects
Alone.

Alternatively, if you are using another type of business service, create a data
control for that business service as described in Exposing Business Services with
Data Controls in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To display master-detail objects in a tree:

1. Drag the master object from the Data Controls panel, and drop it onto the page.
This should be the master data that will represent the root level of the tree.

2. From the context menu, choose Tree > ADF Tree.

JDeveloper displays the Edit Tree Binding dialog, as shown in Figure 34-10. You
use the binding editor to define a rule for each level that you want to appear in the
tree.

When the dialog first appears, the collection that you dragged is displayed in the
Root Data Source dropdown list and the corresponding view object is displayed in
the Tree Level Rules list. This will represent the master data collection.

Chapter 34
Using Trees to Display Master-Detail Objects

34-17

Tip:

If you don't see the data collection you want in the Root Data Source
list, click the Add button. In the Add Data Source dialog, select a data
control and an iterator name to create a new data source. Then click the
Add Rule icon and select Add Rule to add the master rule.

Figure 34-10 Edit Tree Binding Dialog

3. Click the Add Rule icon and then select a detail collection to add to the Tree
Level Rules list.

A detail data source should appear under the master data source, as shown in
Figure 34-11.

Chapter 34
Using Trees to Display Master-Detail Objects

34-18

Figure 34-11 Master-Detail Tree Level Rules

If you are creating a tree with a recursive master-detail hierarchy, then you only
need to define a rule that specifies a data source with a self accessor. A recursive
tree displays root nodes based on a single collection and displays the child nodes
from the attributes of a self accessor that recursively fetches data from that
collection. The recursive tree differs from a typical master-detail tree because it
requires only a single rule to define the branches of the tree. A recursive data
source should display the data source followed by the name of the self accessor in
brackets, as shown in Figure 34-12.

Repeat this step for any additional nodes (or further levels of hierarchy) that you
want to add to the tree.

Figure 34-12 Recursive Tree Level Rule

4. In the Tree Level Rules list, select one of the rules.

5. In the bottom part of the dialog, set the attribute or attributes that you want to
be used for the node's display by shuttling those attributes to the to the Display
Attributes list.

6. Repeat steps 4 and 5 for each of the rest of the rules.

7. Click OK.

What Happens When You Create an ADF Databound Tree
When you drag and drop from the Data Controls panel, JDeveloper does many things
for you. For a general description of what happens and what is created when you use
the Data Controls panel, see How to Use the Data Controls Panel.

When you create a databound tree using the Data Controls panel, JDeveloper adds
binding objects to the page definition file, and it also adds the tree tag to the JSF
Page. The resulting UI component is fully functional and does not require any further
modification.

Code Generated in the JSF Page
The following example shows the code generated in a JSF page when you use the
Data Controls panel to create a tree. This sample tree displays two levels of nodes:

Chapter 34
Using Trees to Display Master-Detail Objects

34-19

countries and customers. The Countries collection was used to populate the root
node.

<af:tree value="#{bindings.Countries.treeModel}"
 var="node"
 selectionListener="#{bindings.Countries.treeModel.makeCurrent}"
 rowSelection="single" id="t1"
 <f:facet name="nodeStamp">
 <af:outputText value="#{node}" id="ot1"/>
 </f:facet>
</af:tree>

By default, the af:tree tag is created inside a form. The value attribute of the tree
tag contains an EL expression that binds the tree component to the Countries
tree binding object in the page definition file. The treeModel property in the binding
expression refers to an ADF class that defines how the tree hierarchy is displayed,
based on the underlying data model. The var attribute provides access to the current
node.

In the f:facet tag, the nodeStamp facet is used to display the data for each node.
Instead of having a component for each node, the tree repeatedly renders the
nodeStamp facet, similar to the way rows are rendered for the ADF Faces table
component.

The ADF Faces tree component uses an instance of the
oracle.adf.view.faces.model.PathSet class to display expanded nodes. This
instance is stored as the treeState attribute on the component. You may use this
instance to programmatically control the expanded or collapsed state of an element in
the hierarchy. Any element contained by the PathSet instance is deemed expanded.
All other elements are collapsed. For more information, see What You May Need to
Know About Programmatically Expanding and Collapsing Nodes in Developing Web
User Interfaces with Oracle ADF Faces.

Binding Objects Defined in the Page Definition File
The following example shows the binding objects defined in the page definition file that
pertain to the Countries ADF databound tree in the Summit ADF sample application.

<executables>
...
 <iterator Binds="Countries" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="CountriesIterator"/>
</executables>
<bindings>
...
 <tree IterBinding="CountriesIterator" id="Countries">
 <nodeDefinition DefName="oracle.summit.model.views.CountryVO"
 Name="Countries0">
 <AttrNames>
 <Item Value="Country"/>
 </AttrNames>
 <Accessors>
 <Item Value="CustomerVO"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition DefName="oracle.summit.model.views.CustomerVO"
 Name="Countries1"

Chapter 34
Using Trees to Display Master-Detail Objects

34-20

 TargetIterator="${bindings.CustomersIterator}">
 <AttrNames>
 <Item Value="Id"/>
 <Item Value="Name"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

The page definition file contains the rule information defined in the Tree Binding
Editor. In the executables element, notice that although the tree displays two levels of
nodes, only one iterator binding object is needed. This iterator iterates over the master
collection, which populates the root nodes of the tree. The accessor you specified in
the node rules returns the detail data for each branch node.

The tree element is the value binding for all the attributes displayed in the tree.
The iterBinding attribute of the tree element references the iterator binding that
populates the data in the tree. The AttrNames element within the tree element defines
binding objects for all the attributes in the master collection. However, the attributes
that you select to appear in the tree are defined in the AttrNames elements within the
nodeDefinition elements.

The nodeDefinition elements define the rules for populating the nodes of the tree.
There is one nodeDefinition element for each node, and each one contains the
following attributes and subelements:

• DefName: An attribute that contains the fully qualified name of the data collection
that will be used to populate the node.

• id: An attribute that defines the name of the node.

• AttrNames: A subelement that defines the attributes that will be displayed in the
node at runtime.

• Accessors: A subelement that defines the accessor attribute that returns the next
branch of the tree.

The order of the nodeDefintion elements within the page definition file defines the
order or level of the nodes in the tree, where the first nodeDefinition element defines
the root node. Each subsequent nodeDefinition element defines a subnode of the
one before it.

For more information about the elements and attributes of the page definition file, see
pageNamePageDef.xml.

What Happens at Runtime: How an ADF Databound Tree Is Displayed
Tree components use org.apache.myfaces.trinidad.model.TreeModel to access
data. This class extends CollectionModel, which is used by the ADF Faces table
component to access data. For more information about the TreeModel class, refer to
the ADF Faces Javadoc.

When a page with a tree is displayed, the iterator binding on the tree populates the
root nodes. When a user collapses or expands a node to display or hide its branches,
a DisclosureEvent event is sent. The isExpanded method on this event determines
whether the user is expanding or collapsing the node. The DisclosureEvent event has
an associated listener.

Chapter 34
Using Trees to Display Master-Detail Objects

34-21

The DisclosureListener attribute on the tree is bound to the accessor attribute
specified in the node rule defined in the page definition file. This accessor attribute is
invoked in response to the DisclosureEvent event; in other words, whenever a user
expands the node the accessor attribute populates the branch nodes.

How to Synchronize Other Parts of a Page With a Tree Selection
In addition to synchronizing a detail view with a master view, you can synchronize
other parts of a page with a tree selection. For each node definition (rule), you can
specify an optional TargetIterator property and set it to an EL expression for an
iterator binding in the current binding container. The expression is evaluated at runtime
when the user selects a row in the tree. The iterator binding's view row key attributes
match (in order, number, and data type) the view row key of the iterator from which
the nodeDefinition type's rows are retrieved for the tree. At runtime, when the tree
control receives a selectionChanged event, it passes in the list of keys for each level
of the tree. These keys uniquely identify the selected node.

Note:

You can view a page's nodeDefinition elements by expanding a node
binding in the page definition editor. These are the same tree binding rules
that you can configure in the tree binding dialog.

The tree binding starts at the top of the tree. For each tree level whose
key is present in the Currently Selected Tree Node Keys list, if there is
a TargetIterator property configured for that nodeDefinition, the tree binding
performs a setCurrentRowWithKey() operation on the selected target iterator. It uses
the key from the appropriate level of the Currently Selected Tree Node Keys list.

For example, the Summit ADF sample application contains a tree that displays
countries at the top node and customers at the second level. When a user selects
a customer in the tree, a form displaying the customer information is displayed in
the Summit Customer Management panel of the page as shown in Figure 34-13.
This functionality consists of a tree that was created from the Countries data control
object, a form created from the Customers object, and a detail table created from the
OrdersFromCustomer object (which is nested under Customers in the Data Controls
panel).

Chapter 34
Using Trees to Display Master-Detail Objects

34-22

Figure 34-13 Form Synchronized with Tree Selection

Before you begin:

It may help to understand the options that are available to you when you create a tree.
For more information, see Using Trees to Display Master-Detail Objects.

You may also find it useful to understand additional functionality that can be used with
master-detail tables and trees. For more information, see Additional Functionality for
Master-Detail Tables, Forms, and Trees.

You will need to complete these tasks:

• Create the master-detail view objects and view links in the data model project,
optimize the performance of row set access for tree components, and add the
master view object (and optionally the detail view object) to the application
module. For details about setting the optimization flag Retain Row Set, see
Optimizing View Link Accessor Access to Display Master-Detail Data. For
information on creating the master-detail hierarchy and adding it to the application
module, see How to Create a Master-Detail Hierarchy Based on View Objects
Alone.

Alternatively, if you are using another type of business service, create a data
control for that business service as described in Exposing Business Services with
Data Controls in Developing Applications with Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To synchronize another part of the page with the tree selection:

1. From the Data Controls panel, drag the detail collection from which a record will be
displayed based on the user selection in a tree, and drop it as a form or another
databound component.

2. From the Data Controls panel, drag the parent collection of the detail collection
that you just dropped and choose Create > Tree > ADF Tree (or ADF Tree Table).

3. In the Edit Tree Binding dialog, configure tree binding rules for all of the levels of
the tree hierarchy as described in How to Display Master-Detail Objects in Trees,
and leave the dialog open.

Chapter 34
Using Trees to Display Master-Detail Objects

34-23

4. Select the detail tree-level rule that corresponds to the same collection that is used
in step 1.

5. Expand the Target Data Source node and click the EL Picker button.

6. In the Variables dialog, expand ADF Bindings, expand bindings, and select the
iterator binding for the component that you created in step 1.

The expression will display in the Expression text area. The expression should
look something like ${bindings.CustomersIterator}. This expression will then be
used to set the target iterator when a user clicks a detail node.

7. Click OK to exit the Variables dialog, and click OK to exit the Edit Tree Binding
dialog.

Using Tree Tables to Display Master-Detail Objects
The ADF Faces treeTable component is used to display master-detail data
relationships in a hierarchical format. This component displays a hierarchy in a UI
similar to a table, and is more elaborate than the tree component.

Use the ADF Faces treeTable component to display a hierarchy of master-detail
collections in a table. The advantage of using a treeTable component rather than a
tree component is that the treeTable component provides a mechanism that enables
users to focus the view on a particular node in the tree.

For example, you can create a tree table that displays levels of nodes for countries
and customers where each root node represents an individual country. The branches
off the root nodes display the customers for that country. As with trees, to create such
a tree table, it is necessary to have master-detail relationships between the collections
in the hierarchy.

A databound ADF Faces treeTable displays one root node at a time, but provides
navigation for scrolling through the different root nodes. Each root node can display
any number of branch nodes. Every node is displayed in a separate row of the table,
and each row provides a focusing mechanism in the leftmost column.

You can edit the following treeTable component properties in the Properties window:

• Range navigation: The user can click the Previous and Next navigation buttons to
scroll through the root nodes.

• List navigation: The list navigation, which is located between the Previous and
Next buttons, enables the user to navigate to a specific root node in the data
collection using a selection list.

• Node expanding and collapsing mechanism: The user can open or close each
node individually or use the Expand All or Collapse All command links. By
default, the icon for opening and closing the individual nodes is an arrowhead with
a plus or minus sign. You can also use a custom icon of your choosing.

• Focusing mechanism: When the user clicks on the focusing icon (which is
displayed in the leftmost column) next to a node, the page is redisplayed showing
only that node and its branches. A navigation link is provided to enable the user to
return to the parent node.

Chapter 34
Using Tree Tables to Display Master-Detail Objects

34-24

How to Display Master-Detail Objects in Tree Tables
The steps for creating an ADF Faces databound tree table are exactly the same
as those for creating an ADF Faces databound tree, except that you drop the data
collection as an ADF Tree Table instead of an ADF Tree. For more information, see
How to Display Master-Detail Objects in Trees.

What Happens When You Create a Databound Tree Table
When you drag and drop from the Data Controls panel, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Controls panel, see How to Use the Data Controls Panel.

When you create a databound tree table using the Data Controls panel, JDeveloper
adds binding objects to the page definition file, and it also adds the treeTable tag to
the JSF Page. The resulting UI component is fully functional and does not require any
further modification.

Code Generated in the JSF Page
The following example shows the code generated in a JSF page when you use the
Data Controls panel to create a tree table. This sample tree table displays two levels of
nodes: countries and customers.

By default, the treeTable tag is created inside a form. The value attribute of the
treeTable tag contains an EL expression that binds the tree component to the
binding object that will populate it with data. The treeModel property refers to an ADF
class that defines how the tree hierarchy is displayed, based on the underlying data
model. The var attribute provides access to the current node.

<af:treeTable value="#{bindings.Countries.treeModel}" var="node"
 selectionListener="#{bindings.Countries.treeModel.makeCurrent}"
 rowSelection="single"
 id="tt1">
 <f:facet name="nodeStamp">
 <af:column id="c1">
 <af:outputText value="#{node}" id="ot1"/>
 </af:column>
 </f:facet>
 <f:facet name="pathStamp">
 <af:outputText value="#{node}" id="ot2"/>
 </f:facet>
</af:treeTable>

The nodeStamp facet is used to display the data for each node. Instead of having a
component for each node, the tree repeatedly renders the nodeStamp facet, similar to
the way rows are rendered for the ADF Faces table component. The pathStamp facet
renders the column and the path links above the table that enable the user to return to
the parent node after focusing on a detail node.

Binding Objects Defined in the Page Definition File
The binding objects created in the page definition file for a tree table are exactly the
same as those created for a tree. For more information, see Binding Objects Defined
in the Page Definition File.

Chapter 34
Using Tree Tables to Display Master-Detail Objects

34-25

What Happens at Runtime: Events for Tree Tables
Tree components use oracle.adf.view.faces.model.TreeModel to access data. This
class extends CollectionModel, which is used by the ADF Faces table component to
access data. For more information about the TreeModel class, refer to the ADF Faces
Javadoc.

When a page with a tree table is displayed, the iterator binding on the treeTable
component populates the root node and listens for a row navigation event (such as
the user clicking the Next or Previous buttons or selecting a row from the range
navigator). When the user initiates a row navigation event, the iterator displays the
appropriate row.

If the user changes the view focus (by clicking on the component's focus icon), the
treeTable component generates a focus event (FocusEvent). The node to which the
user wants to change focus is made the current node before the event is delivered.
The treeTable component then modifies the focusPath property accordingly. You can
bind the FocusListener attribute on the tree to a method on a managed bean. This
method will then be invoked in response to the focus event.

When a user collapses or expands a node, a disclosure event (DisclosureEvent) is
sent. The isExpanded method on the disclosure event determines whether the user
is expanding or collapsing the node. The disclosure event has an associated listener,
DisclosureListener. The DisclosureListener attribute on the tree table is bound to
the accessor attribute specified in the node rule defined in the page definition file. This
accessor attribute is invoked in response to a disclosure event (for example, the user
expands a node) and returns the collection that populates that node.

The treeTable component includes Expand All and Collapse All links. When a
user clicks one of these links, the treeTable sends a DisclosureAllEvent event.
The isExpandAll method on this event determines whether the user is expanding
or collapsing all the nodes. The table then expands or collapses the nodes that are
children of the root node currently in focus. In large trees, the expand all command
will not expand nodes beyond the immediate children. The ADF Faces treeTable
component uses an instance of the oracle.adf.view.faces.model.PathSet class to
determine expanded nodes. This instance is stored as the treeState attribute on
the component. You can use this instance to programmatically control the expanded
or collapsed state of a node in the hierarchy. Any node contained by the PathSet
instance is deemed expanded. All other nodes are collapsed. This class also supports
operations like addAll() and removeAll().

For more information about the ADF Faces treeTable component, refer to the
oracle.adf.view.faces.component.core.data.CoreTreeTable class in the ADF
Faces Javadoc.

Using List Views to Display Master-Detail Objects
The ADF Faces listView component is used to display a list of items based on rows of
a master-detail collection model. The listView component uses a model to access the
data in the underlying list.

Use the ADF Faces listView component to display a hierarchy of master-detail
collections in a simple tree table. The attributes of each object are displayed in a
group or grid within a single row and single column.

Chapter 34
Using List Views to Display Master-Detail Objects

34-26

For example, as shown in Figure 34-14, you can create a listView that displays
orders and groups them by customer.

Figure 34-14 Master-Detail with the listView Component

For more information on using databound list views, see Creating a List View of a
Collection.

How to Display Master-Detail Objects in List Views
You use the Create List View wizard to create your list. This wizard allows you to
choose between a panelGroupLayout or a panelGridLayout component to arrange the
components for your list item.

Before you begin:

It may help to understand the options that are available to you when you create a
master-detail list view. For more information, see Using List Views to Display Master-
Detail Objects.

You may also find it useful to understand additional functionality that can be used with
master-detail tables and trees. For more information, see Additional Functionality for
Master-Detail Tables, Forms, and Trees.

You will need to complete these tasks:

Chapter 34
Using List Views to Display Master-Detail Objects

34-27

• Create an application module that contains instances of the view objects and view
links that establish the desired master-detail hierarchy, as described in Creating
and Modifying an Application Module. Alternatively, if you are using another type
of business service, create a data control for that business service as described
in Exposing Business Services with Data Controls in Developing Applications with
Oracle ADF Data Controls.

• Create a JSF page as described in Creating a Web Page.

To create a list view:

1. From the Data Controls panel, locate the detail object, as described in How to
Identify Master-Detail Objects on the Data Controls Panel.

2. From the Data Controls panel, drag the detail collection onto the page and choose
Table/List View > ADF List View.

3. On the first page of the create List View wizard, select a layout component and
select Include header using parent collection.

4. If you have selected the Panel Grid Layout option on the first page the wizard,
use the next two pages of the wizard to organize the size and arrangement of the
grid cells.

For more information about using these wizard pages, press the F1 key or click
Help.

5. On the List Item Data page, determine which fields to display for the detail data by
setting the bindings and setting the corresponding components to use for each.

6. In the same page, click the Group Header Data tab, and set the bindings and
components for the master data.

7. Click Finish.

8. Use the Properties window to further configure the layout components.

For complete information about using the panelGridLayout component, see the
Arranging Content in a Grid section of the Developing Web User Interfaces with
Oracle ADF Faces. For more information about the panelGroupLayout component,
see the Grouping Related Items section of the Developing Web User Interfaces
with Oracle ADF Faces.

What Happens When You Create a Master-Detail List View
When you use the wizard to create a listView component with group headers,
JDeveloper creates and configures the listView, listItem, and layout components.
The listView contains a listItem for the detail items and a facet for the group
header stamp, which in turn contains a listItem for the master items.

The bindings are the same as for a table—the listView component is bound to the
parent of the collection dropped from the Data Controls panel. The value of the var
attribute on this component is used by the outputFormatted components to access
the data, in the same way as a table. For more information about the page definition
code and the JSP code for collections, see What Happens When You Create a Table.

The following example shows the page code for the simple table shown in
Figure 34-14.

<af:form id="f1">
 <af:panelGridLayout id="pgl1">

Chapter 34
Using List Views to Display Master-Detail Objects

34-28

 <af:gridRow height="100%" id="gr1">
 <af:gridCell width="100%" halign="stretch" valign="stretch" id="gc1">
 <!-- Content -->
 <af:listView value="#{bindings.Customers.treeModel}" var="item"
 emptyText="#{bindings.Customers.viewable ? 'No data to
 display.' : 'Access Denied.'}"
 fetchSize="#{bindings.Customers.rangeSize}" id="lv1">
 <af:listItem id="li1">
 <af:panelGroupLayout layout="horizontal" id="pgl2">
 <f:facet name="separator">
 <af:spacer width="10" id="s1"/>
 </f:facet>
 <af:outputFormatted
 value="#{item.bindings.DateOrdered.inputValue}" id="of1">
 <af:convertDateTime
 pattern="#{bindings.Customers.hints.DateOrdered.format}"/>
 </af:outputFormatted>
 <af:outputFormatted value="#{item.bindings.Total.inputValue}"
 id="of2">
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.Customers.hints.Total.format}"/>
 </af:outputFormatted>
 </af:panelGroupLayout>
 </af:listItem>
 <f:facet name="groupHeaderStamp">
 <af:listItem id="li2" inlineStyle="font-size:medium;">
 <af:panelGroupLayout layout="horizontal" id="pgl3">
 <f:facet name="separator">
 <af:spacer width="10" id="s2"/>
 </f:facet>
 <af:outputFormatted value="#{item.bindings.Name.inputValue}"
 id="of3"/>
 </af:panelGroupLayout>
 </af:listItem>
 </f:facet>
 </af:listView>
 </af:gridCell>
 </af:gridRow>
 </af:panelGridLayout>
</af:form>

About Selection Events in Trees and Tree Tables
Selection Listener is fired when the server receives a selectionEvent from the client
which indicates that whenever you select a node in a tree or row in a table, the server
will process the event and executes the Selection Listener defined in a managed bean.

There may be cases when you need to determine which node in a tree or tree
table has been selected in order to handle some processing in your application. For
example, an application might require processing to determine the products that match
a product category node that is selected by the user.

Whenever a user selects a node in a tree (or a row in a table), the component triggers
selection events. A selectionEvent event reports which rows were just deselected
and which rows were just selected. The current selection, that is, the selected row or
rows, is managed by the RowKeySet object, which keeps track of all currently selected
nodes by adding and deleting the associated key for the row into or out of the key
set. When a user selects a new node, and the tree or table is configured for single
selection, then the previously selected key is discarded and the newly selected key is

Chapter 34
About Selection Events in Trees and Tree Tables

34-29

added. If the tree or table is configured for multiple selection, then the newly selected
keys are added to the set, and the previously selected keys may or may not be
discarded, based on how the nodes were selected. For example, if the user pressed
the CTRL key, then the newly selected nodes would be added to the current set.

For more information on selection events, see What You May Need to Know About
Performing an Action on Selected Rows in Tables in Developing Web User Interfaces
with Oracle ADF Faces.

Note:

In cases where you merely need to synchronize the row currency between
the selected node and other UI components on the page, you can do so
declaratively using the TargetIterator property for each node definition. For
more information, see How to Synchronize Other Parts of a Page With a
Tree Selection.

Selection changes in a tree or table will also trigger contextual events for
communicating between regions within a page. See Using Contextual Events.

Chapter 34
About Selection Events in Trees and Tree Tables

34-30

35
Creating Databound Selection Lists and
Shuttles

This chapter describes how to create lists and shuttle components from data
modeled with ADF Business Components, using ADF data binding and ADF Faces
components. It describes how to create the List of Value (LOV) components that utilize
a query to populate the selection list. It includes instructions for creating standard
selection components that use a model-driven, fixed-value, or dynamically generated
list. It describes how to add navigation list bindings to let users navigate through a list
of objects in a collection. It also describes how to use the shuttle component to allow
the user to quickly move items between two lists.
This chapter includes the following sections:

• About Selection Lists and Shuttles

• Creating List of Values (LOV) Components

• Creating a Selection List

• Creating a List with Navigation List Binding

• Creating a Databound Shuttle

About Selection Lists and Shuttles
ADF Faces provides selection list and shuttle components that can display a list
of objects from which a user can select a value or select multiple values. Use the
List of Values (LOV) component, navigation list bindings, or the selectManyShuttle
component to create the list with multiple items.

Selection list components present the user with a list of choices as input values.
The selection list may be model-driven, obtained from a fixed list, or dynamically
created at runtime. Selection list components can be rendered as lists, radio buttons,
checkboxes, and list boxes. Some selection types can also be singular (select one) or
multiple (select many).

Selection lists and shuttles work the same way as do standard JSF list components.
ADF Faces list components, however, provide extra functionality such as support for
label and message display, automatic form submission, and partial page rendering.
When you present users with a list, they can readily see the available choices and
make a selection. Picking from a list also eliminates typing errors that may occur.

List of values (LOV) components are UI components that allow the user to
enter values by picking from a list that is generated by a query. The LOV
displays inside a modal popup dialog that typically includes search capabilities. The
af:inputListOfValues and af:inputComboboxListOfValues and af:inputSearch
components, for example, offer additional features that are not available in selection
lists, such as search fields inside the LOV modal dialog and queries based on multiple
table columns. See How to Create a Popup List of Values and Developing Web User
Interfaces with Oracle ADF Faces.

35-1

List of values components offer more complex search and input capabilities by using
the query component to create a popup search panel with a results table. The query
component also has features such as auto-suggestion, smart list filtering, and custom
facets for additional functionality.

When the user selects an item from a navigation list, a corresponding component
bound to the list also changes its value in response to the selection. For example,
when the user selects a product from a shopping list, the table that is bound to the
products list updates to display the details of the selected product.

A shuttle allows the user to easily see the available items on an available list and
the selected items in the selected list and to quickly move those items back and forth
between the lists.

Shuttles provide a visual way to select items from an available list and at the
same time see those selected items. ADF Faces provides the selectManyShuttle
component and the selectOrderShuttle component, which allow reordering of the
selected list. Both components can be implemented by adding code in a managed
bean to populate the lists.

Selection Lists and Shuttles Use Cases and Examples
You can use a selection list component such as selectOneChoice for a single value
input selection situation in which the list is relatively small. For example, you can use a
selectOneChoice to select from a list of product colors or the type of credit card being
used.

For larger lists and with more complex filtering, use an af:inputListOfValues
or af:inputComboboxListOfValues component. These components use the query
component to perform a transactional search to populate the list. For instance, you
can use the af:inputComboboxListOfValues to select from a list of countries in an
address input page.

Use the selectShuttle components when you want the user to be able to assemble
a list of items and be able to select and unselect them. You should use the shuttle
components when the number of items is large but not overwhelming to display.
The user can review the selection and be able to iteratively select and unselect the
items until the user is satisfied with the final selection. For instance, the available list
could be the options available for a particular automobile and the user can shuttle the
options the user likes to the selected list.

Additional Functionality for Selection Lists and Shuttles
You may find it helpful to understand other ADF features before you configure or use
the ADF Model layer. Additionally, you may want to read about what you can do with
your model layer configurations. Following are links to other functionality that may be
of interest.

• For more information about using LOV components with search forms and the
af:query component, see List of Values (LOV) Input Fields.

• You can use the LOV in a task flow that uses an isolated data control. For more
information about shared and isolated data controls, see Sharing Data Controls
Between Task Flows.

• LOVs are associated with a named view criteria. For more information about
setting view criteria options, see How to Create Named View Criteria Declaratively.

Chapter 35
About Selection Lists and Shuttles

35-2

• LOV components uses the af:query component to populate the selection list. For
more information about the af:query component, see Creating ADF Databound
Search Forms.

Creating List of Values (LOV) Components
ADF Faces provides List of Values (LOV) components that can display a
model-driven list of objects from which a user can select a value or optionally
search for the needed item. Use the af:inputListOfValues, af:inputSearchor the
af:inputComboboxListOfValues component to create an LOV.

LOV components are input components that allow the user to enter values
by picking from a list that is generated by a query. ADF Faces provides
the af:inputListOfValues, af:inputSearch and af:inputComboboxListOfValues
components. If you are creating a fully featured LOV component, you must define
the LOV in the view object as described in Working with List of Values (LOV) in View
Object Attributes.

If you are using dependent LOVs as part of your search form, you must use them with
the af:query component. For more information about using LOV components with
search forms, see List of Values (LOV) Input Fields.

The af:inputListOfValues component has a search icon next to the search criteria
field, as shown in Figure 35-1.

Figure 35-1 Search Criteria Input Field Defined as an inputListOfValues

The af:inputComboboxListOfValues component has a dropdown icon next to the
field, as shown in Figure 35-2 for the State attribute.

Figure 35-2 Search Criteria Input Field Defined as an
inputComboboxListOfValues

The af:inputSearch component filters and highlights matching suggestions.
You use this LOV component with an ADF REST resource. Filtering
of suggestions is case insensitive. The difference between af:inputSearch
and af:inputComboboxListOfValues is that the latter component fetches
the list from the server every time you launch the dropdown. However,
af:inputComboboxListOfValues has an attribute named contentDelivery which if
set to immediate will not fetch the list while launching the dropdown. The list would
have to be pre-fetched while loading or rendering the component. In the case
ofaf:inputSearch , this component fetches the list from an ADF REST resource
based on a RESTful web service. If caching is enabled by way of HTTP headers
on the ADF REST service, the resource can also be cached on the client. Caching
is controlled by the ADF REST service implementor. In such a scenario, subsequent
LOV dropdown launches retrieve the list from the cache. If caching is enabled by

Chapter 35
Creating List of Values (LOV) Components

35-3

way of HTTP headers, it facilitates in-browser filtering based on user input, and also
managing MRU (Most Recently Used) suggestions within the browser.

The default display of af:inputSearch component's suggestion list is in the list and
table modes as shown in Figure 35-3 and Figure 35-4.

Figure 35-3 Search Criteria Input Search Field with List Display Mode

Figure 35-4 Search Criteria Input Search Field with Table Display Mode

You can customize the display of this component's suggestion list using
the contentStamp and contentHeader facets. The code populates within
the af:inputSearch tag. The code has the ValueAttribute attribute, which is
the LOV attribute for which the af:inputSearch is configured. In this example,
the LOV attribute is Deptno and hence the ValueAttribute attribute is assigned
the value deptnoid. The contentMode attribute is assigned the value of table,
which indicates that the suggestion list rendered by this component for this LOV
attribute will display in tabular format. Further, f:facet tags encloses the code for
the contentStamp facet (as indicated by name = contentStamp). In this example, the
LOV attribute is Deptno, and this attribute retrieves data from the Dept (Department)
table. As indicated in the f:facet tag, Dname (Department Name) and Deptno
(Department Number) are the columns configured to appear in the suggestion list
when the user enters input in the LOV component.

You can configure the columns that appear in the suggestion list. To illustrate
this with an example, see Figure 35-5 of EmpView.xml; Deptno attribute selected
in the Attributes tab, and LOV_Deptno entry is selected in the List of
Values: Deptno section. Deptno is already configured as an LOV attribute of

Chapter 35
Creating List of Values (LOV) Components

35-4

type af:inputSearch. Double-click on LOV_Deptno entry in the List of Values:
Deptno section to open the Edit List of Values dialog. Figure 35-6 displays this
dialog – Edit List of Values. Select UI Hints tab and move the columns from
the Available section to Selected section. The entries in the Selected section appear
in the suggestion list when a user enters input into the LOV component.

Figure 35-5 LOV attribute configured as af:inputSearch

Figure 35-6 Edit List of Value Dialog

Chapter 35
Creating List of Values (LOV) Components

35-5

For af:inputComboboxListOfValues, clicking the dropdown icon displays the LOV
dropdown list and either a More or a Search link, as shown in Figure 35-7. A Search
link appears when the LOV Search and Select popup dialog contains a search panel
to refine the search. A More link appears when the popup dialog contains only the
list-of-values table or when a smart list is used.

Figure 35-7 LOV Dropdown List with Search Link for
inputComboboxListOfValues

The user can select any of the items in the dropdown list to populate the input field.
The dropdown list includes a filtered list of values and an optional list of most recently
used items. The width of each attribute in the dropdown list can be configured using
the DisplayWidth UI hint for that attribute in the view object definition. The width of the
dropdown list will be the sum of the widths of all the attributes in the dropdown list.

The user can also enter the value into the field. If the user enters data that is of
a different data type than what is defined for the inputComboboxListOfValues, a
conversion error will be thrown. For example, if the inputComboboxListOfValues is
of NUMBER datatype and the user enters an alphanumeric string, a conversion error will
result.

You can create custom content to be rendered in the Search and Select dialog
using the searchContent facet. You can add components such as input text,
tables, and trees to display the custom content. You will need to define the
returnPopupDataValue attribute and implement a returnPopupListener. When
you want to add the auto-complete feature with your custom popup, you can
disable the popup by adding launchPopupEvent.setLaunchPopup(false) to your
LaunchPopupListener() code. However, clicking on the Search link will still launch
the Search and Select dialog. For information about adding custom content, see Using
List-of-Values Components.

The resultsTable facet is used to display a custom message when the results table of
the Search and Select dialog is empty.

If the component's readOnly attribute is set to true, then the input field will not be
rendered and the value cannot be changed. By default, the readOnly attribute is set
to false, which also enables the editMode attribute to determine whether the user is
permitted only to select a value from the list (editMode set to select) or whether the
user can also enter a value into the input field (editMode set to input).

You can also set up the LOV component to display a list of selectable suggested
items when the user types in a partial value. For example, when the user types in CA,
then a suggested list which partially matches CA is displayed as a suggested items
list. The user can select an item from the list to be entered into the input field. If

Chapter 35
Creating List of Values (LOV) Components

35-6

there are no matches, a "No results found" message will be displayed. You add the
af:autoSuggestBehavior tag from the Components window into the LOV and set the
selectedItem attribute to the suggestedItems method implemented in ADF Model.

Note that auto suggest behavior occurs in the Apply Request Values phase. If the
immediate property is set to true, validation will be performed in the same phase. If
there is a validation error, the suggestion list will not be displayed. If you want to add
auto suggest behavior, do not set immediate to true.

If the LOV attribute is not unique and has multiple entries with the same value, auto-
suggest will only display one value in the list. To display all duplicate values in the
auto-suggest selection list, you need to select an attribute that has a unique foreign
key to be the LOV attribute. You can select a more readable attribute to be the display
attribute in the LOV definition by adding the f:converter binding tag inside the
inputListOfValues or inputComboboxListOfValues component. The display attribute
values will be shown in the input field and in the auto-suggest list.

f:converter binding = "#{bindings.LOV_ATTR.converter}"

For instance, if the Research department has multiple entries with different department
numbers and you defined the DeptName attribute as a LOV, the auto-suggest list will
only display one department entry for Research. Instead, you can define Deptno as
the LOV attribute because Deptno is a unique foreign key. Auto-suggest will then list
all entries for the Research department. However, to make the LOV display more
readable, define DeptName as the display attribute and use the f:converter binding
tag to display DeptName instead of Deptno in the rendered selection field, as shown in
the following example.

<af:inputComboboxListOfValues id="deptnoId"
 popupTitle="Search and Select:
 #{bindings.Deptno.hints.label}"
 value="#{bindings.Deptno.inputValue}"
 label="#{bindings.Deptno.hints.label}"
 model="#{bindings.Deptno.listOfValuesModel}"
 required="#{bindings.Deptno.hints.mandatory}"
 columns="#{bindings.Deptno.hints.displayWidth}"
 shortDesc="#{bindings.Deptno.hints.tooltip}">
 <f:validator binding="#{bindings.Deptno.validator}"/>
 <f:converter binding="#{bindings.Deptno.converter}"/>
 <af:autoSuggestBehavior suggestItems="#{bindings.Deptno.suggestItems}"/>
</af:inputComboboxListOfValues>

The LOV will display the department name to the user, but will use the unique
department number when interacting with the model.

When the user clicks the Search or More link (or for af:inputListOfValues, the
search icon), the LOV Search and Select dialog appears with the full list of values in a
table format. The LOV Search and Select dialog launched from a More link is shown in
Figure 35-8.

Chapter 35
Creating List of Values (LOV) Components

35-7

Figure 35-8 LOV Search and Select Dialog

If a user enters a partial string in the LOV and click Search or tab out, a Search and
Select dialog will appear with the partial string displayed in the search field and the
resulting list of matching values in a table. The user can then select an entry from the
list to be the LOV value.

The Search and Select popup dialog also presents a create function that allows the
user to add a new row. Be aware that if you are creating a new record using the LOV
Search and Select dialog, the new row will appear as an empty row in the table if the
LOV has the Query Automatically control hint set to false. The content of the row
will appear when you perform a query using the Search button. The following example
shows a code sample that uses a link to invoke the create function.

<f:facet name="customActions">
 <af:link id="createLink" text="Create..."
 partialSubmit="true">
 <af:showPopupBehavior popupId="createSLPopup"
 alignId="createLink"/>
 </af:link>
</f:facet>

If the LOV is part of a task flow that is using an isolated data control, and you use
the create function to add a new record, the newly added record will not be displayed
in the parent page. This is because the search region is also using an isolated data
control scope, so the underlying view object updates are not displayed. For information
about shared and isolated data controls, see Sharing Data Controls Between Task
Flows.

To programmatically refresh the LOV and display the view object updates, add a
returnListener to the Create link with code similar to that shown in the following
example.

public void refreshLOV() {
 BindingContainer bindings = this.getBindings();
 oracle.jbo.uicli.binding.JUCtrlListBinding lovBinding =
 (oracle.jbo.uicli.binding.JUCtrlListBinding)

Chapter 35
Creating List of Values (LOV) Components

35-8

 bindings.get("Description1");
 JUIteratorBinding lovIter = lovBinding.getIteratorBinding();
 RowSet rs = lovIter.getRowSetIterator().getRowSet();
 rs.executeQuery();

 //Add LOV as the partialTrigger

AdfFacesContext.getCurrentInstance().addPartialTarget(this.getPlatformDesc());

An LOV is associated with a data source via the view accessor. You can apply one or
more view criteria to the view accessor associated with the LOV. The view accessor
provides permanent filtering to the LOV data source. In addition to this permanent
filtering, you may be able to apply other filters.

The LOV dialog may include a query panel to allow the user to enter criteria to search
for the list of values, or it may contain only a table of results. When you define the
LOV in the view object, you can use the UI hints to specify whether a search region
should be displayed, which view criteria should be used as the search to populate the
list of values, and which LOV component to use. Figure 35-9 shows the Create List of
Values dialog and some of its options. In this example, the search region will be made
available with the All Queryable Attributes named view criteria used for the query,
and af:inputComboboxListOfValues as the component. Another useful option for the
af:inputComboboxListOfValues is the Show in Combo Box option, which allows you
to select the number of attributes to display in the dropdown list and in the Search and
Select dialog. For information on LOV UI hints, see How to Set User Interface Hints on
a View Object LOV-Enabled Attribute.

For both af:inputListOfValues and af:inputComboboxListOfValues, if the user
enters a partial match in the input search field and presses the Tab or Enter key,
the LOV automatically launches the LOV Search and Select dialog and executes the
query after applying an auto-generated view criteria with a single item representing the
partial match value entered by the user. If there are matches, the Search and Select
dialog displays all the entries matching the partially entered criteria. If there are no
entries that match the entered partial match, then the dialog displays all the entries.

By default, in the af:inputComboboxListOfValues component auto-complete feature,
the search is case-sensitive. If you want the search to be case-insensitive, create
a view criteria to be associated with that LOV attribute. In the Create View Criteria
dialog, deselect the Ignore Case checkbox for that view criteria item before you apply
that view criteria to the LOV definition. For information about setting view criteria
options, see How to Create Named View Criteria Declaratively.

Chapter 35
Creating List of Values (LOV) Components

35-9

Figure 35-9 List of Values Dialog UI Hints Tab

You can also set up the LOV component to display a list of selectable suggested
items when the user types in a partial value. For example, when the user types in Ca,
then a suggested list which partially matches CA is displayed as a suggested items
list. The user can select an item from the list to be entered into the input field. You
add this auto-suggest behavior feature by including an af:autoSuggestBehavior tag
from the Components window in the LOV and set the selectedItem attribute to the
suggestedItems method implemented in ADF Model.

If the LOV is an af:inputComboboxListOfValues, you can apply an additional view
criteria to further filter the values in the dropdown list to create a smart list. If the Filter
Combo Box Using UI hint is not applied, the dropdown list is filtered by the view
criteria applied to the view accessor. Note that this smart list filter applies only to the
dropdown list. The full list is still used for validation and for searching from the LOV
Search and Select popup dialog. When smart list is enabled, the LOV's Search and
Select dialog will display a More link instead of the Search link.

If both the auto-suggest behavior and smart list filter are enabled for an LOV,
auto-suggest will search from the smart list first. If the user waits for two seconds
without clicking, then auto-suggest will also search from the full list and append the
results. You can also specify the number of suggested items returned by setting the
maxSuggestedItems attribute (-1 indicates a complete list). If maxSuggestedItems > 0,
a More link is rendered for the user to click on to launch the LOV's Search and Select
dialog. The following example shows the code from an LOV with both auto-suggest
behavior and a smart list.

af:autoSuggestBehavior
 suggestItems="#{bindings.CountryName.suggestItems}"

Chapter 35
Creating List of Values (LOV) Components

35-10

 smartList="#{bindings.CountryName.smartList}"/>
 maxSuggestedItems="5"

You can define an attribute in the view object to be one or more LOVs. If multiple
LOVs are defined on an attribute, each LOV has its own name, view accessor, data
mappings, validator, and UI hints (except for the Default List Type hint, which is
defined once for the attribute). To switch between LOVs to be used at runtime, an
LOV switcher is used. The LOV switcher can be based on an existing attribute of type
String, or created as a new String attribute solely for switching between LOVs. The
LOV switcher returns the name of the LOV to use at runtime. For instance, you can
create three LOVs for the price attribute, and designate the CountryName attribute as
the LOV switcher. At runtime, the value of CountryName will switch the price attribute to
use the LOV that reflects the country's price and currency.

If an attribute is defined as an LOV, you can set the Support Multiple Value
Selection control hint in its view criteria to enable users to make multiple selections in
the search criteria field. If multiple selection is enabled on an LOV attribute, and the
Equal to or Not equal to operator is chosen, a selectManyChoice component will
render in the query panel. The user can select multiple items as the search criteria.

If the value of an LOV depends on the value of another LOV, then the two LOVs are
called cascading LOVs. For instance, the list of values for the City LOV depends
on the value of the CountryName LOV that was selected. If the LOV is defined as a
named bind variable, or if validation is enabled, the LOV query may behave differently
depending on such conditions as whether null values for the named bind variable are
acceptable. If the bind variable is null, you may want the LOV query to return an empty
list. The view criteria's Ignore Null Values and Validation options can be used to
define LOV query behavior.

If the view object has an LOV with a bind variable, you should set that view object
bind variable's control hint to Hide. Otherwise, the bind variable will be displayed in the
LOV Search and Select popup dialog. In the view object overview editor's Query tab,
double-click the bind variable, click the Control Hints tab and select Hide from the
Display Hint dropdown list.

Note:

List of values are designed to return valid values only. As a result, validation
rules defined on data source view object attributes will be suppressed. You
should ensure that the list of values returned only contains valid values. See
What You May Need to Know About List of Values and Attribute Validation
Rules.

Chapter 35
Creating List of Values (LOV) Components

35-11

Best Practice:

An attribute that has been enabled as an LOV should not be used as
search criteria in a manually created search form using the "Find Mode"
iterator. Creating a search form in this way could result in SQL exception:
java.sql.SQLException: Attempt to set a parameter name that does
not occur in the SQL. It is best practice to use the query and quick query
components for creating search forms. For more information, see Creating
ADF Databound Search Forms.

Displaying an LOV list for a name attribute when the view object's key attribute
is a numerical value requires mapping supplemental attributes on the LOV-enabled
attribute. For example, to display a list of credit cards by name instead of by their
payment option ID value, you can create an LOV on the name reference attribute and
define the primary key attribute as a supplemental attribute to the LOV. For details
about creating an LOV-enabled reference attribute, see How to Define an LOV to
Display a Reference Attribute.

Note:

af:inputListOfValues and af:inputComboboxListOfValues assume the list
of values returned from the Search and Select dialog to be valid. Any ADF
Business Components validation errors will not be displayed.

For information about different usage scenarios and other view criteria options, see
How to Create Named View Criteria Declaratively, and What You May Need to Know
About Bind Variables in View Criteria.

How to Create an LOV
You can create the LOV using either the af:inputListOfValues or the
af:inputComboboxListOfValues component. You can add auto-suggest behavior to
the component to display a list of possible matches from user input.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create an LOV. For more information, see Creating List of Values (LOV)
Components.

You may also find it helpful to understand functionality that can be used with LOVs. For
more information, see Additional Functionality for Selection Lists and Shuttles.

You will need to complete this task:

Define the attribute to be an LOV in the view object by following the procedure
described in Working with List of Values (LOV) in View Object Attributes.

To create an LOV:

1. In the Application window, double-click the web page that will display the
component.

Chapter 35
Creating List of Values (LOV) Components

35-12

2. From the Data Controls panel, drag and drop the attribute onto the JSF page and
choose Create > List of Values > ADF LOV Input or Create > List of Values >
ADF LOV Choice List.

3. In the ADF Faces page of the Components window, from the Operations panel
drag and drop Auto Suggest Behavior as a child to the LOV component.

4. In the Property Inspector, enter values for Auto Suggest Behavior:

• SuggestItems: EL expression that resolves to the suggestItems method.

• SmartList: EL expression that resolves to the smartList method.

• MaxSuggestedItems: Number of items to be displayed in the auto-suggest
list. Enter -1 to display the complete list.

5. If you want to set a different display attribute for the LOV, add the f:converter
binding tag to the component. For instance, you want the LOV to display
the sales rep name instead of the sales rep id, you can add this tag to the
component: f:converter binding="#{bindings.SalesRepId.converter}" and
define SalesRepName as the display attribute.

6. If you added the auto-suggest behavior, you must not set the component's
immediate property to true.

The following example shows an inputListOfValues component with the auto-
suggest behavior and smart list features.

<af:inputListOfValues id="salesRepIdId"
 popupTitle="Search and Select:
#{bindings.SalesRepId.hints.label}"
 value="#{bindings.SalesRepId.inputValue}"
 label="#{bindings.SalesRepId.hints.label}"
 model="#{bindings.SalesRepId.listOfValuesModel}"
 required="#{bindings.SalesRepId.hints.mandatory}"
 columns="#{bindings.SalesRepId.hints.displayWidth}"
 shortDesc="#{bindings.SalesRepId.hints.tooltip}">
<f:validator binding="#{bindings.SalesRepId.validator}">
<f:converter binding="#{bindings.SalesRepId.converter}">
<af:autoSuggestBehavior suggestItems="#{bindings.SalesRepId.suggestedItems}"
 smartList="#{bindings.SalesRepId.smartList}"
 maxSuggestedItems="5"/>
</af:inputListOfValues>

How to Configure an LOV Attribute as inputSearch
You create an af:inputSearch LOV component by defining an LOV attribute initially
and then configuring the LOV attribute as inputSearch.

Before you begin

See How to Define a Single LOV-Enabled View Object Attribute to understand
how to define an attribute as LOV attribute. After configuring the LOV attribute as
inputSearch, you proceed to create an af:inputSearch LOV component.

See How to Create an LOV to understand how to create an LOV component. After
building the af:inputSearch component, you specify the URL of the ADF REST
resource so that the af:inputSearch LOV component fetches the LOV from this ADF
REST resource.

Chapter 35
Creating List of Values (LOV) Components

35-13

See Creating ADF REST Resources Using the Application Module to understand how
to create a RESTful web service with application modules.

See How to Provide af:inputSearch LOV Component the REST URL to understand
how to provide the REST URL to the af:inputSearch LOV component.

To configure an LOV attribute as inputSearch:

1. In the Applications Navigator, double-click the view object that contains the LOV
attribute that you wish to configure as inputSearch.

2. In the Attributes page, select the LOV attribute and in Custom
Properties section, click the plus icon and select Non-translatable Property to
add a row with columns Property and Value.

3. Double-click the row and enter ListType in the Property column and inputSearch
in the Value column of this row.

4. Click Save to save the project.

What Happens When You Create an inputSearch Component
When you drag and drop an attribute defined as an LOV and also defined
as an inputSearch from the Data Controls panel onto a .jspx page as
an inputSearch component, JDeveloper adds code to the page similar to that shown
in the following example. JDeveloper also does many other things - see What
Happens When You Create an LOV to know more.

<af:inputSearch id="deptnoID" contentMode="table"
 valueAttribute="#{bindings.Deptno.valueAttribute}"
 displayAttributes="#{bindings.Deptno.displayAttributes}"
 value="#{bindings.Deptno.inputValue}"
 selectionConverter="#{bindings.Deptno.selectionConverter}"
 label="#{bindings.Deptno.hints.label}"
 required="#{bindings.Deptno.hints.mandatory}"
 columns="#{bindings.Deptno.hints.displayWidth}"
 shortDesc="#{bindings.Deptno.hints.tooltip}">
<f:facet name ="contentStamp">
<af:sanitized>
<td>{{Dname}}</td><td>{{Deptno}}</td>
</af:sanitized>
</f:facet>
</af:inputSearch>

In the page definition file, JDeveloper adds code as shown in the following example.
The code sample shows the Deptno attribute designated as inputSearch list type.

<listOfValues StaticList="false" IterBinding="EmpView1Iterator"
 Uses="LOV_Deptno" id="Deptno"
ListType="inputSearch"/>
</bindings>

How to Provide af:inputSearch LOV Component the REST URL
After configuring an attribute as an LOV attribute, and defining it as of
type inputSearch, the next step is to create the af:inputSearch LOV component
and provide this component the REST URL.

You do this so that this component uses the REST URL to fetch the LOV list from
the ADF REST resource. See How to Configure an LOV Attribute as inputSearch to

Chapter 35
Creating List of Values (LOV) Components

35-14

understand how to create an LOV attribute and configure it as an LOV attribute
that works with af:inputSearch. To provide a REST URL to an inputSearch LOV
component:

1. Ensure that the RESTful web service is running when running the .jspx page that
contains the af:inputSearch component.

2. In the .jspx page that contains the af:inputSearch LOV component, click the
Source tab to view the source code.

3. Locate the af:searchSection tag and enter the REST URL as a value to
the dataURL attribute of this tag. An example REST URL is dataUrl="//
Application3-RESTWebService-context-root/rest/v1/Dept". In this REST URL,
Application3-RESTWebService-context-root is the context root of the RESTful
web service. rest is the URL pattern of the RESTServlet in the web.xml file of the
RESTful web service. v1 is the version of the ADF REST resource. Dept is the
name of the REST resource.

4. Build the .jspx page to view LOV component and retrieve the LOV from the ADF
REST resource.

What Happens When You Create an LOV
When you drag and drop an attribute from the Data Controls panel, JDeveloper does
many things for you. For a full description of what happens and what is created when
you use the Data Controls panel, see What Happens When You Create a Text Field.

When you drag and drop an attribute defined as an LOV from the Data Controls
panel onto a JSF page as an inputListOfValues or inputComboboxListOfValues
component, JDeveloper adds code to the page similar to that shown in the following
example. The State attribute in the CustomerVO view object has been defined as
an LOV and its default component is set to be an inputComboboxListOfValues. The
component gets its properties from the control hints defined declaratively in the view
object. If you want to include the auto-suggest behavior, you must manually add that
tag from the Components window.

<af:inputComboboxListOfValues id="stateId"
 popupTitle="Search and Select: #{bindings.State.hints.label}"
 value="#{bindings.State.inputValue}"
 label="#{bindings.State.hints.label}"
 model="#{bindings.State.listOfValuesModel}"
 required="#{bindings.State.hints.mandatory}"
 columns="#{bindings.State.hints.displayWidth}"
 shortDesc="#{bindings.State.hints.tooltip}">
 <f:validator binding="#{bindings.State.validator}"/>
</af:inputComboboxListOfValues>

In the page definition file, JDeveloper adds code as shown in the following example.
The bindings section of the page definition specifies that the LOV is for the State
attribute and the name of the LOV is LOV_State. JDeveloper adds the definitions for
the iterator binding objects into the executables element, and the list of values binding
object into the bindings element.

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="Customers" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="CustomersIterator"/>

Chapter 35
Creating List of Values (LOV) Components

35-15

</executables>
<bindings>
 <listOfValues StaticList="false" IterBinding="CustomersIterator"
 Uses="LOV_State" id="State"/>
</bindings>

For more information about the page definition file and ADF data binding expressions,
see Working with Page Definition Files, and Creating ADF Data Binding EL
Expressions.

What You May Need to Know About List Validators and LOV
If you are defining an attribute in the view object to be a list of values attribute, you
can define an equivalent list validation rule in the underlying entity object as long as
the list validation rule is based on the same list. You should not define other types of
validation rules in the entity object for an attribute already defined as a list of values
in the view object. Doing so may result in unexpected behavior and validation errors.
For more information about defining validation rules, see Figure 10-3, and Using the
Built-in Declarative Validation Rules.

What You May Need to Know About InputComboboxListOfValues and
Null Values

If you create an inputComboboxListOfValues component with a view object list data
source and that list may be modified at runtime so that list items can be deleted,
you must define a custom property displayMode on the LOV attribute to support null
values. By default, the inputComboboxListOfValues component will display the value
of the list attribute defined by the LOV attribute when no display value is available. To
ensure a deleted display attribute value is not substituted by its corresponding attribute
list value, define the custom property displayMode with the name of the LOV display
attribute as a value. For example, Figure 35-10 shows the LOV attribute DeptId that
defines the custom property with the LOV display attribute Name as a value. Then, at
runtime, when a department name is deleted from the list of available departments, the
custom property ensures that entering the deleted name returns no match.

Chapter 35
Creating List of Values (LOV) Components

35-16

Figure 35-10 View Object LOV Attribute with Custom Property displayMode
Defined

Creating a Selection List
ADF Faces provides a number of different selection components, ranging from simple
boolean radio buttons to list boxes that allow the user to select multiple items. You can
create a model-driven selection list, a fixed selection list, or a dynamic selection list
using different procedures.

ADF Faces Core includes components for selecting a single value and multiple values
from a list. For example, selectOneChoice allows the user to select an item from a
dropdown list, and selectManyChoice allow the user to select several items from a list
of checkboxes. Selection lists are described in Table 35-1.

Table 35-1 ADF Faces Single and Multiple List Components

ADF Faces component Description Example

SelectOneChoice Select a single value from a list of items.

Chapter 35
Creating a Selection List

35-17

Table 35-1 (Cont.) ADF Faces Single and Multiple List Components

ADF Faces component Description Example

SelectOneRadio Select a single value from a set of radio
buttons.

SelectOneListbox Select a single value from a scrollable list
of items.

SelectManyChoice Select multiple values from a scrollable list
of checkboxes. Each selection displays at
the top of the list.

SelectManyCheckbox Select multiple values from a group of
checkboxes.

SelectManyListbox Select multiple values from a scrollable list
of checkboxes,

Chapter 35
Creating a Selection List

35-18

You can create selection lists using the SelectOneChoice ADF Faces component.
The steps are similar for creating other single-value selection lists, such as
SelectOneRadio and SelectOneListbox.

A databound selection list displays values from a data control collection or a static list
and updates an attribute in another collection or a method parameter based on the
user's selection. When adding a binding to a list, you use an attribute from the data
control that will be populated by the selected value in the list.

Note:

By default, ADF Model list binding passes the index to the component.
If you set valuePassThru=true, then you should set the list binding entry
in the corresponding page definition file Mode attribute to Object. When
Mode=Object, the list binding will pass an object instead of an index to the
component. See What Happens When You Create a Fixed Selection List.

To create a selection list, you choose a base data source and a list data source in the
Edit List Binding dialog:

• Base data source: Select the data collection that you want to bind to your control
and that contains the attributes to be updated from user selections.

• List data source: Select the data collection that contains the attributes to display.

The data collection is based on the view object. For information about creating a view
object, see How to Create an Entity-Based View Object.

You can create three types of selection lists in the Edit List Binding dialog:

• Model-driven list: List selections are based on a list of values bound to a data
collection. This type of selection list offers significant advantages over the other
two, as described in How to Create a Model-Driven List.

• Static list: List selections are based on a fixed list that you create a manually by
entering values one at a time into the editor. See How to Create a Selection List
Containing Fixed Values.

• Dynamic list: List selections are generated dynamically based on one or more
databound attribute values. See How to Create a Selection List Containing
Dynamically Generated Values.

How to Create a Model-Driven List
A model-driven list is based on a list of values that is bound to a view data object. Lists
of Values are typically used in forms to enable an end user to select an attribute value
from a dropdown list instead of having to enter it manually. When the user submits the
form with the selected values, ADF data bindings in the ADF Model layer update the
value on the view object attributes corresponding to the databound fields.

Chapter 35
Creating a Selection List

35-19

Note:

One way to create a model-driven list is to drag a collection from the Data
Controls panel onto a JSF page, choose one of the ADF Forms in the
context menu, and accept the defaults. The advantage is that if there are
LOVs defined on the underlying view object attributes, all the LOVs on the
entire form will be configured automatically. For more information, see How
to Define a Single LOV-Enabled View Object Attribute.

You can also use the list of values as the basis for creating a selection list. The
advantages of creating a model-driven list based on a list of values are:

• Reuse: The list of values is bound to a view data collection. Any selection list
that you create based on the data collection can use the same list of values.
Because you define the LOV on the individual attributes of view objects in a data
model project with ADF Business Components, you can customize the LOV usage
for an attribute once and expect to see the changes anywhere that the business
component is used in the user interface.

• Translation: Values in the list of values can be included in resource bundles used
for translation.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create an selection list component. For more information, see Creating a
Selection List.

You may also find it helpful to understand functionality that can be used with
selection lists. For more information, see Additional Functionality for Selection Lists
and Shuttles.

You will need to complete these tasks:

1. Create a view object.

2. Create a view accessor on the object.

3. Create a list of values that is bound to an attribute on the base data source for the
selection list. For example, you can create a list of values bound to the CountryId
attribute of the Addresses view data object.

For more information, see How to Define a Single LOV-Enabled View Object
Attribute.

To create a model-driven selection list:

1. From the Data Controls panel, drag and drop the attribute onto the JSF page and,
from the context menu, choose Create > Single Selections > ADF Select One
Choice.

2. In the Edit List Binding dialog, click the Model Driven List radio button.

3. In the Base Data Source Attribute dropdown list, select an attribute on which you
want to display a list of values.

The Base Data Source should be the collection you dragged from the Data
Controls panel. If the collection does not appear in the dropdown list, click the Add
button to select the collection you want.

Chapter 35
Creating a Selection List

35-20

4. In the Server List Binding Name dropdown list, select the name of the list-of-
values definition that was created for the base attribute.

If a list-of-values definition was created for the attribute you have selected, the
definition will appear in the dropdown list. For example, if you have defined
LOV_State as the list-of-value definition for the State attribute, then LOV_State
should appear in the Server List Binding Name dropdown list.

5. Click OK.

What Happens When You Create a Model-Driven Selection List
When you drag and drop an attribute from the Data Controls panel, JDeveloper does
many things for you. For a full description of what happens and what is created when
you use the Data Controls panel, see What Happens When You Create a Text Field.

The following example shows the page source code after you add a model-driven
SelectOneChoice component to it.

<af:selectOneChoice value="#{bindings.State.inputValue}"
 label="#{bindings.State.label}"
 required="#{bindings.State.hints.mandatory}"
 shortDesc="#{bindings.State.hints.tooltip}"
 id="soc1">
 <f:selectItems value="#{bindings.State.items}" id="si1"/>
</af:selectOneChoice>

The f:selectItems tag, which provides the list of items for selection, is bound to
the items property on the State list binding object in the binding container. For more
information about ADF data binding expressions, see Configuring the ADF Binding
Filter.

In the page definition file, JDeveloper adds the list binding object definitions in the
bindings element, as shown in the following example.

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="Customers" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="CustomersIterator"/>
</executables>
<bindings>
 <list IterBinding="CustomersIterator"
 StaticList="false" Uses="LOV_State"
 id="State" DTSupportsMRU="true"
 SelectItemValueMode="ListObject"/>
</bindings>

In the list element, the id attribute specifies the name of the list binding object.
The IterBinding attribute references the variable iterator, whose current row is a row
of attributes representing each variable in the binding container. The variable iterator
exposes the variable values to the bindings in the same way as do other collections of
data.

For more information about the page definition file and ADF data binding expressions,
see Working with Page Definition Files, and Creating ADF Data Binding EL
Expressions.

Chapter 35
Creating a Selection List

35-21

How to Create a Selection List Containing Fixed Values
You can create a selection list containing selections that you code yourself, rather than
retrieving the values from another data source. See How to Create a Selection List
Containing Dynamically Generated Values, for information about populating selection
lists with values that are dynamically generated from another data source.

Figure 35-11 Selection List Bound to a Fixed List of Values

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a selection list component. For more information, see Creating a
Selection List.

You may also find it helpful to understand functionality that can be used with
selection lists. For more information, see Additional Functionality for Selection Lists
and Shuttles.

You will need to complete this task:

Prepare a list of values that you will enter into the component as a fixed list.

To create a list bound to a fixed list of values:

1. From the Data Controls panel, drag and drop the attribute onto the JSF page and,
from the context menu, choose Create > Single Selections > ADF Select One
Choice.

2. In the Edit List Binding dialog, click the Fixed List radio button.

3. In the Base Data Source Attribute dropdown list, select an attribute on which you
want to display a list of values.

The Base Data Source should be the collection you dragged from the Data
Controls panel. If the collection does not appear in the dropdown list, click the Add
button to select the collection you want.

4. In the Set of Values box, enter each value you want to appear in the list. Press
the Enter key to set a value before typing the next value. For example, if your
attribute is Country, you could add the country codes India, Japan, and Russia.

The order in which you enter the values is the order in which the list items are
displayed in the SelectOneRadio control at runtime.

The SelectOneRadio component supports a null value. If the user has not
selected an item, the label of the item is shown as blank, and the value of the
component defaults to an empty string. Instead of using blank or an empty string,
you can specify a string to represent the null value. By default, the new string
appears at the top of the list.

Chapter 35
Creating a Selection List

35-22

5. Click OK.

What Happens When You Create a Fixed Selection List
When you add a fixed selection list, JDeveloper adds source code to the JSF page
and list and iterator binding objects to the page definition file.

The following example shows the page source code after you add a fixed
SelectOneChoice component to it.

<af:selectOneChoice value="#{bindings.CountryIdStatic.inputValue}"
 label="#{bindings.CountryIdStatic.label}">
 <f:selectItems value="#{bindings.CountryIdStatic.items}"/>
 </af:selectOneChoice>

The f:selectItems tag, which provides the list of items for selection, is bound to the
items property on the CountryId list binding object in the binding container. For more
information about ADF data binding expressions, see Creating ADF Data Binding EL
Expressions.

In the page definition file, JDeveloper adds the definitions for the iterator binding
objects into the executables element, and the list binding object into the bindings
element, as shown in the following example.

<executables>
 <iterator Binds="Addresses1" RangeSize="10"
 DataControl="BackOfficeAppModuleDataControl"
 id="Addresses1Iterator"/>
 </executables>
 <bindings>
 <list IterBinding="Addresses1Iterator" id="CountryIdStatic" ListOperMode="0"
 StaticList="true">
 <AttrNames>
 <Item Value="CountryIdStatic"/>
 </AttrNames>
 <ValueList>
 <Item Value="India"/>
 <Item Value="Japan"/>
 <Item Value="Russia"/>
 </ValueList>
 </list>
 </bindings>

For complete information about page definition files, see Working with Page Definition
Files.

How to Create a Selection List Containing Dynamically Generated
Values

You can populate a selection list component with values dynamically at runtime.

Chapter 35
Creating a Selection List

35-23

Tip:

Another option is to create a static view object or a database view object
within a shared application module. Then use a model- driven LOV to
create the list. This provides caching and translatability.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a selection list component. For more information, see Creating a
Selection List.

You may also find it helpful to understand functionality that can be used with
selection lists. For more information, see Additional Functionality for Selection Lists
and Shuttles.

You will need to complete these tasks:

1. Define a data source for the list data source that provides the dynamic list of
values.

2. Define a data source for the base data source that is to be updated based on the
user's selection.

To create a selection list bound containing dynamically generated values:

1. From the Data Controls panel, drag and drop the attribute onto the JSF page and,
from the context menu, choose Create > Single Selections > ADF Select One
Choice.

2. In the Edit List Binding dialog, click the Dynamic List radio button.

3. Select the Base Data Source from the dropdown list or click Add.

4. In the Add Data Source dialog, select the data collection that contains the attribute
to be updated and click OK.

5. Select the List Data Source from the dropdown list or click Add.

6. In the Add Data Source dialog, select the data collection that contains the attribute
that will be displayed and click OK.

Note:

The list and base collections do not have to form a master-detail
relationship, but the attribute in the list collection must have the same
type as the base collection attributes.

7. In the Data Mapping section, you can accept the default mapping or select
different attributes items from the Data Value and List Attribute lists to update
the mapping.

The Data Value control contains the attribute on the data collection that is updated
when the user selects an item in the selection list. The List Attribute control
contains the attribute that populates the values in the selection list.

To add a second mapping, click Add.

Chapter 35
Creating a Selection List

35-24

8. In the List Items section, select values for:

• Display Attribute: Select the attribute you want to be displayed.

• "No Selection" Item: Specify whether or not the list displays a NULL value
selection and how it is displayed.

• MRU: Select to show a list of most recently used items. Specify the number of
items to display in the MRU list and the separator to be used.

9. Click OK.

What Happens When You Create a Dynamic Selection List
When you add a dynamic selection list to a page, JDeveloper adds source code to the
JSF page and list and iterator binding objects to the page definition file.

The following example shows the page source code after you add a dynamic
SelectOneChoice component to it.

<af:selectOneChoice value="#{bindings.SalesRepId.inputValue}"
 label="#{bindings.SalesRepId.label}"
 required="#{bindings.SalesRepId.hints.mandatory}"
 shortDesc="#{bindings.SalesRepId.hints.tooltip}" id="soc2">
 <f:selectItems value="#{bindings.SalesRepId.items}" id="si4"/>
 <f:validator binding="#{bindings.SalesRepId.validator}"/>
</af:selectOneChoice>

The f:selectItems tag, which provides the list of items for selection, is bound to the
items property on the SalesRepId list binding object in the binding container. For more
information about ADF data binding expressions, see Creating ADF Data Binding EL
Expressions.

In the page definition file, JDeveloper adds the definitions for the iterator binding
objects into the executables element, and the list binding object into the bindings
element, as shown in the following example.

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="SummitAppModuleDataControl.dataProvider.
 BackOfficeAM.Customers"
 DataControl="SummitAppModuleDataControl" RangeSize="25"
 id="CustomersIterator"/>
 <iterator Binds="Countries" RangeSize="10"
 DataControl="BackOfficeAppModuleDataControl"
 id="CountriesIterator"/>
 <iterator Binds="Customers" RangeSize="-1"
 DataControl="BackOfficeAppModuleDataControl"
 id="CustomersIterator1"/>
</executables>
<bindings>
 <list IterBinding="CountriesIterator" StaticList="false" id="SalesRepId"
 DTSupportsMRU="true" SelectItemValueMode="ListObject"
 ListIter="CustomersIterator1">
 <AttrNames>
 <Item Value="Id"/>
 </AttrNames>
 <ListAttrNames>
 <Item Value="Id"/>
 </ListAttrNames>
 <ListDisplayAttrNames>

Chapter 35
Creating a Selection List

35-25

 <Item Value="Id"/>
 </ListDisplayAttrNames>
 </list>
</bindings>

By default, JDeveloper sets the RangeSize attribute on the iterator element for the
Customers iterator binding to a value of -1 thus allowing the iterator to furnish the
full list of valid products for selection. In the list element, the id attribute specifies
the name of the list binding object. The IterBinding attribute references the iterator
that iterates over the Countries collection. The ListIter attribute references the
iterator that iterates over the Customers collection. The AttrNames element specifies
the base data source attributes returned by the base iterator. The ListAttrNames
element defines the list data source attributes that are mapped to the base data
source attributes. The ListDisplayAttrNames element specifies the list data source
attribute that populates the values users see in the list at runtime.

For complete information about page definition files, see Working with Page Definition
Files.

What You May Need to Know About Values in a Selection List
Once you have created a list binding, you may want to access a value in the list.
You can set the component's valuePassThru attribute to true either in the visual
editor or in the Property Inspector. The following example shows the code for a
selectOneChoice component.

 <af:selectOneChoice value="#{bindings.Language.inputValue}"
 label="#{bindings.Language.label}"
 required="#{bindings.Language.hints.mandatory}"
 shortDesc="#{bindings.Language.hints.tooltip}"
 valueChangeListener="#{myBean.valueChanged}"
 id="soc1" valuePassThru="true">
 <f:selectItems value="#{bindings.Language.items}" id="si1"/>
</af:selectOneChoice>

Only when the valuePassThru attribute is set to true and the Mode attribute in the
corresponding page definition file is set to Object can the value passed to the
valueChangeListener be of type Object (which is the actual value). By default, Mode is
set to Index. The following example shows the Mode attribute in the page definition file.

<list IterBinding="AvailableLanguagesView1Iterator" id="Language"
 DTSupportsMRU="true" StaticList="false"
 ListIter="CountryCodesView1Iterator"
 Mode="Object"/>

Creating a List with Navigation List Binding
In ADF Faces, navigation list binding lets users navigate through the objects in a
collection. As the user changes the current object selection using the navigation list
component, any other component that is also bound to the same collection through its
attributes will display from the newly selected object.

In addition, if the collection whose current row you change is the master view object
instance in a data model master-detail relationship, the row set in the detail view object
instance is automatically updated to show the appropriate data for the new current
master row.

Chapter 35
Creating a List with Navigation List Binding

35-26

How to Create a List with Navigation List Binding
Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a navigation list. For more information, see Creating a List with
Navigation List Binding.

You may also find it helpful to understand functionality that can be used with
navigation lists. For more information, see Additional Functionality for Selection Lists
and Shuttles.

To create a list that uses navigation list binding:

1. From the Data Controls panel, drag and drop the master collection to the page and
choose Create > Navigation > ADF Navigation List.

The master collection is where the user selects from.

2. In the Edit List Binding dialog, from the Base Data Source dropdown list, select
the collection whose members will be used to create the list.

This should be the collection you dragged from the Data Controls panel. If the
collection does not appear in the dropdown list, click the Add button to select the
collection you want.

3. From the Display Attribute dropdown list, select the attribute that will display in
the list. You can choose the selection that includes all the attributes, and you can
choose Select Multiple to launch a selection dialog.

4. In the Select Multiple Display Attributes dialog, shuttle the attributes you want to
display from the Available Attributes list to the Attributes to Display list. Click
OK to close the dialog.

5. Click OK.

6. From the Data Controls panel, drag and drop the detail collection inside the
Details section of the page as an output component.

The output component can be any component that is used to display the data. If
you decide to use a table, you can choose Create> Table > ADF Table.

The Detail section is an af:panelHeader component that was added by
JDeveloper when you created the navigation list in Step 1.

What Happens When You Create a Navigational List Binding
When you add a navigation list to a page, JDeveloper adds source code to the JSF
page and list and iterator binding objects to the page definition file.

On the page, JDeveloper adds a selectOneChoice component with a f:selectItems
tag. The selectOneChoice component allows the user to select from a list of values
based on the selected attribute in the source data collection. JDeveloper also adds an
af:panelHeader component that will contain the component you chose to display the
data based on the selection. In this example, a table component is added to display
the data. Note that the af:panelHeader component has partialtriggers set to the
selectOneChoice component id so that when the selection changes, new data will
be displayed. The following example shows the page source code after you add a
navigation list.

Chapter 35
Creating a List with Navigation List Binding

35-27

<af:selectOneChoice id="nl1" autoSubmit="true"
 value="#{bindings.Customers.inputValue}"
 label="#{bindings.Customers.label}">
 <f:selectItems value="#{bindings.Customers.items}" id="si1"/>
</af:selectOneChoice>
<af:panelHeader text="Details" partialTriggers="nl1" id="ph1">
 <af:table value="#{bindings.OrdersForCustomer.collectionModel}" var="row"
 rows="#{bindings.OrdersForCustomer.rangeSize}"
 emptyText="#{bindings.OrdersForCustomer.viewable ?
 'No data to display.' : 'Access Denied.'}"
 fetchSize="#{bindings.OrdersForCustomer.rangeSize}"
rowBandingInterval="0"
 id="t1">
 <af:column headerText="#{bindings.OrdersForCustomer.hints.Id.label}"
id="c1">
 <af:inputText value="#{row.bindings.Id.inputValue}"
...

In the page definition file, JDeveloper adds the definitions for the iterator binding
objects into the executables element. The following example shows the iterator
bindings and navigation list bindings in the page definition file.

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="Customers" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl" id="CustomersIterator"/>
 <iterator Binds="OrdersForCustomer" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="OrdersForCustomerIterator"/>
</executables>
<bindings>
 <navigationlist IterBinding="CustomersIterator" ListOperMode="navigation"
 ListIter="CustomersIterator"
 id="Customers" DTSupportsMRU="false">
 <AttrNames>
 <Item Value="Name"/>
 </AttrNames>
 </navigationlist>
 <tree IterBinding="OrdersForCustomerIterator" id="OrdersForCustomer">
 <nodeDefinition DefName="oracle.summit.model.views.OrdVO"
 Name="OrdersForCustomer0">
 <AttrNames>
 <Item Value="Id"/>
 <Item Value="CustomerId"/>
 <Item Value="DateOrdered"/>
 <Item Value="LastName"/>
 <Item Value="Name"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

Creating a Databound Shuttle
ADF Faces provides shuttle components that provides a mechanism for selecting
multiple values from a list of values by allowing the user to move items between two

Chapter 35
Creating a Databound Shuttle

35-28

lists. Use the selectManyShuttle and selectOrderShuttle components to create a
databound shuttle.

The selectManyShuttle and selectOrderShuttle components render two list boxes
and buttons that allow the user to select multiple items from the leading (or available)
list box and to move or shuttle those items over to the trailing (or selected) list box,
and vice versa. You can also double-click an item to move it to the other list box.
Figure 35-12 shows an example of a rendered selectManyShuttle component that
is implemented in the Summit ADF sample application. You can specify any text you
want for the headers that display above the list boxes.

Figure 35-12 SelectManyShuttle Component

The only difference between selectManyShuttle and selectOrderShuttle is that in
the selectOrderShuttle component, the user can reorder the items in the trailing list
box by using the up and down arrow buttons on the side.

The Summit ADF sample application uses a selectManyShuttle component to allow
the user to select the products to order from a All available products list box to an
Selected Products list box. The leading list box on the left displays all the available
products. The trailing list box on the right displays the products the customer has
selected.

Like other ADF Faces selection list components, the selectManyShuttle and
selectOrderShuttle components can use the f:selectItems tag to provide the list of
items available for display and selection in the leading list.

Before you can bind the f:selectItems tag, create a generic class that can be used
by any page that requires a shuttle. In the class, declare and include getter and setter
methods for the properties that describe the view object instance names that should
be used for the list of all available choices (leading list or available product categories)
and the list of selected choices (trailing list or assigned product categories). In the
Summit ADF sample application, f:selectItems uses the binding container to retrieve
the list of available products. Example 35-1 shows the ShuttleBean class that is
created to manage the population and selection state of the shuttle component on the
showshuttle.jsf page.

The getSelectedProducts() method returns a List that defines the items in the
shuttle's trailing list. The values returned by getSelectedProducts() are a subset
of the values in the leading list. Values that are in the leading list but not in
getSelectedProducts() will be ignored (and will generate an error in the server log).

Chapter 35
Creating a Databound Shuttle

35-29

Note that the ShuttleBean class can call utility methods in the ADFUtils class if
required. Also note that this class uses values for several properties of the base bean.

Example 35-2 shows the managed bean and managed properties configured in order-
select-many-item.xml task flow for working with the shuttle component.

Example 35-1 Shuttle Bean Class

public class ShuttleBean {

 private List<oracle.jbo.domain.Number> _selectedProducts =
 new ArrayList<oracle.jbo.domain.Number>();

 public ShuttleBean()
 {
 }

 public void setSelectedProducts(List<oracle.jbo.domain.Number>
 _allocatedRoles) {
 this._selectedProducts = _allocatedRoles;
 }

 public List<oracle.jbo.domain.Number> getSelectedProducts() {
 return _selectedProducts;
 }

 public void onAddMultipleProducts(ActionEvent actionEvent) {
 DCBindingContainer dcBindings =

(DCBindingContainer)BindingContext.getCurrent().getCurrentBindingsEntry();
 OperationBinding createMethod =
 dcBindings.getOperationBinding("CreateInsert");
 if (createMethod != null && _selectedProducts.size() > 0) {
 DCIteratorBinding iterator =
 dcBindings.findIteratorBinding("ItemsForOrderIterator");
 for (oracle.jbo.domain.Number productId : _selectedProducts)
 {
 createMethod.execute();
 iterator.getCurrentRow().setAttribute("ProductId", productId);
 }
 }
 }
}

Example 35-2 Managed Bean for the Shuttle Component in the order-select-
many-items Task Flow

<managed-bean id="__3">
 <managed-bean-name>ShuttleBean</managed-bean-name>
 <managed-bean-class>oracle.summit.backing.ShuttleBean</managed-bean-class>
 <managed-bean-scope>backingBean</managed-bean-scope>
</managed-bean>
<view id="showshuttle">
 <page>/orders/showshuttle.jsf</page>

How to Create a Databound Shuttle
Before you begin:

Chapter 35
Creating a Databound Shuttle

35-30

It may be helpful to have an understanding of the options that are available to you
when you create a shuttle. For more information, see Creating a Databound Shuttle.

You may also find it helpful to understand functionality that can be used with
selection lists. For more information, see Additional Functionality for Selection Lists
and Shuttles.

You will need to complete these tasks:

1. Create the relevant iterator bindings in the page definition file. Use Example 35-3
as a guide.

In the Summit ADF sample application, a list binding for ProductId with
ItemsForOrderIterator is added to the showshuttlePageDef.xml file to provide
the list of products for populating the leading list.

2. Create a class similar to the ShuttleBean class and provide methods to process
the values as required. Use Example 35-1 as a guide.

3. Configure the required managed bean and managed properties in the task flow
definition or, in the case of an unbounded task flow, the adfc-config.xml file. Use
Example 35-2 as a guide.

To create a shuttle component:

1. In the Applications window, double-click the web page that will display the
component.

2. In the ADF Faces page of the Components window, from the Text and Selection
panel, drag and drop SelectManyShuttle or SelectOrderShuttle onto the page.

JDeveloper displays the Insert Shuttle wizard, as illustrated in Figure 35-13.

Figure 35-13 Insert SelectManyShuttle Wizard

3. Select Bind to list (select items) and click Bind.

4. In the Expression Builder, expand tree structure to create an expression that will
populate the values for the leading list and click OK.

Chapter 35
Creating a Databound Shuttle

35-31

In the Summit ADF sample application, select ADF Bindings > bindings >
ProductId > items to build the expression #{bindings.ProductId.items} and
click Finish. This binds the f:selectedItem tag of the selectManyShuttle
component to the data collection that populates the shuttle's leading list with a
list of products.

If you decide to retrieve the values for the leading list using a method, for example,
getAllProducts(), you should create this method in the managed bean. You
would then bind to this method in the expression builder.

5. Click Next.

6. In the Common Properties page, click Bind next to the Value field.

7. In the Expression Builder, expand the tree to create an expression that will
populate the values for the trailing list and click OK.

In the Summit ADF sample application, select ADF Managed Beans >
BackingBeanScope > ShuttleBean > selectedProducts to build the expression
#{backingBeanScope.ShuttleBean.selectedProducts} and click Finish. This
binds the value attribute to the selectedProducts() method that populates the
shuttle's trailing list.

8. You may want to add additional controls to process the selected values.

In the Summit ADF sample application, an af:button component labeled
Done is added to the page to process the selected products by calling the
onAddMultipleProducts method defined in the ShuttleBean.

What Happens When You Create a Databound Shuttle
All the bindings of the showshuttle.jsf page are defined in the file
showshuttlePageDef.xml. Example 35-3 shows part of the page definition file for the
showshuttle.jsf page.

Example 35-4 shows the code for the selectManyShuttle component after you
complete the Insert SelectManyShuttle dialog.

Example 35-3 Page Definition File for the showshuttle Page

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="12.1.2.61.86" id="showshuttlePageDef" Package="orders">
 <parameters/>
 <executables>
 <variableIterator id="variables"/>
 <iterator Binds="ItemsForOrder" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="ItemsForOrderIterator"/>
 </executables>
 <bindings>
 <list IterBinding="ItemsForOrderIterator" StaticList="false"
 Uses="LOV_ProductId" id="ProductId"
 DTSupportsMRU="true" SelectItemValueMode="ListObject"/>
 <action IterBinding="ItemsForOrderIterator" id="CreateInsert"
 RequiresUpdateModel="true" Action="createInsertRow">
 </action>
 </bindings>
</pageDefinition>

Chapter 35
Creating a Databound Shuttle

35-32

Example 35-4 SelectManyShuttle Component in showshuttle.jsff File

<af:selectManyShuttle id="sms1"
 value="#{backingBeanScope.ShuttleBean.selectedProducts}"
 leadingHeader="All available products" trailingHeader="Selected products">
 <f:selectItems value="#{bindings.ProductId.items}" id="si1"/>
</af:selectManyShuttle>

Chapter 35
Creating a Databound Shuttle

35-33

36
Creating ADF Databound Search Forms

This chapter describes how to create search forms from data modeled from ADF
Business Components, using ADF data binding and ADF Faces components to
perform complex searches on multiple attributes and search forms to search on a
single attribute. For complex query search forms, it describes how to set up the query
search form mode, results table, saved searches list, and personalization. For single
attribute search forms, it describes how to configure the form layout. In addition, it
includes information on using named bind variables and Query-by-Example (QBE)
filtered table searches.
This chapter includes the following sections:

• About Creating Search Forms

• Creating Query Search Forms

• Setting Up Search Form Properties

• Creating Quick Query Search Forms

• Creating Standalone Filtered Search Tables from Named View Criteria

About Creating Search Forms
Oracle ADF supports a context option that helps to create a quick and effective search
page. Based on different search criteria, you can either use query search forms or
quick query search forms.

You can create search forms that allow users to enter search criteria into input fields
for known attributes of an object. The search criteria can be entered via input text
fields or selected from a list of values in a popup list picker or dropdown list box. The
entered criteria is constructed into a query to be executed. Named bind variables
can be used to supply attribute values during runtime for the query. The results of the
query can be displayed as a table, a form, or another UI component.

Oracle ADF supports two types of search forms: query and quick query. The query
search form is a full-featured search form. The quick query search form is a
simplified form with only one search criteria. Each of these search forms can be
combined with a filtered table to display the results, thereby enabling additional search
capabilities. You can also create a standalone filtered table to perform searches
without the query or quick query search panel.

Search forms are based either on view criteria defined in view objects or on implicit
view criteria defined by JDeveloper. Search forms are region-based components that
are reusable and personalizable. They encapsulate and automate many of the actions
and iterator management operations required to perform a query. You can create
several search forms on the same page without any need to change or create new
iterators.

A filtered table is a table that has additional Query-by-Example (QBE) search criteria
fields above each searchable column. When the filtering option of a table is enabled,

36-1

you can enter QBE-style search criteria for each column to filter the query results. For
more information about tables, see Creating ADF Databound Tables.

For information about individual query and table components, see the Using Query
Components and the Using Tables, Trees, and Other Collection-Based Components
chapters of Developing Web User Interfaces with Oracle ADF Faces.

Implicit and Named View Criteria
When you create data controls, all data collections will automatically include an implicit
view criteria node in the Named Criteria node with an All Queriable Attributes
criteria. This is the default view criteria that includes all the searchable attributes or
columns of the data collection. You cannot edit or modify this implicit view criteria.
Implicit view criteria can be used in the same way as declaratively created (or named)
view criteria during the creation of query and quick query search forms. For more
information about creating named view criteria, see Working with Named View Criteria.

When you add additional named view criteria for that view object or collection, the new
view criteria will be added to the Named Criteria node in the Data Controls panel with
the default implicit view criteria. In the Data Controls panel, a data collection's Named
Criteria node will always include the implicit view criteria, regardless of whether any
named view criteria were defined. The implicit view criteria is always available for
every data collection.

Note:

Query search forms have certain restrictions for working with expressions
that have nested view criteria and may not work with all types of nested
expressions. For more information about the nested expressions supported
by search forms, see What You May Need to Know About Nested View
Criteria Expressions.

List of Values (LOV) Input Fields
List of values (LOV) components are input components that allow the user to enter
values by picking from a list that is generated by a query. ADF Faces provides the
af:inputListOfValues and af:inputComboboxListOfValues components. If you are
using dependent LOVs as part of your search form, you must use them with the
af:query component. For more information about LOV components, see Creating List
of Values (LOV) Components.

If an attribute is defined as an LOV, you can set the Support Multiple Value
Selection control hint in its view criteria to enable users to make multiple selections in
the search criteria field. If multiple selection is enabled on an LOV attribute, and the
Equal to or Not equal to operator is chosen, a selectManyChoice component will
render in the query panel. The user can select multiple items as the search criteria.

When the LOV is in a query component, if the Support Multiple Value Selection hint
is not set and the Equal to or Not equal to operator is chosen, the query component
will render a search criteria component according to the Default List Type control hint
for the corresponding attribute in the view object.

Chapter 36
About Creating Search Forms

36-2

The quick query component does not support multiple selection. It will always render
the component specified by the Default List Type control hint. Table 36-1 shows the
control hint selection and the default list component.

Table 36-1 Query and Quick Query Search Criteria Field Input Components

Default List Type Control Hint Component

Input Text with List of Values af:inputListOfValues

Combo Box with List of Values af:inputComboboxListOfValues

Choice List, Combo Box, List Box, Radio
Group

af:selectOneChoice

For more information about view criteria options, see How to Create Named View
Criteria Declaratively, and What You May Need to Know About Bind Variables in View
Criteria.

Search Form Use Cases and Examples
The search forms are based on the model-driven af:query and af:quickQuery
components. Because these underlying components are model-driven, the search
form will change automatically to reflect changes in the model. The view layer does not
need to be changed. For example, if you define a list of values (LOV) on an attribute in
the view object or entity object, the LOV will automatically show up in the search form
as an LOV component. Or, if you modify a view criteria to include a new attribute for
the WHERE clause, the search panel using this view criteria will automatically reflect that
change by adding a search field for that attribute.

Figure 36-1 shows a quick query component.

Figure 36-1 Quick Query

For more complex searches, such as including criteria for product name, price ranges,
and availability, a query component is used. You can create the query component in
several different modes to give the user different capabilities, as shown in Figure 36-2.
The user can even add their own search criteria using the Add Fields button. The
user can save the searches that were created to be used later.

Figure 36-2 Query Component

Chapter 36
About Creating Search Forms

36-3

For simple searches, you can use the filtered table to provide Query-by-Example
(QBE) searches, as shown in Figure 36-3.

Figure 36-3 Filtered Table Searches

Additional Functionality for Search Forms
You may find it helpful to understand other ADF features before you configure or use
the ADF Model layer. Additionally, you may want to read about what you can do with
your model layer configurations. Following are links to other functionality that may be
of interest.

• Both the query and quick query components are based on the view criteria defined
in a view object. You use the view criteria to set up the initial search fields and
search criteria. You use control hints to further define the query component. For
information about creating named view criteria, see Working with Named View
Criteria.

• Since filtered tables also provide search functions, you should consider them
for simple searches. For information about tables, see Creating ADF Databound
Tables.

• List of value components use the query component in their search panel for
creating the list of values selection list. For information about LOV components,
see Creating List of Values (LOV) Components.

• If your application is set up with a Metadata Storage (MDS), you can persist
saved searches across transactions and personalize your searches. Apart from
column order and column display, you can save the sort order of the results layout.
The sort order is saved as part of a Saved Search. You can restore the saved
search including the sort order of the results layout by re-invoking this Saved
Search entry. This means that apart from display index and visible properties of
the column, the sort order property is also saved as part of the saved layout. For
information about using MDS, see Customizing Applications with MDS.

Creating Query Search Forms
Query search form is a full-featured search form that is based on a view criteria
defined in ADF Business Components view object. You can use different methods to
create query search forms with binding variables.

The query search form is the standard form for complex transactional searches.
You can build complex search forms with multiple search criteria fields each with a
dropdown list of built-in operators. You can also add custom operators and customize
the list. The query search form supports lists of values, AND and OR conjunctions, and
saving searches for future use.

Chapter 36
Creating Query Search Forms

36-4

A query is associated with the view object that it uses for its query operation. In
particular, a query component is the visual representation of the view criteria defined
for that view object. For information on creating view criteria, see Working with Named
View Criteria. The view criteria items defined in the view criteria is the source for the
search criteria in the search panel of the query component. The Rendered Mode
option in the view criteria editor controls the search criteria will be displayed.

Search criteria can be grouped together to provide a logical grouping of attributes. For
instance, you can group the address attributes together.

A query search form has a basic mode and an advanced mode. The user can toggle
between the two modes using the basic/advanced button. At design time, you can
declaratively specify form properties (such as setting the default state) to be either
basic or advanced. Figure 36-4 shows an advanced mode query search form with
three search criteria.

Figure 36-4 Advanced Mode Query Search Form

The advanced mode query form features are:

• Selecting search criteria operators from a dropdown list

• Adding custom operators and deleting standard operators

• Selecting WHERE clause conjunctions of either AND or OR (match all or match any)

• Dynamically adding and removing search criteria fields at runtime

• Saving searches for future use

• Personalizing saved searches

Typically, the query search form in either mode is used with an associated results table
or tree table. In the Summit sample application for Oracle ADF, the query panel and
results table is shown in Figure 36-5.

Chapter 36
Creating Query Search Forms

36-5

Figure 36-5 Results Table for a Query Search

The basic mode has all the features of the advanced mode except that it does not
allow the user to dynamically add search criteria fields. Figure 36-6 shows a basic
mode query search form with three search criteria field. Notice the lack of a dropdown
list next to the Save button used to add search criteria fields in the advanced mode.

Figure 36-6 Basic Mode Query Form with Three Search Criteria Field

In either mode, each search criteria field can be modified by selecting operators such
as Greater Than and Equal To from a dropdown list, and the entire search panel
can be modified by the Match All/Any radio buttons. Partial page rendering is also
supported by the search forms in almost all situations. For example, if a Between
operator is chosen, another input field will be displayed to allow the user to select the
upper range.

A Match All selection implicitly uses AND conjunctions between the search criteria in
the WHERE clause of the query. A Match Any selection implicitly uses OR conjunctions in
the WHERE clause. Here is a simplified WHERE clause (the real WHERE in the view criteria
is different) when Match All is selected for the search criteria shown in Figure 36-4:

 WHERE (Id < 4) AND (InStock > 20) AND (Name="Shoes")

This is a simplified WHERE clause if Match Any is selected for the search criteria shown
in Figure 36-4.

 WHERE (Id < 4) OR (InStock > 20) OR (Name="Shoes")

If the view criteria for the query has mixed AND and OR conjunctions between the
criteria items, then neither Match All nor Match Any will be selected when the

Chapter 36
Creating Query Search Forms

36-6

component first renders. However, the user can select Match All or Match Any to
override the conjunctions defined as the initial state in the view criteria.

Advanced mode query forms allow users to dynamically add search criteria fields
to the query panel to perform more complicated queries. These user-created search
criteria fields can be deleted, but the user cannot delete existing fields. You use the
Add Fields dropdown list to add a search criteria field or all the fields within the group.

Figure 36-7 shows a query search form and how the Add Fields dropdown list is
selected to add a criteria field to the search form.

Figure 36-7 Dynamically Adding Search Criteria Fields at Runtime

Figure 36-8 shows a query search form with a new user-added search criteria with the
delete icon to its right. Users can click the delete icon to remove the criteria.

Figure 36-8 User-Added Search Criteria with Delete Icon

You can use the Reorder button to open the Reorder Search Fields dialog to reorder
the search fields in the search panel, as shown in Figure 36-9.

Chapter 36
Creating Query Search Forms

36-7

Figure 36-9 Reorder Search Fields dialog

If either Match All or Match Any is selected and then the user dynamically adds the
second instance of a search criterion, then both Match All and Match Any will be
deselected. The user must reselect either Match All or Match Any before clicking the
Search button.

If you intend for a query search form to have both a basic and an advanced mode,
you can define each search criteria field to appear only for basic, only for advanced, or
for both. When the user switches from one mode to the other, only the search criteria
fields defined for that mode will appear. For example, suppose three search fields for
basic mode (A, B, C) and three search fields for advanced mode (A, B, D) are defined
for a query. When the query search form is in basic mode, search criteria fields A, B,
and C will appear. When it is in advanced mode, then fields A, B, and D will appear.
Any search data that was entered into the search fields will also be preserved when
the form returns to that mode. If the user entered 35 into search field C in basic mode,
switched to advanced mode, and then switched back to basic, field C would reappear
with value 35.

Along with using the basic or advanced mode, you can also determine how much
of the search form will display. The default setting displays the whole form. You can
also configure the query component to display in compact mode or simple mode.
The compact mode has no header or border, and the Saved Search dropdown lists
moves next to the expand/collapse icon. Also, the Basic button has been moved to
the bottom of the form and the Search label is omitted. Figure 36-10 shows a query
search form set to compact mode.

Figure 36-10 Query Component in Compact Mode

The simple mode displays the component without the header and footer, and without
the buttons normally displayed in those areas. Figure 36-11 shows the same query
search form set to simple mode.

Chapter 36
Creating Query Search Forms

36-8

Figure 36-11 Query Component in Simple Mode

If there are multiple view criteria defined, each can be selected from the Saved
Search dropdown list. These saved searches are created at design time and are
called system searches. For example, if you have defined two view criteria in the
view object, both view criteria are available for selection in the query search form
Saved Search dropdown list, as shown in Figure 36-12.

Note:

Be aware that opening and closing the query panel by clicking the panel
expansion/collapse icon does not reset the applied view criteria. You can
click the Reset button to reset the applied view criteria.

Figure 36-12 Query Form Saved Search Dropdown List

If there are no explicitly defined view criteria for a view object, you can use the default
implicit view criteria.

Users can also create saved searches at runtime to save the state of a search for
future use. Apart from display index and visible properties of the column, the sort
order property is also saved as part of the saved layout. In other words, apart from
column order and column display, the sort order of each column is saved as part of
a saved search. This means that the user can sort any column on the results table
layout in ascending or descending order and subsequently save the sorted layout
of the results table as part of the saved search. When the user invokes this saved
search again, the sorted layout of the results table displays. If no sort order is specified
on any columns on the layout of the results table of a query search, and the user
saves the search as a Saved Search, the sort order of the layout of the results
table that is saved, is the sort order specified in the view object. The entered search
criteria values, the basic/advanced mode state, and the layout of the results table/
component can be saved by clicking the Save button to open a Save Search dialog,
as shown in Figure 36-13. Saved searches appear in alphabetical order in the Saved
Search dropdown list. User-created saved searches persist for the session. If they
are intended to be available beyond the session, you must configure a persistent data
store to store them. For Oracle ADF, you can use an access-controlled data source

Chapter 36
Creating Query Search Forms

36-9

such as MDS. For more information about using MDS, see Customizing Applications
with MDS .

When you perform a saved search, you can specify whether the layout of the
results component is also saved. Creating saved searches and saving the results
components layout require that MDS is configured. If you set the query component's
saveResultsLayout attribute to always, the results component layout will be saved. If
saveResultsLayout is set to never, the layout is not saved.

<context-param>
 <description>Saving results layout</description>
 <param-name>oracle.adf.view.rich.query.SAVE_RESULTS_LAYOUT</param-name>
 <param-value>true</param-value>
</context-param>

If saveResultsLayout is not defined, saving layout defaults to the application-level
property oracle.adf.view.rich.query.SAVE_RESULTS_LAYOUT in the web.xml file. The
default value of oracle.adf.view.rich.query.SAVE_RESULTS_LAYOUT is true.

If the user made changes to the layout of a saved search and proceeds without
saving, a warning message appears to remind the user to save, otherwise the
changes will be lost. In addition, if the user adds or deletes search fields and proceeds
without saving, a warning message also appears.

Table 36-2 shows the saveResultsLayout and SAVE_RESULTS_LAYOUT values and their
resultant action. Note that MDS must be configured to save layout.

Table 36-2 Save Results Component Layout Attributes

web.xml
SAVE_RESULT_LAYOUT

Query Component
saveResultsLayout

Resultant
action

true always Saves layout

true never Not saved

true not defined Saves layout

false always Saves layout

false never Not saved

false not defined Not saved

Figure 36-13 shows the Create Saved Search dialog with an entry field for the
name of the saved search and checkbox selections for Set as Default and Run
Automatically.

Figure 36-13 Runtime Saved Search Dialog Window

Chapter 36
Creating Query Search Forms

36-10

Table 36-1 lists the possible scenarios for creators of saved searches, the method of
their creation, and their availability.

Table 36-3 Design Time and Runtime Saved Searches

Creator Created at Design time as
View Criteria

Created at Runtime with the
Save Button

Developer Developer-created saved
searches (system searches)
are created during application
development and typically are
a part of the software release.
They are created at design
time as view criteria. They are
usually available to all users
of the application and appear
in the lower part of the Saved
Search dropdown list.

Administrator Administrator-created saved
searches are created during
predeployment by site
administrators. They are
created before the site is
made available to the general
end users. Administrators
can create saved searches
(or view criteria) using the
JDeveloper design time when
they are logged in with the
appropriate role. These saved
searches (or view criteria)
appear in the lower part of the
Saved Search dropdown list.

End User End-user saved searches are
created at runtime using the
query form Save button. They
are available only to the user
who created them. End-user
saved searches appear in the
top part of the Saved Search
dropdown list.

You can use the runQueryAutomatically property as listed in the Property Inspector
to specify whether a saved search will run the query automatically. Setting the
property to allSavedSearches means all system and user-created saved searches
will run automatically when the query component is initially loaded, whenever
the saved search has changed, or the reset button is pressed. If you set the
runQueryAutomatically property to searchDependent, you can specify at design
time whether that specific query will run automatically. searchDependent is the default
value.

For new user-created saved searches with runQueryAutomatically property set to
searchDependent, the Create Saved Search dialog, as shown in Figure 36-13, will
have the Run Automatically option set as the default. For new user-created saved
searches with runQueryAutomatically property set to allSavedSearches, the Create
Saved Search dialog will not display the Run Automatically option, but it will be set
implicitly.

Chapter 36
Creating Query Search Forms

36-11

End users can manage their saved searches by using the Personalize function in the
Saved Search dropdown list to bring up the Personalize Saved Searches dialog, as
shown in Figure 36-14.

End users can use the Personalize function to:

• Update a saved search.

Users can add and/or remove search criterion, update operators, update values,
modify conjunctions and save it using the existing saved search name (to override
an existing saved search).

• Delete a saved search (including the currently active Saved Search)

Users can delete the default saved search, in which case the next USER level
saved search will become the default.

• Duplicate an existing saved search

• Set a saved search as the default

• Set a saved search to run automatically

• Set the saved search to show or hide from the Saved Search dropdown list

Figure 36-14 Personalize Saved Searches Dialog

Note:

If in you are changing the value of a view criteria item programmatically,
you must invoke the ViewCriteria.saveState() method to prevent the
searchRegion binding from resetting the value of the view criteria item to
the value that was specified at design time.

You create a query search form by dropping a named view criteria item from the
Data Controls panel onto a page. You have a choice of dropping only a search panel,
dropping a search panel with a results table, or dropping a search panel with a tree
table.

If you choose to drop the search panel with a table, you can select the filtering option
in the dialog to turn the table into a filtered table.

Chapter 36
Creating Query Search Forms

36-12

Typically, you would drop a query search panel with the results table or tree table.
JDeveloper will automatically create and associate a results table or tree table with the
query panel.

If you drop a query panel by itself and want a results component or if you already have
an existing component for displaying the results, you will need to match the query
panel's ResultsComponentId with the results component's Id.

Note:

When you drop a named view criteria onto a page, that view criteria will be
the basis for the initial search form. All other view criteria defined against that
data collection will also appear in the Saved Search dropdown list. Users
can then select any of the view criteria search forms, and also any end-user
created saved searches.

How to Create a Query Search Form with a Results Table or Tree
Table

You create a search form by dragging and dropping a view criteria from the Data
Controls panel onto the page. You have the option of having a results table or only the
query panel.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a query search form. For more information, see Creating Query
Search Forms.

You may also find it useful to understand functionality that can be used with query
search forms. For more information, see Additional Functionality for Search Forms.

You will need to complete these tasks:

1. Create a view object. For more information about view objects, see Populating
View Object Rows from a Single Database Table, and Working with Multiple Tables
in Join Query Results.

2. Create view criteria if you intend to create search forms based on view criteria.
You can also use the default implicit view criteria, which would include all queriable
attributes in the collection. For more information about view criteria, see Working
with Named View Criteria.

3. Set the search form default properties. For more information about setting the
default state of the search form, see How to Set Search Form Properties on the
View Criteria. For information on how to create view criteria, see Working with
Named View Criteria.

To create a query search form with a results table or tree table:

1. From the Data Controls panel, select the data collection and expand the Named
Criteria node to display a list of named view criteria.

2. Drag the named view criteria item and drop it onto the page or onto the Structure
window.

Chapter 36
Creating Query Search Forms

36-13

3. From the context menu, choose Create > Query > ADF Query Panel with
Table or Create > Query > ADF Query Panel with Tree Table, as shown in
Figure 36-15.

Figure 36-15 Data Controls Panel with Query Context Menu

4. In the Edit Table Columns dialog, you can rearrange any column and select table
options. If you choose the filtering option, the table will be a filtered table.

After you have created the form, you may want to set some of its properties or add
custom functions. For more information on how to do this, see Setting Up Search Form
Properties.

How to Create a Query Search Form and Add a Results Component
Later

You create a search form by dragging and dropping a view criteria from the Data
Controls panel onto the page. You have the option of having a results table or only the
query panel.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a query search form. For more information, see Creating Query
Search Forms.

You may also find it useful to understand functionality that can be used with query
search forms. For more information, see Additional Functionality for Search Forms.

You will need to complete these tasks:

1. Create a view object.

2. Create view criteria if you intend to create search forms based on view criteria.
You can also use the default implicit view criteria, which would include all queriable
attributes in the collection.

3. Set the search form default properties. For more information about setting the
default state of the search form, see How to Set Search Form Properties on the
View Criteria. For information on how to create view criteria, see Working with
Named View Criteria.

To create a query search form and add a results component in a separate step:

1. From the Data Controls panel, select the data collection and expand the Named
Criteria node to display a list of named view criteria.

2. Drag the named view criteria item and drop it onto the page or onto the Structure
window.

3. From the context menu, choose Create > Query > ADF Query Panel, as shown
in Figure 36-15.

Chapter 36
Creating Query Search Forms

36-14

4. If you do not already have a results component, then drop the data collection
associated with the view criteria as a component.

5. In the Properties window for the table, copy the value of the Id field.

6. In the Properties window for the query panel, paste the value of the table's ID into
the query's ResultsComponentId field.

After you have created the search form, you may want to set some of its properties or
add custom functions. See Setting Up Search Form Properties, for more information.

How to Persist Saved Searches into MDS
If you want saved searches to be persisted to MDS, you need to define the /persdef
namespace in the adf-config.xml file. In addition, you need to perform the regular
MDS configuration, such as specifying metadatapath. The following example shows
an adf-config.xml file with the /persdef namespace defined.

<persistence-config>
 <metadata-namespaces>
 <namespace path="/persdef" metadata-store-usage="mdsstore"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="mdsstore" deploy-target="true"
 default-cust-store="true">
 </metadata-store-usage>
 </metadata-store-usages>
</persistence-config>

In order for the added saved searches to be available the next time the user logs
in, cust-config needs to be defined as part of the MDS configuration. For more
information about setting cust-config and MDS, see How to Create Customization
Classes.

If you are also saving the layout of the results component, the application must have
the ADF PageFlow Runtime and ADF Controller Runtime libraries installed. Set the
project's technology scope to include ADF Page Flow or automatically include these
libraries by using the ADF Fusion Web Application application template.

What You May Need to Know About Named Bind Variables in Search
Forms

Instead of specifying a literal operand in a view criteria to be used in a search form,
you have the option of specifying a named bind variable. The named bind variable
performs like a parameter whose value can change at runtime without the need to
change the SQL statement. It must be defined in the view object before it can be used
in a view criteria.

If you specify a literal operand in the view criteria and leave the value blank, it will
not appear in the SQL preview. When the view criteria is applied as a search form at
runtime, that attribute is rendered as a blank input search field. If a value is specified
for the literal operand, then the SQL preview will generate a SQL clause for it. When
the view criteria is applied as a search form at runtime, the SQL statement is not
automatically applied even though the value specified in the view criteria appears
in the input search field. The SQL statement won't get applied until the user clicks
Search (or when auto-execute is set to true).

Chapter 36
Creating Query Search Forms

36-15

If a named bind variable is used in the query defined in the view criteria, the SQL
preview will display the WHERE clause with the bind variable. When the view criteria is
applied as a search form at runtime, the bind variable will be rendered with a prompt
and an input search field based on the name of the attribute (not on the name of the
bind variable). The named bind variable input field may be NULL, it may contain the
default value, or it may contain a value that has loaded from previous processing,
such as from another page. The user can enter values for the named bind variable
as in any other search criteria. When the search is executed, the value of the named
bind variable will be evaluated with the other criteria, as defined by the SQL query
statement.

Note:

To avoid the possibility of SQL injection for search forms with literal values,
you can force all input search fields to use bind variables by setting the
useBindVarsForViewCriteriaLiterals property to true in the adf-config.xml
file. The default value is true. When set to true, each input search field in
the application will display the default value defined by the literal operand
based on the query component's associated view criteria.

For more information about the adf-config.xml file, see adf-config.xml.

You can also use the overview editor to edit this property. In the overview
editor for adf-config.xml, click the Model tab and check or uncheck the
Use Bind Variable for ViewCriteria literals checkbox.

If the bind variable is used more than once in the same view criteria, each occurrence
of the bind variable will be rendered as an individual input field. Because there is
only one bind variable backing all the input fields, the value of all the fields will be
synchronized. For instance, if you specify a view criteria that uses the same bind
variable three times, then three input fields will be rendered. When the user enters a
value into one input field, the other two input fields will have the same value. Using
bind variables in this way eliminates the need for the user to enter the same value
multiple times.

Another use of the bind variable is to pass a value from the base row into a search for
an LOV search form.

Bind variables can also be used to pass parameter values from one page to another,
such as when a customer ID is passed to another page for more detail processing.
And, depending on the construct of the SQL statement, using the named bind variable
may speed up the query because it may lessen the need to prepare a new statement,
which means that the database does not need to reparse. For more information about
creating and using named bind variables, see Working with Bind Variables.

For example, in the listCustomerAddresses view criteria, the WHERE clause checks to
see whether the AssociatedOwnerId is the same as the value of the paramCustomerId
named bind variable. This view criteria is in the AddressesLookupVO view object. The
listCustomerAddresses view criteria as defined in the Edit View Criteria dialog is
shown in Figure 36-16.

Chapter 36
Creating Query Search Forms

36-16

Figure 36-16 View Criteria with Named Bind Variable

A query search form for a view criteria with a named bind variable will render with a
search field for the variable using the inputText component. Figure 36-17 shows the
AssociatedOwnerId search field displayed as an inputText component.

Figure 36-17 Query Search Form with Named Bind Variable

What You May Need to Know about Default Search Binding Behavior
A search binding provides the model-driven behavior for a search form at runtime.
The search binding is related to a particular iterator and the view criteria on that
iterator, whose runtime defaults are specified by the Binds and Criteria properties of
the search binding, respectively. The behavior of the search binding depends on the
Query Automatically control hint. For more information about creating named view
criteria, see Working with Named View Criteria.

The first time a search form is rendered in a task flow, the search binding's runtime
behavior, also known as the initial AutoQuery-or-ClearRowSet behavior, is as follows:

Chapter 36
Creating Query Search Forms

36-17

• If Query Automatically is set to true: The search binding automatically executes
the iterator when the search binding is initialized in a task flow. The user will be
presented with the results of the search based on the view criteria.

• If Query Automatically is set to false: The search binding clears the row set
related to its iterator. The user will be presented with an empty search results
component, which allows the user to enter search criteria and click the Search
button to execute the search.

The Query Automatically control hint is available declaratively only for named view
criteria. For the All Queriable Attributes view criteria, you can use the setProperty()
method on the view criteria API interface to configure the hint at runtime. You can
also use this method to set the hint on named view criteria. In the method, set the
ViewCriteriaHints.CRITERIA_AUTO_EXECUTE property to true.

If the user changes the search form by selecting a different view criteria from the
dropdown Saved Search list, the runtime behavior is as follows:

• If Query Automatically is set to true: The search binding automatically executes
the iterator after applying the new view criteria. The user will be presented with the
results of the newly selected saved search.

• If Query Automatically is set to false: The search binding applies the new view
criteria only, leaving any existing search results intact. The user is presented with
the results of the previous search.

The search binding's queryPerformed property evaluates to true if the search binding
has performed the query, either automatically or by the user clicking the Search
button. Clicking the Reset button in the search form resets the view criteria and sets
the queryPerformed property to false.

The search binding offers two properties that allow you to customize its default
behavior: TrackQueryPerformed and InitialQueryOverridden. You can set the
TrackQueryPerformed and the InitialQueryOverridden properties in the Properties
window.

A search binding's TrackQueryPerformed property controls whether it manages its
queryPerformed property during runtime at the page flow level or at the individual
page or page fragment level. The valid values for TrackQueryPerformed are pageFlow
and page, and the default is pageFlow. The search binding's behavior is as follows:

• If TrackQueryPerformed is set to pageFlow, then queryPerformed is initialized
once per page flow and tracked at the page flow level. The user can navigate
away from the search form page, return to the page within the life of the page flow,
and the value of the queryPerformed flag will remain the same.

• If TrackQueryPerformed is set to page, then queryPerformed is initialized each
time the user navigates to the page or page fragment. This happens when the
page is navigated to for the first time and when the page is returned from another
page within the page flow.

When TrackQueryPerformed of a search binding is set to pageFlow, its initial
AutoQuery-or-ClearRowSet behavior is performed once during the page flow.
In contrast, when TrackQueryPerformed is set to page, the initial AutoQuery-or-
ClearRowSet behavior is performed each time the user visits the page or page
fragment.

A search binding's InitialQueryOverridden property controls whether it should
suppress its initial AutoQuery-or-ClearRowSet behavior the first time the search

Chapter 36
Creating Query Search Forms

36-18

binding is used in a page flow. If InitialQueryOverridden is true, then all valid
values, including true, false, or a boolean-valued EL expression, are suppressed.
The default value is false.

When you set the InitialQueryOverridden property to true, you are responsible
for writing custom application logic to execute the query. Typically, the query should
execute after the code applies some view criteria, sets some bind variables, or
performs some other programmatic query setup. If your custom code fails to execute
the query as expected with InitialQueryOverridden set to true, unless Query
Automatically is set to false, the framework will still implicitly execute your query
the first time during a user session in which there is an iterator binding reference. This
occurs because when Query Automatically is not set to false, the iterator binding's
default executeQueryIfNeeded behavior takes effect and executes the query.

When InitialQueryOverridden evaluates to true or boolean true, then the initial
AutoQuery-or-ClearRowSet behavior is suppressed the first time the search binding
is used in a page flow. If TrackQueryPerformed is set to pageFlow, then only the
initial AutoQuery-or-ClearRowsSet behavior (that would have occurred for this search
binding) is suppressed.

In contrast, if a search binding's TrackQueryPerformed property is set to page, then
only the initial AutoQuery-or-ClearRowSet behavior is suppressed. Subsequent initial
AutoQuery-or-ClearRowSet behaviors that occur due to the user's navigating back to
the same page (or page fragment) are not affected by the InitialQueryOverridden
property.

If you want to avoid the search binding's performing any initial AutoQuery-or-
ClearRowSet behavior, then leave the TrackQueryPerformed set to pageFlow and set
InitialQueryOverridden to true.

You should not use the RefreshCondition property of an iterator to reference the
queryPerformed property of a search binding. Doing so will inadvertently prevent new
rows from being created in that iterator's row set until after the search binding's query
has been performed.

What You May Need to Know About Dependent Criterion
There are situations when one search criteria is dependent on the value of another
criteria. For example, a bug database has a search form with a Component and a
Subomponent search criteria, both defined as LOVs. When the user selects a value
from the Component search criteria, that value must be submitted to the model so that
Subomponent can be filtered and populated with the appropriate search list for the user
to choose from.

If you have a search criteria that has dependents, you must set the root and
dependent criteria's underlying view attribute's Auto Submit control hint to true.
You can create a custom listener to trigger a partial submit to update the model
and refresh the search panel when the query component detects a value change
for the root criteria. You need to create a custom listener because the standard
QueryOperationListener does not handle this event type. You can create a custom
QueryOperationListener class using the QueryOperationListener interface. You
then register this class by implementing it in a managed bean or by directly setting
it in the JSF page.

Chapter 36
Creating Query Search Forms

36-19

What Happens When You Create a Query Form
When you drop a query search form onto a page, JDeveloper creates an af:query
tag on the page. If you drop a query with table or tree table, then an af:table tag or
af:treeTable tag will follow the af:query tag.

Under the af:query tag are several attributes that define the query properties. They
include:

• The id attribute, which uniquely identifies the query.

• The resultsComponentId attribute, which identifies the component that will display
the results of the query. Typically, this will be the table or tree table that was
dropped onto the page together with the query. You can change this value to be
the id of a different results component. For more information, see How to Create a
Query Search Form and Add a Results Component Later.

In the page definition file, JDeveloper creates an iterator and a searchRegion entry in
the executables section. The following example shows the sample code for a page
definition file that was created when the CustomerViewCriteria from the Customers
collection of the BackOfficeAppModuleDataControl is dropped onto the page.

In the page definition file executable section:

• The iterator binds property is set to the name of the data collection. In the
example, the value is set to Customers.

• The iterator id property is set to a data collection iterator. In the example, the
value is set to CustomersIterator

• If there is more than one view criteria defined for that data collection, the
searchRegion Criteria property is set to the name of the view criteria that was
dropped. In the example, the value is set to CustomerViewCriteria. If there is only
one view criteria defined, then there will not be a Criteria property.

• The searchRegion Binds property is set to the same value as the iterator id
property. In the example, the value is set to CustomersIterator

• The searchRegion id property is set to the name of the view criteria concatenated
with Query. In the example, the value is set to CustomerViewCriteria.

If the query was dropped onto the page with a table or tree, then in the page definition
file bindings section, a tree element is added with the Iterbinding property set to the
search iterator. In this example, the value is set to CustomersIterator. This should be
the same iterator defined in the executable section.

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
version="12.1.2.66.41" id="searchPageDef"
 Package="oracle.summit.view.pageDefs">
 <parameters/>
 <executables>
 <variableIterator id="variables"/>
 <iterator Binds="Customers" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl" id="CustomersIterator"/>
 <searchRegion Criteria="CustomerViewCriteria"
 Customizer="oracle.jbo.uicli.binding.JUSearchBindingCustomizer"
 Binds="CustomersIterator" id="CustomerViewCriteriaQuery"/>
 </executables>

Chapter 36
Creating Query Search Forms

36-20

 <bindings>
 <tree IterBinding="CustomersIterator" id="Customers">
 <nodeDefinition DefName="oracle.summit.model.views.CustomerVO"
 Name="Customers0">
 <AttrNames>
 <Item Value="Id"/>
 <Item Value="Name"/>
 <Item Value="City"/>
 <Item Value="State"/>
 <Item Value="CountryId"/>
 <Item Value="LastName"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
 </bindings>
</pageDefinition>

What Happens at Runtime: Search Forms
At runtime, the search form displays as a search panel on the page. The search
panel will display in either basic mode or advanced mode, depending on the mode
control hint when its corresponding view criteria was created. The Saved Search
dropdown list will contain all the view criteria that are enabled (Show in List control
hint enabled). The Match All/Any conjunction radio button may be enabled.

A search criteria field will be rendered for each search criteria defined in the view
criteria. If the Default List Type control hint in the view object has been declared as an
LOV or a selection list component, the search criteria field component is as shown in
Table 36-1.

After the user enters the search criteria and clicks Search, a query against the view
criteria is executed and the results are displayed in the associated table, tree table, or
component.

When the users changes the mode of the query component from advanced to basic,
the operators displayed by the query component may change depending upon how
you have configured the view criteria control hint Show Operators and depending
on whether the view criteria is a predefined, named view criteria or the automatically
defined implicit criteria. In the case of named view criteria, the query component will
only preserve the user’s selection between modes when you set Show Operators to
Always to allow the full list of operators in both modes. However, if you set Show
Operators to In Advanced Mode to only show the full list of operators in advanced
mode, then after the user makes their selections and switches to basic mode, the
operators will default to the ones defined by the view criteria and for this reason
the user’s selections may appear to change. In the case of an implicit view criteria,
because the implicit criteria does not have predefined operators, the query component
retains the operators selected by the user when user switches between advanced
mode and basic mode.

Setting Up Search Form Properties
For a query search form in Oracle ADF, you can set search form properties on view
criteria or on the query component. You can set the properties either during the
creation of view criteria or after you have dropped the query search form onto a page.

A query search form is based on a view criteria defined in a view object. When you
create the view criteria, you also specify some of the search form properties. Later on,

Chapter 36
Setting Up Search Form Properties

36-21

when you drop the named criteria onto the page to create a query component, you can
specify other search form properties.

Search form properties that can be set on the view object include grouping related and
dependent fields together in the query panel. For information on setting hints in the
view object, see How to Define UI Category Hints.

Search form properties that can be set when the view criteria is being created include:

• Default mode in basic or advanced mode

• Automatic query execution when the page loads

• Rendering of the search criteria field

• Enabling multiple selections for attributes defined as an LOV

Search form properties that can be set after the query component has been added to
the JSF page include:

• id of the results table or results component

• Show or hide of the basic/advanced button

• Position of the mode button

• Default, simple, or compact mode for display

Search form attribute properties that can be set when the view object is being created
include:

• timezone control hint for a timestamp attribute

How to Set Search Form Properties on the View Criteria
When you are creating a view criteria, you can declaratively set the initial state of
several properties. Figure 36-18 shows the Edit View Criteria dialog for setting default
options. For more information about view criteria, see Working with Named View
Criteria.

Chapter 36
Setting Up Search Form Properties

36-22

Figure 36-18 Create View Criteria Dialog

You must select the default mode of the query search form as either basic or
advanced. The default is basic.

You also must declare whether each individual search criteria field will be available
only in basic mode, only in advanced mode, available in both modes, or never
displayed. If a search criteria field is declared only for basic mode, it will not appear
when the user switches to advanced mode, and the reverse is true. If the field is
declared for all, then it will appear in all modes. The default for search criteria field
rendering is all modes.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a query search form. See Setting Up Search Form Properties.

You may also find it useful to understand functionality that can be used with query
search forms. See Additional Functionality for Search Forms.

You will need to complete this task:

Create a view criteria for the query search form, as described in Working with
Named View Criteria.

To set the default mode and search criteria field display option:

1. In the Applications window, double-click the view object that contains the view
criteria you created for the query search form.

2. In the overview editor for the view object, click the View Criteria navigation tab.

3. In the View Criteria page, select the view criteria from the list and click Edit.

4. In the Edit View Criteria dialog, click the Item UI Hints tab on the Criteria
Definition page.

Chapter 36
Setting Up Search Form Properties

36-23

5. In the Rendered Mode dropdown list, select All, Basic, Advanced, or Never.

6. In the Edit View Criteria dialog, click the Criteria UI Hints tab.

7. From the Search Region Mode dropdown list, select either Basic or Advanced.

8. In the Criteria Item UI Hints section, select the criteria item you want to set.

9. In the Show Operators dropdown list, select Always, In Basic Mode, Never, In
Advanced Mode, or Never to specify whether or not the user may change the
operators displayed by the query component backed by this view criteria.

The operators displayed by the query component when the users changes the
mode of the query component from advanced to basic may change depending
upon how you have configured Show Operators. The query component will only
preserve the user’s selection between modes when you set Show Operators
to Always to allow the full list of operators in both modes. However, if you set
Show Operators to In Advanced Mode to only show the full list of operators in
advanced mode, then after the user makes their selections and switches to basic
mode, the operators will default to the ones defined by the view criteria and for this
reason the user’s selections may appear to change. Select Never when you want
the view criteria to be executed using ONLY the operators it defines (where the full
list of operators will not be exposed in either basic or advance modes).

10. Click OK.

How to Set Search Form Properties on the Query Component
After you have dropped the query search form onto a page, you can edit other form
properties in the Properties window, as shown in Figure 36-19. Some of the common
properties you may set are:

• Enabling or disabling the basic/advanced mode button

• Setting the ID of the query search form

• Setting the ID of the results component (for example, a results table)

• Selecting the default, simple, or compact mode for display

• Setting the criterionFeatures to matchCaseDisplayed to require all string-based
search criterion to be case-sensitive or to requiredDisplayed to require all the
criterion to be displayed.

Chapter 36
Setting Up Search Form Properties

36-24

Figure 36-19 Properties window for a Query Component

One common option is to show or hide the basic/advanced button. For more
information on some of the other properties, see the How to Add the Query
Component section in Developing Web User Interfaces with Oracle ADF Faces.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a query search form. For more information, see Setting Up Search
Form Properties.

You may also find it useful to understand functionality that can be used with query
search forms. For more information, see Additional Functionality for Search Forms.

To enable or hide the basic/advanced button in the query form:

1. In the Structure window, double-click af:query.

2. In the Properties window, click the Appearance tab.

3. To enable the basic/advanced mode button, select true from the
ModeChangeVisible field. To hide the basic/advance mode button, select false
from the ModeChangeVisible field.

How to Set Timezone Control Hint for Timestamp Attribute
If a query includes a Date attribute, you can set its timezone using control hints on the
view object or entity object where the attribute is defined. For instance, you can set the
Hiredate of an employee to have the correct timezone for the employee's local office.

Before you begin:

Chapter 36
Setting Up Search Form Properties

36-25

Create the desired view objects as described in How to Create an Entity-Based View
Object, and How to Create a Custom SQL Mode View Object.

To customize view object timestamp attribute with control hints:

1. In the Applications window, double-click the view object.

2. In the overview editor, click the Attributes navigation tab and select the Date
attribute that you want to customize with control hints.

3. Click the UI Hints tab to expose the Timezone property.

4. Select a time zone from the Timezone dropdown list.

The time zone values are listed as Universal Time Coordinated (UTC) +/- hours.

How to Create Custom Operators
You can create custom operators for each view criteria item by adding code to the
view object XML file. For example, you can create a new operator called more than a
year, which operates on a date attribute (greater than 365 days from the current date).

You can add custom operators for a view object attribute by adding code for that
attribute in the view object XML file.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a query search form. For more information, see Setting Up Search
Form Properties.

You may also find it useful to understand functionality that can be used with query
search forms. For more information, see Additional Functionality for Search Forms.

To add a custom operator:

1. In the Applications window, select the view object for the view criteria in which you
want to add a custom operator.

2. In the overview editor, click the Source tab.

3. In the XML editor, locate the code for the view criteria attribute, and add the
CompOper code statements after the last item within the ViewCriteriaItem group.
Example 36-1 shows code for the view criteria: the CompOper code statements
appear in bold.

The CompOper properties are:

• Name: Specify an id for the operation.

• ToDo: Set to 1 to add this custom operator. Set to -1 to remove an operator.

• OperDescStrCode: Specify the id used in the message bundle to map to the
description string, as described in Step 4.

• Oper: Set to a value that will be used programmatically to denote this
operation in the SQL statement. In Example 36-1, Oper was set to >Y to
denote greater than 1 year.

• MinCardinality: If there is an input range, set this property to the minimum
value for the range. For example, if the range is months in a year, this value
should be set to 1. If there is no range, set it to 0.

Chapter 36
Setting Up Search Form Properties

36-26

• MaxCardinality: If there is an input range, set this property to the maximum
value for the range. For example, if the range is months in a year, this value
should be set to 12. If there is no range, set it to 0.

• TransientExpression: Set the expression to perform the custom operator
function. In Example 36-1, the expression is ![CDATA[return " > SYSDATE
-365"]], which returns the string " > SYSDATE -365".

4. Open the message bundle file for the view object and add an entry for the custom
operator, using the OperDescStrCode identifier defined in the view object XML in
Step 3.

Example 36-2 shows the message bundle code for the LastUpdateDate custom
operator described in Example 36-1.

Example 36-1 Adding the Custom Operator Code to the View Object XML

<ViewCriteriaRow
 Name="vcrow50"
 UpperColumns="1">
 <ViewCriteriaItem
 Name="LastUpdateDate"
 ViewAttribute="LastUpdateDate"
 Operator="="
 Conjunction="AND"
 Required="Optional">
 <CompOper
 Name="LastUpdateDate"
 ToDo="1"
 OperDescStrCode="LastUpdateDate_custOp_grt_year"
 Oper=">Y"
 MinCardinality="0"
 MaxCardinality="0" >
 <TransientExpression><![CDATA[return " < SYSDATE - 365"
]]></TransientExpression>
 </CompOper>
 </ViewCriteriaItem>

Example 36-2 Adding the Custom Operator Entry for LastUpdateDate to the
Message Bundle

public class AvailLangImplMsgBundle extends JboResourceBundle {
 static final Object[][] sMessageStrings =
 {
 { "LastUpdateDate_custOp_grt_year", "more than a year old"
 },

How to Remove Standard Operators
You can remove standard operators from a view criteria item. For example, you can
remove the standard operator before from the list.

For a list of standard operators, see the Using Query Components chapter of
Developing Web User Interfaces with Oracle ADF Faces.

You can remove standard operators for a view object attribute by adding code for that
attribute in the view object XML file.

Before you begin:

Chapter 36
Setting Up Search Form Properties

36-27

It may be helpful to have an understanding of the options that are available to you
when you create a query search form. For more information, see Setting Up Search
Form Properties.

You may also find it useful to understand functionality that can be used with query
search forms. For more information, see Additional Functionality for Search Forms.

To remove a standard operator:

1. In the Applications window, select the view object for the view criteria in which you
want to remove a standard operator.

Note:

Before you attempt to remove the standard operator, make sure you do
not remove the default operator for that view criteria item.

2. In the overview editor, click the Source tab.

3. In the XML editor, locate the code for the view criteria attribute, and add the
CompOper code statements after the last item within the ViewCriteriaItem group.

In the following example, the CompOper code statements appear in bold. The code
in this example removes the BEFORE operator from the list of operators for the
LastUpdateDate attribute.

<ViewCriteriaRow
 Name="vcrow50"
 UpperColumns="1">
 <ViewCriteriaItem
 Name="LastUpdateDate"
 ViewAttribute="LastUpdateDate"
 Operator="="
 Conjunction="AND"
 Required="Optional">
 <CompOper
 Name="LastUpdateDate"
 ToDo="-1"
 Oper="BEFORE"
 </CompOper>
 </ViewCriteriaItem>

The CompOper properties are:

• Name: Specify an id for the operation.

• ToDo: Set to -1 to remove an operator. Set to 1 to add an operator.

Do not set ToDo to -2, which would remove all the operators.

• Oper: Set to the standard operator you want to remove from the list.

How to Set Uniform Operator Field Width
If you want a uniform width for all the operator dropdown fields in the search panel,
you can set the following skinning property:

Chapter 36
Setting Up Search Form Properties

36-28

af|query {
 -tr-operator-size: constant;

}

Having a uniform operator field width would vertically align the operator and search
boxes for all the search fields, which results in a more organized appearance.

For more information about skins, see the Customizing the Appearance Using Styles
and Skins chapter in Developing Web User Interfaces with Oracle ADF Faces.

Creating Quick Query Search Forms
In Oracle ADF, quick query search form is a simplified form with only one search
criteria that creates a dropdown list of all searchable attributes in the associated view
object. You can use different methods to create quick query search forms and can also
set quick query layout format.

A quick query search form is intended to be used in situations where a single search
will suffice or as a starting point to evolve into a full query search. Both the query
and quick query search forms are ADF Faces components. A quick query search
form has one search criteria field with a dropdown list of the available searchable
attributes from the associated data collection. Typically, the searchable attributes are
all the attributes in the associated view object. You can exclude attributes by setting
the attribute's Display Hint property in the Control Hints page of the Edit Attribute
dialog to Hide. The user can search against the selected attribute or search against
all the displayed attributes. The search criteria field type will automatically match the
type of its corresponding attribute. An Advanced link built into the form offers you the
option to create a managed bean to control switching from quick query to advanced
mode query search form. For more information, see the Using Query Components
chapter in Developing Web User Interfaces with Oracle ADF Faces.

You can configure the form to have a horizontal layout, as shown in Figure 36-20.

Figure 36-20 Quick Query Search Form in Horizontal Layout

You can also choose a vertical layout, as shown in Figure 36-21.

Figure 36-21 Quick Query Search Form in Vertical Layout

You can use quick query search forms to let users search on a single attribute of a
collection. Quick query search form layout can be either horizontal or vertical. Because
they occupy only a small area, quick query search forms can be placed in different
areas of a page. You can create a managed bean to enable users to switch from a
quick query to a full query search. For more information about switching from quick

Chapter 36
Creating Quick Query Search Forms

36-29

query to query using a managed bean, see the Using Query Components chapter in
Developing Web User Interfaces with Oracle ADF Faces.

If you drop a quick query panel with a results table or tree, JDeveloper will
automatically create the results table, as described in How to Create a Quick Query
Search Form with a Results Table or Tree Table. If you drop a quick query panel
by itself and subsequently want a results table or component or if you already
have one, you will need to match the quick query Id with the results component's
partialTrigger value, as described in How to Create a Quick Query Search Form
and Add a Results Component Later.

Note:

A quick query search creates a dropdown list of all searchable attributes
defined in the underlying view object. If you want to show only a subset
of those attributes, you can set the attribute's Display control hint to Hide
for those attributes you want to exclude. For more information about setting
control hints on view objects, see Defining SQL Queries Using View Objects.

How to Create a Quick Query Search Form with a Results Table or
Tree Table

You can create quick query searches using the full set of searchable attributes and
simultaneously add a table or tree table as the results component.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a query search form. For more information, see Creating Quick
Query Search Forms.

You may also find it useful to understand functionality that can be used with query
search forms. For more information, see Additional Functionality for Search Forms.

You will need to complete this task:

Create a view object to be the basis of the search form.

To create a quick query search form with a results table:

1. From the Data Controls panel, select the data collection and expand the Named
Criteria node to display a list of named view criteria.

2. Drag the All Queriable Attributes item and drop it onto the page or onto the
Structure window.

3. From the context menu, choose Create > Quick Query > ADF Quick Query
Panel with Table or Create > Quick Query > ADF Quick Query Panel with Tree
Table, as shown in Figure 36-22.

4. In the Edit Table Columns dialog, you can rearrange any column and select table
options. If you choose the filtering option, the table will be a filtered table.

5. Click OK.

Chapter 36
Creating Quick Query Search Forms

36-30

Figure 36-22 Data Controls Panel with Quick Query Context Menu

How to Create a Quick Query Search Form and Add a Results
Component Later

You can create quick query searches using the full set of searchable attributes and
add a table or tree table as the results component later.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a query search form. For more information, see Creating Quick
Query Search Forms.

You may also find it useful to understand functionality that can be used with query
search forms. For more information, see Additional Functionality for Search Forms.

You will need to complete this task:

Create a view object to be the basis of the search form.

To create a quick query search form and add a results component in a separate step:

1. From the Data Controls panel, select the data collection and expand the Named
Criteria node to display a list of named view criteria.

2. Drag the All Queriable Attributes item and drop it onto the page or onto the
Structure window.

3. From the context menu, choose Create > Quick Query > ADF Quick Query
Panel.

4. If you do not already have a results component, then drop the data collection
associated with the view criteria as a component.

5. In the Properties window for the quick query panel, copy the value of the Id field.

6. In the Properties window for the results component (for example, a table), paste or
enter the value into the PartialTriggers field.

How to Set the Quick Query Layout Format
The default layout of the form is horizontal. You can change the layout option using the
Properties window.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a query search form. For more information, see Creating Quick
Query Search Forms.

Chapter 36
Creating Quick Query Search Forms

36-31

You may also find it useful to understand functionality that can be used with query
search forms. For more information, see Additional Functionality for Search Forms.

To set the layout:

1. In the Structure window, double-click af:quickQuery.

2. In the Properties window, on the Commons page, select the Layout field using the
dropdown list to specify default, horizontal, or vertical.

What Happens When You Create a Quick Query Search Form
When you drop a quick query search form onto a page, JDeveloper creates an
af:quickQuery tag. If you have dropped a quick query with table or tree table, then an
af:table tag or af:treeTable tag is also added.

Under the af:quickQuery tag are several attributes and facets that define the quick
query properties. Some of the tags are:

• The id attribute, which uniquely identifies the quick query. This value should be set
to match the results table or component's partialTriggers value. JDeveloper will
automatically assign these values when you drop a quick query with table or tree
table. If you want to change to a different results component, see How to Create a
Quick Query Search Form and Add a Results Component Later.

• The layout attribute, which specifies the quick query layout to be default,
horizontal, or vertical.

• The end facet, which specifies the component to be used to display the Advanced
link (that changes the mode from quick query to the query). For more information
about creating this function, see the Using Query Components chapter of
Developing Web User Interfaces with Oracle ADF Faces.

What Happens at Runtime: Quick Query
At runtime, the quick query search form displays a single search criteria field with
a dropdown list of selectable search criteria items. If there is only one searchable
criteria item, then the dropdown list box will not be rendered. An input component
that is compatible with the selected search criteria type will be displayed, as shown
in Table 36-4. For example, if the search criteria type is date, then inputDate will be
rendered.

Table 36-4 Quick Query Search Criteria Field Components

Attribute Type Rendered Component

DATE af:inputDate

VARCHAR af:inputText

NUMBER af:inputNumberSpinBox

If the Default List Type control hint in the view object has been declared as an LOV
or a selection list component, the search criteria field component appears as shown in
Table 36-1 in List of Values (LOV) Input Fields.

Chapter 36
Creating Quick Query Search Forms

36-32

In addition, a Search button is rendered to the right of the input field. If the end facet
is specified, then any components in the end facet are displayed. By default, the end
facet contains an Advanced link.

Creating Standalone Filtered Search Tables from Named
View Criteria

In Oracle ADF, you can create a filtered table to perform searches without the search
forms or as a results table of the search forms. You can use different methods to
create a standalone filtered table and Query-by-Example searches.

A filtered table can be created standalone or as the results table of a query or quick
query search form. Filtered table searches are based on Query-by-Example and use
the QBE text or date input field formats. The input validators are turned off to allow for
entering characters such as > and <= to modify the search criteria. For example, you
can enter >1500 as the search criteria for a number column. Wildcard characters may
also be supported. If a column does not support QBE, the search criteria input field will
not render for that column. The input field rendered will depend on the attribute's data
type. For instance, a date column will have a date picker component rendered and a
column for an attribute defined as a List of Values will have the corresponding List of
Values component rendered.

The filtered table search criteria input values are used to build the query WHERE clause
with the AND operator. If the filtered table is associated with a query or quick query
search panel, the composite search criteria values are also combined to create the
WHERE clause.

Note:

If the filtered table is used with a query component in a search form and the
search region is using an existing named criteria, the results of the query will
be filtered by all the view criteria rows in an iterative manner. For example, a
filtered table has two view criteria rows: PersonId and DeptId. The first view
criteria row has PersonId > 1. When the user enters > 100 in the filter field,
then the second view criteria row DeptId is used to accept input to further
filter the results. This process iterates through all the view criteria rows until
the final query result is reached.

Figure 36-23 shows a filtered table. When the user enters a QBE search criteria, such
as >10 for the Id field, the query result is the AND of the query search criteria and the
filtered table search criteria.

Figure 36-23 Filtered Table

Chapter 36
Creating Standalone Filtered Search Tables from Named View Criteria

36-33

Table 36-5 lists the acceptable QBE search operators that can be used to modify the
search value.

Table 36-5 Query-by-Example Search Criteria Operators

Operator Description

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

AND And

OR Or

= Equal to

<> Does not contain

!= Does not contain

You use query search forms for complex searches, but you can also perform simple
QBE searches using the filtered table. You can create a standalone ADF-filtered table
without the associated search panel and perform searches using the QBE-style search
criteria input fields. For information about filtered tables, see How to Create Filtered
Table and Query-by-Example Searches.

You can set the QBE search criteria for each filterable column to be a case-sensitive
or case-insensitive search using the filterFeature attribute of af:column in the
af:table component. See the Enabling Filtering in Tables section of Developing Web
User Interfaces with Oracle ADF Faces.

How to Create Filtered Table and Query-by-Example Searches
When creating a table, you can make almost any table a filtered table by selecting the
filtering option if the option is enabled. There are three ways to create a standalone
filtered table:

• You can drop a table onto a page from the Components window, bind it to a data
collection, and set the filtering option. For more information, see the Using Query
Components chapter of Developing Web User Interfaces with Oracle ADF Faces.

• You can create a filtered table by dragging and dropping a data collection onto a
page and setting the filtering option. For more information, see How to Create a
Basic Table.

• You can also create a filtered table or a read-only filtered table by dropping named
criteria onto a page. You can use either the implicitly created named criteria
All Queriable Attributes or any declaratively created named view criteria. The
resulting filtered table will have a column for each searchable attribute and an
input search field above each column.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a query search form. For more information, see Creating Standalone
Filtered Search Tables from Named View Criteria.

Chapter 36
Creating Standalone Filtered Search Tables from Named View Criteria

36-34

You may also find it useful to understand functionality that can be used with query
search forms. For more information, see Additional Functionality for Search Forms.

To create a filtered table using named view criteria:

1. From the Data Controls panel, select the data collection and expand the Named
Criteria node to display a list of named view criteria.

2. Drag the named view criteria item and drop it onto the page or onto the Structure
window.

3. From the context menu, choose Create > ADF Filtered Table.

4. In the Edit Table Columns dialog, you can rearrange any column and select table
options.

Because the table is created by JDeveloper during quick query creation, the
filtering option is automatically enabled and not user-selectable, as shown in
Figure 36-24.

Figure 36-24 Edit Table Columns Dialog for Filtered Table

Chapter 36
Creating Standalone Filtered Search Tables from Named View Criteria

36-35

37
Creating Databound Calendar and
Carousel Components

This chapter describes how to create calendar and carousel components from data
modeled with ADF Business Components, using ADF data controls and ADF Faces
components.
This chapter includes the following sections:

• About Databound ADF Faces Calendar and Carousel Components

• Using the ADF Faces Calendar Component

• Using the ADF Faces Carousel Component

About Databound ADF Faces Calendar and Carousel
Components

The ADF Faces calendar component displays user activities by day, week, month, or
by list view. The carousel component gives the user the ability to view an image from a
series of images.

ADF Faces calendar and ADF Faces carousel are complex components that you can
use to include calendar functions or display rotating images in your application. The
ADF Faces calendar displays activities in daily, weekly, monthly, or list views for a
given provider. The calendar is configurable to display only some of the views. The
calendar includes a toolbar with built-in functionality that allows a user to change the
view (between daily, weekly, monthly, or list), go to the previous or next day, week,
or month, and return to today. The toolbar is customizable and allows you to choose
which buttons and text to display, and you can also add buttons or other components.

The ADF Faces carousel displays images in a revolving loop that the user can select
by using the slider or clicking on images. It can be configured to have either a
horizontal or vertical orientation. You can use other components in conjunction with
the carousel. You can add a toolbar or menu bar, and then add buttons or menu items
that allow users to perform actions on the current object.

Databound ADF Faces Calendar and Carousel Components Use
Cases and Examples

The ADF Faces calendar can be used whenever you want to add a calendar feature
to your application. You will need to have the relevant data in your data store that
represents the content provided by the calendar, such as the date, time, title, location,
and owner. You can use the familiar patterns of entity objects and view objects to
model the data and then use drag and drop from the Data Controls panel to create the
calendar.

The carousel component gives the user the ability to view an image from a series of
images. The user can see partial views of the images before and after the image being

37-1

viewed and can scroll through each image in the sequence. The user can do so using
a slider or navigation buttons. The carousel is useful for showing objects that require
a highly visual presentation. For example, it can be used to display a photographic
collection or merchandise in a catalog.

Additional Functionality of Databound ADF Faces Calendar and
Carousel Components

You may find it helpful to understand other Oracle ADF features before you configure
or use ADF Faces calendar and carousel components. Additionally, you may want to
read about what you can do with your calendar and carousel components. Following
are links to other functionality that may be of interest.

• You can customize the calendar for individual users so that the calendar appears
in the selected configuration when that user accesses the calendar. For more
information, see Allowing User Customizations at Runtime.

• Calendars are based on entity objects. For information on creating entity objects,
see Creating a Business Domain Layer Using Entity Objects.

• For more information about partial page rendering and the partialTriggers attribute,
see the Rerendering Partial Page Content chapter of Developing Web User
Interfaces with Oracle ADF Faces.

• The carousel component uses a tree binding to iterate over the data. For more
information about the tree binding, see Iterator and Value Bindings for Tables.

Using the ADF Faces Calendar Component
The ADF Faces calendar can be used whenever you want to add a calendar feature
to your application. You will need to have the relevant data in your data store that
represents the content provided by the calendar, such as the date, time, title, location,
and owner.

ADF Faces includes a calendar component that displays activities in daily, weekly, or
monthly views. Figure 37-1 shows an ADF Faces calendar in weekly view mode with
some sample activities.

Chapter 37
Using the ADF Faces Calendar Component

37-2

Figure 37-1 ADF Faces Calendar

The calendar component also includes the following functionality:

• A toolbar that allows users to switch between monthly, weekly, daily, and list views.

Tip:

When these toolbar buttons are used, attribute values on the calendar
are changed. You can configure these values to be persisted so that they
remain for a particular user whenever they accesses the calendar. For
more information, see Allowing User Customizations at Runtime.

• Configurable start of the week days and start of the day hours. For example, a
calendar's week might start on Sunday and the day might show 8:00 am at the top.

• Configurable styles using skinning keys.

Additionally, you can implement the following functionality using other ADF Faces
components and the rich client framework:

• Popup functionality. Components placed in supported facets that respond to
certain events and allow the user to act on activities or the calendar. For example,
when a user clicks an activity in the calendar, the CalendarActivityEvent is
invoked and any popup component in the ActivityDetail facet is displayed. You
might use a dialog component that contains a form where users can view and edit
the activity, as shown in Figure 37-2.

Chapter 37
Using the ADF Faces Calendar Component

37-3

Figure 37-2 Edit Dialog for ActivityDetail Facet

• Drag and drop capability: You can add the calendarDropTarget tag that allows a
user to drag an activity to another place on the calendar. You then implement the
functionality so that the time is actually changed on the activity and persisted to
the data store.

• Toolbar customization: By default, the toolbar contains buttons that allow the user
to switch between the different views, along with previous and next buttons and a
button that returns to the current date. The toolbar also displays the current date
range (or the date when in day view). You can customize the toolbar by adding
facets that contain additional buttons of your choosing.

• Skinning: The calendar uses skinning keys to determine things like colors and
icons used. You can extend the skin to change the appearance of the calendar.

Details for configuring the built-in functionality or for implementing additional
functionality can be found in the Using a Calendar Component chapter of Developing
Web User Interfaces with Oracle ADF Faces.

An ADF Faces Calendar component must be bound to a CalendarModel class.
This class can be created for you when you use ADF Business Components to
manage your calendar's data. For example, say you have data in your data store
that represents the details of an activity, such as the date, time, title, location, and
owner. When you create an entity object to represent that data, and then a view object
to display the data, you can drag and drop the associated collection from the Data
Controls panel to create the calendar. JDeveloper will declaratively create the model
and bind the view to that model so that the correct data will display when the calendar
is launched. However, in order for the model to be created, your entity objects in
the data model project with ADF Business Components and your view objects in the
same project must contain date-effective attributes. Additionally, the view objects must
contain variables that will be used to modify the query to return the correct activities for
the given date range.

How to Create the ADF Faces Calendar
Before you can create a calendar on a JSF page, you must first create an entity object
with specific attributes that represent attributes on a calendar. You then must create a
view object from that entity object, and modify the query to use named bind variables

Chapter 37
Using the ADF Faces Calendar Component

37-4

that represent the date range and current time zone to display. This will allow the query
to return only the activities that should be displayed in the given view on the calendar.

For example, say you have a database table that represents an activity. It has
a column for title, start time, end time, and a reference to a provider object that
represents the owner. You would create an entity object and a view object based
on that table (ensuring that it meets the requirements, as described in the following
steps). To the view object, you would then add named bind variables for the start and
end times currently displayed on the calendar, along with the time zone currently in
use by the calendar, so that the query returns only those activities that fall within that
time range.

Once you add the calendar component to a JSF page, you can configure it and add
functionality.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a calendar. For more information, see Using the ADF Faces Calendar
Component.

To create an ADF Faces calendar:

1. Create an entity object based on your data source. The entity object must include
the attributes shown in Table 37-1. The attributes do not have to use the names
shown in the table; they can be named anything. However, they must be of one of
the types noted. You will map these attributes to attributes in the CalendarModel in
a later step.

Table 37-1 Required Attributes for a Calendar

Attribute Valid Types Description

Start time java.util.Date,
java.sql.Date,
oracle.jbo.domain.Date,
oracle.jbo.domain.TimeStamp

Start time for the activity

End time java.util.Date,
java.sql.Date,
oracle.jbo.domain.Date,
oracle.jbo.domain.TimeStamp

End time for the activity

ID String Unique ID

Provider ID String ID of the provider object that
represents the owner of the activity

Title String Short description of the activity

The entity object can also contain the known (but not required) attributes shown in
Table 37-2:

Chapter 37
Using the ADF Faces Calendar Component

37-5

Table 37-2 Optional Attributes for a Calendar

Attribute Type Description

Recurring String or
CalendarActivity.Recurring

Status of recurrence for the activity.
Valid values are SINGLE (does not
recur), RECURRING, or CHANGED (this
activity was part of the recurring
activity but has been modified to be
different from parent activity).

Reminder String or
CalendarActivity.Reminder

Whether or not the activity has an
associated reminder. Valid values are
ON or OFF.

Time Type String or
CalendarActivity.TimeType

Type of time associated with the
activity. Valid values are ALLDAY
and TIME. Activities that have a
value of ALLDAY do not have any
time associated with them. They are
considered to span the entire day.
Activities with a value of TIME have a
specific time duration.

Location String Location of an activity.

Tags Set of String values or a
semicolon-separated list of String
values.

Keywords for the activity.

Your entity objects can also contain other attributes that the CalendarModel has no
knowledge of. You will be able to add these to the model as custom properties in a
later step.

For information on creating entity objects, see Creating a Business Domain Layer
Using Entity Objects.

2. Create an associated view object. In the Query page of the overview editor, create
named bind variables for the following:

• A string that represents the time zone

• A date that represents the start time for the current date range shown on the
calendar

• A date that represents the end time for the current date range shown on the
calendar

Tip:

Dates in an ADF Faces calendar are "half-open," meaning that the
calendar returns all activities that start on or after the start time and
before (but not on) the end time.

For more information about creating named bind variables, see Working with
Bind Variables.

3. Create an entity object that represents the provider (owner) of activities. The entity
object must include the attributes shown in Table 37-3. The attributes do not have
to use the names shown in the table; they can be named anything. However,

Chapter 37
Using the ADF Faces Calendar Component

37-6

they must be of the type noted. You will map these attributes to attributes in the
CalendarProvider class in a later step.

Table 37-3 Attributes for a CalendarProvider Class

Attribute Type Description

Id String Unique ID.

Display Name String The name of the provider that can be
displayed in the calendar.

4. Create a view object for the provider.

5. Ensure that the new view objects are part of the application module, and if
needed, refresh the Data Controls panel.

6. Create your JSF page, as documented in Creating a Web Page.

7. From the Data Controls panel, drag the collection that represents the view object
for the activity created in Step 2 and drop it as a Calendar.

Tip:

The Calendar option will appear in the context menu only if the view
object contains the required attributes documented in Table 37-1 and the
bind variables described in Step 2.

8. Complete the Calendar Bindings dialog to map the bind variables and attributes to
the CalendarModel and the CalendarProvider classes. For additional help, click
Help or press F1.

9. By default, the calendar will be read-only and will return only those activities
currently in the data store. You will need to configure the calendar and implement
additional functionality as described in the Using a Calendar Component chapter
of Developing Web User Interfaces with Oracle ADF Faces.

For example, to allow creation of a new activity, you might create an input form in
a dialog (as described in the How to Create a Dialog section of Developing Web
User Interfaces with Oracle ADF Faces) using the same data control collection
used to create the calendar. For more information about creating input forms, see
Creating an Input Form.

What Happens When You Create a Calendar
When you drop a collection as a calendar, JDeveloper:

• Defines an iterator binding to the collection of activities, and another iterator
binding to the collection of providers.

• Defines an action binding to the executeWithParams operation on the activities
collection. It is this operation that will be invoked to execute the query to return
the activities to display. Because the operation requires parameters to determine
the date range and time zone, NamedData elements are also created for each of
the parameters (created as named bind variables on the view object). For more
information about NamedData elements, see Method Parameters.

Chapter 37
Using the ADF Faces Calendar Component

37-7

Note:

A runtime error will occur if you specify java.sql.Date as the NDType in
the calendar page definition file. Use one of the following supported data
types instead:

– oracle.jbo.domain.Timestamp

– oracle.jbo.domain.Date

– java.sql.Timestamp

– java.util.Date

• Defines a calendar binding. This binding contains a node element that represents a
row in the collection and maps the data control attributes to the calendar activity's
attributes, as defined when using the wizard.The value is the data control attribute
and the type is the calendar attribute. For any custom defined attributes, the type
will be custom and value will be the data control attribute. Each row (node) is
represented by a rowKey, which is the activity ID.

There is also a providerDefinition element that determines the source and
mapping of available providers. This mapping allows the calendar model to filter
activities based on the state of the provider (either enabled or disabled).

Tip:

To access a custom attribute, use the
CalendarActivity.getCustomAttributes() method, passing in the
name of the attribute as defined by the value element.

The following example shows the page definition code for a calendar.

<executables>
 <iterator Binds="ActivityView1" RangeSize="-1"
 DataControl="AppModuleDataControl" id="ActivityView1Iterator"/>
 <iterator Binds="EmployeesView1" RangeSize="25"
 DataControl="AppModuleDataControl" id="EmployeesView1Iterator"/>
 </executables>
 <bindings>
 <action IterBinding="ActivityView1Iterator" id="ExecuteWithParams"
 RequiresUpdateModel="true" Action="executeWithParams">
 <NamedData NDName="startTime"
 NDValue="#{bindings.ActivityView1.startDate}"
 NDType="oracle.jbo.domain.Date"/>
 <NamedData NDName="endTime" NDValue="#{bindings.ActivityView1.endDate}"
 NDType="oracle.jbo.domain.Date"/>
 <NamedData NDName="timeZone"
 NDValue="#{bindings.ActivityView1.timeZoneId}"
 NDType="java.lang.String"/>
 </action>
 <calendar IterBinding="ActivityView1Iterator" id="ActivityView1"
 xmlns="http://xmlns.oracle.com/adf/faces/binding"
 ActionBindingName="ExecuteWithParams">
 <nodeDefinition DefName="model.ActivityView">
 <AttrNames>

Chapter 37
Using the ADF Faces Calendar Component

37-8

 <Item Type="id" Value="Id"/>
 <Item Type="providerId" Value="ProviderId"/>
 <Item Type="title" Value="Title"/>
 <Item Type="startTime" Value="StartTime"/>
 <Item Type="endTime" Value="EndTime"/>
 </AttrNames>
 </nodeDefinition>
 <providerDefinition IterBindingName="EmployeesView1Iterator">
 <AttrNames>
 <Item Type="id" Value="EmployeeId"/>
 <Item Type="displayName" Value="FirstName"/>
 </AttrNames>
 </providerDefinition>
 </calendar>
 </bindings>

JDeveloper inserts code onto the JSF page that binds the calendar value to the
CalendarModel class, as shown in the following example.

<af:form>
 <af:calendar value="#{bindings.ActivityView1.calendarModel}"/>
</af:form>

The CalendarModel class uses CalendarActivityDefinition class to access the
calendar binding.

What Happens at Runtime: How the Calendar Binding Works
When the calendar is accessed, the executeWithParams operation is invoked, with
the value of the startDate and endDate parameters determined by the value of
the calendar component's view and activeDay attributes. For example, if the view
attribute is set to month and the activeDay is set to the current date (say, May 5,
2013), then the value for the startDate would be May 1, 2013 and the endDate value
would be May 31, 2013. By default, the time zone value is taken from the time-zone
setting in the trinidad-config.xml file (for more information, see the Configuration
in trinidad-config.xml section of Developing Web User Interfaces with Oracle ADF
Faces). Therefore, the query would be restricted to return only activities that fall within
that date range.

When the query returns data, because the calendar component is bound to the
CalendarModel, the CalendarModel uses the CalendarActivityDefinition class to
access the calendar binding class and map the values from the data source to the
calendar, using the mappings provided by the binding.

Using the ADF Faces Carousel Component
The ADF Faces carousel component gives the user the ability to view an image from
a series of images. The user can see partial views of the images before and after the
image being viewed and can scroll through each image in the sequence.

You can display images in a revolving carousel, as shown in Figure 37-3. Users can
change the image at the front by using either the slider at the bottom or by dragging
another image to the front.

Chapter 37
Using the ADF Faces Carousel Component

37-9

Figure 37-3 Carousel Component

Instead of containing a child carouselItem component for each image to be displayed,
and then binding these components to the individual images, the carousel component
is bound to a complete collection and repeatedly renders one carouselItem
component by stamping the value for each item, similar to the way a tree stamps
out each row of data. As each item is stamped, the data for the current item is copied
into a property that can be addressed using an EL expression using the carousel
component's var attribute. Once the carousel has completed rendering, this property is
removed or reverted back to its previous value. Carousels contain a nodeStamp facet,
which is a holder for the carouselItem component used to display the text and short
description for each item, and is also the parent component to the image displayed
for each item. For more information about the carousel component, see the Displaying
Images in a Carousel section of Developing Web User Interfaces with Oracle ADF
Faces.

How to Create a Databound Carousel Component
When using a carousel component in a Fusion web application, you create the
component using the Data Controls panel. You also use a managed bean to handle
the carousel spin event and for other logic you may need to display your items.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a carousel. For more information, see Using the ADF Faces Carousel
Component.

You may also find it useful to understand functionality that can be used with carousels.
For more information, see Additional Functionality of Databound ADF Faces Calendar
and Carousel Components.

Perform the following in JDeveloper:

Chapter 37
Using the ADF Faces Carousel Component

37-10

1. Create a view object for the collection to be displayed in the carousel. For
example, to create the carousel shown in Figure 37-3, you use the Inventory
view object.l

2. Create a managed bean to hold a method that handles the spinning of the
carousel. The following example shows the handler method that might be used
to display items in the carousel.

public void handleCarouselSpin(CarouselSpinEvent event)
{
// This method is invoked when there is a spin event on the carousel in
// InventoryControl.jsff. The purpose is to get the newly selected item in
the
// carousel and update the iterator current row with the value

// get the bindingContainer
 DCBindingContainer dcBindings = (DCBindingContainer)
 BindingContext.getCurrent().getCurrentBindingsEntry();
 // get the NewItemKey from the event object. The first entry in the list
is the
 // currently selected item
 List itemKeyList = (List) event.getNewItemKey();
 // create a Key ojbect instance and set it to the first key in the list
 Key currentItemKey = (Key) itemKeyList.get(0);
 // get the iteratorBinding
 DCIteratorBinding inventoryIterator =
 dcBindings.findIteratorBinding("InventoryIterator");
 // set the iterator
 inventoryIterator.setCurrentRowWithKey(currentItemKey.toStringFormat(true));
}

To create a databound carousel component:

1. From the Data Controls panel, drag the collection for the view object on to the
page and choose Carousel from the context menu.

2. In the Properties window, in the Behavior section, bind the CarouselSpinListener
to a handler method that you created in the prerequisites.

3. In the Structure window, expand the carousel component and the nodeStamp
facet, and select the carouselItem component.

4. Bind the CarouselItem component's text attribute to the associated property on
the view object using variable value set on the carousel's var attribute, which by
default is set to item. So for example, to use the Name attribute on the view object,
the value of the carouselItem's text attribute might be #{item.Name}.

You can also bind other properties to the text attribute if you want to display
more information. For example, the inventory carousel binds both the Name and the
AmountInStock properties to the text attribute.

5. In the ADF Faces page of the Components window, from the General Controls
panel, drag an Image and drop it as a child to the carouselItem.

In the Insert Image dialog, enter the path to the source for the images, being sure
to use the variable for the item in the carousel. For example, the path to the image
files for the products would normally be:

/images/products/#{item.Filename}

Bind the shortDesc attribute to the text you want to appear when the mouse
hovers over the image. For example:

Chapter 37
Using the ADF Faces Carousel Component

37-11

#{item.Name}

For information about setting other attributes of the carousel and carouselItem
components, see the How to Create a Carousel section of Developing Web User
Interfaces with Oracle ADF Faces.

6. If you want to provide additional information about the items in the carousel, you
can drag and drop the same view object onto the page, for example, as a table.
For the components in the table to redisplay the information for the current item
displayed once the carousel is spun, you need to set the partialTrigger attribute
of the component containing the form to the carousel component's ID.

For example, a table displays the information for each item in Figure 37-3. The
partialTrigger attribute for the table component is set to c1, which is the
carousel component's ID. This means that whenever the carouselItem invokes
the CarouselSpinEvent, the table will be refreshed, causing the row that displays
information about the item that was just made current in the carousel is also made
current in the table.

Additionally, the partialTrigger attribute for the carousel and carousel item is set
to t1, which is the table's ID. This means that whenever a selection event occurs
on the table, the carousel is refreshed to make the item that was just made current
in the table, the current item in the carousel.

For more information about partial page rendering and the partialTriggers
attribute, see the Rerendering Partial Page Content chapter of Developing Web
User Interfaces with Oracle ADF Faces.

The following example shows the page code for the carousel displayed in
Figure 37-3.

<f:facet name="first">
 <af:carousel
currentItemKey="#{bindings.Inventory.treeModel.rootCurrencyRowKey}"
 value="#{bindings.Inventory.treeModel}" var="item" id="c1"
 carouselSpinListener="#{InventoryControl.handleCarouselSpin}"
 partialTriggers="::t1">
 <f:facet name="nodeStamp">
 <af:carouselItem id="ci1" text="#{item.Name} #{item.AmountInStock}"
 partialTriggers="::t1">
 <af:image source="/images/products/#{item.Filename}"
 shortDesc="#{item.Name}" id="i1"/>
 </af:carouselItem>
 </f:facet>
 </af:carousel>
</f:facet>
<f:facet name="second">
 <af:table value="#{bindings.Inventory.collectionModel}" var="row"
 rows="#{bindings.Inventory.rangeSize}"
 emptyText="#{bindings.Inventory.viewable ? 'No data to
display.' :
 'Access Denied.'}"
 fetchSize="#{bindings.Inventory.rangeSize}"
rowBandingInterval="0"

selectedRowKeys="#{bindings.Inventory.collectionModel.selectedRow}"

selectionListener="#{bindings.Inventory.collectionModel.makeCurrent}"
 rowSelection="single" id="t1"
 columnStretching="last" partialTriggers="::c1">

Chapter 37
Using the ADF Faces Carousel Component

37-12

What Happens When You Create a Carousel
When you drop a collection from the Data Controls panel as a carousel, a tree value
binding is created. A tree consists of a hierarchy of nodes, where each subnode is a
branch off a higher-level node.

The tree binding iterates over the data exposed by the iterator binding. The carousel
wraps the result set from the iterator binding in a treeModel object, which is an
extension of the collectionModel. The collectionModel allows each item in the
collection to be available within the carousel component using the var attribute. For
more information about the tree binding, see Iterator and Value Bindings for Tables.

JDeveloper adds both a carousel component and its child carouselItem component
onto the page, as shown in the following example.

<af:carousel
 currentItemKey="#{bindings.Products.treeModel.rootCurrencyRowKey}"
 value="#{bindings.Products.treeModel}" var="item"
 id="c1"
 carouselSpinListener="#{InventoryControl.handleCarouselSpin}">
 <f:facet name="nodeStamp">
 <af:carouselItem id="ci1" text="#{item.Name}"/>
 </f:facet>
</af:carousel>

The carousel value is bound to the treeModel for the associated collection, and
the currentItemKey attribute of the carousel is bound to the rootCurrencyRowKey
of the binding object. In this example, the carousel iterates over the items in the
Products iterator binding. The iterator binding binds to a rowKeySet that keeps track
of the current product. By default, the currentItemKey attribute of the carousel is
bound to the rootCurrencyRowKey of the binding object, which causes the product
currently displayed at the front of the carousel to be the root and the current item.
The carouselItem component accesses the current data object for the current item
presented to the carousel tag using the item variable.

Chapter 37
Using the ADF Faces Carousel Component

37-13

38
Creating Databound Chart, Picto Chart,
and Gauge Components

This chapter describes how to create charts, picto charts, or gauges from data
modeled with ADF Business Components, using ADF data controls and ADF Faces
components in a Fusion web application. Specifically, it describes how you can use
ADF Data Visualization Tools (DVT) area, bar, bubble, funnel, horizontal bar, line,
pie, polar, radar, scatter, and spark charts, pictoCharts and dial, LED, rating,
and status meter gauges that visually represent business data. It describes how to
use ADF data controls to create these components with data-first development.
If you are designing your page using simple UI-first development, then you can add
the chart or gauge to your page and configure the data bindings later. For information
about the data requirements, tag structure, and options for customizing the look and
behavior of the chart and gauge components, see Using Chart Components, Using
Picto Chart Components and Using Gauge Components in Developing Web User
Interfaces with Oracle ADF Faces.

This chapter includes the following sections:

• About ADF Data Visualization Chart, Picto Chart, and Gauge Components

• Creating Databound Charts

• Creating Databound Gauges

• Creating Databound Picto Charts

About ADF Data Visualization Chart, Picto Chart, and
Gauge Components

ADF Data Visualization components provide extensive graphical and tabular
capabilities for visually displaying and analyzing business data. Each component must
be bound to data before it can be rendered since the appearance of the components is
dictated by the data that is displayed.

Both chart and gauge components render graphical representations of data. However,
charts allow you to evaluate multiple data points on multiple axes in a variety of ways.
Many chart types assist in the comparison of results from one group with the results
from another group. In contrast, gauges focus on a single data point and examine that
point relative to minimum, maximum, and threshold indicators to identify problems.

Picto charts are versatile components that represent absolute numbers or parts of a
population. They are arranged in a flowing layout, and hence can be used in a variety
of ways to represent data points in an aesthetically pleasing manner.

The prefix dvt: occurs at the beginning of each data visualization component name
indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag
library.

38-1

Data Visualization Components Use Cases and Examples
For detailed descriptions of data visualization use cases and examples, see the
following:

• Chart components: Chart Component Use Cases and Examples section in
Developing Web User Interfaces with Oracle ADF Faces.

• Gauge components: Gauge Component Use Cases and Examples section in
Developing Web User Interfaces with Oracle ADF Faces.

• Picto Chart components: Picto Chart Component Use Cases and Examples
section in Developing Web User Interfaces with Oracle ADF Faces.

End User and Presentation Features
Visually compelling data visualization components enable end users to understand
and analyze complex business data. The components are rich in features that provide
out-of-the-box interactivity support. For detailed descriptions of the end user and
presentation features for each component, see the following:

• Chart components: End User and Presentation Features of Charts section in
Developing Web User Interfaces with Oracle ADF Faces.

• Gauge components: End User and Presentation Features of Gauge Components
section in Developing Web User Interfaces with Oracle ADF Faces.

• Picto Chart components: End User and Presentation Features of Picto Charts
section in Developing Web User Interfaces with Oracle ADF Faces.

Additional Functionality for Data Visualization Components
You may find it helpful to understand other Oracle ADF features before you data
bind your data visualization components. Additionally, once you have added a data
visualization component to your page, you may find that you need to add functionality
such as validation and accessibility. Following are links to other functionality that data
visualization components use:

• Partial page rendering: You may want a data visualization component to refresh to
show new data based on an action taken on another component on the page. For
more information, see the Rerendering Partial Page Content chapter in Developing
Web User Interfaces with Oracle ADF Faces.

• Personalization: Users can change the way the data visualization components
display at runtime, those values will not be retained once the user leaves the
page unless you configure your application to allow user customization. For
more information, see the Allowing User Customization on JSF Pages chapter
in Developing Web User Interfaces with Oracle ADF Faces.

• Accessibility: You can make your data visualization components accessible. For
more information, see the Developing Accessible ADF Faces Pages chapter in
Developing Web User Interfaces with Oracle ADF Faces.

• Skins and styles: You can customize the appearance of data visualization
components using an ADF skin that you apply to the application or by applying
CSS style properties directly using a style-related property (styleClass or
inlineStyle). For more information, see the Customizing the Appearance Using

Chapter 38
About ADF Data Visualization Chart, Picto Chart, and Gauge Components

38-2

Styles and Skins chapter in Developing Web User Interfaces with Oracle ADF
Faces.

• Placeholder data controls: If you know the data visualization components on your
page will eventually use ADF data binding, but you need to develop the pages
before the data controls are ready, then you should consider using placeholder
data controls, rather than manually binding the components. Using placeholder
data controls will provide the same declarative development experience as using
developed data controls. For more information, see Designing a Page Using
Placeholder Data Controls .

Creating Databound Charts
Charts are based on data collections. To create a databound chart, you drag and drop
a collection from the Data Controls panel onto the JSF page and use a dialog to bind
the data collection attributes in the chart.

Charts display series and groups of data. Series and groups are analogous to the rows
and columns of a grid of data. Typically, the rows in the grid appear as a series in a
chart, and the columns in the grid appear as groups.

For most charts, a series appears as a set of markers that are the same color.
Typically, the chart legend shows the identification and associated color of each series.
For example, in a bar chart, the yellow bars might represent the sales of shoes and the
green bars might represent the sales of boots.

Groups appear differently in different chart types. For example, in a stacked bar chart,
each stack is a group. A group might represent time periods, such as years. A group
might also represent geographical locations such as regions.

Depending on the data requirements for a chart type, a single group might require
multiple data values. For example, a scatter chart requires two values for each
data marker. The first value determines where the marker appears along the x-axis
while the second value determines where the marker appears along the y-axis. For
details about chart data requirements, see Chart Component Data Requirements in
Developing Web User Interfaces with Oracle ADF Faces.

The attributes in a data collection can be data values or categories of data values.
Data values are numbers represented by markers, like bar height or points in a scatter
chart. Categories of data values are members represented as axis labels or appear
as additional properties in a tooltip. The role that an attribute plays in the bindings
(either data values or identifiers) is determined by both its data type and where it gets
mapped (for example, bars vs. x-axis).

When you create a chart using a data collection inserted from the Data Controls panel,
a Component Gallery allows you to choose from a wide number of chart categories,
chart types, and layout options. Chart categories group together one or more types of
chart. For example, the Area category includes the following types of charts:

• Area

• Split Dual-Y Area

• Stacked Area

• Split Dual-Y Stacked Area

• Range Area

Chapter 38
Creating Databound Charts

38-3

Explore the Component Gallery that appears when you create a chart to view
available chart categories, types, and descriptions for each one. Figure 38-1 shows
the Component Gallery that appears for ADF charts when you use the Data Controls
panel.

Figure 38-1 Component Gallery for Charts

Table 38-1 lists the categories that appear in the Component Gallery for charts. Each
category has one or more chart types associated with it.

Table 38-1 ADF Chart Categories in the Component Gallery

Image Category Description

Area Creates a chart in which data is represented as a filled-in area. Use
area charts to show trends over time, such as sales for the last 12
months. Area charts require at least two groups of data along an
axis. The axis is often labeled with time periods such as months.

Chapter 38
Creating Databound Charts

38-4

Table 38-1 (Cont.) ADF Chart Categories in the Component Gallery

Image Category Description

Bar Creates a chart in which data is represented as a series of vertical
bars. Use to compare values across products or categories, or to
view aggregated data broken out by a time period.

Bar
(Horizontal)

Creates a chart that displays bars horizontally along the y-axis. Use
to provide an orientation that allows you to show trends or compare
values.

Bubble Creates a chart in which data is represented by the location and
size of round data markers (bubbles). Use to show correlations
among three types of values, especially when you have a number
of data items and you want to see the general relationships. For
example, use a bubble chart to plot salaries (x-axis), years of
experience (y-axis), and productivity (size of bubble) for your work
force. Such a chart allows you to examine productivity relative to
salary and experience.

Combination Creates a chart that uses different types of data markers (bars,
lines, or areas) to display different kinds of data items. Use to
compare bars and lines, bars and areas, lines and areas, or all
three.

Funnel Creates a chart that represents data related to steps in a process.
Use to compare actual versus target values or to compare values in
a sequence of steps. For examples, use the funnel chart to watch a
process where the different sections of the funnel represent different
stages in the sales cycle.

Line Creates a chart in which data is represented as a line, as a series
of data points, or as data points that are connected by a line.
Line charts require data for at least two points for each member
in a group. For example, a line chart over months requires at least
two months. Typically a line of a specific color is associated with
each series of data such as the Americas, Europe, or Asia. Use to
compare items over the same time.

Chapter 38
Creating Databound Charts

38-5

Table 38-1 (Cont.) ADF Chart Categories in the Component Gallery

Image Category Description

Pie Creates a chart that represents a set of data items as proportions of
a total. The data items are displayed as sections of a circle causing
the circle to look like a sliced pie. Use to show relationship of parts
to a whole such as how much revenue comes from each product
line.

Scatter Creates a chart in which data is represented by the location of data
markers. Use to show correlation between two different kinds of data
values such as sales and costs for top products. Scatter charts are
especially useful when you want to see general relationships among
a number of items.

Spark Creates a simple, condensed chart that displays trends or
variations, often in the column of a table, or inline with text.

Stock Creates a chart in which data shows the high, low, opening and
closing prices of a stock and, optionally, the trading volume of the
stock.

You can also create a chart by dragging a chart component from the Components
window. This approach allows you the option of designing the chart's user interface
before binding the component to data. A Create Chart dialog appears to view chart
types, descriptions, and quick layout options. For more information about creating
charts using UI-first development, see Using Chart Components in Developing Web
User Interfaces with Oracle ADF Faces.

How to Create an Area, Bar, Combination, Horizontal Bar, or Line
Chart Using Data Controls

Area, bar, horizontal bar, and line charts require at least two groups of data, with one
or more series. The groups are displayed along the chart's X Axis for area, bar, and
line charts and on the chart's Y Axis for horizontal bar charts. Series are displayed as
the areas, bars, or lines on the chart.

Figure 38-2 shows two bar charts in the Summit ADF sample application. The bar
chart on the left is configured to show the customer's order history and order average,

Chapter 38
Creating Databound Charts

38-6

and the bar chart on the right shows the ship time for each order. In these examples,
the bar charts are configured with groups that represent order and ship dates, and the
series are the order totals and ship time averages. The order average is displayed as
a red reference line on the Order History chart.

Figure 38-2 Bar Charts in Summit ADF Sample Application

For information about adding reference lines to charts after the chart is created, see
"Adding Reference Objects to a Chart" in Developing Web User Interfaces with Oracle
ADF Faces.

Before you begin:

It may be helpful to have an understanding of databound data visualization charts. See
Creating Databound Charts.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. See Additional Functionality for Data Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects
that you want in your data model, as described in Creating and Modifying an
Application Module.

For example, the Summit ADF Shipping Time bar chart is based on the
OrdersForCustomer data collection. Figure 38-3 shows the OrdersForCustomer
collection in the Data Controls panel.

Chapter 38
Creating Databound Charts

38-7

Figure 38-3 Data Collection for Order Ship Times

The OrdersForCustomer data control is based on the OrdVO view object.
Figure 38-4 shows the OrdVO view object which contains attributes from the OrdEO,
EmpEO, and CustomerEO entity objects. The OrdEO, EmpEO, and CustomerEO entity
objects are derived from the SOrd, SEmp, and SCustomer tables in the Summit
schema.

Figure 38-4 OrdVO View Object in Summit ADF Sample Application

Chapter 38
Creating Databound Charts

38-8

The OrdVO object also contains the TimeToShip transient attribute which is
represented by the bars on the Summit ADF Shipping Time bar chart. The
TimeToShip attribute's value is obtained by a call to the calculateTimeToShip()
method: adf.object.calculateTimeToShip(DateOrdered, DateShipped). The
calculateTimeToShip() method determines the number of days that the order
took to ship and is added to OrdVORowImpl.java. OrdVORowImpl.java contains the
implementation methods for the OrdVO view object.

The example below shows the calculateTimeToShip() method in the Summit
ADF sample application. The method returns the number of days as an
oracle.jbo.domain.Number, which is the type expected by the chart's value
attribute.

public oracle.jbo.domain.Number calculateTimeToShip(Date ordered,
Date shipped) {
 if (null != shipped) {
 long days = (shipped.getTime() - ordered.getTime()) / (1000 *
60 * 60 * 24);
 return new Number(days);
 } else
 return new Number(0);
}

For additional information about adding transient attributes to a view object, see
Adding Calculated and Transient Attributes to a View Object.

• Create a JSF page as described in How to Create JSF Pages in Developing Web
User Interfaces with Oracle ADF Faces.

To create a databound area, bar, combination, horizontal bar, or line chart:

1. From the Data Controls panel, select a collection.

For example, to create the bar chart that displays the shipping times for each order
on the Orders Dashboard page of the Summit ADF sample application, select the
OrdersForCustomer collection.

2. Drag the collection onto a JSF page and, from the context menu, choose Charts.

3. In the Component Gallery, select a chart category and a chart type and click OK.

The name of the dialog and the input field labels that appear depend on the
category, type of chart, and data collection that you select. For example, if you
select Bar as the chart category and Bar as the chart type, then the name of the
dialog that appears is Create Bar Chart and the input fields are labeled Bars and
X Axis.

4. Do the following in the dialog to configure the chart to display data:

• Drag attributes from the Available list to the input fields, depending on where
you want the values for the attributes to appear at runtime.

For example, to configure the bar chart in the Summit ADF sample application
to display the order dates along the X Axis, drag the DateOrdered attribute
from the Available list to the X Axis field in the Create Bar Chart dialog. To
configure the chart to display the time to ship as bars, drag the TimeToShip
attribute from the Available list to the Bars field in the Create Bar Chart
dialog.

Chapter 38
Creating Databound Charts

38-9

If you selected a chart type that includes a dual y-axis, the second area,
bar, or line that you add will be rendered on the second y-axis. In addition,
a chartSeriesStyle component will be added to the chart for the series
represented on the second y-axis, and the assignedToY2 attribute of the
chartSeriesStyle component will be set to true.

If you selected a combination chart, each attribute that you add to the Data
Points input field will be rendered as an area, bar, or line chart. By default,
the first attribute will be rendered as a bar chart, the second attribute will be
rendered as a line chart, and the third attribute will be rendered as an area
chart. To change the chart type, you can add a chartSeriesStyle component
to the combination chart's seriesStamp facet.

If you selected a range area or range bar chart, there will be two required
fields for the y-axis. To configure the chart to display a range of data, drag
attributes from the Available list to the High Values and Low Values fields in
the Create Range Area Chart or Create Range Bar Chart dialog.

• In the Attribute Labels table, accept the default value or select a value from
the dropdown list in the Label field to specify the label that appears at runtime.

The underlying data type determines the choices available in the Label field.
The choice you make determines how that attribute's label is rendered in the
chart.

Figure 38-5 shows the Create Bar Chart dialog that generates the Summit ADF
sample application Shipping Time bar chart using data from the DateOrdered and
TimeToShip attributes in the OrdersForCustomer data collection.

Figure 38-5 Create Bar Chart Dialog for Summit ADF Shipping Time Chart

5. Click OK.

Chapter 38
Creating Databound Charts

38-10

After completing the data binding dialog, you can use the Properties window to specify
settings for the chart attributes and you can also use the child tags associated with
the chart tag to customize the chart further. For example, the legend display is turned
off for the Shipping Time chart in the Summit ADF sample application. For more
information about configuring chart components, see Using Chart Components in
Developing Web User Interfaces with Oracle ADF Faces.

What Happens When You Use the Data Controls Panel to Create a
Chart

Dropping a chart from the Data Controls panel has the following effect:

• Creates the bindings for the chart and adds the bindings to the page definition file

• Adds the necessary code for the UI components to the JSF page

The data binding XML that JDeveloper generates represents the physical model of the
specific chart type you create. The example below shows the bindings that JDeveloper
generated in the page definition file where a vertical bar chart was created using
data from the DateOrdered and TimeToShip attributes in the OrdersForCustomer data
collection.

<tree IterBinding="OrdersForCustomerIterator" id="OrdersForCustomer5"
 ChangeEventPolicy="ppr">
 <nodeDefinition DefName="oracle.summit.model.views.OrdVO"
 Name="OrdersForCustomer5">
 <AttrNames>
 <Item Value="TimeToShip"/>
 <Item Value="DateOrdered"/>
 </AttrNames>
 </nodeDefinition>
</tree>

Charts use a standard tree binding as shown in the example. The node definition
shows the name and instance of the data control (OrdersForCustomer5), and the view
object (OrdVO) on which the data control is based. Each displayed attribute is listed
in the AttrNames definition. For a chart configured for a dual y-axis, the AttrNames
definition would include an additional item for the series displayed on the second
y-axis.

The example below shows the code generated for a vertical bar chart when you drag
the OrdersForCustomer data collection onto a JSF page and specify DateOrdered for
the x-axis and TimeToShip for the bars.

<dvt:barChart id="barChart2" var="row"
 value="#{bindings.OrdersForCustomer5.collectionModel}">
<dvt:chartLegend id="cl2"/>
 <f:facet name="dataStamp">
 <dvt:chartDataItem id="di2" value="#{row.TimeToShip}"
 group="#{row.DateOrdered}"

series="#{bindings.OrdersForCustomer5.hints.TimeToShip.label}"/>
 </f:facet>
</dvt:barChart>

Chapter 38
Creating Databound Charts

38-11

How to Create Databound Funnel Charts
A funnel chart is used to represent the steps in a process. You can create a funnel
chart by using the Data Controls panel.

A funnel chart requires at least two values, with a maximum of three. The values
represent the actual and target data values for each stage, and the stage value.

Figure 38-6 shows a sample funnel chart. The funnel shows the different stages in a
sales conversion process for an online store. Each funnel section shows the number
of customers who reached the given stage in the process versus the desired target
number of customers for the stage. As the user moves over each section, a tooltip
provides the numerical quantity of the actual value and target value for that stage.

Figure 38-6 Sample Funnel Chart

Before you begin:

It may be helpful to have an understanding of databound data visualization charts. For
more information, see Creating Databound Charts.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects
that you want in your data model, as described in Creating and Modifying an
Application Module.

• Create a JSF page as described in the How to Create JSF Pages section of the
Developing Web User Interfaces with Oracle ADF Faces.

To create a databound funnel chart:

1. From the Data Controls panel, select a collection.

For example, the funnel chart displayed above is made using
the SalesConversionFunnel collection. Figure 38-7 shows the
SalesConversionFunnel collection in the Data Controls panel.

Chapter 38
Creating Databound Charts

38-12

Figure 38-7 Data Collection for SalesConversionFunnel Collection

2. Drag the collection onto a JSF page and, from the context menu, choose Charts.

3. In the Component Gallery, select the funnel chart category and a chart type and
click OK.

For example, select the Funnel chart category and the Funnel chart type to create
a vertical funnel chart.

4. Do the following in the dialog to configure the chart to display data:

• From the dropdown menus of the Actual Value and Target Value fields,
select an attribute to represent series of data.

For example, to configure the funnel chart in the sample, select the
NumOfVisitors attribute from the Actual Value field's dropdown menu, and
the TargetVisitors attribute from the Target Value field's dropdown menu.

• From the dropdown menu of the Funnel Section field, select an attribute to
represent a group of data.

For example, to configure the funnel chart in the sample, select the Stage
attribute from the Funnel Section field's dropdown menu.

Figure 38-8 shows the Create Funnel Chart dialog that generates a funnel
chart using the NumberOfVisitors, TargetVisitors, Stage attributes in the
SalesConversionFunnel collection.

Chapter 38
Creating Databound Charts

38-13

Figure 38-8 Create Funnel Chart for SalesConversionFunnel

5. Click OK.

The example below shows the code generated for the funnel chart when you drag the
SalesConversionFunnel data collection onto a JSF page and specify NumOfVisitors
for the Actual Value attribute, TargetVisitors for the Target Value attribute and
Stage for the Funnel Section.

<dvt:funnelChart id="funnelChart1" var="row"
 value="#{bindings.SalesConversionFunnel.collectionModel}">
<dvt:funnelDataItem id="di1" value="#{row.NumberOfVisitors}"
 targetValue="#{row.TargetVisitors}"
 label="#{row.Stage}"/>
</dvt:funnelChart>

After completing the data binding dialog, you can use the Property Inspector to specify
settings for the chart attributes and you can also use the child tags associated with the
chart tag to customize the chart further. For more information about configuring chart
components, see the Using Chart Components section in the Developing Web User
Interfaces with Oracle ADF Faces.

How to Create Databound Pie Charts
A pie chart displays one group of data, each slice representing a different series. This
chart type requires one column, with multiple rows, one for each slice. You can create
a pie chart using the Data Controls panel.

Figure 38-9 shows a pie chart in the Summit ADF sample application that displays
the inventory available for the ordered item at each stock location as a percentage
of the total available inventory for the item. As the user moves the mouse over each
slice, a tooltip shows the actual quantity at the location. The column of data in this

Chapter 38
Creating Databound Charts

38-14

example represents the total inventory for the ordered item, and the slices represent
the inventory levels at each stocking location.

Figure 38-9 Pie Chart Showing Inventory Levels at Stock Locations

Before you begin:

It may be helpful to have an understanding of databound data visualization charts. For
more information, see Creating Databound Charts.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a databound pie chart:

1. From the Data Controls panel, select a collection.

For example, to create the pie chart that displays the inventory levels at each
stock location in the Summit Customer Management page of the Summit ADF
sample application, select the BackOfficeAppModuleDataControl > Customers
> OrdersForCustomer > ItemsForOrder > InventoryForOrderItem collection.
Figure 38-10 shows the InventoryForOrderItem collection in the Data Controls
panel.

Chapter 38
Creating Databound Charts

38-15

Figure 38-10 Data Collection for InventoryForOrderItem Collection

2. Drag the collection onto a JSF page and, from the context menu, choose Charts.

3. In the Component Gallery, select the Pie chart category and a chart type and click
OK.

For example, select the Pie chart category and the Pie chart type to create the pie
chart in Figure 38-9.

4. Do the following in the Create Pie Chart dialog to configure the pie chart to display
data:

• From the Pie field's dropdownx‘ menu, select an attribute to represent the
column of data.

For example, to configure the pie chart in the Summit ADF sample application
to display inventory levels, select the AmountInStock attribute from the Pie
field's dropdown menu.

• Drag attributes from the Available list to the Slices field, depending on where
you want the values for the attributes to appear at runtime.

For example, to configure the pie chart in the Summit ADF sample application
to display the ordered item's inventory levels at each stock location, drag the
City attribute from the Available list to the Slices field in the Create Pie Chart
dialog.

• In the Attribute Labels table, accept the default value or select a value from
the dropdown list in the Label field to specify the label that appears at runtime.

The underlying data type determines the choices available in the Label field.
The choice you make determines how that attribute's label is rendered in the
chart. For more information, see What You May Need to Know About Using
Attribute Labels.

Figure 38-11 shows the Create Pie Chart dialog that generates a pie chart using
the AmountInStock and City attributes in the InventoryForOrderItem collection.

Chapter 38
Creating Databound Charts

38-16

Figure 38-11 Create Pie Chart for InventoryForOrderItem

5. Click OK.

The example below shows the code generated for the pie chart when you
drag the InventoryForOrderItem data collection onto a JSF page and specify
AmountInStock for the Pie value and City for the Slices.

<dvt:pieChart id="pieChart1" var="row"

value="#{bindings.InventoryForOrderItem1.collectionModel}">
 <dvt:chartLegend/>
 <dvt:pieDataItem id="di1" value="#{row.AmountInStock}"
label="#{row.City}"/>
</dvt:pieChart>

After completing the data binding dialog, you can use the Properties window to specify
settings for the chart attributes and you can also use the child tags associated with
the chart tag to customize the chart further. For example, you can configure an
exploding pie slice which causes one slice of the pie to appear separated from the
other slices. For more information, see Using Chart Components in Developing Web
User Interfaces with Oracle ADF Faces.

Creating a Databound Spark Chart Using Data Controls
Spark charts are simple, condensed charts that display trends or variations, often in
the column of a table, or inline with text. You can create a sparkchart by inserting a
data control from the Data Controls Panel.

Figure 38-12 shows the Component Gallery that displays when you drag a spark chart
onto your page from the Data Controls panel.

Chapter 38
Creating Databound Charts

38-17

Figure 38-12 Create Spark Chart Component Gallery

A binding dialog prompts you to specify the value you wish to display for the selected
spark chart type. Line, bar, and area spark charts require a single series of data
values, for example the changing value of a stock. Floating bar spark charts require
two series of data values, one for the float offset, and one for the bar value. For
example, in the Create Floating Stacked Bar Sparkchart dialog you specify:

• Bar Height: Use to select the data value to use for the bar value.

• Bar Float: Use to select the data value to use for the float offset, the distance
between the axis and the floating bar.

Figure 38-13 shows a completed Create Floating Stacked Bar Sparkchart dialog.

Figure 38-13 Sparkchart Binding Dialog

In a simple UI-first development scenario you can insert a sparkchart using the
Components window and bind it to data afterwards. For additional information about

Chapter 38
Creating Databound Charts

38-18

providing data to spark charts, see How to Add Data to Spark Charts in Developing
Web User Interfaces with Oracle ADF Faces.

How to Create Databound Bubble and Scatter Charts
Bubble and scatter charts represent data by the location of the data marker. Bubble
charts also use the size of the markers to represent an additional aspect of the data.

Scatter charts require at least two data values for each marker. Bubble charts require
an additional data value for the marker size. Each data marker represents the
following:

• The x value that determines the marker's location along the x-axis.

• The y value that determines the marker's location along the y-axis.

• The z value that determines the size of the marker on bubble charts

For more than one group of data, the data must be in multiples of two for scatter charts
and three for bubble charts.

Figure 38-14 shows a scatter and a bubble chart displaying salary and commission
for salesmen in the Summit organization. In this example, the x value is determined
by the commission, and the y value is determined by the salary. The bubble chart is
configured to use the salesmen's total sales for the z value. In this example, Magee
has the lowest salary and commission but is the salesman with the highest sales total.

Figure 38-14 Databound Scatter and Bubble Chart Examples

Before you begin:

It may be helpful to have an understanding of databound data visualization charts. For
more information, see Creating Databound Charts.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

Chapter 38
Creating Databound Charts

38-19

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

For example, the bubble and scatter charts in Figure 38-14 in uses a top level
view object based on the SEmp entity in the Summit ADF DVT sample application.
In this example, the view object retrieves all sales representatives in the Summit
ADF employee database by retrieving all employee records with a TITLE_ID of 2.
Figure 38-15 shows the SalesRepViewObj view object.

Figure 38-15 SalesRepViewObj View Object in Summit DVT Sample
Application

Figure 38-16 shows the SalesRepViewObj3 data control.

Figure 38-16 SalesRepViewObj3 Data Control in Summit DVT Sample
Application

The TotalSales attribute is a transient attribute that calculates the salesman's
total sales from the Total attribute in the SOrdView view object: SOrdView.sum

Chapter 38
Creating Databound Charts

38-20

('Total'). For information about adding transient attributes to view objects, see
Adding Calculated and Transient Attributes to a View Object.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a databound bubble or scatter chart:

1. From the Data Controls panel, select a collection.

For example, to create the bubble or scatter chart shown in Figure 38-14, select
the SalesRepViewObj3 collection.

2. Drag the collection onto a JSF page and, from the context menu, choose Charts.

3. In the Component Gallery, select the bubble or scatter chart category and a chart
type and click OK.

4. In the Create Bubble Chart or Create Scatter Chart dialog, do the following in the
dialog to configure the bubble or scatter chart axis values:

• In the X Axis Data Point field, use the dropdown list to specify the attribute in
the data collection to use for the x-axis data point.

For example, to configure the bubble or scatter chart to display the
commission percent along the X Axis, select CommissionPct from the
dropdown list.

• In the Y Axis Data Point field, use the dropdown list to specify the attribute in
the data collection to use for the y-axis data point.

• For bubble charts, in the Z Axis Data Point field, use the dropdown list to
specify the attribute in the data collection to use for the z-axis data point.

5. If you are configuring a scatter chart, in the Markers section, do the following in the
dialog to configure the scatter chart's color, shape, and tooltip:

• Select Automatically to use system-generated values for color/shape
combinations. Select Manually to use distinct attributes to determine color
and shape.

If you select Manually, select the attributes in the dropdown list for Marker
Color and Marker Shape.

For example, you could select LastName and FirstName to be used for Marker
Color and Marker Shape for the scatter chart displayed in Figure 38-14. When
the scatter chart is rendered, the legend will contain entries for both the color
and shape as shown in Figure 38-17. The scatter chart's tooltip displays the
value associated with both the marker and shape attributes.

Chapter 38
Creating Databound Charts

38-21

Figure 38-17 Scatter Chart Configured Manually for Color and Shape

• From the Marker Type field's dropdown list, specify one or more attributes
in the data collection that determine the values that appear in the legend of
the scatter chart. Each attribute will be represented by its own color/shape
combination in the scatter chart's legend. You can drag and drop attributes
from the Available list, or select from the Add dropdown list.

After specifying attributes for the input field, you can right click on any attribute
to display a context menu for actions such as Move Right, Move Left, Delete,
or Treat as Text.

• From the Marker Tooltip field's dropdown list, select the attribute to use for
the scatter chart's tooltip.

6. If you are configuring a bubble chart, in the Markers section, do the following in the
dialog to configure the bubble colors and tooltip:

• Select Automatically to use system-generated values for color. Select
Manually to use distinct attributes to determine color and shape.

If you select Manually, select the attribute in the dropdown list for Marker
Color and Marker Shape.

• If you selected Automatically, from the Bubble Color field's dropdown list,
specify one or more attributes in the data collection that determine the
values that appear in the legend of the bubble chart. Each attribute will be
represented by its own color in the bubble chart's legend. You can drag and
drop attributes from the Available list, or select from the Add dropdown list.

After specifying attributes for the input field, you can right click on any attribute
to display a context menu for actions such as Move Right, Move Left, Delete,
or Treat as Text.

• From the Bubble Tooltip field's dropdown list, select the attribute to use for
the bubble chart's tooltip.

By default, the bubble chart's tooltip will display the attribute or attributes
associated with the bubble chart's legend. For example, the bubble chart's
tooltip in Figure 38-14 shows the last name of the salesman for the Group.
You can select a different attribute in the collection to be used for the Group
item in the tooltip.

7. In the Attribute Labels table, accept the default value or select a value from the
dropdown list in the Label field to specify the label that appears at runtime.

Chapter 38
Creating Databound Charts

38-22

The underlying data type determines the choices available in the Label field. The
choice you make determines how that attribute's label is rendered in the chart. For
more information, see What You May Need to Know About Using Attribute Labels.

8. Click OK.

Figure 38-18 shows the Create Bubble Chart dialog that generates a bubble chart
using data from the CommissionPct, Salary, and Total Sales attributes in the
SalesRepViewObj3 data collection.

Figure 38-18 Create Bubble Chart Dialog

The entries for the Create Scatter Chart dialog are similar, but you would not need
to select a bubble size. Figure 38-19 shows the Create Scatter Chart dialog that
generates a scatter chart using data from the CommissionPct and Salary attributes in
the SalesRepViewObj3 data collection.

Chapter 38
Creating Databound Charts

38-23

Figure 38-19 Create Scatter Chart Dialog

The example below shows the code generated for the bubble and scatter charts
when you drag the SalesRepViewObj3 data collection onto a JSF page and specify
CommissionPct for the X Axis Data Point, Salary for the Y Axis Data Point, and
TotalSales for the bubble chart's Z Axis Data Point.

<dvt:scatterChart id="scatterChart1" var="row"
 value="#{bindings.SalesRepViewObj3.collectionModel}">
 <dvt:chartLegend rendered="true" id="cl1">
 <dvt:legendSection source="ag1" id="ls1"/>
 </dvt:chartLegend>
 <f:facet name="dataStamp">
 <dvt:chartDataItem id="di1" group="#{row.LastName}"
x="#{row.CommissionPct}"
 y="#{row.Salary}">
 <dvt:attributeGroups id="ag1" value="#{row.LastName}" type="color
shape"/>
 </dvt:chartDataItem>
 </f:facet>
</dvt:scatterChart>
...
<dvt:bubbleChart id="bubbleChart1" var="row"
 value="#{bindings.SalesRepViewObj3.collectionModel}">
 <dvt:chartLegend rendered="true" id="cl1">
 <dvt:legendSection source="ag1" id="ls1"/>

Chapter 38
Creating Databound Charts

38-24

 </dvt:chartLegend>
 <f:facet name="dataStamp">
 <dvt:chartDataItem id="di1" group="#{row.LastName}"
x="#{row.CommissionPct}"
 y="#{row.Salary}" z="#{row.TotalSales}">
 <dvt:attributeGroups id="ag1" value="#{row.LastName}"
type="color"/>
 </dvt:chartDataItem>
 </f:facet>
</dvt:bubbleChart>

If you chose to configure the scatter chart manually using attributes from the data
collection for marker and shape, JDeveloper adds an additional dvt:legendSection
and dvt:attributeGroups tag to the JSF page. The example below shows the revised
code, with the modified entries highlighted in bold.

<dvt:scatterChart id="scatterChart1" var="row"
 value="#{bindings.SalesRepViewObj3.collectionModel}">
 <dvt:chartLegend rendered="true" id="cl1">
 <dvt:legendSection source="ag1" id="ls1"/>
 <dvt:legendSection source="ag2" id="ls2"/>
 </dvt:chartLegend>
 <f:facet name="dataStamp">
 <dvt:chartDataItem id="di1" group="#{row.LastName} #{row.FirstName}"
 x="#{row.CommissionPct}"
 y="#{row.Salary}">
 <dvt:attributeGroups id="ag1" value="#{row.LastName}"
type="color"/>
 <dvt:attributeGroups id="ag2" value="#{row.FirstName}"
type="shape"/>
 </dvt:chartDataItem>
 </f:facet>
</dvt:scatterChart>

After completing the data binding dialog, you can use the Properties window to specify
settings for the chart attributes, and you can also use the child tags associated with
the chart tag to customize the chart further. For example, you can specify where you
want the chart's legend to appear. For more information, see Using Chart Components
in Developing Web User Interfaces with Oracle ADF Faces.

How to Create Databound Polar and Radar Charts
Polar and Radar charts are variations of the line, bar, area, bubble and scatter charts.
You can create a polar or radar chart using the Data Controls panel.

The requirements of polar and radar charts vary based on the type of chart used.
Radar line, radar area, and polar bar charts require at least two groups of data, with
one or more series. Polar scatter charts require at least two data values to indicate
position, while polar bubble charts require three values - two for position and one for
bubble size.

Figure 38-20 shows a sample polar line chart, configured to show the available
inventory levels of different products against the product ID and name.

Chapter 38
Creating Databound Charts

38-25

Figure 38-20 Sample Polar Bar Chart

Before you begin:

It may be helpful to have an understanding of databound data visualization charts. For
more information, see Creating Databound Charts.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects
that you want in your data model, as described in Creating and Modifying an
Application Module.

For example, the sample polar bar chart is based on the Inventory data
collection. Figure 38-21 shows the Inventory collection in the Data Controls
panel.

Figure 38-21 Data Collection for Inventory

The Inventory data collection is based on the InventoryVO view object.
Figure 38-22 shows the InventoryVO view object.

Chapter 38
Creating Databound Charts

38-26

Figure 38-22 InventoryVO View Object in Summit Sample Application

• Create a JSF page as described in the How to Create JSF JSP Pages section of
the Developing Web User Interfaces with Oracle ADF Faces.

To create a databound radar or polar chart:

1. From the Data Controls panel, select a collection.

2. Drag the collection onto a JSF page and, from the context menu, choose Charts.

3. In the Component Gallery, select the Radar/Polar chart category and a chart type
and click OK.

For example, select the Radar/Polar chart category and the Radar chart type to
create a radar line chart.

4. If configuring a polar line, area or bar chart, do the following:

• Drag attributes from the Available list to the input fields, depending on how
you want the values for the attributes to appear at runtime.

For example, to configure the polar bar chart in the sample application
to display the inventory levels, drag the AmountInStock attribute from the
Available list to the Bars field in the Create Bar Chart dialog. To configure
the chart to display the product ID and name, drag the ProductId and Name
attributes from the Available list to the X Axis field in the Create Bar Chart
dialog.

5. Click OK.

Figure 38-23 shows the Create Radar Chart dialog that generates a polar line chart
using data from the AmountInStock, ProductId, and Name attributes in the Inventory
data collection.

Chapter 38
Creating Databound Charts

38-27

Figure 38-23 Create Radar Chart Dialog

The example below shows the code generated for the bubble and scatter charts when
you drag the Inventory data collection onto a JSF page and specify AmountInStock
for the Y Axis Data Point, and ProductId and Name for the Y Axis Data Point. Notice
that radar and polar charts do not have a separate tag, but are rather basic charts with
the coordinateSystem attribute set to polar.

<dvt:lineChart coordinateSystem="polar" polarGridShape="polygon"
id="lineChart1" var="row" value="#{bindings.Inventory.collectionModel}">
 <f:facet name="dataStamp">
 <dvt:chartDataItem id="di1"
series="#{bindings.Inventory.hints.AmountInStock.label}"
value="#{row.AmountInStock}" group="#{row.ProductId} #{row.Name}"/>
 </f:facet>
</dvt:lineChart>

After completing the data binding dialog, you can use the Property Inspector to specify
settings for the chart attributes and you can also use the child tags associated with the
chart tag to customize the chart further. For more information about configuring chart
components, see the Using Chart Components section in the Developing Web User
Interfaces with Oracle ADF Faces.

Chapter 38
Creating Databound Charts

38-28

How to Create Databound Stock Charts
Stock charts are used to track the period milestone values of trade stocks, such as the
high, low, opening and closing prices of a stock. You can create a stock chart by using
the Data Controls panel.

Depending on the type of chart chosen, stock charts require a minimum of four values
to a maximum of seven values. Figure 38-24 shows a sample stock chart configured to
show stocks and their opening value, closing value, high value, low value, time period,
and trade volume. As the user moves over each stock, a tooltip provides the numerical
quantity of all values for that stock.

Figure 38-24 Sample Stock Chart

Before you begin:

It may be helpful to have an understanding of databound data visualization charts. For
more information, see Creating Databound Charts.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects
that you want in your data model, as described in Creating and Modifying an
Application Module.

• Create a JSF page as described in the How to Create JSF Pages section of the
Developing Web User Interfaces with Oracle ADF Faces.

To create a databound stock chart:

1. From the Data Controls panel, select a collection.

For example, the stock chart displayed above is made using the StockView1
collection. Figure 38-25 shows the StockView1 collection in the Data Controls
panel.

Chapter 38
Creating Databound Charts

38-29

Figure 38-25 Data Control for StockView1 Collection

2. Drag the collection onto a JSF page and, from the context menu, choose Charts.

3. In the Component Gallery, select the Stock chart category and a chart type and
click OK.

For example, to create the chart configured in the sample, select the Stock chart
category and the Open-Hi-Lo-Close Candle with Volume chart type.

4. Do the following in the dialog to configure the chart to display data:

• From the Stock field’s dropdown menu, select an attribute to represent the
name of the stock. You may use the Select Text Resource option to enter a
text value or use the Expression Builder to provide a JSF expression.

• Depending on the type of stock chart chosen, a selection of labels will be
shown. For each label, select an attribute from that label’s dropdown menu.
For example, to configure the chart from the example above, select the Open,
High, Low, Close, Volume, and MarketDate attributes for the Open, High, Low,
Close, Volume, and Time labels respectively.

Figure 38-26 shows the Create Chart Dialog for the stock chart configured in
the sample above.

Chapter 38
Creating Databound Charts

38-30

Figure 38-26 Create Chart Dialog for StockView1 Collection

5. Click OK.

The example below shows the code generated for the stock chart for the sample
above when you drag the Stock data collection onto a JSF page and specify the given
values.

<dvt:stockChart id="stockChart1" var="row"
value="#{bindings.StockView1.collectionModel}">
 <dvt:chartY2Axis id="cya1"/>
 <dvt:stockDataItem id="di1" volume="#{row.Volumn}"
high="#{row.High}" low="#{row.Low}" series="Stock"
 close="#{row.Close}" open="#{row.Open}"
group="#{row.MarketDate}"/>
</dvt:stockChart>

After completing the data binding dialog, you can use the Property Inspector to specify
settings for the chart attributes and you can also use the child tags associated with the
chart tag to customize the chart further. For more information about configuring chart
components, see the Using Chart Components section in the Developing Web User
Interfaces with Oracle ADF Faces.

What You May Need to Know About Using Attribute Labels
When you configure attribute labels in the Create Chart dialog, the underlying data
type determines the choices available in the Label field. The choice you make
determines how that attribute's label is rendered in the chart.

If an attribute represents data values, then the choices in the Label field are:

Chapter 38
Creating Databound Charts

38-31

• Use Attribute Name: Select to render the value as a string using the label from
the UIHints for that attribute in the underlying ViewObject. This is the default
selection.

• No Label: Select to render no label. This choice is useful if there is a single metric
and you want to provide your own descriptive text on the page to describe the
resulting chart.

• Select Text Resource: Select to open a Select Text Resource dialog to select or
add a text resource to use for the label. The text resource is a translatable string
from an application resource bundle. If you need help, press F1 or click Help.

• Expression Builder: Select to open the Expression Builder dialog to create an
expression to be executed at runtime for the label. If you need help, press F1 or
click Help.

If the attribute represents a category of data values, then the choices are:

• Use Attribute Value: Select to render the attribute values as category labels. This
is the default selection.

• From the dropdown list, choose an alternate attribute for the label. For example,
use Employee Names for labels instead of Employee IDs.

Creating Databound Gauges
A gauge plots a single data value, such as a sales total, stock level, temperature, or
speed. Using thresholds, gauges can show state information such as acceptable or
unacceptable ranges using color.

For example, a gauge value axis might show ranges colored red, yellow, and green to
represent low, medium, and high states. One databound gauge component can create
a single gauge or a column of gauges, depending on the number of rows in the data
collection used. In a data collection, each row contains the value for a single gauge.

The Component Gallery for gauges allows you to choose from four gauge categories.

Table 38-2 ADF Gauge Categories in the Component Gallery

Image Category Description

Dial Displays a metric value plotted on a circular axis. The gauge's
background attribute determines whether the gauge's background
is displayed as a rectangle, circle, or semicircle. An indicator points
to the dial gauge's metric value on the axis.

LED Graphically depicts a measurement, such as a key performance
indicator (KPI). Several styles of shapes are available for LED
gauges, including round or rectangular shapes that use color to
indicate status, and triangles or arrows that point up, left, right, or
down in addition to the color indicator.

Chapter 38
Creating Databound Gauges

38-32

Table 38-2 (Cont.) ADF Gauge Categories in the Component Gallery

Image Category Description

Rating Displays and optionally accepts input for a metric value. This gauge
is typically used to show ratings for products or services, such as
the star rating for a movie.

Status Meter Displays the metric value on a horizontal or circular axis. An inner
rectangle shows the current level of a measurement against the
ranges marked on an outer rectangle. Optionally, status meters
can display colors to indicate where the metric value falls within
predefined thresholds.

Each category contains one or more gauge types. Explore the Component Gallery that
appears when you create a single gauge to view all available gauge and category
types, and descriptions for each one. Figure 38-27 shows the Component Gallery that
appears for ADF gauges.

Figure 38-27 ADF Gauges Component Gallery

Chapter 38
Creating Databound Gauges

38-33

The data binding process is essentially the same regardless of which type of gauge
you create. Only the metric value (that is, the measurement that the gauge is to
indicate) is required. However, if a row in a data collection contains range information
such as maximum, minimum, and thresholds, then these values can be bound to the
gauge to provide dynamic settings. If information that you want to use in a gauge's
upper or lower labels is available in the data collection, then you can bind these values
to the gauge as well.

For information about customizing a gauge after the data binding is completed, see
Using Gauge Components in Developing Web User Interfaces with Oracle ADF Faces.

How to Create a Databound Dial Gauge
You can use the ADF gauge component to create a dial gauge against a circle, dome,
or rectangle background. The gauge's indicator specifies the current value of the
metric.

Figure 38-28 shows a single dial gauge that appears if you create a gauge from the
AmountInStock data for inventory items in the Summit ADF DVT sample application.
The value of the AmountInStock metric, which is 0.650K, appears in a label in the
center of the gauge

Figure 38-28 The Amount in Stock Dial Gauge

To create a dial gauge using a data control, you bind the gauge component to
an attribute in a data collection. JDeveloper allows you to do this declaratively by
dragging and dropping an attribute from the Data Controls panel. After you drag and
drop the attribute, use the Create Dial Gauge dialog to configure the gauge.

Figure 38-29 shows the Create Dial Gauge dialog configured for the Amount in Stock
dial gauge shown in Figure 38-28 and using the gauge type shown in Figure 38-27.

Chapter 38
Creating Databound Gauges

38-34

Figure 38-29 Create Dial Gauge Dialog for Amount in Stock Dial Gauge

Before You Begin:

It may be helpful to have an understanding of databound data visualization gauges.
For more information, see Creating Databound Gauges.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a databound dial gauge:

1. From the Data Controls panel, select an attribute from a collection.

For example, to create a dial gauge in the Summit ADF DVT sample application
to display the stock levels for an inventory item, you would select the
AmountInStock attribute in the ProductInventoryView1 collection. Figure 38-30
shows the ProductInventoryView1 collection in the Data Controls panel with the
AmountInStock attribute selected.

Chapter 38
Creating Databound Gauges

38-35

Figure 38-30 Data Collection with Amount in Stock for an Inventory Item

2. Drag the attribute onto a JSF page and, from the context menu, choose Gauges.

3. In the Component Gallery, choose the category and type of gauge, and then click
OK.

4. In the Create Dial Gauge dialog, do the following:

• In the Metric field, confirm the column in your data collection that contains the
actual value that the gauge is to plot. This is the only required value in the
dialog.

• In the Minimum field, if your data collection stores a minimum value for the
gauge range, select the column that contains this value from the dropdown list.
Alternatively, specify a minimum number for the range. If you do not specify a
value, the minimum defaults to 0.

• In the Maximum field, if your data collection stores a maximum value for the
gauge range, select the column that contains this value from the dropdown
list. Alternatively, specify a maximum value. If you do not specify a value, the
maximum value defaults to 100.

• In the Background field, select a background from the dropdown list.

Available shapes include circle, dome, and rectangle, with alta, light, antique,
or dark shading. By default, the gauge's background is set to auto which will
return the primary design for the current skin.

• In the Indicator field, select an indicator style from the dropdown list.

Available indicators include alta, antique, dark, and light. By default the
indicator is set to auto which will select the indicator that matches the gauge's
background.

• In the Show Metric Label check box, select the Show Metric Label check
box to show a metric label for the gauge. The metric label contains the actual
metric value for the gauge. For example, if the amount in stock for a given item
is 63, then the metric label will display 63.

5. Click OK.

In the Properties window, after you complete the binding of the gauge, you can set
values for additional attributes in the gauge tag and its child tags to customize the
component. For example, to configure the Amount In Stock gauge to show inventory
amounts without scaling, set the scaling attribute of the metric and tick labels to none.

You can also examine and adjust the existing gauge bindings by clicking the Edit icon
in the Properties window for the gauge component.

Chapter 38
Creating Databound Gauges

38-36

For additional information about customizing a gauge after the data binding is
completed, see Using Gauge Components in Developing Web User Interfaces with
Oracle ADF Faces.

What Happens When You Create a Dial Gauge from a Data Control
Dropping a gauge from the Data Controls panel has the following effect:

• Creates the bindings for the gauge and adds the bindings to the page definition file

• Adds the necessary code for the UI components to the JSF page

The example below shows the bindings that JDeveloper generated for the dial gauge
that displays the inventory level for a product in a warehouse. This code example
shows that the gauge metric receives its value dynamically from the AmountInStock
attribute in the ProductInventoryView1 data collection.

<bindings>
 <attributeValues IterBinding="ProductInventoryView1Iterator"
id="AmountInStock">
 <AttrNames>
 <Item Value="AmountInStock"/>
 </AttrNames>
 </attributeValues>
</bindings>

The example below shows the code that JDeveloper generated in the JSF page for a
dial gauge.

<dvt:dialGauge id="dialGauge1" indicator="needleAlta" minimum="0"
 maximum="2600" background="domeAlta"
 value="#{bindings.AmountInStock.inputValue}">
 <dvt:gaugeMetricLabel rendered="true" id="gml1"/>
</dvt:dialGauge>

How to Create a Databound Rating Gauge
The rating gauge displays and optionally accepts input for a metric value. This gauge
is typically used to show ratings for products or services, such as the star rating for a
movie.

Figure 38-31 shows an example of a rating gauge used to indicate a customer's credit
rating in the Summit ADF sample application. In this example, the customer has a poor
credit rating and is assigned one star. Other ratings include two stars for fair credit,
three stars for good credit, and four stars for excellent.

Chapter 38
Creating Databound Gauges

38-37

Figure 38-31 Rating Gauge in Summit ADF Sample Application

To create a rating gauge using a data control, you bind the rating gauge to an attribute
in a data collection. JDeveloper allows you to do this declaratively by dragging and
dropping an attribute from the Data Controls panel. After you drag and drop the
attribute, use the Create Rating Gauge dialog to configure the gauge.

Figure 38-32 shows the Create Rating Gauge dialog completed for the rating gauge in
Figure 38-31. In this example, the rating gauge is set to a maximum value of four to
reflect the four credit ratings.

Figure 38-32 Create Rating Gauge Dialog for Summit Credit Rating Gauge

Before You Begin:

Chapter 38
Creating Databound Gauges

38-38

It may be helpful to have an understanding of databound data visualization gauges.
For more information, see Creating Databound Gauges.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a databound rating gauge:

1. From the Data Controls panel, select an attribute from a collection.

For example, to create the rating gauge in the Summit ADF sample application
to display the credit ratings for a customer, you would select the CreditRatingId
attribute in the Customer collection. Figure 38-30 shows the Customer collection in
the Data Controls panel with the CreditRatingId attribute selected.

Figure 38-33 Data Collection with Amount in Stock for an Inventory Item

2. Drag the attribute onto a JSF page and, from the context menu, choose Gauges.

3. In the Component Gallery, choose the category and type of gauge, and then click
OK.

4. In the Create Rating Gauge dialog, do the following:

• In the Rating Value field, confirm the column in your data collection that
contains the actual value that the gauge is to plot. This is the only required
value in the dialog.

• In the Minimum field, if your data collection stores a minimum value for the
gauge range, select the column that contains this value from the dropdown list.
Alternatively, specify a minimum number for the range. If you do not specify a
value, the minimum defaults to 0.

• In the Maximum field, if your data collection stores a maximum value for the
gauge range, select the column that contains this value from the dropdown

Chapter 38
Creating Databound Gauges

38-39

list. Alternatively, specify a maximum value. If you do not specify a value, the
maximum value defaults to 5.

• In the Shape field, select a background from the dropdown list.

Available shapes include circle, diamond, rectangle, and star.

5. Click OK.

In the Properties window, after you complete the binding of the gauge, you can set
values for additional attributes in the gauge tag and its child tags to customize the
component. For example, to configure the rating gauge to allow the customer's credit
rating to be updated, set the readOnly attribute of the rating gauge to false.

In the Summit ADF example, the rating gauge's value was set to the CreditRatingId
during creation. However, the CreditRatingId actually ranges between 1 and 4, with
1 being the highest rating. To convert the rating to stars for the rating gauge, edit
the source code in the Code Editor after the gauge is credited and replace the rating
gauge's value with: #{5 - bindings.CreditRatingId.inputValue}.

The example below shows the code on the JSF page for the Summit ADF rating
gauge.

<dvt:ratingGauge id="ratingGauge1" minimum="0" maximum="4"
 value="#{5 - bindings.CreditRatingId.inputValue}"
shape="star"/>

You can also examine and adjust the existing gauge bindings by clicking the Edit icon
in the Properties window for the gauge component.

For additional information about customizing a gauge after the data binding is
completed, see Using Gauge Components in Developing Web User Interfaces with
Oracle ADF Faces.

Including Gauges in Databound ADF Tables
You can add databound gauges to a databound ADF table by choosing the gauge
component when specifying column content during table editing or creation.

Figure 38-34 shows a portion of a table that displays all the products in a warehouse in
the Summit ADF DVT sample application. In this example, the AmountInStock column
includes a LED gauge that shows the amount in stock for each product and whether
the value falls within an acceptable range.

Chapter 38
Creating Databound Gauges

38-40

Figure 38-34 LED Gauge in an ADF Table

How to Include a Gauge in a Databound ADF Table
To add a gauge to a databound ADF table, drag a data collection that includes the
gauge metric from the Data Controls panel to the JSF page and specify the type of
gauge to create.

Before you begin:

It may be helpful to have an understanding of databound data visualization gauges.
For more information, see Creating Databound Gauges.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To include a gauge in a databound ADF table:

1. From the Data Controls panel, select the collection to use for the ADF table.

For example, to create the table that displays the inventory levels for
each product in a warehouse in the Summit ADF DVT sample application,
select the ProductInventoryView1 collection. Figure 38-35 shows the
ProductInventoryView1 collection in the Data Controls panel.

Chapter 38
Creating Databound Gauges

38-41

Figure 38-35 ProductInventoryView1 Data Collection

2. Drag the collection onto a JSF page and, from the context menu, choose Table >
ADF Table.

3. In the Edit Table Columns dialog, select the column that represents the gauge
metric.

For example, select the AmountInStock column to use as the gauge metric.

4. From the Component to Use dropdown menu, choose the type of gauge to create.

For example, choose Gauge Status Meter to add a status meter to the table.

5. Complete the table configuration.

If you need help, press F1 or click Help.

Figure 38-36 shows the completed dialog for the table displayed in Figure 38-34,
with the LED Gauge selected for the AmountInStock column.

Figure 38-36 Create Table Dialog Showing LED Gauge

6. Click OK to add the table to the JSF page.

In the Properties window, after you complete the binding of the table, you can set
values for additional attributes in the gauge tag and its child tags to customize

Chapter 38
Creating Databound Gauges

38-42

the component. For example, the LED gauge in Figure 38-34 is configured to use
thresholds to indicate whether the stock level is within an acceptable range. For
additional information about configuring gauge thresholds, see How to Configure
Gauge Thresholds in Developing Web User Interfaces with Oracle ADF Faces.

You can also examine and adjust the existing table bindings by clicking the Edit icon in
the Properties window for the table component.

For additional information about creating and configuring databound ADF tables,
see Creating ADF Databound Tables. For additional information about using and
customizing gauge components, see Using Gauge Components in Developing Web
User Interfaces with Oracle ADF Faces.

What Happens When You Include a Gauge in an ADF Table
When you include a gauge in a databound ADF table, the gauge's metric attribute is
added to the page definition file, and the UI components are updated on the JSF page.

The example below shows the binding for the ADF table shown in Figure 38-34.

<bindings>
 <tree IterBinding="ProductInventoryView1Iterator"
id="ProductInventoryView1">
 <nodeDefinition DefName="model.ProductInventoryView"
 Name="ProductInventoryView10">
 <AttrNames>
 <Item Value="ProductId"/>
 <Item Value="Name"/>
 <Item Value="ShortDesc"/>
 <Item Value="AmountInStock"/>
 <Item Value="ReorderPoint"/>
 <Item Value="MaxInStock"/>
 <Item Value="WarehouseId"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

The example below shows the code added to the JSF page for the ADF table. The
gauge elements are highlighted in bold. For the sake of brevity, only the first three
table columns are displayed.

<af:table value="#{bindings.ProductInventoryView1.collectionModel}"
var="row"
 rows="#{bindings.ProductInventoryView1.rangeSize}"
 emptyText="#{bindings.ProductInventoryView1.viewable ?
 'No data to display.' : 'Access Denied.'}"
 rowBandingInterval="0"
 fetchSize="#{bindings.ProductInventoryView1.rangeSize}"
id="t1"
 summary="Table Showing Product Inventory">
 <af:column
headerText="#{bindings.ProductInventoryView1.hints.ProductId.label}"
 id="c1" width="100"
 rowHeader="true">

Chapter 38
Creating Databound Gauges

38-43

 <af:outputText value="#{row.ProductId}"

shortDesc="#{bindings.ProductInventoryView1.hints.ProductId.tooltip}"
 id="ot1">
 <af:convertNumber groupingUsed="false"

pattern="#{bindings.ProductInventoryView1.hints.ProductId.format}"/>
 </af:outputText>
 </af:column>
 <af:column
headerText="#{bindings.ProductInventoryView1.hints.Name.label}"
 id="c2" width="100">
 <af:outputText value="#{row.Name}"

shortDesc="#{bindings.ProductInventoryView1.hints.Name.tooltip}"
id="ot2"/>
 </af:column>
 <af:column
headerText="#{bindings.ProductInventoryView1.hints.ShortDesc.label}"
 id="c3" width="100">
 <af:outputText value="#{row.ShortDesc}"

shortDesc="#{bindings.ProductInventoryView1.hints.ShortDesc.tooltip}"
id="ot3"/>
 </af:column>
 <af:column
headerText="#{bindings.ProductInventoryView1.hints.AmountInStock.label}"
 id="c4" width="72" align="center">
 <dvt:ledGauge id="ledGauge1"
value="#{row.bindings.AmountInStock.inputValue}"

shortDesc="#{bindings.ProductInventoryView1.hints.AmountInStock.tooltip}"
 maximum="3000">
 <dvt:gaugeMetricLabel rendered="true" scaling="none" id="gml1"/>
 <dvt:gaugeThreshold id="gt1"
maximum="#{row.bindings.ReorderPoint.inputValue}"
 color="#d62800"/>
 <dvt:gaugeThreshold id="gt2"
maximum="#{row.bindings.MaxInStock.inputValue}"
 color="#63a500"/>
 <dvt:gaugeThreshold id="gt3" color="#e7e700"/>
 </dvt:ledGauge>
 </af:column>

... remaining columns omitted
</af:table>

Creating Databound Picto Charts
The ADF DVT Picto Chart component uses icons to visualize an absolute number, or
the relative sizes of the different parts of a population. Picto Charts are extensively
used in infographics as a more interesting and effective way to present numerical
information than traditional tables and lists.

Chapter 38
Creating Databound Picto Charts

38-44

Figure 38-37 shows a basic picto chart with two parts of a population. The data
contains two rows of information, with each row having a name, count and color
information.

Figure 38-37 Sample Picto Chart

For detailed information about picto chart end user and presentation features, use
cases, tag structure, and adding special features to picto charts, see the Using Picto
Chart Components in Developing Web User Interfaces with Oracle ADF Faces.

How to Create a Databound Picto Chart
A picto chart is used to visualize an absolute number or the relative sizes of the
different parts of a population. You can create a picto chart by using the Data Controls
panel.

Before you Begin:

It may be helpful to have an understanding of databound data visualization picto
charts. See Creating Databound Picto Charts.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. See Additional Functionality for Data Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects
that you want in your data model, as described in Creating and Modifying an
Application Module.

• Create a JSF page, as described in How to Create JSF Pages in Developing Web
User Interfaces with Oracle ADF Faces.

To create a databound picto chart:

1. From the Data Controls panel, select a collection.

For example, to use the data collection shown in Figure 38-37, select the
PictoChartData collection. Figure 38-38 shows the collection in the Data Controls
panel.

Chapter 38
Creating Databound Picto Charts

38-45

Figure 38-38 Data Control for Sample Picto Chart

2. Drag the collection onto a JSF page, and from the menu, choose Picto Chart.

3. In the Create Picto Chart dialog, do the following:

• In the Name field, specify a value for the tooltip to be displayed.

For example, to configure the picto chart in the sample, select the Name
attribute.

• Optionally, in the Count field, specify a numeric value for the number of times
the shape or image should be drawn. You can specify a data item or text
resource or use the Expression Builder from the dropdown list. If no value is
specified, it will use a default value of 1.

For example, to configure the picto chart in the sample, select the Count
attribute.

Figure 38-39 shows the Create Picto Chart dialog with the values filled in.

Figure 38-39 Create Picto Chart Dialog

4. Click OK.

After you complete the binding of the picto chart, you can use the Properties window to
set values for additional attributes in the picto chart tag and its child tags to customize
the component. For more information about configuring picto chart components, see
Using Picto Chart Components in Developing Web User Interfaces with Oracle ADF
Faces

What Happens When You Create a Picto Chart from a Data Control
To create a picto chart from a Data control, drag the control from the Data Control
panel and drop it on a relevant container on the JSF page.

Dropping a picto chart from the Data Controls panel has the following effect:

• Creates the bindings for the picto chart and adds the bindings to the page
definition file

Chapter 38
Creating Databound Picto Charts

38-46

• Adds the necessary code for the UI components to the JSF page

The example below shows the bindings that JDeveloper generated for the sample
picto chart.

<tree IterBinding="PictoChartDataIterator" id="PictoChartData"
ChangeEventPolicy="ppr">
 <nodeDefinition DefName="view.prototype.PictoChartData"
Name="PictoChartData">
 <AttrNames>
 <Item Value="Name"/>
 <Item Value="Count"/>
 </AttrNames>
 </nodeDefinition>
</tree>

The example below shows the code that JDeveloper generated in the JSF page for a
picto chart.

<dvt:pictoChart id="pictoChart1" var="row"
value="#{bindings.PictoChartData.collectionModel}">
 <dvt:pictoChartItem name="#{row.Name}" count="#{row.Count}"
id="pci1"/>
</dvt:pictoChart>

After you create your picto chart, you can modify the binding or add additional
rules using the Edit Picto Chart dialog. To open the dialog, click the Edit icon in
the Properties window for the picto chart component. You can also customize the
attributes of the picto chart directly in the code, in the visual editor, or by setting values
in the Properties window. For example, you can use the Properties window or code
editor to set the color for different parts of the population and to set a shape for the
data items.. The example below highlights the relevant code.

<dvt:pictoChartItem name="#{row.Name}" count="#{row.Count}"
color="#{row.Color}"
 shape="human" id="pci1"/>

Chapter 38
Creating Databound Picto Charts

38-47

39
Creating Databound NBox Components

This chapter describes how to create NBox components from data modeled with
ADF Business Components, using ADF data controls and ADF Faces components
in a Fusion web application. Specifically, it describes how you can use ADF Data
Visualization nBox components that visually represent business data. It describes how
to use ADF data controls to create a NBox with data-first development.
If you are designing your page using simple UI-first development, then you can add
the NBox to your page and configure the data bindings later. For information about the
data requirements, tag structure, and options for customizing the look and behavior
of the nBox components, see Using NBox Components in Developing Web User
Interfaces with Oracle ADF Faces.

This chapter includes the following sections:

• About ADF Data Visualization NBox Components

• Creating Databound NBox Components

About ADF Data Visualization NBox Components
The NBox Component is a data grouping visualization that utilizes two ranges of data
to form a grid of cells, and each cell contains customizable nodes that represent
individual data items. NBox components are useful to group data with multiple factors
of consideration, such as employee potential against employee performance.

ADF Data Visualization components provide extensive graphical and tabular
capabilities for visually displaying and analyzing business data. You must bind each
component to data before it can be rendered since the appearance of the components
is dictated by the data that is displayed.

The ADF nBox component produces an interactive component that you can use to
visualize and compare data across a two-dimensional grid, represented visually by
rows and columns. The nBox component is comprised of two parts: the node that
represents the data and the grid that comprises the cells into which the nodes are
placed. If the number of nodes is greater than the space allocated for the cell, the
NBox displays an indicator that users can click to access the additional nodes.

For example, you can use the nBox component to compare employee potential and
performance data, where the row represents employee potential and the column
represents employee performance. The node that represents the employee is stamped
into the appropriate cell.

39-1

Figure 39-1 NBox Component Comparing Employee Potential and Performance

The prefix dvt: occurs at the beginning of each data visualization component name
indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag
library.

End User and Presentation Features
Visually compelling data visualization components enable end users to understand
and analyze complex business data. The components are rich in features that provide
out-of-the-box interactivity support. For detailed descriptions of the end user and
presentation features for the NBox component, see the End User and Presentation
Features section in Developing Web User Interfaces with Oracle ADF Faces.

Data Visualization Components Use Cases and Examples
For detailed descriptions of each data visualization use case and example, see the
NBox Use Cases and Examples section in Developing Web User Interfaces with
Oracle ADF Faces.

Additional Functionality for Data Visualization Components
You may find it helpful to understand other Oracle ADF features before you data
bind your data visualization components. Additionally, once you have added a data
visualization component to your page, you may find that you need to add functionality
such as validation and accessibility. Following are links to other functionality that data
visualization components use:

• Partial page rendering: You may want a data visualization component to refresh to
show new data based on an action taken on another component on the page. For
more information, see Rerendering Partial Page Content in Developing Web User
Interfaces with Oracle ADF Faces.

Chapter 39
About ADF Data Visualization NBox Components

39-2

• Personalization: Users can change the way the data visualization components
display at runtime, those values will not be retained once the user leaves the
page unless you configure your application to allow user customization. For more
information, see Allowing User Customization on JSF Pages in Developing Web
User Interfaces with Oracle ADF Faces.

• Accessibility: You can make your data visualization components accessible. For
more information, see Developing Accessible ADF Faces Pages in Developing
Web User Interfaces with Oracle ADF Faces.

• Skins and styles: You can customize the appearance of data visualization
components using an ADF skin that you apply to the application or by applying
CSS style properties directly using a style-related property (styleClass or
inlineStyle). For more information, see Customizing the Appearance Using
Styles and Skins in Developing Web User Interfaces with Oracle ADF Faces.

• Placeholder data controls: If you know the data visualization components on your
page will eventually use ADF data binding, but you need to develop the pages
before the data controls are ready, then you should consider using placeholder
data controls, rather than manually binding the components. Using placeholder
data controls will provide the same declarative development experience as using
developed data controls. For more information, see Designing a Page Using
Placeholder Data Controls.

Creating Databound NBox Components
DVT NBox components can be created and bound to a data collection with a data-first
development approach. JDeveloper allows you to do this declaratively by dragging and
dropping a collection from the Data Controls panel.

The ADF NBox component displays data in a grid layout, with a configurable number
of rows and columns used to represent two dimensions or measures of data. Nodes
represent the actual data and are stamped inside the grid's cells according to where
the node's value falls within the ranges or measures specified for the cells.

Figure 39-2 shows a sample NBox configured to display a grid with three rows and
four columns. Each row represents a range of population data, labeled as Low,
Medium, or High. Each column represents a range of income data, labeled as Lower,
Lo-Mid, Hi-Mid, or Upper. The nodes represent the states, which are stamped into a
cell depending on the value of the state's population and income level. The sample
NBox also uses optional attribute groups to color each node depending upon its
Division value and to vary the node's icon marker shape depending upon its Region
value.

Chapter 39
Creating Databound NBox Components

39-3

Figure 39-2 NBox Showing United States State Income and Population

The Create NBox wizard provides declarative support for creating the NBox and
binding it to data. In the wizard pages you can:

• Specify the initial layout of the NBox, including:

– Number of rows and columns (Required)

– Values for each NBox row and column (Required)

– Titles for the NBox rows and columns

– Labels for each NBox row and column

• Configure the NBox nodes, including:

– Attributes to use from the data collection to determine the node's row and
column placement (Required)

– Primary and secondary node labels

– Attribute groups to group nodes by color or shape according to a specified
attribute

– Images to use for the node's icon or indicator

After you complete the NBox wizard and the NBox is added to your page, you can
further customize the NBox using the Properties window. For additional information,
see Using NBox Components in Developing Web User Interfaces with Oracle ADF
Faces.

Chapter 39
Creating Databound NBox Components

39-4

How to Create an NBox Component Using ADF Data Controls
To create a DVT NBox using a data control, bind the dvt:nBox component to a
collection. JDeveloper allows you to do this declaratively by dragging and dropping
a collection from the Data Controls panel.

Tip:

You can also create the NBox by dragging the NBox from the Components
window. This approach allows you the option of designing the NBox user
interface before binding the component to data.

Before you begin:

It may be helpful to have an understanding of databound NBoxes. For more
information, see About ADF Data Visualization NBox Components.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model for the NBox, as described in Creating and Modifying an
Application Module.

Figure 39-3 shows the data control for the NBox displayed in Figure 39-2. In this
example, CensusView1 contains the data collection for the NBox. NBox nodes are
represented visually as rectangular boxes identified by their state names. Each
node is stamped into one of the NBox cells according to the values in the node's
Population2006Level and Income2005Class attributes.

Figure 39-3 Data Control for NBox Showing United States Income and
Population

Chapter 39
Creating Databound NBox Components

39-5

The Population2006Level and Income2005Class attributes are defined as
transient attributes whose values are derived from the Population2006 and
Income2005 attributes in the data collection. In this example, the rows are defined
as ranges, with the lowest range displayed on the bottom row of the NBox. For
example, a node whose Population2006 value is less than or equal to 1,000,000
will be assigned a Population2006Level of low. Columns are also defined as
ranges, with the lowest range displayed in the leftmost column for left-to-right
locales and in the rightmost column for right-to-left locales.

package model

import oracle.jbo.script.annotation.TransientValueExpression;

@TransientValueExpression(attributeName="Population2006Level")
def Population2006Level_ExpressionScript_Expression()
{
Population2006 <= 1000000 ? 'low' : (Population2006 <= 5000000 ?
'medium' : 'high')
}

@TransientValueExpression(attributeName="Income2005Class")
def Income2005Class_ExpressionScript_Expression()
{
Income2005 <= 40000.0 ? 'lower' : (Income2005 <= 45000.0 ? 'lo-mid' :
(Income2005 <= 50000.0 ? 'hi-mid' : 'upper'))
}

For information about adding transient attributes to view objects, see Adding
Calculated and Transient Attributes to a View Object.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a databound NBox:

1. From the Data Controls panel, select a collection.

For example, to use the data control shown in this section, select CensusView1.

2. Drag the collection onto a JSF page and, from the menu, choose NBox.

3. In the Create NBox - Configure NBox Grid dialog, enter numeric values for the
number of rows and number of columns in the NBox.

For example, enter 3 for Rows and 4 for Columns to create the NBox with three
rows and four columns.

4. Optionally, enter the text label to display for the row and column titles of the NBox.
If you wish to associate a text resource from a resource bundle with the text label,
select Select Text Resource to launch a dialog available for that purpose. If you
wish to access data stored in objects, or reference and invoke methods using
an EL Expression, select Expression Builder to launch the Expression Builder
dialog. The rows title displays in the dynamic sample NBox.

5. For each cell in the NBox, enter values for the row and column.

For example, to use the data control shown in this section, in Row1 enter low for
the row value and lower for Column 1's value.

Optionally, to display a text label in each cell, select Select Text Resource to
associate a text resource for the label. If you wish to access data stored in objects,

Chapter 39
Creating Databound NBox Components

39-6

or reference and invoke methods using an EL Expression, select Expression
Builder to launch the Expression Builder dialog.

You can click Next Row or Next Column to move to the next row or column in the
NBox. Alternatively, you can click in the desired cell in the NBox dynamic sample
to display the row and column fields for that cell. When you have finished entering
values, click Next to move to the next dialog.

Figure 39-4 shows the completed dialog for the NBox shown in this section.

Figure 39-4 Create NBox Dialog for NBox Showing United States
Population and Income

6. In the Create NBox - Configure Node dialog, in the Row and Column fields, select
the attributes from the data collection that contains the row and column values. If
you wish to access data stored in objects, or reference and invoke methods using
an EL Expression, select Expression Builder to launch the Expression Builder
dialog.

For example, select Population2006Level and Income2005Class to use the
transient attributes shown in this section.

7. Optionally, to display a text label in the node, from the Label and Secondary
Label dropdown menus, select the attribute to use for the text label. To use a text
resource for the label, select Select Text Resource to associate a text resource
for the label. If you wish to access data stored in objects, or reference and
invoke methods using an EL Expression, select Expression Builder to launch
the Expression Builder dialog.

8. Optionally, to configure the NBox node's icon or indicator, in the Create NBox
dialog, click Icon or Indicator and enter values for the following:

Chapter 39
Creating Databound NBox Components

39-7

• Shape: Click and use the dropdown to select a shape to use for the icon or
indicator. Valid values include: circle, human, diamond, square, triangleDown,
triangleUp, and plus.

Note:

When you specify the icon or indicator shape explicitly, the same
shape will be used for each node in the NBox. If you want to vary
the shape according to some measure, configure an attribute group
instead.

• Image: Click and use the dropdown to select an image to use for the icon or
indicator.

9. Optionally, to configure an attribute group for the NBox node, icon, or indicator,
click New in the Grouping Rules section under the Node, Icon, or Indicator tab.
Use attribute groups if you want the NBox node, icon, or indicator display to vary
based on color, shape, or pattern. Attribute groups are also required if you want to
display a legend.

To configure an attribute group, enter values for the following:

• Group by value: From the dropdown list, select the attribute in the
data collection to group by in the attribute group. You can select one of
the attributes provided or select Expression Builder to enter a JSF EL
expression.

The sample application in this section defines attribute groups to group the
nodes by Division and the icon by Region. For example, select Division as the
Group by value for the CensusView1 collection, and the colors displayed on
the NBox nodes will vary according to color.

• Node, Icon, or Indicator: From the dropdown list, select the option that you
want to group by for display.

For the NBox node, you can choose Color to group the nodes by color or
select Indicator Color if you want the attribute group to vary by color and
display the color as an indicator. To vary the attribute group by both color and
indicator color, select Select Multiple Attributes and select both Color and
Indicator Color. Click OK.

For the NBox icon and indicator, you can choose Color, Shape, or Pattern to
group the icon or indicator by color, shape, or pattern. To vary the attribute
group by multiple attributes, select Select Multiple Attributes and select
Color, Shape, or Pattern from the dialog. Click OK.

• Legend Label: From the dropdown list, select the attribute in the data
collection to display in the NBox legend. You can select one of the attributes
provided or select Expression Builder to enter a JSF EL expression.

• Section Label: To use a text resource for the label, select Select Text
Resource to associate a text resource for the label. If you wish to access data
stored in objects, or reference and invoke methods using an EL Expression,
select Expression Builder to launch the Expression Builder dialog.

Chapter 39
Creating Databound NBox Components

39-8

Note:

The section label describes the legend content of a sub-section of
the legend and is rendered in the legend area. In Figure 39-2, for
example, Division and Region are section labels.

Figure 39-5 shows the completed Create NBox dialog to configure the nodes.

Figure 39-5 Create NBox Dialog for Node Configuration

• Optionally, click Value-Specific Rules to expand the attribute group dialog
to specify a match or exception rule. Use match rules to specify colors or
patterns for simple true or false conditions or when you want to match a
specific value. Use exception rules when you want to specify a color or pattern
when the grouped-by value meets a specific condition.

To specify a match rule, in the Match Rules section, click New and enter
values for the following:

– Group Value: Enter the category value for the match. This can be a
string that represents a category or you can set this to true or false.
If you set this to true or false, the Group by value field must contain
an EL expression that evaluates to true or false as in the following
example:#{row.AmountInStock gt row.ReorderPoint}.

– Property: From the dropdown list, select Color if you want the node to
vary by color or select Indicator Color if you want the background of the
indicator area on the node to vary by color.

Chapter 39
Creating Databound NBox Components

39-9

– Property Value: From the dropdown list, select the color or pattern to
display when the node's value matches the Group Value. For color, you
can select one of the provided values or select Custom Color to enter
a custom color in the Select Custom Color dialog. For pattern, you must
select one of the provided values.

To specify an exception rule, in the Exception Rules section, click New and
enter values for the following:

– Condition: Enter a JSF EL expression that evaluates to true or false.
You can enter the expression directly in the Condition field or select
Expression Builder to enter the JSF EL expression.

– Property: From the dropdown list, select Color if you want the node to
vary by color. Select Indicator Color if you want the node's indicator area
to vary by indicator color.

– Property Value: From the dropdown list, select the color or pattern to
display when the node's value meets the condition you specified in the
Condition field. For color, you can select one of the provided values or
select Custom Color to enter a custom color in the Select Custom Color
dialog. For pattern, you must select one of the provided values.

– Legend Label: From the dropdown list, select Select Text Resource
to select a text resource to be used for the legend label. You can also
enter text in this field or select Expression Builder to enter a JSF EL
expression.

10. When you have completed the node configuration, click Finish to exit the dialog
and add the NBox to the page.

After completing the Create NBox dialog, you can use the Properties window to
specify settings for the NBox attributes, and you can also use the child tags associated
with the NBox tag to customize the NBox further. For detailed information about NBox
end user and presentation features, use cases, tag structure, and special features, see
Using NBox Components in Developing Web User Interfaces with Oracle ADF Faces.

What Happens When You Create a Databound NBox
Creating an NBox from the Data Controls panel has the following effect:

• Creates the bindings for the NBox in the page definition file
(pageNamePageDef.xml) of the JSF page

• Adds the necessary tags to the JSF page for the dvt:nBox component

Bindings for NBox Components
The following code sample shows the bindings that JDeveloper generated for a
dvt:nBox component using the data collection shown in Figure 39-3:

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="CensusView1" RangeSize="-1" DataControl="AppModuleDataControl"
 id="CensusView1Iterator"/>
</executables>
<bindings>
 <tree IterBinding="CensusView1Iterator" id="CensusView1">
 <nodeDefinition DefName="model.CensusView" Name="CensusView10">
 <AttrNames>

Chapter 39
Creating Databound NBox Components

39-10

 <Item Value="Population2006Level"/>
 <Item Value="Income2005Class"/>
 <Item Value="State"/>
 <Item Value="Division"/>
 <Item Value="Region"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

The rules for populating the NBox node are defined in a node definition. Each
node definition references a view object and the attributes specified in the Create
NBox dialog. For additional information about the pageNamePageDef.xml file, see
pageNamePageDef.xml.

Editing the NBox Binding
Attributes that were not specified in the Create NBox dialog during creation will not be
included in the binding. If you need to reference another attribute in the data collection,
you must add it manually to the binding. For example, the sample in this section
displays a tooltip showing the state's income and population when the user hovers
over a node.

Figure 39-6 NBox Tooltip

For the tooltip to evaluate properly, you must add the Population2006 and
Income2005 attributes to the binding definition for the NBox. To add the binding, in
the Structure window, right-click the dvt:nBox component and choose Go to Binding.
Choose Edit in the Binding section to add the Population2006 and Income 2005
attributes.

Figure 39-7 shows the completed Edit Tree Binding with Population2006 and
Income2005 added to the display attributes.

Chapter 39
Creating Databound NBox Components

39-11

Figure 39-7 Edit Tree Binding Dialog for NBox Sample

After you click OK, the binding will be updated with the added attributes. The following
code sample shows the revised binding for the CensusView10 node definition.

<nodeDefinition DefName="model.CensusView" Name="CensusView10">
 <AttrNames>
 <Item Value="Population2006Level"/>
 <Item Value="Income2005Class"/>
 <Item Value="State"/>
 <Item Value="Division"/>
 <Item Value="Region"/>
 <Item Value="Population2006"/>
 <Item Value="Income2005"/>
 </AttrNames>
</nodeDefinition>

Code on the JSF page for an NBox Component
The following example shows the code that is generated on the JSF page for the
NBox:

<dvt:nBox id="nb1" var="ent" rowsTitle="#{viewcontrollerBundle.POPULATION}"
 value="#{bindings.CensusView1.collectionModel}"
 columnsTitle="#{viewcontrollerBundle.INCOME}">
 <f:facet name="rows">
 <af:group id="g1">
 <dvt:nBoxRow label="#{viewcontrollerBundle.LOW}" id="nbr1" value="low"/>
 <dvt:nBoxRow label="#{viewcontrollerBundle.MEDIUM}" id="nbr2"
value="medium"/>

Chapter 39
Creating Databound NBox Components

39-12

 <dvt:nBoxRow label="#{viewcontrollerBundle.HIGH}" id="nbr3" value="high"/>
 </af:group>
 </f:facet>
 <f:facet name="columns">
 <af:group id="g2">
 <dvt:nBoxColumn label="#{viewcontrollerBundle.LOWER}" id="nbc1"
value="lower"/>
 <dvt:nBoxColumn label="#{viewcontrollerBundle.LO_MID}" id="nbc2" value="lo-
mid"/>
 <dvt:nBoxColumn label="#{viewcontrollerBundle.HI_MID}" id="nbc3" value="hi-
mid"/>
 <dvt:nBoxColumn label="#{viewcontrollerBundle.UPPER}" id="nbc4"
value="upper"/>
 </af:group>
 </f:facet>
 <dvt:nBoxNode column="#{ent.Income2005Class}" row="#{ent.Population2006Level}"
 label="#{ent.State}" id="nbn1">
 <dvt:attributeGroups value="#{ent.Division}" type="color"
 label="#{ent.Division}"
 sectionLabel="#{viewcontrollerBundle.DIVISION}"
id="ag1"/>
 <f:facet name="icon">
 <dvt:marker id="m1">
 <dvt:attributeGroups value="#{ent.Region}" type="shape"
 label="#{ent.Region}"
 sectionLabel="#{viewcontrollerBundle.REGION}"
 id="ag2"/>
 </dvt:marker>
 </f:facet>
 </dvt:nBoxNode>
</dvt:nBox>

Modifying NBox Properties and Layout
After you create your NBox, you can modify the layout of the component or add
additional elements, such as a label, using the Create NBox dialog. To open the
dialog, use the Edit icon in the Properties window for the nBox component. You can
also customize the layout of the Nbox directly in the code, in the visual editor, or by
setting values in the Properties window.

For example, to add the tooltip shown in Figure 39-6 to your NBox, you can enter a
value for the NBox node's shortDesc attribute in the Properties window or in the code
editor.

<dvt:nBoxNode column="#{ent.Income2005Class}" row="#{ent.Population2006Level}"
 label="#{ent.State}" id="nbn1"
 shortDesc="Population: #{ent.Population2006}
Income:
#{ent.Income2005}">
 ... contents omitted
</dvt:nBoxNode>

For additional information and examples for customizing your NBox, see Using NBox
Componentsin Developing Web User Interfaces with Oracle ADF Faces.

Chapter 39
Creating Databound NBox Components

39-13

40
Creating Databound Pivot Table and Pivot
Filter Bar Components

This chapter describes how to create pivot tables from data modeled with ADF
Business Components, using ADF data controls and ADF Faces components in
a Fusion web application. Specifically, it describes how you can use ADF Data
Visualization pivotTable and pivotFilterBar components to create pivot tables that
visually represent business data. It describes how to use ADF data controls to create a
pivot table with data-first development.
If you are designing your page using simple UI-first development, then you can add
the pivot table to your page and configure the data bindings later. For information
about the data requirements, tag structure, and options for customizing the look
and behavior of the pivot table components, see the Using Pivot Table Components
chapter in Developing Web User Interfaces with Oracle ADF Faces.

This chapter includes the following sections:

• About ADF Data Visualization Pivot Table and Pivot Filter Bar Components

• Creating Databound Pivot Tables

About ADF Data Visualization Pivot Table and Pivot Filter
Bar Components

Pivot tables display data in a grid layout with unlimited layers of hierarchically nested
row header cells and column header cells. Similar to spreadsheets, pivot tables
provide the option of automatically generating subtotals and totals for grid data. Pivot
filter bars enhance the Pivot table by selectively displaying data according to the user’s
requirements.

ADF Data Visualization components provide extensive graphical and tabular
capabilities for visually displaying and analyzing business data. Each component
needs to be bound to data before it can be rendered since the appearance of the
components is dictated by the data that is displayed.

The pivot table component produces a grid that supports multiple layers of data labels
on the row edge or the column edge of the grid. An optional pivot filter bar represents
a page edge that filters the available pivot table data. This component also provides
the option of automatically generating subtotals and totals for grid data. Pivot tables let
you pivot data layers from one edge to another to obtain different views of your data.
For example, a pivot table might initially display total sales data for products within
regions on the row edge, broken out by years on the column edge. If you pivot region
and year at runtime, then you end up with total sales data for products within years,
broken out by region. At runtime, end users can click buttons that appear in the inner
column labels to sort rows in ascending or descending order.

The prefix dvt: occurs at the beginning of each data visualization component name
indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag
library.

40-1

Data Visualization Components Use Cases and Examples
For detailed descriptions of each data visualization use cases and examples, see
the Pivot Table and Pivot Filter Bar Component Use Cases and Examples section in
Developing Web User Interfaces with Oracle ADF Faces.

End User and Presentation Features
Visually compelling data visualization components enable end users to understand
and analyze complex business data. The components are rich in features that
provide out-of-the-box interactivity support. For detailed descriptions of the end user
and presentation features for each component, see the End User and Presentation
Features of Pivot Table Components section in Developing Web User Interfaces with
Oracle ADF Faces.

Additional Functionality for Data Visualization Components
You may find it helpful to understand other Oracle ADF features before you data
bind your data visualization components. Additionally, once you have added a data
visualization component to your page, you may find that you need to add functionality
such as validation and accessibility. Following are links to other functionality that data
visualization components use:

• Partial page rendering: You may want a data visualization component to refresh to
show new data based on an action taken on another component on the page. For
more information, see the Rerendering Partial Page Content chapter in Developing
Web User Interfaces with Oracle ADF Faces.

• Personalization: Users can change the way the data visualization components
display at runtime, those values will not be retained once the user leaves the
page unless you configure your application to allow user customization. For
more information, see the Allowing User Customization on JSF Pages chapter
in Developing Web User Interfaces with Oracle ADF Faces.

• Accessibility: By default, data visualization components are accessible. You can
make your application pages accessible for screen readers. For more information,
see the Developing Accessible ADF Faces Pages chapter in Developing Web
User Interfaces with Oracle ADF Faces.

• Skins and styles: You can customize the appearance of data visualization
components using an ADF skin that you apply to the application or by applying
CSS style properties directly using a style-related property (styleClass or
inlineStyle). For more information, see the Customizing the Appearance Using
Styles and Skins chapter in Developing Web User Interfaces with Oracle ADF
Faces.

• Placeholder data controls: If you know the data visualization components on your
page will eventually use ADF data binding, but you need to develop the pages
before the data controls are ready, then you should consider using placeholder
data controls, rather than manually binding the components. Using placeholder
data controls will provide the same declarative development experience as using
developed data controls. For more information, see Designing a Page Using
Placeholder Data Controls.

Chapter 40
About ADF Data Visualization Pivot Table and Pivot Filter Bar Components

40-2

Creating Databound Pivot Tables
DVT Pivot Table components can be created and bound to a data collection with a
data-first development approach. JDeveloper allows you to do this declaratively by
dragging and dropping a collection from the Data Controls panel.

The ADF pivot table displays data in a grid layout with unlimited layers of hierarchically
nested row header cells and column header cells. The pivot table supports an optional
pivot filter bar, representing a page edge that filters the available pivot table data. The
pivot table has the following structure:

• Column edge: The horizontal axis above the pivot table containing one or more
layers of information in the pivot table.

• Row edge: The vertical axis to the side of the pivot table containing one or more
layers of information in the pivot table.

• Page edge: The optional pivot filter bar containing zero or more layers of
information for filtering the display of data in the pivot table.

• Data body: One or more measures, or data values, displayed in the cells of the
pivot table.

Figure 40-1 shows a Product Inventory pivot table that displays data values for the
amount in stock and reorder point in the data body, a warehouse ID data layer on the
column edge, and product category and product data layers on the row edge. A pivot
filter bar displays a world region and region filter on the page edge.

Figure 40-1 Product Inventory Pivot Table

A Create Pivot Table wizard provides declarative support for data-binding and
configuring the pivot table. In the wizard pages you can:

• Specify the initial layout of the pivot table

• Associate and configure a pivot filter bar

• Specify alternative labels for the data layers

Chapter 40
Creating Databound Pivot Tables

40-3

• Configure insert or filter drilling

• Define aggregation of data values

• Configure category and data sorting

As you lay out the pivot table in the first page of the wizard, corresponding entries
are initialized in the following wizard pages. You can use the Back and Next buttons
to adjust the pivot table as you go through the wizard pages. You can also skip
configuration options in later wizard pages by clicking Finish.

For information about customizing a pivot table after data binding is completed, see
the Using Pivot Table Components chapter in Developing Web User Interfaces with
Oracle ADF Faces.

How to Create a Pivot Table Using ADF Data Controls
To create a pivot table using a data control, you bind the pivot table component to a
collection. JDeveloper allows you to do this declaratively by dragging and dropping a
collection from the Data Controls panel.

Tip:

You can also create a pivot table by dragging a pivot table component from
the Components window. This approach allows you the option of designing
the pivot table user interface before binding the component to data.

Before you begin:

It may be helpful to have an understanding of databound pivot tables and pivot filter
bars. For more information, see Creating Databound Pivot Tables.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that
you want in your data model for the pivot table, as described in Creating and
Modifying an Application Module.

For example, the data source for Product Inventory pivot table shown in
Figure 40-1 comes from a view object created for the Summit sample application
for ADF DVT components.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a databound pivot table:

1. From the Data Controls panel, select a collection.

For example, to create a pivot table and pivot filter bar that displays product
inventory levels in warehouses throughout the World, you could select the
WorldProductInventory1 collection in the Data Controls panel, as shown in
Figure 40-2.

Chapter 40
Creating Databound Pivot Tables

40-4

Figure 40-2 Data Collection for Product Inventory Levels

2. Drag the data collection onto a JSF page and, from the context menu, choose
Tables/List View > ADF Pivot Table.

3. In the Select Display Attributes page of the Create Pivot Table wizard, specify the
initial layout of the pivot table by doing the following:

a. If you want to associate a pivot filter bar with your pivot table, select Create
Pivot Filter Bar. Optionally, you can drag attributes from the Available
Attributes list to the page edge to configure the initial display of filters;
otherwise, an empty pivot filter bar is created.

Note:

You can add a pivot filter bar after completing the wizard by right-
clicking the pivotTable node in the Structure window, and choosing
Insert Before Pivot Table > ADF Data Visualizations > Pivot
Filter Bar.

To remove a pivot filter bar, in the Structure window, right-click the
pivotFilterBar node and choose Delete.

b. For the initial layout, select the attributes for the pivot table's columns, rows,
page edge, and data body by dragging the attributes from the Available
Attributes list to the pivot table layout.

In the pivot table layout, Data Labels refers to a layer of the pivot table that
identifies the data in the cells (data values), and also appears as header labels
in the row, column, or page edge. Labels for attributes that you drag to the
data body of the pivot table appear in the data labels layer.

Chapter 40
Creating Databound Pivot Tables

40-5

You can drag data labels to any location on the row, column, or page edge.
You can also drag attributes to different locations on the same edge or on
another edge.

As an alternative to using a drag operation to place or move attributes in
the layout, you can right-click the attribute or use Shift+F10 to display a
context menu of options. Figure 40-3 shows the context menu options for the
RegName attribute.

Figure 40-3 Display Attributes Context Menu

Note:

Potential drill paths between attributes are defined as you lay out
multiple attributes on the row, column, and page edges. These drill
paths can later be enabled to support pivot table drilling at runtime.

c. If you want to change from the default selection of Typed Attributes to Name-
Value Pairs to configure how data points are stored in a collection, then click
the Change Data Shape button. A dialog appears that presents you with the
following options:

• Typed Attributes

Each kind of data point in the collection is represented by a different
attribute. This option is also valid when there is only a single kind of data
point in the pivot table.

For example, if you have data points for Estimated Value and Actual
Value, then select Typed Attributes only if you have one attribute for the
estimated value and a second attribute for the actual value.

• Name-Value Pairs

Indicates that there are two or more kinds of data points represented by
exactly two attributes; a Name attribute that specifies the kind of data point,
and a Value attribute that specifies the data value.

Chapter 40
Creating Databound Pivot Tables

40-6

For example, the Name attribute might have the value EST for a Value
attribute that represents an estimated value, or the Name attribute might
have a value ACT for a Value attribute that represents an actual value.

For example, to specify the initial layout of the Product Inventory pivot table
shown in Figure 40-1, you would drag the RegName and Country attributes to the
page edge, Category and ProdName attributes to the row edge, AmountinStock
and ReorderPoint attributes to the data body (Data Labels), WarehouseID to the
column edge, and select Create Pivot Filter Bar, as shown in Figure 40-4.

Figure 40-4 Select Display Attributes Page of Create Pivot Table Wizard

4. If you want to specify alternative values or labels for the attributes laid out in
the Select Display Attributes page of the wizard, click Next, and use the Specify
Attribute Properties page to do the following:

a. By default, the data cells in a pivot table are not editable. An af:outputText
component is automatically stamped for each data cell. If you wish to create
a pivot table with editable data cells, deselect Read-Only Pivot Table and an
af:inputText component option will be available for each data cell attribute
in the Component column. You can then specify zero or more data values
as editable by selecting the af:inputText component, and the tag and its
corresponding f:validator tag will be stamped for that pivot table data cell.
For more information, see What You May Need to Know About Configuring
Editable Data Cells.

b. To specify alternative labels for data values in the Data Values area, change
the default Use Data Attribute Name text label stamped in the header cell
for the attribute at runtime. You can enter the text directly, select No Label
to suppress the header cell as in the case of using a single data value for
the pivot table, specify a text resource from a resource bundle, or use the EL
Expression builder to evaluate the label text at runtime.

Chapter 40
Creating Databound Pivot Tables

40-7

c. To specify alternative labels for attribute categories in the Categories area,
change the default Use Attribute Name text label stamped in the header
cell for the attribute at runtime in the Attribute Display Name column. You
can enter the text directly, specify a text resource from a resource bundle, or
use the EL Expression builder to evaluate the label text at runtime. The label
displays in the pivot handle at runtime.

You can also specify an alternative value for an attribute category by selecting
a different attribute in the Attribute Display Value column. For example, you
might use a RegionId attribute in the data collection to lay out the pivot table,
but you want the RegionName attribute values to appear in the pivot table
header at runtime to make the information more readable.

Setting a text resource enables your JSF page or application to display the correct
language for the language setting of a user's browser. Choose the Select Text
Resource option for the Data Values labels and the Categories attribute display
name fields to set a translatable text resource.

Note:

If you configured Project Properties > Resource Bundle page to
Automatically Synchronize Bundle, then you can type an alternate
label string, and the design time code will create a translatable text
resource for you.

For example, to set the Product Inventory pivot table shown in Figure 40-1 to
use text resources for labels and display names, complete the Specify Attributes
Properties page of the wizard as shown in Figure 40-5.

Chapter 40
Creating Databound Pivot Tables

40-8

Figure 40-5 Specify Attribute Properties Page of Create Pivot Table Wizard

5. If you want to expose drill operations in the pivot table at runtime, click Next, and
use the Configure Drilling page of the Create Pivot Table wizard to enable one of
the following options:

• Select Insert Drilling to provide a collapsed or expanded view of the detail
data while preserving the sibling and aggregate data. At runtime, a drill icon is
displayed in the parent attribute display label.

Use Insert Parent Row to specify whether the aggregate total for the parent
attribute will be displayed before or after the child attributes in the expanded
view.

To enable insert drilling you must also:

– Select the drill paths to enable. Drill paths are configured based upon the
layout of the attributes in the Select Display Attributes page of the wizard.

– Configure aggregation in the Configure Aggregation page of the wizard.

For example, Figure 40-6 shows a pivot table using insert drilling to expand
the view for the Year data layer. The aggregated value of Sales (52,500 in
2007, 544,150 in 2006) and Units (410 in 2007, 507 in 2006) for each year is
displayed in the row above the products.

Chapter 40
Creating Databound Pivot Tables

40-9

Figure 40-6 Pivot Table with Insert Drilling Enabled

• Select Filter Drilling to provide a collapsed or expanded view of the detail
data without preserving the sibling or aggregate data. At runtime, a drill icon is
enabled in the parent attribute display label.

Filter drilling focuses the view on the details of the data layer attribute. For
example, Figure 40-7 shows a pivot table using filter drilling to expand the
view of the Year (2007) data layer, displaying the total Sales (52,500) and
Units (410), while filtering out both the data for the other years and the
aggregated total for all the years.

Figure 40-7 Pivot Table with Filter Drilling Enabled

To enable filter drilling you must select the drill paths to enable. Drill paths
are configured based upon the layout of the attributes in the Select Display
Attributes page of the wizard.

For example, to enable the insert drilling for the Product Inventory pivot table
shown in Figure 40-1, complete the Configure Drilling page of the wizard, as
shown in Figure 40-8.

Chapter 40
Creating Databound Pivot Tables

40-10

Figure 40-8 Configure Drilling Page of Create Pivot Table Wizard

6. If you want to define how data is aggregated in totals and subtotals for the pivot
table, click Next, and use one or both of the Configure Aggregation pages of the
Create Pivot Table wizard.

By default, if the attributes displayed in the pivot table do not uniquely identify each
row in the data collection, the data from duplicate rows is aggregated to collapse
that data into a single pivot table cell. You can also override the default aggregate
type for a particular data item.

• If you want to specify how data is aggregated in the pivot table, in the Data
Aggregation page, do the following:

– If you want to change the default aggregation method for handling
duplicate rows, use the Default Function dropdown list to specify the
value. Valid values are Sum, Average, Count, Maximum, Minimum, Standard
Deviation, Median, and Variance.

– If you want to override the default aggregate type for a specific data value,
click the Add icon to insert a row for the available attributes. Then, in the
Function column for each attribute, select the mathematical operation that
you want to use for the aggregation. Available options are Sum, Average,
Count, Maximum, Minimum, Standard Deviation, Median, and Variance.
This attribute is useful only when you have multiple data values (such as
Sales and Units) bound to your pivot table.

For example, to override the default aggregation type for the Units data value
in the Sales pivot table shown in Figure 40-1, use the Add icon to add
the Units attribute and select Average in the Function column in the Data
Aggregation page, as shown in Figure 40-9.

Chapter 40
Creating Databound Pivot Tables

40-11

Figure 40-9 Data Aggregation Page of Create Pivot Table Wizard

• You can also define totals and subtotals for attribute categories added to the
column, row, or page edges in the pivot table. In the Categories Totals page,
use the Add icon to insert each attribute or select Aggregate All to add all
available attributes, and do the following:

– In the Attribute column, select the attribute that you want to total.

– In the Function column, select the mathematical operation that you want
to use for the aggregation. Available options are Sum, Average, Count,
Maximum, Minimum, Standard Deviation, Median, and Variance.

– In the Insert Total column, select the value that indicates where you want
the aggregate display to appear relative to the item referenced in the
Attribute column. Valid values are: Before, After, or Replace.

– In the Total Label column, enter the text that you want to use as a label
for the aggregation. You can enter the text directly, specify a text resource
from a resource bundle, or use the EL Expression builder to evaluate the
label text at runtime.

Note:

The read-only Insert Drill Totals table displays the category totals
automatically defined as a consequence of enabling insert drilling on
the pivot table.

For example, to define totals for the Geography and Year data layers in the
Sales pivot table shown in Figure 40-1, select Sum in the Function column
and After in the Insert Total column, and enter text (Total Geography and

Chapter 40
Creating Databound Pivot Tables

40-12

Total Year) in the Total Labels column respectively for each attribute in the
Categories Totals page, as shown in Figure 40-10.

In the resulting pivot table at runtime, expanding a particular Year value
will automatically preserve the aggregate total computed from its child value
based on the layout and configuration of the insert drill option in the previous
wizard page.

Figure 40-10 Categories Totals Page of the Create Pivot Table Wizard

7. If you want to configure sorting in the pivot table, click Next, and use one or both
of the Configure Sorting pages in the Create Pivot Table wizard.

By default, a pivot table initially sorts data based on values in the outer row data
layer. You can specify sort order on the data layer of any row, column, or page
edge, called a category sort. At runtime, when the data layer is pivoted to a
different edge, the specified category sort order is honored.

You cannot specify a category sort of data labels (data values), although you
can order the attributes mapped to the data body in the Select Display Attributes
page of the wizard. For example, Figure 40-4 shows a pivot table layout with data
values for Sales and Units. While you cannot specify a category sort of these
measures, you can specify the order in which the values will appear in the data
body of the pivot table at runtime, shown in Figure 40-1.

You can also specify an initial sort order of the data values in the data body when
the pivot table is rendered, called a data sort.

• To configure sorting by category, in the Category Sort page, use the Add icon
to add the attribute for each row, column, or page edge you wish to configure,
and do the following:

– In the Sort Attribute column, accept the default Use Attribute Value
to specify an alphabetical sort based on the actual values in the pivot
table header, or customize the sort order by specifying an alternate sort

Chapter 40
Creating Databound Pivot Tables

40-13

order attribute from the dropdown list. For example, if the underlying query
included a rank calculation for ranking products by profitability, you could
choose to see products ordered by (ProductRank, Descending).

– In the Initial Sort Order column, select the initial direction of the sort.
Valid values are ASCENDING or DESCENDING.

For example, Figure 40-11 shows the Category Sort page of the wizard
configured to display the Category data layer ascending on the column edge.

Figure 40-11 Category Sort Page of Create Pivot Table Wizard

At runtime, the pivot table displays as shown in Figure 40-12.

Figure 40-12 Category Sort Example

• To configure data sorting, in the Data Sort page, do the following:

– Select Sort by Columns to specify an initial sort order of the data when
the pivot table is rendered.

– In the Initial Sort Order dropdown list select the initial direction of the
sort. Valid values are ASCENDING and DESCENDING.

– In the Sequence Nulls dropdown list, select First if you want the null
values to appear at the beginning of a sort and select Last if you want the
null values to appear at the end of the sort.

Chapter 40
Creating Databound Pivot Tables

40-14

– In the Initial Sort Column table, specify a data value in the Value column
for each data layer displayed in the Layer Attribute column.

For example, Figure 40-13 shows the Data Sort page configured to sort the
Channel data layer grouped by Year, based upon Units/World/Canoes data
values.

Figure 40-13 Data Sort Page of the Create Pivot Table Wizard

At runtime, the pivot table initially renders as shown in Figure 40-14.

Figure 40-14 Data Sort Example

8. Click Finish to complete the creation of your databound pivot table.

After completing the wizard to create the pivot table, use the tools in JDeveloper
to customize the look and feel of the pivot table. For example, you can configure
word wrapping for labels that do not fit into the default size of the header cell and
add a page control as an alternative to scrollbars for the data set in the pivot table
in Figure 40-1.

9. To customize pivot table display elements, perform the following tasks.

a. In the Structure window, right-click the dvt:pivotTable node and choose Go
to Properties.

Chapter 40
Creating Databound Pivot Tables

40-15

b. In the Properties window, expand the Common section and set the
ScrollPolicy property to page to configure a page control as an alternative
to the default scrollbars.

c. In the Structure window, right-click the dvt:headerCell node and choose Go
to Properties.

d. In the Properties window, expand the Behavior section and set the
WhiteSpace attribute to normal to configure word wrapping in the pivot table
headers.

For additional information about customizing a pivot table after data binding is
completed, see the Using Pivot Table Components chapter in Developing Web User
Interfaces with Oracle ADF Faces.

What Happens When You Use the Data Controls Panel to Create a
Pivot Table

Dropping a pivot table from the Data Controls panel has the following effect:

• Creates the bindings for the pivot table and adds the bindings to the page
definition file

• Adds the necessary code for the UI components to the JSF page

When you create a pivot table from the Data Controls panel, the page definition file
is updated with the bindings. The code sample below shows the row set bindings that
were generated for the pivot table that displays product sales and units sold within
geography by year. The pivot table data map contains the following elements:

• <columns>: Defines each column item in the appropriate sequence

• <rows>: Defines each row item in the appropriate sequence

• <pages>: Defines the items to be included in the pivot filter bar

• <aggregatedItems>: Defines the totals and subtotals of items

• <hierarchies>: Defines the potential drill paths between two items

• <sorts>: Defines category sorts and the initial sort order of pivot table data

The default data aggregation method for duplicate rows is specified in the <data>
element. For more information about aggregating duplicates, see What You May Need
to Know About Aggregating Attributes in the Pivot Table.

For more information about sorting operations, see What You May Need to Know
About Specifying an Initial Sort for a Pivot Table.

<pivotTable IterBinding="WorldProductInventory1Iterator"
 id="WorldProductInventory1"
 xmlns="http://xmlns.oracle.com/adfm/dvt" ChangeEventPolicy="ppr">
 <pivotTableDataMap convert="false">
 <columns>
 <data aggregateDuplicates="true" defaultAggregateType="SUM">
 <item label="${adfBundle['view.ViewControllerBundle'].AMOUNT_IN_STOCK}"
 value="AmountInStock"/>
 <item label="${adfBundle['view.ViewControllerBundle'].REORDER_POINT}"
 value="ReorderPoint"/>
 </data>
 <item value="WarehouseId"
 itemLabel="$

Chapter 40
Creating Databound Pivot Tables

40-16

{adfBundle['view.ViewControllerBundle'].WAREHOUSE_ID}"/>
 </columns>
 <rows>
 <item value="Category"
 itemLabel="${adfBundle['view.ViewControllerBundle'].CATEGORY}"/>
 </rows>
 <pages>
 <item value="RegName"
 itemLabel="${adfBundle['view.ViewControllerBundle'].REGION}"/>
 <item value="Country"
 itemLabel="${adfBundle['view.ViewControllerBundle'].COUNTRY}"/>
 </pages>
 <aggregatedItems>
 <item aggregateLocation="AFTER" aggregateType="AVERAGE" value="Category"
 aggregateLabel="${adfBundle['view.ViewControllerBundle'].AVERAGE}"/>
 </aggregatedItems>
 <drills type="INSERT"/>
 <hierarchies>
 <item value="Category" location="BEFORE">
 <child value="ProdName"
 itemLabel="${adfBundle['view.ViewControllerBundle'].PRODUCT}"/>
 </item>
 </hierarchies>
 <sorts>
 <categorySort item="Category" direction="ASCENDING"/>
 </sorts>
 </pivotTableDataMap>
</pivotTable>

When the pivot table is created using the Data Controls panel, the necessary code is
added to the page. The example below shows the code generated on the JSF page for
the sales pivot table and associated pivot filter bar.

<dvt:pivotFilterBar id="pfb1"

value="#{bindings.WorldProductInventory1.pivotFilterBarModel}"
 modelName="pt1Model"/>
<dvt:pivotTable id="pt1"
 value="#{bindings.WorldProductInventory1.pivotTableModel}"
 modelName="pt1Model"
 var="cellData" varStatus="cellStatus"
 summary="#{viewcontrollerBundle.WorldProductInventoryPivotTable}"
 scrollPolicy="page">
 <dvt:headerCell whiteSpace="normal">
 <af:switcher facetName="#{cellData.layerName}" defaultFacet="Default"
id="s1">
 <f:facet name="DataLayer">
 <af:outputText value="#{cellData.label}" id="ot1"/>
 </f:facet>
 <f:facet name="WarehouseId">
 <af:outputText value="#{cellData.dataValue}" id="ot2">
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.WorldProductInventory1.
 hints.WarehouseId.format}"/>
 </af:outputText>
 </f:facet>
 <f:facet name="Category">
 <af:outputText value="#{cellData.dataValue}" id="ot3"/>
 </f:facet>
 <f:facet name="ProdName">
 <af:outputText value="#{cellData.dataValue}" id="ot4"/>

Chapter 40
Creating Databound Pivot Tables

40-17

 </f:facet>
 <f:facet name="RegName">
 <af:outputText value="#{cellData.dataValue}" id="ot5"/>
 </f:facet>
 <f:facet name="Country">
 <af:outputText value="#{cellData.dataValue}" id="ot6"/>
 </f:facet>
 <f:facet name="Default">
 <af:outputText value="#{cellData.dataValue}" id="ot7"/>
 </f:facet>
 </af:switcher>
 </dvt:headerCell>
 <dvt:dataCell>
 <af:switcher facetName="#{cellStatus.members.DataLayer.value}"
 defaultFacet="Default" id="s2">
 <f:facet name="AmountInStock">
 <af:outputText value="#{cellData.dataValue}" id="ot8">
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.WorldProductInventory1.
 hints.AmountInStock.format}"/>
 </af:outputText>
 </f:facet>
 <f:facet name="ReorderPoint">
 <af:outputText value="#{cellData.dataValue}" id="ot9">
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.WorldProductInventory1.
 hints.ReorderPoint.format}"/>
 </af:outputText>
 </f:facet>
 <f:facet name="Default">
 <af:outputText value="#{cellData.dataValue}" id="ot10"/>
 </f:facet>
 </af:switcher>
 </dvt:dataCell>
</dvt:pivotTable

What You May Need to Know About Aggregating Attributes in the
Pivot Table

If the attributes that you choose to display in your pivot table do not uniquely identify
each row in your data collection, then you can aggregate the data from duplicate rows
to collapse that data into a single pivot table cell.

For example, if the rows in the data collection shown in Figure 40-15 also contained
a store identification, then the data rows from all stores in a given combination of
Product, Channel, and Geography would have to be collapsed into a single cell in the
pivot table.

Chapter 40
Creating Databound Pivot Tables

40-18

Figure 40-15 Sales Pivot Table

The pivot table has the following optional data binding attributes available for
controlling the calculation of duplicate data rows:

• aggregateDuplicates: Boolean property of the <data> element that determines
whether special processing is enabled at binding runtime to aggregate data values
in duplicate rows. If this attribute is not specified, then false is assumed.

• defaultAggregateType: String property of the <data> element that specifies a
default aggregation method for handling duplicates. Valid values are SUM, AVERAGE,
COUNT, MIN, MAX, STDDEV, MEDIAN, VARIANCE. If aggregateDuplicates is true and
defaultAggregateType is unspecified, then SUM is assumed.

• aggregateType: String property of an <item> element that enables you to override
the default aggregate type for a particular data item. This attribute is useful only
when you have multiple data values (such as Sales and Units) bound to your pivot
table.

Default Aggregation of Duplicate Data Rows
By default, the pivot table uses the SUM operation to aggregate the data values of
duplicate data rows in a data collection to produce a single cell value in the pivot
table. This means that the aggregateDuplicates attribute is set to true and the
defaultAggregateType is assumed to be SUM.

The <data> element shown in the example below is an example of such default
aggregation.

<pivotTable IterBinding="ptExampleDataIterator" id="ptExampleData"
 xmlns="http://xmlns.oracle.com/adfm/dvt"
 ChangeEventPolicy="ppr">
 <pivotTableDataMap>
 <columns>
 <item value="Geography" itemLabel="Location"/>
 <data aggregateDuplicates="true" defaultAggregateType="SUM">
 <item value="Sales"/>
 <item value="Units" aggregateType="AVERAGE"/>
 </data>
 </columns>
 <rows>
 <item value="Year"/>
 </rows>
 <pages>
 <item value="Channel"/>
 </pages>
 <aggregatedItems>

Chapter 40
Creating Databound Pivot Tables

40-19

 <item aggregateLocation="AFTER" aggregateType="SUM" value="Geography"
 aggregateLabel="Total Geography"/>
 <item aggregateLocation="AFTER" aggregateType="SUM" value="Year"
 aggregateLabel="Total Across Years"/>
 </aggregatedItems>
 <drills type="INSERT"/>
 <hierarchies>
 <item value="Year" location="BEFORE">
 <child value="Product" label="Product"/>
 </item>
 </hierarchies>
 <sorts>
 <categorySort item="Channel" direction="DESCENDING"/>
 <categorySort item="Year" direction="ASCENDING"/>
 <qdrSliceSort direction="DESCENDING" edge="rows" grouped="true"
 nullsFirst="true">
 <item name="Geography" value="World"/>
 </qdrSliceSort>
 </sorts>
 </pivotTableDataMap>
</pivotTable>

Custom Aggregation of Duplicate Rows
If you want the pivot table to use a different mathematical operation to aggregate the
data values of duplicate rows, then you set the defaultAggregateType to the desired
operation.

The example below shows a data element with the defaultAggregateType set to SUM.
This operation would be appropriate if you want to see the total of sales from all stores
for each unique combination of Product, Channel, and State.

<pivotTable IterBinding="SalesPivotTable1Iterator" id="SalesPivotTable11"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <pivotTableDataMap>
 <columns>
 <data aggregateDuplicates="true" defaultAggregateType="SUM">
 <item value="Sales"/>
 </data>
 <item value="Geography"/>
 </columns>
 <rows>
 <item value="Channel"/>
 <item value="Product"/>
 </rows>
 <aggregatedItems>
 <item aggregateLocation="After" aggregateType="AVERAGE"
 value="Product" aggregateLabel="Average"/>
 </aggregatedItems>
 </pivotTableDataMap>
</pivotTable>

If you have a pivot table with multiple data values (such as sales and the average size
of a store in square feet) and you want to sum the sales data values in duplicate rows,
but you want to average the square feet data values, then do the following:

• On the <data> element, set the defaultAggregateType to SUM.

• On the <item> element for the square feet attribute, set the aggregateType to
AVERAGE.

Chapter 40
Creating Databound Pivot Tables

40-20

The example below shows the <columns> elements wrapped by a PivotTableDataMap
element. The <data> element contains the default attributes for aggregation. These
apply to all data items that do not have a specific custom aggregateType attribute
specified.

 <columns>
 <data aggregateDuplicates="true" defaultAggregateType="SUM">
 <item value="Sales" label="Total Sales"/>
 <item value="StoreSqFeet" label="Avg Sq Feet" aggregateType="AVERAGE"/>
 </data>
 <item value="State"/>
 </columns>

What You May Need to Know About Specifying an Initial Sort for a
Pivot Table

By default, a pivot table initially sorts data based on values in the outer row data layer.
You can specify sort order on the data layer of any row, column, or page item, called
a category sort. At runtime, when the data layer is pivoted to a different edge, the
specified category sort order is honored. Insert a categorySort element inside the
sorts element and set values for the attributes as described in Table 40-1.

Table 40-1 Attribute Values for categorySort Element

Attribute Description

item Specify the column, row, or page item for which you are setting
the category sort. A value for this attribute is required.

direction Specify the initial direction of the sort. Valid values are
ASCENDING and DESCENDING. A value for this attribute is
required.

You can also specify the initial sort order of the data values in the data body when
the pivot table is rendered, called a data sort. You can change the default behavior
by inserting a sorts element inside the pivotTableDataMap element of a pivot table
binding in the page definition file. Insert a qdrSliceSort element inside the sorts
element and set values for the attributes as described in Table 40-2.

Table 40-2 Attribute Values for qdrSliceSort Element

Attribute Description

direction Specify the initial direction of the sort. Valid values are ASCENDING and
DESCENDING. A value for this attribute is required.

edge Specify columns or rows to determine which edge sorts data. A value for this
attribute is required.

grouped Specify true if you want to sort slices within their parent or false if you want
to sort across the entire edge. A value for this attribute is optional. The default
value is false.

nullsFirst Specify true if you want null values to appear at the beginning of a sort and
false if you want null values to appear at the end of a sort. The default value is
false. A value for this attribute is optional.

Chapter 40
Creating Databound Pivot Tables

40-21

Insert one or more item tags inside the qdrSliceSort tag. An item tag specifies the
slice on the opposite edge from which the values to be sorted should be obtained.
For example, if sorting rows based upon the data, then you must specify an item
tag for each layer on the column edge. Set values for the attributes as described in
Table 40-3.

Table 40-3 Attribute Values for item Tag

Attribute Description

name Specify the name of the layer to sort on. Typically, this is the column name in the
row set. Specify DataLayer to identify the layer that contains the data columns in
a row set (for example, Sales, Costs, and so on).

value Specify the value of the specified layer on the desired slice.

What You May Need to Know About Configuring Editable Data Cells
By default, the data cells in a pivot table are not editable. When you create a pivot
table using ADF data controls, an af:outputText component is automatically stamped
for each data cell. You can also use the Create Pivot Table wizard to configure a
data cell as editable by specifying an af:inputText component and the tag and its
corresponding f:validator tag will be stamped in the data cell as illustrated in the
example below.

<dvt:dataCell>
 <af:switcher facetName="#{cellStatus.members.DataLayer.value}"
 defaultFacet="Default" id="s2">
 <f:facet name="AmountInStock">
 <af:inputText value="#{cellData.dataValue}"
 label="#{bindings.WorldProductInventory1.hints.
 AmountInStock.label}"
 required="#{bindings.WorldProductInventory1.hints.
 AmountInStock.mandatory}"
 columns="#{bindings.WorldProductInventory1.hints.
 AmountInStock.displayWidth}"
 maximumLength="#{bindings.WorldProductInventory1.hints.
 AmountInStock.precision}"
 shortDesc="#{bindings.WorldProductInventory1.hints.
 AmountInStock.tooltip}"
 id="it1">
 <f:validator binding="#{cellData.bindings.AmountInStock.validator}"/>
 </af:inputText>
 </f:facet>
 <f:facet name="ReorderPoint">
 <af:outputText value="#{cellData.dataValue}" id="ot8">
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.WorldProductInventory1.hints.
 ReorderPoint.format}"/>
 </af:outputText>
 </f:facet>
 <f:facet name="Default">
 <af:outputText value="#{cellData.dataValue}" id="ot10"/>
 </f:facet>
 </af:switcher>
</dvt:dataCell>

<dvt:dataCell>
 <af:switcher facetName="#{cellStatus.members.DataLayer.value}"

Chapter 40
Creating Databound Pivot Tables

40-22

 defaultFacet="Default" id="s2">
 <f:facet name="Sal">
 <af:inputText value="#{cellData.dataValue}" id="ot5"
 label="#{bindings.EmpView1.hints.Sal.label}"
 required="#{bindings.EmpView1.hints.Sal.mandatory}"
 columns="#{bindings.EmpView1.hints.Sal.displayWidth}"
 maximumLength="#{bindings.EmpView1.hints.Sal.precision}"
 shortDesc="#{bindings.EmpView1.hints.Sal.tooltip}">
 <f:validator binding="#{cellData.bindings.Sal.validator}"/>
 </af:inputText>
 </f:facet>
 <f:facet name="Default">
 <af:inputText value="#{cellData.dataValue}" id="ot6"/>
 </f:facet>
 </af:switcher>
</dvt:dataCell>

You can also configure pivot table data cells to use most components
that implement the EditableValueHolder or ActionSource interfaces as a
child of the dataCell component, for example, af:selectBooleanCheckbox or
af:inputComboboxListofValues. For more information, see the How to Configure
Header and Data Cell Stamps section in the Developing Web User Interfaces with
Oracle ADF Faces.

Chapter 40
Creating Databound Pivot Tables

40-23

41
Creating Databound Geographic and
Thematic Map Components

This chapter describes how to create geographic or thematic maps from data
modeled with ADF Business Components, using ADF data controls and ADF Faces
components in a Fusion web application. Specifically, it describes how you can use
ADF Data Visualization map and thematicMap components to create geographic or
thematic maps that visually represent business data. It describes how to use ADF data
controls to create these components with data-first development.
If you are designing your page using simple UI-first development, then you can add
the geographic or thematic map to your page and configure the data bindings later. For
information about the data requirements, tag structure, and options for customizing the
look and behavior of the map components, see the Using Map Components chapter in
Developing Web User Interfaces with Oracle ADF Faces.

This chapter includes the following sections:

• About ADF Data Visualization Map Components

• Creating Databound Geographic Maps

• Creating Databound Thematic Maps

About ADF Data Visualization Map Components
The DVT Geographic Map and Thematic Map components allow users to present
business data on a map. This is useful to represent patterns, trends, and comparative
data within a region of interest.

ADF Data Visualization components provide extensive graphical and tabular
capabilities for visually displaying and analyzing business data. Each component
needs to be bound to data before it can be rendered since the appearance of the
components is dictated by the data that is displayed.

The geographic map component represents business data spatially, enabling you to
superimpose multiple layers, also referred to as themes, of information on a single
map. For example, a map of the United States might use a color theme that provides
varying color intensity to indicate the popularity of a product within each state, a pie
chart theme that shows sales within product category, and a point theme that identifies
the exact location of each warehouse. When all three themes are superimposed on
the United States map, you can easily evaluate whether there is sufficient inventory to
support the popularity level of a product in specific locations. Geographic maps require
a connection to an Oracle MapViewer service, and optionally, a geocoder service to
display geographical and political detail.

Thematic map components represents business data as patterns in stylized areas
or associated markers and does not require a connection to an Oracle MapViewer
service. Thematic maps focus on data without the geographic details in a geographic
map. The thematic map is packaged with prebuilt base maps including a USA base
map, a world base map, and base maps for continents and regions of the world

41-1

including EMEA and APAC. Each base map includes several sets of regions and one
fixed set of cities. A set of regions or cities is referred to as a layer. Each layer can be
bound to a data collection and stylized to represent the data with color and pattern fills,
or a data marker, or both. At runtime, only one map layer and its associated data can
be displayed at a time, unless the thematic map has been enabled for drilling.

The prefix dvt: occurs at the beginning of each data visualization component name
indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag
library.

Use Cases and Examples
For detailed descriptions of each data visualization use cases and examples, see the
Map Component Use Cases and Examples section in Developing Web User Interfaces
with Oracle ADF Faces.

End User and Presentation Features
Visually compelling data visualization components enable end users to understand
and analyze complex business data. The components are rich in features that
provide out-of-the-box interactivity support. For detailed descriptions of the end user
and presentation features for each component, see the End User and Presentation
Features of Maps section in Developing Web User Interfaces with Oracle ADF Faces.

Additional Functionality for Data Visualization Components
You may find it helpful to understand other Oracle ADF features before you data
bind your data visualization components. Additionally, once you have added a data
visualization component to your page, you may find that you need to add functionality
such as validation and accessibility. Following are links to other functionality that data
visualization components use:

• Partial page rendering: You may want a data visualization component to refresh to
show new data based on an action taken on another component on the page. For
more information, see the Rerendering Partial Page Content chapter in Developing
Web User Interfaces with Oracle ADF Faces.

• Personalization: Users can change the way the data visualization components
display at runtime, those values will not be retained once the user leaves the
page unless you configure your application to allow user customization. For
more information, see the Allowing User Customization on JSF Pages chapter
in Developing Web User Interfaces with Oracle ADF Faces.

• Accessibility: By default, data visualization components are accessible. You
con configure your application pages for accessibility to screen readers. For
more information, see the Developing Accessible ADF Faces Pages chapter in
Developing Web User Interfaces with Oracle ADF Faces.

• Skins and styles: You can customize the appearance of data visualization
components using an ADF skin that you apply to the application or by applying
CSS style properties directly using a style-related property (styleClass or
inlineStyle). For more information, see the Customizing the Appearance Using
Styles and Skins chapter in Developing Web User Interfaces with Oracle ADF
Faces.

Chapter 41
About ADF Data Visualization Map Components

41-2

• Placeholder data controls: If you know the data visualization components on your
page will eventually use ADF data binding, but you need to develop the pages
before the data controls are ready, then you should consider using placeholder
data controls, rather than manually binding the components. Using placeholder
data controls will provide the same declarative development experience as using
developed data controls. For more information, see Designing a Page Using
Placeholder Data Controls.

Creating Databound Geographic Maps
A geographic map is an ADF Data Visualization component that provides the
functionality of Oracle Spatial within Oracle ADF. This component allows users to
represent business data on a geographic map and to superimpose multiple layers of
information (known as themes) on a single map.

These layers can be represented as any of the following themes: bar graph, pie graph,
color, point, and predefined theme.

Figure 41-1 shows a geographic map component that uses a base map for a region in
the United States with the following themes:

• Color theme: For the selected product, this theme colors states based on product
popularity. The colors range from green, representing the highest popularity for
that product, to red, representing the lowest popularity for that product.

• Pie graph theme: This theme displays a pie graph in each state to indicate the
popular product categories in that state. In this example, the pie graph shows the
product categories as pie slices for Media, Office, and Electronics.

• Point theme: This theme identifies warehouses as points. For each point, it
displays an icon to indicate the inventory level at that warehouse for the selected
product. A separate icon is displayed for each of the following ranges of inventory:
low inventory, medium inventory, and high inventory.

Figure 41-1 Geographic Map with Color Theme, Pie Graph Theme, and Point
Theme

Chapter 41
Creating Databound Geographic Maps

41-3

A geographic map component differs from other ADF Data Visualization components
as you do not need to put multiple maps on a page to display multiple sets of data.
This contrasts to components such as graphs where you can put multiple graphs on a
page. Instead, you show how multiple sets of data relate to each other spatially or, for
a specific point, you display different attributes layered in separate themes.

The geographic map component itself is not bound to data. However, each map theme
has its own data bindings.

A base map forms the background on which the ADF geographic map component
layers the themes that developers create.

In Oracle Spatial, administrators create base maps that consist of one or more
themes. The administrator controls the visibility of the base map themes. When you
zoom in and out on a base map, various base map themes are hidden or displayed. At
the ADF geographic map component level, you cannot use zoom factor to control the
display of the themes created by the administrator on the base map.

When you overlay themes on the ADF geographic map, you can control the visibility of
your themes by setting the maxZoom and minZoom properties of the components related
to these themes. At runtime, you can also hide or display your custom themes by
using the View menu of the Map toolbar or by using other ADF components that you
create on the page.

For information about customizing a geographic map after data-binding is completed,
see the Using Map Components chapter in Developing Web User Interfaces with
Oracle ADF Faces.

How to Configure a Geographic Base Map
To create a geographic map, you first configure the map before you bind a point, pie or
bar graph, or color theme of the map to a data collection. JDeveloper allows you to do
this declaratively by dragging and dropping a collection from the Data Controls panel
for the theme you want to create.

Before you begin:

It may be helpful to have an understanding of databound geographic maps. For more
information, see Creating Databound Geographic Maps.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that
you want in your data model for the pivot table, as described in Creating and
Modifying an Application Module.

For example, the data source for Product Inventory pivot table shown in
Figure 41-1 comes from a view object created for the Summit sample application
for ADF DVT components.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To configure a geographic base map:

1. From the Data Controls panel, select a collection.

Chapter 41
Creating Databound Geographic Maps

41-4

For example, to create a geographic map that displays product inventory levels in
warehouses throughout the World, you could select the WorldProductInventory1
collection in the Data Controls panel, as shown in Figure 41-2.

Figure 41-2 Data Collection for Product Inventory Levels

2. Drag the data collection onto a JSF page and, from the context menu, choose
Geographic Map > Map and Point, Pie Graph, Color, or Bar Graph Theme.

3. If you have not yet configured a map on the page, in the Create Geographic Map
dialog, click the New icon to display the Create Geographic Map Configuration
dialog and do the following:

a. In the Id field enter the unique identifier for the map configuration. For
example, mapConfig1.

b. In the MapViewer URL field enter the URL for the Oracle MapViewer service.

Use the dropdown list to select an existing connection, or click the Add icon
to configure a new connection. In the Create URL Connection dialog use
the address http://elocation.oracle.com/mapviewer for the URL endpoint
and click Test Connection to confirm the connection. Figure 41-3 shows the
completed Create URL dialog.

Chapter 41
Creating Databound Geographic Maps

41-5

Figure 41-3 Create Map Viewer URL Connection

c. In the Geocoder URL field enter the URL for the Geocoder web service that
converts street addresses into latitude and longitude coordinates for mapping.

Note:

The Geocoder URL is needed only if you do not already have
longitude and latitude information for addresses.

Use the dropdown list to select an existing connection, or click the Add icon
to configure a new connection. In the Create URL Connection dialog use
the address http://elocation.oracle.com/geocoder/gcserver for the URL
endpoint and click Test Connection to confirm the connection. Figure 41-4
shows the completed Create URL dialog.

Chapter 41
Creating Databound Geographic Maps

41-6

Figure 41-4 Create Geocoder URL Connection

d. Click OK. Figure 41-5 shows the completed Create Geographic Map
Configuration dialog.

Figure 41-5 Create Geographic Map Configuration Dialog

4. Click OK.

5. In the Create Geographic Map dialog, select the base map for the geographic map
component and provide other settings to use with the map by doing the following:

a. From the Data Source list select the collection of maps from which you will
choose a base map.

b. From the Base Map list select the map that will serve as the background for
the geographic map component.

c. To specify values for the StartingX field and the StartingY field click on the
image of the map to center it within the Preview window.

Chapter 41
Creating Databound Geographic Maps

41-7

You can use the arrows in the map navigator in the upper left-hand corner to
move the map in the appropriate direction.

d. Optionally use the sliding arrow in the Preview window to adjust the zoom
factor of the map.

e. Click OK. Figure 41-5 shows the completed Create Geographic Map dialog.

Figure 41-6 Create Geographic Map Dialog

6. Use the Create Theme dialog to data bind a map theme as follows:

• Create a point theme to represent data on the base map. For more
information, see How to Create a Geographic Map with a Point Theme.

• Create a color theme to represent data on the base map. For more
information, see How to Create a Geographic Map with a Color Theme.

• Create a pie or bar graph theme to represent data on the base map. For more
information, see How to Create a Geographic Map with a Pie or Bar Graph
Theme.

How to Create a Geographic Map with a Point Theme
You can create a geographic map with a point theme to display specific locations in a
map, identified by latitude and longitude or address. For example, a point theme might
identify the locations of warehouses in a map. If you customize the style of the point
that is displayed, you could choose to use a different image for a warehouse product
count (high, acceptable, low) in a set of warehouses to differentiate them from each
other.

To create a geographic map with a point theme, you first configure the base map and
then bind a point theme of the map to a data collection. JDeveloper allows you to do

Chapter 41
Creating Databound Geographic Maps

41-8

this declaratively by dragging and dropping a collection from the Data Controls panel.
You can also layer a point theme on a base map that has already been configured and
bound to another theme.

For example, the geographic map in Figure 41-7 has a point theme that identifies the
location of warehouses and their product count levels in the United States.

Figure 41-7 Geographic Map with Point Theme

Before you begin:

It may be helpful to have an understanding of databound geographic maps. For more
information, see Creating Databound Geographic Maps.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model for the geographic map with point theme, as described in
Creating and Modifying an Application Module.

For example, the data source for the geographic map point theme shown in
Figure 41-7 comes from a view object created for the Summit ADF DVT sample
application.

Chapter 41
Creating Databound Geographic Maps

41-9

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a geographic map with a databound point theme:

1. From the Data Controls panel, select a collection.

Figure 41-8 shows an example where you could select the SWarehouseView1
collection in the Data Controls panel to create a geographic map with a point
theme that displays an image to identify the location of each warehouse, styled to
represent the product count level.

Figure 41-8 Data Collection for Warehouse Location and Product Count

2. Drag the collection onto a JSF page and, from the context menu, choose
Geographic Map > Map and Point Theme.

3. If you have not yet configured a map on the page, complete the Create
Geographic Map dialog. For more information, see How to Configure a
Geographic Base Map. Otherwise, do one of the following:

• Use the dropdown list to select the map configuration you wish to use

• Click OK to accept the available map configuration

• Click New to configure a new base map

• Click Edit to modify the available map configuration

4. If you are layering a point theme on a base map that has already been configured
and bound to another theme, in the Create dialog select Point Theme.

5. In the Create Point Map Theme dialog, in the Theme Id field, enter the unique
identifier for the point map theme.

6. In the Location section, choose whether the point location is to be specified by
Address or by a pair of x and y coordinates (Longitude and Latitude).

The choice you select for location will determine which controls appear in the
Location section.

Chapter 41
Creating Databound Geographic Maps

41-10

Tip:

Using x and y coordinates is a more efficient way to present data on the
map rather than using the Address controls, which must be converted by
a Geocoder to x and y coordinates. If the data collection has more than
100 rows, use x and y coordinates for better performance.

7. For the x and y point location, select attributes from the data collection that
represents the following items:

• X (Longitude): The horizontal location of the point on the map.

• Y (Latitude): The vertical location of the point on the map.

• Label: The labels for the points in the top section of the information window,
which is displayed when you click a point.

8. In the Point Data section, provide the following information that identifies the data
associated with the point, its label, and optionally the style for the point:

• In the Data field, select the data column that is associated with the point, such
as ProductCount.

• In the Label field, enter the text that will appear in the information window
before the data value when you click a point. You can enter a text resource
to use for the label. The text resource can be a translatable string from a
resource bundle or an EL expression executed at runtime. Use the dropdown
list to open a Select Text Resource or Expression Builder dialog. If you need
help, press F1 or click Help.

• Optionally, in the Category field, select a data column to use for finding the
appropriate style for a point. If you select a value for Category, that value
is stored in the binding for this point theme and then matched against the
itemValue attribute of the mapPointStyleItem tags that you create for this
point theme.

Note:

If your data does not have a column that you want to use as
a category for finding the style of a point, you can also use
mapPointStyleItem tags to define styles related to data ranges
(such as high, acceptable, and low) that are matched to the values
in the column that you select in the Data field. For more information,
see How to Create Point Style Items for a Point Theme.

9. Select the Enable Row Selection Select if you want to enable master-detail
relationships. This is useful when the data collection for the geographic map
is a master in a master-detail relationship with a detail view that is displayed
in another UI component on the page. Selecting this options enables both
selectionListenter and clickListener attributes.

10. Click OK.

Figure 41-9 shows the completed Create Point Map Theme dialog for a geographic
map with a point theme that displays an image representing the location and product
count levels for each warehouse point.

Chapter 41
Creating Databound Geographic Maps

41-11

Figure 41-9 Create Point Map Theme Dialog for Warehouse Product Counts

After you create a map point theme, you can further customize the style of the points
that appear in the map to represent more detailed information. For example, the
map point theme in Figure 41-7 uses a different image to represent the levels (high,
acceptable, low) for the product count in each warehouse. For each different point
style, use a mapPointStyleItem tag. For more information, see How to Create Point
Style Items for a Point Theme.

How to Create Point Style Items for a Point Theme
There are a variety of options available for creating point style items for use in a given
map point theme. These are:

• A single image for all data points

• Separate images for each data point category

• Images that represent low, medium, and high data value ranges

After you create the data binding for a map point theme, you have the option of
selecting a single built-in image that should be used for all points in that map theme.
In the Properties window, you can make this selection in the builtInImage attribute of
the mapPointTheme tag. The default value for this attribute is an orange ball.

Alternatively, if you specify a value for Category in the Create Point Map Theme dialog,
then you should also create a set of point style items to determine a separate image
that represents data points in each category. In this case, you do not use the minimum
and maximum values in the point style item tags. Instead, you set the itemValue
attribute of point style item tags to a value that matches entries in the data column that
you specified for Category.

In a point theme for a geographic map, if you do not specify a value for Category,
you can still use the mapPointStyleItem child tags of the mapPointTheme tag to specify

Chapter 41
Creating Databound Geographic Maps

41-12

ranges of values (such as low, medium, and high) and the images that are to represent
these ranges. If you do this, then each point will be represented by an image that
identifies the range in which the data value for that point falls.

Before you begin:

It may be helpful to have an understanding of databound geographic maps. For more
information, see Creating Databound Geographic Maps.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model for the geographic map with point theme, as described in
Creating and Modifying an Application Module.

For example, the data source for the geographic map point theme shown in
Figure 41-7 comes from a view object created for the Summit ADF DVT sample
application.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

• Add a geographic map with a point theme to your page. For more information, see
How to Create a Geographic Map with a Point Theme.

To add point style items to a map point theme to represent data value ranges:

1. In the Structure window, right-click the dvt:mapPointTheme tag and choose
Insert inside the Point Theme > Point Style Item.

2. In the Point Style Item Properties window, set values as described Table 41-1.

Table 41-1 Properties for Point Style Item

For this property Set this value

Id Specify a unique ID for the point style item.

MinValue Specify the minimum value in a data range that you define.

MaxValue Specify the maximum value in a data range that you define.

ShortLabel Specify text to appear when a user hovers over the point item.
For example, if you define a point item for low inventory, then
enter Low Inventory as the value for this property.

ImageURL Specify the URL to the image file or select it from the
dropdown list. At runtime, the image you specify appears
on the map to represent the data range identified by the
MinValue and MaxValue properties.

Alternatively, you can select one of a number of predefined
images referenced by the BuiltInImage dropdown list that
appears in the Other section.

HoverImageURL Specify the URL to the image file or select it from the
dropdown list. At runtime, the image you specify appears
when a user hovers over the point item.

Chapter 41
Creating Databound Geographic Maps

41-13

Table 41-1 (Cont.) Properties for Point Style Item

For this property Set this value

SelectedImageURL Specify the URL to the image file or select it from the
dropdown list. At runtime, the image you specify appears
when a user selects the point item.

3. If you defined a data value range for a low data value range in Steps 1 and 2,
then repeat Steps 1 and 2 to define medium and high data value ranges with
appropriate values.

Note:

The use of mapPointStyleItem child tags to customize the style of points
is a declarative approach that lets you provide custom point images. For
information about using a callback to provide not only custom images but
also custom HTML, see What You May Need to Know About Adding Custom
Point Style Items to a Map Point Theme.

What Happens When You Create a Geographic Map with a Point
Theme

Creating a geographic map with a point theme from the Data Controls panel has the
following effect:

• Creates the bindings for the point theme and adds the bindings to the page
definition file

• Adds the necessary tags to the JSF page for the geographic map component

• Adds the necessary point theme child tags within the geographic map tag to the
JSF page

The example below shows the row set bindings that were generated for the
geographic map with a point theme.

<bindings>
 <mapTheme xmlns="http://xmlns.oracle.com/adfm/dvt"></mapTheme>
 <mapTheme IterBinding="WorldProductInventory1Iterator"
 id="WorldProductInventory1"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <mapThemeDataMap convert="false" mapThemeType="point">
 <data>
 <item value="AmountInStock"
 label="${adfBundle['view.ViewControllerBundle'].AMOUNT_IN_
 STOCK}"/>
 </data>
 <item type="us_form_2" street="Address" city="City" state="State"
 zipCode="ZipCode" label="WarehouseId"/>
 </mapThemeDataMap>
 </mapTheme>
 <mapTheme IterBinding="SWarehouseView1Iterator" id="SWarehouseView1"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <mapThemeDataMap convert="false" mapThemeType="point">
 <data>

Chapter 41
Creating Databound Geographic Maps

41-14

 <item value="ProductCount"
 label="${adfBundle['view.ViewControllerBundle'].PRODUCT_COUNT}"/>
 </data>
 <item type="lat_long" longitude="Longitude" latitude="Latitude"
 label="ProductCount"/>
 </mapThemeDataMap>
 </mapTheme>
 </bindings>

The example below shows the XML code generated on the JSF page for the
geographic map and its point theme.

<dvt:map id="map" startingX="-104.15" mapServerConfigId="mapConfig1"
 baseMapName="ELOCATION.WORLD_MAP" mapZoom="3"
 inlineStyle="width:600px; height:375px;" startingY="42.09">
 <dvt:mapPointTheme id="mapPointTheme"
 value="#{bindings.SWarehouseView1.geoMapModel}">
 <dvt:mapPointStyleItem maxValue="5.0"
 shortLabel="#{viewcontrollerBundle.PRODUCT_COUNT_LOW}"
 imageURL="/images/error.png" minValue="0.0"/>
 <dvt:mapPointStyleItem minValue="6.0" maxValue="7.0"
 shortLabel="#{viewcontrollerBundle.PRODUCT_COUNT_OK}"
 imageURL="/images/checkmark.png"/>
 <dvt:mapPointStyleItem minValue="8.0"

shortLabel="#{viewcontrollerBundle.PRODUCT_COUNT_HIGH}"
 imageURL="/images/warning.png"/>
 </dvt:mapPointTheme>
</dvt:map>
<dvt:mapToolbar mapId="map" id="mt1"/>

What You May Need to Know About Adding Custom Point Style Items
to a Map Point Theme

If you want to provide custom HTML as well as custom images for map points,
then you can use the customPointCallback attribute of the mapPointTheme tag to
accomplish this customization.

Note:

If you set the customPointCallback attribute for a map point theme, the
map ignores any dvt:mapPointStyleItem child tags because the callback
overrides these tags.

To use a callback to customize the style of map points:

1. Write a method in Java to perform the desired point customization.

2. Store this method in a managed bean for the map.

For more information about managed beans, see the Creating and Using
Managed Beans section in Developing Web User Interfaces with Oracle ADF
Faces.

Chapter 41
Creating Databound Geographic Maps

41-15

3. After you finish data-binding the map point theme, use the Properties window to
specify a reference to the managed bean method in the customPointCallback
attribute of the dvt:mapPointTheme tag.

For example, if the managed bean is named MapSampleBean and the
method is named setCustomPointStyle, then the reference becomes
#{mapSampleBean.CustomPointStyle}.

How to Create a Geographic Map with a Color Theme
You can create a geographic map with a color theme to display areas of the map in
colors. For example, a color theme might identify the states with warehouses, styled
with a range of color to represent stock levels in each state.

To create a geographic map with a color theme, you first configure the base map and
then bind a color theme of the map to a data collection. JDeveloper allows you to do
this declaratively by dragging and dropping a collection from the Data Controls panel.
You can also layer a color theme on a base map that has already been configured and
bound to another theme.

For example, the geographic map in Figure 41-10 has a color theme that identifies the
states with warehouses styled to represent stock levels for each states.

Figure 41-10 Geographic Map with Color Theme

Before you begin:

Chapter 41
Creating Databound Geographic Maps

41-16

It may be helpful to have an understanding of databound geographic maps. For more
information, see Creating Databound Geographic Maps.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model for the geographic map with color theme, as described in
Creating and Modifying an Application Module.

For example, the data source for the geographic map with color theme shown in
Figure 41-10 comes from a view object created for the Summit ADF DVT sample
application.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a geographic map with a databound color theme:

1. From the Data Controls panel, select a collection.

Figure 41-11 shows an example where you could select the
WorldProductInventory1 collection in the Data Controls panel to create a color
map theme that shows product inventory levels by the color of regions, in this
example, US States.

Figure 41-11 Data Collection for Product Inventory Levels

2. Drag the collection onto a JSF page which already contains a geographic map
component and, from the context menu, choose Geographic Map > Map and
Color Theme.

Chapter 41
Creating Databound Geographic Maps

41-17

3. If you have not yet configured a map on the page, complete the Create
Geographic Map dialog. For more information, see How to Configure a
Geographic Base Map. Otherwise, do one of the following:

• Use the dropdown list to select the map configuration you wish to use

• Click OK to accept the available map configuration

• Click New to configure a new base map

• Click Edit to modify the available map configuration

4. If you are layering a color theme on a base map that has already been configured
and bound to another theme, in the Create dialog select Color Theme.

5. In the Create Color Map Theme dialog, in the Theme Id field, enter a unique
identifier for the map theme in the Id field.

6. In the Base Map Theme section, identify the base map color theme to use for the
geographic map by doing the following:

a. In the Name field, select the name of the base map theme.

b. For Location, select the location column in the data collection that should be
matched to the location column in the base map theme that you selected.

c. Optionally, click View Sample Theme Data to display the Sample Theme
Data dialog, in which you can examine the first several rows of the actual data
so that you can identify the appropriate location column.

For example, if you want to view the data for a region that consists of states
in the United States map, you might select MAP_STATES_NAME as shown in
Figure 41-12.

Note:

It is possible for an administrator of Oracle Spatial to disable the
display of sample data. If this button is not available, then consult the
administrator for guidance.

Figure 41-12 Sample Theme Data for Regions or States

7. In the Appearance section, specify the look of the color theme as follows:

a. In Data Bucket Count, enter the number of groups for the data in this
geographic map. Each group is coded with a color. After specifying this

Chapter 41
Creating Databound Geographic Maps

41-18

number, you can provide colors for the minimum value and the maximum
value. The colors for the other values are chosen automatically using an RGB
algorithm.

b. In Minimum Value Color, select the color for the minimum value.

c. In Maximum Value Color, select the color for the maximum value.

Note:

If you want to specify an exact color for each data bucket, see What You
May Need to Know About Customizing Colors in a Map Color Theme.

8. In the Data section, provide the following information about the data in the
collection:

a. For Location, select the column in the data collection that should match the
values in the location column that you selected from the base map theme.

b. For Location Label, select the column in the data collection that contains
the labels associated with the values in the location column. These labels are
shown in the information window that is displayed when you click or hover
over a color.

c. For Data Label, enter the label to use for describing the data in the
information window and the tooltip that is displayed when you click or hover
over a color. For example, the information window might include a label
before the data value, such as Product Popularity. You can also enter a
text resource to use for the data label. The text resource can be a translatable
string from a resource bundle or an EL expression executed at runtime for
a dynamic label. Use the dropdown list to open a Select Text Resource or
Expression Builder dialog. If you need help, press F1 or click Help.

9. Use Enable Row Selection only if you want to enable master-detail relationships.
This is useful when the data collection for the map theme is a master in a master-
detail relationship with a detail view that is displayed in another UI component on
the page.

Figure 41-13 shows the Create Color Map Theme dialog for the product popularity by
state color theme.

Chapter 41
Creating Databound Geographic Maps

41-19

Figure 41-13 Create Color Map Theme for Product Popularity By State

What Happens When You Add a Color Theme to a Geographic Map
Dropping a color theme from the Data Controls panel to an existing geographic map
has the following effect:

• Creates the bindings for the color theme and adds the bindings to the page
definition file

• Adds the necessary color theme child tags within the geographic map tag to the
JSF page

The example below shows the row set bindings that were generated for the color
theme of the geographic map.

<bindings>
 <mapTheme IterBinding="WorldProductInventory1Iterator"
 id="WorldProductInventory1"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <mapThemeDataMap convert="false" mapThemeType="color">
 <item type="location" value="State" label="State"/>
 <data>
 <item value="AmountInStock"
 label="${adfBundle['view.ViewControllerBundle'].STOCK_LEVELS}"/>
 </data>
 </mapThemeDataMap>
 </mapTheme>
 </bindings>

The example below shows the XML code generated on the JSF page for a color
theme that represents product popularity in different states on the United States map.

<dvt:map id="map" startingX="-102.39" mapServerConfigId="mapConfig1"
 baseMapName="ELOCATION_MERCATOR.WORLD_MAP"
 mapZoom="3" inlineStyle="width:600px; height:375px;" startingY="40.27"

Chapter 41
Creating Databound Geographic Maps

41-20

 summary="Geographic map with color theme">
 <dvt:mapColorTheme id="mapColorTheme" themeName="MAP_STATES_ABBRV"
 value="#{bindings.WorldProductInventory1.geoMapModel}"
 bucketCount="5" minColor="#ff0000"
 maxColor="#00ff00" locationColumn="STATE_ABRV"/>
 </dvt:map>

What You May Need to Know About Customizing Colors in a Map
Color Theme

While you are data-binding a map color theme, you can specify only a minimum color
and a maximum color for the data buckets. The map uses an algorithm to determine
the colors of the buckets between the minimum and maximum. However, after the
data-binding is finished, you have the option of specifying the exact color to be used
for each data bucket.

In the Properties window, for the dvt:mapColorTheme tag you can use the colorList
attribute to specify the color for each bucket. You can either bind a color array to this
attribute or you can specify a string of colors using a semicolon separator.

For example, if the value of this attributes is set to: #ff0000;#00ff00;#0000ff, then
the color of the first bucket is red, the second bucket is green, and the third bucket is
blue.

How to Create a Geographic Map with a Pie or Bar Graph Theme
You can create a geographic map with a pie or bar graph theme to display specific
locations in a map, identified by latitude and longitude or address. For example, a
point theme might identify the locations of warehouses in a map. If you customize the
style of the point that is displayed, you could choose to use a different image for the
warehouse product count (high, acceptable, low) in a set of warehouses to differentiate
them from each other.

To create a geographic map with a pie or bar graph theme, you first configure the
base map and then bind a pie or bar graph theme of the map to a data collection.
JDeveloper allows you to do this declaratively by dragging and dropping a collection
from the Data Controls panel. You can also layer a pie or bar graph theme on a base
map that has already been configured and bound to another theme.

For example, the geographic map in Figure 41-14 has a point theme that identifies the
location of warehouses and their product count levels in the United States.

Chapter 41
Creating Databound Geographic Maps

41-21

Figure 41-14 Geographic Map with Pie Graph Theme

For example, the geographic map in Figure 41-14 has a point theme that identifies the
location of warehouses and their product count levels in the United States.

Chapter 41
Creating Databound Geographic Maps

41-22

Figure 41-15 Geographic Map with Bar Graph Theme

Before you begin:

It may be helpful to have an understanding of databound geographic maps. For more
information, see Creating Databound Geographic Maps.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model for the geographic map with a pie or bar graph theme, as
described in Creating and Modifying an Application Module.

For example, the data source for the pie graph theme shown in Figure 41-14 and
the bar graph theme shown in Figure 41-15 comes from a view object created for
the Summit ADF DVT sample application.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a geographic map with databound pie or bar graph theme:

1. From the Data Controls panel, select a collection.

Chapter 41
Creating Databound Geographic Maps

41-23

Figure 41-16 shows an example where you could select the
WorldProductInventory1 collection to create a pie or bar graph bar theme in an
existing geographic map component to represent the popular product categories
within a state.

Figure 41-16 Data Collection for Inventory Levels by Product

2. Drag the collection onto a JSF page and, from the context menu, choose
Geographic Map > Map and Pie (or Bar) Graph Theme.

3. If you have not yet configured a map on the page, complete the Create
Geographic Map dialog. For more information, see How to Configure a
Geographic Base Map. Otherwise, do one of the following:

• Use the dropdown list to select the map configuration you wish to use

• Click OK to accept the available map configuration

• Click New to configure a new base map

• Click Edit to modify the available map configuration

4. If you are layering a pie graph theme on a base map that has already been
configured and bound to another theme, in the Create dialog select Pie Graph
Theme.

5. In the Create Pie Graph Theme dialog, do the following to identify the new theme
and the base map theme elements that you want to work with:

a. For Theme Id, enter a unique identifier for the pie graph theme that you are
creating.

b. In the Base Map Theme section, select the name of the base map and the
region in which you want to place the pie graphs.

Chapter 41
Creating Databound Geographic Maps

41-24

6. In the Appearance section, under Data, do the following:

a. For Location, select the location column in the data collection that should be
matched to the location column in the base map theme that you selected.

If needed, click View Sample Theme Data to examine the first several rows of
the actual data so that you can identify the appropriate location column.

b. For Location Label, select the column in the data collection that contains
labels for the locations in the data collection.

c. In the grid for the Pie Slices Attributes (for pie graph) or Series Attributes
(for bar graph), enter each attribute that contains values that you want
represented in the pie or bar graph that you are creating.

d. Beside each pie slice or series attribute, enter text that should be used as a
label for the data value in the attribute. You can enter the text directly, select
No Label to suppress the label as in the case of using a single data value,
specify a text resource from a resource bundle, or use the EL Expression
builder to evaluate the label text at runtime.

7. Select Enable Row Selection only if you want to enable the selection of rows
in a related component. You select this component when the page contains a
component that is linked to a data collection that is related to the geographic map
that you are creating.

8. Click OK.

Figure 41-17 shows the completed Create Pie Graph Map Theme dialog for the
inventory levels by product.

Figure 41-17 Create Pie Graph Map Theme for Inventory Levels by Product

Figure 41-17 shows the completed Create Bar Graph Map Theme dialog for the
inventory levels by product.

Chapter 41
Creating Databound Geographic Maps

41-25

Figure 41-18 Create Bar Graph Map Theme for Inventory Levels by Product

What Happens When You Add a Pie or Bar Graph Theme to a
Geographic Map

Dropping a pie graph theme from the Data Controls panel to an existing geographic
map has the following effect:

• Creates the bindings for the pie graph theme and adds the bindings to the page
definition file

• Adds the necessary pie graph theme code to the JSF page within the map XML

The example below shows the row set bindings that were generated for the pie graph
theme of the geographic map.

<mapTheme IterBinding="PopularCategoriesByState1Iterator"
 id="PopularCategoriesByState1"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <mapThemeDataMap mapThemeType="pieChart">
 <item type="location" value="StateProvince" label="StateProvince"/>
 <data>
 <item value="AudioVideo"
 label="${adfBundle['view.ViewControllerBundle'].AUDIO_VIDEO}"/>
 <item value="CellPhones"
 label="${adfBundle['view.ViewControllerBundle'].CELL_PHONES}"/>
 <item value="Games"
 label="${adfBundle['view.ViewControllerBundle'].GAMES}"/>
 </data>
 </mapThemeDataMap>
</mapTheme>

Chapter 41
Creating Databound Geographic Maps

41-26

The example below shows the XML code generated on the JSF page for the pie graph
theme of the geographic map.

<dvt:mapPieGraphTheme id="mapPieGraphTheme1"
 themeName="MAP_STATES_NAME"
 shortLabel="#{viewcontrollerBundle.POPULAR_CATEGORIES}"
 pieRadius="10"
 styleName="comet"
 value="#{bindings.PopularCategoriesByState1.geoMapModel}"
 locationColumn="POLYGON_ID"/>
</dvt:mapPieGraphTheme>

Creating Databound Thematic Maps
A thematic map represents business data as patterns in stylized areas or associated
markers and does not require a connection to a remote Oracle MapViewer service.
Thematic maps focus on data without the geographic details in a geographic map.

The thematic map is packaged with prebuilt base maps including a USA base map,
a world base map, and base maps for continents and regions of the world including
EMEA and APAC. Each base map includes several sets of regions and one fixed set
of cities. A set of regions or cities is referred to as a layer. Each layer can be bound
to a data collection and stylized to represent the data with color and pattern fills, or a
data marker, or both. At runtime, only one map layer and its associated data can be
displayed at a time, unless the thematic map has been enabled for drilling.

The data displayed in a thematic map is based on data collections. Using ADF data
controls, JDeveloper makes data binding a declarative task. You drag and drop a
collection from the Data Controls panel onto the JSF page and use a Component
Gallery to select the base map and map layers on which to display the data. You can
then use a Layer Browser and binding dialogs to bind data collection attributes to the
data layers in the thematic map.

Stamping is used to associate map layers with a row of data in a data collection. Using
stamping, each row of data in the data model can be identified by a style, for example
a color or pattern; a marker, for example a circle or square; or an image. When you
use stamping, child components are not created for every area, marker, or image
in a thematic map. Rather, the content of the component is repeatedly rendered, or
stamped, once per data attribute, such as the rows in a data collection.

Figure 41-19 shows a thematic map using a USA base map with a states map layer to
display customer and warehouse locations, and the product inventory levels for states
with warehouses in the Summit ADF DVT sample application. The example illustrates
thematic map default features including a data bound legend and labels associated
with the styled points and areas when you use the Data Controls panel and thematic
map binding dialogs.

Chapter 41
Creating Databound Thematic Maps

41-27

Figure 41-19 Thematic Map Displaying Customer and Warehouse Locations

For detailed information about thematic map end user and presentation features, use
cases, tag structure, and adding special features to thematic maps, see the Using
Thematic Map Components section in Developing Web User Interfaces with Oracle
ADF Faces.

How to Create a Thematic Map Using ADF Data Controls
The thematicMap component uses a model to access the data in the underlying list.
The specific model class is oracle.adf.view.rich.model.CollectionModel. You can
also use other model instances, for example, java.util.List, java.util.Array, and
javax.faces.model.DataModel. The data layer will automatically convert the instance
into a CollectionModel.

Before you begin:

It may be helpful to have an understanding of databound thematic maps. For more
information, see Creating Databound Thematic Maps.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a thematic map using the Data Controls panel:

1. From the Data Controls panel, select a data collection.

Chapter 41
Creating Databound Thematic Maps

41-28

Figure 41-20 shows the data collection for warehouse locations and product
inventory levels.

Figure 41-20 Data Collection for Warehouse Location and Inventory

2. Drag the collection onto a JSF page and, from the context menu, choose
Thematic Map.

3. In the Component Gallery, select the map layer associated with the base map you
want to configure for displaying data. In the example, a states map layer in the US
base map is selected. Figure 41-21 shows the Component Gallery with the USA
states map layer selected.

Figure 41-21 Thematic Map Component Gallery

Chapter 41
Creating Databound Thematic Maps

41-29

By default, the Create Data Layer dialog opens for adding an area or point data
layer to the selected map layer. In the thematic map displayed in Figure 41-19, an
area data layer is configured style USA states by warehouse product levels.

4. In the Create Data Layer dialog, enter the following:

• Layer Id: Enter a unique name for the data layer you are defining. By default,
a unique, consecutively numbered id is entered, dl1, dl2, and so on.

• Area: Select to add an area data layer to the map layer.

• AreaLayer: References the map layer to which you are adding a data layer. In
the example, a USA States map layer.

• Location: Select the attribute that represents the column in the data model
that determines the location of the data for the areas in the data layer. The
locations are Ids of the regions from the base map for which the data is being
displayed. For more information, see What You May Need to Know About
Base Map Location Ids.

• Set current row for master-detail: Select if you want to enable master-detail
relationships. This is useful when the data collection for the thematic map is
a master in a master-detail relationship with a detail view that is displayed in
another UI component on the page. For more information, see What You May
Need to Know About Configuring Master-Detail Relationships.

Figure 41-22 shows the completed Create Data Layer dialog.

Figure 41-22 Create Area Data Layer Dialog

An area data layer representing the areaDataLayer component, and an area,
representing the area component is added in the Layer Browser hierarchy.
Figure 41-23 shows the expanded Layer Browser after adding an area data layer
and area to the map layer.

Chapter 41
Creating Databound Thematic Maps

41-30

Figure 41-23 Thematic Map Layer Browser

5. In the Layer Browser, expand the area data layer, select the area to be stylized,
and click the Edit icon.

Note:

You configure an area with a default stamp across all areas in the
thematic map layer, or you can you can use a child attributeGroups tag
to generate the style attribute type automatically based on categorical
groups in the data set. If the same style attribute is set in both the area
tag, and by an attributeGroups tag, the attributeGroups style type will
take precedence. For more information, see Styling Areas, Markers, and
Images to Display Data.

6. In the Configure Area dialog, Attribute Groups page, enter the following:

• Grouping Rules: Use this table to specify the styling of categorical groups
of data in a data collection. Use the Add icon to add a row to the table
for configuring rules for a categorical group and use the Delete icon to
remove any row selected in the table. Each grouping rule is represented
as a attributeGroups component, and assigned a unique, consecutively
numbered Id, ag1, ag2, and so on.

For each row added to the table, enter the following:

– Group by Value: Enter or use the dropdown list to select the attribute
representing the column in the data set by which you wish to group
the data values. For example, ProductCount represents the warehouse
product inventory levels by state.

Note:

The selected attribute should consist of discrete values that
can be categorized. For example, a range of numeric values
between 40 and 45, are not automatically grouped.

– Area Properties: Use the dropdown list to select the property to use for
styling that area. Areas can be styled using color, pattern, opacity, or
any combination of these valid values. Choose Select multiple attributes
from the dropdown list for a dialog to specify any combination of values.

The default style values that are generated for each property are defined
using CSS style properties in the ADF skin. Each attributeGroups type
has a default ramp defined in the skin, and these can be customized
by setting the index-based properties to the desired values. For more

Chapter 41
Creating Databound Thematic Maps

41-31

information, see What You May Need to Know About Default Style Values
for Attribute Groups.

– Legend Label: Enter text or use the dropdown list to select the attribute
representing the text to use for the categorical group in the thematic map
legend. You can also select Expression Builder from the dropdown list to
create an EL expression to specify the legend text. For more information,
see Creating Databound Legends.

• Value-Specific Rules: Click to open the Match Rules and Exception Rules
tables used to specify a finer detail for one or more data values in categorical
groups in a data set. For example, use a match rule to style every state with a
warehouse with a low product inventory level with a #DD1E2F color, instead of a
predefined range of colors.

Note:

Any match or exception rule specified in these tables will override
the settings defined in the Grouping Rules table.

• Match Rules: Use to specify the style rule matched to one or more data
values in a group of data in a data collection. Use the Add icon to add a
row to the table for configuring a match rule for a categorical group and use
the Delete icon to remove any row selected in the table. Each match rule is
represented as a attributeMatchRule component, and assigned a unique,
consecutively numbered Id, amr1, amr2, and so on. The property and property
value is defined in a child f:attribute tag. For example:

<dvt:attributeMatchRule id="amrl" group="Mountain Dew">
 <f:attribute name="color" value="#ffff00"/>
</dvt:attributeMatchRule>

For each row added to the table, enter the following:

– Group Value: Enter the exact value for a Group By Value attribute that
will trigger this Match Rule to execute. In the example, warehouse product
inventory level data collection attribute, values include low, med, and high.

– Property: Use the dropdown list to select the property to use for styling
that data value. Areas can be styled using color, pattern, or opacity
values. The property selected here must match one of the property types
listed in the Area Properties for the attribute Grouping Rules.

– Property Value: Enter or use the dropdown list to assign a value to the
property. If the value provided by the match override is also in the prebuilt
ramp returned by the Grouping Rules, then that value will only be used
by the overrides and will be skipped in the prebuilt ramp.

Valid values for color are RGB hexidecimal colors.

Valid values for pattern include a choice of twelve prebuilt patterns,
for example, smallChecker, largeDiamond, smallDiagonalRight,
largeCrosshatch. If fill color is specified, the pattern displays in that color
on the default white background.

Valid values for opacity range from 0.0 for transparent to 1.0 for opaque.

Chapter 41
Creating Databound Thematic Maps

41-32

• Exception Rules: Use to specify one or more exception to the style rules
for categorical groups in the data set. Use the Add icon to add a row to the
table for configuring an exception rule and use the Delete icon to remove
any row selected in the table. Each exception rule is represented as an
attributeExceptionRule component, and assigned a unique, consecutively
numbered Id, aer1, aer2, and so on. The property and property value is
defined in a child f:attribute tag.

For each row added to the table, enter the following:

– Condition: Enter an EL expression, or use the dropdown list to open an
Expression Builder dialog to create an EL expression that replaces the
style property value with another when certain conditions are met. For
example:

#{row.Sales gt 100000}

– Property: Use the dropdown list to select the property to use for styling
that data value. Areas can be styled using color, pattern, or opacity
values. The property selected here must match one of the property types
listed in the Area Properties for the attribute Grouping Rules.

– Property Value: Enter or use the dropdown list to assign a value to the
property. If the value provided by the match override is also in the prebuilt
ramp returned by the Grouping Rules, then that value will only be used
by the overrides and will be skipped in the prebuilt ramp.

Valid values for color are RGB hexidecimal colors.

Valid values for pattern include a choice of twelve prebuilt patterns,
for example, smallChecker, largeDiamond, smallDiagonalRight,
largeCrosshatch. If fill color is specified, the pattern displays in that color
on the default white background.

Valid values for opacity range from 0.0 for transparent to 1.0 for opaque.

– Legend Label: Enter a text resource to use for the legend label. The text
resource can be a translatable string from a resource bundle or an EL
expression executed at runtime. Use the dropdown list to open a Select
Text Resource or Expression Builder dialog. If you need help, press F1 or
click Help.

Note:

the text resource option is only available for a fixed area.
For row-varying areas, use an EL expression to retrieve a row-
varying key to look up the text resource in a resource bundle, for
example:

#{viewController.ResourceBundle[row.label]}

• Messages: Review and clear as necessary any alerts related to the
configuration of the area.

Figure 41-24 shows the completed Configure Area dialog. The warning in the
message pane alerts the user that the default area color specified in the Default
Stamp page of the dialog will be overwritten by the color specified in the Grouping
Rules and any value-specific overrides specified in the Attribute Groups page.

Chapter 41
Creating Databound Thematic Maps

41-33

Figure 41-24 Configure Area Dialog Attribute Groups Page

7. Use the Layer Browser to add a global point data layer representing warehouse
locations using the same data collection you used to create the thematic map. For
detailed instructions, see How to Add Data Layers to Thematic Maps.

8. Use the Layer Browser to add a global point data layer representing customer
addresses using a different data collection than the one you used to create the
thematic map. For detailed instructions, see How to Add Data Layers to Thematic
Maps. Figure 41-25 shows the data collection for customer locations.

Figure 41-25 Data Collection for Customer Addresses

Chapter 41
Creating Databound Thematic Maps

41-34

9. Use the Layer Browser to add and style a marker representing the customer
locations in the global point data layer. For detail instructions, see Styling Areas,
Markers, and Images to Display Data.

Figure 41-26 shows the expanded Layer Browser for the thematic map in
Figure 41-20.

Figure 41-26 Thematic Map Layer Browser

10. Add and configure a data bound legend and labels associated with the styled
points and areas. For detailed instructions, see Creating Databound Legends.

What Happens When You Use Data Controls to Create a Thematic
Map

When you use ADF data controls to create a thematic map, JDeveloper:

• Defines the bindings for the thematic map in the page definition file of the JSF
page, and

• Inserts code in the JSF page for the DVT thematic map components.

The example below shows the bindings defined in the page definition file of the JSF
page for the example thematic map in Figure 41-19.

<bindings>
 <tree IterBinding="WorldProductInventory1Iterator"
id="WorldProductInventory1">
 <nodeDefinition DefName="model.WorldProductInventory"
Name="WorldProductInventory10">
 <AttrNames>
 <Item Value="Address"/>
 <Item Value="AmountInStock"/>
 <Item Value="Category"/>
 <Item Value="CategoryId"/>
 <Item Value="City"/>
 <Item Value="Country"/>
 <Item Value="CountryCode"/>
 <Item Value="CountryId"/>
 <Item Value="Id"/>
 <Item Value="Id1"/>
 <Item Value="Id2"/>
 <Item Value="Id3"/>
 <Item Value="Id4"/>
 <Item Value="Latitude"/>
 <Item Value="Longitude"/>
 <Item Value="ProdName"/>
 <Item Value="ProductId"/>

Chapter 41
Creating Databound Thematic Maps

41-35

 <Item Value="RegName"/>
 <Item Value="RegionId"/>
 <Item Value="ReorderPoint"/>
 <Item Value="State"/>
 <Item Value="WarehouseId"/>
 <Item Value="ZipCode"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
 <tree IterBinding="SCustomerView1Iterator" id="SCustomerView1">
 <nodeDefinition DefName="model.SCustomerView" Name="SCustomerView10">
 <AttrNames>
 <Item Value="Address"/>
 <Item Value="City"/>
 <Item Value="CountryId"/>
 <Item Value="Id"/>
 <Item Value="Name"/>
 <Item Value="State"/>
 <Item Value="ZipCode"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
 <tree IterBinding="SWarehouseView1Iterator" id="SWarehouseView1">
 <nodeDefinition DefName="model.SWarehouseView" Name="SWarehouseView10">
 <AttrNames>
 <Item Value="Address"/>
 <Item Value="City"/>
 <Item Value="CountryId"/>
 <Item Value="Id"/>
 <Item Value="Latitude"/>
 <Item Value="Longitude"/>
 <Item Value="ManagerId"/>
 <Item Value="Phone"/>
 <Item Value="ProductCount"/>
 <Item Value="State"/>
 <Item Value="ZipCode"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
 </bindings>

The example below shows the code inserted in the JSF page for the example thematic
map in Figure 41-19.

<dvt:thematicMap id="tm1" basemap="usa" animationOnDisplay="alphaFade"
 summary="#{viewcontrollerBundle.THEMATIC_MAP_DISPLAYING_
 WAREHOUSE_PRODUCT_INVENTORY_LEVELS}">
 <dvt:areaLayer layer="states" id="al1">
 <dvt:areaDataLayer id="dal1"
 value="#{bindings.SWarehouseView1.collectionModel}"
 var="row">
 <dvt:areaLocation name="#{row.State}" id="al2">
 <dvt:area id="a1" shortDesc="#{row.ProductCount} units">
 <dvt:attributeGroups id="ag1" type="color"
 value="#{row.ProductCount le 5 ? 'low' :
 (row.ProductCount le 8 ? 'med' : 'high')}"
 label="#{row.ProductCount le 5 ? 'Low
Product
 Counts' : (row.ProductCount le 8 ? 'Good
 Product Counts' : 'Surplus Product
 Counts')}">

Chapter 41
Creating Databound Thematic Maps

41-36

 <dvt:attributeMatchRule id="amr1" group="low">
 <f:attribute name="color" value="#DD1E2F"/>
 </dvt:attributeMatchRule>
 <dvt:attributeMatchRule id="amr2" group="med">
 <f:attribute name="color" value="#EBB035"/>
 </dvt:attributeMatchRule>
 <dvt:attributeMatchRule id="amr3" group="high">
 <f:attribute name="color" value="#218559"/>
 </dvt:attributeMatchRule>
 </dvt:attributeGroups>
 </dvt:area>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
 <dvt:pointDataLayer id="dpl1"
 value="#{bindings.SCustomerView1.collectionModel}"
 var="row">
 <dvt:pointLocation type="pointName" pointName="#{row.State}_
 #{fn:toUpperCase(fn:replace(row.City, ' ', '_'))}"
 id="pl1">
 <dvt:marker id="m2" fillColor="#00000" opacity="1.0" shape="human"
 scaleX="4.0" scaleY="4.0"
 shortDesc="#{row.Name}">
 <f:attribute name="legendLabel" value="Customer Location"/>
 </dvt:marker>
 </dvt:pointLocation>
 </dvt:pointDataLayer>
 <dvt:pointDataLayer id="dpl2"
 value="#{bindings.SWarehouseView1.collectionModel}"
 var="row">
 <dvt:pointLocation type="pointXY" pointX="#{row.Longitude}"
 pointY="#{row.Latitude}" id="pl2">
 <af:image id="img1" source="/images/normalHouse.gif"
 shortDesc="#{row.Address}, #{row.City} #{row.ZipCode}">
 <f:attribute name="legendLabel" value="Warehouse Location"/>
 </af:image>
 </dvt:pointLocation>
 </dvt:pointDataLayer>
 <dvt:legend id="l1">
 <dvt:showLegendGroup id="slg1" label="Customer and Warehouse
Locations">
 <dvt:legendSection source="dpl1:m2" id="ls2"/>
 <dvt:legendSection source="dpl2:img1" id="ls1"/>
 </dvt:showLegendGroup>
 <dvt:showLegendGroup id="slg2" label="Warehouse Product Levels">
 <dvt:legendSection source="al1:dal1:ag1" id="ls3"/>
 </dvt:showLegendGroup>
 </dvt:legend>
 </dvt:thematicMap>

Once you have created a data bound thematic map you can add additional map
layers representing available regions in the geographical hierarchy of the base map,
and associate area or point data layers using the same data collection you used to
create the thematic map. The Layer Browser represents the logical structure of the
map layers, area and point data layers, and stylized areas and markers. Use the Layer
Browser to:

• Add additional map layers in the base map geographical hierarchy to the thematic
map.

Chapter 41
Creating Databound Thematic Maps

41-37

• Define a custom map layer in the geographical hierarchy of the base map,
using lower level regions to aggregate the regions in the custom layer. For more
information, see How to Define a Custom Map Layer.

• Add, edit, or delete area or point (global or map layer specific) data layers. For
more information, see How to Add Data Layers to Thematic Maps.

• Add, edit, or delete stylized areas or markers. For more information, see Styling
Areas, Markers, and Images to Display Data.

After creating a thematic map using data controls, you can customize the default
map labels, legend display, and add interactivity and animation effects. For more
information, see in Developing Web User Interfaces with Oracle ADF Faces.

How to Add Data Layers to Thematic Maps
You use data layers to associate map layers with a data collection. Using stamping,
each row of data in the data model can be identified by a style, for example a color or
pattern; a marker, for example a circle or square; or an image. When a map layer is
displayed at runtime, the data appears as stylized areas, markers, or images.

How to Add an Area Data Layer to a Map Layer
Map layers can display data using an area data layer and/or one or more point data
layers. Area data layers can be styled using areas, markers, or images. Point data
layers can be styled using markers or images.

Before you begin:

It may be helpful to have an understanding of databound thematic maps. For more
information, see Creating Databound Thematic Maps.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

• Create a data bound thematic map to your JSF page, as described in How to
Create a Thematic Map Using ADF Data Controls.

To add an area data layer to a map layer:

1. Select the thematic map in the Visual Editor.

2. In the Layer Browser, select the map layer to which you wish to bind a row in the
data collection. If the Layer Browser is not open in the Visual Editor, right-click
inside the map and choose Open Layer Browser.

3. From the Add icon dropdown list, choose Add Data Layer.

4. In the Create Data Layer dialog, enter the following:

Chapter 41
Creating Databound Thematic Maps

41-38

• Layer Id: Enter a unique name for the data layer you are defining. By default,
a unique, consecutively numbered id is entered, dl1, dl2, and so on.

• Bind Data Now: Select and click Browse to open the Picker dialog > Data
Controls Definitions page. Select the data collection in the ADF data controls
you are using to data bind your data layer.

Note:

Alternatively, you can use the Expression Builder page to select an
ADF managed bean you are using to data bind your area data layer
and areas. You can also use the Expression Builder dialog in each
remaining field.

• Area: Select to add an area data layer to the map layer.

• AreaLayer: References the map layer to which you are adding a data layer.

• Location: Select attribute that represents the column in the data model that
determines the location of the data for the areas in the data layer. The
locations are Ids of the regions from the base map for which the data is being
displayed. For more information, see What You May Need to Know About
Base Map Location Ids.

• Set current row for master-detail: Select if you want to enable master-detail
relationships. This is useful when the data collection for the thematic map is
a master in a master-detail relationship with a detail view that is displayed in
another UI component on the page. For more information, see What You May
Need to Know About Configuring Master-Detail Relationships.

Figure 41-27 shows the completed Create Area Data Layer dialog.

Figure 41-27 Create Area Data Layer Dialog

By default, an area data layer representing the areaDataLayer component, and an
area, representing the area component is added in the Layer Browser hierarchy. The

Chapter 41
Creating Databound Thematic Maps

41-39

example below shows the code added to the JSF page when you add an area data
layer to a map layer.

<dvt:thematicMap id="tm1" basemap="usa">
 <dvt:areaLayer layer="counties" id="al1">
 <dvt:areaDataLayer id="dl2"
 value="#{bindings.TmapStatesView11.collectionModel}"
 var="row">
 <dvt:areaLocation name="#{row.Name}" id="al2">
 <dvt:area id="a1"/>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
...
</dvt:thematicMap>

After adding the area data layer to the thematic map, you style the data using areas,
markers, or images. For more information, see Styling Areas, Markers, and Images to
Display Data.

How to Add a Point Data Layer to a Map Layer
Map layers can display data using an area data layer and/or one or more point data
layers. Area data layers can be styled using areas, markers, or images. Point data
layers can be styled using markers or images.

When a point data layer is associated with the base map as a direct child of
thematicMap instead of as a child of a specific map layer, the data displays at all
times and is called a global point layer.

Before you begin:

It may be helpful to have an understanding of databound thematic maps. For more
information, see Creating Databound Thematic Maps.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

• Create a data bound thematic map to your JSF page, as described in How to
Create a Thematic Map Using ADF Data Controls.

To add a point data layer to a map layer:

1. Select the thematic map in the Visual Editor.

2. In the Layer Browser, select the map layer to which you wish to bind a data layer.
If the Layer Browser is not open in the Visual Editor, right-click inside the map and
choose Open Layer Browser.

3. From the Add icon dropdown list, choose Add Data Layer.

Chapter 41
Creating Databound Thematic Maps

41-40

Note:

If you wish to create a global point layer that displays at all times on the
thematic map, choose Create Global Point Layer.

4. In the Create Data Layer dialog, enter the following:

• Layer Id: Enter a unique ID for the data layer you are defining. By default, a
unique, consecutively numbered id is entered, dl1, dl2, and so on.

• Bind Data Now: Select and click Browse to open the Picker dialog > Data
Controls Definitions page. Select the data collection in the ADF data controls
you are using to data bind your data layer.

Note:

Alternatively, you can use the Expression Builder page to select an
ADF managed bean you are using to data bind your point data layer
and markers. You can also use the Expression Builder dialog in each
remaining field.

• Points: Select to add a point data layer to the map layer.

• AreaLayer: Use the dropdown list to select the map layer to which you
are associating a data layer. If you select All, the point data layer will be
configured as a global point layer and display at all times. If you select an
available map layer, the point data layer will only display with that map layer is
displayed.

• Data Type: Choose one of the following:

– City: Select to use a pointName data type representing the named points,
such as cities, in the data collection that map to named points in the base
map.

– Coordinates: Select to use a pointXY data type representing the columns
in the data collection that join pointX and pointY to define the point
locations.

• Location: Available if a City Data Type is specified. Use the dropdown list
to select the attribute that represents the column in the data model that
determines the location of the data for the points in the data layer. The
locations are IDs of the points from the base map for which the data is being
displayed. For more information, see What You May Need to Know About
Base Map Location Ids.

• Longitude: Available if a Coordinates Data Type is specified. Use the
dropdown list to select the attribute in the data collection that represents the
longitude, or pointX of the marker.

• Latitude: Available if a Coordinates Data Type is specified. Use the dropdown
list to select the attribute in the data collection that represents the latitude, or
pointY of the markers.

• Set current row for master-detail: Select if you want to enable master-detail
relationships. This is useful when the data collection for the thematic map is

Chapter 41
Creating Databound Thematic Maps

41-41

a master in a master-detail relationship with a detail view that is displayed in
another UI component on the page. For more information, see What You May
Need to Know About Configuring Master-Detail Relationships.

Figure 41-28 shows the completed Create Point Data Layer dialog for a pointName
data type.

Figure 41-28 Create Point Data Layer Dialog

By default, a point data layer representing the pointDataLayer component, and a
marker, representing the marker component is added in the Layer Browser hierarchy.
The example below shows the code added to the JSF page when you add a point data
layer to a map layer.

<dvt:thematicMap id="tm1" basemap="usa">
 <dvt:areaLayer layer="states" id="al1">
 <dvt:pointDataLayer id="dl1"
 value="#{bindings.TmapCitiesView11.collectionModel}"
 var="row">
 <dvt:pointLocation type="pointName" pointName="#{row.City}" id="pl1">
 <dvt:marker id="m2"/>
 </dvt:pointLocation>
 </dvt:pointDataLayer>
 </dvt:areaLayer>
...
</dvt:thematicMap>

The example below shows the code added to the JSF page when you add a global
point data layer to a thematic map.

<dvt:thematicMap>
 <areaLayer layer="states" id="al1"/>
 <dvt:pointDataLayer id="dl2"
 value="#{bindings.TmapCitiesView12.collectionModel}"
 var="row">
 <dvt:pointLocation type="pointXY" pointX="#{row.Longitude}"
 pointY="#{row.Latitude}" id="pl2">
 <dvt:marker id="m3"/>
 </dvt:pointLocation>

Chapter 41
Creating Databound Thematic Maps

41-42

 </dvt:pointDataLayer>
...
</dvt:thematicMap>

After adding the point data layer to the thematic map, you style the data using markers
or images. For more information, see Styling Areas, Markers, and Images to Display
Data.

Styling Areas, Markers and Images to Display Data
An area data layer is used to associate map layers with a data collection. Using
stamping, each row of data in the data model can be identified by a style, for example
a color or pattern; a marker, for example a circle or square; or an image.

A point data layer is used to associate a set of points on a map with a data collection.
The data point can be specified by a named point in a map layer, for example, cities in
the US map, or by longitude and latitude. Using stamping, each row of data in the data
model can be identified by a marker, for example a circle or square, or an image.

How to Style Areas to Display Data
You configure an area with a default stamp across all areas in the thematic map
areaLayer, or you can use a child attributeGroups tag to generate the style
attribute type automatically based on categorical groups in the data set. If the same
style attribute is set in both the area tag, and by an attributeGroups tag, the
attributeGroups style type will take precedence.

By default, when you add an area data layer, a configurable area is added to the Layer
Browser. You can use the Layer Browser to add additional areas or markers to an
area data layer, or markers to a point data layer. The Layer Browser reflects the logical
structure of the map layers, area or point data layers, and areas or markers configured
in the thematic map.

For example, you can style the states in the states layer of the usa base map with an
attribute group to display states with warehouses using the color red as illustrated in
Figure 41-29.

Figure 41-29 Thematic Map with Area Stamp Configured

Chapter 41
Creating Databound Thematic Maps

41-43

Before you begin:

It may be helpful to have an understanding of databound thematic maps. For more
information, see Creating Databound Thematic Maps.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

• Create a data bound thematic map to your JSF page, as described in How to
Create a Thematic Map Using ADF Data Controls.

To style areas using a default stamp:

1. In the Layer Browser, select the area at the area location inside the map layer you
are configuring.

2. Click the Edit icon.

3. In the Configure Area dialog, Default Stamp page, enter the following:

• Location: By default, the attribute that represents the column in the data
model that determines the location of the data for the areas in the data layer.
The locations are Ids of the regions from the base map for which the data is
being displayed. This read-only field displays the EL expression that maps the
stamped area to a region in the base map. For more information, see What
You May Need to Know About Base Map Location Ids.

• Color: Optionally, from the dropdown list select the fill color for the area. Valid
values are RGB hexidecimal. Choose Custom Color from the dropdown list to
open a Color Picker dialog

• Pattern: Optionally, from the dropdown list select one of twelve prebuilt
patterns to style the area, for example, smallChecker, largeDiamond,
smallDiagonalRight, largeCrosshatch. If fill color is specified, the pattern
displays in that color on the default white background.

• Opacity: Optionally, specify the opacity of the fill color of the area. Valid values
range from 0.0 for transparent to 1.0 for opaque.

• Include in Legend: Select and use the search icon to open a Select Text
Resource dialog to select or create an application text resource to use for the
legend text. The text resource can be a translatable string from a resource
bundle or an EL expression executed at runtime. If you need help, press F1 or
click Help.

Chapter 41
Creating Databound Thematic Maps

41-44

Note:

the text resource option is only available for a fixed area. For row-
varying areas, use an EL expression to retrieve a row-varying key to
look up the text resource in a resource bundle, for example:

#{viewController.ResourceBundle[row.label]}

• Messages: Review and clear as necessary any alerts related to the
configuration of the area.

Figure 41-30 shows the Configure Area dialog for the Default Stamp page.

Figure 41-30 Configure Area Dialog Default Stamp Page

The example below shows the code inserted in the JSF page for the configured area.

<dvt:thematicMap id="tm1" basemap="usa">
 <dvt:areaLayer layer="states" id="al1">
 <dvt:areaDataLayer id="dl1"
 value="#{bindings.TmapStatesView1.collectionModel}"
 var="row">
 <dvt:areaLocation name="#{row.Name}" id="al2">
 <dvt:area id="a1" fillColor="#ff0000">
 <f:attribute name="legendLabel"
 value="#{Bundle.US_STATES}"/>
 </dvt:area>

Chapter 41
Creating Databound Thematic Maps

41-45

 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
</dvt:thematicMap>

If you wish to style areas using categorical groups of data in the data collection, use
the Attribute Groups page of the Configure Area dialog. For details about using the
Attribute Groups page including sample code, see the use case described in How to
Create a Thematic Map Using ADF Data Controls.

How to Style Markers to Display Data using a Default Stamp
You configure a marker with a default stamp across all markers in the thematic map
layer, or you can use a child attributeGroups tag to generate the style attribute type
automatically based on categorical groups in the data set. If the same style attribute is
set in both the marker tag, and by an attributeGroups tag, the attributeGroups style
type will take precedence.

By default, when you add a point data layer, a configurable marker element is added to
the Layer Browser. You can use the Layer Browser to add additional areas or markers
to an area data layer, or markers to a point data layer. The Layer Browser reflects the
logical structure of the map layers, area or point data layers, and areas or markers
configured in the thematic map.

For example, using the default stamp, you can identify all the predefined cities in the
states layer of the USA base map with a red circle as illustrated in Figure 41-31. In
the example, markers are styled on a point data layer. Styling markers on an area data
layer is similar.

Figure 41-31 Thematic Map with Marker Default Stamp Configured

Before you begin:

It may be helpful to have an understanding of databound thematic maps. For more
information, see Creating Databound Thematic Maps.

Chapter 41
Creating Databound Thematic Maps

41-46

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

• Create a data bound thematic map to your JSF page, as described in How to
Create a Thematic Map Using ADF Data Controls.

To style markers using a default stamp:

1. In the Layer Browser, select the marker at the point location inside the map layer
you are configuring.

2. Click the Edit icon.

3. In the Configure Marker dialog, Default Stamp page, enter the following:

• Location: By default, the attribute that represents the column in the data
model that determines the location of the data for the markers in the data
layer. The locations are Ids of the points from the base map for which the data
is being displayed. This read-only field displays the EL expression that maps
the stamped marker to a point in the base map. For more information, see
What You May Need to Know About Base Map Location Ids.

• Color: Optionally, from the dropdown list select the fill color for the marker.
Valid values are RGB hexidecimal. Choose Custom Color from the dropdown
list to open a Color Picker dialog.

• Pattern: Optionally, from the dropdown list select one of twelve prebuilt
patterns to style the marker, for example, smallChecker, largeDiamond,
smallDiagonalRight, largeCrosshatch. If fill color is specified, the pattern
displays in that color on the default white background.

• Opacity: Optionally, specify the opacity of the fill color of the marker. Valid
values range from 0.0 for transparent to 1.0 for opaque.

• Shape: Optionally, select the shape of the marker. Valid values are circle
(default), square, plus, diamond, triangleUp, triangleDown, and human.

Optionally, use the Custom Shape field to specify the shapePath value to a
Scalable Vector Graphics (SVG) file to use for the marker. Enter the path or
use the Search icon to open the Select SVG File dialog and navigate to the
file location. This option is only available if the default shape is selected in the
Shape field.

Shapes can also be specified using CSS style properties. Predefined marker
shapes can be overwritten, and the paths to SVG files for custom markers can
also be defined without using the shapePath attribute. For more information,
see What You May Need to Know About Styling Markers.

• Size: Optionally, enter a percentage by which to scale the marker from its
default size for ScaleX (horizontal), and ScaleY (vertical). The percentages
are then scaled to a float. For example, you can double the marker width by

Chapter 41
Creating Databound Thematic Maps

41-47

setting ScaleX to 200, written to the tag as 2.0, and halve the height by setting
ScaleY to 50, written to the tag as 0.5.

• Include in Legend: Enter a text resource to use for the legend label. The
text resource can be a translatable string from a resource bundle or an EL
expression executed at runtime. Use the dropdown list to open a Select Text
Resource or Expression Builder dialog. If you need help, press F1 or click
Help.

Note:

the text resource option is only available for a fixed area. For row-
varying areas, use an EL expression to retrieve a row-varying key to
look up the text resource in a resource bundle, for example:

#{viewController.ResourceBundle[row.label]}

• Messages: Review and clear any messages related to the configuration of the
marker.

Figure 41-32 shows the Configure Marker dialog, Default Stamp page.

Figure 41-32 Configure Marker Dialog Default Stamp Page

Chapter 41
Creating Databound Thematic Maps

41-48

The example below shows the code inserted in the JSF page for the configured
marker.

<dvt:thematicMap id="tm1" basemap="usa">
 <dvt:areaLayer layer="states" id="al1">
 <dvt:pointDataLayer id="dl2"
 value="#{bindings.TmapCitiesView1.collectionModel}"
 var="row">
 <<dvt:pointLocation type="pointName" pointName="#{row.City}" id="pl1">
 <dvt:marker id="m2" fillColor="#ff0000">
 <f:attribute name="legendLabel"
 value="#{Bundle.US_CITIES}"/>
 </dvt:marker>
 </dvt:pointLocation>
 </dvt:pointDataLayer>
 </dvt:areaLayer>
</dvt:thematicMap>

How to Style Markers to Display Data using Categorical Groups
You configure a marker with a default stamp across all markers in the thematic map
layer, or you can use a child attributeGroups tag to generate the style attribute type
automatically based on categorical groups in the data set. If the same style attribute is
set in both the marker tag, and by an attributeGroups tag, the attributeGroups style
type will take precedence.

If you wish to style markers using categorical groups of data in the data collection, use
the Attribute Groups page of the Configure Marker dialog. You can configure markers
for a point data layer or an area data layer.

Before you begin:

It may be helpful to have an understanding of databound thematic maps. For more
information, see Creating Databound Thematic Maps.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

• Create a data bound thematic map to your JSF page, as described in How to
Create a Thematic Map Using ADF Data Controls.

To style markers using categorical groups of data:

1. In the Layer Browser, select the marker at the marker location inside the map layer
you are configuring.

2. Click the Edit icon.

3. In the Configure Marker dialog, Attribute Groups page, enter the following:

• Grouping Rules: Use this table to specify the styling of categorical groups
of data in a data collection. Use the Add icon to add a row to the table

Chapter 41
Creating Databound Thematic Maps

41-49

for configuring rules for a categorical group and use the Delete icon to
remove any row selected in the table. Each grouping rule is represented
as a attributeGroups component, and assigned a unique, consecutively
numbered Id, ag1, ag2, and so on.

For each row added to the table, enter the following:

– Group by Value: Enter or use the dropdown list to select the attribute
representing the column in the data set by which you wish to group the
data values.

Note:

The selected attribute should consist of discrete values that
can be categorized. For example, a range of numeric values
between 40 and 45, are not automatically grouped.

– Marker Properties: Use the dropdown list to select the property to use for
styling that marker. Markers can be styled using color, pattern, opacity,
scaleX, scaleY, or any combination of these valid values. Choose Select
multiple attributes from the dropdown list for a dialog to specify any
combination of values.

The default style values that are generated for each property are defined
using CSS style properties in the ADF skin. Each attributeGroups type
has a default ramp defined in the skin, and these can be customized
by setting the index-based properties to the desired values. For more
information, see What You May Need to Know About Default Style Values
for Attribute Groups.

– Legend Label: Enter text or use the dropdown list to select the attribute
representing the text to use for the categorical group in the thematic map
legend. You can also select Expression Builder from the dropdown list to
create an EL expression to specify the legend text. For more information,
see Creating Databound Legends.

• Value-Specific Rules: Click to open the Match Rules and Exception Rules
tables used to specify a finer detail for one or more data values for categorical
groups in a data set.

Note:

Any match or exception rule specified in these tables will override
the settings defined in the Grouping Rules table.

• Match Rules: Use to specify the style rule matched to one or more data
values in a group of data in a data collection. Use the Add icon to add a
row to the table for configuring a match rule for a categorical group and use
the Delete icon to remove any row selected in the table. Each match rule is
represented as a attributeMatchRule component, and assigned a unique,
consecutively numbered Id, amr1, amr2, and so on. The property and property
value is defined in a child f:attribute tag. For example:

Chapter 41
Creating Databound Thematic Maps

41-50

<dvt:attributeMatchRule id="amrl" group="Mountain Dew">
 <f:attribute name="color" value="#ffff00"/>
</dvt:attributeMatchRule>

For each row added to the table, enter the following:

– Group Value: Enter the exact value for the Group by Value attribute that
will trigger the Match Rule to execute.

– Property: Use the dropdown list to select the property to use for styling
that data value. Markers can be styled using color, pattern, opacity,
scaleX, scaleY, or any combination of these valid values. The property
selected here must match one of the property types listed in the Marker
Properties for the attribute Grouping Rules.

– Property Value: Enter or use the dropdown list to assign a value to the
property. If the value provided by the match override is also in the prebuilt
ramp returned by the Grouping Rules, then that value will only be used
by the overrides and will be skipped in the prebuilt ramp.

Valid values for color are RGB hexidecimal colors.

Valid values for pattern include a choice of twelve prebuilt patterns,
for example, smallChecker, largeDiamond, smallDiagonalRight,
largeCrosshatch. If fill color is specified, the pattern displays in that color
on the default white background.

Valid values for opacity range from 0.0 for transparent to 1.0 for opaque.

Valid values for scaleX and scaleY are percentages that are then scaled
to a float.

• Exception Rules: Use to specify one or more exceptions to the style rules
for categorical groups in the data set. Use the Add icon to add a row to the
table for configuring an exception rule and use the Delete icon to remove
any row selected in the table. Each exception rule is represented as an
attributeExceptionRule component, and assigned a unique, consecutively
numbered Id, aer1, aer2, and so on. The property and property value is
defined in a child f:attribute tag. For example:

<dvt:attributeExceptionRule id="aer1" condition="#{row.name=='TX'}"
 label="Texas">
 <f:attribute name="color" value="#ff00ff"/>
</dvt:attributeExceptionRule>

For each row added to the table, enter the following:

– Condition: Enter an EL expression, or use the dropdown list to open an
Expression Builder dialog to create an EL expression that replaces the
style property value with another when certain conditions are met. For
example:

#{row.Sales gt 100000}

– Property: Use the dropdown list to select the property to use for styling
that data value. Markers can be styled using color, pattern, opacity,
scaleX, or scaleY. The property selected here must match one of the
property types listed in the Marker Properties for the attribute Grouping
Rules.

– Property Value: Enter or use the dropdown list to assign a value to the
property. If the value provided by the match override is also in the prebuilt

Chapter 41
Creating Databound Thematic Maps

41-51

ramp returned by the Grouping Rules, then that value will only be used
by the overrides and will be skipped in the prebuilt ramp

Valid values for color are RGB hexidecimal colors.

Valid values for pattern include a choice of twelve prebuilt patterns,
for example, smallChecker, largeDiamond, smallDiagonalRight,
largeCrosshatch. If fill color is specified, the pattern displays in that color
on the default white background.

Valid values for opacity range from 0.0 for transparent to 1.0 for opaque.

Valid values for scaleX and scaleY are percentages that are then scaled
to a float.

– Legend Label: Enter a text resource to use for the legend label. The text
resource can be a translatable string from a resource bundle or an EL
expression executed at runtime. Use the dropdown list to open a Select
Text Resource or Expression Builder dialog. If you need help, press F1 or
click Help.

Note:

the text resource option is only available for a fixed area.
For row-varying areas, use an EL expression to retrieve a row-
varying key to look up the text resource in a resource bundle, for
example:

#{viewController.ResourceBundle[row.label]}

• Messages: Review and clear as necessary any alerts related to the
configuration of the marker.

For example, you can use markers in an area data layer to display categorical groups
of data using colors as illustrated in Figure 41-33.

Figure 41-33 Marker Attribute Groups by Color

The example below shows the sample code for marker attribute groups by color.

Chapter 41
Creating Databound Thematic Maps

41-52

<dvt:thematicMap basemap="usa" id="tm1"
 <dvt:areaLayer layer="states" id="al1" labelDisplay="off">
 <dvt:areaDataLayer id="dl1" var="row" value="#{stateData.colorModel}">
 <dvt:areaLocation id="al2" name="#{row.name}">
 <dvt:marker id="m1"
 scaleX="3.0"
 scaleY="3.0"
 shape="circle">
 <dvt:attributeGroups id="ag1" type="color" value="#{row.category}"
 label="#{row.category}"/>
 </dvt:marker>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
 <dvt:legend id="l1">
 <f:facet name="separator"/>
 <dvt:legendSection id="ls1" label="Category" source="ag1"/>
 </dvt:legend>
</dvt:thematicMap>

You can also use markers to display categorical groups of data using multiple
attributes such as color and shape, and display an exception to the grouping rules
when certain conditions are met. Figure 41-34 shows a thematic map with categorical
groups using color and shape with an exception for the state of Texas.

Figure 41-34 Multiple Marker Attribute Groups with Exception Rule

The example below shows sample code for multiple marker attribute groups with
exception rule.

<dvt:thematicMap basemap="usa" id="tm2"
 <dvt:areaLayer layer="states" id="al1" labelDisplay="off">
 <dvt:areaDataLayer id="dl1" var="row" value="#{stateData.colorModel}">
 <dvt:areaLocation id="al2" name="#{row.name}">
 <dvt:marker id="m1"
 scaleX="3.0"
 scaleY="3.0"
 shape="circle">
 <dvt:attributeGroups id="ag1" type="shape color"
value="#{row.category}"
 label="#{row.category}">

Chapter 41
Creating Databound Thematic Maps

41-53

 <dvt:attributeExceptionRule id="aer1" condition="#{row.name=='TX'}"
 label="Texas">
 <f:attribute name="color" value="#ff00ff"/>
 </dvt:exceptionRule>
 </dvt:attributeGroups>
 </dvt:marker>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
 <dvt:legend id="l1">
 <f:facet name="separator"/>
 <dvt:legendSection id="ls1" label="Category" source="ag1"/>
 </dvt:legend>
</dvt:thematicMap>

What You May Need to Know About Styling Markers
Thematic maps support a predefined set of seven shapes (circle, square, and so on)
that can be specified using the shape attribute in the marker component. For custom
markers, the shapePath attribute can be used to specify the path of an SVG file that
will get displayed in place of a predefined shape.

Scalable Vector Graphics (SVG) is the supported file format for creating custom
shapes for thematic map markers.

SVG features that are not supported by custom shapes include:

• Image tags within the SVG file. Everything must be declared using SVG's vector
shapes.

• Pattern fills

• Gradients on strokes

Marker shapes can be also specified through CSS style properties in an ADF skin.
Using thematic map style properties, predefined marker shapes can be overwritten,
and the paths to SVG files for custom markers can be defined without using the
shapePath attribute. When using style properties, the shape attribute in the marker
component is used for defining both predefined and custom shapes.

A predefined shape will be overwritten if a global or component-specific style property
for that shape is specified in the ADF skin. For example, you can overwrite the
predefined circle shape by specifying the newCircle.svg file in the thematic map
component style property as follows:

af|dvt-thematicMap::shape-circle{
 -tr-path: url(/resources/path/newCircle.svg);
}

In the JSF page, the marker component shape attribute is set as follows:

<dvt:marker id="m1" shape="circle"/>

To specify a custom shape in the marker component shape attribute, you must
use a prefix of custom in the shape style property name. For example, if the
custom shape is named customName, then the ADF skin file should define either a
global .AFDVTShapeCustomName:alias style property, or the thematic map specific af|
dvt-thematicMap::shape-customName with the -tr-path property pointing to the SVG
file as follows:

Chapter 41
Creating Databound Thematic Maps

41-54

af|dvt-thematicMap::shape-customName{
 -tr-path: url(/resource/path/newCShape.svg);
}

In the JSF page, the marker component shape attribute is set as follows:

<dvt:marker id="m1" shape="customName"/>

For information about using ADF skins and style properties, see the Customizing the
Appearance Using Styles and Skins chapter in Developing Web User Interfaces with
Oracle ADF Faces.

What You May Need to Know About Default Style Values for Attribute Groups
The attributeGroups component is used to generate stylistic property values such
as colors or shapes based on categorical grouping of the data in a data collection.
Based on the attribute representing the column in the data model to group by, the
attributeGroups component can generate style values for each unique value, or
group, in the data.

The type of stylistic properties to generate values for is specified by the type attribute
of the attributeGroups component. Supported types for area components are color,
pattern, and opacity. Supported types for marker components are color, shape,
pattern, opacity, scaleX, and scaleY. These types can be combined in a space-
delimited list to generate multiple stylistic properties for each unique data value.

The default style values that are generated are defined using CSS style properties in
the ADF skin. Each attributeGroups type has a default ramp defined in the ADF skin
that can be customized by setting the index-based selectors to the desired values. The
example below show sample code for using CSS style properties to specify attribute
groups using CSS style properties.

af|dvt-attributeGroups::shape1{
 -tr-shape: square;
}
af|dvt-attributeGroups::shape2{
 -tr-shape: square;
}
...
af|dvt-attributeGroups::color1{
 -tr-fill-color: #003366;
}

The default ramps for each attribute groups type are displayed in Table 41-2.

Table 41-2 Default Ramps for Thematic Map Attribute Groups

Type Default Ramps

color j#003366 (blue), #CC3300 (red), #666699 (lavender), #0006666
(emerald), #FF9900 (orange yellow), #993366 (purple),
#99CC33 (lime green), #624390 (violet,), #669933 (green),
#FFCC33 (yellow), #006699 (turquoise blue), and #EBEA79 (pale
yellow).

shape square, circle, diamond, plus, triangleDown,
triangleUp, and human

Chapter 41
Creating Databound Thematic Maps

41-55

Table 41-2 (Cont.) Default Ramps for Thematic Map Attribute Groups

Type Default Ramps

pattern smallDiagonalLeft, smallDiagonalRight,
smallTriangle, smallChecker, smallChecker,
smallCrosshatch, smallDiamond, largeDiagonalLeft,
largeDiagonalRight, largeTriangle, largeChecker,
largeCrosshatch, largeDiamond

opacity 0.25, 0.50, 0.75, 1.0

scaleX and scaleY 1.0, 2.0, 3.0, 4.0, 5.0

For information about using ADF skins and style properties, see the Customizing the
Appearance Using Styles and Skins chapter in Developing Web User Interfaces with
Oracle ADF Faces.

How to Use Images to Display Data
As an alternative to using built-in or custom shapes to style data in a thematic map,
you can use images to represent data. Images can be associated with either an area
or point data layer.

For example, in an area data layer you can use a house image to identify prime
real estate locations on the states map layer of a US base map as illustrated in
Figure 41-35.

Figure 41-35 Thematic Map Styling Data with Images

Before you begin:

It may be helpful to have an understanding of databound thematic maps. For more
information, see Creating Databound Thematic Maps.

Chapter 41
Creating Databound Thematic Maps

41-56

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

• Create a data bound thematic map to your JSF page, as described in How to
Create a Thematic Map Using ADF Data Controls.

To use an image to display data:

1. In the Layer Browser, select the area or point data layer where you are configuring
an image to display data.

2. In the Structure window, right-click the area or point data layer child areaLocation
or pointLocation component and select insert inside dvt:areaLocation or
insert inside dvt:pointLocation > Image.

3. In the Insert Image dialog, enter the following:

• Source: Enter the URI specifying the location of the image source. You can
use the dropdown menu to choose Edit and open an Edit Property: Source
dialog or the Expression Builder to specify the location of the image source.

• ShortDesc: Enter the short description of the image used as the alt text for
screen reader users.

The example below shows a code sample for using images to display data for the
thematic map illustrated in Figure 41-35.

<dvt:thematicMap id="thematicMap" imageFormat="flash" basemap="usa"
 summary="Thematic map showing the important real estate
markets">
 <dvt:legend label="Legend">
 <dvt:legendSection source="areaLayer:dataLayer:img1"/>
 </dvt:legend>
 <dvt:areaLayer id="areaLayer" layer="states">
 <dvt:areaDataLayer id="dataLayer" contentDelivery="immediate"
 value="#{tmapBean.colorModel}"
 var="row"varStatus="rowStatus">
 <dvt:areaLocation id="dataLoc" name="#{row.name}">
 <af:image id="img1" source="/resources/images/geoMap/mansion.gif"
 rendered="#{row.category == 'category1'}"
 shortDesc="House image">
 <f:attribute name="legendLabel" value="Prime location"/>
 </af:image>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
</dvt:thematicMap>

How to Use a Marker Image Source to Display Data
You can configure a marker to use an image file to display data. Separate images can
be specified to display user selected and hover states on the thematic map. Support

Chapter 41
Creating Databound Thematic Maps

41-57

for the rotation of images is also supported when using the dvt:marker component.
For example, the thematic map in Figure 41-36 represents the locations and tracks of
airplane flights, rotating the image as it moves along the track.

Figure 41-36 Thematic Map Flight Tracker

Before you begin:

It may be helpful to have an understanding of databound thematic maps. For more
information, see Creating Databound Thematic Maps.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

• Create a data bound thematic map to your JSF page, as described in How to
Create a Thematic Map Using ADF Data Controls.

To use an marker image source to display data:

1. In the Layer Browser, select the area or point data layer where you are configuring
an image to display data.

2. In the Structure window, right-click the area or point data layer child areaLocation
or pointLocation component and select insert inside Area Location or insert
inside Point Location > Marker.

3. In the Structure window, right-click the dvt:marker component and choose Go to
Properties.

4. In the Properties window, expand the Appearance section and set the following
attributes:

• Source: Enter the URI specifying the location of the image source. You can
use the dropdown menu to choose Edit and open an Edit Property: Source
dialog or the Expression Builder to specify the location of the image resource.

Chapter 41
Creating Databound Thematic Maps

41-58

• SourceHover: Optionally enter the URI specifying the location of the image
resource on hover.

• SourceHoverSelected: Optionally enter the URI specifying the location of the
selected image resource on hover.

• SourceSelected: Optionally enter the URI specifying the location of the image
resource on selection.

• ShortDesc: Enter the short description of the image used as the alt text for
screen reader users.

5. Optionally, expand the Other section and use the Rotation attribute to specify the
marker rotation in clockwise degrees around the center of the image.

The example below shows the code sample for the thematic map flight tracker in
Figure 41-36.

<dvt:thematicMap id="thematicMap" basemap="world" animationOnDisplay="none"
 tooltipDisplay="auto"
 summary="flight tracker demo">
 <dvt:areaLayer id="al1" layer="countries">
 <dvt:pointDataLayer id="pdl1" contentDelivery="immediate"
 value="#{flightTrackerBean.flights}"
 selectionListener="#{flightTrackerBean.processSelection}"
 var="row"
 varStatus="rowStatus"
 selectionMode="multiple" partialTriggers="::::sbcb1"
 selectedRowKeys="#{flightTrackerBean.selectedKeys}">
 <dvt:pointLocation id="pl1" type="pointXY" pointX="#{row.currentLongLat.x}"
 pointY="#{row.currentLongLat.y}">
 <dvt:marker id="m1" labelPosition="bottom" scaleX="3" scaleY="3"
 rotation="#{row.rotation}"
 shortDesc="OracleAir#{row.flightNumber}"#{row.flightNumber}"
 sourceHover="/resources/images/thematicMap/planeHover.png"
 source="/resources/images/thematicMap/plane.png"
 sourceSelected="/resources/images/thematicMap/planeSel.png"
 sourceHoverSelected="/resources/images/thematicMap/
 planeHoverSel.png"
 labelDisplay="#{flightTrackerBean.showFlightNo ? 'on' :
'off'}"
 value="Flight #{row.flightNumber}"/>
 </dvt:pointLocation>
 </dvt:pointDataLayer>
 </dvt:areaLayer>
</dvt:thematicMap>

What You May Need to Know About Base Map Location Ids
Each base map provided for the thematic map component has two or more prebuilt
map layers that represent a set of regions. For example, the world base map
includes a map layer for continents and another layer for countries. The regions
in the lower level map layers are aggregated to make up the next level in the
geographical hierarchy. The map layer is specified in the layer attribute of the
areaLayer component.

When you are binding your data collection to a thematic map, you must provide a
column in the data model that specifies the location of the area or point data using
the map location Ids of the regions from the base map for which the data is being
displayed. Area locations are specified in the name attribute of the areaLocation

Chapter 41
Creating Databound Thematic Maps

41-59

component, and point locations are specified in the pointName attribute for the
pointLocation component when its type attribute is set to pointName.

For the United States base map, the locations Ids are determined by the following
naming rules:

• country layer: USA

• states layer: Use the two-letter postal abbreviation. For example, the location Id
for Massachusetts is MA, and the location Id for Texas is TX.

• counties layer: Use the states layer location Id, followed by an underscore,
and then the name of the county, all in capital letters with underscores replacing
characters that are not letters. For example, the location Id for Middlesex county in
Massachusetts is MA_MIDDLESEX, and the location Id for Red River county in Texas
is TX_RED_RIVER.

• cities layer: Use the states layer location Id, followed by an underscore,
and then the name of the city, all in capital letters with underscores replacing
characters that are not letters. For example, the location Id for the id for Boston,
Massachusetts is MA_BOSTON, and the location Id for San Antonio, Texas is
TX_SAN_ANTONIO.

For all other base maps, location Ids are determined by the following naming rules:

• continents layer: AF (Africa), AS (Asia), AU (Australia), EU (Europe), NA (North
America), and SA (South America) for the world, africa, asia, australia, europe,
northAmerica, and southAmerica base maps.

• worldRegions layers: APAC (Asia-Pacific), EMEA (Europe and the Middle East), LAT
(Latin America), NA (United States and Canada) for the worldRegions, apac, emea,
latinAmerica, and usaAndCanada base maps.

• countries layer: Use the ISO 3166-1 alpha-3 country codes. For example, the
location Id for Canada is CAN, and the location Id for China is CHN.

• cities layer: Use the three-letter countries location ID, followed by an
underscore, and then the name of the city, all in capital letters with underscores
replacing characters that are not letters. For example, the location Id for Toronto,
Canada is CAN_TORONTO, and the location Id for Los Angeles, United States is
USA_LOS_ANGELES.

You can download a comma-separated value (CSV) file for each of the prebuilt
map layers with a complete listing of all the thematic map base map location Ids.
Find these links in the tag documentation for the areaLocation component, name
attribute. To access tag documentation for the data visualization components, select
the component in the Structure window and click the help button in the Properties
window.

What You May Need to Know About Configuring Master-Detail
Relationships

You can configure a thematic map to display its associated data in another UI
component on the page such as a table. In this configuration the data collection for the
thematic map is a master in a master-detail relationship with a detail view in another
UI component. Figure 41-37 shows a thematic map displaying unemployment rates
by state. Users can select one or multiple states to display the data detail view in the
table.

Chapter 41
Creating Databound Thematic Maps

41-60

Figure 41-37 Thematic Map Master and Detail Table View

The following requirements must be met to achieve this master-detail processing
declaratively:

• You must use the same data collection to provide data for both views as follows:

– Bind the thematic map areaDataLayer or pointDataLayer to the data
collection whose attributes represent the data to be styled by areas or markers
in the thematic map layer.

– Bind the other ADF component (such as a table) to same data collection.

• Select Set the current row for master-detail in the Create Data Layer dialog to
automatically set a value for the selectionListener attribute of the thematic map
areaLayer component and use the processSelection method that is already part
of the thematic map binding.

For example, if the value attribute of the thematic map area data layer component
is value="#{stateData.employmentData}", then the selectionListener attribute
is set to:

selectionListener="#{stateData.employmentData.processSelection}".

• Ensure that the selectionMode attribute on the areaDataLayer or pointDataLayer
component is set to single or multiple, depending on the requirements for the
thematic map.

How to Define a Custom Map Layer
You can define a custom map layer from your own regional data and insert it into
the natural geographical hierarchy of a thematic map. The custom layer is created by
extending a predefined map layer and aggregating the lower level regions to form the
new regions in the custom layer. After defining a custom map layer, it is used in the
same way as any other map layer.

For example, you could define geographical regions for the NorthEast, Midwest, West
and South in the United States in a US Regions custom map layer as illustrated

Chapter 41
Creating Databound Thematic Maps

41-61

in Figure 41-38. In the figure, the US Regions custom layer is extended from the
states layer in the US base map. The new areas in the layer are aggregated from the
states in the states layer. The label for the South US Region lists the states in that
region. The MidWest US Region is drilled down to display the sales categories in the
lower level counties region. For more information about drilling, see How to Configure
Drilling in Thematic Maps.

Figure 41-38 US Regions Custom Map Layer

The customAreaLayer component uses a model to access the data in the underlying
list. The specific model class is oracle.adf.view.rich.model.CollectionModel. You
can also use other model instances, for example, java.util.List, java.util.Array,
and javax.faces.model.DataModel. The customAreaLayer will automatically convert
the instance into a CollectionModel.

Before you begin:

It may be helpful to have an understanding of how thematic map attributes and
thematic map child tags can affect functionality. For more information, see the
Configuring Thematic Maps section in Developing Web User Interfaces with Oracle
ADF Faces.

You should already have an ADF data control or ADF managed bean that defines the
aggregated areas in the predefined base map you are extending.

You should already have a thematic map on your page. If you do not, follow the
instructions in this chapter to create a thematic map. For more information, see How to
Create a Thematic Map Using ADF Data Controls.

How to add and configure a custom map layer:

Chapter 41
Creating Databound Thematic Maps

41-62

1. Select the thematic map in the Visual Editor.

2. In the Layer Browser, from the Add icon dropdown list, choose Add Custom
Layer. If the Layer Browser is not open in the Visual Editor, right-click in the map
and choose Open Layer Browser.

3. In the Create Custom Layer dialog, enter the following:

• Bind Data Now: Select and click Browse to open the Picker dialog > Data
Controls Definitions page. Select the data collection in the ADF data controls
you are using to data bind your custom layer and areas.

Note:

Alternatively, you can use the Expression Builder page to select an
ADF managed bean you are using to data bind your custom layer
and areas. You can also use the Expression Builder dialog in each
remaining field.

• Layer Id: Enter a unique identifier for the customAreaLayer component. For
example, if you divide the US into aggregate regions (Northeast, Midwest,
West, and South), then you might define them with corresponding Ids (NE,
MW, W, and S).

• Extends: Use the search icon to display the built-in map layers that can be
used to aggregate areas for the custom layer. Select the map layer that the
custom layer will extend.

• Area List: Use the dropdown list to select the data collection attribute
representing the list of lower level map regions that are used to aggregate the
areas in the custom map layer. The comma separated list of values aggregate
the regions in the may layer defined in the in the Extends attribute.

• Area Id: Use the dropdown list to select the data collection attribute
representing the unique identifier of lower level map regions that are used
to aggregate the areas in the custom map layer. By default, a unique identifier,
ca1, ca2, and so on, is used in the for the customArea component.

• Area Label: Use the dropdown list to select the data collection attribute
representing the names of lower level map regions that are used to aggregate
the areas in the custom map layer. At runtime the label will display the comma
separated list of the aggregated regions.

Figure 41-39 shows the completed Create Custom Layer dialog.

Chapter 41
Creating Databound Thematic Maps

41-63

Figure 41-39 Create Custom Layer Dialog

Figure 41-40 shows the Layer Browser after defining a custom layer. In the layer
structure, the custom layer cal1 is referenced in the map layer al1, where you add
area or point data layers to display data. For more information, see How to Add Data
Layers to Thematic Maps.

Figure 41-40 Custom Map Layer in Layer Browser

The example below shows the code inserted in the JSF page

<dvt:thematicMap>
...
 <dvt:areaLayer layer="states" id="al1"/>
 <dvt:areaLayer layer="cal1" id="al3"/>
 <dvt:customAreaLayer id="cal1"
 value="#{bindings.TmapStatesView.collectionModel}"
 var="row"
 extendsLayer="states">
 <dvt:customArea areaId="#{row.RowID}" areaList="#{row.RowID}"
 label="#{row.RowID}" id="ca1"/>
 </dvt:customAreaLayer>
...
 </dvt:thematicMap>

After configuring and adding a custom layer to the map layer hierarchy, you can then
use the map layer in the same way as any other map layer. For example, to create the
thematic map illustrated in Figure 41-38, you will need to do the following:

• Configure the thematic map to support drilling. For more information, see How to
Configure Drilling in Thematic Maps.

Chapter 41
Creating Databound Thematic Maps

41-64

Note:

If drilling is enabled for the thematic map, drilling between a custom
layer and the map layer used to aggregate the custom layer is available
without configuring data display for either layer.

• Add and configure an area data layer for the county data view. For more
information, see How to Add Data Layers to Thematic Maps.

• Add and style area components to display the related data for each map layer. For
more information, see Styling Areas, Markers, and Images to Display Data.

• Configure the thematic map legend. For more information, see Creating
Databound Legends.

The example below shows sample code for using a custom layer in a thematic map.

<dvt:thematicMap id="thematicMap" imageFormat="flash" basemap="usa" drilling="on"
 maintainDrill="true"
 controlPanelBehavior="initExpanded" summary="US Custom Regions">
 <dvt:customAreaLayer id="crl1" value="#{tmapRegions.collectionModel}" var="row"
 varStatus="rowStatus"
 extendsLayer="states">
 <dvt:customArea areaId="#{row.name}" label="#{row.name}"
 areaList="#{row.regions}" id="ca1"/>
 </dvt:customAreaLayer>
 <dvt:areaLayer id="custom" layer="crl1">
 <dvt:areaDataLayer contentDelivery="immediate"
 value="#{tmapRegions.collectionModel}"
 selectionMode="single"
 var="row" varStatus="rowStatus" id="adl1">
 <dvt:areaLocation name="#{row.name}" id="al1">
 <dvt:area fillColor="#{row.color}" shortDesc="#{row.regions}"
 id="a1" value="#{row.name}"/>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
 <dvt:areaLayer id="areaLayerS" layer="states"
 <dvt:areaDataLayer id="dataLayerS" selectionMode="multiple"
 contentDelivery="immediate"
 value="#{tmapStates.collectionModel}" var="row"
 varStatus="rowStatus">
 <dvt:areaLocation id="areaLocS" name="#{row.name}">
 <dvt:area id="area1S" fillColor="#{row.color}"></dvt:area>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
 <dvt:areaLayer id="areaLayer" layer="counties">
 <dvt:areaDataLayer id="dataLayer" selectionMode="single"
 contentDelivery="immediate"
 value="#{tmapCounty.collectionModel}" var="row"
 varStatus="rowStatus">
 <dvt:areaLocation id="areaLoc" name="#{row.name}">
 <dvt:area id="area1" fillColor="#{row.color}"
 value="#{row.category}"></dvt:area>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
 <dvt:legend label="Sales Regions" id="l1">

Chapter 41
Creating Databound Thematic Maps

41-65

 <dvt:legendSection source="custom:adl1:a1" id="ls1"/>
 <dvt:legendSection label="Counties" source="areaLayer:dataLayer:areaLoc"
 id="ls3"/>
 </dvt:legend>
</dvt:thematicMap>

How to Configure Drilling in Thematic Maps
A thematic map with related data views in different map layers can be configured for
drilling between the higher and lower level data views. For example, a thematic map
can display data for sales category by USA state drilled down to USA county data as
illustrated in Figure 41-38. When a state or county is selected, drilling up or down is
initiated through a context menu choice or the Control Panel.

The following requirements must be met to achieve thematic map area drilling
declaratively:

• For each map layer (areaLayer) in the drilling hierarchy, you must bind its child
areaDataLayer with a data control that defines the related data for that map layer.

• Each areaDataLayer in the map layer drill hierarchy must have its selectionMode
attribute set to single or multiple.

• You must configure the area in the lower level map layer drill hierarchy to display
data using the same default stamp or categorical attribute style used in the higher
level map layer area component.

• The thematicMap component drilling attribute must be set to on.

Note:

If drilling is enabled for the thematic map, drilling between a custom layer
and the map layer used to aggregate the custom layer is available.

Before you begin:

It may be helpful to have an understanding of how thematic map attributes and
thematic map child tags can affect functionality. For more information, see the
Configuring Thematic Maps section in Developing Web User Interfaces with Oracle
ADF Faces.

You should already have a thematic map on your page. If you do not, follow the
instructions in this chapter to create a thematic map. For more information, see How to
Create a Thematic Map Using ADF Data Controls.

You should already have data controls that define the data model for each of the map
layers in the drill hierarchy.

To configure a thematic map area for drilling:

1. In the Structure window, select the dvt:thematicMap component.

2. In the Properties window, expand the Behavior section. Use this section to set the
following attributes:

Chapter 41
Creating Databound Thematic Maps

41-66

• Drilling: Use to enable drilling the area data view between thematic map
layers. From the dropdown list select on to enable drilling. The default value is
off.

• MaintainDrill: Optionally, use to specify an optional true value for maintaining
the drilled state of a previously drilled area when a new area is drilled. The
default value is false.

• DrillBehavior: Optionally, use to specify an optional zoomToFit effect on the
area being drilled. The default value is none.

3. In the Layer Browser, select each Area Layer component in the desired drilling
hierarchy and do the following:

• Click the Add icon and choose Add Data Layer to open the Create Data
Layer dialog. Complete the dialog to add an area data layer and bind the data
layer to the data control for that map layer. If you need help, press F1 or click
Help.

Note:

If the Area Data Layer is already present, click the Edit icon to
confirm binding to the data control.

• In the Properties window, expand the Behavior section and set the
SelectionMode attribute to single or multiple.

4. In the Layer Browser, select each Area Data Layer component in the desired
drilling hierarchy and do the following:

• Click the Add icon and choose Add Area to open the Configure Area dialog.
Complete the dialog to define a default stamp or use attribute groups to style
the area for that map layer. If you need help, press F1 or click Help.

Note:

If the Area is already present, click the Edit icon to confirm the
styling of the area.

Figure 41-40 shows sample code for drilling enabled for USA states and counties map
layers with an area styled to display data about sales categories.

<dvt:thematicMap id="thematicMap"
 basemap="usa"
 drilling="on"
 maintainDrill="true"
 drillBehavior="zoomToFit"
 animationOnDisplay="none"
 <dvt:areaLayer id="al1" layer="states">
 <dvt:areaDataLayer id="adl1"
 selectionMode="single"
 contentDeliver="immediate"
 value="#{row.state}"
 var="row"
 var="rowStatus">
 <dvt:areaLocation id="areaLocS" name="#{row.stname}">

Chapter 41
Creating Databound Thematic Maps

41-67

 <dvt:area id="a1" fillColor="#{row.state}"/>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
 <dvt:areaLayer id="al2" layer="counties">
 <dvt:areaDataLayer id="adl2"
 selectionMode="single"
 contentDelivery="immediate"
 value="#{row.county}"
 var="row"
 varStatus="rowStatus">
 <dvt:areaLocation id="areaLocC" name="#{row.coname}">
 <dvt:area id="a2" fillColor="#{row.county}"/>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
...
</dvt:thematicMap>

Creating Databound Legends
Legends provide an explanatory table of the thematic map's styled data in symbol
and label pairs. Thematic map legend components (legend) support symbols for
color, shape, custom shape, fill pattern, opacity, images and size. One or more
child legend item components (legendSection) are sourced from thematic map
area, marker, attributeGroups, or af:image components stamped to style the data
displayed in the map. The legend section structure supports control over content
ordering and appearance. You can wrap legend items into a disclosable section using
a showLegendSection component. Figure 41-41 shows a legend with a disclosable
section for map areas and a marker.

Figure 41-41 Legend with Disclosable Section and Marker

Legend items sourced from the attributeGroups component automatically split area
or marker attribute types into different sections. You can specify a separator facet to
draw separators between legend sections. Figure 41-42 shows a legend with attribute
groups for color, shape, fill pattern, opacity, and size with separators between each
section.

Chapter 41
Creating Databound Thematic Maps

41-68

Figure 41-42 Legend with Attribute Groups

Legends can be displayed in both Flash (default) and PNG image formats and both
formats support locales with right-to-left display. When rendered in a PNG format, for
example when printing the thematic map, disclosable sections in the legend are not
supported, and legend items display as disclosed.

When you create a thematic map using the Data Controls panel and the thematic map
binding dialogs, the legend data bindings are created for you. If you configure an area
or marker as a default stamp across all areas in the thematic map, you can assign a
static text resource to a fixed area or marker for the legend.

For default stamps displaying row-varying data, you can use an EL expression to
assign the legend text and optionally, a managed bean to retrieve a row-varying key
to look up the text resource in a resource bundle. The example below shows a code
sample to generate legend entries for area and marker stamps. The code illustrates
a disclosable section for a row-varying area and a fixed marker with an assigned text
resource.

<dvt:thematicMap id="tm1" basemap="usa" ...>
 <dvt:legend label=“Legend“>
 <dvt:showLegendGroupLabel label="Voting Majority">
 <dvt:legendSection id="ls1" source="al1:adl1:areaStamp“/>
 </dvt:showLegendGroupLabel>
 <dvt:legendSection id="ls2" source="al1:adl1:fixedMarker">
 </dvt:legend>
 <dvt:areaLayer id="al1" layer="states">
 <dvt:areaDataLayer id="adl1"...>
 <dvt:areaLocation id="aloc1" ,,,>
 <dvt:area id="areaStamp">
 fillColor="#{row.value > 50 ? tmapLegendBean,color1 :
 tmapLegendBean.color2}"
 <f:attribute name="legendLabel" value="#{row.value > 50 ?

Chapter 41
Creating Databound Thematic Maps

41-69

 'Candidate 2' : 'Candidate 1'}" />
 <dvt:marker id=“fixedMarker“ shape=“human" fillColor=“"#FF9900"
 scaleX="3" scaleY="3">
 <f:attribute name="legendLabel“
 value="#{Bundle.Office_Locations}"/>
 </dvt:marker>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:area>
</dvt:thematicMap>

If you configure an area or marker to use an attributes group to specify the styling of
categorical groups of data in a data collection, you can use an EL expression to assign
the legend text and optionally, a managed bean to retrieve a row-varying key to look
up the text resource in a resource bundle.

If you specify a match rule for the attributes group, the legend text is specified in the
group attribute. If you specify an exception rule, you can specify a text resource from
the application resource bundle. The example below shows sample code for a legend
with attribute groups, including both a match rule and an exception rule, and specifying
a separator between legend sections.

<dvt:thematicMap id="tm1" basemap="usa" ...>
 <dvt:legend id="l1" label="Legend">
 <f:facet name="separator"
 <af:separator/>
 <dvt:legendSection id="ls1" source="al1:adl1:attributeGroupColor" />
 <dvt:legendSection id="ls2" source="al1:adl1:attributeGroupShape" />
 <dvt:legendSection id="ls3" source="al1:adl1:attributeGroupPattern" />
 <dvt:legendSection id="ls4" source="al1:adl1:attributeGroupOpacity" />>
 </dvt:legend>
 <dvt:areaLayer id="al1" layer="states">
 <dvt:areaDataLayer id="adl1" value=" " var=" " ...>
 <dvt:areaLocation id="dataLoc" name="#{row.name}">
 <dvt:marker id="m1"... >
 <dvt:attributeGroups id="attributeGroupColor" type="color"
 label="#{row.category1}" value="#{row.category1}" />
 <dvt:attributeMatchRule id="amrl" group="Mountain Dew">
 <f:attribute name="color" value="#ffff00"/>
 </dvt:attributeMatchRule>
 <dvt:attributeGroups id="attributeGroupShape" type="shape"
 label="#{row.category2}" value="#{row.category2}" />
 <dvt:attributeExceptionRule id="aer1" condition="#{row.name=='TX'}"
 label="#{viewcontroller.Texas}">
 <f:attribute name="shape" value="human"/>
 </dvt:exceptionRule>
 <dvt:attributeGroups id="attributeGroupShape" type="pattern"
 label="#{row.category3}" ... />
 <dvt:attributeGroups id="attributeGroupShape" type="opacity"
 label="#{row.category4}" ... />
 </dvt:marker>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
</dvt:thematicMap>

You configure thematic map legend areas or markers in a custom region in the same
way as any other map layer. shows sample code for a custom map layer legend.

<dvt:thematicMap>
 <dvt:legend>

Chapter 41
Creating Databound Thematic Maps

41-70

 <dvt:legendSection label=“Sales Regions" source="customAreaStamp"/>
 </dvt:legend>
 ...
 <dvt:customAreaLayer id="crl1“>
 ...
 </dvt:customAreaLayer>
 <dvt:areaLayer layer="crl1">
 <dvt:areaDataLayer var="row">
 <dvt:areaLocation name="#{row.name}" id="al1">
 <dvt:area id=“customAreaStamp" fillColor="#{row.color}“>
 <f:attribute name="legendLabel“ value=“#{row.name}"/>
 </dvt:area>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
</dvt:thematicMap

You can customize the appearance of thematic map legends using ADF skins. For
more information, see the Customizing the Appearance Using Styles and Skins
chapter in Developing Web User Interfaces with Oracle ADF Faces

Chapter 41
Creating Databound Thematic Maps

41-71

42
Creating Databound Gantt Chart and
Timeline Components

This chapter describes how to create Gantt charts and timelines from data
modeled with ADF Business Components, using ADF data controls and ADF Faces
components in a Fusion web application. Specifically, it describes how you can use
ADF Data Visualization projectGantt, resourceUtilizationGantt, schedulingGantt,
and timeline components to create Gantt charts and timelines that visually represent
business data. It describes how to use ADF data controls to create these components
with data-first development.
If you are designing your page using simple UI-first development, then you can add
the Gantt chart or timeline to your page and configure the data bindings later. For
information about the data requirements, tag structure, and options for customizing the
look and behavior of the Gantt chart and timeline components, see the Using Gantt
Chart Components and Using Timeline Components chapters in Developing Web User
Interfaces with Oracle ADF Faces.

This chapter includes the following sections:

• About ADF Data Visualization Components

• Creating Databound Gantt Charts

• Creating Databound Timelines

About ADF Data Visualization Components
ADF Data Visualization components provide extensive graphical and tabular
capabilities for visually displaying and analyzing business data. Each component
needs to be bound to data before it can be rendered since the appearance of the
component is dictated by the data that is displayed.

There are three types of ADF Gantt chart components; a project Gantt chart used for
project management, a scheduling Gantt chart used for resource scheduling, and a
resource utilization Gantt chart used for displaying resource metrics. All Gantt charts
display two regions combined with a splitter. The list region displays a list of tasks
or resources, and the chart region displays task progress, resource utilization, or
resource progress graphed over time.

The ADF timeline is an interactive data visualization tool that allows users to view
events in chronological order and easily navigate forwards and backwards within
a defined time range. Events are represented as timeline items using simple ADF
components to display information such as text and images, or supply actions such
a links. A dual timeline can be configured to display two series of events to allow a
side-by-side comparison of related information.

The prefix dvt: occurs at the beginning of each data visualization component name
indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag
library.

42-1

Data Visualization Components Use Cases and Examples
For detailed descriptions of each data visualization use cases and examples, see the
following:

• Gantt chart components: Gantt Chart Component Use Cases and Examples
section in Developing Web User Interfaces with Oracle ADF Faces.

• Timeline components: Timeline Use Cases and Examples section in Developing
Web User Interfaces with Oracle ADF Faces.

End User and Presentation Features
Visually compelling data visualization components enable end users to understand
and analyze complex business data. The components are rich in features that provide
out-of-the-box interactivity support. For detailed descriptions of the end user and
presentation features for each component, see the following:

• Gantt chart components: End User and Presentation Features section in
Developing Web User Interfaces with Oracle ADF Faces.

• Timeline components: End User and Presentation Features section in Developing
Web User Interfaces with Oracle ADF Faces.

Additional Functionality for Data Visualization Components
You may find it helpful to understand other Oracle ADF features before you data
bind your data visualization components. Additionally, once you have added a data
visualization component to your page, you may find that you need to add functionality
such as validation and accessibility. Following are links to other functionality that data
visualization components use:

• Partial page rendering: You may want a data visualization component to refresh to
show new data based on an action taken on another component on the page. For
more information, see the Rerendering Partial Page Content chapter in Developing
Web User Interfaces with Oracle ADF Faces.

• Personalization: Users can change the way the data visualization components
display at runtime, those values will not be retained once the user leaves the
page unless you configure your application to allow user customization. For
more information, see the Allowing User Customization on JSF Pages chapter
in Developing Web User Interfaces with Oracle ADF Faces.

• Accessibility: By default, data visualization components are accessible. You can
make your application pages available to screen readers. For more information,
see the Developing Accessible ADF Faces Pages chapter in Developing Web
User Interfaces with Oracle ADF Faces.

• Skins and styles: You can customize the appearance of data visualization
components using an ADF skin that you apply to the application or by applying
CSS style properties directly using a style-related property (styleClass or
inlineStyle). For more information, see the Customizing the Appearance Using
Styles and Skins chapter in Developing Web User Interfaces with Oracle ADF
Faces.

• Placeholder data controls: If you know the data visualization components on your
page will eventually use ADF data binding, but you need to develop the pages

Chapter 42
About ADF Data Visualization Components

42-2

before the data controls are ready, then you should consider using placeholder
data controls, rather than manually binding the components. Using placeholder
data controls will provide the same declarative development experience as using
developed data controls. For more information, see Designing a Page Using
Placeholder Data Controls.

Creating Databound Gantt Charts
A Gantt chart is a type of bar chart displayed on the horizontal axis. It is used in
planning and tracking projects to show tasks or resources in a time frame with a
distinct beginning and end.

When you create a Gantt chart, you can choose from the following types:

• Project

A project Gantt chart lists tasks vertically and shows the duration of each task as a
bar on a horizontal time line.

• Resource Utilization

A resource utilization Gantt chart shows graphically whether resources are over or
under allocated. It shows resources vertically while showing their allocation and,
optionally, capacity on the horizontal time axis.

• Scheduling

A scheduling Gantt chart is based on manual scheduling boards and shows
resources vertically with corresponding activities on the horizontal time axis.
Examples of resources include people, machines, or rooms.

How to Create a Databound Project Gantt Chart
For a project Gantt chart, you must specify values for tasks. Optionally, you can
specify values for split tasks, subtasks, recurring tasks, and dependencies between
tasks, if your data collection has accessors for this additional information.

The project Gantt chart is displayed with default values for overall start time and end
time and for the major and minor time axis values. In a project Gantt chart, the setting
for the major time axis defaults to weeks and the setting for the minor time axis
defaults to days.

Figure 42-1 shows a project Gantt chart in which each task is an order to be filled. The
list region on the left side of the splitter shows columns with the name of the person
responsible for the order and columns for the order date and ship date. In the chart
region on the right side of the splitter, the Gantt chart displays a horizontal bar from the
order date to the ship date for each order.

Chapter 42
Creating Databound Gantt Charts

42-3

Figure 42-1 Project Gantt Chart for Orders Shipped

To create a project Gantt chart using a data control, bind the project Gantt chart
component to a data collection. JDeveloper allows you to do this declaratively by
dragging and dropping a collection from the Data Controls panel.

Tip:

You can also create a project Gantt chart by dragging a project Gantt
chart component from the Components window and completing the Create
Project Gantt dialog. This approach allows you to design the Gantt chart user
interface before binding the component to data.

Before you begin:

It may be helpful to have an understanding of databound Gantt charts. For more
information, see Creating Databound Gantt Charts.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects
that you want in your data model, as described in Creating and Modifying an
Application Module.

For example, the data source for the project Gantt chart in Figure 42-1 comes from
a view object representing shipping orders including their shipping and delivery
dates, in the Summit sample application for ADF DVT components.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a project Gantt chart using the Data Controls panel:

Chapter 42
Creating Databound Gantt Charts

42-4

1. From the Data Controls panel, select a data collection. Select a row set collection
that produces a flat list of tasks, or a basic tree collection that produces a
hierarchical list of tasks.

Figure 42-2 shows an example where you could select the OrderEmployee1
collection in the Data Controls panel to create a project Gantt chart that displays
the progress of order shipping.

Figure 42-2 Data Collection for Shipping Orders

2. Drag the collection onto a JSF page and, from the context menu, choose Gantt >
Project.

3. In the Create Project Gantt dialog, in the Tasks page, select the columns in the
data collection that correspond to the following attributes:

• Task Id: The unique Id for the tasks represented in the Gantt chart.

• Start Time: The starting time of the task.

• End Time: The ending time of the task.

• Task Type: The type used to specify the appearance of the task bar when it
is rendered in the Gantt chart. If you do not bind the type to a column in your
data collection, then all tasks default to Normal. Task types include:

– Normal: The basic task type, a plain horizontal bar that shows the start
time, end time, and duration of the task.

– Summary: Shows start time and end time for a group of tasks, typically
subtasks. A summary task cannot be moved or extended. However, your
application should recalculate the summary task times when the dates of
any subtask changes.

– Milestone: Shows a specific date in the Gantt chart. There is only
one date associated with a milestone task. A milestone task cannot be
extended but it can be moved.

4. Click Show More to select additional columns in the data collection that
correspond to the following attributes for the specified task type:

• Actual Start and Actual End: When these attributes are specified, instead of
drawing one bar, two bars are drawn. One bar indicates the base start and end
date, the other bar indicates the actual start and end date. This is applicable to
normal and milestone task types.

• % Complete: When specified, an additional inner bar is drawn to indicate the
percentage complete for the task.

• Completed Through: Allows you to specify a date rather than a percentage.
When specified, an additional inner bar is drawn to indicate the percentage
complete based on the date that the attribute references.

Chapter 42
Creating Databound Gantt Charts

42-5

• Critical: Changes the color of the bar to red to mark it as critical. This is
applicable to normal, summary, and milestone task types.

• Edits Allowed: Boolean value to specify if the task start date, end date, or
duration is supported in the chart region.

• Is Container: Boolean value to specify if the node definition is a container.

5. If the data collection has an accessor for subtasks, use the Subtasks page to
select the Subtasks Accessor from the dropdown list, and then the columns in
the data collection that correspond to the following attributes:

• Subtask ID: The unique Id for the list of subtasks in the data collection.

• Start Time: The starting time of the subtask.

• End Time: The ending time of the subtask.

• Subtask Type: The type used to specify the appearance of the subtask bar
when it is rendered in the Gantt chart. If you do not bind the type to a column
in your data collection, then all tasks default to Normal. Task types include:

– Normal: The basic task type, a plain horizontal bar that shows the start
time, end time, and duration of the task.

– Summary: Shows start time and end time for a group of tasks, typically
subtasks. A summary task cannot be moved or extended. However, your
application should recalculate the summary task times when the dates of
any subtask changes.

– Milestone: Shows a specific date in the Gantt chart. There is only
one date associated with a milestone task. A milestone task cannot be
extended but it can be moved.

If you do not bind subtasks, then the Gantt chart cannot render a hierarchy view
of tasks. If you bind subtasks, you can drill from tasks to subtasks in the hierarchy
view of the Gantt chart.

6. If the data collection has an accessor for dependent tasks, use the Dependent
Tasks page to select the Dependent Task accessor from the dropdown list, and
then the columns in the data collection that correspond to the following attributes:

• Dependency Type: Specifies the type of the dependency. Valid values are
start-start, start-finish, finish-finish, finish-start, start-before,
start-together, finish-after, and finish-together.

• From Task Id: Specifies the first task in the dependent relationship.

• To Task Id: Specifies the last task in the dependent relationship.

7. If the data collection has an accessor for split tasks, use the Split Tasks page to
select the Split Task accessor from the dropdown list, and then the columns in the
data collection that correspond to the following attributes:

• Split Task Id: The unique Id for a task split into two horizontal bars, usually
linked by a line. The time between the bars represents idle time due to
traveling or down time.

• Start Time: The starting time of the split task.

• End Time: The ending time of the split task.

8. If the data collection has an accessor for recurring tasks, use the Recurring
Tasks page to select the Recurring Tasks accessor from the dropdown list, and
then the columns in the data collection that correspond to the following attributes:

Chapter 42
Creating Databound Gantt Charts

42-6

• Recurring Task Id: A unique Id for a task repeated in a Gantt chart, each
instance with its own start and end date. Individual recurring tasks can
optionally contain a subtype. All other properties of the individual recurring
tasks come from the task which they are part of. However, if an individual
recurring task has a subtype, this subtype overrides the task type.

• Type: Specifies the type of the recurring task.

• Start Time: The starting time of the recurring task.

• End Time: The ending time of the recurring task.

9. In the Appearance page, specify the attributes that correspond to the Label of the
task bar, and up to three icons to associate with the task bar.

10. In the Table Columns section, specify the columns to display for each row in the
list region of the Gantt chart. Use the New icon to add new rows, the Delete icon
to remove rows, and the arrow icons to arrange the rows in the sequence that you
want the columns to appear in the Gantt chart list.

Note:

The first row that you specify in the Table Columns section designates
the nodestamp column for the list region. If you specify a subtask
accessor, this row is used as the parent in a hierarchical relationship
that can be expanded or collapsed.

For each row, specify the following:

• Display Label: Select the values for the headers of the columns in the Gantt
chart list. If you select <default>, the text for the header is automatically
retrieved from the data binding.

• Value Binding: Select the columns in the data collection to use for the
columns in the Gantt chart list. The available values are the same as those
for the tasks group.

• Component to Use: Select the type of component to display in the cell of the
Gantt chart list. You can specify that a cell is editable by using an ADF input
component. The default is the ADF Output Text component.

11. Click OK.

Figure 42-3 shows the dialog used to create the project Gantt chart in Figure 42-1
from the data collection for shipping orders.

Chapter 42
Creating Databound Gantt Charts

42-7

Figure 42-3 Create Project Gantt Dialog for Orders Shipped

12. In the Structure window, right-click the dvt:projectGantt component and select
Go to Properties.

13. In the Properties window, expand the Common section, and specify the dates
(yyyy-mm-dd) for the StartTime and EndTime attributes representing the start and
end dates respectively for the time period of the Gantt chart data.

The dates that you specify determine the initial view that appears in the project
Gantt chart at runtime.

14. If you want to include a legend in the Gantt chart, right-click the project Gantt chart
node in the Structure window and choose Insert Inside Project Gantt > Legend.

The legend shows information about each symbol and color coded bar used to
represent different task types. It also shows detailed information about the task
selected in the Gantt chart.

After creating the project Gantt chart, use the Properties window to specify values for
additional attributes. For detailed information about Gantt chart use cases, end user
and presentation features, tag structure, and adding special features to Gantt charts,
see the Using Gantt Chart Components chapter in Developing Web User Interfaces
with Oracle ADF Faces.

What Happens When You Create a Project Gantt Chart from a Data
Control

Dragging and dropping a view object from the Data Controls panel to create a project
Gantt chart has the following effect:

Chapter 42
Creating Databound Gantt Charts

42-8

• Creates the bindings for the Gantt chart and adds the bindings to the page
definition file

• Adds the necessary code for the UI components to the JSF page

The example below displays the row set bindings generated for the project Gantt chart
in Figure 42-1 to display shipped orders. This code example shows the node defined
for tasks with attributes for task Id, start date, and end dates. There are also nodes
defined for subtasks, dependent tasks, split tasks, and recurring tasks with no defined
attributes.

<bindings>
 <gantt IterBinding="OrderEmployee1Iterator" id="OrderEmployee1"
 xmlns="http://xmlns.oracle.com/adfm/dvt"> <ganttDataMap>
<nodeDefinition DefName="model.OrderEmployee" type="Tasks"> <AttrNames>
 <Item Value="TaskId" type="taskId"/>
 <Item Value="StartDate" type="startTime"/>
 <Item Value="EndDate" type="endTime"/>
 <Item Value="TaskType" type="taskType"/>
 </AttrNames>
 </nodeDefinition>
 <nodeDefinition type="subTasks">
 <AttrNames/>
 </nodeDefinition>
 <nodeDefinition type="Dependents">
 <AttrNames/>
 </nodeDefinition>
 <nodeDefinition type="SplitTasks">
 <AttrNames/>
 </nodeDefinition>
 <nodeDefinition type="RecurringTasks">
 <AttrNames/>
 </nodeDefinition>
 </ganttDataMap>
 </gantt>
</bindings>

The example below shows the code generated on the JSF page for the project Gantt
chart. This tag code contains settings for the overall start and end time for the project
Gantt chart. It also shows the default time axis settings for the major axis in weeks and
the minor axis in days. Finally, it lists the specifications for each column that appears in
the list region of the Gantt chart.

<dvt:projectGantt id="gantt1"
value="#{bindings.OrderEmployee1.projectGanttModel}"
 dataChangeListener="#{bindings.OrderEmployee1.projectGanttModel
 .processDataChanged}"
 var="row"
 startTime="2012-03-31" endTime="2012-06-30">
 <f:facet name="major">
 <dvt:timeAxis scale="weeks" id="ta1"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="days" id="ta2"/>
 </f:facet>
 <f:facet name="nodeStamp">
 <af:column
 sortProperty="#{bindings.OrderEmployee1.hints.FirstName.name}"
 sortable="false"
 headerText="#{bindings.OrderEmployee1.hints.FirstName.label}"
 id="c1">

Chapter 42
Creating Databound Gantt Charts

42-9

 <af:outputText value="#{row.FirstName}" id="ot1"/>
 </af:column>
 </f:facet>
 <af:column sortProperty="LastName" sortable="false"
 headerText="#{bindings.OrderEmployee1.hints.LastName.label}">
 <af:outputText value="#{row.LastName}"/>
 </af:column>
 <af:column sortProperty="OrderDate" sortable="false"
 headerText="#{bindings.OrderEmployee1.hints.OrderDate.label}">
 <af:outputText value="#{row.OrderDate}">
 <af:convertDateTime
 pattern="#{bindings.OrderEmployee1.hints.OrderDate.format}"/>
 </af:outputText>
 </af:column>
 <af:column sortProperty="ShippedDate" sortable="false"
 headerText="#{bindings.OrderEmployee1.hints.ShippedDate.label}">
 <af:outputText value="#{row.ShippedDate}">
 <af:convertDateTime
 pattern="#{bindings.OrderEmployee1.hints.ShippedDate.format}"/>
 </af:outputText>
 </af:column>
 <af:column sortProperty="TaskType" sortable="false"
 headerText="#{bindings.OrderEmployee1.hints.TaskType.label}">
 <af:outputText value="#{row.TaskType}"/>
 </af:column>
 </projectGantt>

How to Create a Databound Resource Utilization Gantt Chart
For a resource utilization Gantt chart, you must supply identification for resources,
identification for time, and start and end times for resource usage. Optionally, you can
provide data values for subresources.

The resource utilization Gantt chart is displayed with default values for the major and
minor time axis values. In a resource utilization Gantt chart, the setting for the major
time axis defaults to weeks and the setting for the minor time axis defaults to days.

Figure 42-4 shows a resource utilization Gantt chart that lists each resource and an
associated calendar that can display when the resource is in use.

Figure 42-4 Resource Utilization Gantt Chart

To create a resource utilization Gantt chart using a data control, you bind the
resource utilization component to a data collection. JDeveloper allows you to do this

Chapter 42
Creating Databound Gantt Charts

42-10

declaratively by dragging a collection from the Data Controls panel and dropping it on
a JSF page.

Tip:

You can also create a resource utilization Gantt chart by dragging a
resource utilization Gantt chart component from the Components window
and completing the Create Resource Utilization Gantt dialog. This approach
gives you the option of designing the Gantt chart user interface before
binding the component to data.

Before you begin:

It may be helpful to have an understanding of databound Gantt charts. For more
information, see Creating Databound Gantt Charts.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

For example, the data source for the Gantt chart in Figure 42-4 comes from view
objects in the Summit ADF DVT sample application. Use the SalesRepViewObj1
view object representing the sales personnel with a view link to the SOrdView2
view object that includes the time bucket accessor and attributes for order and
ship dates.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a resource utilization Gantt chart using the Data Controls panel:

1. From the Data Controls panel, select a data collection. For a Gantt chart, you can
select a row set collection or a basic tree collection.

Figure 42-5 shows an example where you could select the SalesRepViewObj1
collection in the Data Controls panel to create a resource utilization Gantt chart to
display the usage of a resource.

Chapter 42
Creating Databound Gantt Charts

42-11

Figure 42-5 Data Collection for Resource Utilization Gantt Chart

2. Drag the collection onto a JSF page and, from the context menu, choose Gantt >
Resource Utilization.

3. In the Create Resource Utilization Gantt dialog, select the columns in the data
collection that correspond to the following attributes:

• Resource Id: The unique identifier of the resource, for example Id
representing the sales representatives in the view object.

• Is Container: Boolean. Specify whether or not the node definition is a
container.

4. In the Time Buckets page, select a value from the Bucket Accessor dropdown
list that contains the time buckets assigned to the resource, and select a value
from the Bucket Date dropdown list that corresponds to a unit of time.

For example, the SOrdView2 view object includes attributes representing the date
ordered and date shipped for each order assigned to a sales representative.
Figure 42-6 shows the view object used for the bucket accessor.

Figure 42-6 Resource Utilization Gantt Chart Bucket Accessor

5. In the Bucket Metrics list, specify attributes that appear as bars within the time
bucket. Use the New icon to add new rows, the Delete icon to remove rows, and
the arrow icons to arrange the rows in the sequence that you want the metrics to
appear in the Gantt chart region.

Each attribute that you specify in the Bucket Metrics list must be of type Number
as the value of the attribute is used to calculate the height of the bar.

Chapter 42
Creating Databound Gantt Charts

42-12

6. In the Table Columns section, specify the columns to display for each row in the
list region of the Gantt chart. Use the New icon to add new rows, the Delete icon
to remove rows, and the arrow icons to arrange the rows in the sequence that you
want the columns to appear in the Gantt chart list.

Note:

The first row that you specify in the Table Columns section designates
the nodestamp column for the list region. If you specify a subresource
accessor, this row displays the parent in a hierarchical relationship that
can be expanded or collapsed.

For each row, specify the following:

• Display Label: Select the values for the headers of the columns in the Gantt
chart list. If you select <default>, the text for the header is automatically
retrieved from the data binding.

• Value Binding: Select the columns in the data collection to use for the
columns in the Gantt chart list. The available values are the same as those
for the tasks group.

• Component to Use: Select the type of component to display in the cell of the
Gantt chart list. You can specify that a cell is editable by using an ADF input
component. The default is the ADF Output Text component.

7. If the data collection has an accessor for subresources, use the Subresources
page to select a Subresources accessor from the dropdown list, and then select
a unique identifier for the subresource from the Resource Id dropdown list.

8. In the Appearance page, specify the attributes that correspond to the Label of the
task bar.

9. Click OK.

Figure 42-7 shows the dialog used to create a resource utilization Gantt chart from
the data collection for resources available for a project.

Chapter 42
Creating Databound Gantt Charts

42-13

Figure 42-7 Create Resource Utilization Gantt Chart Dialog

10. In the Structure window, right-click the dvt:resourceUtilizationGantt
component and select Go to Properties.

11. In the Properties window, expand the Common section, and specify the dates
(yyyy-mm-dd) for the StartTime and EndTime attributes representing the start and
end dates respectively for the time period of the Gantt chart data.

The dates that you specify determine the initial view that appears in the resource
utilization Gantt chart at runtime.

12. If you want to include a legend in the Gantt chart, right-click the resource utilization
Gantt chart node in the Structure window and choose Insert Inside Resource
Utilization Gantt > Legend.

The legend shows information about each symbol and color coded bar used
to represent different tasks. It also shows detailed information about the task
selected in the Gantt chart.

After creating the resource utilization Gantt chart, use the Properties window to specify
values for additional attributes. For detailed information about Gantt chart use cases,
end user and presentation features, tag structure, and adding special features to
Gantt charts, see the Using Gantt Chart Components chapter in Developing Web User
Interfaces with Oracle ADF Faces.

What Happens When You Create a Resource Utilization Gantt Chart
Dragging and dropping a view object from the Data Controls panel onto a JSF page to
create a resource utilization Gantt chart has the following effects:

• Creates bindings for the resource utilization Gantt chart and adds the bindings to
the page definition file

Chapter 42
Creating Databound Gantt Charts

42-14

• Adds the necessary code for the UI components to the JSF page

The example below shows the row set bindings that were generated for the resource
utilization Gantt chart illustrated in Figure 42-7.

<bindings>
 <gantt IterBinding="SalesRepViewObj1Iterator" id="SalesRepViewObj1"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <ganttDataMap>
 <nodeDefinition DefName="model.SalesRepViewObj" type="Resources">
 <AttrNames>
 <Item Value="Id" type="resourceId"/>
 </AttrNames>
 <Accessors>
 <Item Value="SOrdView" type="timeBuckets"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition type="TimeBuckets" DefName="model.SOrdView">
 <AttrNames>
 <Item Value="DateOrderedDay" type="time"/>
 <Item type="metric" Value="Total"/>
 </AttrNames>
 </nodeDefinition>
 <nodeDefinition type="Subresources">
 <AttrNames/>
 </nodeDefinition>
 </ganttDataMap>
 </gantt>
</bindings>

The example below shows the code generated on the JSF page for the resource
utilization Gantt chart. This tag code contains settings for the overall start and end time
for the resource utilization Gantt chart. These settings have to be edited manually. The
code also shows the time axis settings for the major time axis (in weeks) and the minor
time axis (in days). Finally, it lists the specifications for each column to appear in the
list region of the resource utilization Gantt chart.

<dvt:resourceUtilizationGantt id="gantt1"
 value="#{bindings.SalesRepViewObj1.resourceUtilizationGanttModel}"
 var="row" metrics="#{bindings.SalesRepViewObj1.metrics}"
 taskbarFormatManager="#{bindings.SalesRepViewObj1.
 resourceUtilizationGanttTaskbarFormatManager}"
 startTime="2012-05-09" endTime="2013-05-15"
 summary="#{viewcontrollerBundle.RESOURCE_UTILIZATION_GANTT_CHART}">
 <f:facet name="major">
 <dvt:timeAxis scale="weeks" id="ta1"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="days" id="ta2"/>
 </f:facet>
 <f:facet name="nodeStamp">
 <af:column sortProperty="#{bindings.SalesRepViewObj1.hints.FirstName.name}"
 sortable="false"
 headerText="#{bindings.SalesRepViewObj1.hints.FirstName.label}"
 id="c1">
 <af:outputText value="#{row.FirstName}"

shortDesc="#{bindings.SalesRepViewObj1.hints.FirstName.tooltip}"
 id="ot1"/>
 </af:column>
 </f:facet>

Chapter 42
Creating Databound Gantt Charts

42-15

 <af:column sortProperty="#{bindings.SalesRepViewObj1.hints.LastName.name}"
 sortable="false"
 headerText="#{bindings.SalesRepViewObj1.hints.LastName.label}"
 id="c2">
 <af:outputText value="#{row.LastName}"

shortDesc="#{bindings.SalesRepViewObj1.hints.LastName.tooltip}"
 id="ot2"/>
 </af:column>
 <af:column sortProperty="#{bindings.SalesRepViewObj1.hints.Email.name}"
 sortable="false"
 headerText="#{bindings.SalesRepViewObj1.hints.Email.label}"
 id="c3">
 <af:outputText value="#{row.Email}"
 shortDesc="#{bindings.SalesRepViewObj1.hints.Email.tooltip}"
 id="ot3"/>
 </af:column>
</dvt:resourceUtilizationGantt>

How to Create a Databound Scheduling Gantt Chart
For a scheduling Gantt chart, you must supply identification for resources,
identification for tasks, and start and end times for tasks. Optionally, you can provide
data values for subresources, recurring tasks, split tasks, and dependencies between
tasks.

The scheduling Gantt chart is displayed with default values for overall start and end
time and for the major and minor time axis values. In a scheduling Gantt chart, the
setting for the major time axis defaults to weeks and the setting for the minor time axis
defaults to days.

Figure 42-8 shows a scheduling Gantt chart that lists each resource and all the
orders for which that resource is responsible. In contrast to a project Gantt chart,
the scheduling Gantt chart shows all the tasks for a given resource on the same line,
while the project Gantt chart lists each task on a separate line.

Figure 42-8 Scheduling Gantt Chart for Order Shipping

To create a scheduling Gantt chart using a data control, you bind the schedulingGantt
tag to a data collection. JDeveloper allows you to do this declaratively by dragging and
dropping a collection from the Data Controls panel.

Chapter 42
Creating Databound Gantt Charts

42-16

Before you begin:

It may be helpful to have an understanding of databound Gantt charts. For more
information, see Creating Databound Gantt Charts.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

For example, the data source for the Gantt chart in Figure 42-8 comes from view
objects in the Summit ADF DVT sample application. Use the SalesRepViewObj1
view object representing the sales personnel with a view link to the SOrdView2
view object that includes the tasks accessor and attributes for order and ship
dates.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a scheduling Gantt chart using the Data Controls panel:

1. From the Data Controls panel, select a data collection. For a Gantt chart, you can
select a row set collection or a basic tree collection.

Figure 42-9 shows an example where you could select the SalesRepViewObj1 data
collection to create a scheduling Gantt chart that displays the orders each sales
representative is responsible for managing.

Figure 42-9 Data Collection for Scheduling Gantt Chart

2. Drag the collection onto a JSF page and, from the context menu, choose Gantt >
Scheduling.

3. In the Create Scheduling Gantt dialog, select the columns in the data collection
that correspond to the following attributes:

• Resource Id: The unique Id for the resource represented in the scheduling
Gantt chart.

• Working Start Time: The work start date of the scheduling Gantt chart.

Chapter 42
Creating Databound Gantt Charts

42-17

• Working End Time: The work end date of the scheduling Gantt chart.

• Working Days of Week: Specifies a list of the working days of the week.

• Is Container: Boolean. Specify whether or not the node definition is a
container.

4. In the Tasks page, select the Task Accessor from the dropdown list, and then
select the columns in the data collection that correspond to the following attributes:

• Task Id: The unique Id for the task associated with a resource in the Gantt
chart.

• Task Type: The type used to specify the appearance of the task bar when it
is rendered in the Gantt chart. If you do not bind the type to a column in your
data collection, then all tasks default to Scheduled.

• Start Time: The starting time of the task.

• End Time: The ending time of the task.

• Startup Time: The time to start up the task before beginning.

• Shutdown Time: The time to shut down the task after completion.

For example, the SOrdView2 view object includes attributes representing the date
ordered and date shipped for each order assigned to a sales representative.
Figure 42-10 shows the view object used for the task accessor.

Figure 42-10 Scheduling Gantt Chart Task Accessor

5. If the data collection has an accessor for dependent tasks, use the Dependent
Tasks page to select the Dependent Task accessor, and then select the columns
in the data collection that correspond to the following attributes:

• Dependency Type: Specifies the type of the dependency. Valid values are
start-start, start-finish, finish-finish, finish-start, start-before,
start-together, finish-after, and finish-together.

• From Task Id: Specifies the first task in the dependent relationship.

• To Task Id: Specifies the last task in the dependent relationship.

Dependent tasks are linked by their associations with the finish and start times
between them.

6. If the data collection has an accessor for split tasks, use the Split Tasks page to
select the Split Tasks accessor, and then select the columns in the data collection
that correspond to the following attributes:

Chapter 42
Creating Databound Gantt Charts

42-18

• Split Task Id: The unique Id for a task split into two horizontal bars, usually
linked by a line. The time between the bars represents idle time due to
traveling or down time.

• Start Time: The starting time of the split task.

• End Time: The ending time of the split task.

7. If the data collection has an accessor for recurring tasks, use the Recurring
Tasks page to select the Recurring Tasks accessor from the dropdown list, and
then select the columns in the data collection that correspond to the following
attributes:

• Recurring Task Id: A unique Id for a task repeated in a Gantt chart, each
instance with its own start and end date. Individual recurring tasks can
optionally contain a subtype. All other properties of the individual recurring
tasks come from the task which they are part of. However, if an individual
recurring task has a subtype, this subtype overrides the task type.

• Type: Specifies the type of the recurring task.

• Start Time: The starting time of the recurring task.

• End Time: The ending time of the recurring task.

8. If the data collection has an accessor for subresources, use the Subresources
page to select the Subresources Accessor from the dropdown list, and then
select the column in the data collection that corresponds to the Subresource Id,
the unique Id for the list of subresources in the data collection.

If you do not bind subresources, then the Gantt chart cannot render a hierarchy
view of resources. If you bind subresources, then you can drill from resources to
subresources in the hierarchy view of the Gantt chart.

9. In the Appearance page, specify the attributes that correspond to the Label of the
task bar, and up to three icons to associate with the task bar.

10. In the Table Columns section, specify the columns that will appear in the list
region of the Gantt chart on the left side of the splitter. Specify one row of
information for each column that is to appear. Use the New icon to add new rows.
Use the arrow icon to arrange the rows in the exact sequence that you want the
columns to appear in the Gantt chart list. For each row, you provide the following
specifications:

• Display Label: Select the values for the headers of the columns in the Gantt
chart list. If you select <default>, then the text for the header is automatically
retrieved from the data binding.

• Value Binding: Select the columns in the data collection to use for the column
in the Gantt chart list. The available values are the same as those for the tasks
group.

• Component to Use: Select the type of component to display in the cell of the
Gantt chart list. The default is the ADF Output Text component.

11. Click OK.

Figure 42-11 shows the dialog used to create the scheduling Gantt chart from the
data collection for sales representatives responsible for shipping orders.

Chapter 42
Creating Databound Gantt Charts

42-19

Figure 42-11 Create Scheduling Gantt Dialog

12. In the Structure window, right-click the dvt:schedulingGantt component and
select Go to Properties.

13. In the Properties window, expand the Common section, and specify the dates
(yyyy-mm-dd) for the StartTime and EndTime attributes representing the start and
end dates respectively for the time period of the Gantt chart data.

The dates that you specify determine the initial view that appears in the scheduling
Gantt chart at runtime.

14. If you want to include a legend in the Gantt chart, right-click the scheduling Gantt
chart node in the Structure window and choose Insert Inside Scheduling Gantt >
Legend.

The legend shows information about each symbol and color coded bar used
to represent different tasks. It also shows detailed information about the task
selected in the Gantt chart.

What Happens When You Create a Scheduling Gantt Chart
Dropping a scheduling Gantt chart from the Data Controls panel has the following
effect:

• Creates the bindings for the Gantt chart and adds the bindings to the page
definition file

• Adds the necessary code for the UI components to the JSF page

The example below shows the row set bindings that were generated for the scheduling
Gantt chart that displays resources and orders shipped.

<bindings>
 <gantt IterBinding="SalesRepViewObj1Iterator" id="SalesRepViewObj1"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <ganttDataMap>
 <nodeDefinition DefName="model.SalesRepViewObj" type="Resources">

Chapter 42
Creating Databound Gantt Charts

42-20

 <AttrNames>
 <Item Value="Id" type="resourceId"/>
 </AttrNames>
 <Accessors>
 <Item Value="SOrdView" type="tasks"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition type="Tasks" DefName="model.SOrdView">
 <AttrNames>
 <Item Value="Id" type="taskId"/>
 <Item Value="DateOrdered" type="startTime"/>
 <Item Value="DateShipped" type="endTime"/>
 </AttrNames>
 </nodeDefinition>
 <nodeDefinition type="Dependents">
 <AttrNames/>
 </nodeDefinition>
 <nodeDefinition type="SplitTasks">
 <AttrNames/>
 </nodeDefinition>
 <nodeDefinition type="RecurringTasks">
 <AttrNames/>
 </nodeDefinition>
 <nodeDefinition type="Subresources">
 <AttrNames/>
 </nodeDefinition>
 </ganttDataMap>
 </gantt>
</bindings>

The example below shows the code generated on the JSF page for the scheduling
Gantt chart. This tag code contains settings for the overall start and end time for the
scheduling Gantt chart. It also shows the time axis settings for the major time axis
in weeks and the minor time axis in days. Finally, it lists the specifications for each
column that appears in the list region of the Gantt chart.

<dvt:schedulingGantt id="gantt1"
 value="#{bindings.SalesRepViewObj1.schedulingGanttModel}"
 dataChangeListener="#{bindings.SalesRepViewObj1.
 schedulingGanttModel.processDataChanged}"
 var="row" startTime="2012-04-15" endTime="2013-05-15"
 summary="#{viewcontrollerBundle.SCHEDULING_GANTT_CHART}">
 <f:facet name="major">
 <dvt:timeAxis scale="weeks" id="ta1"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="days" id="ta2"/>
 </f:facet>
<f:facet name="nodeStamp">
 <af:column sortProperty="#{bindings.SalesRepViewObj1.hints.FirstName.name}"
 sortable="false"
 headerText="#{bindings.SalesRepViewObj1.hints.FirstName.label}"
 id="c1">
 <af:outputText value="#{row.FirstName}"
 shortDesc="#{bindings.SalesRepViewObj1.hints.
 FirstName.tooltip}"
 id="ot1"/>
 </af:column>
</f:facet>
 <af:column sortProperty="#{bindings.SalesRepViewObj1.hints.LastName.name}"
 sortable="false"

Chapter 42
Creating Databound Gantt Charts

42-21

 headerText="#{bindings.SalesRepViewObj1.hints.LastName.label}"
 id="c2">
 <af:outputText value="#{row.LastName}"

shortDesc="#{bindings.SalesRepViewObj1.hints.LastName.tooltip}"
 id="ot2"/>
 </af:column>
 <af:column sortProperty="#{bindings.SalesRepViewObj1.hints.Email.name}"
 sortable="false"
 headerText="#{bindings.SalesRepViewObj1.hints.Email.label}" id="c3">
 <af:outputText value="#{row.Email}"
 shortDesc="#{bindings.SalesRepViewObj1.hints.Email.tooltip}"
 id="ot3"/>
 </af:column>
</dvt:schedulingGantt>

What You May Need to Know About Data Change Event Handling
When you use ADF data controls to data bind project and scheduling Gantt charts, a
data change listener is automatically provided for data change events that require an
update to row attributes, for example:

• DURATION_CHANGE: End time of a task; resize task bar

• PROGRESS_CHANGE: Progress of task; resize progress bar

• TIME_CHANGE: Start and end time of a task; move the task bar

At design time, the data change listener provides a built-in processDataChange method
for project and scheduling Gantt bindings as illustrated in the example below.

<dvt:projectGantt id="gantt1"
 dataChangeListener="#{bindings.GanttProjectView1.
 projectGanttModel.processDataChanged}"
 value="#{bindings.GanttProjectView1.projectGanttModel}"
 ...
</dvt:projectGantt>

Data change events requiring row insertion or deletion are not supported, for example:

• TASK_SPLITTED: Split a task

• TASK_MERGED: Merge task with another task

• LINK: Link two tasks together

• UNLINK: Unlink two tasks linked together

• COPY: Copy one or more tasks or resources

• CREATE: Create a new task

• CREATE_RESOURCE: Create a new resource

• CUT: Cut one or more tasks or resources

• PASTE: Paste tasks or resources

• UPDATE: Update a task

• UPDATE_RESOURCE: Update a resource

• TASKS_PROPERTIES_UPDATE: Task properties dialog event

• INDENT: Indent a task or resource

Chapter 42
Creating Databound Gantt Charts

42-22

• OUTDENT: Outdent a task or resource

• DELETE: Delete one or more tasks or resources

If you wish to configure your application to handle events that do not have a default
implementation, specify a method in a backing bean and delegate to the built-in
processDataChange method. For example, the first block of code below shows a
dataChangeListener configured to use a handleDataChange method to handle a
TASK_PROPERTIES_UPDATE event using the backing bean shown in the class code
below.

<dvt:projectGantt id="gantt1"
 dataChangeListener="#{backingBeanScope.backing_
 projectGantt.handleDataChange}"
 value="#{bindings.GanttProjectView1.projectGanttModel}"
 ...
</dvt:projectGantt>

public void handleDataChange(DataChangeEvent evt)
{
 // handle events not supported by built-in "processDataChange" method
 int _type = evt.getActionType();
 if (_type == DataChangeEvent.TASK_PROPERTIES_UPDATE)
 {
 // handle event.
 }
 else // delegate to built-in "processDataChange" method.
 {
 Application app = facesContext.getApplication();
 String expression =
 "#{bindings.GanttProjectView1.projectGanttModel.processDataChanged}";
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 MethodExpression methodExp = elFactory.createMethodExpression(elContext,
 expression, null, new Class[] {DataChangeEvent.class});
 methodExp.invoke(elContext, new Object[] {evt});
 }
}

Note:

The project and scheduling Gantt chart's default implementation of a
dataChangeListener for ADF data controls will not perform commit or
rollback changes to the database. You must configure your application to
handle those operations.

Creating Databound Timelines
A timeline is an interactive data visualization tool that allows users to view date-based
events in chronological order and easily navigate forwards and backwards within a
defined time range.

A timeline is composed of the display of events as timeline items along a time axis,
a movable overview window that corresponds to the period of viewable time in the
timeline, and an overview time axis that displays the total time increment for the

Chapter 42
Creating Databound Timelines

42-23

timeline. A horizontal zoom control is available to change the viewable time range.
Timeline items corresponding to events display associated information or actions
and are connected to the date of the event in the time axis. Timelines items are
represented by a marker in the overview panel. No more that two series of events are
supported by the timeline component.

A dual timeline can be used for a side-by-side comparison of events. For example, you
can use a timeline to display the hire dates of employees, or use a dual timeline to
compare multiple human resource events between two employees.

Figure 42-12 shows a timeline in the Summit ADF DVT sample application. In
this example, two lines of text are displayed along with images. When selection is
configured, the timeline item, line feeler, and the event marker in the overview panel
are highlighted.

Figure 42-12 Sample Timeline

Figure 42-13 shows a dual timeline comparing multiple human resource events
between two employees. The time axis is positioned between the two series of events
and the overview panel displays at the bottom of the timeline.

Chapter 42
Creating Databound Timelines

42-24

Figure 42-13 Dual Timeline Comparing Human Resource Events

The content of timeline items, marker display, and time axis are configurable. For
detailed information about timeline use cases, end user and presentation features,
tag structure, and adding special features to timelines, see the Using Timeline
Components chapter in Developing Web User Interfaces with Oracle ADF Faces.

How to Create a Timeline Using ADF Data Controls
The data displayed in a timeline is based on data collections. The timeline
component uses a model to access the data in the underlying list. The specific
model class is oracle.adf.view.rich.model.CollectionModel. You can also
use other model instances, for example, java.util.List, java.util.Array, and
javax.faces.model.DataModel. The data layer will automatically convert the instance
into a CollectionModel.

Using data controls in Oracle ADF, JDeveloper makes this a declarative task. You drag
and drop a data collection from the Data Controls panel that generates one (up to two)
series of events onto the JSF page.

Before you begin:

It may be helpful to have an understanding of databound timelines. See Creating
Databound Timelines.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. See Additional Functionality for Data Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

For example, the data source for the timeline in Figure 42-12 comes from a single
table in the Summit ADF DVT sample application. Use the SEmp table to create a
view object representing the employees including their hire dates.

Chapter 42
Creating Databound Timelines

42-25

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a timeline using the Data Controls panel:

1. From the Data Controls panel, select a collection.

Figure 42-14 shows an example where you could select the SEmpView1 collection
in the Data Controls panel to create a timeline that displays the hire dates of
employees.

Figure 42-14 Data Collection for Timeline of Employee Hire Dates

2. Drag the collection onto the JSF page, and from the context menu choose
Timeline.

3. In the Create Timeline dialog, configure the time axis and overview axis by setting
the following values:

a. Start Time: Enter the starting date to use for the time range of the timeline
using the format yyyy-mm-dd. Select a start date that will include events in the
data collection you wish to display on the timeline. From the dropdown list you
can select Current Date. You can also click the Calendar icon to display a
date picker dialog. The default value is set for three months before the current
date.

b. End Time: Enter the ending date to use for the timeline time range using the
format yyyy-mm-dd. Select an end date that will include events in the data
collection you wish to display on the timeline. From the dropdown list you can
select Current Date. You can also click the Calendar icon to display a date
picker dialog. The default value is Current Date.

c. Axis Scale: Use the dropdown list to select the time scale to use for the
timeline time axis. The time axis shows the user the current time increment for
the timeline.

You must use a smaller time scale than the Overview Scale. For example,
you cannot set the axis scale to years if the overview scale is set to months.
You can also specify a custom axis scale.

Valid values are twoyears, years, halfyears, quarters (default), twomonths,
months, twoweeks, weeks, days, sixhours, threehours, hours, halfhours,
quarterhours. You can also specify a custom axis scale. See How to Add
a Custom Time Scale to a Timeline in Developing Web User Interfaces with
Oracle ADF Faces.

Chapter 42
Creating Databound Timelines

42-26

d. Overview Scale: Use the dropdown list to select the time scale to use for
the timeline overview axis. The overview axis shows the user the total time
increment covered by the timeline.

Valid values are twoyears, years (default), halfyears, quarters, twomonths,
months, twoweeks, weeks, days, sixhours,threehours, hours, halfhours,
quarterhours. You can also specify a custom axis scale. See How to Add
a Custom Time Scale to a Timeline in Developing Web User Interfaces with
Oracle ADF Faces.

4. In the Create Timeline dialog, configure the timeline data model for at least one (at
most two for a dual timeline), by setting the following values:

a. Series Value: Use the dropdown list to select the data collection to use in the
timeline. By default, the data collection you inserted from the Data Controls
panel is displayed. JDeveloper automatically lists any collection from the
application module that includes at least one qualifying date-based attribute
from which to choose.

b. Item Date Value: Use the dropdown list to select the date-based attribute to
use for the timeline items stamped in the timeline. JDeveloper automatically
lists all qualifying attributes in the collection referenced in the Series Value
from which to choose.

Note:

You can add and configure more series, but you will need to conditionally
render them since the component displays two at most.

5. You can also configure the following values that are optional:

• Item End Date: Specify the time-related attribute in the data collection that
represents the end date for the timeline item. Use the dropdown list to display
a list of available choices.

• Title: Enter text or use the dropdown to specify the attribute in the data
collection that represents the title for the timeline item.

• Description: Enter text or use the dropdown to specify the attribute in the data
collection that represents the description for the timeline item.

For example, in Figure 42-15 you can specify all the values.

Chapter 42
Creating Databound Timelines

42-27

Figure 42-15 Create Timeline Dialog

6. Click OK to complete the definition of the data binding, or Cancel to end the
creation of the timeline.

What Happens When You Use Data Controls to Create a Timeline
When you use ADF data controls to create a timeline, JDeveloper:

• Defines the bindings for the timeline in the page definition file of the JSF page, and

• Inserts code in the JSF page for the DVT timeline components.

The example below shows the bindings defined in the page definition file of the JSF
page for the Summit ADF DVT sample timeline in Figure 42-12.

<bindings>
 <tree IterBinding="SEmpView1Iterator" id="SEmpView1" ChangeEventPolicy="ppr">
 <nodeDefinition DefName="model.SEmpView" Name="SEmpView1">
 <AttrNames>
 <Item Value="DeptId"/>
 <Item Value="FirstName"/>
 <Item Value="Id"/>
 <Item Value="LastName"/>
 <Item Value="StartDate"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

The example below shows the code inserted in the JSF page for the example timeline
in Figure 42-12.

<dvt:timeline id="tl1" startTime="2010-01-01" endTime="2011-12-31"
itemSelection="multiple"
 binding="#{extEditor.component}" summary="Timeline Component Demo">
 <dvt:timeSeries id="ts1" var="evt" value="#{timeline.model}">
 <dvt:timeItem id="ti1" value="#{evt.date}" title="#{evt.description}"
description="#{evt.date}"
 thumbnail="/resources/images/timeline/employment.png"/>
 </dvt:timeSeries>
 <dvt:timeAxis id="ta1" scale="weeks" zoomOrder="quarters months weeks days"/>

Chapter 42
Creating Databound Timelines

42-28

 <dvt:timelineOverview id="ov1">
 <dvt:timeAxis id="ta2" scale="years"/>
 </dvt:timelineOverview>
</dvt:timeline>

What You May Need to Know About Using Data Controls to Create a
Dual Timeline

When you use the Data Controls panel to create a dual timeline, you can configure
the same or different data collections to configure the two timeline series and specify
the timeline item display attributes and overview marker for each one. JDeveloper
automatically lists any data collection from the application module that includes at
least one qualifying date-based attribute from which to choose in the Create Timeline
wizard.

The example below shows the sample code for the dual timeline displayed in
Figure 42-13.

<dvt:timeline id="tl1" startTime="2000-01-01" endTime="2011-12-31"
 inlineStyle="width:1024px;height:500px"
itemSelection="single" currentTime="2010-04-01">
 <dvt:timeSeries id="ts1" var="evt" value="#{timeline.firstModel}">
 <dvt:timeItem id="ti1" value="#{evt.date}" group="#{evt.group}"
title="#{evt.description}"
 description="#{evt.date}" thumbnail="/resources/images/
timeline/#{evt.type}.png">
 <f:facet name="overviewItem">
 <dvt:marker id="m1" shape="circle" fillColor="#ff0000"/>
 </f:facet>
 </dvt:timeItem>
 </dvt:timeSeries>
 <dvt:timeSeries id="ts2" var="evt" value="#{timeline.secondModel}">
 <dvt:timeItem id="ti2" value="#{evt.date}" title="#{evt.description}"
 description="#{evt.date}" thumbnail="/resources/images/
timeline/#{evt.type}.png">
 <f:facet name="overviewItem">
 <dvt:marker id="m2" shape="circle" fillColor="#0000ff"/>
 </f:facet>
 </dvt:timeItem>
 </dvt:timeSeries>
 <dvt:timeAxis id="ta1" scale="quarters" zoomOrder="quarters months weeks
days"/>
 <dvt:timelineOverview id="ov1">
 <dvt:timeAxis id="ta2" scale="years"/>
 </dvt:timelineOverview>
</dvt:timeline>

For information about the data requirements, tag structure, and options for customizing
the look and behavior of the component, see the Using Timeline Components chapter
in the Developing Web User Interfaces with Oracle ADF Faces.

Chapter 42
Creating Databound Timelines

42-29

43
Creating Databound Hierarchy Viewer,
Treemap, and Sunburst Components

This chapter describes how to create a hierarchy viewer, treemap, or sunburst from
data modeled with ADF Business Components, using ADF data controls and ADF
Faces components in a Fusion web application. Specifically, it describes how you can
use ADF Data Visualization hierarchyViewer, treemap, and sunburst components to
create hierarchy viewers, treemaps, and sunbursts that visually represent business
data. It describes how to use ADF data controls to create these components with
data-first development.
If you are designing your page using simple UI-first development, then you can
add the hierarchy viewer, treemap, or sunburst to your page and configure the data
bindings later. For information about the data requirements, tag structure, and options
for customizing the look and behavior of the hierarchy viewer, treemap, and sunburst
components, see the Using Hierarchy Viewer Components and Using Treemap and
Sunburst Components chapters in Developing Web User Interfaces with Oracle ADF
Faces.

This chapter includes the following sections:

• About ADF Data Visualization Components

• Creating Databound Hierarchy Viewers

• Creating Databound Treemaps and Sunbursts

About ADF Data Visualization Components
ADF Data Visualization components provide extensive graphical and tabular
capabilities for visually displaying and analyzing business data. Each component
needs to be bound to data before it can be rendered since the appearance of the
components is dictated by the data that is displayed.

The ADF hierarchy viewer component produces an interactive graphic that displays
hierarchical data as a set of linked shapes. The shapes and links correspond to the
elements and relationships in the data. For example, a hierarchy viewer component
might be used to generate an organizational chart based on employee data. At
runtime, end users can pan and zoom the graphic and expand, select, and navigate
the management hierarchy that the graphic displays.

Use treemaps and sunbursts to display quantitative hierarchical data across two
dimensions, represented visually by size and color. Treemaps and sunbursts use a
shape called a node to reference the data in the hierarchy. For example, you can use
a treemap or sunburst to display quarterly regional sales and to identify sales trends,
using the size of the node to indicate each region's sales volume and the node's color
to indicate whether that region's sales increased or decreased over the quarter. The
appearance and content of the nodes are configurable at each level of the hierarchy.

43-1

The prefix dvt: occurs at the beginning of each data visualization component name
indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag
library.

End User and Presentation Features
Visually compelling data visualization components enable end users to understand
and analyze complex business data. The components are rich in features that provide
out-of-the-box interactivity support. For detailed descriptions of the end user and
presentation features for each component, see the following:

• Hierarchy Viewer components: End User and Presentation Features section in
Developing Web User Interfaces with Oracle ADF Faces.

• Treemap and Sunburst components: End User and Presentation Features of
Treemaps and Sunbursts section in Developing Web User Interfaces with Oracle
ADF Faces.

Data Visualization Components Use Cases and Examples
For detailed descriptions of each data visualization use case and example, see the
following:

• Hierarchy Viewer components: Hierarchy Viewer Use Cases and Examples
section in Developing Web User Interfaces with Oracle ADF Faces.

• Treemap and Sunburst components: Treemap and Sunburst Use Cases and
Examples section in Developing Web User Interfaces with Oracle ADF Faces.

Additional Functionality for Data Visualization Components
You may find it helpful to understand other Oracle ADF features before you data
bind your data visualization components. Additionally, once you have added a data
visualization component to your page, you may find that you need to add functionality
such as validation and accessibility. Following are links to other functionality that data
visualization components use:

• Partial page rendering: You may want a data visualization component to refresh to
show new data based on an action taken on another component on the page. For
more information, see the Rerendering Partial Page Content chapter in Developing
Web User Interfaces with Oracle ADF Faces.

• Personalization: Users can change the way the data visualization components
display at runtime, those values will not be retained once the user leaves the
page unless you configure your application to allow user customization. For
more information, see the Allowing User Customization on JSF Pages chapter
in Developing Web User Interfaces with Oracle ADF Faces.

• Accessibility: You can make your data visualization components accessible. For
more information, see the Developing Accessible ADF Faces Pages chapter in
Developing Web User Interfaces with Oracle ADF Faces.

• Skins and styles: You can customize the appearance of data visualization
components using an ADF skin that you apply to the application or by applying
CSS style properties directly using a style-related property (styleClass or
inlineStyle). For more information, see the Customizing the Appearance Using

Chapter 43
About ADF Data Visualization Components

43-2

Styles and Skins chapter in Developing Web User Interfaces with Oracle ADF
Faces.

• Placeholder data controls: If you know the data visualization components on your
page will eventually use ADF data binding, but you need to develop the pages
before the data controls are ready, then you should consider using placeholder
data controls, rather than manually binding the components. Using placeholder
data controls will provide the same declarative development experience as using
developed data controls. For more information, see Designing a Page Using
Placeholder Data Controls.

Creating Databound Hierarchy Viewers
A hierarchy viewer is an ADF Data Visualization component that visually displays data
where parent-child relationships exist within the data. This component is useful where
you want to display organization charts, network diagrams, social networks, or similar
visual displays.

Hierarchy viewers use a shape called a node to reference the data in a hierarchy. The
shape and content of the nodes are configurable, as well as the visual layout of the
nodes. Nodes can display multiple views in a panel card.

Figure 43-1 shows a runtime view of a hierarchy viewer component that renders an
organization chart.

Figure 43-1 Hierarchy Viewer Component Rendering an Organization Chart

Each hierarchy viewer component (dvt:hierarchyViewer) that you create can include:

• One or more node elements (dvt:node)

• One or more link elements (dvt:link)

The optional panel card element (dvt:panelCard) can be used in conjunction with the
hierarchy viewer component. The panel card provides a method to switch dynamically

Chapter 43
Creating Databound Hierarchy Viewers

43-3

between multiple sets of content referenced by a node element using animation by, for
example, horizontally sliding the content or flipping a node over.

For detailed information about hierarchy viewer end user and presentation features,
use cases, tag structure, and adding special features to hierarchy viewers, see the
Using Hierarchy Viewer Components chapter in Developing Web User Interfaces with
Oracle ADF Faces.

How to Create a Hierarchy Viewer Using ADF Data Controls
Hierarchy viewers are based on data collections where a master-detail relationship
exists between one or more detail collections and a master data collection. Using data
controls in Oracle ADF, JDeveloper makes this a declarative task. You drag and drop
a data collection from the Data Controls panel that generates one or more root nodes
onto a JSF page.

Before you begin:

It may be helpful to have an understanding of databound hierarchy viewers. For more
information, see Creating Databound Hierarchy Viewers.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model for the hierarchy viewer, as described in Creating and
Modifying an Application Module.

For example, the data source for the hierarchy viewer in Figure 43-1 comes from a
single table representing the employees in the Summit sample application for ADF
DVT components. To set up a hierarchical relationship in the Summit ADF DVT
sample application between the managers and employees using the SEmp table
and to establish the highest level employee as the root of the hierarchy, do the
following:

1. Create an entity object based on the SEmp table.

Figure 43-2 shows the SEmp entity object based on the SEmp table. Each row in
the table includes both the employee's ID and the employee's manager ID. For
help with creating entity objects, see Creating Entity Objects and Associations.

Chapter 43
Creating Databound Hierarchy Viewers

43-4

Figure 43-2 SEmp Entity Object in the Summit ADF DVT Sample
Application

2. Create an association between SEmp.Id and SEmp.ManagerID to establish the
relationship between the employee and manager.

Figure 43-3 shows the SEmpManagerIdFkAssoc association in the Summit ADF
DVT sample application. In this example, the association is automatically
created when you create the SEmp entity object. For additional information
about associations, see Creating Entity Objects and Associations.

Figure 43-3 Association Between Manager and Employees in the Summit ADF DVT
Sample Application

3. To establish the hierarchy between the managers and employees, create
a view link between the managers and employees based on the
SEmpManagerIdFkAssoc association.

Figure 43-4 shows the SEmpManagerIDFKLink view link in the Summit ADF
DVT sample application. For additional information about establishing the
master-detail relationship using view links, see How to Create a Master-Detail
Hierarchy Based on Entity Associations.

Chapter 43
Creating Databound Hierarchy Viewers

43-5

Figure 43-4 View Link Between Managers and Employees in the Summit ADF DVT
Sample Application

4. To use the SEmpManagerIDFKLink, create a new view object that ties the
managers with the employees as shown in Figure 43-5.

Figure 43-5 Managers-Employees View Object in the Summit ADF DVT Sample
Application

5. Create a view object that retrieves the root value from the data collection.

For example, in the Summit ADF DVT sample application, Carmen Velasquez
is the highest level manager and has a employee ID of 1. To create a view
object based on the Summit ADF DVT sample application, create a view
object that retrieves the employee whose ID is 1.

Figure 43-6 shows the RootEmployeeViewObject for the Summit ADF DVT
sample application. The query retrieves the employee whose ID is 1 and
stores it in the rootEmpno bind variable. For more information about working
with view objects and bind variables, see Working with Bind Variables.

Chapter 43
Creating Databound Hierarchy Viewers

43-6

Figure 43-6 RootEmployeeViewObject Sample for Hierarchy Viewer

6. To establish the hierarchy between the root employee and the lower-level
managers and employees, add a view link between the RootEmployeeViewObj
and the managers-employees view object created in Step 4.

Figure 43-7 RootEmployeesViewLink in the Summit ADF DVT Sample Application

7. In the Data Controls panel, click Refresh to update the data controls.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a hierarchy viewer using the Data Controls panel:

1. From the Data Controls panel, select a collection.

Figure 43-8 shows an example where you could select the RootEmployeeViewObj2
collection in the Data Controls panel to create a hierarchy viewer representing the
personnel data in an organizational chart.

Chapter 43
Creating Databound Hierarchy Viewers

43-7

Figure 43-8 Data Collection for Personnel Organizational Chart

2. Drag the collection onto a JSF page and, from the context menu, choose
Hierarchy Viewer.

3. From the Component Gallery, select the layout of the hierarchy viewer you want to
create. Figure 43-9 shows the Component Gallery with the vertical top down layout
selected.

Chapter 43
Creating Databound Hierarchy Viewers

43-8

Figure 43-9 Hierarchy Viewer Component Gallery

4. In the Create Hierarchy Viewer dialog, enter the following:

• Hierarchy: Select the collections you want to include as nodes in the runtime
diagram. By default, the root collection is selected. You can also choose to
configure ancestors or descendants in the hierarchy.

• Node: For each collection that you select in the Hierarchy list, configure the
attributes in the Title Area, and the title and attributes in each panel card,
using one or more of the zoom levels available to you. By default, the node for
the 100% zoom level follows an algorithm that:

– Assigns the first three attributes in the data collection to the Title Area.

– Assigns the next two attributes to the first panel card.

– Assigns the following two attributes to the second panel card.

Select the panel card title or node attributes to configure one or more of the
following for that element:

– Text: Available for panel card titles. Not available for the Title Area
element. Enter text for the panel card title in the hierarchy, or choose
Select Text Resource from the dropdown list to open a dialog to select or
add a text resource to use for the title. The text resource is a translatable
string from an application resource bundle. If you need help, press F1 or
click Help.

– Panel Card Data Source: Available for panel cards. The data source
indicates which data collection will be used for the panel card attributes.
By default, the collection associated with the current hierarchy level will be
used for attribute selection.

Chapter 43
Creating Databound Hierarchy Viewers

43-9

Figure 43-10 shows a Create Hierarchy Viewer dialog for a hierarchy
viewer using data collections based on the Summit ADF schema. In this
example, the Panel Card Data Source is the default SEmpView collection.

Figure 43-10 Hierarchy Viewer Configured With Default Panel Card Data Source

To use an alternative child accessor for the panel card attributes,
select an alternative child accessor from the dropdown list as shown
in Figure 43-11. For additional information, see How to Configure an
Alternate View Object for a Databound Panel Card.

Chapter 43
Creating Databound Hierarchy Viewers

43-10

Figure 43-11 Create Hierarchy Viewer Dialog Showing Alternate Panel Card Data
Source

– Component: Available for attributes. Select the type of component to
use to display the data in the node. Valid values are: ADF Output Text
w/Label, ADF Output Text, ADF Output Formatted Text w/Label, and
ADF Output Formatted Text. For more information about using these
components, see the Using Output Components chapter in Developing
Web User Interfaces with Oracle ADF Faces.

– Attribute: Available for attribute and image elements. From the dropdown
list, select the attribute in the data collection that represents the value you
wish to display in the hierarchy viewer node.

– Label: Available for attributes when you select the Output Text w/
Label or ADF Output Formatted Text w/Label component from the
Component field's dropdown list. You can use the default Use Attribute
Name to render the value as a string using the label from the UIHints for
that attribute in the underlying ViewObject. You can also select No Label
from the attribute's dropdown menu to render no label for the attribute, or
choose Select Text Resource to open a Select Text Resource dialog to
select or add a text resource to use for the label. The text resource is a
translatable string from an application resource bundle.

Click the New icon to add a new panel card, attribute, or image to the node,
relative to your selection in the node. After selecting an existing element, use
the arrow icons (Up, Down, Top, Bottom) to reorder the element, or use the
Delete icon to delete the selected element.

Use the 75%, 50%, and 25% pages to specify the expanded display of the
hierarchy at each page level. Select Add Zoom Level to enable the zoom
level for a page level. By default, the algorithms to assign node attributes and
panel cards in the node are similar to the 100% zoom level.

Chapter 43
Creating Databound Hierarchy Viewers

43-11

Note:

The hierarchy viewer component defines four zoom levels. You
cannot modify these zoom levels or create new zoom levels. The
default zoom level is 100%.

• Sample: A nonconfigurable display of the sample outline of the hierarchy
viewer node. Areas such as Title Area and attributes are highlighted in the
sample when selected in the node area.

5. Click OK.

Figure 43-12 shows a completed Create Hierarchy Viewer dialog for the root level of
the hierarchy viewer using data from a data collection named RootEmployeeViewObj2.

Figure 43-12 Create Hierarchy Viewer Dialog

After completing the Create Hierarchy Viewer dialog, you can use the Properties
window to specify settings for the hierarchy viewer attributes, and you can also use the
child tags associated with the hierarchy viewer tag to customize the hierarchy viewer
further. For detailed information about hierarchy viewer end user and presentation
features, use cases, tag structure, and adding special features to hierarchy viewers,
see the Using Hierarchy Viewer Components chapter in Developing Web User
Interfaces with Oracle ADF Faces.

When editing the hierarchy viewer in the visual editor, the display approximates the
runtime display and functionality. You can rearrange attributes in the Structure window,
or bind new attributes by dragging and dropping attributes from the Data Controls
panel onto the Structure window.

Chapter 43
Creating Databound Hierarchy Viewers

43-12

What Happens When You Create a Databound Hierarchy Viewer
Creating a hierarchy viewer from Data Controls panel has the following effect:

• Creates the bindings for the hierarchy viewer in the page definition file of the JSF
page

• Adds the necessary tags to the JSF page for the hierarchy viewer component

The example below displays bindings that JDeveloper generated for a hierarchy
viewer component. The rules for populating the nodes of the master-detail tree are
defined as a node definition. The example shows that two node definitions were
generated. Each of these node definitions references a view object and associated
attributes. The code example also references an accessor SEmpView.

<parameters/>
<executables>
 <variableIterator id="variables"/>
 <iterator Binds="RootEmployeeViewObj2" RangeSize="25"
 DataControl="AppModuleDataControl"
 id="RootEmployeeViewObj2Iterator"/>
</executables>
<bindings>
 <tree IterBinding="RootEmployeeViewObj2Iterator" id="RootEmployeeViewObj2">
 <nodeDefinition DefName="model.RootEmployeeViewObj"
 Name="RootEmployeeViewObj20">
 <AttrNames>
 <Item Value="ManagerId"/>
 <Item Value="TitleId"/>
 <Item Value="Userid"/>
 <Item Value="Comments"/>
 <Item Value="DeptId"/>
 <Item Value="StartDate"/>
 <Item Value="Email"/>
 <Item Value="Salary"/>
 <Item Value="FirstName"/>
 <Item Value="Id"/>
 <Item Value="CommissionPct"/>
 <Item Value="LastName"/>
 </AttrNames>
 <Accessors>
 <Item Value="SEmpView">
 <Properties>
 <CustomProperties>
 <Property Name="hierarchyType" Value="children"/>
 </CustomProperties>
 </Properties>
 </Item>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition DefName="model.SEmpView" Name="RootEmployeeViewObj21">
 <AttrNames>
 <Item Value="ManagerId"/>
 <Item Value="TitleId"/>
 <Item Value="Userid"/>
 <Item Value="Comments"/>
 <Item Value="DeptId"/>
 <Item Value="StartDate"/>
 <Item Value="Email"/>
 <Item Value="Salary"/>

Chapter 43
Creating Databound Hierarchy Viewers

43-13

 <Item Value="FirstName"/>
 <Item Value="Id"/>
 <Item Value="CommissionPct"/>
 <Item Value="LastName"/>
 </AttrNames>
 <Accessors>
 <Item Value="SEmpView">
 <Properties>
 <CustomProperties>
 <Property Name="hierarchyType" Value="children"/>
 </CustomProperties>
 </Properties>
 </Item>
 </Accessors>
 </nodeDefinition>
 </tree>
</bindings>

The example below shows the code generated on the JSF page that is associated
with the page definition file in the above example. For brevity, the details in the
facet elements named zoom75, zoom50, and zoom25 and panel card showDetailItem
components have been omitted. In addition, the details for the second node in the
hierarchy viewer have also been omitted.

The example shows a hierarchy viewer component that references the
RootEmployeeViewObj2 tree binding. It includes a node (dvt:node) component that
in turn includes a panel card component (dvt:panelCard). The panel card component
defines slide_horz as the effect to use when changing the display of content
referenced by the node.

Once you create your hierarchy viewer, you can modify the layout of the component or
add additional components, such as a panel card, using the Create Hierarchy dialog
illustrated in Figure 43-12. To open the dialog, use the Edit icon in the Properties
window for the hierarchyViewer component. You can also customize the layout of
a hierarchy viewer component directly in the code, in the visual editor, or by setting
values in the Properties window. You can add additional components, such as panel
cards, using the Components window.

<dvt:hierarchyViewer id="hv1" var="node"
 value="#{bindings.RootEmployeeViewObj2.treeModel}"

selectionListener="#{bindings.RootEmployeeViewObj2.treeModel.makeCurrent}"
 detailWindow="none" layout="hier_vert_top"
 levelFetchSize="#{bindings.RootEmployeeViewObj2.rangeSize}"
 styleClass="AFStretchWidth" summary="Hierarchy Viewer Demo">
 <dvt:link linkType="orthogonalRounded" id="l1"/>
 <dvt:node type="model.RootEmployeeViewObj" width="233" height="233" id="n1">
 <f:facet name="zoom100">
 <af:panelGroupLayout styleClass="AFStretchWidth AFHVNodeStretchHeight
 AFHVNodePadding"
 layout="vertical" id="pgl1">
 <af:panelGroupLayout layout="horizontal" id="pgl2">
 <af:panelGroupLayout id="pgl7">
 <af:image source="/images/#{node.Id}.png" shortDesc="Employee Image"
 id="i1" styleClass="AFHVNodeImageSize"/>
 </af:panelGroupLayout>
 <af:panelGroupLayout layout="vertical" id="pgl3">
 <af:outputText value="#{node.LastName}"
 shortDesc="#{bindings.RootEmployeeViewObj2.hints.LastName.tooltip}"
 styleClass="AFHVNodeTitleTextStyle" id="ot1"/>

Chapter 43
Creating Databound Hierarchy Viewers

43-14

 <af:outputText value="#{node.FirstName}"

shortDesc="#{bindings.RootEmployeeViewObj2.hints.FirstName.tooltip}"
 styleClass="AFHVNodeSubtitleTextStyle" id="ot2"/>
 <af:panelLabelAndMessage

label="#{bindings.RootEmployeeViewObj2.hints.Id.label}"
 styleClass="AFHVNodeLabelStyle" id="plam1">
 <af:outputText value="#{node.Id}"

shortDesc="#{bindings.RootEmployeeViewObj2.hints.Id.tooltip}"
 styleClass="AFHVNodeTextStyle" id="ot3">
 <af:convertNumber groupingUsed="false"

pattern="#{bindings.RootEmployeeViewObj2.hints.Id.format}"/>
 </af:outputText>
 </af:panelLabelAndMessage>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 <af:spacer height="5" id="s1"/>
 <dvt:panelCard effect="slide_horz" styleClass="AFHVNodePadding" id="pc1">
 <af:showDetailItem text="Contact Details" id="sdi1">
 <af:spacer height="2" id="s2"/>
 <af:panelFormLayout styleClass="AFStretchWidth AFHVNodeStretchHeight
 AFHVNodePadding"
 id="pfl1">
 <af:panelLabelAndMessage
 label="#{bindings.RootEmployeeViewObj2.hints.Email.label}"
 styleClass="AFHVPanelCardLabelStyle" id="plam2">
 <af:outputText value="#{node.Email}"
 shortDesc="#{bindings.RootEmployeeViewObj2.hints.Email.tooltip}"
 styleClass="AFHVPanelCardTextStyle" id="ot4"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage

label="#{bindings.RootEmployeeViewObj2.hints.Userid.label}"
 styleClass="AFHVPanelCardLabelStyle" id="plam3">
 <af:outputText value="#{node.Userid}"

shortDesc="#{bindings.RootEmployeeViewObj2.hints.Userid.tooltip}"
 styleClass="AFHVPanelCardTextStyle" id="ot5"/>
 </af:panelLabelAndMessage>
 </af:panelFormLayout>
 </af:showDetailItem>
 ... remaining showDetailItem panel card details omitted
 </dvt:panelCard>
 </af:panelGroupLayout>
 </f:facet>
 ... remaining zoom levels omitted
 </dvt:node>
 <dvt:node type="model.SEmpView" width="233" height="233" id="n2">
 ... second node details are similar to first node and are omitted
 </dvt:node>
</dvt:hierarchyViewer>

Chapter 43
Creating Databound Hierarchy Viewers

43-15

How to Configure an Alternate View Object for a Databound Panel
Card

You can specify an alternate view object as the data source for a panel card when
you create or edit a databound hierarchy viewer. For example, you may have a data
collection that has a master-detail relationship between sales representatives and
orders, but you want your panel card to display details about the customer who placed
the order.

Figure 43-13 shows a portion of the runtime view of a hierarchy viewer configured to
display the orders and order details for sales representatives using the Summit ADF
schema. In this example, the hierarchy viewer is configured to use an alternate view
object for the Customer Details panel card.

Figure 43-13 Hierarchy Viewer Panel Card Configured With Alternate View Object

The alternate view object must be a child of the parent collection. You can establish
this parent-child relationship by creating a view link between the parent and child
collection.

Before you begin:

It may be helpful to have an understanding of databound hierarchy viewers. For more
information, see Creating Databound Hierarchy Viewers.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

Chapter 43
Creating Databound Hierarchy Viewers

43-16

Create an application module that contains instances of the entity and view objects
that you want in your application, as described in Creating and Modifying an
Application Module.

Create the data model for the hierarchy viewer. For example, the hierarchy viewer
in Figure 43-13 uses a top level view object based on the SEmp entity in the Summit
ADF DVT sample application. In this example, the view object retrieves all sales
representatives in the Summit ADF employee database by retrieving all employee
records with a TITLE_ID of 2. Figure 43-14 shows the SalesRepViewObj view object.

Figure 43-14 Sales Representatives View Object Using the Summit ADF
Schema

For information about creating a view object, see How to Create an Entity-Based View
Object.

The master-detail relationship between the Summit sales representatives and orders
is established with a view link between SalesRepViewObj and OrdersViewObj.
Figure 43-15 shows the relationship between the view objects.

Chapter 43
Creating Databound Hierarchy Viewers

43-17

Figure 43-15 View Link Between Summit Sales Representatives and Orders

For additional information about establishing the master-detail relationship using view
links, see How to Create a Master-Detail Hierarchy Based on Entity Associations.

To configure an alternate view object for a databound panel card:

1. If you have not already done so, create the view object that will be the alternate
data source for the panel card.

For example, the hierarchy viewer in Figure 43-13 uses a view object based on the
SCustomer entity object in the Summit ADF DVT sample application.

2. Create a view link between the parent collection and the alternate view object.

Figure 43-16 shows the view link between the sales representatives and
customers in the Summit ADF DVT sample application. For help with creating view
links, see How to Create a Master-Detail Hierarchy Based on Entity Associations.

Chapter 43
Creating Databound Hierarchy Viewers

43-18

Figure 43-16 View Link Between Sales Representatives and Customers in
the Summit ADF DVT Sample Application

3. If needed, create a view link to establish the hierarchy between the parent
collection and the alternate child collection.

For example, to establish the hierarchy between orders and customers in the
Summit ADF DVT sample application, create a view link between the SOrdView
and SCustomerView collections. Figure 43-17 shows the sample view link.

Figure 43-17 View Link Between Orders and Customers in the Summit ADF
DVT Sample Application

Chapter 43
Creating Databound Hierarchy Viewers

43-19

What Happens When You Use an Alternate View Object for a Hierarchy Viewer
Panel Card

When you configure your hierarchy viewer to use an alternate view object for the panel
card data source, JDeveloper adds the bindings for the hierarchy viewer and alternate
source in the page definition file of the JSF page.

The example below shows the sample bindings for the hierarchy viewer displayed
in Figure 43-13. The entries for the alternate source are highlighted. Note that the
alternate data source is defined as one of the hierarchy viewer's node definitions.

<bindings>
 <tree IterBinding="SalesRepViewObj2Iterator" id="SalesRepViewObj2">
 <nodeDefinition DefName="model.SalesRepViewObj" Name="SalesRepViewObj20">
 <AttrNames>
 <Item Value="ManagerId"/>
 <Item Value="TitleId"/>
 <Item Value="Userid"/>
 <Item Value="Comments"/>
 <Item Value="DeptId"/>
 <Item Value="StartDate"/>
 <Item Value="Email"/>
 <Item Value="Salary"/>
 <Item Value="FirstName"/>
 <Item Value="Id"/>
 <Item Value="CommissionPct"/>
 <Item Value="LastName"/>
 </AttrNames>
 <Accessors>
 <Item Value="SOrdView">
 <Properties>
 <CustomProperties>
 <Property Name="hierarchyType" Value="children"/>
 </CustomProperties>
 </Properties>
 </Item>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition DefName="model.SOrdView" Name="SalesRepViewObj21">
 <AttrNames>
 <Item Value="DateShipped"/>
 <Item Value="DateOrdered"/>
 <Item Value="Id"/>
 <Item Value="Total"/>
 </AttrNames>
 <Accessors>
 <Item Value="SItemView">
 <Properties>
 <CustomProperties>
 <Property Name="hierarchyType" Value="children"/>
 </CustomProperties>
 </Properties>
 </Item>
 <Item Value="SCustomerView"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition DefName="model.SCustomerView" Name="SalesRepViewObj22">
 <AttrNames>
 <Item Value="Name"/>

Chapter 43
Creating Databound Hierarchy Viewers

43-20

 <Item Value="Phone"/>
 <Item Value="City"/>
 </AttrNames>
 </nodeDefinition>
 <nodeDefinition DefName="model.SItemView" Name="SalesRepViewObj23">
 <AttrNames>
 <Item Value="QuantityShipped"/>
 <Item Value="ItemId"/>
 <Item Value="Quantity"/>
 <Item Value="Price"/>
 <Item Value="OrdId"/>
 <Item Value="ProductId"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

How to Create a Databound Search in a Hierarchy Viewer
The search function in a hierarchy viewer is based on the searchable attributes or
columns of the data collection that is the basis of the hierarchy viewer data model.
Using a query results collection defined in data controls in Oracle ADF, JDeveloper
makes this a declarative task. You drag and drop an ExecuteWithParams operation
into an existing hierarchy viewer component on the page.

Figure 43-18 shows the Summit ADF DVT employee hierarchy viewer configured to
search for employees by last name. In this example, the user can enter an employee's
last name in the Search panel or specify a pattern match using % or _.

Figure 43-18 Hierarchy Viewer With Search Panel

Before you begin:

It may be helpful to have an understanding of databound hierarchy viewers. For more
information, see Creating Databound Hierarchy Viewers.

Chapter 43
Creating Databound Hierarchy Viewers

43-21

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

1. Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

2. Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

3. Create a databound hierarchy viewer component as described in How to Create a
Hierarchy Viewer Using ADF Data Controls.

4. Verify the query that retrieves the root node in the hierarchy viewer.

For example, Figure 43-6 shows retrieving the root node by the Id column and
storing it in the rootEmpno bind variable.

5. Create a view object that performs the search.

For example, Figure 43-19 shows the EmployeesSearchResults view object that
performs the search based on the LastName column in the data collection with
a default value of % for matching any value, and a comparison value of like to
enable pattern matching.

Figure 43-19 EmployeeSearchResults View Object

For information about creating a view object, see How to Create an Entity-Based
View Object.

To create a databound search with a hierarchy viewer:

1. From the Data Controls panel, select the collection that corresponds to the query
results and expand the Operations node to display the ExecuteWithParams
operation.

Chapter 43
Creating Databound Hierarchy Viewers

43-22

Figure 43-20 shows the expanded EmployeeSearchResults1 operations node in
the Summit ADF DVT sample application.

Figure 43-20 ExecuteWithParams Operation for Hierarchy Viewer Search
Example

2. Drag the ExecuteWithParams operation and drop it onto the hierarchy viewer in
the visual editor or onto the component in the Structure window.

3. In the Create Hierarchy Viewer Search dialog, use the Add icon to specify the list
of results to display in the Search Results panel, and specify the following for each
result:

a. Display Label: Select the values for the headers of the nodes in the hierarchy.
If you select <default>, then the text for the header is automatically retrieved
from the data binding.

b. Value Binding: Select the columns in the data collection to use for nodes in
the tree for the hierarchy viewer.

c. Component to Use: Select the type of component to display in the node. The
default is the ADF Output Text component.

After selecting an existing field, use the arrow icons (Up, Down, Top, Bottom) to
reorder the results or use the Delete icon to delete that result.

4. In the Operation dropdown list, select the hierarchy root data collection to use
when a search result is selected. Valid values include:

• removeRowWithKey: Uses the row key as a String converted from the
value specified by the input field to remove the data object in the bound data
collection.

• setCurrentRowWithKey: Sets the row key as a String converted from the
value specified by the input field. The row key is used to set the currency of
the data object in the bound data collection.

• setCurrentRowWithKeyValue: Sets the current object on the iterator, given a
key's value.

• ExecuteWithParams: Sets the values to the named bind variables passed as
parameters.

Chapter 43
Creating Databound Hierarchy Viewers

43-23

5. In the Parameter Mapping table, use the dropdown list in the Results Attribute
column to select the results collection attribute to map to the parameter displayed
in the Hierarchy Parameter column.

Figure 43-21 shows the Create Hierarchy Viewer Search dialog that appears
if you create a hierarchy viewer using data from a data collection named
EmployeesSearchResults1.

Figure 43-21 Create Hierarchy Viewer Search Dialog

The example below shows the code on the JSF page after you click OK and the
dvt:search is added to the page as a child of the hierarchy viewer component.

<dvt:search value="#{bindings.searchName.inputValue}"
 actionListener="#{bindings.ExecuteWithParams.execute}" id="s19">
 <f:facet name="end">
 <af:link text="Advanced" styleClass="AFHVAdvancedSearchLinkStyle" id="l1"/>
 </f:facet>
 <dvt:searchResults id="sr1"
 value="#{bindings.EmployeeSearchResults.collectionModel}"
 emptyText="#{bindings.EmployeeSearchResults.viewable ?
 'No data to display.' : 'Access Denied.'}"
 fetchSize="#{bindings.EmployeeSearchResults.rangeSize}"
 resultListener="#{bindings.ExecuteWithParams1.execute}"
 var="resultRow">
 <af:setPropertyListener type="action" from="#{resultRow.Id}"
 to="#{bindings.rootEmpno.inputValue}"/>
 <f:facet name="content">
 <af:panelGroupLayout layout="horizontal" id="pgl27">
 <af:panelLabelAndMessage

label="#{bindings.ExecuteWithParams.hints.LastName.label}"
 id="plam29">
 <af:outputText value="#{resultRow.LastName}"

Chapter 43
Creating Databound Hierarchy Viewers

43-24

shortDesc="#{bindings.ExecuteWithParams.hints.LastName.tooltip}"
 id="ot45"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage

label="#{bindings.ExecuteWithParams.hints.FirstName.label}"
 id="plam30">
 <af:outputText value="#{resultRow.FirstName}"

shortDesc="#{bindings.ExecuteWithParams.hints.FirstName.tooltip}"
 id="ot46">
 <af:convertNumber groupingUsed="false"

pattern="#{bindings.ExecuteWithParams.hints.FirstName.format}"/>
 </af:outputText>
 </af:panelLabelAndMessage>
 </af:panelGroupLayout>
 </f:facet>
 </dvt:searchResults>
</dvt:search>

At runtime, the search results are displayed in a table by LastName and FirstName.
Figure 43-22 shows the search results panel if a user enters C% to search for all
employees whose last names begin with C.

Figure 43-22 Hierarchy Viewer Search Results Panel

The user can choose one of the search results to display the associated hierarchy
viewer node and any children if they exist. Figure 43-23 shows the hierarchy viewer
node if the user chooses Catchpole from the search results list.

Chapter 43
Creating Databound Hierarchy Viewers

43-25

Figure 43-23 Hierarchy Viewer Showing Nodes After Search Selection

Creating Databound Treemaps and Sunbursts
Treemaps and sunbursts are ADF Data Visualization components that display
quantitative hierarchical data across two dimensions, represented visually by size and
color. This is used to identify data trends easily and quickly.

For example, you can use a treemap or sunburst to display quarterly regional sales
and to identify sales trends, using the size of the node to indicate each region's
sales volume and the node's color to indicate whether that region's sales increased or
decreased over the quarter.

Treemaps and sunbursts use a shape called a node to reference the data in the
hierarchy. Treemaps display nodes as a set of nested rectangles. Each branch of
the tree is given a rectangle, which is then tiled with smaller rectangles representing
sub-branches.

Figure 43-24 shows a treemap displaying the products available at warehouses in the
Summit ADF DVT sample application. In this example, the node size represents the
amount in stock for each product, and node color represents inventory status.

Chapter 43
Creating Databound Treemaps and Sunbursts

43-26

Figure 43-24 Treemap Showing Product Availability and Inventory Levels

Sunbursts display the nodes in a radial rather than a rectangular layout, with the
top of the hierarchy at the center and deeper levels farther away from the center.
Figure 43-25 shows a sunburst configured to show sales by region and country, with
color used to indicate the number of orders per region and country.

Chapter 43
Creating Databound Treemaps and Sunbursts

43-27

Figure 43-25 Sunburst Showing Product Availability and Inventory Levels

The shape and content of the nodes are configurable, as well as the visual layout
of the nodes. For detailed information about treemap and sunburst end user and
presentation features, use cases, tag structure, and adding special features, see the
Using Treemap and Sunburst Components chapter in Developing Web User Interfaces
with Oracle ADF Faces.

How to Create Treemaps and Sunbursts Using ADF Data Controls
Treemaps and sunbursts are based on data collections where a master-detail
relationship exists between one or more detail collections and a master data collection.
Treemaps and sunbursts also require that the following attributes be set in JDeveloper:

• value: the size of the node

• fillColor: the color of the node

• label: a text identifier for the node

The values for the value and label attributes must be stored in the treemap's or
sunburst's data model or in classes and managed beans if you are using UI-first
development. You can specify the fillColor values in the data model, classes, and
managed beans, or declaratively in the Properties window.

Chapter 43
Creating Databound Treemaps and Sunbursts

43-28

In order to configure a treemap or sunburst successfully, ensure that the data adheres
to the following rules:

• Each child node can have only one parent node.

• There can be no skipped levels.

Using data controls in Oracle ADF, JDeveloper makes treemap and sunburst creation
a declarative task. You drag and drop a data collection from the Data Controls panel
that generates one or more nodes onto a JSF page.

Before you begin:

It may be helpful to have an understanding of databound treemaps and sunbursts. For
more information, see Creating Databound Treemaps and Sunbursts.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model, as described in Creating and Modifying an Application
Module.

If you need help working with master-detail relationships, see Displaying Master-
Detail Data.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a treemap or sunburst using the Data Controls panel:

1. From the Data Controls panel, select a collection.

Figure 43-26 shows the data collection for the treemap in Figure 43-24 and the
sunburst in Figure 43-25.

Chapter 43
Creating Databound Treemaps and Sunbursts

43-29

Figure 43-26 Sample Data Collection for Treemap and Sunburst

In the Summit ADF DVT sample, the application uses a view link between
the SCountriesView2 collection and the SWarehouseView2 collection to establish
a hierarchy between the SRegionView1 and SWarehouseView2 data collections.
Figure 43-27 shows the sample view link.

Chapter 43
Creating Databound Treemaps and Sunbursts

43-30

Figure 43-27 Sample View Link Between Country and Warehouse

Table 43-1 shows the data collection and size, label, and color values used to
create the treemap in Figure 43-24.

Table 43-1 Sample Values for Treemap Inventory Example

Collection Size Value Label Value Color Value

SRegionView1 CountryCount Name CountryCount

SCountriesView2 WarehouseCount Country WarehouseCount

SWarehouseView2 ProductCount City ProductCount

ProductInventoryView2 AmountInStock Name Varies by stock level

The CountryCount, WarehouseCount, and ProductCount attributes are transient
attributes that count the number of countries, warehouses, and products in the
data collection. For example, the number of countries in a region is calculated by
counting the number of unique Id values in the SCountriesView child collection
that match the RegionId of the region:

SCountriesView.count('Id')

Table 43-2 shows the data collection and size, label, and color values used to
create the sunburst in Figure 43-25.

Table 43-2 Sample Values for Sunburst Sales Example

Collection Size Value Label Value Color Value

SRegionView1 TotalSales Name TotalOrders

SCountriesView2 TotalSales Country TotalOrders

Chapter 43
Creating Databound Treemaps and Sunbursts

43-31

The TotalSales and TotalOrders attributes are transient attributes that calculate
the total sales volume and number of orders for each region and country in the
data collection. For example, the total sales in a region is calculated by summing
the TotalSales in the SCountriesView collection:

SCountriesView.sum ('TotalSales')

For information about adding transient attributes to view objects, see Adding
Calculated and Transient Attributes to a View Object.

2. Drag the collection onto a JSF page and, from the context menu, choose Treemap
or Sunburst.

3. In the Create Treemap dialog or Create Sunburst dialog, in the Hierarchy section,
select the collections you want to include as nodes in the runtime treemap or
sunburst. By default, the root collection is selected.

4. For each collection that you select in the Hierarchy list, enter a value for the
following.

• Value: From the dropdown list, select the attribute in the data collection that
represents the size value for the sunburst. You can select one of the attributes
provided or select Expression Builder to enter a JSF EL expression. For help
with the Expression Builder dialog, press F1 or click Help.

For example, to create a treemap or sunburst using the data collection in
Figure 43-26, select CountryCount for the SRegionView1 value to represent
the size value for the first node.

• Label: From the dropdown list, select the attribute in the data collection that
represents the label you wish to display for the sunburst node label. You can
select one of the attributes provided or select Expression Builder to enter a
JSF EL expression.

For example, select Name for the SRegionView1 node label.

• Optionally, in the View Area section, click New to configure an attribute group
for the node. Use attribute groups if you want the node's display to vary based
on color or pattern. You can also specify the node's fill color or pattern in the
node's fillColor and fillPattern properties after you create the treemap or
sunburst.

If you do not configure an attribute group to vary by color or specify a
fillColor attribute on the node, the node will display in black. By default,
no pattern will be displayed on the node.

In the treemap and sunburst example, attribute groups are configured for each
level in the hierarchy.

To configure an attribute group, enter values for the following:

– Group by value: From the dropdown list, select the attribute in the
data collection to group by in the attribute group. You can select one of
the attributes provided or select Expression Builder to enter a JSF EL
expression.

In the treemap example, the colors used are based on the count metric
for each level in the hierarchy. For example, select CountryCount as the
Group by value for the SRegionView1 collection, and the colors displayed
on the Regions node will vary depending upon the number of countries in
a given region.

Chapter 43
Creating Databound Treemaps and Sunbursts

43-32

In the sunburst example, the colors used are based on the number of
orders for each level in the hierarchy. For example, select TotalOrders
as the Group by value for the SRegionView1 collection, and the colors
displayed on the Regions node will vary depending upon the number of
orders in a given region.

– Area: From the dropdown list, select Color if you want the attribute group
to vary by color or select Pattern if you want the attribute group to vary
by pattern. To vary the attribute group by both color and pattern, select
Select Multiple Attributes and select both Color and Pattern. Click OK.

In the treemap and sunburst examples, color is used for each level of the
hierarchy.

– Legend Label: From the dropdown list, select the attribute in the data
collection to display in the treemap's legend. You can select one of
the attributes provided or select Expression Builder to enter a JSF EL
expression.

In the treemap and sunburst examples, this value is left blank.

Figure 43-28 shows the Create Treemap dialog completed for the first node in
the Summit ADF DVT sample application.

Figure 43-28 Create Treemap Dialog for a Region Node

Figure 43-29 shows the Create Sunburst dialog completed for the first node in
the Summit ADF DVT sample application.

Chapter 43
Creating Databound Treemaps and Sunbursts

43-33

Figure 43-29 Create Sunburst Dialog for a Region Node

• Optionally, click Value-Specific Rules to expand the attribute group dialog
to specify a match or exception rule. Use match rules to specify colors or
patterns for simple true or false conditions or when you want to match a
specific value. Use exception rules when you want to specify a color or pattern
when the node's grouped-by value meets a specific condition.

To specify a match rule, in the Match Rules section, click New and enter
values for the following:

– Group Value: Enter the category value for the match. This can be a
string that represents a category or you can set this to true or false.
If you set this to true or false, the Group by value field must contain
an EL expression that evaluates to true or false as in the following
example:#{row.AmountInStock gt row.ReorderPoint}.

– Property: From the dropdown list, select Color if you want the node to
vary by color or select Pattern if you want the attribute node to vary by
pattern.

– Property Value: From the dropdown list, select the color or pattern to
display when the node's value matches the Group Value. For color, you
can select one of the provided values or select Custom Color to enter
a custom color in the Select Custom Color dialog. For pattern, you must
select one of the provided values.

Figure 43-30 shows the Create Treemap dialog for a data collection using
match rules for the bottom level of the hierarchy.

Chapter 43
Creating Databound Treemaps and Sunbursts

43-34

Figure 43-30 Treemap Showing Match Rules for an Attribute Group

In this example, the treemap nodes will display in green (RGB hexadecimal
#008000) when the inventory levels are acceptable and in red (RBG
hexadecimal #ff0000) when the inventory level is at or below the product's
reorder level. The attribute group's Label field contains the details for the
legend display. In this case, the field contains an expression that determines
the legend label based on an item's amount in stock: #{(row.AmountInStock
gt row.ReorderPoint) ? 'Stock Level OK': 'Reorder Time'}.

Figure 43-31 shows the runtime treemap.

Figure 43-31 Treemap Showing Match Rules at Runtime

Chapter 43
Creating Databound Treemaps and Sunbursts

43-35

To specify an exception rule, in the Exception Rules section, click New and
enter values for the following:

– Condition: Enter a JSF EL expression that evaluates to true or false.
You can enter the expression directly in the Condition field or select
Expression Builder to enter the JSF EL expression.

In the Summit ADF DVT sample application, three exception rules are
defined for the bottom level of the hierarchy. When the product's inventory
level is well above the reorder level, the treemap node in Figure 43-24
and the sunburst node in Figure 43-25 display in green. The treemap and
sunburst node display in yellow when the inventory level is close to the
reorder point and display in red when the inventory level is at or very near
the reorder point.

Figure 43-32 shows the Create Treemap dialog for the Summit ADF DVT
sample data collection using exception rules for the bottom level of the
hierarchy.

Figure 43-32 Treemap Showing Exception Rules Creation Dialog

Note:

In this example, the condition is referencing the ReorderPoint
attribute from the data collection. To use this attribute, you must
manually add it to the binding for the treemap after the treemap
is created. For more information, see What Happens When You
Create a Databound Treemap or Sunburst.

Chapter 43
Creating Databound Treemaps and Sunbursts

43-36

– Property: From the dropdown list, select Color if you want the node to
vary by color. Select Pattern if you want the node to vary by pattern.

– Property Value: From the dropdown list, select the color or pattern to
display when the node's value meets the condition you specified in the
Condition field. For color, you can select one of the provided values or
select Custom Color to enter a custom color in the Select Custom Color
dialog. For pattern, you must select one of the provided values.

– Legend Label: From the dropdown list, select Select Text Resource
to select a text resource to be used for the legend label. You can also
enter text in this field or select Expression Builder to enter a JSF EL
expression.

5. Click OK.

What Happens When You Create a Databound Treemap or Sunburst
Creating a treemap or sunburst from Data Controls panel has the following effect:

• Creates the bindings for the sunburst or treemap in the page definition file of the
JSF page

• Adds the necessary tags to the JSF page for the treemap or sunburst component

The example below displays bindings that JDeveloper generated for a treemap
component using the data collection in Figure 43-26.

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="SRegionView1" RangeSize="-1"
 DataControl="AppModuleDataControl" id="SRegionView1Iterator"/>
</executables>
<bindings>
 <tree IterBinding="SRegionView1Iterator" id="SRegionView1">
 <nodeDefinition DefName="model.SRegionView" Name="SRegionView10">
 <AttrNames>
 <Item Value="CountryCount"/>
 <Item Value="Name"/>
 </AttrNames>
 <Accessors>
 <Item Value="SCountriesView"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition DefName="model.SCountriesView" Name="SRegionView11">
 <AttrNames>
 <Item Value="WarehouseCount"/>
 <Item Value="Country"/>
 </AttrNames>
 <Accessors>
 <Item Value="SWarehouseView"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition DefName="model.SWarehouseView" Name="SRegionView12">
 <AttrNames>
 <Item Value="ProductCount"/>
 <Item Value="City"/>
 </AttrNames>
 <Accessors>
 <Item Value="ProductInventoryView"/>
 </Accessors>

Chapter 43
Creating Databound Treemaps and Sunbursts

43-37

 </nodeDefinition>
 <nodeDefinition DefName="model.ProductInventoryView" Name="SRegionView13">
 <AttrNames>
 <Item Value="Name"/>
 <Item Value="AmountInStock"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

The rules for populating the nodes of the treemap or sunburst are defined in node
definitions. The example shows that four node definitions were generated, one for
each level of the hierarchy. Each of these node definitions references a view object
and the attributes specified in the Create Treemap or Create Sunburst dialog. Each
node definition also references an accessor for the next level of the hierarchy if the
next level exists.

Attributes that were not specified in the Value, Name, or Group By Value fields
during creation will not be included in the binding. If you need to reference another
attribute in the data collection, you must add it manually to the binding. For example,
in the Summit ADF DVT sample, the attribute exception rules calculate the colors
based on the difference between the amount in stock (AmountInStock) and the reorder
point (ReorderPoint) for a given product. For the EL expression to evaluate properly,
you must add the ReorderPoint attribute to the binding definition for the treemap or
sunburst.

To add the binding, in the Structure window, right-click the dvt:treemap or
dvt:sunburst component and choose Go to Binding. Choose Edit in the Binding
section to add the ReorderPoint attribute. Figure 43-33 shows the completed Edit
Tree Binding dialog for the Summit ADF DVT treemap with ReorderPoint added to the
display attributes.

Chapter 43
Creating Databound Treemaps and Sunbursts

43-38

Figure 43-33 Edit Tree Binding Dialog

After you click OK, the binding will be updated with the added attribute. The example
below shows the revised binding for the SRegionView13 node definition.

<nodeDefinition DefName="model.ProductInventoryView" Name="SRegionView13">
 <AttrNames>
 <Item Value="Name"/>
 <Item Value="AmountInStock"/>
 <Item Value="ReorderPoint"/>
 </AttrNames>
</nodeDefinition>

Once you create your treemap or sunburst, you can modify the value, label, and
attribute group for each node using the Create Treemap or Create Sunburst dialog.
To open the dialog, use the Edit icon in the Properties window for the treemap or
sunburst component. You can also customize the values directly in the code or by
setting values in the Properties window.

What Happens at Runtime: How Databound Sunbursts or Treemaps
Are Initially Displayed

By default, a sunburst or treemap displays only the first two levels of the hierarchy and
will not display a legend until you configure the legendSource attribute on the sunburst
or treemap. Figure 43-34 shows the treemap that is displayed at runtime if you create
the treemap using the data collection in Figure 43-26.

Chapter 43
Creating Databound Treemaps and Sunbursts

43-39

Figure 43-34 Databound Treemap Example Before Configuration

After completing the Create Treemap or Create Sunburst dialog, you can use
the Properties window to configure the treemap or sunburst level display and
legendSource attribute. You can also specify settings for other treemap or sunburst
attributes and use the child tags associated with the sunburst and treemap tags to
customize the components further.

The example below shows the code on the JSF page code for the treemap in
Figure 43-24. In this example, the databound treemap is configured to display all
levels in the hierarchy, a legend, a tooltip when the user hovers the mouse over a
node, and a summary for accessibility. The code related to the additional configuration
is highlighted in bold font.

<dvt:treemap id="t1" value="#{bindings.SRegionView1.treeModel}"
 var="row" displayLevelsChildren="3"
 legendSource="ag1" summary="Sample Treemap">
 <af:switcher facetName="#{row.hierTypeBinding.name}" id="s1">
 <f:facet name="SRegionView11">
 <dvt:treemapNode value="#{row.WarehouseCount}" label="#{row.Country}"
 id="tn1">
 <dvt:attributeGroups id="ag2" value="#{row.WarehouseCount}"
type="color"/>
 </dvt:treemapNode>
 </f:facet>
 <f:facet name="SRegionView10">
 <dvt:treemapNode value="#{row.CountryCount}" label="#{row.Name}" id="tn2">
 <dvt:attributeGroups id="ag3" value="#{row.CountryCount}" type="color"/>
 </dvt:treemapNode>
 </f:facet>
 <f:facet name="SRegionView13">
 <dvt:treemapNode value="#{row.AmountInStock}" label="#{row.Name}" id="tn3"
 shortDesc="Amount in Stock:
 #{row.AmountInStock}
Reorder Point:
 #{row.ReorderPoint}">
 <dvt:attributeGroups value="#{row.AmountInStock}" type="color" id="ag1">
 <dvt:attributeExceptionRule id="aer1"
 condition="#{(row.AmountInStock -
 row.ReorderPoint) gt 50}"
 label="Stock OK">
 <f:attribute name="color" value="#008800"/>

Chapter 43
Creating Databound Treemaps and Sunbursts

43-40

 </dvt:attributeExceptionRule>
 <dvt:attributeExceptionRule id="aer2"
 condition="#{((row.AmountInStock - row.ReorderPoint) le 50) and
 ((row.AmountInStock - row.ReorderPoint) gt 25)}"
 label="Stock Level Getting Low">
 <f:attribute name="color" value="#FFFF33"/>
 </dvt:attributeExceptionRule>
 <dvt:attributeExceptionRule id="aer3"
 condition="#{(row.AmountInStock - row.ReorderPoint) le 25}"
 label="Reorder Time">
 <f:attribute name="color" value="#880000"/>
 </dvt:attributeExceptionRule>
 </dvt:attributeGroups>
 </dvt:treemapNode>
 </f:facet>
 <f:facet name="SRegionView12">
 <dvt:treemapNode value="#{row.ProductCount}" label="#{row.City}" id="tn4">
 <dvt:attributeGroups id="ag4" value="#{row.ProductCount}" type="color"/>
 </dvt:treemapNode>
 </f:facet>
 </af:switcher>
</dvt:treemap>

The example below shows the code on the JSF page code for the sunburst in
Figure 43-25. In this example, the databound sunburst is configured with a summary
and a tooltip that displays when the user hovers the mouse over a node.

<dvt:sunburst id="t1" value="#{bindings.SRegionView1.collectionModel}"
 var="row" summary="Sunburst Demo">
 <af:switcher facetName="#{row.hierTypeBinding.name}" id="s1">
 <f:facet name="SRegionView10">
 <dvt:sunburstNode value="#{row.TotalSales}" label="#{row.Name}" id="sn1"
 shortDesc="Sales: #{row.TotalSales}
Orders:
#{row.TotalOrders}">
 <dvt:attributeGroups value="#{row.TotalOrders}" type="color" id="ag2"/>
 </dvt:sunburstNode>
 </f:facet>
 <f:facet name="SRegionView11">
 <dvt:sunburstNode value="#{row.TotalSales}" label="#{row.Country}" id="sn2"
 shortDesc="Sales: #{row.TotalSales}
Orders:
#{row.TotalOrders}">
 <dvt:attributeGroups value="#{row.TotalOrders}" type="color" id="ag1"/>
 </dvt:sunburstNode>
 </f:facet>
 </af:switcher>
</dvt:sunburst>

For information about configuring the sunburst or treemap level display, legendSource
attribute, tooltips, additional attributes, or child tags, see the Using Treemap and
Sunburst Components chapter in Developing Web User Interfaces with Oracle ADF
Faces.

Chapter 43
Creating Databound Treemaps and Sunbursts

43-41

44
Creating Databound Diagram Components

This chapter describes how to how to create a diagram from data modeled with
ADF Business Components, using ADF data controls and ADF Faces components
in a Fusion web application. Specifically, it describes how you can use ADF Data
Visualization diagram components to create diagrams that visually represent business
data. It describes how to use ADF data controls to create these components with
data-first development.
If you are designing your page using simple UI-first development, then you can add
the diagram to your page and configure the data bindings later. For information
about the data requirements, tag structure, and options for customizing the look and
behavior of the diagram component, see Using Diagram Components in Developing
Web User Interfaces with Oracle ADF Faces.

This chapter includes the following sections:

• About ADF Data Visualization Diagram Components

• Creating Databound Diagram Components

About ADF Data Visualization Diagram Components
The DVT diagram component is a versatile tool that produces an interactive
component that you can use to model, represent, and visualize information using a
shape called a node to represent data and links to represent relationships between
the nodes. Use diagrams when you want to highlight both the data objects and the
relationship between them.

ADF Data Visualization components provide extensive graphical and tabular
capabilities for visually displaying and analyzing business data. Each component
needs to be bound to data before it can be rendered since the appearance of the
components is dictated by the data that is displayed.

Figure 44-1 shows four runtime images of diagram components: a Sankey flow
diagram, database table design, employee organization chart, and a scheduling
diagram. In these examples, the nodes are the processes, database objects,
employees, and scheduled stops. The links show the relationship between each
process in the Sankey flow diagram, employee in the organization chart, and
sequence of stops in the scheduling diagram.

44-1

Figure 44-1 Diagram Component Examples

The prefix dvt: occurs at the beginning of each data visualization component name
indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag
library.

End User and Presentation Features
Visually compelling data visualization components enable end users to understand
and analyze complex business data. The components are rich in features that provide
out-of-the-box interactivity support. For detailed descriptions of the end user and
presentation features for the DVT diagram component, see End User and Presentation
Features in Developing Web User Interfaces with Oracle ADF Faces.

Data Visualization Components Use Cases and Examples
For detailed descriptions of Diagram component use cases and examples, see
Diagram Use Cases and Examples in Developing Web User Interfaces with Oracle
ADF Faces.

Additional Functionality for Data Visualization Components
You may find it helpful to understand other Oracle ADF features before you data
bind your data visualization components. Additionally, once you have added a data
visualization component to your page, you may find that you need to add functionality
such as validation and accessibility. Following are links to other functionality that data
visualization components use:

• Partial page rendering: You may want a data visualization component to refresh to
show new data based on an action taken on another component on the page. For

Chapter 44
About ADF Data Visualization Diagram Components

44-2

more information, see Rerendering Partial Page Content in Developing Web User
Interfaces with Oracle ADF Faces.

• Personalization: Users can change the way the data visualization components
display at runtime, those values will not be retained once the user leaves the
page unless you configure your application to allow user customization. For more
information, see Allowing User Customization on JSF Pages in Developing Web
User Interfaces with Oracle ADF Faces.

• Accessibility: You can make your data visualization components accessible. For
more information, see Developing Accessible ADF Faces Pages in Developing
Web User Interfaces with Oracle ADF Faces.

• Skins and styles: You can customize the appearance of data visualization
components using an ADF skin that you apply to the application or by applying
CSS style properties directly using a style-related property (styleClass or
inlineStyle). For more information, see Customizing the Appearance Using
Styles and Skins in Developing Web User Interfaces with Oracle ADF Faces.

• Placeholder data controls: If you know the data visualization components on your
page will eventually use ADF data binding, but you need to develop the pages
before the data controls are ready, then you should consider using placeholder
data controls, rather than manually binding the components. Using placeholder
data controls will provide the same declarative development experience as using
developed data controls. For more information, see Designing a Page Using
Placeholder Data Controls.

Creating Databound Diagram Components
Databound DVT diagram components require a collection of node objects to represent
the data and, optionally, a collection of link objects to represent the relationships
between the nodes.

You can use objects that implement a List interface, such as
a java.util.ArrayList object, or a collection model, such as a
org.apache.myfaces.trinidad.model.CollectionModel.

Databound diagrams also require a client layout configuration defined in a JavaScript
method that you add to the application as a feature. Client layouts specify how to lay
out the nodes and links on a page. The diagram component includes a default layout
that you can use and modify as needed. The default forceDirectedLayout positions
the diagram nodes so that all the links are of more or less equal length, and there are
as few crossing links as possible.

Note:

You can also provide your own client layout configuration in a JavaScript
object that you add as an application feature. For additional information, see
Using the Diagram Layout Framework in Developing Web User Interfaces
with Oracle ADF Faces.

The Create Diagram wizard provides declarative support for creating the diagram and
binding it to data. In the five wizard pages you can:

Chapter 44
Creating Databound Diagram Components

44-3

1. Configure the diagram's client layout.

You can choose the default client forceDirectedLayout feature, specify your own
layout, or choose no layout.

2. Specify the node and link data, including:

• The collections to use for the node and link data

• The attribute that specifies the node's unique identifier (id)

• Optionally, the attribute in the node collection that contains the container id to
identify child nodes that are contained by the parent node

• The attributes in the link collection that specify the starting and ending node
ids for a link

3. Optionally, configure the display characteristics of the node's label and marker.

Diagram nodes use the dvt:marker component to configure many of the node's
display characteristics, including color, pattern, shape, border style, and color.

4. Optionally, configure attribute groups to group nodes by color, shape, pattern,
opacity, scale X, or scale Y according to a specified attribute.

5. Optionally, configure the display characteristics of the link's label, style, color,
width, beginning connector, and end connector.

Figure 44-2 shows a diagram configured to use the default client layout. In this
example, the diagram is configured to use attribute groups to group the nodes by
the values in the node's NodeGroup and NodeType attributes.

Figure 44-2 Diagram Example With Attribute Groups

After you complete the Create Diagram wizard and the diagram is added to your page,
you can further customize the diagram using the Properties window. For additional

Chapter 44
Creating Databound Diagram Components

44-4

information, see Using Diagram Components in Developing Web User Interfaces with
Oracle ADF Faces.

Note:

The ADF Data Visualization Tools (DVT) component collection includes other
components that you can also use to model organization charts, time lines,
etc.

For example, you can also use the DVT hierarchy viewer component to
display an organization chart bound to employee data. Hierarchy viewers
also use nodes and links to display data, but the component automatically
creates the links based on the values in the node's data collection, and you
do not need to supply a separate data collection for the links.

For additional information about other DVT components and typical use
cases, see Introduction to Data Visualization Components in Developing
Web User Interfaces with Oracle ADF Faces.

How to Create a Diagram Using ADF Data Controls
To create a DVT diagram using data controls, bind the dvt:diagram component to
a collection that contains the node data and a collection that contains the links that
represent the relationships between the nodes. JDeveloper allows you to do this
declaratively by dragging and dropping a collection from the Data Controls panel.

Tip:

You can also create the diagram by dragging the diagram from the
Components window.

Before you begin:

It may be helpful to have an understanding of databound diagrams. For more
information, see About ADF Data Visualization Diagram Components.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model for the diagram, as described in Creating and Modifying
an Application Module.

Figure 44-3 shows the data control for the diagram displayed in Figure 44-2. In
this example, NodesView1 contains the data collection for the diagram nodes, and
LinksView1 contains the data collection for the diagram links.

Chapter 44
Creating Databound Diagram Components

44-5

Figure 44-3 Diagram Node and Link Data Collections Example

The Startnode and Endnode attributes in the LinksView1 data collection contain
references to the Nodeid attribute in the NodesView1 data collection. Figure 44-4
shows a portion of the link collection's data in the Object Viewer.

Figure 44-4 Diagram Sample Link Data

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a databound diagram:

1. From the Data Controls panel, select the data collection that represents the nodes
to use for your diagram.

For example, to use the data collection shown in this section, select NodesView1.

2. Drag the collection onto a JSF page and, from the menu, choose Diagram.

3. In the Create Diagram - Configure Client Layout dialog, select your client layout.

You can choose the default client layout, provide your own layout, or choose no
layout. To choose the default layout, click Default Client Layout as shown in
Figure 44-5.

Chapter 44
Creating Databound Diagram Components

44-6

Figure 44-5 Configure Client Layout Dialog Showing Default Client Layout
Selection

To specify a different layout, click Choose Client Layout and select the feature
and method that you want to use from the Features and Methods dropdown
menus. After you choose the layout, the layout's optional attributes appear in the
dialog, and you can enter values for the attributes as desired.

Figure 44-6 shows the completed Create Diagram - Configure client layout
dialog for a custom circle layout. In this example, the selected feature name is
DemoCircleLayout, and the selected method is circleLayout. Optional layout
attributes include anchor, center, curvedLinks, radialLabels, radius, and
sortAttr.

Chapter 44
Creating Databound Diagram Components

44-7

Figure 44-6 Configure Client Layout Dialog Showing Custom Layout
Selection

If you want to look at the code source for the method you selected, click Search
to display a popup containing the source code. Figure 44-7 shows the popup that
displays the DemoCircleLayout.circleLayout method.

Chapter 44
Creating Databound Diagram Components

44-8

Figure 44-7 Configure Client Layout Dialog Showing Method Source Code
Popup

4. In the Create Diagram - Specify Node and Link Data dialog, enter values for the
following to identify the data sources and link connections:

• Collection: Verify that the correct data collection is displayed for the node
collection.

To change the data collection, click Add Data Source and choose another
data collection from the list.

• Node Id: Enter a value or use the dropdown menu to select the attribute in the
node's data collection that represents the unique identifier of the node in the
diagram.

Alternatively, you can enter an EL expression that returns the value or select
Expression Builder from the dropdown menu to launch the Expression
Builder dialog. For help with the Expression Builder dialog, press F1 or click
Help.

• Container Id: Enter or use the dropdown list to select the attribute in the
node's data collection that represents the parent node for child nodes in the
diagram.

Alternatively, you can enter an EL expression that returns the value or select
Expression Builder from the dropdown menu to launch the Expression
Builder dialog.

• Collection (Link): Enter the data collection that represents the links, or click
Add Data Source to choose the data collection from the list.

• Start Node Id: Enter or use the dropdown list to select the attribute in the
link's data collection that represents the source node in diagram.

Chapter 44
Creating Databound Diagram Components

44-9

Alternatively, you can enter an EL expression that returns the value or select
Expression Builder from the dropdown menu to launch the Expression
Builder dialog.

• End Node Id: Enter or use the dropdown list to select the attribute in the link's
data collection that represents the target node in diagram.

Alternatively, you can enter an EL expression that returns the value or select
Expression Builder from the dropdown menu to launch the Expression
Builder dialog.

Figure 44-8 shows the completed dialog for a diagram using the NodesView1 and
LinksView1 data collections. In this example, the Node Id value is Nodeid, and
the link's Start Node Id and End Node Id values are set to the Startnode and
Endnode attributes in the LinksView1 data collection. In this example, the parent
container has no children, and the Container ID field is not used.

Figure 44-8 Specify Node and Link Data Dialog Example

5. In the Create Diagram - Configure Diagram Nodes dialog, optionally enter values
for the following to configure the display characteristics of the node's label and
marker:

• Node Label: From the dropdown list, select the attribute in the data collection
to use for the node's label. You can select one of the attributes provided or
select Expression Builder to enter a JSF EL expression.

Optionally, you can enter values for the label's width, height, and opacity. For
help with the dialog, press F1 or click Help.

Chapter 44
Creating Databound Diagram Components

44-10

Tip:

If you're not sure yet which values make sense for your diagram, you
can create the diagram and modify the values after creation.

• Color: From the dropdown list, select a node color from the provided colors or
select Custom Color to enter the Color Picker dialog. The default node color
is black.

• Pattern: From the dropdown list, select a node pattern. Valid values for pattern
include a choice of twelve prebuilt patterns, such as small and large checkers,
diamonds, and triangles. If you specified a node color, the pattern will display
in the color you chose. The default node pattern is none.

• Shape: From the dropdown list, select a shape to use for the node. Valid
values include: circle, human, diamond, square, triangleDown, triangleUp,
and plus. The default node shape is circle.

Note:

When you specify the node's shape, color, or pattern explicitly, the
same value will be used for each node in the diagram. If you want
to vary the color, pattern, or shape according to some measure,
configure an attribute group in the next page of the Create Diagram
wizard instead.

• Source: To use a custom node shape, enter the relative path to the SVG file
to use for the node image, or use the Search icon to open the Select SVG File
dialog to navigate to the image source.

• Border Style: From the dropdown list, select a border style for all nodes in the
diagram. Valid values include solid, dash, and dot. The default style is a solid
line.

• Border Color: From the dropdown list, select a border color for all nodes in
the diagram or select Custom Color to enter the Color Picker dialog. The
default border color is black.

Figure 44-9 shows a completed Create Diagram - Configure Diagram Nodes
dialog. In this example, the node label is configured with a relative width of 20
and relative height of 30. The node's shape is a triangle pointing up with an
aqua-colored small crosshatch pattern.

Chapter 44
Creating Databound Diagram Components

44-11

Figure 44-9 Configure Diagram Nodes Dialog Example

Figure 44-10 shows the runtime view of three diagram nodes after creation.

Figure 44-10 Diagram Nodes With Optional Display Attributes

6. (Optional) In the Create Diagram - Configure Attribute Groups, to configure one
or more attribute groups for the diagram nodes, click New in the Grouping Rules
section and enter values for the following:

• Group by value: From the dropdown list, select the attribute in the
data collection to group by in the attribute group. You can select one of
the attributes provided or select Expression Builder to enter a JSF EL
expression.

• Property: From the dropdown list, select the property that you want to group
by for display. Available options include Color, Opacity, Pattern, Scale X,
Scale Y, and Shape.

To vary the attribute group by more than one property, select Select Multiple
Attributes. In the Select Multiple Attributes, select the desired properties, and
click OK.

• Legend Label: From the dropdown list, select the attribute in the data
collection to display in the diagram legend. You can select one of the attributes
provided or select Expression Builder to enter a JSF EL expression.

Chapter 44
Creating Databound Diagram Components

44-12

• Section Label: To use a text resource for the label, select Select Text
Resource to associate a text resource for the label. If you wish to access data
stored in objects, or reference and invoke methods using an EL Expression,
select Expression Builder to launch the Expression Builder dialog.

Note:

The section label describes the legend content of a sub-section of
the legend and is rendered in the legend area. In Figure 44-2, for
example, Group and Type are section labels.

• Optionally, click Value-Specific Rules to expand the attribute group dialog
to specify a match or exception rule. Use match rules to specify colors or
patterns for simple true or false conditions or when you want to match a
specific value. Use exception rules when you want to specify a color or pattern
when the grouped-by value meets a specific condition.

To specify a match rule, in the Match Rules section, click New and enter
values for the following:

– Group Value: Enter the category value for the match. This can be a
string that represents a category or you can set this to true or false.
If you set this to true or false, the Group by value field must contain
an EL expression that evaluates to true or false as in the following
example:#{row.AmountInStock gt row.ReorderPoint}.

– Property: From the dropdown list, select the property that you want to
group by for display. Available options include Color, Opacity, Pattern,
Scale X, Scale Y, and Shape.

– Property Value: From the dropdown list, select the color or pattern to
display when the node's value matches the Group Value. For color, you
can select one of the provided values or select Custom Color to enter
a custom color in the Select Custom Color dialog. For pattern, you must
select one of the provided values.

To specify an exception rule, in the Exception Rules section, click New and
enter values for the following:

– Condition: Enter a JSF EL expression that evaluates to true or false.
You can enter the expression directly in the Condition field or select
Expression Builder to enter the JSF EL expression.

– Property: From the dropdown list, select the property that you want to
group by for display. Available options include Color, Opacity, Pattern,
Scale X, Scale Y, and Shape.

– Property Value: From the dropdown list, select the color or pattern to
display when the node's value meets the condition you specified in the
Condition field. For color, you can select one of the provided values or
select Custom Color to enter a custom color in the Select Custom Color
dialog. For pattern, you must select one of the provided values.

– Legend Label: From the dropdown list, select Select Text Resource
to select a text resource to be used for the legend label. You can also
enter text in this field or select Expression Builder to enter a JSF EL
expression.

Chapter 44
Creating Databound Diagram Components

44-13

Figure 44-11 shows the completed Create Diagram - Configure Attribute Groups
dialog for the diagram in Figure 44-2. In this example, the diagram is configured
for two attributes groups. The first attribute group varies the node's color
depending upon the value in the NodeGroup attribute, and the second attribute
group varies the node's shape depending upon the value in the NodeType attribute.
The legend will display section labels for both groups.

Figure 44-11 Configure Attribute Groups Dialog Example

7. In the Create Diagram - Configure Diagram Links dialog, enter values for the
following to configure the display characteristics of the link label, style, and
connector:

• Link Style: From the dropdown list, select a border style for all nodes in the
diagram. Valid values include solid, dash, dot, and dashDot. The default style
is a solid line.

• Link Width: Enter the width of the link in pixels. The default value is 1.

• Link Color: From the dropdown list, select a link color from the provided
colors or select Custom Color to enter the Color Picker dialog. The default
link color is black.

• Connector Start: Enter a value for the link's start connector. Valid values
include none, arrowOpen, arrow, arrowConcave, circle, rectangle, and
rectangleRounded. The default value is none.

• Connector End: Enter a value for the link's end connector. Valid values
include none, arrowOpen, arrow, arrowConcave, circle, rectangle, and
rectangleRounded. The default value is none.

• Label: From the dropdown list, select the attribute in the data collection to use
for the links's label. You can select one of the attributes provided or select
Expression Builder to enter a JSF EL expression.

Chapter 44
Creating Databound Diagram Components

44-14

Figure 44-12 shows a completed Create Diagram - Configure Diagram Links
dialog. In this example, the link is configured with a label and the default width
and style. The link's color is maroon and will display a circle at the connector's
start and an arrow at the connector's end.

Figure 44-12 Configure Dialog Links Dialog Example

Figure 44-13 shows the runtime view of three diagram nodes after creation.

Figure 44-13 Diagram Links With Optional Display Characteristics

8. When you have completed the Create Diagram wizard, click Finish to exit the
wizard and add the diagram to the page.

What Happens When You Create a Databound Diagram
Creating a diagram from the Data Controls panel has the following effect:

• Creates the bindings for the diagram in the page definition file
(pageNamePageDef.xml) of the JSF page

• Adds the necessary tags to the JSF page for the dvt:diagram component

• If you chose the default client layout during creation, registers the layout with the
ADF Faces runtime environment

Chapter 44
Creating Databound Diagram Components

44-15

Bindings for Diagram Components
The following code sample shows the bindings that JDeveloper generated for a
dvt:diagram component using the data collection shown in Figure 44-3.

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="NodesView1" RangeSize="-1"
DataControl="AppModuleDataControl" id="NodesView1Iterator"/>
 <iterator Binds="LinksView1" RangeSize="-1"
DataControl="AppModuleDataControl" id="LinksView1Iterator"/>
</executables>
<bindings>
 <tree IterBinding="NodesView1Iterator" id="NodesView1">
 <nodeDefinition DefName="model.NodesView" Name="NodesView10">
 <AttrNames>
 <Item Value="NodeGroup"/>
 <Item Value="NodeType"/>
 <Item Value="Nodeid"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
 <tree IterBinding="LinksView1Iterator" id="LinksView1">
 <nodeDefinition DefName="model.LinksView" Name="LinksView10">
 <AttrNames>
 <Item Value="Endnode"/>
 <Item Value="Startnode"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

The rules for populating the diagram are defined in a node definition. Each node
definition references the node and links view objects and the attributes specified in the
Create Diagram dialog. For additional information about the pageNamePageDef.xml
file, see pageNamePageDef.xml.

Code on the JSF Page for a Diagram Component
The following example shows the code that is generated on the JSF page for the
diagram shown in Figure 44-2.

<dvt:diagram id="dg1" layout="DiagramSampleDiagramLayout">
 <dvt:diagramNodes var="node" id="dnodes1"
 value="#{bindings.NodesView1.collectionModel}">
 <dvt:diagramNode label="#{node.Nodeid}" id="dn1" nodeId="#{node.Nodeid}">
 <f:facet name="zoom100">
 <dvt:marker width="20" id="m1" height="30">
 <dvt:attributeGroups id="ag1" label="#{node.NodeGroup}" type="color"
 value="#{node.NodeGroup}"/>
 <dvt:attributeGroups id="ag2" label="#{node.NodeType}" type="shape"
 value="#{node.NodeType}"/>
 </dvt:marker>
 </f:facet>
 </dvt:diagramNode>
 </dvt:diagramNodes>
 <dvt:diagramLinks var="link" value="#{bindings.LinksView1.collectionModel}"
 id="dl1">
 <dvt:diagramLink startNode="#{link.Startnode}" id="dl2"

Chapter 44
Creating Databound Diagram Components

44-16

 endNode="#{link.Endnode}"/>
 </dvt:diagramLinks>
 <dvt:clientLayout method="DiagramSampleDiagramLayout.forceDirectedLayout"
 featureName="DiagramSampleDiagramLayout"
 name="DiagramSampleDiagramLayout">
 <f:attribute name="optimalLinkLength" value="75"/>
 </dvt:clientLayout>
 <dvt:legend id="l1">
 <dvt:legendSection label="#{viewcontrollerBundle.GROUP}" source="dnodes1:ag1"
 id="ls1"/>
 <dvt:legendSection label="#{viewcontrollerBundle.TYPE}" source="dnodes1:ag2"
 id="ls2"/>
 </dvt:legend>
</dvt:diagram>

Default Client Layout Files and Location
When you create a diagram using the default client layout, JDeveloper registers the
force directed layout with the ADF runtime environment as a JavaScript (JS) feature.
The creation process automatically adds a JS file in the ViewController/src/js/
layout directory with the following naming convention:

ApplicationNameDiagramLayout.js

For example, if your application is named DiagramSample, the JS file is
named DiagramSampleDiagramLayout.js. The content of the file contains the
forceDirectedLayout method, and you can open the file in JDeveloper. You can also
click Edit Component Definition in the Properties window to display the Edit Diagram
- Configure Client Layout dialog and then click Search to display the method popup.

JDeveloper also creates the adf-js-features.xml file if it doesn't already exist and
adds the ApplicationNameDiagramLayout as the feature-name and the path to the JS
file as the feature-class. The following example shows the adf-js-features.xml file
for an application named DiagramSample.

<?xml version="1.0" encoding="UTF-8" ?>
<features xmlns="http://xmlns.oracle.com/adf/faces/feature">
 <feature>
 <feature-name>DiagramSampleDiagramLayout</feature-name>
 <feature-class>js/layout/DiagramSampleDiagramLayout.js</feature-class>
 </feature>
</features>

Modifying Diagram Properties and Layout
After you create your diagram, you can specify a different client layout or add
additional elements, such as a label, using the Edit Diagram dialog. To open the
dialog, use the Edit icon in the Properties window for the dvt:diagram component.
You can also customize the diagram properties directly in the visual editor or by setting
values in the Properties window.

For example, to add the tooltip shown in Figure 44-2 to your diagram, you can enter
a value for the diagram node's shortDesc attribute in the Properties window or in the
code editor.

<dvt:diagramNode label="#{node.Nodeid}" id="dn1" nodeId="#{node.Nodeid}"
 shortDesc="Group: #{node.NodeGroup} Type:
#{node.NodeType}">

Chapter 44
Creating Databound Diagram Components

44-17

 <f:facet name="zoom100">
 ... contents omitted
 </f:facet>
</dvt:diagramNode>

For additional information and examples for customizing your diagram, see Using
Diagram Components in Developing Web User Interfaces with Oracle ADF Faces.

Chapter 44
Creating Databound Diagram Components

44-18

45
Creating Databound Tag Cloud
Components

This chapter describes how to how to create a tag cloud from data modeled with
ADF Business Components, using ADF data controls and ADF Faces components
in a Fusion web application. Specifically, it describes how you can use ADF Data
Visualization tagCloud components to create tag clouds that visually represent
business data. It describes how to use ADF data controls to create these components
with data-first development.

If you are designing your page using simple UI-first development, then you can add
the tag cloud to your page and configure the data bindings later. For information
about the data requirements, tag structure, and options for customizing the look and
behavior of the tag cloud component, see Using Tag Cloud Components in Developing
Web User Interfaces with Oracle ADF Faces.

This chapter includes the following sections:

• About ADF Data Visualization Tag Cloud Components

• Creating Databound Tag Cloud Components

About ADF Data Visualization Tag Cloud Components
A tag cloud is a visual representation for text data, typically used to visualize free
form text or tag metadata for a website. The importance or frequency of each tag is
shown with font size or color. This visualization is useful for quickly identifying the most
prominent terms in a set.

ADF Data Visualization components provide extensive graphical and tabular
capabilities for visually displaying and analyzing business data. Each component must
be bound to data before it can be rendered since the appearance of the components is
dictated by the data that is displayed.

The prefix dvt: occurs at the beginning of each data visualization component name
indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag
library.

Data Visualization Components Use Cases and Examples

For detailed descriptions of Tag Cloud component use cases and examples, see Tag
Cloud Use Cases and Examples in Developing Web User Interfaces with Oracle ADF
Faces.

45-1

End User and Presentation Features
Visually compelling data visualization components enable end users to understand
and analyze complex business data. The components are rich in features that provide
out-of-the-box interactivity support.

For detailed descriptions of the end user and presentation features for the DVT
tag cloud component, see End User and Presentation Features of Tag Clouds in
Developing Web User Interfaces with Oracle ADF Faces.

Additional Functionality for Data Visualization Components
You may find it helpful to understand other Oracle ADF features before you data
bind your data visualization components. Additionally, once you have added a data
visualization component to your page, you may find that you need to add functionality
such as validation and accessibility. Following are links to other functionality that data
visualization components use:

• Partial page rendering: You may want a data visualization component to refresh to
show new data based on an action taken on another component on the page. For
more information, see the Rerendering Partial Page Content chapter in Developing
Web User Interfaces with Oracle ADF Faces.

• Personalization: Users can change the way the data visualization components
display at runtime, those values will not be retained once the user leaves the
page unless you configure your application to allow user customization. For
more information, see the Allowing User Customization on JSF Pages chapter
in Developing Web User Interfaces with Oracle ADF Faces.

• Accessibility: By default, data visualization components are accessible. You can
make your application pages available to screen readers. For more information,
see the Developing Accessible ADF Faces Pages chapter in Developing Web
User Interfaces with Oracle ADF Faces.

• Skins and styles: You can customize the appearance of data visualization
components using an ADF skin that you apply to the application or by applying
CSS style properties directly using a style-related property (styleClass or
inlineStyle). For more information, see the Customizing the Appearance Using
Styles and Skins chapter in Developing Web User Interfaces with Oracle ADF
Faces.

• Placeholder data controls: If you know the data visualization components on your
page will eventually use ADF data binding, but you need to develop the pages
before the data controls are ready, then you should consider using placeholder
data controls, rather than manually binding the components. Using placeholder
data controls will provide the same declarative development experience as using
developed data controls. For more information, see Designing a Page Using
Placeholder Data Controls.

Creating Databound Tag Cloud Components
The ADF Tag Cloud component displays tag data in either a rectangular container or
in a free-form cloud. Tags represent the actual data and are stamped inside the cloud
layout according to their weight, with heavier or more important tags in the middle.

Chapter 45
Creating Databound Tag Cloud Components

45-2

Figure 45-1 shows a tag cloud configured to show all the states in the USA. States
with a population of less than 5 million have blue tags and states with a population of
5 million or more have red tags. This tag cloud renders high density tags nearer to the
center.

Figure 45-1 Tag Cloud Component showing High and Low Population States in
USA

For detailed information about tag cloud end user and presentation features, use
cases, tag structure, and adding special features to tag clouds, see the Using Tag
Cloud Components chapter in Developing Web User Interfaces with Oracle ADF
Faces.

How to Create a Databound Tag Cloud
A tag cloud is used to display tag information or website metadata in a free flow
format. You can create a tag cloud by using the Data Controls panel.

Before you begin:

It may be helpful to have an understanding of databound tag clouds. For more
information, see Creating Databound Tag Cloud Components.

You may also find it helpful to understand functionality that can be added using
other Oracle ADF features. For more information, see Additional Functionality for Data
Visualization Components.

You will need to complete these tasks:

• Create an application module that contains instances of the view objects that you
want in your data model for the tag cloud, as described in Creating and Modifying
an Application Module.

Figure 45-2 shows the data control for the tag cloud displayed in Creating
Databound Tag Cloud Components. In this example, CensusView1 contains the

Chapter 45
Creating Databound Tag Cloud Components

45-3

data collection for the tag cloud. Tags are represented visually as free-form
text.. Each tag is sized and stamped according to the values in the tag's
Population2006 attribute.

Figure 45-2 Data Control for Tag Cloud Showing High and Low Population
States in the USA

The values of the Population2006 attribute are checked against Match Rules in
the tag cloud. Tags with a value of more than 5 million are rendered in red and the
other tags are rendered in blue.

• Create a JSF page as described in the How to Create JSF Pages section of
Developing Web User Interfaces with Oracle ADF Faces.

To create a databound tag cloud:

1. From the Data Controls panel, select a collection.

For example, to use the data control shown in this section, select CensusView1.

2. Drag the collection onto a JSF page and, from the menu, choose Tag Cloud.

3. In the Create Tag Cloud dialog, do the following to configure the tag cloud:

• From the dropdown menu of the Text Value field, select an attribute to
represent the text that will be shown in the rendered tag cloud.

For example, to configure the tag cloud in the sample, select the State
attribute.

• To configure the tag sizes, select an attribute from the dropdown menu of the
Relative Size field.

For example, to configure the tag cloud in the sample, select the
Population2006 attribute

• To configure tag colors, create a rule under Grouping Rules and then create
appropriate Value-Specific Rules. Use Match Rules to specify colors for
simple true or false conditions or when you want to match a specific value.
Use Exception Rules when you want to specify a color when the tag's
grouped-by value meets a specific condition.

For example, to configure the tag cloud in the sample, create a new
Grouping rule. Under both Group by value and Legend Label, provide
#{ent.Population2006 gt 5000000}.

Chapter 45
Creating Databound Tag Cloud Components

45-4

Then create two new Match Rules. For the first, provide a Group Value of
true and a Property Value of #ed6647. For the second, provide a Group
Value of false and a Property Value of #267db3.

Figure 45-3 shows the Create Tag Cloud dialog that generates the sample tag
cloud using the CensusView1 data control.

Figure 45-3 Create Tag Cloud dialog for CensusView1

4. Click OK.

After completing the data binding dialog, you can use the Property Inspector to specify
settings for the tag cloud attributes and you can also use the child tags associated with
the dvt:tagCloud tag to customize the tag cloud further. For more information about
configuring tag cloud components, see the Using Tag Cloud Components section in
the Developing Web User Interfaces with Oracle ADF Faces.

What Happens When You Create a Databound Tag Cloud

Dropping a tag cloud from the Data Controls panel has the following effect:

• Creates the bindings for the tag cloud and adds the bindings to the page definition
file

• Adds the necessary code for the UI components to the JSF page

The data binding XML that JDeveloper generates represents the physical model of
the tag cloud you create. The example below shows the bindings that JDeveloper

Chapter 45
Creating Databound Tag Cloud Components

45-5

generated in the page definition file where a tag cloud was created using data from the
State and Population2006 attributes in the CensusView1 data collection.

<tree IterBinding="CensusView1Iterator" id="CensusView1">
 <nodeDefinition DefName="view.CensusView" Name="CensusView10">
 <AttrNames>
 <Item Value="State"/>
 <Item Value="Population2006"/>
 </AttrNames>
 </nodeDefinition>
</tree>

The following example shows the code that is generated on the JSF page for the tag
cloud:

<dvt:tagCloud id="tc1" var="ent"
value="#{bindings.CensusView1.collectionModel}" layout="cloud">
 <dvt:tagCloudItem label="#{ent.State}" id="tci1"
value="#{ent.Population2006}">
 <dvt:attributeGroups value="#{ent.Population2006 gt 5000000}"
type="color"

label="#{ent.Population2006}" id="ag1">
 <dvt:attributeMatchRule group="true" id="amr1">
 <f:attribute name="color" value="#ed6647"/>
 </dvt:attributeMatchRule>
 <dvt:attributeMatchRule group="false" id="amr2">
 <f:attribute name="color" value="#267db3"/>
 </dvt:attributeMatchRule>
 </dvt:attributeGroups>
 </dvt:tagCloudItem>
</dvt:tagCloud>

After you create your tag cloud, you can modify the binding or add additional rules
using the Edit Tag Cloud dialog. To open the dialog, use the Edit icon in the Properties
window for the tag cloud component. You can also customize the attributes of the tag
cloud directly in the code, in the visual editor, or by setting values in the Properties
window.

Chapter 45
Creating Databound Tag Cloud Components

45-6

46
Using Contextual Events

This chapter describes how to create, publish, and subscribe to contextual events to
facilitate communications between ADF Faces regions in the Fusion web application.
It describes how to declaratively create the events, as well as programmatically use
managed beans and JavaScript.
This chapter includes the following sections:

• About Creating Contextual Events

• Creating Contextual Events Declaratively

• Creating Contextual Events Manually

• Creating Contextual Events Using Managed Beans

• Creating Contextual Events Using Plain Java Objects (POJOs)

• Creating Contextual Events Using JavaScript

• Creating the Event Map Manually

• Registering a Custom Dispatcher

About Creating Contextual Events
The Contextual Events feature in Oracle ADF provides a powerful mechanism for
passing parameters to share information among pages and regions. You can create
contextual events by using managed beans, plain Java objects, and JavaScripts.

The contextual events framework provides the communications between regions
within a page. The framework provides the page with the ability to map events
that are produced and consumed by the various regions on the page. You can use
JDeveloper to declaratively publish events using the page definition file. Similarly, you
can declaratively subscribe to those events from the page definition file. You can pass
parameters with the event and implement handlers to respond to an event. Other ways
to create contextual events include using managed beans and using JavaScript. Note
that contextual events do not require regions to be refreshed for the region to uptake
parameters.

Contextual events are not the same as the business events that can be raised by ADF
Business Components or the events raised by UI components. For a description of
these types of events, see Developing Web User Interfaces with Oracle ADF Faces.
Contextual events can be used, however, in association with UI events. In this case,
an action listener that is invoked due to a UI event can, in turn, invoke a method action
binding that then raises the event.

Often a page or a region within a page needs information from somewhere else on
the page or from a different region. While you can pass parameters to obtain that
information, doing so makes sense only when the parameters are well known and the
inputs are EL-accessible to the page. Parameters are also useful when a task flow
may need to be restarted if the parameter value changes.

46-1

However, suppose you have a task flow with multiple page fragments that contain
various interesting values that could be used as input on one of the pages in the flow.
If you were to use parameters to pass the value, the task flow would need to surface
output parameters for the union of each of the interesting values on each and every
fragment. Instead, for each fragment that contains the needed information, you can
define a contextual event that will be raised when the page is submitted. The page or
fragment that requires the information can then subscribe to the various events and
receive the information through the event.

In the Summit sample application for ADF task flows, contextual events are used in the
Inventory Control tab of the main page to display the inventory for a selected product.
When the Inventory Control tab is selected by the user, it displays two regions side
by side. One region contains the showProducts.jsff page fragment which contains
a table of the products available. The other region contains the showInventory.jsff
page fragment which contains a DVT chart showing the product inventory percentages
for different warehouses. Figure 46-1 shows the Inventory Control tab displaying the
products and inventory regions.

Figure 46-1 Inventory Control Tab

The products region contains the show-products-task-flow task flow which utilizes
the showProducts.jsff page fragment. The inventory region contains the product-
inventory-task-flow task flow which utilizes the showInventory.jsff page fragment.

The main page index.jsff is the parent page for both regions, which are located in a
child of the af:panelTabbed layout component.

A contextual event is passed from the products region to the inventory region so that
the showInventory-task-flow can display the DVT chart for the selected product.
When you create a event for the producer component using the Properties window, a
event is registered in the producer's page definition file. In the Summit ADF sample
application, the productSelected event is registered in the showProductsPageDef.xml
file, like this:

Chapter 46
About Creating Contextual Events

46-2

<tree IterBinding="ProductVO1Iterator" id="ProductVO1">
 <nodeDefinition DefName="oracle.summit.model.views.ProductVO"
 Name="ProductVO10">
 <AttrNames>
 <Item Value="Id"/>
 <Item Value="Name"/>
 <Item Value="ShortDesc"/>
 <Item Value="LongtextId"/>
 <Item Value="ImageId"/>
 <Item Value="SuggestedWhlslPrice"/>
 <Item Value="WhlslUnits"/>
 </AttrNames>
 <events xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="productSelected" eventType="Currency Change Event"
 customPayLoad="#{bindings.Id.inputValue}"/>
 </events>
 </nodeDefinition>
</tree>

When you use the overview editor for the page definition file to subscribe to events, an
eventMap will be created to map events between producers and consumers.

In the Summit ADF sample application, the eventMap is created in the consumer's
page definition file, like this:

<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="productSelected">
 <producer region="*">
 <consumer handler="populateInventoryForProduct" region="">
 <parameters>
 <parameter name="productId" value="${payLoad}"/>
 </parameters>
 </consumer>
 </producer>
 </event>
</eventMap>

At runtime, when users enter the show-products-task-flow-definition and the
showProducts.jsff page fragment, they are presented with a table of the products
that are available. When the user selects a product from the list, a currency change
event is invoked, resulting in the broadcast of the productSelected contextual event.
In this example, a payLoad parameter containing the productId of the selected product
is passed with the event.

This event is then consumed by the product-inventory task flow and its handler, the
populateInventoryForProduct() method. This method uses the payLoad parameter
to determine which product's inventory information to be displayed in the DVT
component.

You will need to create the code for the event handler. For the Summit ADF
sample application, the populateInventoryForProduct() handler was added to
the InventoryVOImpl.java file because the InventoryVO view object contains the
inventory data, as shown below:

public void populateInventoryForProduct(String productId) {
 applyViewCriteria(getViewCriteria("InventoryVOCriteria"));
 setinputProductId(productId);
 executeQuery();
}

Chapter 46
About Creating Contextual Events

46-3

/**
 * Returns the variable value for Variable.
 * @return variable value for Variable
 */
public String getinputProductId() {
 return
(String)ensureVariableManager().getVariableValue("inputProductId");
}

/**
 * Sets <code>value</code> for variable Variable.
 * @param value value to bind as Variable
 */
public void setinputProductId(String value) {
 ensureVariableManager().setVariableValue("inputProductId", value);
}

Events are configured in the page definition file for the page or region that will raise
the event (the producer). In order to associate the producer with the consumer that will
do something based on the event, you create an event map in the page definition file
of the consuming page or the parent page. (The parent page is the page that contains
both regions). If the consuming page is in a dynamic region, the event map should be
in the page definition file of the consuming page and the producer's attribute region set
to "*". The attribute region is set to "*" because at design time, the framework cannot
determine the relative path to the producer.

You can raise a contextual event for an action binding, a method action binding, a
value attribute binding, or a range binding (table, tree, or list binding). You also can
conditionally fire an event and conditionally handle an event using EL expressions.

For action and method action bindings, the event is raised when the action or method
is executed. The payLoad contains the method return value. You can also raise a
contextual event from an ADF Faces event such as clicking a button or selecting from
a menu. An eventBinding is created in the page definition to define the event.

For a value attribute binding, the event is triggered by the binding container
and raised after the attribute is set successfully. The payLoad is an instance of
DCBindingContainerValueChangeEvent, which provides access to the new and old
value, the producer iterator, the binding container, and the source. If the payLoad
property is changed to point to a custom data object, then the payLoad reference
will return the object instead. An example below shows a value change event
inside an attribute value binding associated with an input component. The event,
valueChangeEvent, will be dispatched when the user changes the value of LAST_NAME
in the page.

<attributeValues IterBinding="DeptView1Iterator" id="Dname"
 xmlns="http://xmlns.oracle.com/adfm/jcuimodel">
 <events xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="valueChangeEvent"/>
 </events>
 <AttrNames xmlns="http://xmlns.oracle.com/adfm/uimodel">
 <Item Value="LAST_NAME"/>
 </AttrNames>
</attributeValues>
</bindings>
<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="valueChangeEvent">
 <producer region="LAST_NAME">
 <consumer region="" handler="consumeEvent"/>

Chapter 46
About Creating Contextual Events

46-4

 </producer>
 </event>
</eventMap>

For a range binding (tree, table, list), the event is raised after the currency change has
succeeded. The payLoad is an instance of DCBindingContainerValueChangeEvent,
which provides access to the new and old value, the producer iterator, the binding
container, and the source. The eventMap example above shows the event map for a
currency change event associated with a range binding.

Value attribute binding and range binding contextual events may also be triggered by
navigational changes. For example, if you create an event inside a tree table binding,
the event will be dispatched when the user selects a different node of the tree in the
page.

You use the Contextual Events section under the Behavior section in the Properties
window to create and publish contextual events. The Contextual Events panel will
only appear when you select eligible components or regions in the page, as shown in
Figure 46-2.

Figure 46-2 Contextual Events Panel in the Properties Window

Chapter 46
About Creating Contextual Events

46-5

You subscribe to contextual events using the overview editor for page definition file's
Contextual Events tab Subscriber section, as shown in Figure 46-3

Figure 46-3 Page Definition Contextual Events Tab

You can turn off automatic region refresh while consuming a contextual event by
adding refresh="false" on the consumer element in the eventMap of the consuming
region's page definition. Setting refresh to false is useful if you want to take charge
of refresh for the event consuming region. The default for the refresh attribute is
true. Additionally, you can turn off a subscriber region from consuming specific
instances of contextual events using an EL binding on the handleCondition attribute
also present in the consumer element inside the eventMap of the consuming region's
page definition. The following page definition file source and Property window show a
methodAction binding and an eventMap in a consuming region's page definition, where
the addition of the region and handleCondition attributes control the consuming
region’s contextual event response.

Chapter 46
About Creating Contextual Events

46-6

Figure 46-4 Attributes of Consumer Element in a Consumer EventMap

Contextual Events Use Cases and Examples
There are three kinds of communication patterns between a region and the parent
page: parent to region, region to parent, and region to region. The contextual events
framework is the most powerful communication implementation that works for all three
of these scenarios. Also note that contextual events do not require a region to be
refreshed in order to consume input parameters.

You should use contextual events to communicate between ADF regions. While it is
possible to use ADF task flow parameters to communicate between regions, doing
so may create direct dependencies between the regions. ADF task flow parameters
may be fine for static regions, but using contextual events will allow you to implement
independent communications between regions.

For example, a page may contain a region with a form for entering employee
information. When the user updates the employee Id and presses the submit button,
a value change contextual event is raised and the employee Id value is also passed
as payLoad. On the same page, another region subscribes to and consumes the event
and displays departmental information about the selected employee based on the
payLoad information passed with the contextual event.

Additional Functionality for Contextual Events
You may find it helpful to understand other ADF features before you work with
contextual events. Following are links to other functionality that may be of interest.

• You can also use ADF task flow parameters to communicate between ADF
regions. For more information about using task flows and regions, see Using Task
Flows as Regions.

Chapter 46
About Creating Contextual Events

46-7

Creating Contextual Events Declaratively
Contextual events in Oracle ADF has two parts, the publisher event (producer) and the
handler event (consumer). In the process of creating contextual events declaratively,
follow the different procedures to publish, subscribe, and consume an event.

You create contextual events by first creating and publishing the event on the producer
based on a method action, action, value attribute, or list binding. On the consumer, you
subscribe to the event and create a handler to process the event.

Typically, you create a parent page with regions that contain task flows and view
activities. You create contextual events in one region to be published for consumer
event handlers in the other region. For more information about using task flows and
regions, see Using Task Flows as Regions.

Note:

You can also publish an action contextual event from code
(for example, from within a managed bean). You can use
getBindingContainer().getEventDispatcher which returns an instance of
EventDispatcher. EventDispatcher has public APIs which you can use to
programmatically raise contextual events.

How to Publish Contextual Events
You use the Properties window to create contextual events in the page where the
contextual event will be produced. That is, the producer's page is the page where the
contextual event is generated. The events can be published to either local or remote
consumers. By default, all the events are published to local consumer. For instance,
clicking a button on a page that would trigger a contextual event to be consumed by
another component. The page that contains the button is the producer's page.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create contextual events. See Creating Contextual Events Declaratively.

You may also find it helpful to understand functionality that can be used with contextual
events. See Additional Functionality for Contextual Events.

You will need to complete this task:

Decide on the type of component you want to use to raise the contextual event.
If you plan to use a method action binding, you must have already created the
method to be dropped onto the page.

To create a contextual event:

1. In the page where you want to publish the contextual event, drag and drop a
component from the Data Controls panel to the page.

This is the component that will trigger the event. It must have a method action,
action, value attribute, or list binding event.

Chapter 46
Creating Contextual Events Declaratively

46-8

2. In the Properties window, expand the Behavior section.

3. In the Publish Events section, click the Add icon.

4. In the Publish Contextual Events dialog:

a. Select Create New Event.

b. Enter the name of the event.

c. If your component is a table, tree, or tree table, a Node field appears for you to
enter the node that will publish the event upon a change event.

d. Select Pass Custom Value From if you want to pass payload data to the
consumer.

e. If you are passing payload data, select the type of data from the dropdown list.
Normally, the parameter is {$payLoad}

For instance, if you want to pass an attribute value from the producer page to
the consumer page, you can select Page Data and select the attribute from
the tree structure.

f. You can conditionally raise the event by entering an EL expression in the
Raise Condition tab.

For instance, entering an expression such as $
{bindings.LAST_NAME.inputValue == 'KING'} will cause the event to be
raised only if the customer's last name is KING.

g. Click OK.

The event is created on the page, but it is not ready for publishing until it is
associated with the component binding.

Chapter 46
Creating Contextual Events Declaratively

46-9

Figure 46-5 Publish a Contextual Event

5. By default, all the events are dispatched to the local region. To dispatch the events
to a remote region:

a. In the Source view of the page definition file for the page that generates the
event, select the event to see the event properties in the Property window.

b. Set dispatchMode attribute to remote.

Note:

If dispatchMode attribute is not set to remote value when a
remote event is raised from a remote region, it might result in an
exception, java.io.NotSerializableException. In this scenario, it
is recommended not to set dispatchMode attribute to local value.

c. For customPayLoad attribute, write an EL expression that references a
serializable object.

d. For customPayLoadType attribute, specify the type of custom payload of the
object.

How to Subscribe to and Consume Contextual Events
You use the overview editor for page definition files to subscribe to contextual events.
The overview editor displays the current region and its child regions. Only the regions
that are shown can subscribe to contextual events.

Chapter 46
Creating Contextual Events Declaratively

46-10

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create contextual events. For more information, see Creating Contextual
Events Declaratively.

You may also find it helpful to understand functionality that can be used with contextual
events. For more information, see Additional Functionality for Contextual Events.

You will need to complete this task:

Create a contextual event in the page definition file, as described in How to Publish
Contextual Events.

To subscribe and consume the event:

1. Create a handler to process the event and its payload data.

In the Summit ADF sample application, the PopulateInventoryForProduct
handler method was created in the InventoryVO view object by adding the code to
the InventoryVOImpl.java file.

The method appears in the BackOfficeAppModuleDataControl application
module.

2. In the consuming page, add the components that will respond to the event.

In the Summit ADF sample application, a DVT component is added to the page to
display the inventory available in different warehouses.

The DVT component will receive the data from the PopulateInventoryForProduct
method.

3. In the Applications window, double-click the page definition file that will contain the
event map.

In the Summit ADF sample application, the showInventoryPageDef.xml page
definition file will have the event map.

4. In the overview editor, click the Bindings and Executables tab and then click the
Add icon for the Bindings section

5. In the Insert Item dialog, select methodAction and click OK.

6. In the Create Action Binding dialog:

a. Expand the data collection where you have created your handler.

b. Select the handler.

c. Click OK.

7. In the overview editor Contextual Events tab, click Subscribers and click the
Add icon in the Event Subscribers section.

8. In the Subscribe to Contextual Event dialog:

a. Enter the event name or click the Search icon to start the Select Contextual
Event dialog.

If you have started the Select Contextual Events dialog, select the event from
the tree and click OK.

b. Select the producer or <Any> from the Publisher dropdown list. A contextual
event can have more than one producer.

Chapter 46
Creating Contextual Events Declaratively

46-11

Selecting <Any> will allow the consumer to subscribe to any producer
producing the selected event. In the page definition file, the producer attribute
will be set to the wildcard "*". If your producer is in a dynamic region, you
should set this field to <Any> so that the subscriber can consume from any
producer.

c. Click the Search icon next to the Handler field.

d. In the Select Handler dialog, select the event handler from the tree and click
OK.

e. If the handler requires parameters, click the Parameters tab, click Add, and
enter name-value pair as parameters.

f. If you want to conditionally handle the event, select the Handle tab, and enter
an EL Expression that determines the conditions under which the handler will
process the event.

g. Click OK.

Figure 46-6 Subscribe to a Contextual Event

Note:

You can edit the event map by right-clicking the page definition in the
Structure window and choosing Edit Event Map. You can also edit event
attributes in the page definition file or in the Properties window.

What Happens When You Create Contextual Events
When you create an event for the producer, JDeveloper adds an events element to the
page definition file. Each event name is added as a child. The Event Definition for the

Chapter 46
Creating Contextual Events Declaratively

46-12

Producer example below shows the productSelected event defined in the producer
page definition file as a currency change event.

<tree IterBinding="ProductVO1Iterator" id="ProductVO1">
 <nodeDefinition DefName="oracle.summit.model.views.ProductVO"
 Name="ProductVO10">
 <AttrNames>
 <Item Value="Id"/>
 <Item Value="Name"/>
 <Item Value="ShortDesc"/>
 <Item Value="LongtextId"/>
 <Item Value="ImageId"/>
 <Item Value="SuggestedWhlslPrice"/>
 <Item Value="WhlslUnits"/>
 </AttrNames>
 <events xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="productSelected" eventType="Currency Change Event"
 customPayLoad="#{bindings.Id.inputValue}"/>
 </events>
 </nodeDefinition>
</tree>

In the consumer page definition file, a method action binding is created to respond
to the event. The Method Action Definition example below shows the method action
binding defined in the showInventoryPageDef page definition file.

<methodAction id="populateInventoryForProduct" RequiresUpdateModel="true"
 Action="invokeMethod"
 MethodName="populateInventoryForProduct"
 IsViewObjectMethod="true"
 DataControl="BackOfficeAppModuleDataControl"

InstanceName="data.BackOfficeAppModuleDataControl.InventoryVO1">
 <NamedData NDName="productId" NDType="java.lang.String"/>
</methodAction>

When the currency change occurs, the event is broadcasted to its consumers. The
method action definition is defined in the consuming page definition file.

When you configure an event map, JDeveloper creates an event map
entry in the corresponding page definition file. An example below shows
the event map on the showInventoryPageDef page definition file that
maps the productSelected event from the showproductstaskflowdefinition1
region to the productinventorytaskflowdefinition1 region. It also maps the
populateInventoryForProduct handler method bindings that is defined in the
showInventoryPageDef page definition file. The handler processes the payLoad
information (containing the productID) and passes it to the DVT component so it can
query the warehouse inventory for that product.

<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="productSelected">
 <producer region="*">
 <consumer handler="populateInventoryForProduct" region="">
 <parameters>
 <parameter name="productId" value="${payLoad}"/>
 </parameters>
 </consumer>
 </producer>
 </event>
</eventMap>

Chapter 46
Creating Contextual Events Declaratively

46-13

When you set the value for dispatchMode to remote, JDeveloper adds the attribute
dispatchMode to the event element in the page definition file. CustomPayLoadType
will be the type of the payload which is being passed, it will be String if
getCustomPayLoad() returns String. An example below shows the event element with
the dispatchMode attribute set to remote value and the attributes that specify the
custom payload to pass to the remote consumer.

<methodAction id="eventProducer" RequiresUpdateModel="true"
Action="invokeMethod" MethodName="eventProducer"
 IsViewObjectMethod="false" DataControl="Class1"
 InstanceName="bindings.eventProducer.dataControl.dataProvider"

ReturnName="data.Class1.methodResults.eventProducer_eventProducer_dataControl_dat
aProvider_eventProducer_result">
 <events xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="teste" eventType="Action Event" dispatchMode="remote"
customPayloadType="java.lang.String"
 customPayLoad="#{testBean.customPayLoad}"/>
 </events>
</methodAction>

How to Control Contextual Events Dispatch
You can control the dispatch of contextual events to child regions at the application
level or at the page level.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create contextual events. For more information, see Creating Contextual
Events Declaratively.

You may also find it helpful to understand functionality that can be used with contextual
events. For more information, see Additional Functionality for Contextual Events.

To disable event dispatch:

1. To disable event dispatch at the application level, set the
dynamicEventSubscriptions property to false in the adf-config.xml file, as
shown in the following example.

You can disable the event dispatch to regions that have an event map with
producers as wildcards.

<?xml version="1.0" encoding="windows-1252" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:cef="http://xmlns.oracle.com/adfm/contextualEvent">
 <cef:DynamicRegionEventsConfig dynamicEventSubscriptions="false">
 </cef:DynamicRegionEventsConfig>
</adf-config>

2. To disable event dispatch at the individual page level, set the
dynamicEventSubscriptions property to false in the associated page definition
file, as shown in the following example.

Contextual events will not be passed to the page and any of its children.

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.52.8" id="viewBPageDef"
Package="view.pageDefs"
 DynamicEventSubscriptions="false">

Chapter 46
Creating Contextual Events Declaratively

46-14

http://xmlns.oracle.com/adfm/contextualEvent

What Happens at Runtime: Contextual Events
If both the event producer and the consumer are defined in the same page definition
file, then after the corresponding page is invoked and the binding container is created,
the event is raised when:

• The corresponding method or action binding is executed

• A value binding is set successfully

• A range binding currency is set successfully

For a method binding, the result of the method execution forms the payload of the
event, and the event is queued. In the Invoke Application phase of the JSF lifecycle,
all the queued events will be dispatched. The event dispatcher associated with the
binding container checks the event map (also in the binding container, as it is part of
the same page definition file) for a consumer interested in that event and delivers the
event to the consumer.

When the producer and consumer are in different regions, the event is first dispatched
to any consumer in the same container, and then the event propagation is delegated
to the parent binding container. This process continues until the parent or the topmost
binding container is reached. After the topmost binding container is reached, the event
is again dispatched to child-binding containers that have regions with pages that have
producer set to wildcard "* ".

When you raise a remote event from a remote region to pass a data value by using
dataControl, the dispatchMode attribute must be set to remote value to successfully
deliver the data value to the remote region; otherwise, it might result in an exception,
java.io.NotSerializableException. In this scenario, it is recommended not to set
dispatchMode attribute to local value.

Creating Contextual Events Manually
Contextual events in Oracle ADF has two parts, the publisher event (producer) and
the handler event (consumer). In the process of creating contextual events manually,
follow a detailed procedure to publish and consume an event.

You create contextual events by first creating the event on the producer. You then
determine the consumer of the event, and map the producer to the consumer.

How to Create Contextual Events Manually
Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create contextual events. For more information, see Creating Contextual
Events Manually.

You may also find it helpful to understand functionality that can be used with contextual
events. For more information, see Additional Functionality for Contextual Events.

You will need to complete this task:

Create a contextual event that has a method binding, action binding, value attribute
binding, or list binding on the producer page.

Chapter 46
Creating Contextual Events Manually

46-15

To create a contextual event:

1. In the Applications window, double-click the page definition file that contains the
binding for the producer of the event.

A producer must have an associated binding that will be used to raise the event.
For example, if a method or operation will be the producer, the associated action
binding or method action binding will contain the event.

2. In the Structure window, right-click the binding for the producer and choose Insert
inside binding name > events or Insert inside binding name > Contextual
Events > events.

3. In the Structure window, right-click the events element just created, and choose
Insert inside events > event.

4. In the Insert event dialog, enter a name for the event in the name field, and click
Finish.

The event is now created. By default, any return of the associated method
or operation will be taken as the payload for the event and stored in the EL-
accessible variable ${data.payLoad}. You now need to map the event to the
consumer, and to configure any payload that needs to be passed to the consumer.

5. In the Applications window, double-click the page definition file that contains the
binding for the consumer.

The binding container represented by this page provides access to the events
from the current scope, including all contained binding containers (such as task
flow regions). If regions or other nested containers need to be aware of the event,
the event map should be in the page definition of the page in the consuming
region.

6. In the Structure window, right-click the topmost node that represents the page
definition, and choose Edit Event Map.

Note:

If the producer event comes from a page in an embedded dynamic
region, you may not be able to edit the event map using the Event
Map Editor. You can manually create the event map by editing the
page definition file or use insert inside steps, as described in Creating
Contextual Events Manually.

7. In the Event Map Editor, click the Add icon to add an event entry.

8. In the Add New EventMap Entry dialog, do the following:

a. Use the Producer dropdown menu to choose the producer.

b. Use the Event Name dropdown menu to choose the event.

c. Use the Consumer dropdown menu to choose the consumer. This should be
the actual method that will consume the event.

d. If the consuming method or operation requires parameters, click the Add icon.

In the Param Name field, enter the name of the parameter expected by
the method. In the Param Value field, enter the value. If this is to be the
payload from the event, you can access this value using the ${data.payLoad}

Chapter 46
Creating Contextual Events Manually

46-16

expression. If the payload contains many parameters and you don't need them
all, use the ellipses button to open the Expression Builder dialog. You can use
this dialog to select specific parameters under the payload node.

You can also click the Parameters ellipses button to launch the selection
dialog.

e. Click OK.

9. In the Event Map Editor, click OK.

Creating Contextual Events Using Managed Beans
Oracle ADF supports publishing an action contextual event from code such as from
within a managed bean. You can also dynamically create and handle contextual
events using managed beans.

How to Create Contextual Events Using Managed Beans
Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create contextual events. For more information, see Creating Contextual
Events Using Managed Beans.

You may also find it helpful to understand functionality that can be used with contextual
events. For more information, see Additional Functionality for Contextual Events.

To create contextual events using managed beans:

1. Create a method in a managed bean to generate the contextual event.

As the following example shows managed bean code that perform an action when
a button is pressed. The myActionPerformed method is invoked and calls methods
to generate the contextual event with "myString" as the payLoad:

BindingContainer bc BindingContext.getCurrent().getCurrentBindingsEntry();
JUCtrlActionBinding actionBnd =
 (JUCtrlActionBinding)bc.getControlBinding("eventProducer");
...
((DCBindingContainer)bc).getEventDispatcher().queueEvent(actionBnd.
 getEventProducer(),"myString");

2. Bind the producer component to the method in the managed bean.

As the following example shows code for a producer associated with a command
button that invokes an action binding and the consumer is an outputText
component that displays a string. They are both on the same page.

<af:form id="f1">
 <af:button value="eventProducerButton1" id="cb1"
 action="#{MyBean.myActionPerformed}"/>
 <af:panelLabelAndMessage
label="#{bindings.return.hints.label}"id="plam1">
 <af:outputText value="#{bindings.return.inputValue}" id="ot1"/>
 </af:panelLabelAndMessage>
</af:form>

Chapter 46
Creating Contextual Events Using Managed Beans

46-17

What Happens When You Create Contextual Events Using Managed
Beans

The page definition file contains the method action bindings for the producer, the
consumer, and the event map, like this:

<executables>
 <variableIterator id="variables">
 <variable Type="java.lang.String" Name="eventConsumer_return"
 IsQueriable="false" IsUpdateable="0"
 DefaultValue="${bindings.eventConsumer.result}"/>
 </variableIterator>
</executables>
<bindings>
 <methodAction id="eventProducer"
 InstanceName="AppModuleDataControl.dataProvider"
 DataControl="AppModuleDataControl" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="eventProducer"
 IsViewObjectMethod="false"
 ReturnName="AppModuleDataControl.methodResults.eventProducer_
 AppModuleDataControl_dataProvider_eventProducer_result">
 <events xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="myEvent"/>
 </events>
 </methodAction>
 <methodAction id="eventConsumer" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="eventConsumer"
 IsViewObjectMethod="false" DataControl="AppModuleDataControl"
 InstanceName="AppModuleDataControl.dataProvider"
 ReturnName="AppModuleDataControl.methodResults.eventConsumer_
 AppModuleDataControl_dataProvider_eventConsumer_result">
 <NamedData NDName="str" NDValue="test" NDType="java.lang.String"/>
 </methodAction>
 <attributeValues IterBinding="variables" id="return">
 <AttrNames>
 <Item Value="eventConsumer_return"/>
 </AttrNames>
 </attributeValues>
</bindings>
<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="myEvent">
 <producer region="eventProducer">
 <consumer region="" handler="eventConsumer">
 <parameters>
 <parameter name="test" value="${data.payLoad}"/>
 </parameters>
 </consumer>
 </producer>
 </event>
</eventMap>

How to Dynamically Create and Handle Contextual Events Using
Managed Beans

You can programmatically create contextual event definitions, register the event
producer and even trigger the contextual event. This is useful when you build task

Chapter 46
Creating Contextual Events Using Managed Beans

46-18

flows which need to trigger different events based on the context where the event is
used (for example, when the client that hosts the task flow may change).

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create contextual events. For more information, see Creating Contextual
Events Using Managed Beans.

You may also find it helpful to understand functionality that can be used with contextual
events. For more information, see Additional Functionality for Contextual Events.

To create and handle contextual events dynamically using managed beans:

1. Create a method in a managed bean to generate the contextual event.

The following sample shows managed bean code that exercises the
EventDispatcher API to perform an action when a button is pressed.

DCBindingContainer bc = (DCBindingContainer)
BindingContext.getCurrent().getCurrentBindingsEntry();
bc.getEventDispatcher().queueEvent(new CustomEventProducer(),
someCustomEventPayLoad);
bc.getEventDispatcher().processContextualEvents();

The event producer class CustomEventProducer used in this above sample
defines the contextual event JDemoEvent.

import oracle.adf.model.events.EventProducer;

public class CustomEventProducer implements EventProducer {
 public CustomEventProducer() {
 super();
 }
 public String getId() {
 return "JDemoEvent";
 }

 public ArrayList getEventDefinitionsList() {
 ArrayList eventDefList = new ArrayList();

 EventDefinitionImpl demoEvent = new EventDefinitionImpl();
 demoEvent.setEventName("JDemoEvent");
 eventDefList.add(demoEvent);
 return eventDefList;
 }

}

2. Bind the producer component to the method in the managed bean.

The following sample shows the producer page source associated
with a command button that invokes an action listener method
produceDynamicContextualEvent() on the above managed bean.

<af:panelGroupLayout id="pgl1">
 <af:button text="Produce Contextual Event" id="b5"

actionListener="#{viewScope.EventProducer.produceDynamicContextualEvent}"/>
</af:panelGroupLayout>

3. Bind the consumer component to the event handler method for the contextual
event. (This is an alternative to relying on data controls to perform the binding.)

Chapter 46
Creating Contextual Events Using Managed Beans

46-19

The following sample shows the consumer page source as an outputText
component that displays a string set by the event handler method
setOutputTextDeptName().

<af:panelGroupLayout id="pgl1">
 <af:outputText value="Got the following via Contextual Event :"
id="ot1"/>
 <af:outputText value="#{backingBeanScope.EventHandler.deptName}" id="ot2"

binding="#{backingBeanScope.EventHandler.outputTextDeptName}"
clientComponent="true"/>
</af:panelGroupLayout>

Note that when you create a managed bean as event handler for contextual
events not using data controls, you may want to create the methodAction bindings
manually. This will simplify your task when you want to refresh a UI component or
invoke some managed bean code as part of the contextual event. The following
sample shows a methodAction binding and an eventMap like the ones that you
would create in the consuming region's page definition.

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
id="consumerPageDef" Package="view.pageDefs">
 ...
 <bindings>
 <methodAction DataControl="AppModuleDataControl"
id="EventHandlerMethod" InstanceName="${backingBeanScope.EventHandler}"
 MethodName="handleEvent">
 <NamedData NDName="eventPayLoad" NDType="java.lang.Object"/>
 </methodAction>
 </bindings>
 <eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="JDemoEvent">
 <producer region="*">
 <consumer region="" handler="EventHandlerMethod">
 <parameters>
 <parameter name="eventPayLoad"
value="#{data.payLoad}"/>
 </parameters>
 </consumer>
 </producer>
 </event>
 </eventMap>
</pageDefinition>

Creating Contextual Events Using Plain Java Objects
(POJOs)

Oracle ADF provides bounded task flows that can take any number of parameters and
can provide a simple feedback to its caller in the form of an outcome. It also has a
return parameter, allowing the task flow to return a Java object.

A bounded task flow embedded in a region may have several views that need to be
exposed as possible consumers of an contextual event. Instead of creating a Plain
Java Object (POJO), a data control, and an event handler for each view, you can
create a single POJO and a single data control to process events for all the views in
the task flow.

Chapter 46
Creating Contextual Events Using Plain Java Objects (POJOs)

46-20

In this approach, the event receiver method dispatches the contextual event request
by using the managed bean reference to invoke the handleEvent method and passes
the payLoad for processing. The managed bean, defined in backing bean scope, can
have JSF component references that allow the bean to refresh the dependent user
interface.

The following conditions must be satisfied for this approach to work:

• The event receiver method must pass the payLoad as an argument to the method
that handles the message.

• The event receiver method must have a second argument that is used to pass an
object reference to a managed bean associated with the subscriber region task
flow.

• The managed bean passed as a reference must contain a commonly known public
method that accepts the event message as input argument. This method handles
the event.

How to Configure a Generic Callback Message Handler for a Task
Flow

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create contextual events. For more information, see Creating Contextual
Events Using Plain Java Objects (POJOs).

You may also find it useful to understand functionality that can be used with contextual
events. For more information, see Additional Functionality for Contextual Events.

To create the generic event receiver and managed bean event handler:

1. Create a POJO data control.

The POJO data control should appear in the Data Control panel.

For more information about data controls, see the Creating and Configuring Bean
Data Controls section in Developing Applications with Oracle ADF Data Controls.

2. Create an event receiver class (exposed in the POJO data control) with an event
handler method that defines two arguments.

The first argument is for the payLoad delivered by the contextual event. The
second argument is callback handler reference to a managed bean that is
implementing the contextual event handler interface.

3. Create a managed bean with backing bean scope that implements the
ContextualEventHandler interface.

Implementing the ContextualEventHandler interface includes defining the call
back method, for example, handleEvent(), that will be called by the generic
contextual event receiver to pass control to the managed bean.

4. Create a method binding in the page definition file of the view within the task flow
that will receive the event.

a. In the Applications window, double-click the page definition file that will contain
the event map.

Chapter 46
Creating Contextual Events Using Plain Java Objects (POJOs)

46-21

b. In the overview editor, click the Bindings and Executables tab and then click
the Add icon for the Bindings section

c. In the Insert Item dialog, select methodAction in the Generic Bindings
category, and select the POJO data control that exposes the event receiver
method.

d. Use the EL Expression Builder to reference the managed bean that was
created for the ContextualEventHandler argument. Leave the payLoad
argument blank as this will be provided by the contextual event mapper.

5. Subscribe to the contextual event by defining it in the same page definition file
where the method binding was declared.

For general instructions on subscribing to contextual events, follow Step 7 to Step
8 in How to Subscribe to and Consume Contextual Events.

This is an implementation for a generic and reusable contextual event handler that
invokes a method on a configured managed bean to have the contextual event
payload handled in the context of a view to be changed in response of an event.

Creating Contextual Events Using JavaScript
Every action and method binding that is accessible from a managed bean can
be invoked from JavaScript. ADF Faces provides an af:serverListener operation
component that can be used to call a managed bean method from client-side
JavaScript.

To invoke the af:serverListener operation component using the referenced
managed bean method, use the BindingContext object to look up the current
BindingContainer and to access the OperationBinding or a JUEventBinding binding.
The af:serverListener component can also be used to send a message payload
from the browser client to the managed bean method.

Creating the Event Map Manually
In Oracle ADF, events are configured in the page definition file for the page or region
that will raise the event (the producer). To associate the producer with the consumer
that will perform some operations based on the event, you create an event map also in
the page definition file.

Under most circumstances, you can create the event map using the Event Map Editor
as described in Creating Contextual Events Manually. However, in situations such as
when the producer event is from a page in an embedded dynamic region, the Event
Map Editor at design time cannot obtain the necessary information to create an event
map.

How to Create the Event Map Manually
Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create contextual events. For more information, see Creating the Event Map
Manually.

Chapter 46
Creating Contextual Events Using JavaScript

46-22

You may also find it useful to understand functionality that can be used with contextual
events. For more information, see Additional Functionality for Contextual Events.

To create the event map manually:

1. In the Applications window, double-click the page definition file that contains the
binding for the consumer.

2. In the Structure window, right-click the topmost node that represents the page
definition, and choose Insert inside pagedef name > eventMap.

3. In the Structure window, select the eventMap node, right-click and choose Insert
inside eventMap > event.

4. In the Insert Event dialog, enter the name of the event and click OK.

Repeat steps 3 and 4 to add more events.

5. Select the event node, right-click and choose Insert inside event > producer.

6. In the Insert Producer dialog, enter the name of the binding that is producing this
event and click OK.

You can also enter the name of the region which has the event producer, in which
case all the consumers specified under this tag can consume the event. You can
also enter "*" to denote that this event is available for all consumers under this tag.

7. Select the producer node, right-click, and choose Insert inside producer >
consumer.

8. In the Insert Consumer dialog, enter the name of the handler that will consume the
event and click OK.

Repeat steps 7 and 8 to add more consumers.

9. If there are parameters being passed, add the parameter name and value.

a. Select the consumer node, right-click, and choose Insert inside consumer >
parameters.

b. Select the parameters node, right-click, and choose Insert inside
parameters > parameter.

c. In the Insert Parameter dialog, enter the name of the parameter and the value
of the parameter and click OK. The value can be an EL expression.

Repeat this step to add more parameters.

Registering a Custom Dispatcher
By default, the contextual event framework uses EventDispatcherImpl to dispatch
events that would traverse through the regions. You can create a custom event
dispatcher to override the default event dispatcher to provide custom behaviors.

After you have created the custom event dispatcher, you must register it in the
Databindings.cpx file to override the default dispatcher.

How to Register a Custom Dispatcher
Before you begin:

Chapter 46
Registering a Custom Dispatcher

46-23

It may be helpful to have an understanding of the options that are available to you
when you create contextual events. For more information, see Registering a Custom
Dispatcher.

You may also find it useful to understand functionality that can be used with contextual
events. For more information, see Additional Functionality for Contextual Events.

To register a custom event dispatcher:

1. Create a custom event dispatcher Java class based on the EventDispatcher
class.

2. Register the custom event dispatcher in the Databindings.cpx file with a fully
qualified name using the following format:

EventDispatcher="package_name.CustomEventDispatcher_name"

As the following example shows the code for a custom event dispatcher called
NewCustomEventDispatcher created in package NewPackage.

<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="11.1.1.51.60" id="DataBindings"
SeparateXMLFiles="false"
 Package="project3" ClientType="Generic"
 EventDispatcher="NewPackage.NewCustomEventDispatcher">

3. Create the event in the producer's page definition. For more information,
see Creating Contextual Events Declaratively, or Creating Contextual Events
Manually.

4. Create the event map in the consumer region if the consumer is in a dynamic
region. If the consumer is not in a dynamic region, you can also specify the event
map in the parent page which holds both the producer and consumer regions. For
more information, see Creating the Event Map Manually.

Chapter 46
Registering a Custom Dispatcher

46-24

Part VI
Completing Your Application

This part describes tasks that developers can perform to secure, refine, test, and
deploy Fusion web applications.

Part VI contains the following chapters:

• Enabling ADF Security in a Fusion Web Application

• Testing and Debugging ADF Components

• Refactoring a Fusion Web Application

• Reusing Application Components

• Customizing Applications with MDS

• Allowing User Customizations at Runtime

• Using the Active Data Service

• Configuring High Availability for Fusion Web Applications

• Deploying Fusion Web Applications

• Using State Management in a Fusion Web Application

• Tuning Application Module Pools

47
Enabling ADF Security in a Fusion Web
Application

This chapter describes how you can enable ADF Security in the Fusion web
application to define resource grants for Oracle ADF resources and to restrict the
user's ability to view web pages associated those resources.
This chapter includes the following sections:

• About ADF Security

• ADF Security Process Overview

• Enabling ADF Security

• Creating Application Roles

• Defining ADF Security Policies

• Creating Test Users

• Creating a Login Page

• Testing Security in JDeveloper

• Preparing the Secure Application for Deployment

• Disabling ADF Security

• Advanced Topics and Best Practices

About ADF Security
Security is an important part of any enterprise application. Security implementation in
an ADF application decides who can access the application and what they can do
once they are logged in. You can visually enable security in the different layers of your
Fusion web application.

The ADF Security framework is the preferred technology to provide authentication and
authorization services to the Fusion web application. ADF Security is built on top of the
Oracle Platform Security Services (OPSS) architecture, which itself is well-integrated
with Oracle WebLogic Server. While other security-aware models exist that can
handle user login and resource protection, ADF Security is ideally suited to provide
declarative, permission-based protection for ADF bounded task flows, for top-level
web pages that use ADF bindings (pages that are not contained in a bounded task
flow), and at the lowest level of granularity, for rows of data defined by ADF entity
objects and their attributes. In this document, these specific resources that the ADF
Security framework protects are known as ADF security-aware resources.

You enable ADF Security for Fusion web applications when you run the Configure ADF
Security wizard, as described in Enabling ADF Security. The wizard configures ADF
Security for the entire Fusion web application, so that any web page associated with
an ADF security-aware resource is protected by default. This means that after you
enable ADF Security, your application is locked down so that the pages are considered
secure by default.

47-1

After you enable ADF Security you must grant users access rights so that they may
view the web pages of the Fusion web application. Access rights that you grant users
are known as a security policy that you specify for the page's corresponding ADF
security-aware resource. Ultimately, it is the security policy on the ADF resource that
controls the user's ability to enter a task flow or view a web page.

Because ADF Security is based on Java Authentication and Authorization Service
(JAAS), security policies identify the principal (the user or application role), the ADF
resource, and the permission (an operation defined by the resource's ADF permission
class). For example, the Summit sample application for ADF task flows secures the
web pages contained by the customer-task-flow task flow to grant access only to
logged-in users (also known as authenticated users). At runtime, the ADF Security
framework performs authorization checking against the task flow's security policy to
determine the user's right to complete the view operation. In this case, the security
policy must grant the view permission to the user if they are to complete the checkout
process.

To simplify the task of defining security policies for users and ADF resources, ADF
Security defines a containment hierarchy that lets you define one security policy
for the ADF bounded task flow and its contains web pages. In other words, when
you define the security policy at the level of the bounded task flow, you protect the
flow's entry point and then all pages within that flow are secured by the policy it
defines. Additionally, instead of granting access to individual users, you group users
into application roles and grant the view permission to the role.

Specifically, you will define security policies in the Fusion web application for the
following ADF security-aware resources to make web pages accessible to users:

• ADF bounded task flow protects the entry point to the task flow, which in turn
controls the user's access to the pages contained by the flow

For example, a series of web pages may guide new customers through a
registration process and the bounded task flow controls page navigation for the
process. For a description of bounded task flows, see About Bounded Task Flows.

The ADF unbounded task flow is not an ADF security-aware component and
thus does not participate in authorization checks. When you need to protect the
constituent pages of an unbounded task flow, define grants for the page definition
files associated with the pages instead.

• ADF page definition files associated with web pages not contained by a bounded
task flow

For example, a web page may display a summary of best selling products
with data coordinated by the ADF bindings of the page's associated ADF page
definition file. For a description of page definitions and ADF bindings, see Working
with Page Definition Files.

• ADF entity objects and attributes of entity objects that reference rows of data and
help define collections for display in the user interface

For example, a web page may display an ADF Faces table component that
displays columns that ADF bindings map to the attributes of an entity object
as its data source. In the case of entity objects, enabling ADF Security does
not automatically secure entity objects rows. The data will remain accessible to
users until you define a security policy to explicitly protect the entity object or its
attributes. For a description of entity objects, see About Entity Objects.

JDeveloper tools support iterative development of security so you can easily create,
test, and edit security policies that you create for ADF resources. You can proceed to

Chapter 47
About ADF Security

47-2

create test users in JDeveloper and run the application in Integrated WebLogic Server
to simulate how end users will access the secured resources. This chapter describes
how to configure the repository of user identities and login credentials known as the
identity store.

Note:

References to the identity store in this chapter are always in the context of
test user identities that you create for the purpose of running in Integrated
WebLogic Server. Typically, you would not migrate these users to the staging
environment when you deploy to Oracle WebLogic Server, as described in
Preparing the Secure Application for Deployment.

To avoid a situation where you have enabled ADF Security but have not yet defined
security policies to grant access to test users, the Configure ADF Security wizard lets
you grant temporary view rights to all existing ADF resources (a view permission grant
will be added to the security policy for each ADF resource). This wizard option gives
you the choice to disable automatic grants and proceed to define security policies for
ADF resources as you create each resource or to enable automatic view grants and
gradually replace these grants with security policies that you define. To understand
iterative security development choices, see ADF Security Process Overview.

Tip:

Before you enable ADF Security and define security policies for the ADF
security-aware resources, you will want to understand the rules that govern
ADF authorization checking. Understanding these rules will help you to
implement the security you intend. For a discussion of these rules, see ADF
Security Use Cases and Examples.

Integration of ADF Security and Java Security
The ADF Security model for securing Fusion web application resources is not
based on the URL mapping of a security constraint as exemplified by the Java EE
security model. In actual practice, security constraints are not feasible for securing a
JavaServer Faces (JSF) web application where page navigation is not supported by
specific page URLs. For example, when the user navigates to the next page in a task
flow, the URL remains the same throughout the flow. As each new page is displayed,
there is no means to trigger a URL-based security constraint.

Instead, ADF Security implements a Java Authentication and Authorization Service
(JAAS) security model. The JAAS model is policy-based since JAAS is built on the
existing Java security model and integrates with any JAAS implementation, including
the Oracle Platform Security Services (OPSS) implementation of the JAAS service.
Whereas applications that utilize URL security constraints are security-unaware
because they rely on the Java EE container to manage security, Fusion web
applications require an explicit call to the ADF Security framework to authorize access
to resources based on user-defined policies. Thus, when you enable ADF Security and
define access policies for ADF resources, your application is security-aware.

Chapter 47
About ADF Security

47-3

ADF Security simplifies the implementation of a JAAS authorization model. This
implementation minimizes the work needed to create a security-aware application by
exposing security policies on ADF resources in a declarative fashion and performing
authorization checks on these resources at runtime.

The policy store in JDeveloper is file-based and contains a list of entries known
as grants, which define the security policy for the ADF resource. The grant entry
includes all the permissions granted to the user to perform operations on the protected
resource, for instance, accessing a web page associated with an ADF bounded task
flow. Permissions are granted in the policy store to an application role principal.

ADF Security expands on the JAAS model by allowing you to define grants using the
actions specified by the ADF Security framework permission classes. These classes
are specific to the ADF resource and map the actions to an operation supported by the
resource. The policy store for the Fusion web application therefore contains grants that
specify:

• One or more permissions that associate an action defined by the resource's
permission class with an instance of the ADF resource in the application (currently,
only the view action is supported for bounded task flows and page definitions
resources)

• The grantee, which is an application role defined by your application that you
populate with member users or, optionally, enterprise roles for whom you wish to
confer the same access rights

In the case of entity objects, the permission class defines read, delete, and update
actions that correspond to the read, removeCurrentRow, and update operations of the
entity object.

For a description of the ADF permission classes and supported actions, see ADF
Security Permission Grants.

ADF Security Use Cases and Examples
The use of ADF Security enables web applications to easily adjust to real-world
business security requirements, because rather than securing paths to application
resources, you secure the view operation on ADF resources with JAAS. JAAS-based
ADF Security provides:

• Declarative security support for ADF resources, such as the bounded task flow

Because Java EE security is URL-based or page-based, it is not possible to have
a navigation control without custom code. With ADF Security, you can control
whether or not the user can enter a task flow. Thus, a single security policy
for a task flow can control access to multiple web pages. Additionally, because
declarative security lets you secure the ADF resource, not the access path,
you can reuse the ADF resource elsewhere in the application and it will remain
secured.

• Simplified permission assignment by using application roles that allow for the
inheritance of permissions

While Java EE security roles that are used by Java EE security constraints are flat,
JAAS permissions are granted to application roles, which can be nested and may
be mapped to enterprise roles that the Oracle WebLogic Server domain defines.

• Utility methods for use in EL expressions to access ADF resources in the security
context

Chapter 47
About ADF Security

47-4

You can use the ADF Security EL expression utility methods to determine whether
the user is allowed to perform a known operation. For example, you can determine
whether the user is allowed to view a particular task flow.

Additionally, JDeveloper enables you to quickly create test users and passwords to
test security in Integrated WebLogic Server. When you are ready to deploy to Oracle
WebLogic Server, you can migrate the application-specific authorization policies to
the server and the administrator can configure the application to use an LDAP user
repository.

Table 47-1 summarizes the effect that enabling ADF Security has on the application
and the various ADF security-aware resources. For further discussion about how you
can work most effectively with ADF Security, see Best Practices for Working with ADF
Security.

Table 47-1 Summary of ADF Security-Aware Resources

ADF Resource How ADF Enforces Security How to Grant Access

Bounded task
flows in all user
interface projects

Protected by default. Requires a
grant to allow users to enter the
bounded task flow.

Define the grant for the task flow.

Do not define grants for individual
page definition files associated with
the web pages of the bounded task
flow.

Page definition
files in all user
interface projects

Protected by default. Requires a
grant to allow users to view the page
associated with the page definition.

If the web page is contained by a
bounded task flow, define the grant
for the task flow.

Define the grant for the page
definition only when the web page
is not contained by a bounded task
flow or when the page is contained
by an unbounded task flow.

Note that the unbounded task
flow is not an ADF security-aware
component and allows no grants.

Entity objects in
the data model
project

Not protected by default. Requires a
grant to prevent access by users.

Define a grant on the entity object
to protect data only if you need
to control access at the level of
the entire data collection. The data
displayed by all components in
the user interface that reference
the protected entity object will be
protected.

Use entity-level security carefully.
Instead, consider defining security
at the level of the entity attribute.

Note that grants in the data model
project are saved as metadata on
the entity object itself and do not
appear in the ADF policy store.

Chapter 47
About ADF Security

47-5

Table 47-1 (Cont.) Summary of ADF Security-Aware Resources

ADF Resource How ADF Enforces Security How to Grant Access

Attributes of entity
objects in the data
model project

Not protected by default. Requires a
grant to prevent access by users.

Define a grant on the entity object
attribute to protect data when you
need to control access at the
level of the columns of the data
collection. The data displayed by all
components in the user interface
that reference the protected entity
attribute will be protected.

Note that grants in the data model
project are saved as metadata on
the entity object itself and do not
appear in the ADF policy store.

Additional Functionality for ADF Security
You may find it helpful to understand other Oracle ADF features before you start
working with ADF Security. Following are links to other functionality that may be of
interest.

• To understand the security features of Oracle Platform Security Services, see
Introduction to Oracle Platform Security Services in Securing Applications with
Oracle Platform Security Services.

ADF Security Process Overview
The Oracle ADF Security framework provides several out-of-the-box features to make
it easier for developers to code secure ADF applications. ADF Security settings are
stored in the application-wide jazn-data.xml data file.

You work in JDeveloper when you want to secure the ADF resources of your Fusion
web application. ADF Security will protect your application's bounded task flows and
any web pages contained in an unbounded task flow. You enable this protection by
running the Configure ADF Security wizard and later by defining ADF security policies
to define user access rights for each resource.

As you create the user interface for your application, you may run the Configure ADF
Security wizard at any time. You may choose to:

• Iterate between creating web pages in the UI project and defining security policies
on their associated ADF resources

• Complete all of the web pages in the UI project and then define security policies
on their associated ADF resources

Note:

Before you proceed to secure the Fusion web application, you should
become familiar with the ADF security model, as described in ADF Security
Use Cases and Examples.

Chapter 47
ADF Security Process Overview

47-6

The iterative design and test process is supported by a variety of design time tools.

Each time you create a new bounded task flow or ADF page definition file in your user
interface projects, the new ADF resource will be visible in the overview editor for the
jazn-data.xml file. This editor is also called the overview editor for security policies.
You use the overview editor to define security policies for ADF resources associated
with web pages for the entire application. You can also use the overview editor to sort
ADF resources and easily view those that have no security policy yet defined.

You use another editor to provision a few test users in the ADF identity store. The
identity store you create in JDeveloper lets you define user credentials (user ID and
password). The editor also displays the relationship between users you create and
the application roles that you assign them to for the purpose of conferring the access
rights defined by ADF security policies.

At design time, JDeveloper saves all policy store and identity store changes in a
single file for the entire application. In the development environment, this is the jazn-
data.xml file. After you configure the jazn-data.xml file using the editors, you can
run the application in Integrated WebLogic Server and the contents of the policy store
will be added to the domain-level store, the system-jazn-data.xml file, while the
test users will be migrated to the embedded LDAP server that Integrated WebLogic
Server uses for its identity store. The domain-level store allows you to test the security
implementation by logging on as test users that you have created.

You access all design time tools for security under the main menu, using the
Application > Secure menu, as shown in Figure 47-1.

Figure 47-1 Accessing the ADF Security Design Time Tools

Design Phase

To enable ADF Security and set up the policy store for the application that you will run
in JDeveloper:

1. Enable ADF Security to allow dynamic authentication and enforce authorization by
running the Configure ADF Security wizard.

Chapter 47
ADF Security Process Overview

47-7

When you run the wizard, if you choose to enable only dynamic authentication,
skip the remaining design phase steps. The wizard configures files that integrate
the security framework with OPSS on Oracle WebLogic Server.

2. Create an ADF security-aware resource, such as a bounded task flow with
constituent web pages (or regions) or a top-level web page (or region) that is
designed using ADF bindings.

Note: After you run the Configure ADF Security wizard, any web page associated
with an ADF security-aware resource will be protected. This means that you must
define security policies to make the web pages accessible before you can run the
application and test security.

3. Associate the ADF security-aware resource with one or more application roles that
you create.

Application roles you create are specific to the application and let you confer the
same level of access to a set of users (also known as member users). In the test
phase you will create some users and add them as members to the application
roles you created.

4. Grant view permission to the ADF security-aware resource and each of its
associated application roles.

The grant confers access rights to the application role's member users. Without
the grant, the user would not be able to access the ADF security-aware resource.
In the test phase, you will create some users and add them to your application
roles.

Testing Phase

To provision the identity store and test security using Integrated WebLogic Server:

1. Create some users and, optionally, create their enterprise roles.

You will log in to the application using the user ID and password you define. An
enterprise role is a logical role that lets you group users and associate these
groups with application roles. The enterprise role is not needed for testing. For
more information, see What You May Need to Know About Enterprise Roles and
Application Roles.

2. Associate the users you created and, optionally, the enterprise roles, with one or
more application roles.

A member user may belong to more than one application role when you wish to
confer the access right granted to multiple application roles.

3. Optionally, replace the default login page with a custom login page.

The default login page generated by the Configure ADF Security wizard cannot
utilize ADF Faces components. It is provided only as a convenience for testing
ADF security policies. Your custom login page may be designed with ADF Faces
components.

4. Run the application in JDeveloper and access any ADF security-aware resource.

The first time you attempt to access an ADF security-aware resource, the security
framework will prompt you to log in.

5. Log in and check that you are able to access the page and its resources as you
intended.

After you log in, the security framework checks the user's right to access the
resource. For example, if you receive an unexpected 401 unauthorized user error,

Chapter 47
ADF Security Process Overview

47-8

verify that you have created grants as suggested in Best Practices for Working
with ADF Security.

Preparation for Staging

To prepare the secure application for deployment to Oracle WebLogic Server in a
staging or production environment:

1. Remove any grants to the test-all role for all ADF security-aware resources and
replace with grants that you define.

Because ADF resources are secure by default, developers testing the application
will be granted view access only after security policies are defined. The Configure
ADF Security wizard gives you the option to generate grants to the test-all role
that will make all ADF resources accessible. To avoid compromising enterprise
security, you must eventually replace all temporary grants to the test-all role
with explicit grants that you define.

2. Remove all user identities that you created.

JDeveloper must not be used as an identity store provisioning tool, and you must
be careful not to deploy the application with user identities that you create for
testing purposes. Deploying user identities with the application introduces the risk
that malicious users may gain unintended access. Instead, rely on the system
administrator to configure user identities through the tools provided by the domain-
level identity management system.

3. Confirm that the application roles shown in the policy store are the ones that you
want an administrator to eventually map to domain-level groups.

4. Decide whether or not you what to define a security constraint to protect ADF
Faces resource files.

Resource files including images, style sheets, and JavaScript libraries are files that
the Fusion web application loads to support the individual pages of the application.
These files are not secured by ADF Security, but you can secure their Java EE
access paths if you require all users to be authenticated before they can access
the application.

5. Migrate the finalized policy store and credentials store to the target server.

Application policies and credentials can be automatically migrated to the domain
policy store when the application is deployed to a server in the Oracle WebLogic
environment. Support to automatically migrate these stores is controlled by the
target server's configuration. If Oracle Enterprise Manager is used to perform
the deployment outside of JDeveloper, then the migration configuration settings
can be specified in that tool. For information about migrating the jazn-data.xml
security policies and the cwallet.sso credentials, see the Configuring the OPSS
Security Store chapter in Securing Applications with Oracle Platform Security
Services.

Enabling ADF Security
The Configure ADF Security wizard allows you to enable authentication and
authorization separately.

To simplify the configuration process which allows ADF Security to integrate with
OPSS, JDeveloper provides the Configure ADF Security wizard. The wizard is the
starting point for securing the Fusion web application using ADF Security. The wizard

Chapter 47
Enabling ADF Security

47-9

is an application-level tool that, once run, will enable ADF Security for all user interface
projects that your application contains.

Note:

Because the Configure ADF Security wizard enables ADF Security for all
user interface projects in the application, after you run it, users will be
required to have authorization rights to view any web page contained by
a bounded task flow and all web pages associated with an ADF page
definition. Therefore, after you run the wizard, the application is essentially
locked down until you define security policies to grant view rights to the user.
For an overview of the process, see ADF Security Process Overview.

How to Enable ADF Security
The Configure ADF Security wizard allows you to choose to enable authentication and
authorization separately. You may choose to:

• Enable only user authentication.

Although ADF Security leverages Java EE container-managed security for
authentication, enabling only authentication means that you want to use the ADF
authentication servlet to support user login and logout, but that you intend to
define container-managed security constraints to secure web pages.

• Enable user authentication and also enable authorization.

Enabling authorization means you intend to control access to the Fusion web
application by creating security policies on ADF resources.

The ADF Security framework supports these two choices to give you the option to
implement Java EE Security and still be able to support login and logout using the
ADF authentication servlet. The benefit of enabling the ADF authentication servlet is
that the servlet will automatically prompt the user to log in the first time the application
is accessed. The ADF authentication servlet also allows you to redirect the user to
a defined start page after successful authentication and does not require passing the
target page on the request URL. You will also be able to manage the page redirect
when the user logs out of the application. These redirect features provided by ADF
Security are not available using only container-managed security.

Note that ADF Security does not perform authentication, but relies on the Java EE
container to invoke the configured login mechanism, as described in What Happens at
Runtime: How ADF Security Handles Authentication.

Chapter 47
Enabling ADF Security

47-10

Best Practice:

Because Java EE security constraints cannot interact with the task flow
to secure the current page of a task flow, container-managed security is
not a useful solution when your application is designed with ADF task
flows. When you use ADF task flows, select the ADF Authentication and
Authorization option in the Configure ADF Security wizard. This option
will allow you to define security policies to protect the task flows of your
application.

Because ADF Security delegates authentication to the web container, when you
run the Configure ADF Security wizard, the wizard prompts you to configure the
authentication method that you want the web container to use. The most commonly
used types of authentication are HTTP Basic Authentication and Form-Based
Authentication. Basic authentication uses the browser login dialog for the user to
enter a user name and password. Note that with basic authentication, the browser
caches credentials from the user, thus preventing logout. Basic authentication is useful
when you want to test the application without requiring a custom login page. Form
authentication allows the application developer to specify a custom login UI. If you
choose Form-based authentication, you can also use the wizard to generate a simple
login page. The default login page is useful for testing your application with Integrated
WebLogic Server.

Note:

Because the generated login page is a simple JSP or HTML file, you will
not be able to modify it with ADF Faces components. For information about
replacing the default login page with a custom login page that uses ADF
Faces components, see Creating a Login Page.

Before you begin:

It may be helpful to have an understanding of the Configure ADF Security wizard. For
more information, see Enabling ADF Security.

To enable ADF Security for the application:

1. In the main menu, choose Application and then Secure > Configure ADF
Security.

2. In the ADF Security page, leave the default ADF Authentication and
Authorization option selected. Click Next.

When you run the wizard with the default option selected, your application will
enforce authorization for ADF security-aware resources. Enforcing authorization
for ADF resources means that you intend to define security policies for these
resources to make the web pages of your application accessible. Until you do so,
all pages that rely on the ADF bounded task flows and ADF page definitions will
remain protected.

The other two wizard options to configure ADF Security should not be used when
you want to enable ADF Security. Those options allow you to temporarily disable

Chapter 47
Enabling ADF Security

47-11

ADF Security and run your application without security protection, as described in
Disabling ADF Security.

Specifically, the first page of the wizard lets you choose among three options,
with the default option set to enable ADF Authentication and Authorization, as
shown in Figure 47-2:

• ADF Authentication and Authorization (default) enables the ADF
authentication servlet so that you can redirect to a configured web page when
the user logs in and logs out. This option also enables ADF authorization
to enforce authorization checking against security policies that you define for
ADF resources. This option assumes that you will define application roles and
assign explicit grants to those roles to manage access to ADF security-aware
resources.

• ADF Authentication enables the ADF authentication servlet to require the
user to log in the first time a page in the application is accessed and supports
page redirect by mapping the Java EE application root "/" to the a Java
EE security constraint that will trigger user authentication. Since the wizard
disables ADF authorization, authorization checking is not performed, whether
or not security policies exist for ADF resources. Once the user is logged in, all
web pages containing ADF resources will be available to the user.

• Remove ADF Security Configuration disables the ADF authentication
servlet and prevents ADF Security from checking policy grants without altering
the existing policy store. In this case, you may require users to log in, become
authenticated, and test access rights against URL security constraints using
standard Java EE security. Note that running the wizard with this option
disables fine-grained security against ADF resources.

Figure 47-2 Using the Configure ADF Security Wizard to Enable Security-
Aware Resources

3. In the Authentication Type page, select the authentication type that you want your
application to use when the user submits their login information. Click Next.

Chapter 47
Enabling ADF Security

47-12

A known issue prevents the ADF authentication servlet from working with Basic
type authentication and allows a user to access resources after logout. Use form-
based authentication instead of basic authentication. For details about this issue,
see What You May Need to Know About Fusion Web Application Logout and
Browser Caching.

If you select Form-based Authentication, you can also select Generate Default
Pages to allow the wizard to generate a default login and error page. By default
the wizard generates the login and error pages at the top level of the user interface
project, as shown in Figure 47-3. If you want to change the location, specify the full
path relative to the user interface project.

Figure 47-3 Using the Configure ADF Security Wizard to Generate a Simple
Login Page

4. In the Automatic Policy Grants page, leave the default No Automatic Grants
option selected. Click Next.

When you select No Automatic Grants, you must define explicit grants that are
specific to your application. The test-all application role provides a convenient
way to run and test application resources without the restricted access that ADF
authorization enforces. However, it increases the risk that your application may
leave some resources unprotected.

Alternatively, you can use the wizard to grant to the test-all application role.
When you enable grants to the test-all role, you can postpone defining explicit
grants to ADF resources until you are ready to refine the access policies of
your application. If you decide to enable automatic grants, do not let application
development progress too far and the content of the application become well-
established before you replace grants to the test-all role with the your
application's explicit grants. The explicit grant establishes the necessary privilege
(for example, view on a page) to allow users to access these resources. For
more information about the test-all role, see How to Use the Built-In test-all
Application Role.

Chapter 47
Enabling ADF Security

47-13

5. In the Authenticated Welcome page, select Redirect Upon Successful
Authentication to direct the user to a specific web page after they log or to define
a default destination page after the session is lost due to session timeout. Click
Next.

If you leave the Redirect Upon Successful Authentication option unselected
and your application does not explicitly handle login redirect through the
AuthenticationService API, then by default the user will be returned to the page
from which the login was initiated. However, when the user presses Ctrl-N or Ctrl-T
to open a new browser window or tab, they will receive a 403 or 404 error unless
a welcome page definition appears in the application's web.xml file. You can use
this option to specify a welcome page so the definition appears in the application's
web.xml file.

Note that if the web page you specify contains ADF Faces components, you
must define the page in the context of /faces/. For example, the path for
adffaces_welcome.jspx would appear in the Welcome Page field as /faces/
adffaces_welcome.jspx.

For details about specifying other redirect options, see How to Redirect a User
After Authentication.

6. In the Summary page, review your selections and click Finish.

What Happens When You Enable ADF Security
After you run the Configure ADF Security wizard with the default ADF Authentication
and Authorization option selected in the ADF Security page, you will have:

• Enabled ADF authentication to prompt the user to log in and to allow page
redirects

• Enabled ADF authorization checking so that only authorized users will have
access to ADF resources

The wizard updates all security-related configuration files and ensures that ADF
resources are secure by default. Table 47-2 shows which files the Configure ADF
Security wizard updates.

Chapter 47
Enabling ADF Security

47-14

Table 47-2 Files Updated for ADF Authentication and Authorization

File File Location Wizard Configuration

web.xml /public_html/WEB-INF
directory relative to the user
interface project

And, in JDeveloper, in the
user interface project under
the Web Content-WEB-INF
node

• Defines the Oracle JpsFilter filter to set up
the OPSS policy provider. The filter defines
settings that indicate that your servlet has special
privileges. It is important that the JpsFilter be
the first filter definition in the web.xml file.

• Adds the Oracle adfAuthentication servlet
definition to require the user to log in the
first time ADF resources are accessed. Note
that ADF Security does not itself perform
authentication, but leverages Java EE container-
managed security for this purpose.

• When you select the ADF Authentication
and Authorization option in the wizard, the
web.xml maps the adfAuthentication servlet
to a security constraint that will trigger user
authentication dynamically.

• When you select the ADF Authentication option
in the wizard, the web.xml maps the Java EE
application root "/" to the allPages security
constraint that will trigger user authentication
dynamically.

• Sets the authentication method for the Login
configuration to handle user login.

• When you select the Redirect Upon Successful
Authentication option in the wizard, the
web.xml defines the success_url servlet
initialization attribute (init-param element),
which whitelists the redirect destination to
use upon successful login and provides 1. a
single, fixed fallback for the application that
does not handle login redirects using the
AuthenticationService API or 2. a default
destination page after the session is lost due to
session timeout.

• Defines required security roles, including the
role valid-users, which is used to trigger
the security constraint that enables dynamic
authentication.

adf-config.xml /.adf/META-INF directory
relative to the web
application workspace

And, in JDeveloper, in the
Application Resources panel
of the Applications window
under the Descriptors-ADF
META-INF node

• Defines the JAAS security context.
• Enables the use of ADF Security security

policies for authorization checking (the
authorizationEnforce parameter in the
<JaasSecurityContext> element is set to
true).

• Enables triggering a login dialog in Java
SE applications, (the authenticationRequire
parameter in the <JaasSecurityContext>
element is set to true). This parameter is not
used in Fusion web applications. Fusion web
applications rely on settings in the web.xml file
to enable authentication.

Chapter 47
Enabling ADF Security

47-15

Table 47-2 (Cont.) Files Updated for ADF Authentication and Authorization

File File Location Wizard Configuration

jps-config.xml /src/META-INF directory
relative to the web
application workspace

And, in JDeveloper, in the
Application Resources panel
of the Applications window
under the Descriptors-
META-INF node

• Enables OPSS security services specifically
within the JDeveloper design time.

When you test data model projects using the
Oracle ADF Model Tester or run unit tests for
security validation this workspace-specific file
must be present. Note that this file is not
used in the deployed Fusion web application.
For example, when you deploy to Integrated
WebLogic Server, OPSS security services
are enabled by the DefaultDomain/config/
fmwconfig/jps-config.xml file.

weblogic.xml /public_html/WEB-INF
directory relative to the web
application workspace

And, in JDeveloper, in the
user interface project under
the Web Content-WEB-INF
node

• Maps the valid-users security role to an
implicit group called users. Oracle WebLogic
Server configures all authenticated users to be
members of the users group.

jazn-data.xml ./src/META-INF directory
relative to the web
application workspace

And, in JDeveloper, in the
Application Resources panel
of the Applications window
under the Descriptors-
META-INF node

• Sets the default jazn.com realm name for the
XML identity store that you configure for use with
Integrated WebLogic Server.

You will use this file to store user identities,
user groups, and security policies for the
ADF Security-enabled application. This file is
used during development and enables support
for security when running the Oracle ADF
Model Tester. However, when you deploy your
application, for example, to Integrated WebLogic
Server, security policies will be migrated into the
configured policy store in the DefaultDomain/
config/fmwconfig/system-jazn-data.xml
file.

Because authentication is delegated to the web container, the wizard only updates
the web.xml file to enable the ADF authentication servlet to trigger authentication
dynamically. It defines servlet mapping for the ADF authentication servlet and adds
two Java EE security constraints, allPages and adfAuthentication, to the web.xml
file, as shown in the following example.

<servlet>
 <servlet-name>adfAuthentication</servlet-name>
 <servlet-class>
 oracle.adf.share.security.authentication.AuthenticationServlet
 </servlet-class>
 <init-param>
 <param-name>success_url</param-name>
 <param-value>faces/welcome</param-value>
 </init-param>
 <init-param>
 <param-name>end_url</param-name>
 <param-value>faces/welcome</param-value>
 </init-param>
 <init-param>

Chapter 47
Enabling ADF Security

47-16

 <param-name>disable_url_param</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>
...
<servlet-mapping>
 <servlet-name>adfAuthentication</servlet-name>
 <url-pattern>/adfAuthentication</url-pattern>
</servlet-mapping>
...
<security-constraint>
 <web-resource-collection>
 <web-resource-name>allPages</web-resource-name>
 <url-pattern>/</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>valid-users</role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>adfAuthentication</web-resource-name>
 <url-pattern>/adfAuthentication</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>valid-users</role-name>
 </auth-constraint>
</security-constraint>

The servlet initialization attributes defined by the init-param elements shown in the
example control redirects for successful login and logout (respectively, success_url
and end_url). These init-param elements provide a default or fallback destination
when the application does not specify the redirect target during login and logout. In
this sense, they define a fixed destination whitelist on the ADF authentication servlet
that prevents unvalidated redirects from occurring. The servlet initialization attribute
disable_url_param may be optionally added to the web.xml servlet init-param list to
block passing success_url and end_url on the browser URL and provides a level of
protection against malicious redirect attacks that might exploit these parameters on the
browser URL. This redirect protection works especially well when the application uses
the AuthenticationService API to support login and logout redirects, which stores the
redirect URL parameters as session attributes that may not be changed by the user.

Note that the protection provided by the servlet init-param element
disable_url_param must be opted into and is not enabled by default. Existing
applications that rely on the legacy approach of passing redirect parameters on
the browser URL Request should not enable the disable_url_param attribute.
For new applications, it is recommended that you opt in as the example shows
(disable_url_param set to true), to block the usage of success_url and end_url
on the browser URL.

Because the allPages constraint maps to the '/' URL, it protects the Java EE
application root. This mapping enables the Oracle WebLogic Server web container to
trigger user authentication dynamically even before ADF Security is accessed. When
the user first accesses the application, it forces the container to challenge the user for
the user name and password. Then when the user accesses a page protected by ADF
Security, there is no longer a need to authenticate the user and no need to redirect to
the ADF authentication servlet.

Chapter 47
Enabling ADF Security

47-17

Note:

You can remove the allPages constraint from the web.xml file if you
prefer to provide a login link or button to explicitly trigger login. You could
also have a link or button to perform logout. For details about creating
a custom component to perform login and logout, see Creating a Login
Page. If you keep the constraint to allow dynamic authentication, because
it covers everything under the Java EE application root, your login page
may not display supporting resources at runtime, as described in How to
Ensure That the Custom Login Page's Resources Are Accessible for Explicit
Authentication.

Because every user of the application is required to be able to log in, the security
constraint defined against the adfAuthentication resource allows all users to access
this web resource. As such, the security role associated with the constraint must
encompass all users. To simplify this task, the Java EE valid-users role is defined.
The weblogic.xml file maps this role to an implicit users group defined by Oracle
WebLogic Server. This mapping ensures that every user will have this role because
Oracle WebLogic Server configures all properly authenticated users as members of
the users group, as described in What You May Need to Know About the valid-users
Role.

Note:

The adfAuthentication resource constraint provides the definition of a
single standard URL pattern against the ADF authentication servlet. Your
web pages can provide an explicit login or logout link that references the
ADF authentication servlet URL pattern. This explicit login scenario is an
alternative to generating a simple login form in the Configure ADF Security
wizard and relying on ADF authentication to prompt the user to log in. For
details about handling the explicit login scenario, see Creating a Login Page.

To enable authorization, the wizard updates the adf-config.xml file and sets the
authorizationEnforce parameter in the <JaasSecurityContext> element to true, as
shown in the following example.

<JaasSecurityContext

initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"
 jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="true"
 authenticationRequire="true"/>

When authorization is enabled, the ADF Security Context gets the user principal from
the HttpServletRequest once the user is authenticated by the container. The user
submits a user name and password and that data is compared against the data in the
identity store where user information is stored. If a match is found, the originator of
the request (the user) is authenticated. The user principal is then stored in the ADF
Security Context, where it can be accessed to obtain other security-related information
(such as the group the user belongs to) in order to determine authorization rights. For

Chapter 47
Enabling ADF Security

47-18

details about accessing the ADF Security Context, see Getting Information from the
ADF Security Context.

What Happens When You Generate a Default Form-Based Login
Page

The wizard-generated login and error pages are simple HTML pages that are added
to the top-level folder of your user interface project. The generated login page
defines an HTML form that will submit the user's login request with the standard
j_security_check action. This action together with form-based authentication, which
is the default option for container authentication provided by the wizard, allows the
web container to authenticate users from many different web application resources.

The wizard updates the web.xml file to specify form-based authentication and identify
the location of the pages, as shown in the following example.

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/error.html</form-error-page>
 </form-login-config>
</login-config>

Your application will display the wizard-generated login page from a server-side
redirect in response to the unauthenticated user attempting to access a protected
resource. This is known as implicit authentication because the redirect to the login
page only occurs when user navigates to a page that contains an ADF security-aware
resource.

Note that web applications also have a notion of public pages and allow for explicit,
as well as implicit authentication. This means that users should be able to log in to
the application by clicking a login link before they navigate to secured content. For
information about creating and using a login link, see Creating a Login Page.

What You May Need to Know About the Configure ADF Security
Wizard

The first time you run the Configure ADF Security wizard and enable authentication
and authorization, you secure ADF resources at the level of the application.
Additionally, you select specific project-level settings for the user interface project,
including the authentication type and the authentication welcome. The wizard adds
these web application settings to the web.xml file in the project you select. When your
application contains multiple user interface projects and web.xml files, you can return
to the wizard and configure these settings in the web.xml file for another user interface
project that you select.

What You May Need to Know About ADF Authentication
Fusion web applications that use Java EE container-managed authentication for login
and ADF authentication for logout integrate with Oracle Single Sign-On (Oracle SSO)
with no special requirements. The ADF authentication servlet handles the details of
logout and invalidates the user session. However, when the application uses login and
logout methods provided by Servlet 3.0, Oracle SSO is not supported. Additionally,

Chapter 47
Enabling ADF Security

47-19

Servlet 3.0 login and logout is only compatible with application servers that fully
support Java EE 6 or later.

On the first access to a page that relies on an ADF security-aware resource, when the
user is not yet logged in, the application server creates a session and the JpsFilter,
configured in the web.xml when you run the Configure ADF Security wizard, creates a
subject containing the anonymous user principal and the anonymous-role role principal.
With this role principal, the anonymous user session allows the unauthenticated
user to access public web pages that are not associated with any ADF security-
aware resources (including ADF bounded task flows or page definitions). Upon login,
WebLogic Server does not invalidate the existing anonymous user session, and for
security reasons, only creates a new session ID for the authenticated user session.

The authenticated user session behavior enforced by WebLogic Server preserves the
user’s ability to view public pages that had previously been visited by cloning the
anonymous user session data to the authenticated user session with the new ID.
While this behavior differs from the way HTTP sessions are created on WebLogic
Server, there is no security risk involved in carrying anonymous user session data into
the authentication user session.

Note:

In the Fusion web application, the session bean is initialized only when the
session is established. If the session is created as anonymous, the session
bean will not get re-initialized when the user logs in even though WebLogic
Server creates a new session. This is the case when going from a public
page to a secured page. However, when the user enters the application on a
secured page, the session bean does get initialized upon user login.
For this reason, Fusion web applications should not rely on session-scoped
managed beans to get the current user data from the authenticated session.
The correct way for the application to obtain the current user is from the ADF
Security Context. For details about the API to work with the ADF Security
Context, see Getting Information from the ADF Security Context.

In the case of pages associated with ADF security-aware resources, you must
explicitly grant view permission to anonymous-role to make the page accessible to
the anonymous user. For details about granting privileges to the anonymous user, see
How to Make an ADF Resource Public.

What You May Need to Know About the Built-In test-all Role
The Configure ADF Security wizard lets you enable automatic grants to the built-in
test-all application role for the purpose of granting view permission to all ADF
security-aware resources in your application. Without a permission grant, either an
automatic view grant or an explicit grant that you define, ADF Security authorization
checking enforcement would prevent you from being able to run the application and
access its resources. You can run the wizard with the test-all application role feature
enabled and then gradually replace automatic view grants with explicit grants. Be
aware that you must not deploy the application with grants to the test-all application
role in place, since this feature makes all ADF resources public. If you choose to
enable the built-in test-all application role in the wizard, see How to Remove the
test-all Role from the Application Policy Store, before deploying your application.

Chapter 47
Enabling ADF Security

47-20

What You May Need to Know About the valid-users Role
The valid-users role is a Java EE security role defined by ADF Security to ensure
that all users will access the adfAuthentication servlet web resource defined in the
web.xml file. The Configure ADF Security wizard updates the weblogic.xml file to map
this ADF Security role to the users principal, as shown in the following example. This
mapping ensures that every user will have this role, because Oracle WebLogic Server
configures all properly authenticated users as members of the users group.

<security-role-assignment>
 <role-name>valid-users</role-name>
 <principal-name>users</principal-name>
</security-role-assignment>

At runtime, the users principal is added automatically to a successfully authenticated
subject by OPSS. From a security perspective, the valid-users role supports ADF
authentication only in the case where you need to control access to web resources
using security constraints alone. The end result of this mapping relies entirely on Java
EE security and does not involve JAAS Permissions.

Creating Application Roles
To grant permissions to ADF objects, you need to create application roles that are
mapped to enterprise groups. When you define roles, you have two options. You
can define them either as application roles or as enterprise roles. Application roles
are local to an application and it can contain only users and roles defined in the
application, whereas enterprise roles are available to all applications deployed in the
domain.

You create application roles to represent the policy requirements of the application
and to define groups of users with the same view permission rights. The application
roles that you create in the application policy store are specific to your application.
For example, in the context of the work flow, there may be application roles such
as Application Customer Role and Application Employee Role, defined in the
SummitADF_TaskFlows workspace of the Summit ADF sample applications.

At runtime, the access rights are conferred on the user through the application role for
which the user is defined as a member. Thus, before you can define security policies,
the policy store must contain the application roles that you intend to issue grants to.
This can be an application role that you define (such as Application Customer Role)
or it can be one of the two built-in application roles defined by OPSS: authenticated-
role or anonymous-role. JDeveloper provides the built-in application roles to let you
make ADF resources public, as described in How to Make an ADF Resource Public.

After you create the application role, you will:

• Grant permissions to the application roles, as described in Defining ADF Security
Policies.

• Associate test users with each application role, as described in Creating Test
Users.

Chapter 47
Creating Application Roles

47-21

Best Practice:

The ADF Security framework enforces a role-based access control
mechanism with permissions granted either to application roles or to
individual users. Although you may only need to test security and therefore
might not need to create groups of users, you should still create application
roles (with at least one user member). Later when you define security polices
on the ADF resources, the overview editor for the application policy store will
allow you to select an application role for the grant.

How to Create Application Roles
JDeveloper lets you add application roles to the policy store of the jazn-data.xml
file, which appears in the Descriptors/META-INF node of the Application Resources
panel.

Note:

When you create application roles, be sure to add the new application roles
to the policy store, not the identity store. Roles that you add to the identity
store define enterprise security roles and provide a way to conveniently
group users in the identity store. For more details about enterprise roles, see
What You May Need to Know About Enterprise Roles and Application Roles.

To create application roles in the policy store of the jazn-data.xml file, you use the
Application Roles page of the overview editor for the jazn-data.xml file. This editor
lets you view the relationship between identity store members and the application roles
you create.

Before you begin:

It may be helpful to have an understanding of application roles. For more information,
see Creating Application Roles.

To create application roles:

1. In the main menu, choose Application and then Secure > Application Roles.

2. In the Application Roles page of the jazn-data.xml overview editor, select the
policy store for your application from the Security Policy dropdown list.

The policy store that JDeveloper creates in the jazn-data.xml file is automatically
based on the name of your application.

3. In the Roles list, click the New icon.

4. In the Name field, enter the name of the role and click any other field to add the
application role to the policy store.

5. If you have already set up test users in the identity store, you can map users and
roles, as described in How to Associate Test Users with Application Roles.

Chapter 47
Creating Application Roles

47-22

What Happens When You Create Application Roles
When you add an application role to the policy store, JDeveloper updates the
jazn-data.xml file located in the src/META-INF directory relative to the application
workspace. Application roles are defined in <app-role> elements under <policy-
store>, as shown in the following example. Because the policy store <application>
element names the application, at runtime all application roles that you create will be
visible to your application only. Other web applications may define a policy store with
their own set of application roles.

<policy-store>
 <applications>
 <application>
 <name>SummitADFTaskFlows</name>
 <app-roles>
 <app-role>
 <name>Application Employee Role</name>
 <display-name>Application Employee Role</display-name>
 <class>oracle.security.jps.service.policystore.
 ApplicationRole</class>
 </app-role>
 ...
 </app-roles>
 <jazn-policy>
 ...
 </jazn-policy>
 </application>
 </applictions>
</policy-store>

What You May Need to Know About Enterprise Roles and Application
Roles

An enterprise role is a role that is maintained in the domain identity store (as opposed
to an application identity store). Enterprise roles are available to every application
deployed in the domain and are therefore also called external roles.

An application role is a role used by a Fusion web application. It is specific to
the application, defined by the application policy, and not necessarily known to the
Java EE container. Application roles are scoped in the sense that they can contain
only users and roles defined in the application. Application roles must be mapped to
enterprise roles.

You use the overview editor for the jazn-data.xml file to create enterprise roles to
group users that you add to the identity store. You can use this mechanism to assign
entire groups of users to application roles that you have defined for the purpose of
conferring access rights defined by ADF security policies, as described in How to
Associate Test Users with Application Roles.

However, Integrated WebLogic Server does not require you to create enterprise roles
to run the application within JDeveloper. For the purpose of testing the application, it
may be sufficient to create a few test users and assign them directly to application
roles. When you run the application in JDeveloper, the users and any enterprise roles
you defined will be created in the default security provider (which is embedded LDAP
for Integrated WebLogic Server).

Chapter 47
Creating Application Roles

47-23

Typically, when you deploy the application for staging, you will migrate only the
policy store to the target server. You can configure JDeveloper deployment options
so that the identity store, including test users and enterprise roles, is not migrated, as
described in How to Configure, Deploy, and Run a Secure Application in JDeveloper.

After you deploy the secure application, Oracle Fusion Middleware will merge your
application's policy store with the policies of the domain-level policy store. To complete
this task, the administrator for the Oracle WebLogic Server will eventually map the
application roles of your policy store to the existing domain-level enterprise roles.
This application role mapping at the domain level allows enterprise users to access
application resources according to the ADF security policies you have defined. The
domain-level application role mapping by the administrator also allows you to develop
the ADF security policies of your application without requiring any knowledge of the
identity store in the production environment.

Defining ADF Security Policies
The ADF security implementation consists of two main concepts; authentication and
authorization. Authentication ensures the identity of the user based on the identity
store and authorization ensures that the user only has access to resources they have
been granted access to in the policy store.

Authorization relies on a policy store that is accessed at runtime and that contains
permissions that grant privileges to execute predefined actions, like view, on a
specified object. Initially, after you run the Configure ADF Security wizard, the policy
store defines no grants. And, because the default wizard option ADF Authentication
and Authorization enables authorization checking, the web pages of your application
that rely on the ADF security-aware resources will be inaccessible to users. You must
use JDeveloper to define explicit grants for the resources that you want to permit users
to access.

Best Practice:

When you run the Configure ADF Security wizard with the default option
ADF Authentication and Authorization selected, you will lock down the
web pages of your application. This affords the most protection to the Fusion
web application possible since you will define explicit grants to allow users
to access only the pages you intend. For a discussion of this guideline and
others, see Best Practices for Working with ADF Security.

Before you can define security policies, the policy store for your application must
contain the application roles that you intend to issue grants to. This can be an
application role that you define (such as Application Customer Role) or it can be
one of the two built-in application roles defined by OPSS: authenticated-role or
anonymous-role. You use application roles to classify users, so that each member of
the same role possesses the same access rights. As such, the security policy names
the application role as the principal of the grant, rather than specific users. For details
about defining application roles, see Creating Application Roles.

For the user interface project, you use the overview editor for security policies to
secure ADF resources, including ADF task flows and ADF page definitions. You open
the editor on the jazn-data.xml file by double-clicking the jazn-data.xml file (located

Chapter 47
Defining ADF Security Policies

47-24

in the Application Resources panel) or by choosing Secure > Resource Grants from
the Application menu in the main menu.

Note that when you open the jazn-data.xml file, the overview editor provides
additional editor pages that you use to create test users, enterprise roles, and
application roles.

For the data model project, you do not secure entity objects or their attributes using
the overview editor for security policies. Instead, you set metadata directly on these
objects to manage whether or not the databound UI component displays the data. For
details about granting permissions for row-level security, see How to Define Policies
for Data.

How to Make an ADF Resource Public
It is a common requirement that some web pages be available to all users, regardless
of their specific access privileges. For example, the home page should be seen by all
visitors to the site, while a corporate site should be available only to those who have
identified themselves through authentication.

In both cases, the page may be considered public, because the ability to view the
page is not defined by the users' specific permissions. Rather, the difference is
whether the user is anonymous or a known identity.

In the ADF security model, you differentiate between the absence of security
and public access to content by granting access privileges to the anonymous-
role principal. The anonymous role encompasses both known and anonymous
users, thus permission granted to anonymous-role allows access to a resource by
unauthenticated users, for example, guest users. To provide access to authenticated
users only, the policy must be defined for the authenticated-role principal.

Note:

For details about creating a public home page which contains links to other
pages in the application, see How to Create a Public Welcome Page.

Before you begin:

It may be helpful to have an understanding of ADF security policies. For more
information, see Defining ADF Security Policies.

You will need to complete these tasks:

1. Create bounded task flows, as described in Creating a Task Flow.

2. Create web pages with an ADF page definition file, as described in Working with
Page Definition Files.

3. Run the Configure ADF Security wizard, as described in Enabling ADF Security.

4. Create application roles, as described in Creating Application Roles.

To grant public access to ADF security-aware resources:

1. In the main menu, choose Application and then Secure > Resource Grants.

Chapter 47
Defining ADF Security Policies

47-25

2. In the Resource Grants page of the overview editor for security policies, select one
of the following resources from the Resource Type dropdown list:

• Task Flow when you want to make a bounded task flow public. The
application displays the web pages under the permission you define for the
task flow itself. Thus, all constituent web pages of the bounded task flow will
become public.

• Web Page when you want to make individual web pages public. Typically,
these pages are defined by an unbounded task flow and are top-level pages in
the application, such as a home page.

3. In the Resources column, select the ADF resource for which you want to grant
access rights.

The resource you select should display the lock icon in the first column next to
the resource name. The lock icon indicates that the resource has no security
policy defined and therefore is "locked"—which means it remains inaccessible to
users until you define a grant. For example, in Figure 47-4, the ADF resource
customer-registration-task-flow (a bounded task flow) shows the lock icon
since no grant has been made.

Tip:

Click the key toggle icon in the header for the overview editor's first
column to hide or show resources that already have grants and display
only the resources without grants. The key icon indicates that the
resource has a grant that will make the resource accessible to users
with sufficient access rights.

Figure 47-4 Selecting an ADF Security-Aware Resource in the Overview
Editor

4. In the Granted to column, click the Add Grantee icon and choose Add
Application Role.

5. In the Select Application Roles dialog, select one of these built-in application roles:

• anonymous-role means the resource will be accessible to anyone who visits
the site. A grant to this role is necessary if you want to make a web page
associated with an ADF security-aware resource accessible before a user
logs in. For example, you would grant to anonymous-role for a task flow that
manages customer registration.

Chapter 47
Defining ADF Security Policies

47-26

• authenticated-role means the resource will be accessible only to
authenticated users (ones who visit the site and log in). For example, you
would grant to authenticated-role for an employee registration task flow.

6. In the Select Application Roles dialog, click OK.

7. In the Resource Grants page of the overview editor, in the Actions column, leave
the view action selected.

By default, the overview editor shows view selected, as shown in Figure 47-5. The
view action is the only action currently supported for Fusion web applications.

Figure 47-5 Granting to anonymous-role in the Overview Editor

What Happens When You Make an ADF Resource Public
When you define a security policy, the overview editor for security policies updates the
jazn-data.xml file located in the /src/META-INF node relative to the web application
workspace.

The overview editor writes the policy information to the <policy-store> section of
the file. The security policy, or grant, contains both a grantee and one or more
permissions. The grantee is the application role that the policy is being defined for—in
this case, the anonymous role. Each permission defines the resource being secured
and the action that can be performed against that resource.

The following example shows a security policy in the jazn-data.xml file that makes
a customer registration task flow public. The grant to anonymous-role contains a
single view permission for a bounded task flow, customer-registration-task-flow.
With this grant, all users will be able to enter the customer registration task flow and
complete the customer registration process. Additional grants to the anonymous role
may be made and will appear in the <permissions> section of the anonymous role
grant.

<policy-store>
 ...
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.internal.core.
 principals.JpsAnonymousRoleImpl</class>
 <name>anonymous-role</name>
 </principal>
 </principals>

Chapter 47
Defining ADF Security Policies

47-27

 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</
class>
 <name>/WEB-INF/customer-registration-task-flow.xml#
 customer-registration-task-flow</name>
 <actions>view</actions>
 </permission>
 ...
 </permissions>
 ...
 </grant>
 ...
 </jazn-policy>
</policy-store>

What Happens at Runtime: How the Built-in Roles Are Used
The anonymous-role and authenticated-role names are special roles defined by
Oracle Platform Security Services (OPSS).

When you run the Configure ADF Security wizard, the wizard configures the
JpsFilter definition in the web.xml file to enable support for the anonymous role.
The enabled anonymous role allows ADF Security to support browsing of the site
by anonymous users—those users who have not yet logged in. In contrast, the
authenticated role is not declared and is always recognized by default. ADF Security
supports both of these roles.

When an end user first accesses an ADF security-aware resource, the system creates
a subject and populates it with the anonymous role principal. As long as the ADF
security-aware resource being accessed has the view grant to anonymous role, the
user is permitted access. If the anonymous role is not a grantee of the ADF resource,
the user is prompted to log in. After logging in, the authenticated role is added to
the subject. The wizard also adds the JpsFilter definition to the web.xml file, where
remove.anonymous.role set to false ensures that the anonymous role principal is
available even after the user logs in. With the authenticated role principal, the user
may access resources that have an explicit grant to the authenticated role.

How to Define Policies for ADF Bounded Task Flows
You define the access policy for an ADF bounded task flow by creating permission
grants in the Resource Grants page of the overview editor for security policies. The
grants you create will appear as metadata in the policy store section of the jazn-
data.xml file. This metadata defines a permission target (in this case, the bounded
task flow definition name) for which you have issued grants to authorize the members
of a specific application role.

Chapter 47
Defining ADF Security Policies

47-28

Best Practice:

Do not create permission grants for the individual web pages of a bounded
task flow. When the user accesses the bounded task flow, security for all
pages will be managed by the permissions you grant to the task flow.
And, because the contained web pages (with associated page definitions)
will be inaccessible by default, ADF Security prevents users from directly
accessing the pages of the task flow. This supports a well-defined security
model for task flows that enforces a single entry point for all users. For
further information about implementing security policies, see Best Practices
for Working with ADF Security.

You can sort the task flows in the overview editor by clicking the toggle buttons in the
Task Flow header, as described in Table 47-3.

Table 47-3 Resource Grant Toggle Buttons for Bounded Task Flows

Button Toggle Action Description

Shows/hides
bounded task
flows with no
grants

Represents a bounded task flow with no permission grants
defined. The web pages that the task flow calls will not be
accessible to any user.

Shows/hides
bounded task
flows with
grants

Represents a bounded task flow with one or more permission
grants defined. The web pages that the task flow calls will be
accessible to users who are members of the application role that
received the grant.

The list of available actions displayed by the overview editor is defined by the task
flow permission class (oracle.adf.controller.security.TaskFlowPermission). The
permission class maps these actions to the operations supported by the task flow.
Table 47-4 shows the actions displayed by JDeveloper for ADF bounded task flows.

Note that the view action is the only action currently supported for Fusion web
applications. Do not select customize, grant, or personalize actions—they are
reserved for future use in task flow security.

Table 47-4 Secured Actions of ADF Bounded Task Flows

Grantable Action Effect on the User Interface

view Controls who can read and execute a bounded task flow in a Fusion web
application.

This is the only operation that the task flow supports.

customize Reserved for future use. This action is not checked at runtime.

grant Reserved for future use. This action is not checked at runtime.

personalize Reserved for future use. This action is not checked at runtime.

Chapter 47
Defining ADF Security Policies

47-29

To define a grant for the task flow security policy, use the Resource Grants page of the
overview editor for the jazn-data.xml file.

Before you begin:

It may be helpful to have an understanding of ADF security policies. See Defining ADF
Security Policies.

You will need to complete these tasks:

1. Create bounded task flows, as described in Creating a Task Flow.

Best Practice:

If you are creating bounded task flows in separate UI projects of the
same application, you will want to assign unique task flow definition
names. This is necessary because a grant's task flow definition name
is scoped in the jazn-data.xml policy store by path (for example, /WEB-
INF/mytaskflow-definition.xml#mytaskflow-definition). Therefore
creating bound task flows with unique definition names is the only way to
impose project-level scoping of the grants.

2. Run the Configure ADF Security wizard, as described in Enabling ADF Security.

3. Create application roles, as described in Creating Application Roles.

To define a permission grant on an ADF bounded task flow:

1. In the main menu, choose Application and then Secure > Resource Grants.

2. In the Resource Grants page of the overview editor for security policies, select
Task Flow from the Resource Type dropdown list.

The overview editor displays all the task flows that your application defines. Task
flows are defined by task flow definition files (.xml) that appear in the Web
Content/Page Flows node of the user interface project.

3. In the Resources column, select the task flow for which you want to grant access
rights.

The first time you make a grant to a bounded task flow, the first column should
display the Resources without any grants icon (represented by a "lock") next to
the task flow name. The overview editor displays the lock icon to indicate that a
resource has no security policy defined and therefore is "locked"—which means it
remains inaccessible to users until you define a grant.

Tip:

Click the Resources with grants icon (represented by a "key") in the
header for the Resources column to hide all task flows that already
have grants. This will display only task flows without grants, as shown
in Figure 47-6. Additionally, you can type a partial task flow name in
the search field to display only the task flows with character-matching
names.

Chapter 47
Defining ADF Security Policies

47-30

Figure 47-6 Hiding Task Flows with Grants in the Overview Editor

4. In the Granted to column, click the Add Grantee icon and select Add
Application Role.

5. In the Select Application Roles dialog, select the application role that you want to
make a grantee of the permission.

The Select Application Roles dialog displays application roles from the jazn-
data.xml file. It also displays the built-in OPSS application roles, anonymous-role
and authenticated-role, as described in What Happens at Runtime: How the
Built-in Roles Are Used.

If you do not see application roles that are specific to your application, create the
role, as described in Creating Application Roles.

6. In the Select Application Roles dialog, click OK.

7. In the Resource Grants page of the overview editor, in the Actions column, leave
the view action selected.

By default, the overview editor shows the view action selected, as shown in
Figure 47-7. The view action is the only action currently supported for Fusion web
applications. Do not select customize, grant, or personalize actions—they are
reserved for future use and will not be checked by ADF Security at runtime.

The TaskFlowPermission class defines task flow—specific actions that it maps to
the task flow's operations, as described in Table 47-4.

Figure 47-7 Granting to an Application Role for a Bounded Task Flow
Definition in the Overview Editor

8. You can repeat these steps to make additional grants as desired.

The same task flow definition can have multiple grants made for different
application roles. The grants appear in the policy store definition of the jazn-
data.xml file, as described in What Happens When You Define the Security
Policy.

Chapter 47
Defining ADF Security Policies

47-31

How to Define Policies for Web Pages That Reference a Page
Definition

You define the access policy for an ADF page definition by creating permission grants
in the Resource Grants page of the overview editor for security policies. The grants
you create will appear as metadata in the policy store section of the jazn-data.xml
file. This metadata defines a permission target (in this case, the page definition name)
for which you have issued grants to authorize the members of a specific application
role.

Best Practice:

Create permission grants for the individual web page only when the page
is not a constituent of a bounded task flow. Page-level security is checked
for pages that have an associated page definition binding file only if the
page is directly accessed or if it is accessed in an unbounded task flow. For
further information about implementing security policies, see Best Practices
for Working with ADF Security.

You can sort the web page definition resources in the overview editor by clicking the
toggle buttons in the Resources header, as described in Table 47-5.

Table 47-5 Resource Grant Toggle Buttons for Web Page Definitions

Button Toggle Action Description

Shows/hides
top-level pages
with no grants

Represents a page definition with no permission grants defined
for a web page that is contained in an unbounded task flow. The
web page will not be accessible to any user.

Shows/hides
top-level pages
with grants

Represents a page definition with one or more permission
grants defined for a web page that is contained in an unbounded
task flow. The web page will be accessible to users who are
members of the application role that received the grant.

Shows/hides
pages included
in a bounded
task flow

Represents a page definition associated with a web page that
also is contained in a bounded task flow. Do not grant to these
web page definitions. Instead, define a security policy for the
bounded task flow.

Chapter 47
Defining ADF Security Policies

47-32

Table 47-5 (Cont.) Resource Grant Toggle Buttons for Web Page Definitions

Button Toggle Action Description

Shows/hides
unsecurable
pages (with no
page definition)

Represents a web page with no page definition defined that is
contained in an unbounded task flow. (Pages like this that are
contained by a bounded task flow are secured by the bounded
task flow's permission.) The web page will be accessible to all
users since it is not secured by an associated ADF security-
aware resource. Optionally, you can secure the page by adding
an empty page definition file, as described in What You May
Need to Know About Defining Policies for Pages with No ADF
Bindings.

The list of available actions displayed by the overview editor is defined by the region
permission class (oracle.adf.share.security.authorization.RegionPermission).
The permission class maps these actions to the operations supported by the ADF
page definition for the web page. Table 47-6 shows the actions displayed by
JDeveloper for ADF page definitions.

Note that the view action is the only action currently supported for Fusion web
applications.

Do not select customize, grant, or personalize actions—they are implemented for
page definition security only in WebCenter Portal: Framework applications.

Table 47-6 Securable Actions of ADF Page Definitions

Grantable Action Effect on the User Interface

view Controls who can view the page.

This is the only operation that the page definition supports.

All other operations support Oracle WebCenter Portal: Framework.

customize Controls who can make implicit changes (such as minimize/restore,
delete, or move) to a WebCenter Portal customizable component (in
a Panel Customizable or Show Detail Frame) contained in a page
of a custom application (one enabled to use Oracle WebCenter
Portal's Composer) or a WebCenter Portal application. For details,
see Introduction to WebCenter Portal Assets in Developing for Oracle
WebCenter Portal.

grant Confers the rights specified by all WebCenter Portal-specific actions
combined; it is equivalent to granting all other actions. It also controls who
can make grants to other users and who can change security settings
on the page using Oracle WebCenter Portal's Composer. For details,
see Introduction to WebCenter Portal Assets in Developing for Oracle
WebCenter Portal.

personalize Controls who can make implicit changes (such as minimize/restore,
delete, or move) to a WebCenter Portal customizable component (in
a Panel Customizable or Show Detail Frame) contained in a page
of a custom application (one enabled to use Oracle WebCenter
Portal's Composer) or a WebCenter Portal application. For details,
see Introduction to WebCenter Portal Assets in Developing for Oracle
WebCenter Portal.

To define a grant for the page definition security policy, use the Resource Grants page
of the overview editor for security policies.

Chapter 47
Defining ADF Security Policies

47-33

Before you begin:

It may be helpful to have an understanding of ADF security policies. See Defining ADF
Security Policies.

You will need to complete these tasks:

1. Create the top-level web pages with an ADF page definition file, as described in
Working with Page Definition Files.

Best Practice:

If you are creating top-level web pages in separate UI projects
of the same application, you will want to assign unique page file
names. This is necessary because a grant's page definition name is
scoped in the jazn-data.xml policy store by package (for example,
view.pageDefs.mytoppagePageDef). Therefore creating top-level pages
with unique file names is the only way to impose project-level scoping of
the grants.

2. Run the Configure ADF Security wizard, as described in Enabling ADF Security.

3. Create application roles, as described in Creating Application Roles.

To define a permission grant on an ADF page definition:

1. In the main menu, choose Application and then Secure > Resource Grants.

2. In the Resource Grants page of the overview editor for security policies, select
Web Page from the Resource Type dropdown list.

The Resource Grants page of the overview editor displays all web pages,
including those that have an associated ADF page definition. This includes any
web page that uses ADF bindings or any web page for which you have created
an empty page definition. Page definitions are defined by PageDef.xml files that
appear in the Application Sources node of the user interface project.

3. In the Resources column, select the page definition for which you want to grant
access rights.

The first time you make a grant to a page definition, the first column should display
the Resource without any grants icon (represented by the "lock" icon) next
to the page definition name. The editor displays the lock icon to indicate that a
resource has no security policy defined and therefore is "locked"—which means
it remains inaccessible to users until you define a grant. For example, the page
definition account_updateUserInfo shown in Figure 47-8 displays the lock icon
since no grant has been made. Other page definitions in Figure 47-8 show the
Page included in bounded task flow icon because they are not top-level pages
and thus are securable by the containing bounded task flow.

Do not create grants for individual web page definitions that display the Page
included in bounded task flow icon. Security policies for the associated web
pages are secured by their bounded task flow. For example, in Figure 47-8, the
page definition associated with the account_addressDetails.jsff region will be
secured by the containing bounded task flow.

Chapter 47
Defining ADF Security Policies

47-34

Tip:

You can type a partial page definition name in the search field to display
only the page definitions with character-matching names. For example, a
search on the word general would display only the page definitions that
begin with the word general, as shown in Figure 47-8.

Figure 47-8 Matching Page Definitions by Name in the Overview Editor

Tip:

You can click the Resources with grants icon (represented by the "key"
icon) to hide all page definitions that already have grants. Confirm that
the Show pages included in a bounded task flow toggle button in
the header for the Resources column is toggled off to hide all page
definitions that are included in a bounded task flow (by default, it is set to
hide these pages). This will display top-level pages that have no grants
(and unsecurable pages, if any), as shown in Figure 47-9.

Figure 47-9 Hiding Web Pages with Grants in the Overview Editor

4. In the Granted to column, click the Add Grantee icon and select Add
Application Role.

5. In the Select Application Roles dialog, select the application role that you want to
make a grantee of the permission.

The Select Application Roles dialog displays application roles from the jazn-
data.xml file. It also displays the built-in OPSS application roles, anonymous-role
and authenticated-role, as described in What Happens at Runtime: How the
Built-in Roles Are Used.

Chapter 47
Defining ADF Security Policies

47-35

If you do not see application roles that are specific to your application, create the
role, as described in Creating Application Roles.

6. In the Select Application Roles dialog, click OK.

7. In the Resource Grants page of the overview editor, in the Actions column, leave
the view action selected.

By default, the overview editor shows view selected, as shown in Figure 47-10.
The view action is the only action currently supported for Fusion web applications.

The actions customize, grant, or personalize are implemented for use in
WebCenter Portal: Framework applications or custom applications that are
enabled to use Oracle WebCenter Portal's Composer.

The RegionPermission class defines page definition—specific actions that it maps
to the page's operations, as described in Table 47-6.

Figure 47-10 Granting to an Application Role for an ADF Page Definition in
the Overview Editor

8. You can repeat these steps to make additional grants as desired.

The same page definition can have multiple grants made for different application
roles. The grants appear in the policy store definition of the jazn-data.xml file, as
described in What Happens When You Define the Security Policy.

How to Define Policies to Control User Access to ADF Methods
ADF methods that your application defines may be dropped into the user interface as
command components. By default, users who have access to the page that displays
the command component for the method will also have rights to execute the method.
When you want to create additional security to restrict access to the method operation,
you must create a resource grant and test the permission at the level of the user
interface. ADF Security does not perform authorization checking for ADF methods;
you must enable authorization checking in your application. Based on a resource
permission you have granted to the user for the ADF method, the user interface will
either enable or disable the command component.

To control user access to a method that your page displays as a command
component, you complete these steps:

1. Create a resource grant for a custom resource type and resource.

Chapter 47
Defining ADF Security Policies

47-36

2. Enforce the permission grant in the user interface.

Creating a Resource Grant to Control Access to ADF Methods
The resource type that you create will be set to the matcher class
oracle.security.jps.ResourcePermission, which will allow you to grant permission
to parts of the application that are not protected by ADF Security. For example, your
page may display a button that lets users cancel a product shipment to customers.
However, only members of a specific application role may be allowed to cancel a
shipment. To enforce this rule, you can create a resource permission that may be
checked declaratively in the user interface at runtime to enable or disable the button.

To create a resource permission for user interface components that you want to
protect, use the overview editor for security policies.

Before you begin:

It may be helpful to have an understanding of how ADF Security handles ADF
methods. For more information, see How to Define Policies to Control User Access
to ADF Methods.

You will need to complete these tasks:

1. Create the command component that executes the method that you want secure,
as described in Creating Command Components to Execute Methods.

2. Run the Configure ADF Security wizard, as described in Enabling ADF Security.

3. Create application roles, as described in Creating Application Roles.

To grant a resource permission on a custom resource type:

1. In the main menu, choose Application and then Secure > Resource Grants.

2. In the Resource Grants page of the overview editor for security policies, next to
the Resource Type dropdown list, click the New Resource Type button.

3. In the Create Resource Type dialog, enter the name of the resource type, a
display name to display when granting resource permissions in JDeveloper, and a
description.

Enter a resource type and display name that is appropriate for the user interface
resource that needs to be protected. For example, if you want to protect a
method button that cancels a product shipment, you might enter the resource type
CancelShipment and display name Cancel Shipment.

4. Next to the Actions list, click the Add Action button and enter the name of the
action that you want to protect. Click OK.

The action name can be any name that you want to associate with the custom
resource type. For example, if you want to protect a button that invokes a method,
you might enter the action name invoke. You can add multiple actions to the
list when you need to support granting instances of the resource permission to
separate application roles.

5. In the Resource Grants page of the overview editor for security policies, in the
Resources column, click the Add Resource icon.

The first time you make a grant to a custom resource type, no resource will be
defined. You must create a custom resource for the policy that will be used to
check user permissions in the user interface at runtime.

Chapter 47
Defining ADF Security Policies

47-37

6. In the Create Resource dialog, enter the name of the resource and a display name
to display when granting resource permissions in JDeveloper, and then click OK.

Enter a resource name and a display name that describes the user interface
resource that you want to protect. For example, if you want to protect a method
button that cancels a product shipment, you might enter the resource name
CancelShipmentButton and display name Cancel Shipment Button.

7. In the Granted to Roles column, click the Add Grantee icon and select Add
Application Role.

8. In the Select Application Roles dialog, select the application role that you want to
make a grantee of the permission.

The Select Application Roles dialog displays application roles from the jazn-
data.xml file. It also displays the built-in OPSS application roles, anonymous-role
and authenticated-role, as described in What Happens at Runtime: How the
Built-in Roles Are Used.

If you do not see application roles that are specific to your application, create the
role, as described in Creating Application Roles.

9. In the Select Application Roles dialog, click OK.

10. In the Resource Grants page of the overview editor, in the Actions column, select
the desired action.

By default, the overview editor shows all actions of the custom resource type
unselected. The available actions are defined by the resource type.

11. You can repeat these steps to make additional grants as desired.

The same ADF method resource can have multiple grants made for different
application roles. The grants appear in the policy store definition of the jazn-
data.xml file, as described in What Happens When You Define the Security
Policy.

Enforcing the Resource Grant in the User Interface
You use the Expression Builder dialog that you display for the UI component
display property to define an EL expression that checks the user's access rights
to a previously defined custom resource type. When you run the application, the
component will appear either enabled or disabled based on the outcome of the EL
expression resource permission evaluation.

For example, you can define the userGrantedPermission expression on the disabled
attribute of the af:button#cb1 button, as shown in the following example. In this case,
the expression tests whether the user has permission and then either enables the
button or, when the user does not have permission, disables the button. Because the
expression is not defined on the button's rendered attribute, the page always displays
the button.

<af:button actionListener="#{bindings.myMethodName.execute}"
 text="myMethodName"
 disabled="#{!securityContext.userGrantedPermission
 ['resourceName=CancelShipmentButton,resourceType=CancelShipment,
 action=invoke']}
 id="cb1"/>

Before you begin:

Chapter 47
Defining ADF Security Policies

47-38

It may be helpful to have an understanding of the limitations of ADF method
authorization checking. For more information, see How to Define Policies to Control
User Access to ADF Methods.

You will need to complete this task:

Create the resource grant for a custom resource type, as described in Creating a
Resource Grant to Control Access to ADF Methods.

To check the resource permission using an expression:

1. In the Applications window, double-click the page that contains the command
component bound to the ADF method.

2. In the visual editor for the page, select the command component that is used to
execute the ADF method.

3. In the Property window, click the Property Menu dropdown menu next to the
Disabled field and choose Expression Builder.

4. In the Expression Builder, expand the ADF Bindings - securityContext node
and select userGrantedPermission, and then, in the Expression field, enter a
concatenated string that defines the permission.

Enter the permission string as a semicolon-separated concatenation of
resourceName=aResourceName;resourceType=aResourceType;action=actionNam
e. For example, to enable or disable a command button used to invoked the
method in a page, you would enter an expression similar to the one shown in the
above example.

In the example, the expression determines whether a resource policy grants
invoke privileges for the resource type named CancelShipment to the user's
defined application role. The resource policy must exist in the application policy
store to test the expression at runtime.

5. Click OK.

What Happens When You Define the Security Policy
When you define a security policy, the overview editor for security policies updates the
jazn-data.xml file located in the /src/META-INF node relative to the web application
workspace.

The overview editor writes the policy information to the <policy-store> section of
the file. The security policy, or grant, contains both a grantee and one or more
permissions. The grantee is the application role that the policy is being defined for.
Each permission defines the resource being secured and the action that can be
performed against that resource.

The following example shows a security policy in the jazn-data.xml file that grants
unauthenticated users access to an employee registration task flow and a top-level
web page used to access the task flow. The grant to the anonymous-role application
role contains a view permission for a bounded task flow, emp-reg-task-flow, and a
view permission on the web page with the indexPageDef page definition. With this
grant, unauthenticated users will be able to enter the employee registration task flow
and view the welcome page.

For the web page, notice that permission has been defined on the indexPageDef page
definition created for the welcome page (index.jsf). Also, note that this is a top-level
web page that is not already secured by a bounded task flow.

Chapter 47
Defining ADF Security Policies

47-39

<policy-store>
 ...
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <name>anonymous-role</name>
 <class>oracle.security.jps.internal.core.principals.
 JpsAnonymousRoleImpl</class>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</
class>
 <name>/WEB-INF/flows/emp-reg-task-flow-definition.xml#
 #emp-reg-task-flow-definition</
name>
 <actions>view</actions>
 </permission>
 <permission>

<class>oracle.adf.share.security.authorization.RegionPermission</class>
 <name>oracle.summit.view.pageDefs.indexPageDef</name>
 <actions>view</actions>
 </permission>
 ...
 </permissions>
 </grant>
 ...
 </jazn-policy>
</policy-store>

What Happens at Runtime: How ADF Security Policies Are Enforced
Grants that you make for ADF resources are standard JAAS Permissions. When you
enable ADF Security in your application, Oracle Platform Security Service (OPSS)
running in Oracle WebLogic Server will utilize the grants to allow authorization. In
authorization mode, ADF Security uses fine-grained authorization, implemented with
JAAS Permissions to perform security checks for access rights to pages. The ADF
Security enforcement logic checks to see whether the user, represented by the JAAS
subject, has the right permissions to access the resource.

The subject contains the user's principals, which include a user principal that contains
their name (could be anonymous, before logging on, or some user name after logging
on), and their list of role principals, which would include authenticated-role and
some number of other roles that are obtained from the policy and identity stores.
The principal is created to represent all of the user's memberships in application
roles defined in the policy store. In turn, each application role may have multiple
Permissions associated with them. These are the ADF security policies that are
created through the overview editor for the jazn-data.xml file.

Chapter 47
Defining ADF Security Policies

47-40

Note:

ADF security policies are scoped by application. This scoping allows two
applications to refer to the same permission target, without producing
unintentional results. You are not required to name application resources to
impose application scoping of the policy store information.

Before you run the application using Integrated WebLogic Server, you will need to
provision the identity store with test users and add these users to the application roles
that you want to configure. The application roles can define members that are specific
users or groups of users (also known as enterprise roles), as described in Creating
Test Users.

Then at runtime, whether the current user has view permission on the page they are
trying to access will be determined by the context of the page:

• If the page is an activity of a bounded task flow, the task flow controller determines
the permission.

• If the page is a top-level page with an associated page definition file, the ADF
Model layer determines the permission.

Oracle Platform Security Services then checks to see whether the subject contains the
roles that have the corresponding permissions needed to access the page. If the user
is authorized, then the task flow is entered.

In the case of a bounded task flow and top-level pages (defined by an unbounded task
flow), if the user is not authorized, ADF Controller throws an exception and passes
control to an exception handler that the task flow configuration specifies. For details
about specifying an error page, see How to Redirect a User After Authentication.

What You May Need to Know About Defining Policies for Pages with
No ADF Bindings

The default Configure ADF Security wizard option ADF Authentication and
Authorization enables authorization checking and secures a web page whenever the
page is associated with an ADF security-aware resource. Therefore, after you run the
wizard, a web page will not be secured if both of these conditions exist:

• The page does not display databound ADF Faces components and therefore no
ADF page definition exists for the page.

• The page is not a constituent page of a bounded ADF task flow. (Any page that
the user accesses as a process of a bounded task flow is checked under the
permission of the task flow.)

JDeveloper will generate an ADF page definition file for you whenever you design
a web page using the Data Controls panel to create databound ADF Faces
components. However, if your web page does not use ADF bindings, you can still
create an empty page definition file by right-clicking the web page in the user interface
project and choosing Go to Page Definition. The page definition file can remain
empty because the page does not need to work with ADF bindings to support
databound ADF Faces components.

Chapter 47
Defining ADF Security Policies

47-41

Once you associate a web page with an ADF page definition file, empty or not,
authorization checking will be enforced when the user accesses the associated web
page. You can define security policies for the page as you would any other ADF page
definition. For details about making grants to an empty ADF page definition, see How
to Define Policies for Web Pages That Reference a Page Definition.

Before you begin:

It may be helpful to have an understanding of security for individual page definition
files. For more information, see How to Define Policies for Web Pages That Reference
a Page Definition.

You may also find it helpful to understand how JDeveloper normally generates page
definition files. For more information, see Working with Page Definition Files.

To create an empty page definition that you can define security policies for:

1. In the Applications window, locate the web page you want to secure, right-click the
node and choose Go to Page Definition.

2. In the confirmation dialog, click Yes to create a new page definition for the page.

The page definition will be added to the pageDefs package.

How to Use Regular Expressions to Define Policies on Groups of
Resources

When you want to define a grant that applies to multiple resources at once, you can
create patterns as defined by the java.util.regex.Pattern class to form a regular
expression that gets evaluated at runtime. For example, to match a grant to a set
of resources, you can enter the expression .* (specifies any character zero or more
times) on the name of the permission. ADF Security does not support the use of
regular expressions on other security objects, such as the principal name.

You might use this feature to group bounded task flows that would have the same
permissions into their own subfolders of WEB-INF and define the grant for the entire
folder, as shown in the following example. In this case, the expression uses the dot
character (defined as, any character) followed by the asterisk quantifier (defined as,
zero or more times).

...
<grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</
class>
 <name>anonymous-role</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</class>
 <name>/WEB-INF/.*</name>
 <actions>view</actions>
 </permission>
 </permissions>
</grant>

Chapter 47
Defining ADF Security Policies

47-42

As the overview editor for the jazn-data.xml file does not support the use of regular
expressions in the user interface, you must edit the file directly. Do not edit the policy
store of the system-jazn-data.xml file directly. Instead, add grants using regular
expressions to the jazn-data.xml file. These grants will then be merged to the policy
store when you run or deploy the application.

The use of more complex regular expressions enables you to define business rules
in the policy, thus creating a very targeted set of permissions. For example, you can
grant the view permission on all page definitions and deny specific page definitions at
the same time by defining an exclusion set in your regular expression. The following
example shows how the view permission is granted to anonymous-role for all pages
except those for which the page definition name starts with custom.

<grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</
class>
 <name>anonymous-role</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.share.security.authorization.RegionPermission</class>
 <name>[^(custom)].*</name>
 <actions>view</actions>
 </permission>
 </permissions>
</grant>

Table 47-7 shows some of the basic regular expression metacharacters that you can
use in your policy definitions.

Table 47-7 Description of Metacharacters

Metacharacter Description

[abc] a, b, or c (included in list)

[^abc] Any character except a, b, or c (negation)

[a-zA-Z] a to z or A to Z, inclusive (range)

[a-d[m-p]] a to d, or m to p ~= [a-dm-p](union)

[a-z&&[def]] d, e, or f (intersection)

[a-z&&[^bc]] a through z, without b and c: [ad-z] (subtraction)

[a-z&&[^m-p]] a through z, and not m through p

.* Any number of arbitrary characters (note this expression uses a
dot and an asterisk together)

How to Define Policies for Data
ADF entity objects in the data model project are security-aware, meaning that
predefined resource-specific permissions exist that a developer can grant. Additionally,
you can secure just the individual attributes of entity objects.

Chapter 47
Defining ADF Security Policies

47-43

Entity objects that you secure restrict users from updating data displayed by any web
page that renders a UI component bound by an ADF binding to the data accessed
by the secured entity object. Additionally, when you secure an entity object, you
effectively secure any view object in the data model project that relies on that entity
object. As such, entity objects that you secure define an even broader access policy
that applies to all UI components bound to this set of view objects.

To secure row data using ADF entity objects:

1. Define a permission map for the specific actions of the entity object or the
attributes of the entity object that you want to secure.

2. Grant the permission to an application role that you have added to the policy store.

Defining Permission Maps on ADF Entity Objects
In the data model project, you use the overview editor for the entity object to define
a permission map for the specific actions allowed by the entity object. The metadata
consists of a permission class, a permission name, and a set of actions mapped to
binding operations.

The list of available operations displayed by the overview
editor is defined by the entity object permission class
(oracle.adf.share.security.authorization.EntityPermission). The permission
class maps the operations supported by the entity object to actions. Table 47-8 shows
the securable operations of the entity object.

Table 47-8 Securable Operations of ADF Entity Objects

Securable Operation Expected Mapped
Action

Corresponding Implementation

read read View the rows of a result set that has been
restricted by a WHERE clause fragment.

update update Update any attribute of the bound collection.

removeCurrentRow delete Delete a row from the bound collection.

Note:

Unlike read and update operations, the securable operation that maps to
the delete action is defined with the unique identifier, removeCurrentRow.
Because authorization checks in Fusion web applications rely on
the operation name and not the action name, you must test the
removeCurrentRow operation name rather than the delete privilege name.
For details about the entity row API and EL expressions that allow you to
test entity permissions, see How to Perform Authorization Checks for Entity
Object Operations.

To secure all row-level data that the entity object accesses, use the overview editor for
the entity object.

Before you begin:

Chapter 47
Defining ADF Security Policies

47-44

It may be helpful to have an understanding of ADF security for entity objects. For more
information, see How to Define Policies for Data.

You will need to complete this task:

Create entity objects in the data model project, as described in Creating a Business
Domain Layer Using Entity Objects.

To secure an operation on an entity object:

1. In the Applications window, double-click the entity object that you want to secure.

2. In the overview editor, click the General navigation tab.

3. In the General page, expand the Security section and select the operations you
want to secure for the entity object.

The Security section displays the securable operations that the
EntityPermission class defines. The class maps the entity object—specific
actions to the entity object's operations, as described in Table 47-8.

For example, to enable read permission, select it as shown in Figure 47-11. The
permissions appear in the XML definition of the entity object.

Figure 47-11 Permission Enabled on read Operation for an ADF Entity
Object

Defining Permission Maps on ADF Entity Object Attributes
In the data model project, you use the overview editor for the entity object to define
a permission map for the specific actions allowed by the entity object attribute. The
metadata consists of a permission class, a permission name, and a set of actions
mapped to binding operations.

The list of available operations displayed by the overview
editor is defined by the entity object permission class
(oracle.adf.share.security.authorization.EntityPermission). The permission
class maps the operations supported by entity object attributes to actions. Table 47-9
shows the securable operations of entity object attributes.

Table 47-9 Securable Operations of ADF Entity Object Attributes

Securable Operation Expected Mapped
Action

Corresponding Implementation

update update Update a specific attribute of the bound
collection.

To secure individual columns of data that the entity object accesses, use the Attributes
page of the overview editor for the entity object.

Before you begin:

Chapter 47
Defining ADF Security Policies

47-45

It may be helpful to have an understanding of ADF security for entity objects. For more
information, see How to Define Policies for Data.

You will need to complete this task:

Create entity objects in the data model project, as described in Creating a Business
Domain Layer Using Entity Objects.

To secure an operation on an entity object attribute:

1. In the Applications window, double-click the entity object that defines the attribute
you want to secure.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute to secure, and then click the Security
tab and select the update operation.

The Security tab displays the securable operations that the
EntityAttributePermission class defines. The class maps the entity object-
specific actions to the entity object's operations, as described in Table 47-9.

For example, to enable update permission, select it as shown in Figure 47-12.
The permission map appears in the XML definition of the entity object.

Figure 47-12 Permission Enabled on update Operation for an ADF Entity
Object Attribute

Granting Permissions on ADF Entity Objects and Entity Attributes
Once a permission target is configured, any data that derives from entity objects or
their attributes remains unsecured until you explicitly define policy grants for the entity
object's permission target.

To define the access policy for an existing entity object or entity attribute permission
target, use the overview editor for security policies.

Before you begin:

It may be helpful to have an understanding of ADF security for entity objects. For more
information, see How to Define Policies for Data.

You will need to complete these tasks:

1. Run the Configure ADF Security wizard, as described in Enabling ADF Security.

2. Create application roles, as described in Creating Application Roles.

3. Define the permission target for the entity object or the attributes of the entity
object, as described in Defining Permission Maps on ADF Entity Objects.

To define the access policy for an entity object or entity attribute:

1. In the main menu, choose Application and then Secure > Resource Grants.

Chapter 47
Defining ADF Security Policies

47-46

2. In the Resource Grants page of the overview editor for security policies, select
ADF Entity Object or select ADF Entity Object Attribute from the Resource
Type dropdown list.

The Resource Grants page of the overview editor displays all entity objects (or
entity attributes) for which you previously defined permission targets.

3. In the Resources column, select the ADF entity object or entity attribute for which
you want to grant access rights.

The first time you make a grant to an ADF entity object or entity attribute, the
first column displays the Resource without any grants icon (represented by
the "lock" icon) next to the method name, as shown in Figure 47-13. The editor
displays the lock icons to indicate that a resource has no security policy defined
and therefore is "locked"—which means it remains inaccessible to users until you
define a grant.

Figure 47-13 Entity Objects Without Grants in the Overview Editor

4. In the Granted to Roles column, click the Add Grantee icon and select Add
Application Role.

5. In the Select Application Roles dialog, select the application role that you want to
make a grantee of the permission.

The Select Application Roles dialog displays application roles from the jazn-
data.xml file. It also displays the built-in OPSS application roles, anonymous-role
and authenticated-role, as described in What Happens at Runtime: How the
Built-in Roles Are Used,

If you do not see application roles that are specific to your application, create the
role, as described in Creating Application Roles.

6. In the Select Application Roles dialog, click OK.

7. In the Resource Grants page of the overview editor, in the Actions column, select
the action that you want to grant to a specific application role.

For entity objects, the overview editor shows read action selected by default.
You may select the update action and delete action if you have configured their
corresponding permission targets, as described in Table 47-8.

For entity object attributes, the overview editor shows the update action selected
by default, corresponding to the permission target described in Table 47-9. No
other actions are supported for entity object attributes.

Figure 47-14 shows the delete, read, and update privileges granted to the
Application Employee Role application role for an entity object.

Chapter 47
Defining ADF Security Policies

47-47

Figure 47-14 Granting to an Application Role for an ADF Entity Object in
the Overview Editor

8. You can repeat these steps to make additional grants as desired.

The same ADF entity object or entity attribute can have multiple grants made for
different application roles. The grants appear in the policy store definition of the
jazn-data.xml file, as described in What Happens When You Define the Security
Policy.

How to Aggregate Resource Grants as Entitlement Grants
You define end user access for individual securable Oracle ADF artifacts by creating
resource grants. However, for ease of administration and maintenance, resource
grants can also be defined as entitlement grants, in which case multiple securable
application artifacts are aggregated into a named security group that can be granted
to application roles using a single statement. For example, when you want to authorize
access to the data exposed in the application by an ADF Business Components
entity object, multiple entity objects may require the same security policy. Instead
of individually granting access privileges to each entity object, you can group the
privileges as a set in an entitlement and grant them all at once.

You create entitlement grants in the Entitlements Grants page of the overview editor
for security policies. The grants you create will appear as metadata in the policy store
section of the jazn-data.xml file. This metadata defines an entitlement (identified
in the XML definition as <permission-set>) comprised of resource instance /action
pairs that you select. This entitlement is a grantable entity that you then grant to an
application role.

The list of resource types appears in the overview editor for security policies. The
resource type you select filters the resource instances defined within the projects of
your application's workspace. The resource type selection also determines the list of
available actions displayed by the overview editor. For example, when you select the
Task Flow Permission resource type, the overview editor will display all of the task
flows in the user interface projects that you select and also displays the view action
that you can associate with the available ADF bounded task flow resources.

Table 47-10 lists the resource types displayed in JDeveloper and identifies the
associated resource and supported actions for each type.

Chapter 47
Defining ADF Security Policies

47-48

Table 47-10 Resource Types of Securable Oracle ADF Artifacts

Resource Type Supports These Resources and Actions

Task Flow Defines view actions on ADF bounded task flows in a user interface
project that you select.

Web Page Defines view actions on regions and web pages backed by ADF page
definition files in a user interface project that you select.

ADF Entity
Object

Defines read, update, and delete actions on entity objects in a data model
project that you select.

ADF Entity
Object
Attribute

Defines update actions on entity object attributes of a specific entity object
in a data model project that you select.

To define an entitlement grant for a securable Oracle ADF artifact, use the Entitlement
Grants page of the overview editor for security policies.

Before you begin:

It may be helpful to have an understanding of ADF security for entity objects. For more
information, see How to Aggregate Resource Grants as Entitlement Grants.

You will need to complete this task:

• Create application roles, as described in Creating Application Roles.

To define an entitlement grant for an Oracle ADF artifact:

1. In the main menu, choose Application and then Secure > Entitlement Grants.

2. In the Entitlement Grants page of overview editor for security policies, click the
Add Entitlements icon in the Entitlements section.

The overview editor displays all the resources that your application defines.

3. In the Entitlement Grants page, click the Resources tab and then click the Add
Member Resource icon to add a member resource to the entitlement.

4. In the Select Resources dialog, select the resource from the Resource Type
dropdown and then select the desired project in the Source Projects section.

The dialog displays all the projects in your application workspace.

5. In the Available Resources section, select the resource and click the Add icon.

The dialog displays all the resources define by your selected project.

6. In the Actions lists, select the desired action for the selected resource.

Figure 47-15 shows the overview editor with the View action selected for the task
flow and added to MyEntitlement.

Chapter 47
Defining ADF Security Policies

47-49

Figure 47-15 Adding a Bounded Task Flow as a Resource in an Entitlement
Grant

7. Add other desired resources to the list.

8. In the Entitlement Grants page, click the Grants tab and then click the Add Role
Grants icon to grant the entitlement to an application role.

9. In the Select Application Roles dialog, select one or more custom application
roles.

The dialog displays all the application roles from the jazn-data.xml file. You
must not add a grant to a predefined application role (also called duty roles in
the terminology of Oracle Fusion Applications). Only select custom application
roles that either you created in JDeveloper or that were created by an IT security
manager for this purpose.

10. Click OK.

11. You can repeat these steps to add other resources and make grants on those
resources to the same entitlement for the same custom application role.

What Happens After You Create an Entitlement Grant
When you use the security policy editor in JDeveloper to create an entitlement grant,
JDeveloper modifies the source for the application policy store in the jazn-data.xml
file. The policy store section of the file contains a <resource-type> definition (that
identifies the actions supported for resources of the selected type), a <resource>
definition (to identify the resource instance that you selected from your application and
mapped to a resource type), a <permission-set> definition (to define the resources
and actions to be granted as an entitlement), and a <grant> definition with one or
more entitlements (defined in the XML as a permission set) granted to the desired
application roles (the grantee).

As the following example illustrates, entitlement-based security policies in the Oracle
Fusion application are defined in the <jazn-policies> element and consist of one or
more entitlements granted to a single application role.

<?xml version="1.0" ?>
<jazn-data>
 <policy-store>
 <applications>
 <application>

Chapter 47
Defining ADF Security Policies

47-50

 <name>MyApp</name>

 <app-roles>
 <app-role>
 <name>AppRole</name>
 <display-name>AppRole display name</display-name>
 <description>AppRole description</description>
 <guid>F5494E409CFB11DEBFEBC11296284F58</guid>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 </app-role>
 </app-roles>

 <role-categories>
 <role-category>
 <name>MyAppRoleCategory</name>
 <display-name>MyAppRoleCategory display name</display-name>
 <description>MyAppRoleCategory description</description>
 </role-category>
 </role-categories>

 <!-- resource-specific OPSS permission class definition -->
 <resource-types>
 <resource-type>
 <name>APredefinedResourceType</name>
 <display-name>APredefinedResourceType display name</display-name>
 <description>APredefinedResourceType description</description>
 <provider-name>APredefinedResourceType provider</provider-name>
 <matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>write,read</actions>
 </resource-type>
 </resource-types>

 <resources>
 <resource>
 <name>MyResource</name>
 <display-name>MyResource display name</display-name>
 <description>MyResource description</description>
 <type-name-ref>APredefinedResourceType</type-name-ref>
 </resource>
 </resources>

 <!-- entitlement definition -->
 <permission-sets>
 <permission-set>
 <name>MyEntitlement</name>
 <display-name>MyEntitlement display name</display-name>
 <description>MyEntitlement description</description>
 <member-resources>
 <member-resource>
 <type-name-ref>APredefinedResourceType</type-name-ref>
 <resource-name>MyResource</resource-name>
 <actions>write</actions>
 </member-resource>
 </member-resources>
 </permission-set>
 </permission-sets>

 <!-- Oracle function security policies -->
 <jazn-policy>
 <!-- function security policy is a grantee and permission set -->

Chapter 47
Defining ADF Security Policies

47-51

 <grant>
 <!-- application role is the recipient of the privileges -->
 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole
 </class>
 <name>AppRole</name>
 <guid>F5494E409CFB11DEBFEBC11296284F58</guid>
 </principal>
 </principals>
 </grantee>

 <!-- entitlement granted to an application role -->
 <permission-set-refs>
 <permission-set-ref>
 <name>MyEntitlement</name>
 </permission-set-ref>
 </permission-set-refs>
 </grant>
 </jazn-policy>
 </application>
 </applications>
 </policy-store>
</jazn-data>

Creating Test Users
For testing purpose, ADF Security allows developers to create users in the jazn-
data.xml file.

JDeveloper provides editors to help you create both the identity and the policy stores.
You create both repositories in an application-specific jazn-data.xml file. The editor
for the identity store section of the file lets you enter the list of valid user IDs and their
assigned passwords. The same editor lets you create application roles and assign the
test users or enterprise roles as members of the application roles. Once defined, this
information appears in the policy store section of the jazn-data.xml file.

How to Create Test Users in JDeveloper
You seed the identity store of your application with a temporary set of users to
simulate the actual users' experience in your production environment. When you run
the application in Integrated WebLogic Server, you can log in as any test user and be
conferred access rights to view the secure ADF resources of your application.

You can use the identity store to organize users into enterprise roles. Because
you typically will configure JDeveloper's deployment options to prevent migrating the
identity store to a staging environment, enterprise roles that you create in the jazn-
data.xml file are for convenience only. For more details about the use of enterprise
roles, see What You May Need to Know About Enterprise Roles and Application
Roles.

Chapter 47
Creating Test Users

47-52

Caution:

If you choose to deploy the identity store to your standalone server, you
must not create users and enterprise roles in your local identity store that
are already configured for Oracle WebLogic Server. For example, if you
were to deploy the identity store with the user weblogic and enterprise role
Administrators, you would overwrite the default administration configuration
on the target server. For a complete list of global roles that Oracle WebLogic
Server installs by default, see the Users, Groups, and Security Roles chapter
in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

To enable the user to view resources, you make grants against application roles rather
than against the users who are the members of those roles. Therefore, after you seed
the identity store with test users, you must associate each user or enterprise role
group with an application role. This association confers the access rights defined by
ADF security policies to users. For details about conferring access rights to users, see
How to Associate Test Users with Application Roles.

You should avoid choosing a user name already configured for Oracle WebLogic
Server (for example, do not enter webcenter). For the list of user names installed
by Oracle WebLogic Server, see the Users, Groups, and Security Roles chapter in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Before you begin:

It may be helpful to have an understanding of the identity store. See Creating Test
Users.

To create test users and groups:

1. In the main menu, choose Application and then Secure > Test Users & Roles.

2. In the Test Users & Roles page of the overview editor for security policies, select
the realm for your application from the Realm dropdown list and perform the
following steps.

JDeveloper uses the realm jazn.com by default.

a. In the Users list, click the New User icon.

b. In the Name field, enter the user name.

c. In the Password field, enter the password for the user and click any other field
to add the password to the identity store.

The password must contain at least eight characters and at least one of the
characters must be a special character (such as !, %, ^, &, $ and so on).

3. Optionally, in the overview editor for security policies, click the Enterprise Roles
navigation tab, select the realm for your application from the Realm dropdown list,
and perform the following steps.

You create enterprise roles only when you want to organize users into groups
that you will add to an application role. For the purpose of creating test users to
run the application using Integrated WebLogic Server, you do not need to create
enterprise role groups.

a. In the Enterprise Roles list, click the New Role icon.

Chapter 47
Creating Test Users

47-53

b. In the Name field, enter the name of the enterprise role and click any other
field to add the role to the identity store.

If you create enterprise role groups, you should avoid choosing a role name
that is already configured for Oracle WebLogic Server (for example, do
not enter Administrators). For a complete list of the default group names
installed by Oracle WebLogic Server, see Users, Groups, and Security Roles
in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

What Happens When You Create Test Users
When you provision the identity store with user identities and enterprise role groups,
JDeveloper updates the jazn-data.xml file located in the /src/META-INF node relative
to the web application workspace.

The dialog writes the user information to the <jazn-realm> section of the file
corresponding to the identity store. Each user identity has a user name and a user
login password. Each enterprise role contains one or more member users.

The following example shows the identity store in the jazn-data.xml file with two
users and two enterprise roles. The user cmagee is a member of the Enterprise
Employee Group enterprise role, while user 214 is a member of the Enterprise
Customer Group enterprise role.

<jazn-data>
 <jazn-realm default="jazn.com">
 <realm>
 <name>jazn.com</name>
 <users>
 <user>
 <name>cmagee</name>
 <display-name>Colin Magee</display-name>
 <description>Sales Rep</description>
 <credentials>{903}5AUHlE+qvDxxAhxIMoXJ/WLhMF0ynue7</credentials>
 </user>
 <user>
 <name>214</name>
 <display-name>Ojibway Retail</display-name>
 <description>Customer</description>
 <credentials>{903}rijN2KQCBSeBQ/JNZlv8GwwUiGWk5IQa</credentials>
 </user>
 ...
 </users>
 <roles>
 <role>
 <name>Enterprise Employee Group</name>
 <members>
 <member>
 <type>user</type>
 <name>cmagee</name>
 </member>
 </members>
 </role>
 <role>
 <name>Enterprise Customer Group</name>
 <members>
 <member>
 <type>user</type>
 <name>214</name>

Chapter 47
Creating Test Users

47-54

 </member>
 ...
 </members>
 </role>
 ...
 </roles>
 </realm>
 ...
 </jazn-realm>
</jazn-data>

How to Associate Test Users with Application Roles
Because the ADF Security framework enforces a role-based access control
mechanism with permissions granted to application roles, you define a set of roles
in the policy store that are specific to your application. For example, in the context of
the work flow, there may be roles such as customer, product specialist, supervisor, and
administrator.

After you create an application role, you can proceed to associate users that you
created in the identity store with one or more roles. At runtime, users who are
members of an application role will be conferred the access rights of their application
roles. You can assign a user to more than one application role when you want to
confer the right of multiple resource grants to a particular user.

For example, one authenticated user might belong to the supervisor role and an
employee role, while another user might belong only to the employee role. The
security policy for a bounded task flow that permits customer records to be browsed
and edited may confer view permission to the supervisor role and limit view permission
to the browse page for the employee role. Thus, grants to application roles support
multiple levels of access. If the authenticated user is not a member of an application
role with a view permission grant for the target ADF resource, the security framework
will return an unauthorized user message.

Before you begin:

It may be helpful to have an understanding of the identity store. For more information,
see Creating Test Users.

You will need to complete these tasks:

1. Run the Configure ADF Security wizard, as described in Enabling ADF Security.

2. Create application roles, as described in Creating Application Roles.

3. Define security policies for ADF security-aware resources, as described in
Defining ADF Security Policies.

4. Create test users, and, optionally, create enterprise role groups, as described in
How to Create Test Users in JDeveloper.

To associate users with application roles:

1. In the main menu, choose Application and then Secure > Application Roles.

2. In the Application Roles page of the overview editor for security policies, select the
policy store for your application from the Security Policy dropdown list.

The policy store that JDeveloper creates in the jazn-data.xml file are
automatically based on the name of your application.

Chapter 47
Creating Test Users

47-55

3. In the Roles list, select an existing application role and complete these tasks as
appropriate:

a. In the Mappings section, click the Add User or Role icon dropdown menu
and choose Add User, then in the Select Users dialog select the previously
created user from the list and click OK.

b. Optionally, if you have defined enterprise roles in the identity store, in the
Mappings section, click the Add User or Role icon dropdown menu and
choose Add Enterprise Role, then in the Select Enterprise Roles dialog
select the previously created enterprise role from the list and click OK.

What Happens When You Configure Application Roles
When you associate users with application roles, JDeveloper updates the jazn-
data.xml file located in the /src/META-INF node relative to the web application
workspace.

The dialog writes the user information to the <policy-store> section of the file. Each
application role contains one or more member users or enterprise roles.

The following example shows the policy store in the jazn-data.xml file with
the Application Employee Role application role, which contains two members,
Enterprise Employee Group and Enterprise Manager Group.

<policy-store>
 <applications>
 <application>
 <name>SummitADF</name>
 <app-roles>
 <app-role>
 <name>Application Employee Role</name>

<class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>Application Employee Role</display-name>
 <members>
 <member>
 <class>oracle.security.jps.internal.core.principals.

JpsXmlEnterpriseRoleImpl</class>
 <name>Enterprise Employee Group</name>
 </member>
 <member>
 <class>oracle.security.jps.internal.core.principals.

JpsXmlEnterpriseRoleImpl</class>
 <name>Enterprise Manager Group</name>
 </member>
 ...
 </members>
 </app-role>
 ...
 </app-roles>
 <jazn-policy>
 ...
 </jazn-policy>
 </application>
 </applictions>
</policy-store>

Chapter 47
Creating Test Users

47-56

Creating a Login Page
Both implicit and explicit authentication are supported by ADF Security. You can create
a login link, a login page, a welcome page and, perform various other actions.

ADF Security allows for implicit and explicit authentication:

• In an implicit authentication scenario, if a user who is not yet authenticated
tries to access a web page associated with ADF security-aware resources that
are not granted to anonymous-role, then authentication is triggered dynamically.
After the user successfully logs in, another check will be done to verify whether
the authenticated user has view access granted on the requested page's ADF
security-aware resource.

• In an explicit authentication scenario, your application has a public page that
displays a login link, which, when clicked, triggers an authentication challenge
to log in the user. The login link may optionally specify some other target page
that should be displayed (assuming the authenticated user has access) after the
successful authentication.

The implicit and explicit authentication scenarios are handled for you by default when
you run the Configure ADF Security wizard, as described in What You May Need to
Know About ADF Authentication. However, when you customize the default, generated
login page (or supply your own page) to use ADF Faces components, you will need to
configure the container-managed deployment descriptor (web.xml file).

To explicitly handle user authentication:

1. Create a login link component and add it to the public home web page for your
application.

2. Create a managed bean using API specific to Servlet 3.0 to handle the login
attempts by the user.

3. Create a JSF login page using ADF Faces components.

4. Ensure that the login page's resources are accessible.

For more information about implicit and explicit authentication, see What Happens at
Runtime: How ADF Security Handles Authentication.

How to Create a Login Link Component and Add it to a Public Web
Page for Explicit Authentication

You can create a standard login link component that can be added to any page in your
application to enable users to authenticate or subsequently log off. This component
keeps track of the authenticated state of the user and returns the appropriate login or
logout URLs and icons. The login link component will redirect users back to a specific
page once they are authenticated. Hence, using this login link component provides
you with a single, consistent object.

To the unauthenticated user, the login link component will look similar to Figure 47-16.

Chapter 47
Creating a Login Page

47-57

Figure 47-16 Component Before User Logs In

Then when the user clicks the login link and logs in as a user with the appropriate
credentials, the component will look similar to Figure 47-17.

Figure 47-17 Component After User Logs In

Before you begin:

It may be helpful to have an understanding of ADF authentication. For more
information, see Creating a Login Page.

You will need to complete this task:

Copy your login and logout image files (GIF, JPG, or PNG files) to the public_html
directory of your project.

Note:

The images used should reference the appropriate skin image if your
application uses skins. For more information about skins, see the
Customizing the Appearance Using Styles and Skins chapter in Developing
Web User Interfaces with Oracle ADF Faces.

To create the login link component and add it to a page:

1. In the Applications window, double-click the web page that will display the
component.

2. In the ADF Faces page of the Components window, from the Common
Components panel, drag a Link and drop it on the page.

3. In the Structure window, right-click af:link and choose Go to Properties.

4. In the Property window, to specify the label for the Link component, enter an
Expression Language (EL) expression in the Text field.

For example, you can enter an EL expression similar to this to conditionally render
the link text:

#{securityContext.authenticated ? "Click to log out" :
 "Click to log in"}

Chapter 47
Creating a Login Page

47-58

The authenticated property of the securityContext bean will evaluate to true
and render the log out option if the current user is authenticated. Otherwise, the
link is rendered with the login option.

5. In the Property window, to specify the URL for the Link component, enter an EL
expression in the Destination field.

For example, this EL expression conditionally renders a URL to forward the user
depending on whether or not they are authenticated:

#{securityContext.authenticated ? \"Logout\" : \"Login\"}" id="gl2"
destination="#{securityContext.authenticated ?
 \"/adfAuthentication?
logout=true\" : \"/adfAuthentication?login=true\"}

When the user clicks the link, the destination will be determined by the
success_url and end_url settings on the ADF authentication servlet init-param.
Note that these settings should specify the view activity name instead of the web
page name to ensure control flow rules are enforced for page navigation after
login. The authenticated property of the securityContext bean will evaluate
to true and forward to the page defined by success_url if the current user is
authenticated. When the user is not authenticated, there is no need to forward
to the login page because the ADF authentication servlet triggers log in, which
is handled by the container-managed security configuration. Note that log out is
handled by the ADF authentication servlet which invalidates the session.

6. In the Property window, to specify the link component image for the Link
component, enter an EL expression in the Icon field.

For example, this EL expression conditionally renders the link component image
as the lock GIF if the user is not authenticated; otherwise, renders the image with
the key GIF:

#{securityContext.authenticated ? '/images/lock.gif' : '/images/key.gif'}

Figure 47-18 shows how the login link component appears when added to the
global menu facet of the page.

Figure 47-18 Login Link Component on the Page

How to Create a Login Page Specifically for Explicit Authentication
The default login form that is generated for you when you run the Configure ADF
Security wizard is provided as a convenience for testing your application within
JDeveloper. The default form does not allow you to customize the page using ADF
Faces components to match the user interface of the application. You can replace
the default form with an ADF Faces-based login page that enables you to include
customizable components, as shown in Figure 47-19.

Chapter 47
Creating a Login Page

47-59

Figure 47-19 Login Page

However, if designing a login page with ADF Faces components is not a requirement,
then a simple JSP or HTML login page can be also used. For details about generating
a simple login page when running the Configure ADF Security wizard, see How to
Enable ADF Security.

Creating Login Code for the Backing Bean
Before you create the login page as an ADF Faces page, you need to create a
managed bean to handle login attempts. In this login bean sample, authentication is
handled programmatically using Servlet 3.0-specific API. The login bean handles the
login action initiated from a login link with the doLogin() method. Upon successful
login, this method invokes the servlet API to redirect to a landing page. You will add
this bean to the adfc-config.xml file and register it with request scope.

Note:

This backing bean example described in this section does not authenticate
with Oracle Single Sign-On (Oracle SSO). The backing bean handles
authentication using login and logout methods provided by Servlet 3.0, which
provides generic support for programmatic login on application servers that
support Java EE 6 or later.

Before you begin:

It may be helpful to have an understanding of the login page. For more information,
see How to Create a Login Page Specifically for Explicit Authentication.

You will need to complete this task:

Run the Configure ADF Security wizard to enable ADF Authentication and
Authorization.

To create and register a backing bean for login:

1. In the Applications window, right-click the project in which you want to create the
backing bean and choose New and then From Gallery.

2. In the New Gallery, expand General, select Java and then Class, and click OK.

3. In the Create Java Class dialog, enter the name for the login page backing bean
class file and disable the default options Constructors from Superclass and
Implement Abstract Methods, and click OK.

For convenience, you might name the backing bean based on the name of your
login page, for example, LoginPageName.java.

4. In the Applications window, expand Application Sources and double-click the
new LoginPageName.java backing bean.

Chapter 47
Creating a Login Page

47-60

5. In the source editor, create two private fields by adding the following in the
declaration section of the LoginPageName.java file:

private String _username;
private String _password;

6. Generate or create public accessors for both fields.

You can right-click in the source editor and choose Generate Accessors to add
the following public accessors to the file:

public void setUsername(String _username) {
 this._username = _username;
}

public String getUsername() {
 return _username;
}

public void setPassword(String _password) {
 this._password = _password;
}

public String getPassword() {
 return _password;
}

7. Import the following classes:

javax.faces.application.FacesMessage
javax.faces.context.ExternalContext
javax.faces.context.FacesContext

javax.servlet.ServletException
javax.servlet.http.HttpServletRequest
javax.servlet.http.HttpSession

8. Add a doLogin() method to this Java class to handle user attempts to log in:

1 public String doLogin() {
2 FacesContext ctx = FacesContext.getCurrentInstance();

3 if (_username == null || _password == null) {
4 showError("Invalid credentials",
5 "An incorrect username or password was specified.", null);
6 } else {
7 ExternalContext ectx = ctx.getExternalContext();
8 HttpServletRequest request = (HttpServletRequest)
9 ctx.getExternalContext().getRequest();
10 try {
11 request.login(_username, _password); // Servlet 3.0 login
12 _username = null;
13 _password = null;
14 HttpSession session = request.getSession();
15 session.setAttribute("success_url", "/faces" +
16
ctx.getViewRoot().getViewId());
17 redirect(ectx.getRequestContextPath() + "/adfAuthentication");
18 } catch (ServletException fle) {
19 showError("ServletException", "Login failed.
20 Please verify the username and password and try again.",
null);
21 }

Chapter 47
Creating a Login Page

47-61

22 }
23 return null;
24 }

The doLogin() method performs the following tasks:

Line 2 and Lines 6-9 get an object encapsulating the HTTP request from the
ExternalContext.

Lines 3-5 handle an error when credentials have not been provided. The
showError() method is a method which you will implement to deal with
miscellaneous problems with the login process.

Lines 11-13 attempt to log in the user issuing the request using the Servlet 3.0
API login() method. In this programmatic login example, which relies on the
Servlet API, Oracle Single Sign-On (Oracle SSO) is not supported.

Lines 14-16 create an HTTP session and set the ADF authentication servlet
parameters success_url as an attribute of the session. Setting success_url
on the session ensures the destination page URL is not passed as a request
parameter that would be subject to malicious redirects. In this example, the
destination page is the current page obtained from the Faces context.

Note: If you run the ADF Security wizard and use the wizard to create a
login form, upon successful login, you would want the session to redirect to
the target protected page instead of returning to the login page. In this case,
session.setAttribute in lines 15 and 16 should take success_url and the full
path of the destination page as attribute, for example: /faces/protectedPage.

Line 17 calls a method, redirect() which you will implement later in this section
to forward the user to the URL that the ADF authentication servlet gets from the
HTTP session, as set in Line 15.

Lines 18-21 handle a ServletException, which can be thrown by many different
problems with a login. For example, exceptions can result from incorrect
credentials or attempts to log into a locked account or uses of an expired
password. The showError() method is a method which you will implement to deal
with miscellaneous problems with the login process.

Line 23 returns null so that ADF Controller will not attempt to follow a control flow
case.

9. Create stubs for the methods redirect() and showError().

10. Add a redirect() method with its actions:

1 private void redirect(String forwardUrl) {
2 FacesContext ctx = FacesContext.getCurrentInstance();
3 ExternalContext ectx = ctx.getExternalContext();
4 try {
5 ectx.redirect(forwardUrl);
6 } catch (IOException ie) {
7 showError("IOException", "An error occurred during redirecting.
8 Please consult logs for more information.", ie);
9 }
10 }

The redirect() method performs the following tasks:

Line 2 gets the ADF Faces ctx, which forwards a response to a particular URI.

Lines 3-5 use the ctx to redirect the current HTTP response to the URL.

Chapter 47
Creating a Login Page

47-62

Lines 6-8 handle an IOException, which is thrown when the request cannot be
read or the response cannot be written to.

11. Implement a showError() method:

private void showError(String errType, String message, Exception e){
 FacesMessage msg =
 new FacesMessage(FacesMessage.SEVERITY_ERROR, errType, message);
 FacesContext.getCurrentInstance().addMessage("d2:it35", msg);
 if (e != null) {
 e.printStackTrace();
 }
}

This showError() method adds a summary error message to the FacesContext,
and then prints the full stack trace of the exception to the console.

12. Optionally, when you want to trigger logout programmatically from a task flow
method call activity, create a stub for a logoff() method and implement it as:

public String logoff() {
 FacesContext ctx = FacesContext.getCurrentInstance();
 ExternalContext ectx = ctx.getExternalContext();
 HttpServletRequest httpRequest = (HttpServletRequest) ectx.getRequest();
 try {
 httpRequest.logout(); // Servlet 3.0 logout
 HttpSession session = httpRequest.getSession(false);
 if (session != null) {
 session.invalidate();
 }
 String logoutUrl = ectx.getRequestContextPath() + "/faces" +
 ctx.getViewRoot().getViewId();
 redirect(logoutUrl);
 } catch (ServletException e) {
 showError("ServletException", "An error occurred during logout.
 Please consult logs for more information.", e);
 }
 return null;
}

This logoff() method uses the logout() method of Servlet 3.0 API to process a
logoff action.

13. Save the Java file.

14. In the Applications window, expand WEB-INF and double-click adfc-config.xml.

15. In the editor window, click the Overview tab.

16. In the overview editor, click the Managed Beans navigation tab.

17. In the Managed Beans page, in the Managed Beans section, click the Add icon
and enter a name for the bean, enter the fully qualified class name, and select
scope request.

For example, the class name might look like oracle.summit.bean.LoginBean, as
shown in Figure 47-20.

Chapter 47
Creating a Login Page

47-63

Figure 47-20 Login Bean Registered in adfc-config.xml File

18. Save all.

Creating an ADF Faces-Based Login Page Specifically for Explicit
Authentication

A simple login page that utilizes ADF Faces layout components and ADF Faces
user interface components includes two input fields and a button. You must bind the
properties of these UI components to the login handler methods that you defined in the
managed bean for the login page.

Note that the page that you can create with this procedure does not support
implicit authentication. When you choose to implement implicit authentication, you
can customize the default, wizard-generated login form which supports container-
managed authentication. The Java EE container expects a form that relies on the
j_security_check mechanism to handle user-submitted j_username, and j_password
input. In the explicit authentication scenario documented here, Java EE container-
managed authentication is not used.

Before you begin:

It may be helpful to have an understanding of explicit authentication. For more
information, see How to Create a Login Page Specifically for Explicit Authentication.

You will need to complete this task:

Create the managed bean to handle the user's login attempts, as described in
Creating Login Code for the Backing Bean.

To create the ADF Faces-based login page for explicit authentication:

1. In the Applications window, right-click the project in which you want to create the
login page and choose New and then New Gallery.

2. In the New Gallery, expand Web Tier, select JSF and then Page, and click OK.

3. In the Create JSF Page dialog, select JSP XML.

4. In the File Name field, specify a name for your login page. For example, enter
LoginPage.jspx.

Select no other options and do not select the option to expose UI components in a
managed bean. You will manually bind the components to the managed bean you
created for the login page.

5. Click OK.

6. Save the page.

7. In the ADF Faces page of the Components window, from the Layout panel, drag a
Panel Box and drop it on the Structure window below the af:form node.

8. In the Property window, enter values for the Text, Horizontal, Width, and Height
fields.

Chapter 47
Creating a Login Page

47-64

For example, to create a basic login page, you can enter:

Text set to Login Information

Icon set to /images/key_ena.png

Width/Height set to 300/200 pixels

9. From the Components window, drag a Panel Form Layout and drop it below the
af:panelBox node in the Structure window, as shown in Figure 47-21.

Figure 47-21 Login Page Structure with Panel Form Layout

10. From the Common Components panel, drag an Input Text and drop it on the
Panel Form Layout node for the username field and another Input Text for the
password field.

11. In the Property window for the input fields, enter Username and Password in the
Label fields and expand the Behavior section and select true from both fields'
Required dropdown list.

12. In the Property window, for the password field, expand the Appearance section
select true from the Secret dropdown list.

13. To handle processing of the values for the two input fields, perform these steps for
each field:

a. In the Structure window, select one of the input fields (for example, select
the af:inputText - Username node), and then in the Property window click
the Property Menu dropdown menu next to the Value field and choose
Expression Builder.

b. In the Expression Builder, expand ADF Managed Beans and expand your
login bean, and then select the expression value corresponding to your bean's
handler method.

For example, if you selected the username input field in the Structure window,
then you would select username from the Expression Builder dialog, as
shown in Figure 47-22.

Chapter 47
Creating a Login Page

47-65

Figure 47-22 username Selection in Expression Builder Dialog

c. Click OK.

The expression shown in the Property window binds the field to the managed
bean you created for the login page. For example, for the username input
field, the expression is similar to #{loginPageBean.username} as shown in
Figure 47-23.

Figure 47-23 username Value in Property Window

14. From the Components window, from the Layout panel, drag a Panel Border
Layout and drop it inside the footer node of the af:panelBox node, as shown in
Figure 47-24.

Figure 47-24 Login Page Structure with Panel Border Layout

Chapter 47
Creating a Login Page

47-66

15. In the JSP/HTML visual editor, delete the panel border layout facets labeled End,
Top, and Bottom. Leave only the Start facet.

16. In the Structure window, expand Panel Border Layout facets and select the start
node, and then from the Components window drag and drop a Button.

17. In the Property window, enter Login in the button component's Text field.

18. To handle processing of the login button action, perform these steps.

a. In the Structure window, select af:button under the start node, and then in the
Property window, click the Property Menu dropdown menu next to the Action
field and choose Expression Builder.

b. In the Expression Builder, expand ADF Managed Beans and expand your
login bean, and then select the expression value corresponding to your login
method.

For example, if you created a method in the login bean named doLogin(),
then you would select doLogin in the Expression Builder dialog.

c. Click OK.

The expression shown in the Property window binds the button to the
managed bean you created for the login page. For example, for the login
button, the expression is similar to #{loginPageBean.doLogin} as shown in
Figure 47-25.

Figure 47-25 login Action in Property Window

19. Save the page.

Ensuring That the Login Page Is Public
Because the application is secured by ADF Security, all web pages defined within
bounded task flows and any web page defined by an ADF page definition will
be inaccessible by default. Since all users must be allowed to log on, the login
page should remain publicly accessible, and thus you should add no databound
components to the page. As long as the login page uses no databound components,
then it will be accessible by default.

No further steps are required to ensure that the container will always redirect to the
defined authentication point before allowing access to the page (which in this case is
the authentication page).

Chapter 47
Creating a Login Page

47-67

How to Ensure That the Custom Login Page's Resources Are
Accessible for Explicit Authentication

When you run the ADF Security wizard and choose the ADF Authentication option
(because you do not want to enable ADF authorization) and your application uses a
custom login page or a custom error page, you may need to edit the default Java
EE security constraint added to the web.xml file by ADF Security. As shown in the
following example, the default URL pattern (/*) defined in the allPages security
constraint covers everything under the Java EE application root, meaning that the
resource files (such as images, style sheets, or JavaScript library) used by the login
page are also included.

<security-constraint>
 <web-resource-collection>
 <web-resource-name>allPages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>valid-users</role-name>
 </auth-constraint>
</security-constraint>

If the pages you create use resources, such as images, CSS files, or JavaScript
libraries, the default allPages security constraint in the web.xml file will prevent
those resources from loading at runtime. To allow your application to display those
resources, you should save the resources in a folder of their own and then edit the
allPages security constraint so that the resources folder is not contained in the URL
pattern.

Note that this resource issue does not apply when you run the ADF Security
wizard and choose the ADF Authentication and Authorization option (the default).
Specifically, in that case, the default generated constraint is on the ADF Authentication
servlet and the constraint (/adfAuthentication) excludes any resource files.

How to Create a Public Welcome Page
Because web applications are generally secured, there is always a need for a starting
point or home page for unauthenticated users. To create this public welcome page,
you create an ADF Faces page to act as the entry point for the application, which
contains links to other pages within the application. However, only links to public
pages should be rendered to unauthenticated users and, conversely, links to secured
pages should be rendered only after the user has logged in and has the appropriate
privileges to view the target page.

Chapter 47
Creating a Login Page

47-68

Best Practice:

When the user presses Ctrl-N or Ctrl-T to open a new browser window or tab
and no welcome page is defined in the application's web.xml file, the browser
will display a 403 or 404 error. To prevent this error, you must specify a
welcome page definition in the application's web.xml file. You can create this
definition when you run the Configure ADF Security wizard. For details about
running the wizard, see How to Enable ADF Security.

Ensuring That the Welcome Page Is Public
After you have created a regular ADF Faces page, the page will, by default, be
public and accessible by unauthenticated users. If, however, you have associated the
welcome page with an ADF resource, for example, by dropping databound ADF Faces
components into the welcome page using the Data Controls panel, then ADF Security
will secure the page by default. You can make any ADF resource publicly accessible
using the overview editor for security policies to grant a view privilege on the resource
to the provided anonymous-role. For details about the anonymous-role see, What
Happens When You Make an ADF Resource Public.

Adding Login and Logout Links
You can add login and logout links to your public welcome page so that users can
explicitly log in and out while they are in the application. While Java EE container-
managed security supports the concept of authentication when accessing a secured
resource, there is no standard way to log out and stay within a secured application.
However, it is a common practice in web applications to allow the user to stay on the
same page if that page is public or to return the user to the welcome page if that page
is secured. While adding the login and logout links to each page would let the user end
their login session anywhere within the application (and return to the welcome page),
having these links on the welcome page enables users to explicitly authenticate on
entering the application.

For example, you can create an ADF Faces panel group with three
components, including an output text area, an image, and login/logout links.
To render the appropriate login or logout link, you can use an EL expression
that evaluates the user’s authentication status. Specifically, you can use
securityContext.authenticated to access the ADF security context, as shown in the
following example. The expression evaluates to true or false and, in this example,
the result determines which login/logout image and link to display. As the following
example shows, the link triggers the logon and logoff methods of the security bean.

<af:panelGroupLayout inlineStyle="width:100%; height:15px;" id="ptpgl3">
 <af:spacer width="7" height="10" id="pts2"/>
 <af:outputText value="Welcome #{securityContext.userName}!"
 inlineStyle="font-weight:bold; width:100px" id="ptot2"
 rendered="#{securityContext.authenticated}"/>
 <af:image source="#{securityContext.authenticated ? '/images/lock.gif' : '/
images/key.gif'}"
 id="pti2" inlineStyle="width:16px; height:16px;"
shortDesc="switchable icon"/>
 <af:link text="Logon" id="l1" action="#{securityBean.logon}"
 rendered="#{!securityContext.authenticated}"/>
 <af:link text="Logoff" id="l2" action="#{securityBean.logoff}"

Chapter 47
Creating a Login Page

47-69

 rendered="#{securityContext.authenticated}"/>
 <f:facet name="separator">
 <af:spacer width="5" height="10" id="pts1"/>
 </f:facet>
</af:panelGroupLayout>

The security bean that implements the logon and logoff methods may use the ADF
AuthenticationService API to protect the application from malicious redirects. This
achieves the same level of protection as invoking the ADF authentication servlet
with null success_url and end_url parameters that the web.xml file whitelists, but is
considered a best practice alternative to handling navigation with task flows. For more
details about redirects, see How to Redirect a User After Authentication.

As an alternative to rendering the link directly within a page, you can create a login
link component with the login and logout links that you can add to a page template, as
described in How to Create a Login Link Component and Add it to a Public Web Page
for Explicit Authentication.

Hiding Links to Secured Pages
Since an anonymous user should not have access to any secured pages, any
navigation component on the welcome page that points to a secured page should
be hidden from view based on the following two criteria:

• Is the user authenticated with a known user identity?

• Does the specified user identity have permission to view the target?

If either of these criteria has not been met, the rendered attribute of any navigation
component on a public page that points to a secured resource must have its rendered
attribute set to false, thus hiding it from the anonymous user. To enforce these rules
within your welcome page, see Using Expression Language (EL) with ADF Security.

How to Redirect a User After Authentication
When you have chosen to implement implicit authentication, after the user accesses
a secured web page and logs in, the ADF authentication servlet will redirect back
to the original page that initiated the login request. With ADF Security authentication
enabled, the ADF automatically passes on the session map the original page as the
ADF authentication success_url parameter. Typically, this is the desired behavior.

Additionally, when you have chosen to implement implicit authentication, you can
protect the Fusion web application from malicious redirects by specifying the
success_url parameter as an init-param element within the web.xml file. However,
because the ADF authentication servlet automatically passes the original page as the
success_url parameter, which supersedes any web.xml setting, in practice the only
scenario in which an init-param setting in web.xml takes effect is when the user
explicitly types the adfAuthentication URL into the browser.

However, when you choose to implement explicit authentication and display an explicit
login link in your page, the ADF Security framework is not able to determine the
originating page. In this case, your login link ensures the ADF Authentication servlet
redirects to the desired page after authentication by passing the view activity name
of the web page as the servlet success_url parameter, as shown in the following
example.

Chapter 47
Creating a Login Page

47-70

<af:link text="Login" destination="/adfAuthentication?success_url=/faces/
viewactivityname"/>

Best Practice:

For explicit authentication, to ensure that the Fusion web application handles
the ADF authentication redirect as an ADF Controller navigation event,
specify the redirect target by its view activity name. Specifically, without
specifying a view activity as the redirect target, command components, such
as the af:button component, will always return to the original page after
login. Passing the view activity name as the redirect target of the ADF
authentication servlet success_url and end_url parameters ensures the
application handles navigation using control flow rules in all cases.

In the case of explicit authentication, following the best practice of defining the
success_url with a task flow view activity name protects the Fusion web application
from malicious redirects by ensuring the ADF authentication servlet ignores any
adfAuthentication URL that a user may attempt to type into the browser.
Alternatively, when a task flow activity is not convenient, your application can use
the AuthenticationService API to implement login and logout methods that handle
the redirect in a secure way. For more information about using the API in a security
bean, see What You May Need to Know About Redirecting to a Different Host Server.

In cases where the user is authenticated but not authorized to view a web page,
you can redirect the ADF authentication servlet to an error page in your application.
Error handling in Fusion web applications is under the control of the ADF Controller
exception handler unless you have created an application that does not use a
task flow in its design. For example, in an unbounded task flow, where you have
defined an unbounded task flow with a top-level welcome page and a browse page
(secured through its ADF page definition), you would see an error page from the
application, named authorizationErrorPage.jspx, specified in the adfc-config.xml
file, as shown in the following example.

<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <exception-handler>authorizationErrorPage</exception-handler>
 <view id="welcomePage">
 <page>/welcomePage.jspx</page>
 </view>
 <view id="browse">
 <page>/browse.jspx</page>
 </view>
 <view id="authorizationErrorPage">
 <page>/authorizationErrorPage.jspx</page>
 </view>
 <control-flow-rule>
 <from-activity-id>welcomePage</from-activity-id>
 <control-flow-case>
 <from-outcome>goToSecuredPage</from-outcome>
 <to-activity-id>browse</to-activity-id>
 </control-flow-case>
 </control-flow-rule>
</adfc-config>

For details about how to specify an error page as a view activity for the ADF Controller
exception handler, see Handling Exceptions in Task Flows.

Chapter 47
Creating a Login Page

47-71

In cases where the user is not authenticated and an authorization failure occurs, the
framework redirects to the ADF authentication servlet, which in turn triggers a Java
EE constraint that prompts for login. In this case, container-managed security relies on
the login page and error page that you specify in the <login-config> element of the
web.xml file.

If you create a Fusion web application without utilizing task flows, then you can
specify an <init-param> setting in web.xml for the ADF binding filter, as shown
in the following example. In this case, when no task flow is present in the
application, page authorization checking is handled by the ADF binding filter, and the
unauthorizedErrorPage parameter will be passed to the ADF binding request handler.

Note:

The unauthorizedErrorPage parameter feature is provided for compatibility
with previous releases where ADF Controller was not available. In Fusion
web applications, when you need to redirect users to an error page, you use
the task flow exception handler to specify the error page, as shown in the
previous example.

<filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
 <init-param>
 <param-name>unauthorizedErrorPage</param-name>
 <param-value>faces/authorizationErrorPage.jspx</param-value>
 </init-param>
</filter>

How to Trigger a Custom Login Page Specifically for Implicit
Authentication

When you have chosen to implement implicit authentication to allow users to access
protected resources (which may be by direct URL access or by navigating to an
ADF Security protected resource), the ADF Security authentication servlet initiates the
Java EE container to display the login form configured in the web.xml file. For implicit
authentication, when you have customized the default, wizard-generated login form to
use ADF Faces components, you must modify the URL pattern for the servlet mapping
to reference the ADF Faces servlet.

You can accomplish this in the Authentication Type page of the Configure ADF
Security wizard when you configure ADF Security, or in the web.xml file directly. If
you have already run the Configure ADF Security wizard, you can use the following
procedure to confirm that the web.xml file has been updated as described.

When you have chosen to implement explicit authentication and have created a public
page to allow users to login to access protected resources, the login form you create
will not be triggered by ADF Security. In the explicit authentication scenario, you do
need to configure the web.xml file.

Chapter 47
Creating a Login Page

47-72

Note:

Configuring the web.xml file with the login page application path when your
application implements explicit authentication programmatically, as described
in Creating an ADF Faces-Based Login Page Specifically for Explicit
Authentication, may produce unpredictable results and login may fail. Only
modify the web.xml file when you are implementing implicit authentication
and you have created a form that relies on the j_security_check action, as
does the default, wizard-generated login form.

Before you begin:

It may be helpful to have an understanding of the login page. For more information,
see How to Create a Login Page Specifically for Explicit Authentication.

To reference an ADF Faces login page for implicit authentication:

1. In the Applications window, expand WEB-INF and double-click web.xml.

2. In the overview editor for the web.xml file, click the Security navigation tab.

3. In the Security page, expand the Login Authentication section, and set the login
page to include a reference to the ADF Faces servlet such that the login page can
be part of the ADF Faces lifecycle /faces/ADFlogin.jspx page.

When you add a page using the file browser, the path entered in the web.xml
file will not specify /faces. Modify the entry so that the path references the
servlet mapping path for the ADF Faces servlet. For example, if the URL pattern
specified by the mapping is /faces/*, then your path should look like /faces/
yourpage.jspx, as shown in Figure 47-26.

Figure 47-26 Adding a Reference to the Faces Servlet in the Login
Configuration

How to Ensure That the Redirect Destination Page is Available
When the ADF authentication servlet directs the user to login, it puts the redirect
destination defined by the success_url on the Session map. However, in the case
where the session times out before the user has authenticated, the Session map
looses the value of success_url and the application looses the ability to navigate to
the destination page.

To ensure the login redirect destination is always available to the application, you
can define the success_url parameter as a task flow navigation outcome rule or you
can define it statically when you run the Configure ADF Security wizard as a single
whitelisted page that will appear in the web.xml file.

Because the web.xml file must be defined prior to deployment, the Fusion web
application supports an alternative, dynamic approach to configuring the redirect URL

Chapter 47
Creating a Login Page

47-73

success_url parameter that involves defining connection reference values. These
values may also be configured in connections.xml file directly.

To use the connections.xml file as a persistence store for the ADF authentication
servlet redirect destination:

1. In the web.xml file, add the init-param named
oracle.adf.share.security.authentication.connections to the ADF
authentication servlet definition and specify the param_value as the connection
reference name that appears in the connections.xml file, located in the adf/META-
INF folder, as the following example shows.

<servlet>
 <servlet-name>adfAuthentication</servlet-name>
 <servlet-class>
 oracle.adf.share.security.authentication.AuthenticationServlet
 </servlet-class>
 <init-param>
 <param-name>
 oracle.adf.share.security.authentication.connections
 </param-name>
 <param-value>my_connection_name</param-value>
 </init-param>
 ...
</servlet>

2. In the connections.xml file, define the success_url and, optionally, end_url in the
named connection reference, as the following example shows.

<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="my_connection_name"
 className=

"oracle.adf.share.security.authentication.AuthenticationConnection"
 xmlns="">
 <Factory className=

"oracle.adf.share.security.authentication.AuthenticationConnection"/>
 <RefAddresses>
 <StringRefAddr addrType="success_url">
 <Contents>
 http://localhost:port/context_root/faces/welcomePage</Contents>
 </StringRefAddr>
 <!-- end_url for logout -->
 <StringRefAddr addrType="end_url">
 <Contents>
 http://localhost:port/context_root/faces/publicPage</Contents>
 </StringRefAddr>
 </RefAddresses>
 </Reference>
</References>

Note that the destination URL may omit the host name, port number, and context root,
when redirecting the application to the current request host, port, and context root. In
this case, the URL is specified as /faces/pagename, where /faces loads the page in
the context of ADF Faces and supports pages designed with ADF Faces components.

At runtime, if the redirect URL is not on Session map, the ADF
authentication servlet gets the connection name from init-param named
oracle.adf.share.security.authentication.connections to lookup the connection
from connections.xml file. If no connection is named or if success_url (login) or

Chapter 47
Creating a Login Page

47-74

end_url (logout) are not in connections.xml, then the ADF authentication servlet will
check if success_url or end_url is defined in the web.xml.

What You May Need to Know About Redirecting to a Different Host
Server

During logout it may be necessary to redirect the user to an arbitrary web page or
host server that differs from the originating server of the Fusion web application. In this
scenario, the application should be protected from a malicious redirect by ensuring the
destination page URL is not placed by the application on the Request and will instead
use the Session map. To accomplish this, a best practice is to block passing ADF
redirect parameters on the browser URL by adding the servlet init-param element
disable_url_param set to true to the ADF authentication servlet definition in the
web.xml file as this example shows.

<servlet>
 <servlet-name>adfAuthentication</servlet-name>
 <servlet-class>
 oracle.adf.share.security.authentication.AuthenticationServlet
 </servlet-class>
 <init-param>
 <param-name>success_url</param-name>
 <param-value>faces/welcome</param-value>
 </init-param>
 <init-param>
 <param-name>end_url</param-name>
 <param-value>faces/welcome</param-value>
 </init-param>
 <init-param>
 <param-name>disable_url_param</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>
...

Legacy applications that were built before ADF enforced passing the redirect
parameters on the Session map that would otherwise expose the parameters on
the browser URL Request should not set the disable_url_param to true and
should instead consider implementing a security bean using the ADF interface
oracle.adf.share.security.AuthenticationService to handles ADF-specific login
and logout methods by placing the target destination on the Session map.

The following example illustrates how to use the logout() method of the
AuthenticationService interface. This method will internally put the passed in URL
on the Session map and will ignore the end_url parameter that might explicitly be set
on the URL by a user. Similarly, the login() method places the login URL destination
on the Session map. When you need logout to redirect to a web page on a different
server, your method implementation may pass the URL of the desired web page and
still be protected from a malicious redirect.

import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

Chapter 47
Creating a Login Page

47-75

import oracle.adf.share.security.AuthenticationService;
import oracle.adf.share.security.authentication.AuthenticationServiceUtil;

public class SecurityBean {
 public SecurityBean() {
 super();
 }

 public boolean isAuthenticated() {
 ExternalContext ectx =
 FacesContext.getCurrentInstance().getExternalContext();
 return ectx.getUserPrincipal() != null;
 }

 public void logon() {
 if (!isAuthenticated())
 {
 FacesContext ctx = FacesContext.getCurrentInstance();
 AuthenticationServiceUtil.getAuthenticationService().login("/faces" +
 ctx.getViewRoot().getViewId(), null,
null);
 }
 }

 public void logoff() {
 if (isAuthenticated())
 {
 AuthenticationServiceUtil.getAuthenticationService().
 logout("/faces/index", null);
 }
 }
}

An alternative to the programmatic approach handles placing the destination URL
on the Session map by invoking the ADF authentication servlet in an explicit
link with null value success_url and end_url parameters. In this case, the ADF
authentication servlet will try to obtain the redirect values from the web.xml file (or the
connections.xml file) and will ignore any values that a user might attempt to enter on
the URL. This approach requires configuring the ADF authentication servlet definition
in the web.xml by specifying an init-param element for the success_url and end_url
parameters. In effect, this is a declarative approach that results in a whitelist with a
single destination for login and logout redirects.

What You May Need to Know About Fusion Web Application Logout
and Browser Caching

When basic type authentication is in effect as specified in the Fusion web application's
web.xml file, the browser caches authentication credentials. This is a known issue with
basic authentication that re-authenticates users after the logout redirect is performed
by the ADF authentication servlet. In this scenario, in order to complete the logout
session and prevent users from accessing resources, it is necessary to close the
browser and restart a new browser session.

To ensure the ADF application completes logout and prevents a user from being
able to access resources after logout, use form-based authentication instead of basic
authentication. You can select form-based authentication when you run the Configure
ADF Security wizard, as described in How to Enable ADF Security.

Chapter 47
Creating a Login Page

47-76

What You May Need to Know About Displaying Error Pages in Internet
Explorer

When you enable ADF Security to display a custom error page, any HTTP errors
that the application generates in response to a request to view a page, should result
in the error page being displayed. However, in certain versions of Internet Explorer,
the browser will display either the custom error page or an error message built into
Internet Explorer. If Internet Explorer displays only an error message you can disable
the option to display error message numbers in the Advanced settings of the Internet
Options dialog. In Internet Explorer 10, this option is enabled by default. You should
disable Show friendly HTTP error messages when you want to display a custom
error page that you enabled with the Configure ADF Security wizard.

To ensure custom error pages display in Internet Explorer 10:

1. In Internet Explorer toolbar, click the Tools button.

2. In the Internet Options dialog, click the Advanced tab.

3. In the Advanced tab, scroll and locate Show friendly HTTP error messages.

4. Click the option to disable it and click OK.

Testing Security in JDeveloper
For testing ADF Security, JDeveloper lets you run the application using Integrated
WebLogic Server and decides whether to migrate security objects defined in your
application.

Integrated WebLogic Server enables you to run the application directly within
JDeveloper and determine whether or not to migrate security objects, including the
application policies, users, and credentials that your application defines. By default, all
security objects are migrated to Integrated WebLogic Server each time you run the
application.

How to Configure, Deploy, and Run a Secure Application in
JDeveloper

JDeveloper is configured by default to deploy the security objects from your application
repositories to Integrated WebLogic Server each time you run the application. You
can change this behavior by selecting security deployment options in the Application
Properties dialog to:

• Decide whether to overwrite the domain-level policies with those from the
application jazn-data.xml file

• Decide whether to overwrite the system credentials from the application's
cwallet.sso file

The cwallet.sso file (located in JDeveloper in the Application Resources panel
of the Applications window under the Descriptors-META-INF node) stores
credentials as securely kept objects that are presented to the authentication
provider to be matched against identities. The file is encrypted and cannot be
browsed or edited within JDeveloper. At design-time, different components make

Chapter 47
Testing Security in JDeveloper

47-77

use of cwallet.sso file and are responsible for creating the necessary credentials
in it.

• Decide whether to migrate the identity store portion of the jazn-data.xml file to
the domain-level identity store

If you make no changes to the deployment settings, each time you run the application,
JDeveloper will overwrite the domain-level security policies and system credentials.
Additionally, JDeveloper will migrate new user identities you create for test purposes
and update existing user passwords in the embedded LDAP server that Integrated
WebLogic Server uses for its identity store. However, if you prefer to run the
application without updating the existing security objects in Integrated WebLogic
Server, you have this option.

Before you begin:

It may be helpful to have an understanding of using Integrated WebLogic Server. For
more information, see Testing Security in JDeveloper.

To configure security deployment and run the application in JDeveloper:

1. In the main menu, choose Application and then Secure > Configure Security
Deployment.

2. In the Application Properties dialog, in the Deployment page, in the Security
Deployment Options section, select the security objects that you want to deploy
to Integrated WebLogic Server.

By default, each time you run the application, JDeveloper will overwrite the
application policies and system credentials at the domain level with those from
the application. If you prefer not to overwrite either of these repositories, deselect
Application Policies or Credentials. When deselected, JDeveloper will merge
only new polices or credentials into the domain-level stores.

By default, each time you run the application, JDeveloper will migrate new user
identities you create for test purposes and update existing user passwords in
the embedded LDAP server that Integrated WebLogic Server uses for its identity
store. You can disable migration of the application identity store by deselecting
Users and Groups.

3. Click OK.

4. In the Applications window, right-click the user interface project that contains the
secured web pages and choose Run.

When you choose Run on the user interface project, JDeveloper will run the
application using the default run target you configured for the project. For example,
you can configure a task flow activity as the run target to start your application. To
configure the default run target, see Testing Task Flows.

The Create Default Domain dialog appears the first time you run the application
and start a new domain in Integrated WebLogic Server. Use the dialog to define
an administrator password for the new domain. Passwords you enter can be eight
characters or more and must have a numeric character.

What Happens When You Configure Security Deployment Options
When you run the application using Integrated WebLogic Server, JDeveloper migrates
the security policies and credentials to the domain level based on security deployment
configuration settings specified in the Application Properties dialog. During the

Chapter 47
Testing Security in JDeveloper

47-78

deployment process, JDeveloper updates the weblogic-application.xml file that it
adds to the deployment archive file with the Application Properties settings, as shown
in the following example. Note that these settings are not added to the weblogic-
application.xml file in the application source directory and thus are not visible.

<application-param>
 <param-name>jps.credstore.migration</param-name>
 <param-value>OVERWRITE</param-value>
</application-param>
<application-param>
 <param-name>jps.policystore.migration</param-name>
 <param-value>OVERWRITE</param-value>
</application-param>

The OVERWRITE value allows you to modify the security policies and credentials in your
application and redeploy either to Oracle WebLogic Server running in development
mode or to Integrated WebLogic Server (set up to run in development mode by
default).

Note:

When you eventually deploy to a production environment, the migration
settings in the weblogic-application.xml file are ignored; it would be
considered a security vulnerability to allow existing policies and credentials to
be overwritten. For information about deploying to a production environment,
see Preparing the Secure Application for Deployment.

JDeveloper also updates the weblogic-application.xml file with OPSS lifecycle
listeners, as shown in the following example. To initiate the migration process before
the application runs, the lifecycle listeners observe the migration settings for policies
and credentials and overwrite the security objects at the domain level.

<listener>
 <listener-class>
 oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener
 </listener-class>
</listener>
<listener>
 <listener-class>
 oracle.security.jps.wls.listeners.JpsAppVersionLifecycleListener
 </listener-class>
</listener>

During the migration process, JDeveloper maps the Oracle Platform Security Services
(OPSS) application role member classes to the Integrated WebLogic Server member
classes and migrates the users to WebLogic Server identity store users and migrates
the roles to WebLogic Server identity store groups. In Oracle WebLogic Server, users
is an implicit group equivalent to OPSS authenticated-role.

Identity store migration is not controlled by the application lifecycle listener settings
in the weblogic-application.xml file. Instead, an Oracle WebLogic Mbean handles
migrating the identities when running in Integrated WebLogic Server or when
deploying from JDeveloper. If the user already exists, the Mbean will not migrate the
entire user definition. Only the user password will be updated.

Chapter 47
Testing Security in JDeveloper

47-79

How to Use the Built-In test-all Application Role
When you run the Configure ADF Security wizard, you can enable the option to add
the test-all application role to the policy store in the jazn-data.xml file. When you
enable this option, you also specify the scope of grants to the application role for your
application:

• Select Grant to Existing Objects Only when you want JDeveloper to grant view
rights to the test-all application role and you want this policy to apply to all the
ADF task flows and web pages that appear in your user interface project at the
time you run the wizard.

• Select Grant to All Objects when you want JDeveloper to grant view rights to
the test-all application role and you want this policy to apply to all existing
and future ADF task flows and web pages that developers will create in the
user interface project. Note that the wizard displays the option Grant to New
Objects after you run the wizard the first time with the Grant to All Objects option
selected.

After you run the wizard, the test-all role appears in the jazn-data.xml file and
is visible in the overview editor for security policies. You will not need to populate
the test-all role with test users since the wizard assigns the built-in application role
anonymous-role to the test-all role. In this case, all users will automatically have the
anonymous-role principal and will be permitted to access the application.

Note:

Before you deploy the application, you must remove all occurrences of the
test-all role from the policy store, as described in How to Remove the
test-all Role from the Application Policy Store. This will prevent unauthorized
users from accessing the web pages of your application.

You can rerun the wizard and disable automatic grants at any time. Once disabled,
new ADF task flows and web pages that you create will not utilize the test-all role
and will therefore require that you define explicit grants, as described in Defining ADF
Security Policies.

What Happens at Runtime: How ADF Security Handles Authentication
When you test the application in JDeveloper using Integrated WebLogic Server, the
identity store is migrated to the embedded LDAP server, with information stored in
Oracle Internet Directory.

Figure 47-27 illustrates the authentication process when users attempt to access
an ADF bounded task flow or any web page containing ADF bindings (such as
mypage.jspx) without first logging in. Authentication is initiated implicitly because the
user does not begin login by clicking a login link on a public page. In the case of the
secured page, no grants have been made to the anonymous user.

Chapter 47
Testing Security in JDeveloper

47-80

Figure 47-27 ADF Security Implicit Authentication

In Figure 47-27, the implicit authentication process assumes that the resource does
not have a grant to anonymous-role, that the user is not already authenticated, and
that the authentication method is Form-based authentication. In this case, the process
is as follows:

1. When the bounded task flow or web page (with ADF bindings) is requested, the
ADF bindings servlet filter redirects the request to the ADF authentication servlet
(in the figure, Step 1), storing the logical operation that triggered the login.

2. The ADF authentication servlet has a Java EE security constraint set on it, which
results in the Java EE container invoking the configured login mechanism (in the
figure, Step 2). Based on the container's login configuration, the user is prompted
to authenticate:

a. The appropriate login form is displayed for form-based authentication (in the
figure, Step 2a).

b. The user enters their credentials in the displayed login form (in the figure, Step
2b).

c. The user posts the form back to the container's j_security_check() method
(in the figure, Step 2c).

d. The Java EE container authenticates the user, using the configured pluggable
authentication module (in the figure, Step 2d).

Chapter 47
Testing Security in JDeveloper

47-81

3. Upon successful authentication, the container redirects the user back to the servlet
that initiated the authentication challenge, in this case, the ADF authentication
servlet (in the figure, Step 3).

4. On returning to the ADF authentication servlet, the servlet subsequently redirects
to the originally requested resource (in the figure, Step 4).

Whether or not the resource is displayed will depend on the user's access rights
and on whether authorization for ADF Security is enforced, as explained in What
Happens at Runtime: How ADF Security Handles Authorization.

Figure 47-28 illustrates the explicit authentication process when the user becomes
authenticated starting with the login link on a public page.

Figure 47-28 ADF Security Explicit Authentication

In an explicit authentication scenario, an unauthenticated user (with only the
anonymous user principal and anonymous-role principal) clicks the Login link on a
public page (in the figure, Step 1). The login link is a direct request to the ADF
authentication servlet, which is secured through a Java EE security constraint in the
web.xml file.

In this scenario, the current page is passed as a parameter to the ADF authentication
servlet. As with the implicit case, the security constraint redirects the user to the login
page (in the figure, Step 2). After the container authenticates the user, as described in
Step a through Step d in the implicit authentication case, the request is returned to the
ADF authentication servlet (in the figure, Step 3), which subsequently returns the user
to the public page, but now with new user and role principals in place.

What Happens at Runtime: How ADF Security Handles Authorization
When ADF authorization is enabled, the ADF bounded task flows and web pages
outside of a task flow that have an ADF page definition will be secure by default.

Chapter 47
Testing Security in JDeveloper

47-82

When a user attempts to access these web pages, ADF Security checks to determine
whether the user has been granted access in the policy store. If the user is not yet
authenticated, and the page is not granted to the anonymous-role, then the application
displays the login page or form. If the user has been authenticated, but does not have
permission, a security error is displayed. If you do not configure the policy store with
appropriate grants, the pages will remain protected and therefore stay unavailable to
the authenticated user.

Figure 47-29 illustrates the authorization process.

Figure 47-29 ADF Security Authorization

The user is a member of the application role staff defined in the policy store. Because
the user has not yet logged in, the security context does not have a subject (a
container object that represents the user). Instead, Oracle Platform Security Services
provides ADF Security with a subject with the anonymous user principal (a unique
definition of the user) and the anonymous-role principal.

With the anonymous-role principal, typically the user would be able to access only
pages not defined by ADF resources, such as the public.jsp page, whereas all
pages that are defined either by an ADF task flow or outside of a task flow using
an ADF page definition file are secure by default and unavailable to the user. An
exception to this security policy would be if you were to grant anonymous-role access
to ADF resources in the policy store. In this case, the user would not be allowed
immediate access to the page defined by an ADF resource.

When the user tries to access a web page defined by an ADF resource, such as
mypage.jspx (which is specified by an ADF page definition, for example), the ADF
Security enforcement logic intercepts the request and because all ADF resources are
secured by default, the user is automatically challenged to authenticate (assuming that
the anonymous-role is not granted access to the ADF resource).

After successful authentication, the user will have a specific subject. The security
enforcement logic now checks the policy store to determine which role is allowed to
view mypage.jspx and whether the user is a member of that role. In this example for

Chapter 47
Testing Security in JDeveloper

47-83

mypage.jspx, the view privilege has been granted to the staff role and because the
user is a member of this role, they are allowed to navigate to mypage.jspx.

Similarly, when the user tries to access secpage.jsp, another page defined by ADF
resources, for which the user does not have the necessary view privilege, access is
denied.

Users and roles are those already defined in the identity store of the resource provider.
Application roles are defined in the policy store of the jazn-data.xml file.

Preparing the Secure Application for Deployment
Oracle ADF applications should be deployed to a target application server after
testing. You can run an application in the Integrated WebLogic Server as well as
deploy it to a standalone Oracle WebLogic Server

After testing in JDeveloper using Integrated WebLogic Server, you will eventually
want to deploy the application to a standalone server. Initially, the server you target
will be your staging environment where you can continue development testing using
that server's identity store before deploying to the production environment. Thus, you
will typically not migrate the test users you created to run with Integrated WebLogic
Server. The steps you perform to migrate credentials (in the cwallet.sso file) and
security policies (in the jazn-data.xml file) to standalone Oracle WebLogic Server will
depend on the configured mode of the target server and whether you deploy using
JDeveloper or a tool outside of JDeveloper.

Note:

For details about deploying from JDeveloper to a development environment,
see Deploying Fusion Web Applications.

When the target server is configured for development mode, you can deploy directly
from JDeveloper. In this case, JDeveloper automatically handles the migration of the
policy store, system credentials, and identity store (users and groups) as part of the
deployment process. Application security deployment properties are configured by
default to allow the deployment process to overwrite the domain-level policy store
and the system credentials. Additionally, the identity store deployment property is
configured by default to migrate the identity store consisting of your test users. You
can change this default deployment behavior in the Application Properties dialog, as
described in How to Configure, Deploy, and Run a Secure Application in JDeveloper.

Note:

Note that migration of system credentials to Oracle WebLogic Server running
in development mode will be performed only if the target server is configured
to permit credential overwrite. For details about configuring Oracle WebLogic
Server to support overwriting of system credentials, see the Configuring the
OPSS Security Store chapter in Securing Applications with Oracle Platform
Security Services.

Chapter 47
Preparing the Secure Application for Deployment

47-84

When the target server is configured for production mode, you typically handle the
migration task outside of JDeveloper using tools like Oracle Enterprise Manager. For
details about using tools outside of JDeveloper to migrate the policy store to the
domain-level in a production environment, see the Configuring the OPSS Security
Store chapter in Securing Applications with Oracle Platform Security Services. Note
that Oracle WebLogic Server running in production mode does not support the
overwriting of system credentials under any circumstances.

Before you deploy the application, you will want to remove the test-all application
role if you enabled the automatic grants feature in the Configure ADF Security wizard.
Because the test-all role makes all ADF resources public, its presence increases
the risk that your application may leave some resources unprotected. You must
therefore remove the role before you migrate application-level policy store.

Additionally, when you prepare to deploy the application to Oracle WebLogic Server,
you will want to remove the test identities that you created in the jazn-data.xml file.
This will ensure that users you created to test security policies are not migrated to the
domain-level identity store.

Best Practice:

If you deploy your application to the standalone environment, you must not
migrate users and enterprise roles in your local identity store that are already
configured for Oracle WebLogic Server. For example, if you were to deploy
the identity store with the user weblogic and enterprise role Administrators,
you would overwrite the default administration configuration on the target
server. To ensure you avoid all possible conflicts, you can disable migration
of the identity store, as described in How to Remove Test Users from the
Application Identity Store.

How to Remove the test-all Role from the Application Policy Store
The overview editor for security policies provides the facility to display all resources
with view grants made to ADF Security's built-in test-all role. You can use this
feature in the overview editor to delete the test-all role grant and replace it with a
grant to the roles that your application defines.

Alternatively, you could delete the test-all role using the overview editor for the
jazn-data.xml file, by selecting the test-all role in the Application Roles page of the
editor and clicking the Delete Application Role button. However, when you remove
the test-all role this way, you will still need to create a grant to replace the ones
that you delete. Because the overview editor lets you combine both of these tasks, the
following procedure describes its usage.

Before you begin:

It may be helpful to have an understanding of the Oracle WebLogic Server. For more
information, see Preparing the Secure Application for Deployment.

To remove the test-all application role and substitute custom application roles:

1. In the main menu, choose Application and then Secure > Resource Grants.

Chapter 47
Preparing the Secure Application for Deployment

47-85

2. In the Resource Grants page of the overview editor for security policies, select
Task Flow from the Resource Type dropdown list and then select the Show task
flows with test-all grants only checkbox to view the list of task flows with grants
to this built-in role.

If no grant exists for the test-all role, then the Resources list in the overview
editor will appear empty. The test-all role is defined only when enabled in the
Configure ADF Security wizard. If it is enabled, you will see those task flows with
test-all grants listed, as shown in Figure 47-30.

Figure 47-30 Showing Task Flows with test-all Grants in the Overview
Editor

3. In the Resources column, select the first task flow in the list.

4. In the Granted to column, select test-all and click the Remove Grantee icon.

5. In the Granted to column, click the Add Grantee icon and choose Add
Application Role and then use the Select Application Roles dialog to add the
desired role.

6. Repeat these steps to remove the test-all role and substitute your own
application role for all remaining task flows.

7. In the Resource Grants page of the overview editor, select Web Page from the
Resource Type dropdown list and repeat these steps to remove the test-all role
for all web pages and their ADF page definitions.

8. With the Show task flows/web pages with test-all grants only checkbox
selected, verify that the overview editor displays no resources with test-all
grants.

How to Remove Test Users from the Application Identity Store
The standalone Oracle WebLogic Server that you will deploy to will have its own
identity stored already configured. To ensure that you do not migrate test users and
enterprise role groups you created in JDeveloper to the domain level, you should
remove the test user realm from the jazn-data.xml file.

Alternatively, if you are deploying from JDeveloper, you can disable the migration of
users and groups by deselecting the Users and Groups option in the Application
Properties dialog, as described in How to Configure, Deploy, and Run a Secure
Application in JDeveloper.

Before you begin:

Chapter 47
Preparing the Secure Application for Deployment

47-86

It may be helpful to have an understanding of the Oracle WebLogic Server. For more
information, see Preparing the Secure Application for Deployment.

To remove test users and enterprise role groups from the identity store:

1. In the main menu, choose Application and then Secure > Users.

2. In the editor window for the jazn-data.xml file, click the Source tab.

3. In the source for the jazn-data.xml file, click the - icon next to the <jazn-realm>
element so the entire element appears collapsed as shown in Figure 47-31.

Figure 47-31 Selecting the <jazn-realm> Element in the XML Editor

4. With the element selected, press Delete and save the file.

How to Secure Resource Files Using a URL Constraint
Resource files, including images, style sheets, and JavaScript libraries are files that
the Fusion web application loads to support the individual pages of the application.
ADF Security does not secure these files. Although securing such files is not a
requirement for securing the web pages of the application, in some cases it may be
desirable to protect resource files to fully harden your application. Please note that
JavaScript files are downloaded to the browser and, as such, can be read at that time.

To serve up resource files, the ADF Faces framework relies on
org.apache.myfaces.trinidad.webapp.ResourceServlet, which delegates to a
resource loader. The Fusion web application's web.xml file contains a servlet mapping
that maps the resource servlet to URL patterns. By default, JDeveloper uses the
patterns /adf/* for MyFaces Trinidad Core, and /afr/* for ADF Faces.

Because ADF Security does not protect the resource servlet, you can protect the Java
EE access paths for the resource servlet with a security constraint. To implement your
own security for the resource files in the web.xml file, define a security constraint
for the /adflib/*, /adf/* and /afr/* paths and assign a specific security role to
them. This security constraint will require all users to be authenticated before they can
access the first page of the Fusion web application.

The following example shows the security role resource_role and the constraint
with the URL patterns mapped to this role. After you define the security role, the

Chapter 47
Preparing the Secure Application for Deployment

47-87

administrator for the target server must map this role to an Oracle WebLogic Server
enterprise role (user group) or create an enterprise role with the same name (in which
case no mapping is required).

<security-role>
 <description>Java EE role to map to an enterprise role. All users who will
 be allowed to run Fusion web app must be members of that role. </
description>
 <role-name>resource_role</role-name>
</security-role>

<security-constraint>
 <web-resource-collection>
 <web-resource-name>resources</web-resource-name>
 <url-pattern>/adflib/*</url-pattern>
 <url-pattern>/adf/*</url-pattern>
 <url-pattern>/afr/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>resource_role</role-name>
 </auth-constraint>
</security-constraint>

Disabling ADF Security
You can disable ADF Security but that does not delete the created permission. This
option can be used to run a previously secured application unsecured.

JDeveloper allows you to disable ADF Security when you want to temporarily run
the application without enforcing authorization checks against the application policy
store. This will allow you to run the application and access all resources without the
protection provided by existing security policies.

How to Disable ADF Security
To disable ADF Security at the level of your application, run the wizard and choose
one of these options:

• ADF Authentication disables ADF authorization but leaves the ADF
authentication servlet enabled. For example, you may want to run your application
in JDeveloper with authorization checking against security policies temporarily
disabled. This option will require the user to log in the first time a page in
the application is accessed by mapping the Java EE application root "/" to
the allPages Java EE security constraint that will trigger user authentication.
ADF resources will not be security-aware because authorization checking is
not enforced. Thus, once the user is logged in, all web pages containing ADF
resources will be available to the user.

• Remove ADF Security Configuration disables the ADF authentication servlet
and disables authorization checking on ADF resources. In this case, you can run
the application with no user authentication and no security for ADF resources in
place.

You may select either option with the intention of reenabling ADF Security at any time.
The wizard specifically does not alter the application policy store that contains the
security policies that application developers defined for ADF resources. This means
that you can return to the wizard at any time, select the ADF Authentication and

Chapter 47
Disabling ADF Security

47-88

Authorization option, and reenable ADF Security against your application's existing
policy store and identity store.

Before you begin:

It may be helpful to have an understanding of disabling ADF Security. For more
information, see Disabling ADF Security.

To disable ADF authorization checking:

1. In the main menu, choose Application and then Secure > Configure ADF
Security.

2. In the ADF Security page, select either the ADF Authentication option or the
Disable ADF Security Configuration option. Click Next.

After you run the wizard with either of these options, the ADF resources of your
user interface projects will no longer be security-aware.

3. Click Finish.

What Happens When You Disable ADF Security
If you run the Configure ADF Security wizard with the Remove ADF Security
Configuration option selected, it removes the ADF-specific metadata in the web.xml
file and adf-config.xml file, as described in Table 47-2.

Similarly, running the wizard with the ADF Authentication option selected to disable
only authorization checking performs the following updates:

• Leaves the ADF-specific metadata in the web.xml file unchanged and adds the
allPages security constraint.

With the allPages security constraint present, users will be expected to
authenticate when they first access the application.

• Sets the authorizationEnforce parameter in the <JaasSecurityContext>
element of the adf-config.xml file to false, as shown in the following example.

<JaasSecurityContext

initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"
 jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="false"
 authenticationRequire="true"/>

The adf-config.xml file is located in the /.adf/META_INF folder of your workspace.
In JDeveloper, you can locate the file in the Application Resources panel of the
Applications window by expanding the Descriptors-ADF META-INF node. Note that
if you view the adf-config.xml file in an editor outside of JDeveloper, you must save
the workspace to see the wizard-applied changes in the file.

Advanced Topics and Best Practices
There are additional security configurations that go beyond the default ADF Region
and task flow authorization. Then there are best practices that will help you to secure
the ADF application to allow users to access the web pages you intend.

Chapter 47
Advanced Topics and Best Practices

47-89

After you have completed the process of enabling ADF Security, you may want
to customize your application to work with ADF Security in the user interface. For
example, you can use Expression Language (EL) to render UI components in the web
page based on evaluation of custom permissions that you define just for a group of UI
components. Additionally, you can define methods within a managed bean to expose
information, such as the user name and role membership, in your application.

Using Expression Language (EL) with ADF Security
You can use Expression Language (EL) to evaluate the policy directly in the UI, while
the use of Java enables you to evaluate the policy from within a managed bean.
ADF Security implements several convenience methods for use in EL expressions
to access ADF resources in the security context. For example, you can use the EL
expression and ADF Security Context API methods to determine whether the user
is allowed to access a particular task flow. Good security practice dictates that your
application should hide resources and capabilities for which the user does not have
access. And for this reason, if the user is not allowed access to a particular task flow,
you would evaluate the user's permission grant to determine whether or not to render
the navigation components that initiate the task flow.

Note:

The ability to evaluate a policy is limited to the current request. For this
reason, it is important to understand where the policy evaluation occurs,
because evaluating the policy at anything other than the request scope can
lead to unexpected results.

How to Evaluate Policies Using EL
The use of EL within a UI component allows for the component's attribute values
to be defined dynamically, resulting in modification of the UI component at runtime.
In the case of securing resources, the UI component attribute of interest is the
rendered attribute, which allows you to show and hide components based on available
permissions. By default, the rendered attribute is set to true. By dynamically changing
this value based on the permission, you can set the UI component to be shown
or hidden. For example, if the user has the appropriate permission, the rendered
attribute should be set to true so that the UI component is shown. If they do not have
permission, the attribute should be set to false and the UI component hidden from
view.

To evaluate a policy using EL, you must use the ADF Security methods in the
securityContext EL namespace. These methods let you access information in the
ADF security context for a particular user or ADF resource.

Table 47-11 shows the EL expression that is required to determine whether a user
has the associated permission. If the user has the appropriate permission, the EL
expression evaluates to true; otherwise, it returns false.

Chapter 47
Advanced Topics and Best Practices

47-90

Table 47-11 EL Expression to Determine View Permissions on ADF Resources

Expression Expression action

#{securityContext.taskflowViewable['MyTaskFlow']}

For example:

#{securityContext.taskflowViewable
 ['/WEB-INF/audit-expense-report.xml#audit-expense-
report']}

Where MyTaskFlow is the WEB-INF
node-qualified name of the task flow being
accessed. Returns true if the user has
access rights. Returns false if the user
does not have sufficient access rights.

#{securityContext.regionViewable['MyPagePageDef']}
Where MyPagePageDef is the qualified
name of the page definition file associated
with the web page being accessed.
Returns true if the user has access
rights. Returns false if the user does not
have sufficient access rights.

Note:

In the case of page permission, the value of the page definition can be
specified dynamically by using late-binding EL within a managed bean, as
described in What You May Need to Know About the valid-users Role.

Table 47-12 shows the EL expression that lets you get general information from the
ADF security context not related to a particular ADF resource. For example, you can
access the current user name when you want to display the user's name in the user
interface. You can also check whether the current user is a member of certain roles or
granted certain privileges. Your application may use this result to dynamically hide or
show menus.

Table 47-12 EL Expression to Determine User Information in the ADF Security Context

Expression Expression Action

#{securityContext.userName}
Returns the user name of the authenticated user.

#{securityContext.authenticated} Returns true if the user is logged in. Returns
false if the user is not logged in. This is useful
for rendering a dynamic link for login/logout, or
for rendering a "Welcome, username" message
when the user has been authenticated. For an
example that uses this expression, see Adding
Login and Logout Links.

#{securityContext.userInRole['roleList']}
Where roleList is a comma-separated list of
role names. Returns true if the user is in at least
one of the roles. Returns false if the user is in
none of the roles, or if the user is not currently
authenticated.

Chapter 47
Advanced Topics and Best Practices

47-91

Table 47-12 (Cont.) EL Expression to Determine User Information in the ADF Security Context

Expression Expression Action

#{securityContext.userInAllRoles['roleList']}
Where roleList is a comma-separated list of
role names. Returns true if the user is in all
of the roles. Returns false if the user is not
in all of the roles, or if the user is not currently
authenticated.

#{securityContext.userGrantedPermission['permission']
}

Where permission is a string containing a
semicolon-separated concatenation of
permissionClass=<class>;target=<artifa
ct_name>;action=<action>. Returns true if
the user has access rights. Returns false if the
user does not have sufficient access rights.

Note that the convenience methods
taskflowViewable and regionViewable
shown in Table 47-11 provide the same
functionality.

#{securityContext.userGrantedResource['resource']} Where resource is a string containing a
semicolon-separated concatenation of
resourceName=<name>;resourceType=<type
>;action=<action>. Returns true if the user
has access rights. Returns false if the user does
not have sufficient access rights.

You can use this expression to test the
permission grant in the display property of a
resource that is not contained in a task flow
(like an ADF Faces panel or a menu item). You
first create a custom resource type for the UI
component that you want to protect. For more
details, see How to Protect UI Components Using
OPSS Resource Permissions and EL.

Before you begin:

It may be helpful to have an understanding of using EL. For more information, see
Using Expression Language (EL) with ADF Security.

To associate the rendering of a navigation component with a user's granted
permissions on a target task flow or page definition:

1. In the Applications window, double-click the page that contains the navigation
component that you wish to conditionally render.

2. In the visual editor for the page, select the component that is used to navigate to
the secured page.

3. In the Property window, click the Property Menu dropdown menu displayed
menu next to the Rendered field and choose Expression Builder, as shown in
Figure 47-32.

Chapter 47
Advanced Topics and Best Practices

47-92

Figure 47-32 Binding the Rendered Property to Data

4. In the Expression Builder, expand the ADF Bindings - securityContext node
and select the appropriate EL value, and then in the Expression field, enter the
qualified name of the ADF resource that the user will attempt to access.

For example, as shown in Figure 47-33, to limit access to a task flow that your
application displays, you would create an expression like:

#{securityContext.taskflowViewable
 ['/WEB-INF/audit-expense-report.xml#audit-expense-report']}

In this example, the expression determines the user's access rights to view the
target task flow audit-expense-report. If the user has the access rights, then the
expression evaluates to true and the rendered attribute receives the value true.

Figure 47-33 Defining EL in the Expression Builder Dialog

Chapter 47
Advanced Topics and Best Practices

47-93

Tip:

In the Expression Builder dialog, expand Description for additional
information about any security EL method you select.

5. Click OK.

When you run the application, the component will be rendered or hidden based on the
user's ability to view the target page.

What Happens When You Use the Expression Builder Dialog
When you use the Expression Builder to define an expression for the rendered
attribute, JDeveloper updates the component definition in the open .jspx file. The
component's rendered attribute appears with an expression that should evaluate
to either true or false, as shown in the following example. In this example, the
component is a navigation link with the link text Checkout defined by another
expression. The page that contains the navigation link renders the component only
when the user has sufficient rights to access the checkout task flow.

<af:commandNavigationItem
 text="#{res['global.nav.checkout']}"
 action="globalCheckout"
 id="cni3"
 rendered="#{securityContext.taskflowViewable
 ['/WEB-INF/checkout-task-flow.xml#checkout-task-flow']}"
/>

What You May Need to Know About Delayed Evaluation of EL
The ability to evaluate a security permission is scoped to the request. If you want to
evaluate permissions to access a target page from a managed bean that is scoped to
a higher level than request (for example, a global menu that is backed by a managed
bean), you must implement delayed EL evaluation (late-binding). By passing in the
target page as a managed property of the bean, you ensure that the EL expression
is evaluated only after the required binding information is available to the managed
bean. Because EL is evaluated immediately when the page is executed, placing the
EL expression directly in the properties of a UI component, backed by a managed
bean, would result in an out-of-scope error.

The following example shows a property (authorized) of a managed bean that returns
true or false based on a user's ability to view a named target page. In this case,
the _targetPageDef variable is a managed property containing the name of the target
page. Within the UI, the EL expression would reference the authorized property.

public boolean isAuthorized()
{
 if (_targetPageDef != null) {
 FacesContext fctx = FacesContext.getCurrentInstance();
 ADFContext adfCtx = ADFContext.getCurrent();
 SecurityContext secCtx = adfCtx.getSecurityContext();
 boolean hasPermission = secCtx.hasPermission(new RegionPermission
 (_targetPageDef, RegionPermission.VIEW_ACTION));
 if (hasPermission) {
 return hasPermission;
 }

Chapter 47
Advanced Topics and Best Practices

47-94

 else {
 fctx.addMessage(null, new FacesMessage (
 FacesMessage.SEVERITY_WARN, "Access Permission not defined! " , null));
 return false;
 }
}

How to Protect UI Components Using OPSS Resource Permissions
and EL

Security expressions in the ADF Security EL namespace described in Table 47-12
let you check the user permission, authentication and role membership status before
displaying UI components in your page. When you need fine-grained protection over
UI components to secure functional parts of the application that are not part of task
flow security or web page security, you use the EL value userGrantedResource and
a resource grant that you define for a custom resource type. For instance, through
a resource grant that you create for a menu item, the application may either enable
or disable a Cancel Shipment menu item to limit who may perform customer order
updates.

Resource grants for custom resources types rely on the ResourcePermission class,
which is provided by Oracle Platform Security Services (OPSS) and packaged with the
application.

You use the overview editor for security policies to create a security policy for the
custom resource type. And, in your web page, you use the security expression to
evaluate the user's access rights to the UI component projected by the resource grant.

Best Practice:

Custom resource types in combination with the ResourcePermission
matcher class let you extend ADF Security to define custom actions for use
in grants. This gives you the flexibility to define security policies to manage
the user's ability to view UI components without having to overload the built-
in actions defined by the ADF resources' permission classes. Be aware that
you do not need to create custom resource types to manage access to web
pages. This level of access is provided by the default ADF Security view
permission that you work with in the overview editor for security policies.

To grant resource policies for a custom resource type:

1. Create the custom resource type for the UI component you want to protect.

2. Create the resource grant for the custom resource.

3. Associate the rendering of a UI component with a role's granted resource
permission.

Creating the Custom Resource Type
You use the Create Resource Type dialog to create a resource type for the UI
component that you want to protect. JDeveloper will match your resource type
definition to the OPSS permission class oracle.security.jps.ResourcePermission.

Chapter 47
Advanced Topics and Best Practices

47-95

This class allows you to specify custom actions that you can grant to functional parts
of your application that are not protected by task flow security or web page security.
For example, you might want to create a resource type to protect sensitive parts of the
application accessed by the user through a menu UI component.

The Create Resource Type dialog lets you identify the type of resource you wish
to protect (for example, the name MenuProtection would identify the menu UI
component), a display name visible in the security policy store (for example, Menu
Protection), and a description of how the resource type will be used in the resource
grant (for example, Resource permission to grant menu item permissions). The
dialog also lets you enter one or more custom action names that you will use to grant
permission. For example, you might name the action process for use in a security
policy that grants access to a protected menu item.

Before you begin:

It may be helpful to have an understanding of the ADF Permission class. For more
information, see How to Protect UI Components Using OPSS Resource Permissions
and EL.

To create the custom resource type:

1. In the main menu, choose Application and then Secure > Resource Grants.

2. In the Resource Grants page of the overview editor for security policies, click New
Resource Type.

3. In the Create Resource Type dialog, enter the name and display name that
describes the UI component.

For example, to protect menu items, you might enter MenuProtection for the name
and Menu Protection for the display name.

4. In the Actions list, click Add and enter the name of the actions that your
permission will grant and click OK.

For example, when protecting a menu item, you might enter process to signify
that permission to process the menu selection is being granted. You can enter
multiple action names when you intent to grant specific actions to individual users
or roles. The overview editor displays the custom permission grant, as shown in
Figure 47-34.

Chapter 47
Advanced Topics and Best Practices

47-96

Figure 47-34 Creating a Custom Resource Type

Creating a Resource Grant for a Custom Resource Type
You use the overview editor for the jazn-data.xml file to create the ADF Security
policy for a custom resource. The finished source should look similar to the permission
grant defined in the policy store, as shown in the following example.

<grant>
 <grantee>
 <principals>
 <principal>
 <name>AccountManagersadmin</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.ResourcePermission</class>
 <name>resourceType=MenuProtection,resourceName=CancelShipment</name>
 <actions>process</actions>
 </permission>
 </permissions>
</grant>

The <permission> target name identifies the custom resource type and name that
you assigned the resource. For example, a resource name that lets users cancel
shipments from a menu selection in their account might be named CancelShipment.

The actions are those that your custom resource type defines. For example, in the
Menu Protection resource type defines the single action process to grant permission
to process the menu selection.

Chapter 47
Advanced Topics and Best Practices

47-97

Before you begin:

It may be helpful to have an understanding of the ResourcePermission class.
For more information, see How to Protect UI Components Using OPSS Resource
Permissions and EL.

You will need to complete this task:

Create the custom resource type, as described in Creating the Custom Resource
Type.

To create the resource grant for a custom resource type:

1. In the main menu, choose Application and then Secure > Resource Grants.

2. In the Resource Grants page of the overview editor for security policies, select the
custom resource from the Resource Type dropdown list.

3. In the Resources column, click the Add Resource icon.

4. In the Create Resource dialog, enter the name, display name, and description for
the resource that the security policy will specifically protect and then click OK.

5. In Resource Grants page of the overview editor, in the Granted to column, click
the Add Grantee icon and choose Add Application Role.

6. In the Actions column, select action that you defined for the custom resource
type.

The overview editor displays the resource grant, as shown in Figure 47-35.

Figure 47-35 Creating a Grant for a Custom Resource in the Overview
Editor

Associating the Rendering of a UI Component with a Resource Grant
You use the Expression Builder dialog for the UI component display property to define
an EL expression that controls rendering the component. For example, to protect a
menu item in an application that allows authorized users to cancel shipments, the
application specifies a userGrantedResource expression on the disabled property of
the menu item defined by af:commandMenuItem. As the following example shows, the
expression tests whether the user has been granted the resource type and then either
displays the menu item or, when the user has not been granted the resource, disables
the menu item.

#{!securityContext.userGrantedResource

['resourceName=CancelShipment;resourceType=MenuProtection;action=process']}

Figure 47-36 shows how the expression appears in the Expression Builder dialog.

Chapter 47
Advanced Topics and Best Practices

47-98

Figure 47-36 Defining EL in the Expression Builder Dialog

Before you begin:

It may be helpful to have an understanding of the ResourcePermission class.
For more information, see How to Protect UI Components Using OPSS Resource
Permissions and EL.

You will need to complete these tasks:

1. Create the custom resource type, as described in Creating the Custom Resource
Type.

2. Create the ADF security policy using the custom permission, as described in
Creating a Resource Grant for a Custom Resource Type.

To associate the rendering of a UI component with a user's granted resource:

1. In the Applications window, double-click the page that contains the UI component
that you wish to conditionally render.

2. In the visual editor for the page, select the component that is used to navigate to
the secured page.

3. In the Property window, click the Property Menu dropdown menu displayed menu
next to the Rendered field and choose Expression Builder.

4. In the Expression Builder, expand the ADF Bindings - securityContext node
and select userGrantedResource, and then, in the Expression field, enter a
concatenated string that defines the permission.

Enter the permission string as a semicolon-separated concatenation of
resourceName=theResourceInstanceName;resourceType=customResourceTypeNa

Chapter 47
Advanced Topics and Best Practices

47-99

me;action=actionName. For example, to protect a menu item in an application that
allows authorized users to cancel shipments, you would enter an expression
similar to the one shown in the following example, where the resource type for
userGrantedResource identifies the resource type used in the custom resource
grant.

#{!securityContext.userGrantedResource

['resourceName=CancelShipment;resourceType=MenuProtection;action=process']}

In this example, the expression evaluates the permission based on the custom
resource type named MenuProtection that you added to the application policy
store.

5. Click OK.

How to Perform Authorization Checks for Entity Object Operations
In the Fusion web application, you can enable security for the data collection when you
secure the operations of the entity object. The user must have sufficient privileges to
view, update, or delete the data for the entire row set.

The oracle.jbo.ViewCriteriaRow API allows you to perform authorization checks
for the standard operations (read, update, removeCurrentRow) at the level of entity
rows. The following example shows how to use the authorization checking API,
getSecurityHints() and allowsOperation(), on the entity row, to test whether the
user has permission to delete data.

if(row.getSecurityHints().allowsOperation("removeCurrentRow").hasPermission())
 // code for the data
else
 // display error message

Note that the allowsOperation() method expects as input the secured operation
name rather than the name of the action that secures it. The operation name for
deleting an entity row is removeCurrentRow (where delete is the action name).

When you want to perform authorization checks for the entity object that underlies
data bound components in a JSF page of the Fusion web application, you can use
EL expressions. For example, the following EL expression returns true if the user has
been granted the permission to perform the operation specified. The <operationName>
used in the expression must be the read, update, or removeCurrentRow operation that
you enabled for the entity object.

#{row.hints.allows.<operationName>}

Authorization checking expressions are evaluated in the context of a row collection.
When you want to check entity permissions outside of the context of the row collection,
you must use the userGrantedResource method as shown in Table 47-12.

Getting Information from the ADF Security Context
The implementation of security in a Fusion web application is by definition an
implementation of the security infrastructure of the ADF Security framework. As such,
the security context of the framework allows access to information that is required as
you define the policies and the overall security for your application.

Chapter 47
Advanced Topics and Best Practices

47-100

How to Determine Whether Security Is Enabled
Because the enforcement of ADF Security can be turned on and off at the container
level independent of the application, you should determine whether ADF Security is
enabled prior to making authorization checks. You can achieve this by calling the
isAuthorizationEnabled() method of the ADF Security Context, as shown in the
following example.

if (ADFContext.getCurrent().getSecurityContext().isAuthorizationEnabled()){
 //Authorization checks are performed here.
}

How to Determine Whether the User Is Authenticated
As the user principal in a Fusion web application is never null (that is, it is either
anonymous for unauthenticated users or the actual user name for authenticated users),
it is not possible to simply check whether the user principal is null to determine if the
user has logged on or not. As such, you must use a method to take into account that
a user principal of anonymous indicates that the user has not authenticated. You can
achieve this by calling the isAuthenticated() method of the ADF Security Context, as
shown in the following example.

// ============ User's Authenticated Status =============
private boolean _authenticated;
public boolean isAuthenticated() {
 _authenticated =
ADFContext.getCurrent().getSecurityContext().isAuthenticated();
 return _authenticated;
}

How to Determine the Current User Name
Fusion web applications support the concept of public pages that, while secured, are
available to all users. Furthermore, components on the web pages, such as portlets,
require knowledge of the current user identity. As such, the user name in a Fusion web
application will never be null. If an unauthenticated user accesses the page, the user
name anonymous will be passed to page components.

You can determine the current user's name by evaluating the getUserName() method
of the ADF security context, as shown in the following example. This method returns
the string anonymous for all unauthenticated users and the actual authenticated user's
name for authenticated users.

// ============ Current User's Name/PrincipalName =============
 public String getCurrentUser() {
 _currentUser = ADFContext.getCurrent().getSecurityContext().getUserName();
 return _currentUser;
 }

Because the traditional method for determining
a user name in a Faces-based application
(FacesContext.getCurrentInstance().getExternalContext().getRemoteUser())
returns null for unauthenticated users, you need to use additional logic to handle
the public user case if you use that method.

Chapter 47
Advanced Topics and Best Practices

47-101

How to Determine Membership of a Java EE Security Role
As Fusion web applications are JavaServer Faces-based applications, you can use
the isUserInRole(roleName) method of the Faces external context, as shown in the
following example, to determine whether a user is in a specified role. Because ADF
Security is based around JAAS policies, you should not need to use Java EE security
roles to secure pages associated with ADF security-aware resources based on role
membership. However, you might use the method to check the role for a page that is
not associated with an ADF security-aware resource.

In this example, a convenience method (checkIsUserInRole) is defined. The use of
this method within a managed bean enables you to expose membership of a named
role as an attribute, which can then be used in EL.

public boolean checkIsUserInRole(String roleName){
 return
(FacesContext.getCurrentInstance().getExternalContext().isUserInRole(roleName));
}

public boolean isCustomer() {
 return (checkIsUserInRole("Application Customer Role"));
 }

How to Determine Permission Using Java
To evaluate the security policies from within Java, you can use the hasPermission
method of the ADF security context. This method takes a permission object (defined
by the resource and action combination) and returns true if the user has the
corresponding permission.

In the following example, a convenience function is defined to enable you to pass in
the name of the page and the desired action, returning true or false based on the
user's permissions. Because this convenience function is checking page permissions,
the RegionPermission class is used to define the permission object that is passed to
the hasPermission method.

private boolean TestPermission (String PageName, String Action) {
 Permission p = new RegionPermission("view.pageDefs." + PageName + "PageDef",
 Action);
 if (p != null) {
 return ADFContext.getCurrent().getSecurityContext().hasPermission(p);
 }
 else {
 return (true);
}

As it is possible to determine the user's permission for a target page from within
a backing bean, you can use this convenience method to dynamically alter the
result of a Faces navigation action. In the following example, you can see that a
single command button can point to different target pages depending on the user's
permission. By checking the view permission from the most secured page (the
manager page) to the least secured page (the public welcome page), the command
button's backing bean will apply the appropriate action to direct the user to the
page that corresponds to their permission level. The backing bean that returns the
appropriate action uses a convenience method defined in the following example.

Chapter 47
Advanced Topics and Best Practices

47-102

//Button Definition
<af:button text="Goto Your Group Home page"
 binding="#{backing_content.commandButton1}"
 id="commandButton1"
 action="#{backing_content.getSecureNavigationAction}"/>

//Backing Bean Code
 public String getSecureNavigationAction() {
 String ActionName;
 if (TestPermission("ManagerPage", "view"))
 ActionName = "goToManagerPage";
 else if (TestPermission("EmployeePage", "view"))
 ActionName = "goToEmployeePage";
 else
 ActionName = "goToWelcomePage";
 return (ActionName);
 }

Best Practices for Working with ADF Security
These best practices summarize the rules that govern enforcement of security by the
ADF Security framework. Understanding these best practices will help you to secure
the application to allow users to access the web pages you intend.

Do build your application with ADF Security enabled from the start.

When you enable security, you essentially lock down the application and you will be
required to make explicit permission grants to specific ADF security-aware resources
you create. Knowing about these resources and making grants on them as you build
the application will enable you to iteratively test security to ensure that you structure
your application in a way that achieves the desired result.

Do define permission grants for bounded task flows.

Pages that the user accesses within the process of executing a bounded task flow will
not be individually permission-checked and will run under the permission grants of the
task flow. This means that any page that you add to the task flow should not have
its own page definition-level security defined. Upon requesting a flow, the user will be
allowed either to view all the pages of the task flow or to view none of the pages,
depending on their level of access.

Do not define permission grants for individual pages of a bounded task flow.

It is important to realize that task flows do not prevent users from accessing pages
directly. Any web page that is located in a directory that is publicly accessible can be
reached from a browser using a URL. To ensure that pages referenced by a bounded
task flow cannot be accessed directly, remove all permission grants that exist for
their associated page definition file. When pages require additional security within the
context of a bounded task flow, wrap those pages in a sub-task flow with additional
grants defined on the nested task flow.

Do use task flows to reduce the number of access points exposed to end users.

When you use task flows you can reduce the number of access points that you expose
to end users. For example, configure an unbounded task flow to display one page
that provides navigation to the remaining pages in your application. Use bounded task
flows for the remaining pages in the application. By setting the URL Invoke property of
these bounded task flows to url-invoke-disallowed, your application has one access

Chapter 47
Advanced Topics and Best Practices

47-103

point (the page on the unbounded task flow). For more information about the URL
Invoke property, see How to Call a Bounded Task Flow Using a URL.

Do specify an alternative task flow for unauthorized users.

End users who attempt to invoke a bounded task flow in a region for which they do
not have the necessary permission will see a region that renders as blank in place
of the requested task flow. The region when left blank may confuse end users as
it does not provide feedback as to why the requested task flow does not appear.
Consider configuring an alternative task flow that does not require authorization when
this scenario occurs. For more information configuring an alternative task flow, see
Handling Access to Secured Task Flows by Unauthorized Users.

Do define permission grants for individual pages outside of a bounded task
flow.

Page-level security is checked for pages that have an associated page definition
binding file only if the page is directly accessed or if the page is accessed in an
unbounded task flow. There is a one-to-one relationship between the page definition
file and the web page it secures.

If you want to secure a page that uses no ADF bindings, you can create an empty
page definition binding file for the page.

Do define custom permissions to render UI component based on the user's
access rights.

Custom ADF permission classes let you extend ADF Security to define custom actions
for use in grants. This gives you the flexibility to define security policies to manage
the user's ability to view UI components without having to overload the built-in actions
defined by the ADF resources' permission classes.

Do define entity object attribute permissions to manage the user's access rights
to row-level data displayed by UI components.

Entity objects and entity object attributes both define permission classes that let you
define permissions for the read, update, and delete operations that the entity object
initiates on its data source. In the case of these data model project components,
you must explicitly grant permissions to an application role in order to opt into ADF
Security authorization. However, once you enable authorization for an entity object,
all rows of data defined by the entity object will be protected by the grant. At this
level of granularity, your table component would render in the web page either with
all data visible or with no data visible—depending on the user's access rights. As an
alternative to securing the entire collection, you can secure individual columns of data.
This level of granularity is supported by permissions you set on the individual attributes
of entity objects. When entity objects are secured, users may see only portions of the
data that the table component displays.

Do use task flow or page-level permission grants to avoid exposing row-level
create/insert operations to users with view-only permission.

The correct way to control access to a page that should allow only certain users
to update new rows in a table is to use task flow or page-level permission grants.
However, as an alternative, it is possible to secure table buttons corresponding
to particular operations by specifying an EL expression to test the user's access
rights to view the button. When the custom permission is defined and the
userGrantedPermission expression is set on the Rendered property of the button, only
users with sufficient privileges will see the button. This may be useful in a case where
the user interface displays a page that is not restricted and view-only permission for

Chapter 47
Advanced Topics and Best Practices

47-104

row-level data is defined for the entity object. In this case, when viewed by the user,
the Delete button for the editable table associated with the entity object will appear
disabled. However, in the case of an input table, the user interface does not disable
the button for the CreateInsert operation even though the user may not have update
permission.

Do not use JDeveloper as a user identity provisioning tool.

JDeveloper must not be used as an identity store provisioning tool, and you must
be careful not to deploy the application with user identities that you create for
testing purposes. Deploying user identities with the application introduces the risk
that malicious users may gain unintended access. Instead, always rely on the system
administrator to configure user identities through the tools provided by the domain-
level identity management system. You should delete all users and groups that you
create in the jazn-data.xml file before deploying the application.

Do not allow users to access a web page by its file name.

When you deploy the Fusion web application, you should always permit users to
access the web page from a view activity defined in the ADF Controller configuration
file. Do not allow users to access the JSPX file directly by its physical name (for
example, similar to the file name AllDepartments.jspx.

Assuming the view activity is named AllDepartments, then there are two ways to call
the page:

1. localhost:7101/myapp/faces/AllDepartments

2. localhost:7101/myapp/faces/AllDepartments.jspx

The difference is that the call 1) is in the context of the ADF Controller task flow,
which means that navigation on the page will work and any managed beans that are
referenced by the page will be properly instantiated. The call in 2) also serves the
page, however, the page may not function fully. This may be considered a security
breach.

To prevent direct JSPX file access, move the JSPX file under the /public_html/WEB-
INF directory so that direct file access is no longer possible. To access a document,
users will have to call its view activity name.

Note that this suggestion does not protect documents that are unprotected in ADF
Security. It only helps to lock down access to the physical file itself.

Thus, the following security guidelines still apply:

1. Apply ADF Security permissions to all JSPX documents associated with view
activities defined in the adfc-config.xml file.

2. Move all JSPX documents in the user interface project under the /public_html/
WEB-INF directory to prevent direct file access.

3. Limit the pages in the adfc-config.xml to the absolute minimum and place all
other pages into bounded task flows.

4. Make bounded task flows inaccessible from direct URL access (which is the
default configuration setting for new task flows).

5. Apply ADF Security permissions to bounded task flows.

Chapter 47
Advanced Topics and Best Practices

47-105

48
Testing and Debugging ADF Components

This chapter describes the tools for logging and testing an application that uses
Oracle ADF. It contains debugging procedures for setting breakpoints using the ADF
Declarative Debugger. Finally, it explains how to write and run regression tests for your
ADF Business Components-based business services.
This chapter includes the following sections:

• About ADF Debugging

• Correcting Simple Oracle ADF Compilation Errors

• Correcting Simple Oracle ADF Runtime Errors

• Reloading Oracle ADF Metadata in Integrated WebLogic Server

• Validating ADF Controller Metadata

• Using the ADF Logger

• Using the Oracle ADF Model Tester for Testing and Debugging

• Using the ADF Declarative Debugger

• Setting ADF Declarative Breakpoints

• Setting Breakpoints in Java Code and Groovy Script

• Regression Testing with JUnit

About ADF Debugging
ADF debugging is the process of identifying, separating, and fixing specific
contributing factors leading to failures at runtime.

Like any debugging task, debugging the web application's interaction with Oracle
Application Development Framework (Oracle ADF) is a process of isolating specific
contributing factors. However, in the case of web applications, generally this process
does not involve compiling Java source code. Your web pages contain no Java source
code, as such, to compile. In fact, you may not realize that a problem exists until you
run and attempt to use the application. For example, these failures are only visible at
runtime:

• A page not found servlet error

• The page is found, but the components display without data

• The page fails to display data after executing a method call or built-in operation
(like Next or Previous)

• The page displays, but a method call or built-in operation fails to execute at all

• The page displays, but unexpected validation errors occur

The failure to display data or to execute a method call arises from the interaction
between the web page's components and the ADF Model layer. When a runtime
failure is observed during ADF lifecycle processing, the sequence of preparing the

48-1

model, updating the values, invoking the actions, and, finally, rendering the data failed
to complete.

Fortunately, most failures in the web application's interaction with Oracle ADF result
from simple and easy-to-fix errors in the declarative information that the application
defines or in the EL expressions that access the runtime objects of the page's ADF
binding container.

In your databound Fusion web application, you should examine the declarative
information and EL expressions as likely contributing factors when runtime failures are
observed. To understand editing the declarative files, see Correcting Simple Oracle
ADF Compilation Errors, and Correcting Simple Oracle ADF Runtime Errors.

One of the most useful diagnostic tools is the ADF Logger. You use this logging
mechanism in JDeveloper to capture runtime traces messages. With ADF logging
enabled, JDeveloper displays the application trace in the Message Log window. The
trace includes runtime messages that may help you to quickly identify the origin of an
application error. Read Using the ADF Logger, to configure the ADF Logger to display
detailed trace messages.

Supported Oracle ADF customers can request Oracle ADF source code from
Oracle Worldwide Support. This can make debugging ADF Business Components
framework code a lot easier. Read Using ADF Source Code with the Debugger, to
understand how to configure JDeveloper to use the Oracle ADF source code.

If the error cannot be easily identified, you can utilize the ADF Declarative Debugger
in JDeveloper to set breakpoints. When a breakpoint is reached, the execution of the
application is paused and you can examine the data that the ADF binding container
has to work with, and compare it to what you expect the data to be. Depending on
the types of breakpoints, you may be able to use the step functions to move from one
breakpoint to another. For more information about the debugger, read Using the ADF
Declarative Debugger.

JDeveloper provides integration with JUnit for your Fusion web application through a
wizard that generates regression test cases. Read Regression Testing with JUnit, to
understand how to write test suites for your application.

Correcting Simple Oracle ADF Compilation Errors
Simple Oracle ADF compilation errors occur when you modify the Oracle declarative
files and it does not conform to the XML schema defined by Oracle ADF.

When you create web pages and work with the ADF data controls to create the
ADF binding definitions in JDeveloper, the Oracle ADF declarative files you edit must
conform to the XML schema defined by Oracle ADF. When an XML syntax error
occurs, the JDeveloper XML compiler immediately displays the error in the Structure
window.

Although there is some syntax checking during design time, the JDeveloper compiler
is currently limited by an inability to resolve EL expressions. EL expressions in your
web pages interact directly with various runtime objects in the web environment,
including the web page's ADF binding container. At present, errors in EL expressions
can be observed only at runtime. Thus, the presence of a single typing error in an
object-access expression will not be detected by the compiler, but will manifest at
runtime as a failure to interact with the binding container and a failure to display data
in the page. For information about debugging runtime errors, see Correcting Simple
Oracle ADF Runtime Errors.

Chapter 48
Correcting Simple Oracle ADF Compilation Errors

48-2

Tip:

The Expression Builder is a dialog that helps you build EL expressions by
providing lists of objects, managed beans, and properties. It is particularly
useful when creating or editing ADF databound EL expressions because it
provides a hierarchical list of ADF binding objects and their valid properties
from which you can select. You should use the Expression Builder to avoid
introducing typing errors. For details, see Creating ADF Data Binding EL
Expressions.

The following example illustrates two simple compilation errors contained in a page
definition file: fals instead of false and ChangeEventPolicy="ppr"/ instead of
ChangeEventPolicy="ppr"/> (that is, the attribute is missing a closing angle bracket).

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 Package="oracle.summit.view.pageDefs"
 SkipValidation="fals">
 <parameters/>
 <executables>
 <iterator Binds="InventoryForOrderItem" RangeSize="-1"
DataControl="BackOfficeAppModuleDataControl" id="InventoryForOrderItemIterator"
 ChangeEventPolicy="ppr"/
 ...
</pageDefinition>

During compilation, the Structure window displays the XML errors in the page, as
shown in Figure 48-1.

Figure 48-1 The Structure Window Displays XML Errors

The Compiler-Log window also displays the compilation errors in the page, as shown
in Figure 48-2.

Chapter 48
Correcting Simple Oracle ADF Compilation Errors

48-3

Figure 48-2 The Compiler Window Displays XML Compile Errors

To view and correct schema validation errors:

1. In the main menu, choose View and then Structure to open the Structure window
or choose View and then Log to open the Log Window.

2. In either window, double-click the error message.

3. In the XML editor, locate the highlighted lines.

The highlighted lines will be lines with errors.

4. Correct any errors.

After an error has been corrected, the corresponding error message will be
automatically removed from the Structure window.

5. Optionally, you can recompile the project by choosing Run > Make and checking
to see whether the compiler still produces the error message.

Correcting Simple Oracle ADF Runtime Errors
Simple Oracle ADF runtime errors occur when the failures of the ADF Model layer
cannot be detected with the help of JDeveloper compiler.

Failures of the ADF Model layer cannot be detected by the JDeveloper compiler, in
part because the page's data-display and method-execution behavior relies on the
declarative ADF page definition files. The ADF Model layer utilizes those declarative
files at runtime to create the objects of the ADF binding container.

To go beyond simple schema validation, you will want to routinely run and test your
web pages to ensure that none of the following conditions exists:

• The project dependency between the data model project and the user interface
project is disabled.

By default, the dependency between projects is enabled whenever you create a
web page that accesses a data control in the data model project. However, if
the dependency is disabled and remains disabled when you attempt to run the
application, an internal servlet error will be generated at runtime:

oracle.jbo.NoDefException: JBO-25002: Definition
model.DataControls.dcx of type null not found

Chapter 48
Correcting Simple Oracle ADF Runtime Errors

48-4

To correct the error, double-click the user interface project, and select the
Dependencies node in the dialog. Make sure that the ModelProjectName.jpr
option appears selected in the panel.

• Page definition files have been renamed, but the DataBindings.cpx file still
references the original page definition file names.

While JDeveloper does not permit these files to be renamed within the IDE, if
a page definition file is renamed outside of JDeveloper and the references in
the DataBindings.cpx file are not also updated, an internal servlet error will be
generated at runtime:

oracle.jbo.NoDefException: JBO-25002: Definition
oracle.<path>.pageDefs.<pagedefinitionName> of type Form Binding
Definition not found

To correct the error, open the DataBindings.cpx file and use the source
editor to edit the page definition file names that appear in the <pageMap> and
<pageDefinitionUsages> elements.

• The web page file (.jsp or.jspx) has been renamed, but the DataBindings.cpx
file still references the original file name of the same web page.

The page controller uses the page's URL to determine the correct page definition
to use to create the ADF binding container for the web page. If the page's name
from the URL does not match the <pageMap> element of the DataBindings.cpx
file, an internal servlet error will be generated at runtime:

javax.faces.el.PropertyNotFoundException: Error testing property
<propertyname>

To correct the error, open the DataBindings.cpx file and use the source editor to
edit the web page file names that appear in the <pageMap> element.

• Bindings have been renamed in the web page EL expressions, but the page
definition file still references the original binding object names.

The web page may fail to display information that you expect to see. To correct the
error, compare the binding names in the page definition file and the EL expression
responsible for displaying the missing part of the page. Most likely the mismatch
will occur on a value binding, with the consequence that the component will
appear but without data. Should the mismatch occur on an iterator binding name,
the error may be more subtle and may require deep debugging to isolate the
source of the mismatch.

• Bindings in the page definition file have been renamed or deleted, and the EL
expressions still reference the original binding object names.

Because the default error-handling mechanism will catch some runtime errors
from the ADF binding container, this type of error can be very easy to find. For
example, if an iterator binding named findUsersByNameIter was renamed in the
page definition file, yet the page still refers to the original name, this error will
display in the web page:

JBO-25005: Object name <iterator> for type Iterator Binding Definition
is invalid

To correct the error, right-click the name in the web page and choose Go to Page
Definition to locate the correct binding name to use in the EL expression.

• EL expressions were written manually instead of using the expression picker
dialog and invalid object names or property names were introduced.

Chapter 48
Correcting Simple Oracle ADF Runtime Errors

48-5

This error may not be easy to find. Depending on which EL expression contains
the error, you may or may not see a servlet error message. For example, if
the error occurs in a binding property with no runtime consequence, such as
displaying a label name, the page will function normally but the label will not
be displayed. However, if the error occurs in a binding that executes a method,
an internal servlet error javax.faces.el.MethodNotFoundException: methodname
will display. Or, in the case of an incorrectly typed property name on the method
expression, the servlet error javax.faces.el.PropertyNotFoundException:
propertyname will display.

If this list of typical errors does not help you to find and fix a runtime error, you
can initiate debugging within JDeveloper to find the contributing factor. For an Oracle
ADF application, start setting ADF declarative breakpoints to find the problem. Using
the ADF Declarative Debugger to set ADF declarative breakpoints is described in
Using the ADF Declarative Debugger, and Setting ADF Declarative Breakpoints. This
process involves pausing the execution of the application as it proceeds through the
application and examining data. You can also use the ADF Declarative Debugger to
set Java code breakpoints, as described in Setting Breakpoints in Java Code and
Groovy Script.

Reloading Oracle ADF Metadata in Integrated WebLogic
Server

Simply changing the ADF medatata files or class files will not have any effect on
runtime after you have deployed the application to the Integrated WebLogic Server.
You must recompile the project and refresh the web browser.

JDeveloper support for hot reloading of Oracle ADF metadata is an alternative to
quitting the running application, editing your project's XML definition files, redeploying,
and rerunning the application in Integrated WebLogic Server to view the latest
changes.

Changes that you make to the Fusion web application projects will not be picked up
automatically by an application that you have deployed to Integrated WebLogic Server.
You can, however, reload metadata from the data model project and user interface
project any time you want to synchronize the running application with changes you
have made to your application's XML definition files.

To reload metadata so your changes are reflected in the deployed Fusion web
application, you must recompile the project and refresh the web browser.

Metadata that JDeveloper will hot reload in Integrated WebLogic Server, include:

• In the data model project, changes to the definition files of business components.

• In the user interface project, changes to the binding definitions in the page
definition files and changes to task flows in the task flow definition files.

This support makes it possible to make incremental changes and test them.

Validating ADF Controller Metadata
ADF Controller recovers metadata and then validation is performed. For example, in
an application, the grammar in ADF Controller metadata is validated by enabling the
enable-grammar-validationsetting in the adf-config.xml file.

Chapter 48
Reloading Oracle ADF Metadata in Integrated WebLogic Server

48-6

Basic validation is performed when ADF Controller retrieves metadata. The most
serious errors, for example, a task flow that is missing a default activity, result in
parsing exceptions.

The enable-grammar-validation setting in adf-config.xml allows you to validate the
grammar in ADF Controller metadata before deploying an application. When enable-
grammar-validation is set to true, ADF Controller metadata is validated against ADF
Controller XSDs. For example, invalid characters in ADF Controller metadata, such as
a slash (/) in a view activity ID, are flagged as exceptions.

By default, enable-grammar-validation is set to false. For performance reasons, it
should be set to true only during application development or when troubleshooting an
application.

Using the ADF Logger
Logging is important in debugging and tracing errrors. In the ADF framework, you can
use the ADF logger to identify and investigate application errors.

If you are not able to easily find the error in either your web page or its corresponding
page definition file, you can use the JDeveloper debugging tools to investigate where
your application failure occurs.

You configure the logging session by editing the logging.xml configuration file using
the editor for Oracle Diagnostic Logging Configuration. Logging configuration can be
set at any time, even while the application is running in JDeveloper.

Unlike many files in JDeveloper, you cannot directly open the logging.xml file. Instead
you use menu commands at these locations to open the Oracle Diagnostic Logging
Configuration editor:

• Right-click an active server instance in the Application Servers window.

• Click the Actions dropdown menu displayed in the Log window's debugger process
panel, after you have started the application in debug mode.

You use the Oracle Diagnostic Logging Configuration editor to set the desired logging
level to control the level and number of messages that are displayed. You can set the
logging level for both persistent and transient loggers and declare handlers for each
logger.

JDeveloper creates diagnostic log files in the Oracle Diagnostic Logging (ODL)
format, used by Oracle Fusion Middleware components. Log file naming and the
format of the contents of log files conform to an Oracle standard. By default, the
diagnostic messages are in text format. For information about the ODL format, see
Understanding ODL Messages and ODL Log Files in Administering Oracle Fusion
Middleware.

In the editor, as an alternative to the default ODL format, you can configure the Java
Logger to display Java diagnostic messages.

After you have created a log, you can view and filter the log messages with Oracle
Diagnostic Log Analyzer. This tool allows you to set filters for different log levels,
define message time frames, and search on message text.

You can then use the ADF Declarative Debugger to set breakpoints and examine the
application. For additional information, see Setting ADF Declarative Breakpoints, and
Setting Breakpoints in Java Code and Groovy Script.

Chapter 48
Using the ADF Logger

48-7

How to Set ADF Logging Levels
You can use the Oracle Diagnostic Logging Configuration editor to configure the
logging levels specified in the logging.xml configuration file. The file can be
configured before and while the application is running in Integrated WebLogic Server.
The changes will apply without the need to restart the server.

When Integrated WebLogic Server is running, you can define both persistent and
transient loggers. When Integrated WebLogic Server is not running, you can only
define persistent loggers. The transient loggers will last only for the session and will
not be entered in the logging.xml configuration file. If the server is not running, you
must explicitly save the configuration changes to the logging.xml file for the updates
to take effect in the next server run.

You can access the Oracle Diagnostic Logging Configuration editor from the
Application Servers window or from the Log window, which is shown in Figure 48-3.

Figure 48-3 Log Window with Toolbar

However, while the server is running, when you access the editor via the Log window
menu, then the editor has the ability to add transient loggers.

Figure 48-4 shows the Oracle Diagnostic Logging Configuration while the server is
running.

Chapter 48
Using the ADF Logger

48-8

Figure 48-4 Editor for Oracle Diagnostic Logging Configuration

You can only use JDeveloper menu commands to open the logging.xml configuration
file and launch the editor for Oracle Diagnostic Logging Configuration. However, you
may find the following information about the location of the configuration file useful.

Note:

You can declare and add log handler definitions by clicking the Source tab
and entering them in the XML editor.

If you are using Integrated WebLogic Server in JDeveloper on the Windows platform,
you can find the logging.xml configuration file in a location similar to:

C:\Users\username\AppData\Roaming\JDeveloper\<your_JDev_system_folder>\Def
aultDomain\config\fmwconfig\servers\DefaultServer

The log files for Integrated WebLogic Server are in a location similar to:

C:\Users\username\AppData\Roaming\JDeveloper\<your_JDev_system_folder>\Def
aultDomain\servers\DefaultServer\logs

Chapter 48
Using the ADF Logger

48-9

The log files for a standalone WebLogic Server instance are in a location similar to:

$domain_home/servers/<your_servername>/logs

You can configure logging levels before a test run from the Application Servers
window, or, while the application is running, from the Log window's run panel toolbar,
or, during a debug session, from the Log window's debug process toolbar.

To configure the log levels:

1. In the main menu, choose Window and then Application Servers.

2. In the Application Servers window, expand Application Servers, and right-click
IntegratedWebLogicServer and choose Configure Oracle Diagnostic Logging
for "IntegratedWebLogicServer".

Or, after you start the application, from the Log window's Running:
IntegratedWebLogicServer panel, choose Actions - Configure Oracle
Diagnostic Logging. The Running Log window is only visible while you run the
application.

Or, while you debug the application, from the Log window's debug process panel,
choose Actions - Configure Oracle Diagnostic Logging. The debug process
panel is only visible in the Log window after you have started the application in
debug mode.

3. In the editor for Oracle Diagnostics Logging Configuration, select ODL Log Levels
or Java Log Levels for the logger type you want to view.

4. If you want to see persistent loggers only, select Hide Transient Loggers.

5. To add a logger:

a. If the server is running, click the Add icon dropdown menu and choose Add
Persistent Logger or Add Transient Logger. If the server is not running,
click Add to add a persistent logger. You cannot add a transient logger.

b. In the Add Logger dialog, enter a logger name.

c. Select the logging level.

d. Click OK.

6. For any logger, including a newly created logger, you can specify its handlers by
selecting from a list of available handlers by clicking the Add icon for the Handler
Declarations section.

Or, you can select Use Parent Handlers to assign its parent's handler to the
logger. By default, a logger uses its parent's handler.

Note:

You can declare and add log handler definitions by clicking the Source
tab and entering them in the XML editor.

How to Create an Oracle ADF Debugging Configuration
Oracle ADF leverages the Java Logging API (java.util.logging.Logger) to provide
logging functionality when you run a debugging session. Java Logging is a standard

Chapter 48
Using the ADF Logger

48-10

API that is available in the Java platform at http://docs.oracle.com/javase/7/
docs/api/java/util/logging/package-summary.html.

To log a complete hierarchy tree of ADF event messages, you must configure a Java
log level that is not more restrictive than CONFIG (or an ODL log level that is not more
restrictive than Notification:16) for the single package:

• oracle.adfdiagnostics will log events generated by source code for the
ADF Model data binding layer, ADF Controller source code, ADF Business
Components, ADF Desktop Integration, and Oracle ADF internal classes.

Figure 48-5 shows specific the logger configured to enable the most detailed Oracle
ADF log messages. Note that the oracle.adfdiagnostics package is set to CONFIG
and not to a higher, more restrictive log level (where SEVERE, WARNING, and INFO
are Java log levels higher than CONFIG and FINE, FINER, and FINEST are lower
levels than CONFIG). Enabling a logger for the oracle.adfdiagnostics package
ensures that the logger records a complete hierarchy of ADF events.

Figure 48-5 Configuring a Logger for Oracle ADF Debugging

For backward compatibility, the Java system property jbo.debugoutput set to the
value console or ADFLogger (to route diagnostics through the standard Logger
implementation, which can be controlled in a standard way through the logging.xml
file) is supported. The easiest way to set this system property while running
your application inside JDeveloper is to edit your project properties and in the
Run/Debug page, select a run configuration and click Edit. Then add the string
-Djbo.debugoutput=console to the Java Options field.

To create an ADF Model debugging configuration:

1. In the main menu, choose Window and then Application Servers.

2. In the Application Servers window, expand Application Servers, and right-click
IntegratedWebLogicServer and choose Configure Oracle Diagnostic Logging.

Or, after you start the application, from the Log window's Running:
IntegratedWebLogicServer panel, choose Actions - Configure Oracle
Diagnostic Logging. The Running Log window is only visible while you run the
application.

Chapter 48
Using the ADF Logger

48-11

http://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html

Or, while you debug the application, from the Log window's debug process panel,
choose Actions - Configure Oracle Diagnostic Logging. The debug process
panel is only visible in the Log window after you have started the application in
debug mode.

3. In the editor for Oracle Diagnostics Logging Configuration, select ODL Log Levels
or Java Log Levels for the logger type you want to view.

4. Expand the oracle node and select a log level that are not more restrictive than
CONFIG (for Java Log) or that are not more restrictive than Notification (for ODL
Log) for the following package:

• oracle.adfdiagnostics will log events generated by source code for the
ADF Model data binding layer, ADF Controller source code, ADF Business
Components, and Oracle ADF internal classes.

Enabling a logger for this package ensures that the logger records a complete
hierarchy of ADF events.

5. Select the Java log level FINEST for other desired Oracle ADF loggers.

To create an ADF view Javascript logging configuration:

1. In the Applications window, double-click the application or project web.xml file.

2. In the source editor, add the following elements to the file:

<context-param>
 <param-name>
 oracle.adf.view.rich.LOGGER_LEVEL
 </param-name>
 <param-value>
 FINE
 </param-value>
</context-param>

How to Turn On Diagnostic Logging for Non-Oracle ADF Loggers
For non-Oracle ADF loggers, before you use the actual debugger, running the
application with Java log level set to FINE, FINER, or FINEST will enable framework
diagnostics logging. The debug diagnostic messages can be helpful to see what
happens when the problem occurs. To enable debug diagnostic messages, use the
Oracle Diagnostics Logging Configuration Editor to configure the desired loggers
with a Java log level set to FINEST. If you have configured diagnostic logging for
the supported loggers, JDeveloper will direct debug diagnostics messages to the
JDeveloper Log window.

Currently, Oracle ADF does not support logging with Java log level FINE, FINER, or
FINEST. For more details about Oracle ADF loggers, see How to Create an Oracle
ADF Debugging Configuration.

How to Use the Log Analyzer to View Log Messages
You can use Oracle Diagnostic Log Analyzer to view the log entries of a log file. The
log analyzer allows you to filter the entries by log level, entry type, log time, and entry
content (using one or more search criteria). You can also order the messages and
show and hide columns for better viewing.

Figure 48-6 shows Oracle Diagnostic Log Analyzer set to view Java Log levels.

Chapter 48
Using the ADF Logger

48-12

Figure 48-6 Oracle Diagnostic Log Analyzer Displays Java Log Messages

You can also use the log analyzer on log files created in other test runs. For instance,
you can analyze the log sent to you by another developer for another application.

Viewing Diagnostic Messages in the Log Analyzer
You can configure logging levels before a test run from the Application Servers window
or during a debug session from the Log window toolbar. The level you specify will
determine the type and quantity of log messages.

In the case of ADF events, all messages are generated for the ODL log at the level
Notification or for the Java log at the level Info. Fewer ADF messages will be
generated at the Incident Error/Severe and Error/Warning levels.

After you select the log level for the messages you wish to view, you can use the
Search panel of the By Log Message page to filter the messages to display from the
log file.

Note:

For further details about search criteria that you can specify to search on
ADF-specific messages, see Sorting Diagnostic Messages By ADF Events.

You can start the log analyzer before a test run from the Tools menu or during a
debug session from the log window toolbar.

Before you begin:

It may be helpful to have an understanding of logging. For more information, see Using
the ADF Logger.

Chapter 48
Using the ADF Logger

48-13

You will need to complete these tasks:

1. Set logging levels, as described in How to Set ADF Logging Levels.

2. Enable logging, as described in How to Turn On Diagnostic Logging for Non-
Oracle ADF Loggers.

3. Create a log file, either from your test run or from another source.

To start the log analyzer:

1. In the main menu, choose Tools and then Oracle Diagnostic Log Analyzer.

Or, from the Log window Action menu, choose Analyze Log and then either
Current in Console or Open Selected (to browse log files in the server log
directory).

2. In the editor for Oracle Diagnostic Log Analyzer, select By Log Message.

3. In the By Log Message page, in the Log field, enter the path and name of the log
file or click Browse Log Files to navigate to the log file.

Tip:

The Choose Log File dialog helps you to navigate to the directory that
contains the log files generated by JDeveloper. Click the Browse Log
Files icon next to the Log text field, and then click the Server Logs icon
from the scroll list. From the list of log files, you can select more than one
log file to analyze at a time.

4. From the dropdown list, select either ODL Log Level or Java Log Level.

5. Select the corresponding checkbox for each type of log entry you want to view.
You must select at least one type.

The available ODL log level types are:

• INCIDENT ERROR

• ERROR

• WARNING

• NOTIFICATION - corresponds to ADF event messages

• TRACE

• UNKNOWN.

The available Java log level types are:

• SEVERE

• WARNING

• INFO

• CONFIG - corresponds to ADF event messages

• FINE

• FINER

• FINEST

• UNKNOWN

Chapter 48
Using the ADF Logger

48-14

6. Specify a time period for the entries you want to view. You can select the most
recent period or a range.

7. To filter the results, use the Search panel to query the log for a text pattern. For
additional search criteria, click Add. The supported search criteria include:

• Enterprise Name: Filters the log by the name of the enterprise.

• Detail: Filters text in statements from the stack where the method was
invoked.

• EnterpriseID: Filters the log by the ID of the enterprise.

• Message: Filters text in the logged messages.

• ADF Message Data: Filters the log for data related to ADF lifecycle phase
names, view object names, view object query statements, data control
names, binding container names, and iterator binding names logged during
the execution of ADF events.

• Source Method: Filters the log by the method where the message is logged.
For example, you can filter on the method execute to view all messages
logged for view object query execution or ADF lifecycle phase execution.

• Application: Filters the log by the application name where the message
is logged. This is useful when the application is running in a composite
application and you want to view messages for a specific application.

• Source Class: Filters the log by the fully qualified class name of the method
where the message is logged. To see more messages, enter a partial package
name. For example, you can enter the partial package name oracle.adf or
the full package name oracle.jbo to filter for all classes related to Oracle
ADF.

• Module: Filters the log by the fully qualified package name of the class where
the message is logged. This is same package as the source class.

• Message Id: Filters the log by the ID of the logged messages. Many
messages share the same ID. For example, message ID ADFC-52008 might
have four INFO messages and one Warning message. You can select Group
by Id in the log analyzer Results panel to group messages by their common
ID.

8. To initiate the filters and display the log messages, click Search.

9. To order the results by the message ID, select the Group by Id checkbox.

10. To group the messages by time period or by request, in the Related column,
select either Related by Time or Related by Request.

When you select Related by option, the log analyzer groups the messages in the
Results Messages panel according to the selected criteria (time, HTTP request, or
enterprise name).

11. To open the ADF request (if any) that the message is a part of, in the Related
column, select Related by ADF Request.

When you select Related by ADF Request, the log analyzer displays the related
request in the By ADF Request page.

12. To show or hide columns in the Results section, click the dropdown list to the right
of the column headers and select among the list of displayed columns to change
the visibility of a column.

Chapter 48
Using the ADF Logger

48-15

Using the Log Analyzer to Analyze the ADF Request
Because Oracle instrumented the Oracle ADF source code to generate log messages
during the execution of the ADF lifecycle phases, you can use the log analyzer
to investigate the details of the active (or previous) page request in your running
application. Specifically, the By ADF Request page of the log analyzer lets you
view ADF event messages in a hierarchical list, organized by the sequence of their
execution. It also provides a graphical representation of the duration of each event.
When you run your application and start the log analyzer with ADF logging configured,
you can use this page to quickly identify whether a component of your application is
contributing to a performance bottleneck due to unusually long execution times.

Note:

In contrast to the By Log Message page, the By ADF Request page of
the log analyzer displays a hierarchical view of ADF event messages. The
difference between these two pages is that the By ADF Request page
focuses only on ADF page requests made when a page or region is
submitted. For details about the ADF page lifecycle, see Understanding the
Fusion Page Lifecycle .

You can enter search criteria in the By ADF Request page to display one or more
specific requests from the log file. You can combine any of the following search criteria
to filter the log file:

• The number of requests to display

• The timestamp for the request recorded in the log

• The logged-in user name, enterprise name, request header (to specify a search
based on the page or region name), message, source class, module, server,
detail, enterprise ID, ADF message data, application name in a composite
application, source method, message ID, or ECID (a globally unique ID associate
with every top-level task; sub-tasks invoked by that top-level task operate with an
execution context that shares the same ECID)

After the request is completed, the log analyzer displays a summary of the ADF
requests in a single table. Figure 48-7 shows the summary table that displays the list
of ADF web requests.

Chapter 48
Using the ADF Logger

48-16

Figure 48-7 Oracle Diagnostic Log Analyzer Displays Summary of ADF Web
Requests

For each ADF request displayed in the summary table, you can click the request link to
view details about the request event hierarchy. Figure 48-8 shows the ADF Requests
panel with the JSF lifecycle Restore View and Render Response phases displayed
and their duration in milliseconds. The bar graph for the root node of the request event
hierarchy (ADF web request) displays the total execution time.

Figure 48-8 Oracle Diagnostic Log Analyzer Displays ADF Web Request Event
Hierarchy

Chapter 48
Using the ADF Logger

48-17

Note:

The Percentage Request Time bar graphs (black and gray) indicate which
portion of the request's execution time resulted from ADF source code
that was instrumented to generate ADF event messages (shown in black)
and which portion resulted from ADF source code that is uninstrumented
and therefore cannot generate ADF event messages (shown in gray).
Additionally, note that the individual phases of the request do not sum to
equal the total request time. This is due to the fact that only those phases of
the lifecycle that are useful are represented in the log analyzer.

To examine the request in more detail, you can expand the tree for any ADF lifecycle
node to further investigate where in the application the performance bottleneck
occurred. Drilling down and then selecting the ADF event node in the request
message panel gives you details about the component associated with each ADF
event. For instance, expanding the JSF Phase RENDER_RESPONSE node displays
all ADF events generated during that phase. Figure 48-9 shows the JSF Phase
RENDER_RESPONSE node expanded with a long request duration bar graph for
the Get LOV list node and the Execute query node. The Execute query node has
been selected to reveal detailed ADF data in the ADF Message Data Details panel,
including the view object's name and query statement. By drilling down and selecting
the ADF event with the long execution time as indicated by the bar graph, you can
obtain, for example, the name of the view object in the data model project that should
be tuned for improved performance.

Figure 48-9 Oracle Diagnostic Log Analyzer Displays ADF Event Messages
with ADF Data

Before you begin:

It may be helpful to have an understanding of logging. For more information, see Using
the ADF Logger.

Chapter 48
Using the ADF Logger

48-18

You will need to complete these tasks:

1. Set logging levels, as described in How to Set ADF Logging Levels.

To log a complete hierarchy tree of ADF event messages, you must configure an
ODL log level that is not more restrictive than NOTIFICATION:16 or a Java log level
that is not more restrictive than CONFIG for the following single package:

• oracle.adfdiagnostics will log events generated by source code for the
ADF Model data binding layer, ADF Controller source code, ADF Business
Components, and Oracle ADF internal classes.

Tip:

The default log level for the Root Logger displayed by the editor
for Oracle Diagnostics Logging Configuration ensures that ADF event
messages are logged.

2. Enable logging, as described in How to Turn On Diagnostic Logging for Non-
Oracle ADF Loggers.

3. Create a log file, either from your test run or from another source.

To display ADF request messages in the log analyzer:

1. In the main menu, choose Tools and then Oracle Diagnostic Log Analyzer.

Or, from the Log window Action menu, choose Analyze Log and then either
Current in Console or Open Selected (to browse log files in the server log
directory).

2. In the editor for Oracle Diagnostic Log Analyzer, click the By ADF Request tab.

3. In the By ADF Request page, specify how many of the most recent request you
want to display.

The default displays only the most recent request.

4. Specify a time period for the entries you want to view. You can select the most
recent period or a range.

5. To filter the request to display, use the search fields to query the log for a text
pattern. For additional search fields, click the Add Row icon.

6. To initiate the filters and display matching ADF requests, click Search.

7. In the ADF Requests panel, click the desired request link to view the event
hierarchy and look for ADF events that display long execution times as indicated
by the Time (ms) bar graphs.

8. Select the desired ADF event and examine the ADF Message Data Details panel
for details about the ADF component associated with the ADF event.

9. Examine the component in your application and determine whether optimization is
possible.

Sorting Diagnostic Messages By ADF Events
Oracle instrumented the Oracle ADF source code to generate log messages during
the execution of the ADF lifecycle phases and during operations executed in the ADF
Model data binding layer, ADF Controller source, and ADF Business Components

Chapter 48
Using the ADF Logger

48-19

source. Combined, the log analyzer refers to these messages as ADF events. You can
use the log analyzer to investigate ADF events in your running application. The By
Log Message page of the log analyzer lets you view ADF event messages in a flat
list, organized by time of execution, with the option to switch to the By ADF Request
page to view the ADF events in a hierarchical list, organized by the sequence of their
execution.

ADF event messages contain useful information that helps you identify which ADF
components in your application generated the event. For example, you can search the
log for ADF event messages to identify the components related to displaying data in
the page, executing queries, or initiating actions:

• Executing iterator binding: Displays the names of the iterators executed to manage
displaying data in the page. This can be useful for diagnosing slow query updates.

• Execute query: Displays the name of the view object associated with the executed
query. This can be useful when you want to view the query statement, bind
parameters, and name of the view object.

• Executing method binding: Displays the names of the Java methods executed on
the bound data source. This can be useful for diagnosing slow method execution.

After you display an ADF event message in the log analyzer, you can organize the
event in the context of other logged messages. You can select options from the
Related column to display:

• All messages leading up to the ADF event (related by time)

• All messages in the same web request as the ADF event (related by request)

• Only ADF event messages in the same web request (related by ADF request)

Tip:

The Related by ADF Request option displays detailed ADF data for the
ADF event messages. This is the view to use, for example, when you want to
display the query statement associated with the Execute query message.

Figure 48-10 shows the log analyzer search result for the ADF event message Create
Application Module. The Results panel displays all messages that match the search
criteria and the bottom panel displays detailed information about the component.

Chapter 48
Using the ADF Logger

48-20

Figure 48-10 Oracle Diagnostic Log Analyzer Displays ADF Event Messages

When you select Related by ADF Request in the Related column of the Results
panel, the log analyzer switches to display the By ADF Request page with the
ADF event messages arranged hierarchically to show their execution dependencies.
The By ADF Request page of the log analyzer is the preferred way to diagnose
performance issues. For details about the By ADF Request page, see Using the Log
Analyzer to Analyze the ADF Request. In the By Log Message page, the elapsed time
is information that you can leave visible or hide from the Results panel.

Before you begin:

It may be helpful to have an understanding of logging. For more information, see Using
the ADF Logger.

You will need to complete these tasks:

1. Set logging levels, as described in How to Set ADF Logging Levels.

To log ADF event messages, do not configure an ODL log level that is more
restrictive than NOTIFICATION:16 or a Java log level that is more restrictive than
CONFIG for the following package:

• oracle.adfdiagnostics will log events generated by source code for the
ADF Model data binding layer, ADF Controller source code, ADF Business
Components, and Oracle ADF internal classes.

Tip:

The default log level for the Root Logger displayed by the editor for
Oracle Diagnostics Logging Configuration ensures ADF event messages
are logged.

2. Enable logging, as described in How to Turn On Diagnostic Logging for Non-
Oracle ADF Loggers.

Chapter 48
Using the ADF Logger

48-21

3. Create a log file, either from your test run or from another source.

To display messages related by ADF events:

1. In the main menu, choose Tools and then Oracle Diagnostic Log Analyzer.

Or, from the Log window Action menu, choose Analyze Log and then either
Current in Console or Open Selected (to browse log files in the server log
directory).

2. In the editor for Oracle Diagnostic Log Analyzer, click the By Log Message tab.

3. In the By Log Message page, select the desired logger type, log levels, and log
time.

To search the log for ADF event messages, you must minimally select log level
Notification (for ODL log level) or Info (for Java log level).

4. In the search dropdowns, choose the search criteria Message and Contains, and
then enter any of the following ADF event messages and click Search.

• Executing iterator binding - this can be useful for diagnosing slow query
updates.

• Executing method binding - this can be useful for diagnosing slow method
execution.

• Execute query - this can be useful when you want to view the query
statement, bind parameters, and name of the view object.

You can also filter the log on these additional ADF event messages:

• Refreshing binding container

• Attaching an iterator binding to a datasource

• Converting rows into hierarchical nodes

• Estimated row count

• Get LOV list

• Filter LOV list

• Validate Entity

• Lock Entity's Parent

• Lock Entity

• Before posting the entity's changes

• Posting the entity's changes

• Posting in batches

• Before committing the entity's changes

• After committing the entity's changes

• Before rolling back the entity's changes

• After rolling back the entity's changes

• Entity notifying an event

• Entity notification name

• Removing Entity

Chapter 48
Using the ADF Logger

48-22

• Updating audit columns

• Applying Effective Date change

• Entity DML

• Entity read all attributes

• Create Application Module

• Create nested Application Module

• Passivating Application Module

• Activating Application Module

• Establish database connection

• Commit transaction

• Rollback transaction

• Validate transaction

• Validate value

Examine the data portion of the Results panel for the ADF event information.

5. To view a hierarchical sequence of ADF events, with the desired ADF event
message selected in the Results panel, in the Related column, click the icon for
the desired event row and choose Related By ADF Request from the dropdown
menu.

The editor for Oracle Diagnostic Log Analyzer displays the By ADF Request page
for the selected ADF event. Examine the bottom portion of the Results panel
for additional ADF data for the ADF event. For example, you can see the query
statement associated with the Execute query message in the ADF Data area of
the Results panel.

What You May Need to Know About ADF Loggers and Log Levels
By default, the level is set to WARNING for all Oracle loggers. For Oracle ADF packages
set level="FINE" for detailed logging diagnostics.

For the ADF view layer packages oracle.adf.view.faces and
oracle.adfinternal.view.faces, edit these elements:

<logger name="oracle.adf" level="FINE"/>
<logger name="oracle.adfinternal" level="FINE"/>

For the ADF Model layer packages, edit these elements:

<logger name="oracle.adf" level="FINE"/>
<logger name="oracle.jbo" level="FINE"/>

For the ADF Controller layer packages, edit these elements:

<logger name="oracle.adf.controller" level="FINE"/>
<logger name="oracle.adfinternal.controller" level="FINE"/>

Alternatively, you can create a debug configuration in JDeveloper that you can choose
when you start a debugging session.

Chapter 48
Using the ADF Logger

48-23

The following example shows the portion of the logging.xml file where you can
change the granularity of the log messages. Note in the example that the log for
oracle.adf.faces has been changed to FINE to display more messages.

</logging_configuration>
...
 <loggers>
 <logger name="oracle.adf" level="INFO"/>
 <logger name="oracle.adf.faces" level="FINE"/>
 <logger name="oracle.adf.controller" level="INFO"/>
 <logger name="oracle.bc4j" level="INFO"/>
 <logger name="oracle.adf.portal" level="INFO"/>
 <logger name="oracle.vcr" level="INFO"/>
 <logger name="oracle.portlet" level="INFO"/>
 <logger name="oracle.adfinternal" level="INFO"/>
 <logger name="oracle.adfdt" level="INFO"/>
 <logger name="oracle.adfdtinternal" level="INFO"/>
 </loggers>
</logging_configuration>

For the latest information about the different levels of the Java Logging system, go to
http://www.oracle.com/technetwork/java/index.html. Normally, the Java logging
system supports the following log levels:

• SEVERE (most restrictive, highest log level)

• WARNING

• INFO

• CONFIG (the highest low level supported for Oracle ADF)

• FINE

• FINER

• FINEST (least restrictive, lowest log level)

What You May Need to Know About ADF Logging and Log Output
By default, loggers are hierarchical, so a logger that is a child of another logger will
inherit the log level of its parent and may generate an unexpectedly large log output.
As a result, when you enable loggers in the editor for Oracle Diagnostic Logging
Configuration, you may want to set one log level for the parent logger and another log
level for child loggers. This is especially important when you use settings FINE, FINER,
FINEST that can be useful to diagnosis certain conditions like memory leaks, where
detailed log messages are beneficial.

For example, when debugging memory leaks, you might set the
oracle.adf.share.ADFContext logger to FINEST. This setting will automatically trigger
the child oracle.adf.share.ADFContext.allocationLogger logger and may result in
an allocation buffer exceeded condition for the log output file. Therefore, the solution to
enable the messages needed to fix memory leaks is to make the parent level FINEST,
while turning down the child logger to INFO.

<logger name="oracle.adf.share.ADFContext" level="FINE"/>
<logger name="oracle.adf.share.ADFContext.allocationLogger" level="INFO"/>

Chapter 48
Using the ADF Logger

48-24

http://www.oracle.com/technetwork/java/index.html

What You May Need to Know About ADF Logging and Oracle
WebLogic Server

After you have deployed the Fusion web application to Oracle WebLogic Server, the
operations performed by the application are logged directly to the Managed Server
where the application is running:

DOMAIN_HOME/servers/server_name/logs/server_name-diagnostic.log

The log files for the different Managed Servers are also available from the Oracle
WebLogic Server Administration Console. To verify the logs, access the Oracle
WebLogic Server Administration Console http://<admin_server_host>:<port>/
console and click Diagnostics-Log Files.

This log's granularity and logging properties can be changed using Oracle Enterprise
Manager Fusion Middleware Control (Fusion Middleware Control). Fusion Middleware
Control is a web browser-based, graphical user interface that you can use to monitor
and administer a farm.

When the Fusion web application is deployed to a high availability environment, you
can receive warning diagnostic messages specific to high availability by setting the
level to FINE.

For details about using Fusion Middleware Control to change the log settings of
Managed Servers and Oracle ADF, see Understanding ODL Messages and ODL Log
Files in Administering Oracle Fusion Middleware.

Using the Oracle ADF Model Tester for Testing and
Debugging

You can use the Oracle ADF Model Tester to test and validate your ADF Business
Components even before you have started to build any custom user interface.

The Oracle ADF Model Tester (also referred to as the tester) is a Java application
that you launch from JDeveloper when you want to interact with the business objects
of the ADF Business Components data model project. The Oracle ADF Model Tester
runs outside of JDeveloper and provides a full UI for testing and examining the data
model project. You can run the tester to examine the view instances of the ADF
application module, navigate the hierarchical relationship of view links, and execute
custom methods from the application module's client interface, view object interface,
and view row interface. The tester also interacts with the ADF Declarative Debugger to
allow you to set breakpoints on the custom methods of these interfaces.

Additionally, the tester simulates many features that the user interface might expose
by allowing you to view, insert, and update the contents of business objects in
the database specified by the application module's configuration file (bc4j.xcfg).
Specifically, you can use the tester to verify many aspects of the data model design,
including a master-detail relationship between view instances, view instances and
their attributes, view instance query result sets, search forms using view criteria,
validation rules defined for attribute values, and dropdown lists on LOV-defined
attributes (list of values). For more information about ways to interact with the tester to
test your business objects, see Testing View Object Instances Using the Oracle ADF
Model Tester. Additional information about testing with the Oracle ADF Model Tester

Chapter 48
Using the Oracle ADF Model Tester for Testing and Debugging

48-25

also appears in sections specific to each business object throughout the chapters in
the Building Your Business Services part of this book.

How to Run in Debug Mode and Test with the Oracle ADF Model
Tester

Often you will find it useful to analyze and debug custom code in the service methods
of your client interface implementation classes. When you use the Oracle ADF Model
Tester, you can do this without needing to run the application with the user interface.
You can use the Oracle ADF Model Tester as a testing tool to complement your
debugging process.

Note:

The Oracle ADF Model Tester that you run in debug mode will not inherit
your JDeveloper IDE Java options. To ensure that specific run/debug Java
options are used with the tester, you must edit the run configuration for the
data model project. You can modify the default run confirmation in the Run/
Debug page of the Project Properties dialog.

Before you begin:

It may be helpful to have an understanding of the using the runtime testing tools. For
more information, see Using the Oracle ADF Model Tester for Testing and Debugging.

You will need to complete these tasks:

1. Set the desired Java options for your preferred run configuration, as described
in the Running and Debugging Java Projects chapter in Developing Web User
Interfaces with Oracle ADF Faces.

2. Set breakpoints in the custom methods of your client interface, as described in
Setting ADF Declarative Breakpoints.

To launch the Oracle ADF Model Tester and go into debug mode:

1. In the Applications window, right-click the desired application module and choose
Debug.

2. In the Oracle ADF Model Tester, open the method testing panel for the desired
client interface, as described in How to Test Custom Service Methods Using the
Oracle ADF Model Tester.

3. In the method panel, select the desired method from the dropdown list, enter
values to pass as method parameters, and click Execute.

Return to JDeveloper to step through your code using the ADF Declarative
Debugger. When you complete method execution, the method panel displays the
return value (if any) and test result. The result displayed in the Oracle ADF Model
Tester will indicate whether or not the method executed successfully.

Chapter 48
Using the Oracle ADF Model Tester for Testing and Debugging

48-26

How to Run the Oracle ADF Model Tester and Test with a Specific
Application Module Configuration

When you right-click the application module in the Applications window and choose
Run or Debug, JDeveloper will run the Oracle ADF Model Tester using the default
configuration defined for the application module. If you want to test your business
components with a different application module configuration (which can specify a
different data source and its own set of runtime parameters), you can do so from the
overview editor for the bc4j.xcfg file. The file is not visible in the Applications window
and is only accessible from the Configurations page of the overview editor for the
application module.

To run the Oracle ADF Model Tester with a specific application module configuration:

1. In the Applications window, double-click the application module that you want to
test.

2. In the overview editor, click the Configurations navigation tab and then click the
bc4j.xcfg configuration file link.

3. In the overview editor, select the configuration from the Configurations list.

4. Right-click the selected configuration and choose Run or Debug to launch the
Oracle ADF Model Tester.

What Happens When You Run the Oracle ADF Model Tester in Debug
Mode

The Oracle ADF Model Tester behaves as any other Java program. Specifically, it
does not inherit Java options that you may have specified for the JDeveloper IDE. The
tester instead uses the run configuration that you have specified for the data model
project and any Java options that you may have set in that configuration.

JDeveloper lets you run the Oracle ADF Model Tester in two modes: either in debug
mode or non-debug mode. When run in debug mode, the tester interacts with the ADF
Declarative Debugger so that you execute custom methods using breakpoints you
insert in custom Java code and Groovy script of the client interfaces. For instance, if
you set a breakpoint on a method in the client interface and execute that method in the
tester, then in debug mode, you can step through the code before the tester returns
a success/fail result. In non-debug mode, the tester will immediately return a result
to indicate whether the method executed successfully. Additionally, in either debug
or non-debug mode, the tester can display runtime artifacts from the system catalog
created at runtime for the application module.

How to Verify Runtime Artifacts in the Oracle ADF Model Tester
When you want to run the Oracle ADF Model Tester, but do not require the use of
the ADF Declarative Debugger you can display information about the runtime artifacts
from the application module's system catalog. The system catalog displays business
object metadata and other information that you may find useful when you need to
compare business objects.

To launch the Oracle ADF Model Tester without debugging:

Chapter 48
Using the Oracle ADF Model Tester for Testing and Debugging

48-27

1. In the Applications window, right-click the desired application module and choose
Run.

2. In the Oracle ADF Model Tester, choose Create - Create SysCat AM.

3. In the data model tree, expand the SysCatAMDefs, right-click ViewDefs, and
choose Show Table.

4. In the data viewer, scroll vertically to locate the desired view instance in the
SCName (system catalog name) field.

Exposing the system catalog in the tester allows access to metadata and
other information specific to the runtime objects without running the debugger.
For example, you can check whether a view instance has a custom Java
implementation class or not.

How to Refresh the Oracle ADF Model Tester with Application
Changes

The Oracle ADF Model Tester is a highly interactive tool. When you run the tester and
determine a change is needed in the data model project, you can return to JDeveloper
to edit the desired application module instance and refresh the Oracle ADF Model
Tester data model to display the changes. This way you can verify your changes
without needing to rerun the tester.

To reload application metadata in the Oracle ADF Model Tester:

1. In the data model project, edit your business objects and save the changes in the
JDeveloper.

2. Recompile the data model project.

For example, you can right-click the data model project in the Applications window
and choose Make to complete the recompile step.

Although the metadata changes that you make are not involved in compiling the
project, the compile step is necessary to copy the metadata to the class path and
to allow the Oracle ADF Model Tester to reload it.

3. In the Oracle ADF Model Tester, in the toolbar, click Reload application
metadata.

Alternatively, you can choose Reload Application from the File menu of the
Oracle ADF Model Tester.

Using the ADF Declarative Debugger
ADF Declarative Debugger allows you to place breakpoints on task flow activities,
page definition bindings, page definition executables, and of course Java source code,
too. When paused at a breakpoint during debugging runtime, several targeted new
windows provide the ADF application developer a detailed and intuitive understanding
of the application based on ADF runtime objects.

The ADF Declarative Debugger provides declarative breakpoints that you can set at
the ADF object level (such as task flows, page definition executables, method and
action bindings, ADF lifecycle phases), as well as standard breakpoints in custom
Java code and Groovy script. ADF declarative breakpoints provide a high-level object
view for debugging ADF applications. For example, you can break before a task
flow activity to see what parameters would be passed to the task flow, as shown

Chapter 48
Using the ADF Declarative Debugger

48-28

in Figure 48-11. To perform the same function using only Java breakpoints would
require you to know which class or method to place the breakpoint in. ADF declarative
breakpoints should be the first choice for ADF applications.

Figure 48-11 ADF Declarative Breakpoint on a Task Flow Activity

The ADF Declarative Debugger also supports standard Java code breakpoints. You
can set Java code breakpoints in any ADF application. You may be able to use Java
code breakpoints when an ADF declarative breakpoint does not break in the place you
want.

The ADF Declarative Debugger is built on top of the Java debugger, so it has the
features and behaviors of the Java debugger. But instead of needing to know the Java
class or method, you can set ADF declarative breakpoints in visual editors.

The ADF Declarative Debugger provides standard debugging features such as
the ability to examine variable and stack data. When an application pauses at
any breakpoint (ADF Declarative or Java code breakpoint), you can examine the
application status using a variety of windows. You can check where the break occurs
in the Breakpoints window. You can check the call stack for the current thread using
the Stack window. When you select a line in the Stack window, information in the Data
window, Watches window, and all Inspector windows is updated to show relevant data.
You can use the Data window to display information about arguments, local variables,
and static fields in your application.

The ADF Structure window displays the runtime structure of the project. The ADF
Data window automatically changes its display information based on the selection in
the ADF Structure window. For example, if a task flow node is selected, the ADF
Data window displays the relevant debugging information for task flows, as shown in
Figure 48-12.

Chapter 48
Using the ADF Declarative Debugger

48-29

Figure 48-12 ADF Structure Window and ADF Data Window for a Task Flow Selection

You can mix ADF declarative breakpoints with standard Java and Groovy breakpoints
as needed in your debugging session. Although you can use step functions to advance
the application from Java code breakpoint to Java code breakpoint, the step functions
for ADF declarative breakpoints have more constraints and limitations. For information
about using step functions on ADF declarative breakpoints, see Table 48-3.

For information on how to use ADF declarative breakpoints, see Setting ADF
Declarative Breakpoints.

For information on how to use Java breakpoints on classes and methods, see Setting
Breakpoints in Java Code and Groovy Script.

In a JSF application (including Fusion web applications), when a breakpoint breaks,
you can use the EL Evaluator to examine the value of an EL expression. The EL
Evaluator has the browse function that helps you select the correct expression to
evaluate. See How to Use the EL Expression Evaluator.

Whether you plan to use ADF declarative breakpoints or standard Java and Groovy
breakpoints, you can use the ADF Declarative Debugger with Oracle ADF source
code. You can obtain Oracle ADF source code with Debug libraries. For information
about loading source code. see Using ADF Source Code with the Debugger.

Using ADF Source Code with the Debugger
If you have valid Oracle ADF support, you can obtain complete source code for Oracle
ADF by opening a service request with Oracle Worldwide Support. You can request
a specific version of the Oracle ADF source code. You may be given download and
password information to decrypt the source code ZIP file. Contact Oracle Worldwide
Support for more information.

Adding Oracle ADF source code access to your application debugging session will:

• Provide access to the JDeveloper Quick Javadoc feature in the source editor.
Without the source code, you will have only standard Javadoc.

• Enhance the use of Java code breakpoints by displaying the Oracle source code
that's being executed when the breakpoint is encountered. You can also set
breakpoints easier by clicking on the margin in the source code line you want
to break on. Without the source code, you will have to know the class, method, or
line number in order to set a breakpoint within Oracle code.

• For Java code breakpoints set within the source code, you will be able to see the
values of all local variables and member fields in the debugger.

Chapter 48
Using the ADF Declarative Debugger

48-30

The ADF source code ZIP file may be delivered within an encrypted "outer" ZIP file to
protect its contents during delivery. The "outer" ZIP name is sometimes a variant of the
service request number.

After you have received or downloaded the "outer" ZIP archive file, unzip it with
the provided password to access the actual source code ZIP file. The ADF source
code ZIP name should be a variant of the Oracle ADF version number and build
number. For example, the Oracle ADF source ZIP file may have a format similar to
adf_vvvv_nnnn_source.zip, where vvvv is the version number and nnnn is the build
number.

After you have access to the Oracle ADF source code ZIP file, extract its contents to a
working directory.

How to Set Up the ADF Source User Library
You create a name for the source user library and then associate that name with the
source ZIP file.

To add the ADF source zip file to the user library

1. In the main menu, choose Tools and then Manage Libraries.

2. In the Manage Libraries dialog, with the Libraries tab selected, click New.

3. In the Create Library window, enter a library name for the source that identifies the
type of library.

4. Select the Source Path node in the tree structure. Click Add Entry.

Note:

Do not enter a value for the class path. You need to provide a value only
for the source path.

5. In the Select Path Entry window, browse to the directory where the file was
extracted and select the source ZIP file. Click Select.

6. In the Create Library window, verify that the source path entry has the correct path
to the source ZIP file, and deselect Deployed by Default. Click OK.

7. Click OK.

How to Add the ADF Source Library to a Project
After the source library has been added to the list of available user libraries, add it to
the project you want to debug.

To add the ADF source zip file to the project:

1. In the Applications window, double-click the project to which you want to add the
ADF library or right-click the project and choose Project Properties.

2. In the Project Properties dialog, select Libraries and Classpaths.

3. Click Add Library.

Chapter 48
Using the ADF Declarative Debugger

48-31

4. In the Add Library dialog, under the Users node, select the source library you want
to add and click OK.

The source library should appear in the Classpath Entries section in the Project
Properties dialog.

5. Click OK.

How to Use the EL Expression Evaluator
When the application is paused at a breakpoint, you can use the EL expression
evaluator to enter an EL expression for evaluation. You can enter arbitrary EL
expressions for evaluation within the current context. If the EL expression no longer
applies within the current context, the value will be evaluated to null.

The EL Evaluator is different from the Watches window in that EL evaluation occurs
only when stopped at a breakpoint, not when stopped at subsequent debugging steps.

The EL Evaluator is available for debugging any JSF application.

Caution:

Be wary when you are evaluating EL expressions that you do not indirectly
change application data and therefore the behavior of the application. For
example, if you evaluate #{foo.bar}, the corresponding getBar() method
modifies application data.

Before you begin:

It may be helpful to have an understanding of the ADF Declarative Debugger. For
more information, see Using the ADF Declarative Debugger.

You will need to complete this task:

Set the desired breakpoints in the application, as described in Setting ADF
Declarative Breakpoints. The application must be a JSF application. It does not
need to be an ADF application.

To use the EL Evaluator:

1. Start the debugging process by using any of the following techniques.

• In the main menu, choose Run and then Debug <project_name>.

• From the Applications window, right-click the project, adfc-config.xml, task
flow, or page and choose Debug.

• From the task flow diagrammer, right-click an activity and choose Debug. Only
task flows that do not use page fragments can be run.

2. When the breakpoint is reached, the EL Evaluator should appear as a tab in the
debugger window area. Click the EL Evaluator tab to bring it forward. If it does not
appear, in the main menu, choose Window and then Debugger > EL Evaluator.

Chapter 48
Using the ADF Declarative Debugger

48-32

Note:

Be sure that the application has actually hit a breakpoint by checking the
Breakpoints window or checking that there is an Execution Point icon
(red right arrow) next to the object breakpoint. Depending on where you
set the breakpoint, an application may appear to be stopped when in fact
it is waiting for user input at the page.

3. Enter an EL expression in the Expression input field.

When you click in the field after entering #{ or after a period, a discovery
function provides a selectable list of expression items, as shown in Figure 48-13.
Auto-completion will be provided for easy entry. You can evaluate several EL
expressions at the same time by separating them with semicolons.

Figure 48-13 Using the Discovery Function of the EL Evaluator

4. When you finish entering the EL expression, click Evaluate and the expression is
evaluated, as shown in Figure 48-14.

Figure 48-14 EL Expression Evaluated

How to View and Export Stack Trace Information
If you are unable to determine what the problem is and you cannot resolve it yourself,
typically your next step is to ask someone else for assistance. Whether you post
a question in the OTN JDeveloper Discussion Forum or open a service request on
Metalink, including the stack trace information in your posting is extremely useful to

Chapter 48
Using the ADF Declarative Debugger

48-33

anyone who will need to assist you further to understand exactly where the problem is
occurring.

JDeveloper's Stack window makes communicating this information easy. Whenever
the debugger is paused, you can view the Stack window to see the program flow as
a stack of method calls that got you to the current line. You can use the Preferences
dialog to set the Stack window preference to include the line number information, as
well as the class and method name that will be there by default. Finally, the Stack
window context menu option Export lets you save the current stack information to an
external text file whose contents you can then post or send to whomever might need to
help you diagnose the problem.

Before you begin:

It may be helpful to have an understanding of the ADF Declarative Debugger. For
more information, see Using the ADF Declarative Debugger.

You will need to complete this task:

Set the desired breakpoints in the application, as described in Setting ADF
Declarative Breakpoints. The application must be a JSF application. It does not
need to be an ADF application.

To save stack information to a text file:

1. Start the debugging process by using any of the following techniques.

• In the main menu, choose Run and then Debug <project_name>.

• From the Applications window, right-click the project, adfc-config.xml, task
flow, or page and choose Debug.

• From the task flow diagrammer, right-click an activity and choose Debug. Only
task flows that do not use page fragments can be run.

2. When the breakpoint is reached and the debugger is paused, the Stack window
should appear as a window to the side of the debugger window area. Click the
Stack tab to bring it forward. If the Stack window does not appear, in the main
menu, choose Window and then Debugger > Stack.

3. When you want to change the Stack window preference for example to include the
line number information in the export file, right-click the Stack window background
and choose Preferences, as shown in Figure 48-15.

Figure 48-15 Stack Window Context Menu

Chapter 48
Using the ADF Declarative Debugger

48-34

4. Right-click the Stack window background and choose Export.

5. In the Export Stack dialog, name the file and choose the location where you want
to save the file. Click OK.

Setting ADF Declarative Breakpoints
You can declaratively set breakpoints on task flow activities, page definition bindings,
page definition executables, Java source code, and so forth using the ADF Declarative
Debugger features.

You use the ADF Declarative Debugger features in JDeveloper to declaratively set
breakpoints on ADF task flow activities, page definition executables, method, action,
and value bindings, ADF Lifecycle phases, and contextual events. Instead of needing
to know all the internal constructs of the ADF code, such as method names and class
names, you can set breakpoints at the highest level of object abstraction.

You can add breakpoints to task flow activities in the task flow diagrammer or you
can launch the Create ADF Task Flow Activity Breakpoint dialog from the Breakpoints
window. In the task flow diagrammer, you can select a task flow activity and use the
context menu to toggle or disable breakpoints on that activity, or press the F5 button.
After the application pauses at the breakpoint, you can view the runtime structure of
the objects in the ADF Structure window as a tree structure. The ADF Data window
displays a list of data for a given object selected in the ADF Structure window.

For example, when you set a breakpoint on a task flow call activity in the Browse
Orders task flow, a red dot icon appears in the call activity, as shown in Figure 48-16.

Figure 48-16 ADF Declarative Breakpoint on a Task Flow Activity

When the breakpoint is reached, the application is paused and the icon changes, as
shown in Figure 48-17.

Chapter 48
Setting ADF Declarative Breakpoints

48-35

Figure 48-17 Application Paused at an ADF Declarative Breakpoint

Similarly, you can set Before and After breakpoints in the page definition file. You set
breakpoints for supported value bindings (see Table 48-1 for the list of supported value
binding) and for executables by clicking on the left or right margin next to the item or
by selecting from the context menu. Clicking on the left margin adds a Before page
definition breakpoint, and clicking on the right margin adds an After page definition
breakpoint. Again, a red dot icon that indicates the breakpoint is set, as shown in
Figure 48-18.

Figure 48-18 ADF Declarative Breakpoints on ADF Bindings in the Page
Definition File

The page definition file also lets you set breakpoints on contextual events that your
page or region within a page raises at runtime, as shown in Figure 48-19.

Figure 48-19 ADF Declarative Breakpoint on a Contextual Event in the Page
Definition File

Chapter 48
Setting ADF Declarative Breakpoints

48-36

You can also set Before and After breakpoints on all the ADF lifecycle phases. You
can launch the Create ADF Lifecycle Phase Breakpoint dialog from the Breakpoints
window, as shown in Figure 48-20.

Figure 48-20 Breakpoints Window Add Breakpoint Icon Dropdown Menu

The Create ADF Lifecycle Phase Breakpoint dialog allows you to select different
lifecycle breakpoint options, as shown in Figure 48-21.

Figure 48-21 Create ADF Lifecycle Phase Breakpoint Dialog

Alternatively, you can use the ADF Lifecycle Breakpoints dialog from the ADF
Structure window or the task flow diagrammer to set ADF lifecycle phase breakpoints.
For more information about ADF lifecycle phases, see Understanding the Fusion Page
Lifecycle .

You can define both ADF declarative breakpoints and standard Java code breakpoints
when using the ADF Declarative Debugger. Depending on your debugging scenario,
you may only need to use the declarative breakpoints to debug the application. Or
you may find it necessary to add additional breakpoints in Java code that are not
available declaratively. For information on Java code breakpoints, see How to Set Java
Breakpoints on Classes and Methods. Table 48-1 lists the available ADF Declarative
Debugger breakpoint locations.

Chapter 48
Setting ADF Declarative Breakpoints

48-37

Table 48-1 ADF Declarative Debugger Breakpoints

ADF Area Breakpoint Type Where Inserted JDeveloper
Context
Menu
Command

Description

ADF lifecycle
phase

Before ADF
lifecycle phase

Break after ADF
lifecycle phase

ADF Structure window
ADF Lifecycle
Breakpoints toolbar
button

Task flow diagrammer

Breakpoints window
Add button

A Before breakpoint pauses
debugging before the ADF lifecycle
phase.

An After breakpoint pauses debugging
after the ADF lifecycle phase.

The ADF lifecycle JSF Render
Response and Prepare Render phase
Before and After breakpoints are
executed in the following order:

• Before jsfRenderResponse.
• Before prepareRender.

(prepareRender phase
executes).

• After prepareRender.
(jsfRenderResponse phase
executes).

• After jsfRenderResponse.

ADF page
definition -
bindings and
executables

Break before/Break
after executable:

• Iterator
• Region

instantiation

Page definition
overview editor
Bindings and
Executables tab,
Executables section

Breakpoints window
Add button

Toggle
Breakpoint
or F5

Disable
Breakpoint

Pauses debugging before or after
executable is refreshed. For task
flow bindings, this represents
two times per lifecycle: first,
during prepareModel (initial region
creation), and then again during
prepareRender (where dynamic
regions swap their corresponding task
flow ID).

Break before/Break
after action
binding:

• methodActio
n

• Built-in
operations

Page definition
overview editor
Bindings and
Executables tab,
Bindings section

Breakpoints window
Add button

Toggle
Breakpoint
or F5

Disable
Breakpoint

Pauses debugging before or after
binding is executed.

Break before/Break
after attribute value
binding

Page definition
overview editor
Bindings and
Executables tab,
Bindings section

Breakpoints window
Add button

Toggle
Breakpoint
or F5

Disable
Breakpoint

Pauses debugging before or after the
attribute's setInputValue() ADF
source code method is executed.
New values will be the parameters to
setInputValue().

Break before/Break
after table binding

Page definition
overview editor
Bindings and
Executables tab,
Bindings section

Breakpoints window
Add button

Toggle
Breakpoint
or F5

Disable
Breakpoint

Pauses debugging before or after
the ADF hierarchical binding's
updateValuesFromRows() source
code method is executed. New
values will be the parameters to
updateValuesFromRows().

Chapter 48
Setting ADF Declarative Breakpoints

48-38

Table 48-1 (Cont.) ADF Declarative Debugger Breakpoints

ADF Area Breakpoint Type Where Inserted JDeveloper
Context
Menu
Command

Description

Break before/Break
after tree binding

Page definition
overview editor
Bindings and
Executables tab,
Bindings section

Breakpoints window
Add button

Toggle
Breakpoint
or F5

Disable
Breakpoint

Pauses in either of these two cases:

1. When making a node selection in
the tree, pauses debugging before or
after the ADF hierarchical binding's
updateValuesFromRows() source
code method is executed. New
values will be the parameters to
updateValuesFromRows().

2. When expanding the tree,
pauses debugging before or after
the ADF tree collection model's
modifyExpanded() source code
method is executed.

ADF page
definition -
contextual
events

Break before/Break
after contextual
events

Page Definition
overview editor
Contextual Events
tab, Events section

Breakpoints window
Add button

Toggle
Breakpoint
or F5

Disable
Breakpoint

Pauses debugging either before the
event is dispatched or after the event,
just before the event is consumed by a
subscriber to the event.

ADF task flow Break before
activity

Task flow diagrammer

Breakpoints window
Add button

Toggle
Breakpoint
or F5

Disable
Breakpoint

Pauses debugging before the activity
executes within the JSF Invoke
Application phase. The activity where
the declarative breakpoint is defined
has not yet been executed. An
exception are view activities; they
pause within the JSF Render
Response phase after the view activity
is executed, but before the new
page is rendered. By pausing at that
point, the view activity values can be
inspected using the ADF Structure
and ADF Data windows.

The ADF Declarative Debugger uses the standard debugger icons and notations for
setting, toggling, and indicating the status of ADF declarative breakpoints.

When an ADF declarative breakpoint is set, it appears as a red dot icon in the
task flow activity, in the page definition breakpoint margins, or in the ADF Lifecycle
Breakpoints window, as shown in Figure 48-22, Figure 48-23, Figure 48-24, and
Figure 48-25.

Figure 48-22 ADF Declarative Breakpoint Enabled on a Task Flow Activity

Chapter 48
Setting ADF Declarative Breakpoints

48-39

Figure 48-23 ADF Declarative Breakpoints Enabled in the Page Definition
Executables

Figure 48-24 ADF Declarative Breakpoint Enabled on a Contextual Event in the
Page Definition File

Figure 48-25 ADF Lifecycle Phase Breakpoints Enabled in the ADF Lifecycle
Breakpoints Window

When an ADF task flow or page definition declarative breakpoint is disabled, the red
icon becomes a gray icon, as shown in Figure 48-26.

Figure 48-26 ADF Declarative Breakpoint Disabled

When an ADF task flow declarative breakpoint is active, the red dot icon has a green
checkmark, as shown in Figure 48-27.

Figure 48-27 ADF Declarative Breakpoint Active

Chapter 48
Setting ADF Declarative Breakpoints

48-40

When the application is paused at an ADF declarative breakpoint, an Execution Point
icon appears, as shown in Figure 48-28.

Figure 48-28 Application Paused at an Execution Point on a Task Flow

When the application is paused at an ADF lifecycle declarative breakpoint, an
Execution Point icon appears next to the lifecycle phase in the ADF Lifecycle
Breakpoints window, as shown in Figure 48-29. The name of the current ADF lifecycle
phase is also displayed in the ADF Structure window.

Figure 48-29 Application Paused at an Execution Point on an ADF Lifecycle
Phase

The Breakpoints window list all breakpoints, including ADF declarative breakpoints, as
shown in Figure 48-30.

Figure 48-30 Breakpoints Window Showing ADF Declarative and Java Code
Breakpoints

The Breakpoints window has a toolbar that includes buttons to add, edit, delete,
enable, and disable breakpoints, as shown in Figure 48-30. The Add Breakpoint
icon dropdown menu includes functions to create and manage ADF contextual events

Chapter 48
Setting ADF Declarative Breakpoints

48-41

breakpoints, ADF lifecycle phase breakpoints, ADF page definition breakpoints (for
ADF bindings and executables), ADF task flow activity breakpoints, and standard Java
code breakpoints.

You can use the Breakpoints window to view the location of the ADF declarative
breakpoint in its corresponding source file:

• Double-click a contextual event breakpoint to open the overview editor for the
corresponding page definition file. You can then click the Contextual Events tab to
view the location of the breakpoint.

• Double-click an ADF lifecycle phase breakpoint to open the ADF Lifecycle
Breakpoints window which displays all ADF lifecycle execution points.

• Double-click a task flow activity breakpoint to open the task flow diagrammer for
the corresponding task flow.

• Double-click an ADF binding breakpoint to open the overview editor for the
corresponding page definition file.

To manage how the debugger handles a breakpoint, you can open the Edit ADF
Breakpoint dialog for individual breakpoints that appear in the Breakpoints window. Or,
you can select multiple ADF declarative breakpoints and customize the behavior of
their common fields.

Table 48-2 lists how an ADF declarative breakpoint will appear in the Breakpoints
window under the Description and Type columns.

Table 48-2 Breakpoints Window Display of ADF Declarative Breakpoints

Declarative Breakpoint Type Description Column Type Column

Before/After contextual event Before page definition@event
name

After page definition@event
name

Contextual events
breakpoint

Before ADF lifecycle phase Before adf lifecycle phase ADF lifecycle phase
breakpoint

After ADF lifecycle phase After adf lifecycle phase ADF lifecycle phase
breakpoint

Before/After page definition
executable:

• Iterator

Before page
definition@executable id

After page definition@executable
id

Page definition executable
breakpoint

Before/After page definition
action binding:

• methodAction
• Built-in Operations

Before page definition@binding
id

After page definition@binding id

Page definition binding
breakpoint

Before/After page definition
attribute value binding

Before page definition@binding
id

After page definition@binding id

Page definition binding
breakpoint

Before/After page definition
table binding

Before page definition@binding
id

After page definition@binding id

Page definition binding
breakpoint

Chapter 48
Setting ADF Declarative Breakpoints

48-42

Table 48-2 (Cont.) Breakpoints Window Display of ADF Declarative Breakpoints

Declarative Breakpoint Type Description Column Type Column

Before/After page definition
tree binding

Before page definition@binding
id

After page definition@binding id

Page definition binding
breakpoint

Before ADF task flow activity Before task flow document#task
flow id@activity id

Task flow activity breakpoint

Table 48-3 lists the step commands that can be used with ADF declarative
breakpoints.

Table 48-3 ADF Declarative Debugger Step Commands

ADF Debugger Step
Commands

Description

Find Execution Point Supported for declarative breakpoints to display the current
execution point open and active within the corresponding editor.

Step Over (F8) Supported for task flow activity declarative breakpoints to step
from activity to activity within a task flow. If user interaction is
required (for example, page displayed), once it is received (for
example, button selected), processing will resume and then will
pause before the next task flow activity.

Supported for page definition executable breakpoints. The
application will step to the next page definition executable
breakpoint.

Supported for ADF lifecycle phase declarative breakpoints to
step to the next Before or After ADF lifecycle phase location.

Step Into (F7) Supported only for task flow activity declarative breakpoints
defined on task flow call activities. Task flow activity declarative
breakpoints pause the application just before the activity is
executed. The Step Into function provides the ability to pause
debugging just prior to executing the called task flow default
activity. This action would be the same as placing a task flow
activity declarative breakpoint on the called task flow default
activity.

Step Out (Shift F7) Supported for task flow activity declarative breakpoints to step
out of the current called task flow and back into the caller (if
any). If user interaction is required (for example, page displayed)
once user interaction received (for example, button selected),
processing will resume and will pause before the next user
interaction or activity within the calling task flow.

Continue Step (Shift F8) Not supported for declarative breakpoints.

Step to End of Method Not supported for declarative breakpoints.

Run to Cursor Not supported for declarative breakpoints.

Pop Frame Not supported for declarative breakpoints, as it is for Java code,
to return to a previous point of execution.

Chapter 48
Setting ADF Declarative Breakpoints

48-43

How to Set and Use Task Flow Activity Breakpoints
After you have created a task flow diagram, you can set ADF declarative breakpoints
on task flow activities.

Before you begin:

It may be helpful to have an understanding of when to use ADF declarative
breakpoints. For more information, see Setting ADF Declarative Breakpoints.

To set a breakpoint on a task flow activity:

1. Open the task flow in the task flow diagrammer, or from the Breakpoints window,
click the Add icon and select ADF Task Flow Activity Breakpoint.

If the Breakpoints window is not already displayed, in the main menu, choose
Window and then Breakpoints.

2. Set the task flow activity breakpoint.

• If you use the task flow diagrammer, right-click and choose Toggle
Breakpoint from the context menu, or press F5.

A breakpoint icon appears on the task flow activity.

• If you launched the Create ADF Task Flow Activity Breakpoint dialog from the
Breakpoints window, click Browse to select a task flow definition, select the
task flow from the Task Flow dropdown list, select the task flow activity from
the Activity dropdown list, and click OK.

3. Optionally, configure a breakpoint's settings to manage the debugger:

a. In the main menu, choose Window and then Breakpoints.

b. In the Breakpoints window, select the task flow activity breakpoint you want to
configure and click the Edit icon.

c. In the Edit ADF Task Flow Activity Breakpoint dialog, click the Conditions tab,
specify the conditions which apply to the breakpoint. The conditions must be
valid for the breakpoint to occur.

d. Click the Actions tab, specify the actions that you want the debugger to take
when the breakpoint occurs and click OK.

For example, the usual action for a breakpoint is to halt the program you are
debugging, but you may want the debugger to beep and log information to the
Log window without halting the program.

4. Start the debugging process by using any of the following techniques.

• In the main menu, choose Run and then Debug <project_name>.

• From the Applications window, right-click the project, adfc-config.xml, task
flow, or page and choose Debug.

• From the task flow diagrammer, right-click an activity and choose Debug. Only
task flows that do not use page fragments can be run.

5. When the application is paused at a breakpoint, an Execution Point icon (red
right arrow) appears next to the breakpoint icon on the task flow activity. You can
examine the application using various debugger windows.

Chapter 48
Setting ADF Declarative Breakpoints

48-44

Note:

Be sure that the application has actually hit a breakpoint by checking the
Breakpoints window or checking that there is an Execution Point icon
(red right arrow) next to the breakpoint. Depending on where you set the
breakpoint, an application may appear to be stopped when in fact it is
waiting for user input at the page.

Task flow activity declarative breakpoints pause the application just before the task
flow activity is executed (except for view activities).

6. The ADF Structure window and the ADF Data window appear by default, as well
as several debugger windows. You can examine the runtime structure in the ADF
Structure window and its corresponding data in the ADF Data window. See How to
Use the ADF Structure Window, and How to Use the ADF Data Window.

7. In the ADF Structure window, select a node and view pertinent information in the
ADF Data window.

Task flow activity declarative breakpoints pause the application just before the task
flow activity is executed. You can use the Step Into (F7) function to pause the
application just prior to executing the called task flow default activity.

8. Continue debugging the application as required, using the step functions as
described in Table 48-3. The key step function is Step Into (F7).

When the application is paused, you can remove or disable existing breakpoints
and set new breakpoints.

How to Set and Use Page Definition Executable Breakpoints
If your page definition has executables, you can set breakpoints to pause the
application before or after these executables. For example, you can set breakpoints to
pause the application when iterators are refreshed.

Note:

If you are setting an After iterator breakpoint to pause the application after
a view object query has been executed, be aware that the application may
pause at this breakpoint multiple times. Also be aware that it may pause
at this breakpoint even when the query has not been executed. If you
need to know whether the query has been executed, select the relevant
ADF Business Components in the ADF Structure window and view their
corresponding data in the ADF Data window. For more information on how to
use these windows, see How to Use the ADF Structure Window, and How to
Use the ADF Data Window.

For more information about using Java code breakpoints on view object
query execution, see What You May Need to Know About Oracle ADF
Breakpoints.

Before you begin:

Chapter 48
Setting ADF Declarative Breakpoints

48-45

It may be helpful to have an understanding of when to use ADF declarative
breakpoints. For more information, see Setting ADF Declarative Breakpoints.

To set a breakpoint on an executable in the page definition file:

1. In the Applications window, double-click the page definition file that contains the
executable in which you want to set a breakpoint.

2. In the overview editor, click the Bindings and Executables tab, select an
executable from the Executables list, and click in the breakpoint margin to the
left of the item.

A breakpoint icon appears in the margin next to the item.

3. Optionally, configure a breakpoint's settings to manage the debugger:

a. In the main menu, choose Window and then Breakpoints.

b. In the Breakpoints window, select the executable breakpoint you want to
configure and click the Edit icon.

c. In the Edit ADF Page Definition Binding Breakpoint dialog, click the
Conditions tab, specify the conditions which apply to the breakpoint. The
conditions must be valid for the breakpoint to occur.

d. Click the Actions tab, specify the actions that you want the debugger to take
when the breakpoint occurs and click OK.

For example, the usual action for a breakpoint is to halt the program you are
debugging, but you may want the debugger to beep and log information to the
Log window without halting the program.

4. Start the debugging process by using any of the following techniques.

• In the main menu, choose Run and then Debug <project_name>.

• From the Applications window, right-click the project, adfc-config.xml, task
flow, or page and choose Debug.

• From the task flow diagrammer, right-click an activity and choose Debug. Only
task flows that do not use page fragments can be run.

5. When the application is paused at a breakpoint, an Execution Point icon (red
right arrow) appears in the margin next to the breakpoint icon of the executable
item. You can examine the application using several debugger windows.

The application pauses when the executable binding is refreshed. If this
is a taskFlow executable, the pause occurs in the prepareModel and the
prepareRender lifecycles.

Note:

Be sure that the application has actually hit a breakpoint by checking the
Breakpoints window or checking that there is an Executable Point icon
(red right arrow) next to the breakpoint. Depending on where you set the
breakpoint, an application may appear to be stopped when in fact it is
waiting for user input at the page.

6. The ADF Structure window and the ADF Data window appear by default, as well
as several debugger windows. You can examine the runtime structure in the ADF

Chapter 48
Setting ADF Declarative Breakpoints

48-46

Structure window and its corresponding data in the ADF Data window. See How to
Use the ADF Structure Window, and How to Use the ADF Data Window.

7. Select a node in the ADF Structure window and view pertinent information in the
ADF Data window.

8. When the application is paused, you can remove or disable existing breakpoints
and set new breakpoints.

How to Set and Use Page Definition Action Binding Breakpoints
You can set breakpoints in the page definition file on action bindings and
methodAction bindings. The application pauses when the binding is executed.

Before you begin:

It may be helpful to have an understanding of when to use ADF declarative
breakpoints. For more information, see Setting ADF Declarative Breakpoints.

To set a breakpoint on an action binding in the page definition file:

1. In the Applications window, double-click the page definition file that contains the
binding in which you want to set a breakpoint.

2. In the overview editor, click the Bindings and Executables tab, select a
methodAction binding or built-in operation item from the Bindings list, and click in
the breakpoint margin to the left of the item.

A breakpoint icon appears next to the item.

3. Optionally, configure a breakpoint's settings to manage the debugger:

a. In the main menu, choose Window and then Breakpoints.

b. In the Breakpoints window, select the action binding breakpoint you want to
configure and click the Edit icon.

c. In the Edit ADF Page Definition Binding Breakpoint dialog, click the
Conditions tab, specify the conditions which apply to the breakpoint. The
conditions must be valid for the breakpoint to occur.

d. Click the Actions tab, specify the actions that you want the debugger to take
when the breakpoint occurs and click OK.

For example, the usual action for a breakpoint is to halt the program you are
debugging, but you may want the debugger to beep and log information to the
Log window without halting the program.

4. Start the debugging process by using any of the following techniques.

• In the main menu, choose Run and then Debug <project_name>.

• From the Applications window, right-click the project, adfc-config.xml, task
flow, or page and choose Debug.

• From the task flow diagrammer, right-click an activity and choose Debug. Only
task flows that do not use page fragments can be run.

5. When the application is paused at a breakpoint, an Execution Point icon (red
right arrow) appears next to the breakpoint icon on the action binding item. You
can examine the application using several debugger windows.

The application is paused when the binding is executed.

Chapter 48
Setting ADF Declarative Breakpoints

48-47

Note:

Be sure that the application has actually hit a breakpoint by checking the
Breakpoints window or checking that there is an Execution Point icon
(red right arrow) next to the breakpoint. Depending on where you set the
breakpoint, an application may appear to be stopped when in fact it is
waiting for user input at the page.

6. The ADF Structure window and the ADF Data window appear by default, as well
as several debugger windows. You can examine the runtime structure in the ADF
Structure window and its corresponding data in the ADF Data window. See How to
Use the ADF Structure Window, and How to Use the ADF Data Window.

7. Select a node in the ADF Structure window and view pertinent information in the
ADF Data window.

8. When the application is paused, you can remove or disable existing breakpoints
and set new breakpoints.

How to Set and Use Page Definition Value Binding Breakpoints
If the page definition has one of these values bindings, you can set breakpoints to
pause the application:

• Attribute value binding

• Tree value binding

• Table value binding

Before you begin:

It may be helpful to have an understanding of when to use ADF declarative
breakpoints. For more information, see Setting ADF Declarative Breakpoints.

To set a breakpoint on a value binding in the page definition file:

1. In the Applications window, double-click the page definition file that contains the
binding in which you want to set a breakpoint.

2. In the overview editor, click the Bindings and Executables tab, select an
attribute, tree, or table binding from the Bindings list, and click in the breakpoint
margin to the left of the item. A breakpoint icon appears next to the value binding.

3. Optionally, configure a breakpoint's settings to manage the debugger:

a. In the main menu, choose Window and then Breakpoints.

b. In the Breakpoints window, select the binding breakpoint you want to configure
and click the Edit icon.

c. In the Edit ADF Page Definition Binding Breakpoint dialog, click the
Conditions tab, specify the conditions which apply to the breakpoint. The
conditions must be valid for the breakpoint to occur.

d. Click the Actions tab, specify the actions that you want the debugger to take
when the breakpoint occurs and click OK.

Chapter 48
Setting ADF Declarative Breakpoints

48-48

For example, the usual action for a breakpoint is to halt the program you are
debugging, but you may want the debugger to beep and log information to the
Log window without halting the program.

4. Start the debugging process by using any of the following techniques.

• In the main menu, choose Run and then Debug <project_name>.

• From the Applications window, right-click the project, adfc-config.xml, task
flow, or page and choose Debug.

• From the task flow diagrammer, right-click an activity and choose Debug. Only
task flows that do not use page fragments can be run.

5. When the application is paused at a breakpoint, an Execution Point icon (red
right arrow) appears next to the breakpoint icon on the attribute value binding. You
can examine the application using several debugger windows.

The application pauses before an appropriate method of the ADF source code
executes, as described in Table 48-1. New values will be the parameters that go
into the method.

Note:

Be sure that the application has actually hit a breakpoint by checking the
Breakpoints window or checking that there is an Execution Point icon
(red right arrow) next to the breakpoint. Depending on where you set the
breakpoint, an application may appear to be stopped when in fact it is
waiting for user input at the page.

6. The ADF Structure window and the ADF Data window appear by default, as well
as several debugger windows. You can examine the runtime structure in the ADF
Structure window and its corresponding data in the ADF Data window. See How to
Use the ADF Structure Window, and How to Use the ADF Data Window.

7. Select a node in the ADF Structure window and view pertinent information in the
ADF Data window.

8. Continue debugging the application as required, using the step functions as
described in Table 48-3. The key step function is Step Over (F8).

When the application is paused, you can remove or disable existing breakpoints
and set new breakpoints.

How to Set and Use Page Definition Contextual Event Breakpoints
If the page definition defines contextual events, you can set breakpoints on the
contextual events to pause the application.

Before you begin:

It may be helpful to have an understanding of when to use ADF declarative
breakpoints. For more information, see Setting ADF Declarative Breakpoints.

To set a breakpoint on a contextual event in the page definition file:

1. In the Applications window, double-click the page definition file that contains the
binding in which you want to set a breakpoint.

Chapter 48
Setting ADF Declarative Breakpoints

48-49

2. In the overview editor, click the Contextual Events tab, select a contextual event
from the Events list, and click in the breakpoint margin to the left of the item. A
breakpoint icon appears next to the contextual event.

3. Optionally, configure a breakpoint's settings to manage the debugger:

a. In the main menu, choose Window and then Breakpoints.

b. In the Breakpoints window, select the contextual event breakpoint you want to
configure and click the Edit icon.

c. In the Edit ADF Contextual Events Breakpoint dialog, click the Conditions tab,
specify the conditions which apply to the breakpoint. The conditions must be
valid for the breakpoint to occur.

d. Click the Actions tab, specify the actions that you want the debugger to take
when the breakpoint occurs and click OK.

For example, the usual action for a breakpoint is to halt the program you are
debugging, but you may want the debugger to beep and log information to the
Log window without halting the program.

4. Start the debugging process by using any of the following techniques.

• In the main menu, choose Run and then Debug <project_name>.

• From the Applications window, right-click the project, adfc-config.xml, task
flow, or page and choose Debug.

• From the task flow diagrammer, right-click an activity and choose Debug. Only
task flows that do not use page fragments can be run.

5. When the application is paused at a breakpoint, an Execution Point icon (red
right arrow) appears next to the breakpoint icon on the contextual event. You can
examine the application using several debugger windows.

The application pauses before the contextual event is raised.

Note:

Be sure that the application has actually hit a breakpoint by checking the
Breakpoints window or checking that there is an Execution Point icon
(red right arrow) next to the breakpoint. Depending on where you set the
breakpoint, an application may appear to be stopped when in fact it is
waiting for user input at the page.

6. The ADF Structure window and the ADF Data window appear by default, as well
as several debugger windows. You can examine the runtime structure in the ADF
Structure window and its corresponding data in the ADF Data window. See How to
Use the ADF Structure Window, and How to Use the ADF Data Window.

7. Select a node in the ADF Structure window and view pertinent information in the
ADF Data window.

8. Continue debugging the application as required, using the step functions as
described in Table 48-3. The key step function is Step Over (F8).

When the application is paused, you can remove or disable existing breakpoints
and set new breakpoints.

Chapter 48
Setting ADF Declarative Breakpoints

48-50

How to Set and Use ADF Lifecycle Phase Breakpoints
You can set both Before and After ADF lifecycle phase breakpoints on any of the ADF
lifecycle phases. For each phase, you can set Before only, After only, or both. You can
set breakpoints on as many phases as you want.

You can create the breakpoint and customize the options using the Create ADF
Lifecycle Phase Breakpoint dialog from the Breakpoints window menu. Or You can
create breakpoints with the default options using the ADF Lifecycle Breakpoints
window. After a lifecycle breakpoint has been set, you can edit the options using
the Edit ADF Lifecycle Phase Breakpoint dialog, which is also launched from the
Breakpoints window.

You can set ADF lifecycle breakpoints on any of the ADF lifecycle phases:

• JSF Restore View

• Initialize Content

• Prepare Model

• JSF Apply Request Values

• JSF Process Validations

• JSF Update Model Values

• Validate Model Updates

• JSF Invoke Application

• Metadata Commit

• Prepare Render

• JSF Render Response

Before you begin:

It may be helpful to have an understanding of when to use ADF declarative
breakpoints. For more information, see Setting ADF Declarative Breakpoints.

To set or manage an ADF lifecycle phase breakpoint from the Breakpoints window:

1. In the main menu, choose Window and then Breakpoints.

2. In the Breakpoints window, click Add and choose ADF Lifecycle Phase
Breakpoint.

3. In the Create ADF Lifecycle Phase Breakpoint dialog Definition tab:

• Select the ADF lifecycle phase where you want to set a breakpoint

• Select Before Phase or After Phase breakpoint

4. In the Conditions tab, select the options you want and click OK.

5. In the Actions tab, select the options you want and click OK.

To set an ADF Lifecycle Phase Breakpoint using the breakpoint icon:

1. In the Applications window, double-click any task flow configuration file and in the
overview editor click the Diagram tab.

Chapter 48
Setting ADF Declarative Breakpoints

48-51

2. In the toolbar of the task flow diagrammer or in the title bar of ADF Structure
window, click the ADF Lifecycle Breakpoints icon, as shown in Figure 48-31.

Figure 48-31 ADF Lifecycle Breakpoints Icon

3. In the ADF Lifecycle Breakpoints window, click in the left margin next to the ADF
lifecycle phase to set a Before breakpoint, and on the right margin to set an After
breakpoint. A red dot icon appears to indicate the breakpoint is set, as shown in
Figure 48-32. The breakpoint will be set with the default breakpoint options. To
remove the breakpoint, click the red dot icon.

Figure 48-32 Setting Breakpoints in the ADF Lifecycle Breakpoints Window

4. If you want to edit breakpoint options, select the breakpoint in the Breakpoints
window and click the Edit icon.

To debug an application using ADF Lifecycle Phase Breakpoints:

1. Start the debugging process by using any of the following techniques.

• In the main menu, choose Run and then Debug <project_name>.

• From the Applications window, right-click the project, adfc-config.xml, task
flow, or page and choose Debug.

• From the task flow diagrammer, right-click an activity and choose Debug. Only
task flows that do not use page fragments can be run.

2. When the application is paused at an ADF lifecycle phase breakpoint, an
Execution Point icon (red right arrow) appears next to the breakpoint icon and
the ADF lifecycle phase is in bold in the ADF Lifecycle Breakpoints window, as
shown in Figure 48-33. You can examine the application using several debugger
windows.

Chapter 48
Setting ADF Declarative Breakpoints

48-52

Figure 48-33 Execution Point Displayed in the ADF Lifecycle Breakpoints
Window

Note:

Be sure that the application has actually hit a breakpoint by checking
the Breakpoints window for an breakpoint encounter or checking that
there is an Execution Point icon (red right arrow) next to the breakpoint.
Depending on where you set the breakpoint, an application may appear
to be stopped when in fact it is waiting for user input at the page.

3. The ADF Structure window and the ADF Data window appear by default, as well
as several debugger windows. You can examine the runtime structure in the ADF
Structure window and its corresponding data in the ADF Data window. The current
ADF lifecycle phase is displayed at the top of the ADF Structure window. For more
information, see How to Use the ADF Structure Window, and How to Use the ADF
Data Window.

4. Select a node in the ADF Structure window and view pertinent information in the
ADF Data window.

5. Continue debugging the application as required, using the step functions as
described in Table 48-3. The key step function is Step Over (F8).

When the application is paused, you can remove or disable existing breakpoints
and set new breakpoints.

How to Use the ADF Structure Window
When the application is paused at a breakpoint, the ADF Structure window displays a
tree structure of the ADF runtime objects and their relationships within the application.
In particular, it shows the hierarchy of view ports, which represent either the main
browser window or contained regions and portlets. When you select different items in
the ADF Structure window, the data display in the accompanying ADF Data window
changes. For more information about the ADF Data window, see How to Use the ADF
Data Window.

The ADF Structure window and the ADF Data window are shown by default during a
debugging session when either of the following is true:

• The project being debugged contains a WEB-INF/adfc-config.xml file.

• The project being debugged contains any ADF Faces tag libraries.

Chapter 48
Setting ADF Declarative Breakpoints

48-53

You can launch the ADF Structure window by choosing Window > Debugger > ADF
Structure in the main menu. From the ADF Structure window, you can launch the ADF
Lifecycle Breakpoints window using the ADF Lifecycle Breakpoints icon.

When a breakpoint is encountered, the ADF Structure window displays the ADF
lifecycle phase and a tree structure of the runtime objects, as shown in Figure 48-34.

Figure 48-34 ADF Structure Window Showing the Runtime Objects

When you select an item in the ADF Structure window, the data and values associated
with that item are displayed in the ADF Data window. Figure 48-35 shows a task flow
selected in the ADF Structure window, with its corresponding information displayed in
the ADF Data window.

Figure 48-35 ADF Structure Window Selection and ADF Data Window Data

The roots of the hierarchy are the sibling nodes Scopes and ADF Context. The
current view port where processing has stopped appears in bold. Default selections
within the tree will be retained from the previous breakpoint, so you can monitor any
changes between breakpoints. The ADF object where the ADF declarative breakpoint
was defined will be opened in the corresponding JDeveloper editor, either the task flow
diagrammer or the overview editor for page definition files.

Chapter 48
Setting ADF Declarative Breakpoints

48-54

The ADF Structure tree will be rebuilt each time the application breaks and at
subsequent steps to reflect the changed state of the objects. Although the entire tree
hierarchy will be displayed, only items within the current view port and its parent view
port(s) will be available for selection and further inspection. All other items in the tree
hierarchy not in the current context will be dimmed and disabled. You can still use the
hierarchy to identify runtime object relationships within the application, but it will be
limited to the current context (and its parent view ports).

Table 48-4 lists the different types of items that can be displayed in the ADF Structure
window hierarchy tree.

Table 48-4 ADF Structure Window Items

ADF Structure
Tree Item

Description

Scopes Displayed at the top of the ADF Structure hierarchy above its sibling ADF Context node. There
is only one Scopes node in the ADF Structure hierarchy. You can expand the Scopes node to
show a list of child scope nodes (such as viewScope and pageFlowScope). If you select a
child scope node, the ADF Data window displays the variables and values for that scope.

ADF context Displayed as the root node of the ADF Structure hierarchy below its sibling Scopes node. There
will only be one ADF Context within the ADF Structure hierarchy.

View port View ports are an ADF Controller concept. For this reason, view ports appear within the ADF
Structure hierarchy only when the application being debugged utilizes ADF Controller.

View ports can represent one of the following:

• Browser: Main browser view ports, also known as root view ports, appear as children of
the root ADF Context. If multiple browser windows are open during the debugging runtime
session, multiple browser view ports are presented within the hierarchy. The label of each
browser view port displays the text "Browser". The view port also provides a tooltip for the
view port ID similar to the following example: "Root View Port: 999999".

• Region: Region view ports appear as the children of page or page fragments. They are also
known as child view ports. The label of each region view port displays the text "Region".
The region also provides a tooltip for the view port ID similar to the following example: "Child
View Port: 999999".

ADF task flows The page flow stack corresponding to each view port appears as a hierarchy of ADF task flows.
The initial ADF task flow called for the stack is a direct child of its corresponding view port. The
label of each ADF task flow reflects the corresponding ADF task flow display name (if any) or
its task flow ID. Region view ports will not display the item in their page flow stack hierarchy for
their implied unbounded task flow. The task flow also provides a tooltip displaying the ADF task
flow path, and a context menu item to open to the corresponding ADF task flow within the editor
workspace.

If ADF Controller is not utilized in the application (or if the page is run outside the context of an
ADF task flow), ADF task flows will not appear within the hierarchy.

Page Represents the page (view) currently displayed within a browser view port. Presented along with
its associated binding container (if any) as a child. If the application being debugged utilizes ADF
Controller, pages will be children of each browser view port. The label of each page reflects
its corresponding runtime view ID. The page also provides a tooltip displaying the page path,
and a context menu item to open to the corresponding page within the editor workspace. If a
visual user interface in not implemented for the application, the page will not appear within the
hierarchy.

Page fragment Represents the page fragment currently displayed within a region view port. Presented along
with its associated binding container (if any) as a child. If the application being debugged utilizes
ADF Controller, page fragments will be children of each region view port. The label of each page
fragment node reflects its corresponding runtime view ID. The page fragment also provides a
tooltip displaying the source file page definition path, and a context menu item to open to the
corresponding page fragment within the editor workspace.

Chapter 48
Setting ADF Declarative Breakpoints

48-55

Table 48-4 (Cont.) ADF Structure Window Items

ADF Structure
Tree Item

Description

Binding
container

Represents the binding container for the corresponding page or page fragment. The label of
each binding container reflects its corresponding file name (page definition file) without the
extension. The binding container node will also provide a tooltip displaying the page fragment
path. The binding container also appears under current task flows when used to represent task
flow activity bindings (for example, method call activity bindings).

If ADF Model is not utilized for the application, binding containers will not appear.

Application data Represents the application data objects (for example, ADF Business Components objects or
ADF Business Components business service objects) instantiated within the data control frame
for the corresponding view port (or binding container if ADF Controller is not used). Application
data objects don't need to be currently instantiated for the Application Data node to appear.

How to Use the ADF Data Window
When an application is paused at an ADF declarative breakpoint, the ADF Data
window displays relevant data based on the selection in the ADF Structure window.
You can launch the ADF Data window by choosing Window > Debugger > ADF Data
in the main menu. The content of the ADF Data window based on the selection in the
ADF Structure window is summarized in Table 48-5.

Table 48-5 ADF Data Window Content for an ADF Structure Window Selection

ADF Structure Window ADF Data Content

Scopes Displays memory scope values based on the current context.
pageFlowScope will also appear within ADF task flow content
for the pageFlowScope values specific to a selected ADF task
flow (not necessarily the current context). viewScope will also
appear within the view port content for the viewScope values
specific to a selected view port (not necessarily the current
context).

ADF context Displays the ADF context variables and values hierarchy. ADF
context variables and values can be inspected by evaluating
the #(data.adfContext) EL expression in the EL Evaluator.

View port Displays view port details, including the viewScope contents.

Page flow stack entry Displays information for the selected page flow stack entry,
including current transaction status and ADF Model save point
status.

Page/page fragment Displays the page or page fragment UI component tree
hierarchy for the selected page or page fragment if the page
or page fragment has been rendered.

Binding container Displays the binding container runtime values, including
parameters, bindings, and executables.

Application data Displays application data objects (for example, ADF Business
Components objects) instantiated within the current binding
context. If the business service layer is implemented with a
technology other than ADF Business Components objects (for
example, EJB) the application data objects will be displayed in
a more generic form.

Chapter 48
Setting ADF Declarative Breakpoints

48-56

The Scopes node in the ADF Structure window can be expanded to show a list of
child scope nodes. When a child scope node is selected in the ADF Structure window,
the ADF Data window displays the current context values for the selected memory
scope, as shown in Figure 48-36.

Figure 48-36 Child Scope Selected in the ADF Structure Window

If the Scopes node itself is selected, then the full list of memory scopes appears also
in the ADF Data windows, which can also be expanded for inspection. Figure 48-37
shows the Scopes node selected in the ADF Structure window, and the viewScope
child node being selected with its values displayed in the ADF Data window. You can
inspect the values of requestScope, viewScope, pageFlowScope, applicationScope,
and sessionScope by expanding each corresponding node. pageFlowScope will also
appear within the ADF Task Flow content to reflect the values of the specific ADF task
flow currently selected in the ADF Structure window. viewScope will also appear within
the view port content to reflect the values of the specific view port currently selected in
the ADF Structure window.

Figure 48-37 Scopes Node Selected in the ADF Structure Window

When the ADF context is selected in the ADF Structure window, as shown in
Figure 48-38, the current value of the ADF context variables will be displayed in

Chapter 48
Setting ADF Declarative Breakpoints

48-57

the ADF Data window. You can also inspect ADF context variables and values by
evaluating the #(data.adfContext) EL expression in the EL Evaluator. For more
information, see How to Use the EL Expression Evaluator.

Figure 48-38 ADF Context Selected for the ADF Data Window

Selecting a view port within the ADF Structure hierarchy will display the view port's
current view port details in the ADF Data window, as shown in Figure 48-39. Values
displayed for each view port are summarized in Table 48-6.

Figure 48-39 View Port Selected for the ADF Data Window

Table 48-6 ADF Data Window Content for View Port

View Port Description

View port ID It is displayed

Client ID It is displayed

Initial task flow ID Initial ADF task flow on the view ports page flow stack. Not
displayed for unbounded task flows. Appears as a link to open
the corresponding task flow definition in the editor workspace.

Chapter 48
Setting ADF Declarative Breakpoints

48-58

Table 48-6 (Cont.) ADF Data Window Content for View Port

View Port Description

Current task flow ID Displayed for bounded task flows and not displayed for
unbounded task flows. Current ADF task flow on the view
port's page flow stack. Appears as a link to open the
corresponding task flow definition in the editor workspace.

View activity ID Current ADF task flow view activity ID. Applicable only if the
current ADF task flow activity is a view activity.

Submitted activity ID ADF task flow activity submitting the current request.

Final activity ID ADF task flow activity receiving the current request.

Bookmark redirect outstanding (Boolean)

Exception (If any)

View memory scope View memory scope variables and values for the selected view
port.

In the ADF Structure window, each individual ADF task flow within a page flow stack
hierarchy is selectable. An ADF task flow selected in the ADF Structure window
will display the current task flow information in the ADF Data window, as shown
in Figure 48-40. Task flow templates utilized by the selected ADF task flow will be
determined by manually navigating to the ADF task flow source file. This is the same
way similar functionalities are handled for Java source files. Current information for a
selected ADF task flow is summarized in Table 48-7.

Figure 48-40 Task Flow Selected for the ADF Data Window

Table 48-7 ADF Data Window Content for Task Flow

Task Flow Description

ADF task flow reference ADF task flow reference

Task flow call activity ID Task flow activity ID for the calling task flow. Will be null for
the first ADF task flow within each view port task flow Calls
window.

Calling view activity ID The calling view activity of the current view activity displayed
by the ADF task flow, if any.

View reached (Boolean)

Chapter 48
Setting ADF Declarative Breakpoints

48-59

Table 48-7 (Cont.) ADF Data Window Content for Task Flow

Task Flow Description

Train model Only applicable if the ADF task flow is created as a train.

Transaction started (Boolean) Identifies the current status of the ADF task flow
transactional state. For example, did the ADF task flow begin a
new transaction?

Transaction shared (Boolean) Identifies the current status of the ADF task flow
transactional state. For example, did the ADF task flow join an
existing transaction?

Save point Identifies the current status of the ADF task flow's ADF Model
save point creation state. For example, was a model save point
created upon ADF task flow entry?.

Remote task flow called (Boolean)

Remote task flow return URL Applies only when calling an ADF task flow remotely. Identifies
the URL for return once the task flow called remotely
completes.

Data control frame created (Boolean)

Data control frame Name of data control frame associated with the ADF task flow.

Page flow memory scopes Appears as an expandable node to allow inspection of the
values of the page flow memory scopes for the task flow
selected in the ADF Structure window.

The page flow memory scopes will also be displayed within the
ADF Structure window's Scopes node. However, the page flow
memory scope for the Scopes node will always be based on
the application's current context, not the selected task flow.

When you select a page or page fragment node in the ADF Structure hierarchy,
the corresponding UI component tree is displayed within the ADF Data window, as
shown in Figure 48-41. If a page or page fragment is based on a page template, you
can include the content coming from the page template outside any facet reference
elements by selecting the Include Page Template Content checkbox at the top of
the ADF Data window. If the page template content is not included, the page or page
fragment UI component tree will appear structurally similar to its source file.

Figure 48-41 Page Selected for the ADF Data Window

Chapter 48
Setting ADF Declarative Breakpoints

48-60

When you select a binding container in the ADF Structure hierarchy, it displays within
the ADF Data window the node selection listed in Table 48-8.

Table 48-8 ADF Data Window Content for Binding Container

Binding Container Description

Page definition link Navigates to the corresponding page definition source file and
opens it within the editor workspace.

Data Controls Displays the binding container's data controls.

Data controls implemented by ADF Business Components
objects and non-ADF Business Components objects will be
presented slightly different. ADF Business Components-based
data controls will appear similar to the actual business service
implementation using row collections. Non-ADF Business
Components-based data controls will typically appear as raw
member variables similar to what is displayed in the ADF
Declarative Debugger Data window. The ADF Data window
shows only cached information such as member variables and
arrays. Standard debugger functionality can also be used to
customize each element.

Each ADF Business Components data control will display the
following information:

• Row collections
• Query string for each row collection
• Query string with variable substitution for each row

collection
• Application data rows
• Current row indicator
• Change indicator
• Current and original values (if changed within the same

request)

Parameters Current values of all binding container parameters.

Executables Displays executables showing current row indicators, and current
and original values (if changed within the same request). This
includes the following types of executables:

• Iterator - presents corresponding attribute bindings along
with their Refresh and RefreshCondition properties.

• task flow - current value of the task flow ID assigned to
the task flow binding and all of its associated parameter
values. Task flow IDs will appear as links navigating to
open the corresponding task flow definition source file within
the editor workspace. Link text consists of <task flow
source document>#<task flow id>.

• Search region - presented similar to iterators, but also
displays criteria and criteria with substitution information.

Bindings Displays value, table, tree, and method bindings. Each binding
will display the following information:

• Associated executables
• Change indicator
• Current and original values (if changed within the same

request)

Binding container of page
template

If the corresponding page or page fragment utilized a page
template, the binding container of the page template will appear
as a child of page or page fragment binding container content.

Chapter 48
Setting ADF Declarative Breakpoints

48-61

When you select a binding container for an application based on non-ADF Business
Components objects, the ADF Data window displays the binding container content, as
shown in Figure 48-1.

Figure 48-42 Binding Container (Non-Business Components) Selected for the
ADF Data Window

When you select a binding container for an application based on ADF Business
Components objects, the ADF Data window displays standard row collection icons,
as shown in Figure 48-2.

Figure 48-43 Binding Container (Business Components) Selected for the ADF
Data Window

Expanding the Parameters node in the ADF Data window displays information similar
to that shown in Figure 48-44.

Chapter 48
Setting ADF Declarative Breakpoints

48-62

Figure 48-44 Parameters Selected for the ADF Data Window

Expanding the Executables node in the ADF Data window displays information similar
to that shown in Figure 48-45.

Figure 48-45 Executables Selected for the ADF Data Window

If a value has changed, the changed item will be marked with a blue dot to its left and
the previous value is displayed in parenthesis. For instance, suppose the OrderTotal
value has changed from 7895.81 to 7670.11. The ADF Data window places a blue dot
next to OrderTotal and its parent OrdersView1Iterator and displays the current and
previous values in the Value column, as shown in Figure 48-46.

Chapter 48
Setting ADF Declarative Breakpoints

48-63

Figure 48-46 A Value Change Is Indicated by a Blue Dot in the ADF Data
Window

Method binding information is displayed in the ADF Data window similar to what is
shown in Figure 48-47.

Figure 48-47 Method Bindings Selected for the ADF Data Window

When you select an Application Data node from the ADF Structure window, the ADF
Data window displays the application objects, such as ADF Business Components
objects, instantiated within the current data control frame for the corresponding view
port (or binding context if ADF Controller is not used).

Business services implemented by ADF Business Components objects display the
application data content, as shown in Figure 48-48 and described in Table 48-9.

Chapter 48
Setting ADF Declarative Breakpoints

48-64

Figure 48-48 Application Data for ADF Business Components Business
Services

Table 48-9 ADF Data Window Content for Application Data

Binding Container Description

Application module The application module(s) of the corresponding view port data
control frame will appear within the application data hierarchy as
the root node(s). An application module design time icon will be
used to identify the node(s). The application module node(s) will
provide the following information:

• Application module link - link to open the corresponding
application module source file within the editor workspace.

• Transaction - the application module current transaction
status, if applicable.

• View objects
• Entity objects

Chapter 48
Setting ADF Declarative Breakpoints

48-65

Table 48-9 (Cont.) ADF Data Window Content for Application Data

Binding Container Description

View object View objects instantiated within the corresponding view port
data control frame will appear underneath the corresponding
application module root node as subordinate nodes. Design time
icons will be used to identify them. Child view objects will appear
subordinate to their parent view objects within the hierarchy.
Named row sets will appear similar to view objects. Named
iterators for a view object will appear similar to child view objects.
Each view object node will provide the following information:

• View object link - link to open the corresponding view object
source file within the editor workspace.

• Query - last executed view object SQL statement. Displays
bind variables without value substitution.

• Query with substitution - last executed view object SQL
statement. Displays bind variables with value substitution.

• Bind variables - last executed view object SQL statement
bind variables and their values.

• View object rows - each row displayed will be identified by its
concatenated key values. The current row will be identified
with a special icon.

• Attributes - attributes contained on each row will display
their current values along with their originating entity
object. Transient attributes will also be displayed.

• Modifications - changes made within the same request will
be identified by a blue dot to left of attribute, row, and view
objects node labels. Both the old and new value of the
modification will be displayed.

Entity object Entity objects instantiated within the corresponding view port
data control frame will appear underneath the application module
root node as subordinate nodes. Design time icons will be used
to identify them. Each entity object node will provide the following
information:

• Entity object link - link to open the corresponding entity
object source file within the editor workspace.

• Entity object rows - each row displayed will be identified
by its concatenated key values. The current entity-state and
post-state of the row (e.g., STATUS_MODIFIED) will also be
presented.

• Attributes - attributes contained on each row will display
their current values.

• Modifications - changes made within the same request will
be identified by a blue dot to left of attribute, row, and entity
objects node labels. Both the old and new value of the
modification will be displayed.

Business services implemented by non-ADF Business Components objects display
application data content using raw member variables. The format is similar to the
display of non-ADF Business Components content for the binding container, as shown
in Figure 48-42.

Chapter 48
Setting ADF Declarative Breakpoints

48-66

What Happens When You Set an ADF Declarative Breakpoint
When you set an ADF declarative breakpoint, JDeveloper adds the breakpoint to
the appropriate class, method, or other construct in the ADF source Java code that
corresponds to the breakpoint. Once the breakpoint is set in the code, the standard
Java debugger mechanism pauses application execution when the breakpoint is
reached. When the breakpoint is reached, it will be identified by a red dot icon in
the Breakpoints window. Depending on the type of declarative breakpoint that was
reached, it will also appear as a red dot icon in the task flow activity, in the page
definition breakpoint margins, or in the ADF Lifecycle Breakpoints window.

For task flow activity breakpoints, the debugger pauses the application within the JSF
Invoke Application phase before the activity where the breakpoint is set. In other
words, the activity where the breakpoint is set is not executed.

For task flow view activities, however, the application is paused within the JSF Render
Response phase after the view activity is executed, but before the new page is
rendered.

For a page definition Before executable breakpoint, the debugger pauses the
application when the executable is refreshed. For a page definition Before action
binding breakpoint, the debugger pauses the application when the binding is executed.
For a page definition Before attribute value binding breakpoint, the debugger pauses
the application before the attribute's setInputValue() method in the ADF source code
is executed.

For a Before lifecycle breakpoint, the debugger pauses the application before it enters
the next lifecycle phase. For an After lifecycle breakpoint, the debugger pauses the
application after the lifecycle phase and before the next phase.

Setting Breakpoints in Java Code and Groovy Script
In most ADF applications, declarative breakpoints provide more than enough
information to troubleshoot the application errors. But there might be situations
where you may need to set breakpoints on specific classes or methods for further
investigation. Using Java code and Groovy snippet breakpoints in combination with
ADF declarative breakpoints will help you to identify these errors.

You can use the ADF Declarative Debugger to set breakpoints on Java classes
and methods, as in any standard Java code debugger. You can use Java code
breakpoints and Groovy snippet breakpoints in combination with ADF declarative
breakpoints. For most ADF applications, ADF declarative breakpoints will provide
enough debugging information to troubleshoot the application. For information
about using ADF declarative breakpoints, see Setting ADF Declarative Breakpoints.
However, you may need to set breakpoints on specific classes or methods for further
inspection. Or, you may be debugging a non-ADF application, in which case, you can
use Java code breakpoints.

JDeveloper provides a class locator feature that assists you in finding the class you
want to break on. If you can obtain Oracle ADF source code, you can enhance
your debugging by having access to various ADF classes and methods. For more
information about getting ADF source code, see Using ADF Source Code with the
Debugger. If you obtained the ADF source, you can further enhance the debugging
experience by using the debug library version of the ADF source, as described in How
to Use Debug Libraries for Symbolic Debugging.

Chapter 48
Setting Breakpoints in Java Code and Groovy Script

48-67

How to Set Breakpoints in Groovy Script
When you define validation rules or attribute default values using Groovy script, you
can set breakpoints on these Groovy snippets.

Before you begin:

It may be helpful to have an understanding of when to use code breakpoints instead
of ADF declarative breakpoints. For more information, see Setting Breakpoints in Java
Code and Groovy Script.

To set Groovy snippet breakpoints to debug an application:

1. In the Applications window, expand the entity object or view object that contains
the Groovy script where you want to set a breakpoint, and then double-click the
object’s .bcs file.

2. In the source editor, click in the margin next to the appropriate line to set a
breakpoint, and then run the debugger.

3. When the application stops on the breakpoint, you can use the Data window to
examine the local variables and arguments of the current context.

How to Set Java Breakpoints on Classes and Methods
You can set Java breakpoints on your classes and methods. If you have ADF source
code, you can set Java breakpoints in the source as well. If you are debugging an
ADF application, you should check to see whether ADF declarative breakpoints can
be used instead of Java code breakpoints. For more information, see Setting ADF
Declarative Breakpoints.

Before you begin:

It may be helpful to have an understanding of when to use Java code breakpoints
instead of ADF declarative breakpoints. For more information, see Setting Breakpoints
in Java Code and Groovy Script.

You will need to complete this task:

Before you attempt to use breakpoints, you should try to run the application and
look for missing or incomplete data, actions and methods that are ignored or
incorrectly executed, or other unexpected results. If you did not find the problem,
create a debugging configuration that will enable the ADF Log and send Oracle
ADF messages to the Log window. For more information, see How to Create an
Oracle ADF Debugging Configuration.

To set Java breakpoints to debug an application:

1. In the main menu, choose Navigate and then Go To Java Type (or press
Ctrl+Minus) and use the dialog to locate the Oracle ADF class that represents
the entry point for the processing failure.

Chapter 48
Setting Breakpoints in Java Code and Groovy Script

48-68

Note:

JDeveloper will locate the class from the user interface project with
current focus in the Applications window. If your workspace contains
more than one user interface project, be sure that the one with the
current focus is the one you want to debug.

2. Open the class file in the source editor and find the Oracle ADF method call that
will enable you to step into the statements of the method.

3. Set a breakpoint on the desired method and run the debugger.

4. When the application stops on the breakpoint, use the Data window to examine
the local variables and arguments of the current context.

Tip:

If you are using the Go to source context menu command in the Data,
Watches, or Smart Data window, you can go back to the execution point
by using the back button. You can also access the back button through the
Navigate menu.

Once you have set breakpoints to pause the application at key points, you can
proceed to view data in the Data window. To effectively debug your web page's
interaction with the ADF Model layer, you need to understand:

• The ADF page lifecycle and the method calls that get invoked

• The local variables and arguments that the ADF Model layer should contain during
the course of application processing

Awareness of Oracle ADF processing will give you the means to selectively set
breakpoints, examine the data loaded by the application, and isolate the contributing
factors.

Note:

JSF web pages may also use backing beans to manage the interaction
between the page's components and the data. Debug backing beans by
setting breakpoints for them as you would with any other Java class file.

How to Optimize Use of the Source Editor
Once you have added the ADF source library to your project, you have access to
the helpful Quick Javadoc feature (Ctrl+D) that the source editor makes available.
Figure 48-49 shows Quick Javadoc for a method like findSessionCookie().

Chapter 48
Setting Breakpoints in Java Code and Groovy Script

48-69

Figure 48-49 Using Quick Javadoc on ADF API in the Source Editor

How to Set Breakpoints and Debug Using ADF Source Code
After loading the ADF source code, you can debug any Oracle ADF code for the
current project the same way that you do your own Java code. This means that you
can press Ctrl+Minus to type in any class name in Oracle ADF, and JDeveloper will
open its source file automatically so that you can set breakpoints as desired.

How to Use Debug Libraries for Symbolic Debugging
When debugging Oracle ADF source code, by default you will not see symbol
information for parameters or member variables of the currently executing method.

For example, in a debugging session without ADF source code debug libraries, you
may see unrecognizable names such as "_slot", as shown in Figure 48-50.

Figure 48-50 Local Symbols Are Hard to Understand Without Debug Libraries

These names are hard to decipher and make debugging more difficult. You can make
debugging easier by using the debug versions of the ADF JAR files supplied along
with the source while debugging in your development environment.

Chapter 48
Setting Breakpoints in Java Code and Groovy Script

48-70

Note:

The supplied debug libraries should not be used in a test or production
environment, since they typically have slightly slower runtime performance
than the optimized JAR files shipped with JDeveloper.

The debug library JARs are versions of Oracle ADF JARs that have been compiled
with additional debug information. When you use these debug JAR files instead of
the default optimized JARs, you will see all of the information in the debugger. For
example, the variable evid is now identified by its name in the debugger, as shown in
Figure 48-51.

Figure 48-51 Symbol Information Displayed in the Debugger

Before you begin:

It may be helpful to have an understanding of when to use Java code breakpoints
instead of ADF declarative breakpoints. For more information, see Setting Breakpoints
in Java Code and Groovy Script.

You will need to complete this task:

Before you replace the standard library JAR, make sure that JDeveloper is not
running. If it's currently running, exit from the product before proceeding.

To replace the standard library JARs with the debug library JARs:

1. With JDeveloper closed, make a backup subdirectory of all existing optimized JAR
files in the ./BC4J/lib directory of your JDeveloper installation. For example,
assuming jdev11 is the JDeveloper home directory:

C:\jdev11\BC4J\lib> mkdir backup
C:\jdev11\BC4J\lib> copy *.jar backup

2. For each ADF library that you want debug symbols for while debugging, copy the
_g.jar version of the matching library over the existing, corresponding library in
the C:\jdev11\BC4J\lib directory.

This is safe to do since you made a backup of the optimized JAR files in the
backup directory in Step 2.

Chapter 48
Setting Breakpoints in Java Code and Groovy Script

48-71

Since debug libraries typically run a little slower than libraries compiled without
debug information, this diagnostic message is to remind you not to use debug
libraries for performance timing:

**
*** WARNING: Oracle BC4J debug build executing - do not use for timing ***
**

3. To change back to the optimized libraries, simply copy the JAR file(s) in question
from the ./BC4J/lib/backup directory back to the ./BC4J/lib directory.

What You May Need to Know About Setting Java Code Breakpoints
You first need to understand the different kinds of Java code breakpoints and where to
create them.

To see the debugger Breakpoints window, choose Window and then Breakpoints in
the main menu (or press Ctrl+Shift+R).

You can create a new Java code breakpoint by choosing Create Breakpoint from the
context menu in the Breakpoints window. The Breakpoint Type dropdown list controls
what kind of breakpoint you will create, as shown in Table 48-10.

Note:

You can also use the Create Breakpoint dialog to create an ADF lifecycle
phase declarative breakpoint. For information about creating ADF declarative
breakpoints, see How to Set and Use ADF Lifecycle Phase Breakpoints.

Table 48-10 Different Types of Java Breakpoints

Breakpoint
Type

The Breakpoint Occurs
Whenever

Usage

Exception An exception of this class (or
a subclass) is thrown.

An Exception breakpoint is useful when you
don't know where the exception occurs, but
you know what kind of exception it is (for
example,
java.lang.NullPointerException,
java.lang.ArrayIndexOutOfBoundsExcep
tion, oracle.jbo.JboException). The
checkbox options allow you to control whether
to break on caught or uncaught exceptions of
this class. The Browse button helps you find
the fully qualified class name of the exception.
The Exception Class combobox remembers
the most recently used exception breakpoint
classes. Note that this is the default breakpoint
type when you create a breakpoint in the
breakpoints window.

Chapter 48
Setting Breakpoints in Java Code and Groovy Script

48-72

Table 48-10 (Cont.) Different Types of Java Breakpoints

Breakpoint
Type

The Breakpoint Occurs
Whenever

Usage

Source A particular source line
in a particular class in a
particular package is run.

You rarely create a source breakpoint in the
Create Breakpoint dialog, because it's much
easier to create it by first using the Navigate
> Go to Java Type menu (accelerator
Ctrl+Minus), then scrolling to the line number
you want — or using Navigate > Go to Line
(accelerator Ctrl+G) — and finally clicking in
the breakpoint margin at the left of the line you
want to break on. This is equivalent to creating
a new source breakpoint, but it means you
don't have to type in the package, class, and
line number by hand.

Method A method in a given class is
invoked.

The Method breakpoint is useful for setting
breakpoints on a particular method you might
have seen in the call stack while debugging a
problem. If you have the source, you can set
a source breakpoint wherever you want in that
class, but this kind of breakpoint lets you stop
in the debugger even when you don't have
source for a class.

Class Any method in a given class
is invoked.

The Class breakpoint can be used when you
might know the class involved in the problem,
but not the exact method you want to stop
on. This kind of breakpoint does not require
source. The Browse button helps you quickly
find the fully qualified class name you want to
break on.

Watchpoint A given field is accessed or
modified.

The Watchpoint breakpoint can be used to find
a problem if the code inside a class modifies
a member field directly from several different
places (instead of going through setter or
getter methods each time). You can pause the
debugger when any field is modified. You can
create a breakpoint of this type by using the
Toggle Watchpoint menu item on the context
menu when pointing at a member field in your
class's source.

How to Edit Breakpoints for Improved Control
After creating a Java code breakpoint you can edit the breakpoint in the Breakpoints
window by right-clicking it and choosing Edit in the context menu.

Chapter 48
Setting Breakpoints in Java Code and Groovy Script

48-73

Note:

You can use the Edit Breakpoint dialog to edit an ADF declarative
breakpoint. However, you cannot edit some of the other information such
as the information in the Definition tab. You can launch the Edit Breakpoint
dialog by choosing Edit from the context menu in the Breakpoints window.
For information about creating ADF declarative breakpoints, see Setting ADF
Declarative Breakpoints.

Some of the features you can use by editing your breakpoint are:

• Associate a logical "breakpoint group" name to group this breakpoint with others of
the same group name. Breakpoint groups make it easy to enable/disable an entire
set of breakpoints in one operation.

• Associate a debugger action to a breakpoint when the breakpoint is hit. The
default action is to stop the debugger so that you can inspect the application
states, but you can add a sound alert, write information to a log file, and enable or
disable group of breakpoints.

• Associate a conditional expression with the breakpoint so that the debugger stops
only when that condition is met. The expressions can be virtually any boolean
expression, including:

– expr ==value

– expr.equals("value")

– expr instanceof.fully.qualified.ClassName

Note:

Use the debugger Watches window to evaluate the expression first to
make sure it's valid.

How to Filter Your View of Class Members
You can use the debugger to filter the members that are displayed in the debugger
window for any class. In the debugger's Data window, selecting any item and choosing
Preferences from the context menu brings up a dialog that lets you customize which
members appear in the debugger and (more importantly sometimes) which members
don't appear. You can filter by class type to simplify the amount of scrolling you need
to do in the debugger Data window. This is especially useful when you might be
interested only in a handful of a class's members.

What You May Need to Know About Oracle ADF Breakpoints
If you loaded Oracle ADF source code, you can use the breakpoints listed in
Table 48-11 to debug your application.

By looking at the Stack window when you hit these breakpoints, and stepping through
the source, you can get a better idea of what's going on.

Chapter 48
Setting Breakpoints in Java Code and Groovy Script

48-74

Table 48-11 Commonly Used ADF Breakpoints

Breakpoint Breakpoint Type Usage

oracle.jbo.JboException Exception This breakpoint useful for setting a breakpoint on
the base class of all ADF Business Components
runtime exceptions.

oracle.jbo.DMLException Exception This is the base class for exceptions originating
from the database, like a failed DML operation
due to an exception raised by a trigger or by a
constraint violation.

doIt() Method You can also perform the same debugging
function by setting an ADF declarative
breakpoint on the page definition action binding.
See How to Set and Use Page Definition Action
Binding Breakpoints.

If you prefer to use this Java breakpoint, you
can find it in the JUCtrlActionBinding class
(oracle.jbo.uicli.binding package).

This is the method that will execute when any
ADF action binding is invoked, and you can step
into the logic and look at parameters if relevant.

oracle.jbo.server.ViewObjectImpl.ex
ecuteQueryForCollection

Method This is the method that will be called when a
view object executes its SQL query.

oracle.jbo.server.ViewRowImpl.setAt
tributeInternal

Method This is the method that will be called when any
view row attribute is set.

oracle.jbo.server.EntityImpl.setAtt
ributeInternal

Method You can also perform the same debugging
function by setting an ADF declarative
breakpoint on the page definition attribute value
binding. See How to Set and Use Page
Definition Value Binding Breakpoints.

This is the method that will be called when any
entity object attribute is set.

Debugging Groovy Expressions in Business Components
JDeveloper allows you to debug Groovy scripts/expressions. To start the debugger,
right-click on the applicationmodule.xml file to start the Oracle ADF Model Tester or
right click on the Java file containing the main method to start executing the Java
program.

The .bcs file contains Groovy expressions/scripts. The .bcs file is associated with
an entity object or view object. When Groovy expressions are debugged, if there is
an exception, the debugger pauses in the .bcs file at the line where the exception
occurred and displays the errors. If there is no exception, the debugger proceeds to
execute the Groovy expressions, and displays the necessary computational data (in
the data/smart data/watch etc windows). Just as you can set breakpoints in a Java
source code file, JDeveloper allows you to place breakpoints in a .bcs file. When the
debugger is run and if the debugger encounters a breakpoint in this .bcs file, the
debugger pauses execution at the breakpoint.

The process of debugging Groovy scripts in a .bcs file is similar to that of a Java file.
When the debugger is in the .bcs file, use the various step operations, namely Step

Chapter 48
Debugging Groovy Expressions in Business Components

48-75

Into, Step Over, and Step Out to control the execution of the Groovy scripts by the
debugger. At any point when the debugger is in the .bcs file, either at a breakpoint,
or when the debugger has paused execution at a line because you used the step
operations, use the debugger log windows to view execution data.

How to Debug Groovy Expressions
JDeveloper allows you to debug Groovy expressions. To debug Groovy expressions,
right-click on the applicationmodule.xml file and select Debug to start the Oracle
ADF Model Tester or right-click on the Java file containing the main method to start
executing the Java program.

To start debugging Groovy expressions, do any of the following two steps.

1. Right-click on an application module (applicationmodule.xml file) and select
Debug to start the Oracle ADF Model Tester.

2. Right-click on the Java file containing the main method and select Debug from the
context menu to start executing the Java program. Alternatively, double click on
the Java file to open it; right-click inside the Java file and select Debug from the
context menu.

How to Control Groovy Debugging
The application allows you to place breakpoints in the .bcs file and use the step
operations (Step Into, Step Over, Step Out) to control the execution of the debugger.

To read more about breakpoints, refer to Managing Breakpoints.

To control Groovy debugging:

1. Double-click on the .bcs file to open it.

Figure 48-52 shows breakpoints placed in the .bcs file. The debugger executes
the Groovy scripts, and if the debugger encounters a breakpoint in the .bcs file,
the debugger pauses at this breakpoint. You also use the Step Into, Step Over,
Run to Cursor to control Groovy debugging.

Chapter 48
Debugging Groovy Expressions in Business Components

48-76

Figure 48-52 Breakpoints placed in .bcs file

2. When the debugger has paused at the breakpoint in the .bcs file, use the Debug
menu, toolbar icons, or keyboard equivalents to use step operations. They are
namely Step Into, Step Over, and Step Out.

Refer to How to Step Into a Method to read more about step operations.
The application also allows you to run the debugger at the cursor location. Refer
How to Run to the Cursor Location to read more.

The application allows you to pause the debugger while it is running. You can then
inspect the state of the program and then continue to run the debugger. Refer How
to Pause and Resume the Debugger to read more on how to pause and resume
the debugger.

At any point you can terminate the debugging session. Refer How to Terminate a
Debugging Session to read on how to terminate a debugging session.

What Happens When You Debug Groovy Expressions
The application debugs Groovy scripts in a .bcs file. Place breakpoints in the .bcs file
if required to pause the execution of the debugger at these breakpoints. Inspect the
information in the data/watch/smart data etc windows whenever the debugger pauses
at a breakpoint or when you step operations.

The debugger executes the Groovy scripts and displays information in the data/watch/
smart data etc windows. Figure 48-53 displays a breakpoint set at line 27, and the
debugger has paused at this line, which is the current execution line (indicated by the
red arrow). The current execution line indicates a call to the method modifyEname().
This method attempts to modify the Ename attribute of the Emp entity.

Chapter 48
Debugging Groovy Expressions in Business Components

48-77

Figure 48-53 Breakpoint placed in Java file at line that references Groovy
expressions

A validator is defined for the Ename attribute. The validator is defined using Groovy
script/expression. This Groovy script (along with other Groovy scripts defined for other
use cases) reside in a .bcs file. So when you Step Into this method at line 27, the
application accesses this .bcs file and executes the validator. Figure 48-54 shows the
debugger paused at line 23 in the .bcs file at a pre-set breakpoint, whilst executing the
validator.

Figure 48-54 Debugger navigates from Java file to .bcs file and pauses at
breakpoint in .bcs file

Chapter 48
Debugging Groovy Expressions in Business Components

48-78

At this point, resume debugging, or terminate debugging, or use step operations. Refer
How to Control Groovy Debugging to read more.

Regression Testing with JUnit
JUnit is an open source regression testing framework for Java which is used to write
and run tests that verify Java code. Tests written in JUnit help you write code at an
extreme pace and spot defects quickly. In JDeveloper, you can use wizards to create
test fixtures, cases, and suites.

Testing your business services is an important part of your application development
process. By creating a set of JUnit regression tests that exercise the functionality
provided by your application module, you can ensure that new features, bug fixes,
or refactorings do not destabilize your application. JDeveloper's integrated support
for creating JUnit regression tests makes it easy test your application. Its integrated
support for running JUnit tests means that any developer on the team can run the
test suite with a single mouse click, greatly increasing the chances that every team
member can run the tests to verify their own changes to the system. Furthermore,
by using JDeveloper's integrated support for creating and running Apache Ant build
scripts, you can easily incorporate running the tests into your automated build process
as well. You can create a JUnit test for your application module, run it, and integrate
the tests into an Ant build script.

JDeveloper provides the ability to generate JUnit test cases, test fixtures, and test
suites. You can create test cases to test individual Java files containing single or
multiple Java classes. You can create JUnit test fixtures that can be reused by JUnit
test cases. You can group all these test cases into a JUnit test suite, which you can
run together as a unit.

You can also use the JUnit BC4J Test Suite wizard to generate a test suite when there
is an application module in the project. The wizard generates a test suite, test fixture,
and a test case for each view object in the application module.

You can create a separate project to contain your regression tests or to integrate the
test files into an existing project. If you are creating an ADF Business Components
test, you should create a separate project for testing.

Creating separate projects for testing has the following advantages:

• The ability to compile the base project without having a dependency on JUnit

• The ability to package the base project for deployment without having to exclude
the test classes.

If you are creating separate projects for JUnit testing, you should create directory
structures that mirror the structure of the packages being tested. You may want to
name the test classes using a naming convention that can easily identify the package
being tested. For example, if you are testing myClass.java, you can name the test
class myClassTest.java.

Although having separate projects has many advantages, in certain cases it may be
easier to include the tests within the project.

You can use the Create Test wizards in the context of the project to create a JUnit test
case, test fixture, or test suite. However, if you do not want to include these tests as
part of the deployment, you may want to separate the tests out in their own project.

Chapter 48
Regression Testing with JUnit

48-79

Tip:

If you don't see the Create Test wizards, use JDeveloper's Help > Check for
Updates feature to install the JUnit Integration extension before continuing.

Each test case class contains a setUp() and tearDown() method that JUnit invokes
to allow initializing resources required by the test case and to later clean them up.
These test case methods invoke the corresponding setUp() and tearDown() methods
to prepare and clean up the test fixture for each test case execution. Any time a
test in the test case needs access to the application module, it uses the test fixture's
getApplicationModule() method. The method returns the same application module
instance, saved in a member field of the test fixture class, between the initial call to
setUp() and the final call to tearDown() at the end of the test case.

JDeveloper supports JUnit 4, which allows annotations to be used instead of explicitly
having to name the methods setUp() and tearDown().These annotations — @Before,
@After — allow you to have multiple setup and teardown methods, including inherited
ones if required.

The generated ExampleModuleConnectFixture is a JUnit test fixture that encapsulates
the details of acquiring and releasing an application. It contains a setUp() method
that uses the createRootApplicationModule() method of the Configuration class to
create an instance of an application module. Its tearDown() method calls the matching
releaseRootApplicationModule() method to release the application module instance.

Your own testing methods can use any of the programmatic APIs available in the
oracle.jbo package to work with the application module and view object instances
in its data model. You can also cast the ApplicationModule interface to a custom
interface to have your tests invoke your custom service methods as part of their job.
During each test, you will call one or more assertXxx() methods provided by the JUnit
framework to assert what the expected outcome of a particular expression should be.
When you run the test suite, if any of the tests in any of the test cases contains
assertions that fail, the JUnit Test Runner window displays the failing tests with a red
failure icon.

The JUnit test generation wizard generates skeleton test case classes for each view
object instance in the data model, each of which contains a single test method named
testAccess(). This method contains a call to the assertNotNull() method to test that
the view object instance exists.

// In ViewInstanceNameTest.java test case class
 public void testSomeMeaningfulName() {
 // test assertions here
 }

Each generated test case can contain one or more test methods that the JUnit
framework will execute as part of executing that test case. You can add a test to
the test case simply by creating a public void method in the class whose name begins
with the prefix test or use the annotation @Test.

How to Obtain the JUnit Extension
JUnit must be loaded as an extension to JDeveloper before it becomes available and
appears in the menu system.

Chapter 48
Regression Testing with JUnit

48-80

Before you begin:

It may be helpful to have an understanding of the using JUnit regression testing to
create test cases. For more information, see Regression Testing with JUnit.

To load the JUnit extension:

1. In the main menu, choose Help and then Check For Updates.

2. In the Source page of the Check for Updates dialog, select Search Update
Centers and Official Oracle Extensions and Updates and click Next.

If you have the JUnit zip file or if the JUnit selection does not appear in the
Available Updates list, select Install From Local File to load the JUnit zip file.

3. In the Updates page, select JUnit Integration and click Next, as shown in
Figure 48-55.

Figure 48-55 Check for Updates Wizard for Adding JUnit Extension

4. On the License Agreements page, click I Accept and click Finish.

How to Create a JUnit Test Case
Before you create a JUnit test case, you must have created a project that is to be
tested.

Before you begin:

It may be helpful to have an understanding of the using JUnit regression testing to
create test cases. For more information, see Regression Testing with JUnit.

To generate a JUnit test case:

Chapter 48
Regression Testing with JUnit

48-81

1. In the Applications window, right-click the project in which want to create a test
case and choose New and then From Gallery.

2. In the New Gallery, expand General, select Unit Tests and then Test Case, and
click OK.

3. In the Select the Class to Test page of the Create Test Case dialog, enter the class
under test or click Browse.

4. In the Class Browser dialog, locate the class you want to test or enter the
beginning letters in the Match Class Name field. The Match Class list will be
filtered for easier identification.

For example, entering Summit filters the list down to four items, as shown in
Figure 48-56.

Figure 48-56 Class Browser for Selecting Class Files to Test

Select the class and click OK to close the dialog. Click Next.

5. Select the individual methods you want to test, and click Next.

For example, in Figure 48-57, the four methods that are checked are to be tested.

Chapter 48
Regression Testing with JUnit

48-82

Figure 48-57 Create Test Case Dialog for Selecting Methods to Test

6. In the Setup Test Case Class page, enter the name of the test case, the package,
and the class it extends and select the list of built-in functions JUnit will create
stubs for. Click Next.

For example, in Figure 48-58, JUnit will create a stub for the setUp() method for
the SummitViewObjectImplTest test case in the oracle.summit.base package of
the Summit sample application for Oracle ADF.

Figure 48-58 Create Test Case Dialog for Setting Up Classes to Test

Chapter 48
Regression Testing with JUnit

48-83

7. In the Select Test Fixtures page, select any test fixtures you want to add to the test
case or click Browse.

8. Make sure that all the test fixtures you want to add to the test case are selected in
the list and click Finish.

How to Create a JUnit Test Fixture
You should create a JUnit test fixture if you require more than one test for a class or
method. A JUnit text fixture allows you to avoid duplicating test code that is needed to
initialize testing.

Before you begin:

It may be helpful to have an understanding of the using JUnit regression testing to
create test cases. For more information, see Regression Testing with JUnit.

To generate a JUnit test fixture:

1. In the Applications window, right-click the project in which want to create a test
fixture and choose New and then From Gallery.

2. In the New Gallery, expand General, select Unit Tests and then Test Fixture, and
click OK.

3. In the Create Test Fixture dialog, enter the name of the test fixture, the package,
and any class it extends.

4. Click OK.

How to Create a JUnit Test Suite
Before you create a JUnit test suite, you should have already created JUnit test cases
that can be added to the test suite.

Before you begin:

It may be helpful to have an understanding of the using JUnit regression testing to
create test cases. For more information, see Regression Testing with JUnit.

To generate a JUnit test suite:

1. In the Applications window, right-click the project in which want to create a test
suite and choose New and then From Gallery.

2. In the New Gallery, expand General, select Unit Test and then Test Suite, and
click OK.

3. In the Setup Test Suite Class page of the Create Test Suite dialog, enter the name
of the test suite, the package, and the class it extends. Click Next.

For example, in Figure 48-59, an AllTests test suite is created that extends the
java.lang.Object class.

Chapter 48
Regression Testing with JUnit

48-84

Figure 48-59 Create Test Suite Wizard

4. In the Select Test Cases page of the Create Test Suite dialog, check that all the
test cases you want included in the test suite have been selected. The test cases
you have created will populate the list. Deselect any test cases that you do not
want included. Click Finish.

How to Create a Business Components Test Suite
The test fixture that is created is a singleton class to reduce the number of
connections. If you want to connect or disconnect for each test case, customize the
test case using the JUnit 4 annotations @Before and @After.

The JUnit BC4J Test Suite wizard will generate tests for each view object
in the application module. If the application module does not have exported
methods, the wizard will also generate a test for the application module itself.
A generated view object class has the format view_objectVOTest.java and is
placed into a package with the format package.view.viewobjectVO, where package
is the application module package. A generated application module test has the
format application_moduleAMTest.java and is placed into a package with the
format package.applicationModule. A generated test fixture class has the format
applicationmoduleAMFixture.java and is placed in the same package as the
application module test.

The generated all test suite class has the format AllapplicationmoduleTest.java
and is placed into the package with the same name as the application module
package name.

A test case XML file is also generated for each application module or view object test.
The XML file contains test methods defined in the application module or view object
test cases. It does not include the test methods from the base classes (if any) because
there may be too many duplicates.

For instance, after you created a test suite for an application module named
StoreAAppModule with view objects Employees1View1 and Employees1View2 in the

Chapter 48
Regression Testing with JUnit

48-85

package StoreAPack, the Applications window displays the test hierarchy as shown in
Figure 48-20.

Figure 48-60 Business Components Test Suite in the Applications Window

Before you begin:

It may be helpful to have an understanding of the using JUnit regression testing to
create test cases. For more information, see Regression Testing with JUnit.

You will need to complete this task:

Create the application modules in the data model project, as described in
Implementing Business Services with Application Modules.

To create a business components test suite:

1. In the main menu, choose File and then New and then From Gallery.

You will create a separate project for the business components tests.

2. In the New Gallery, expand General, select Projects and then Java Application
Project, and click OK.

3. In the Project Name page of the Create Java Project wizard, enter a name and the
directory path for the test project, and click Next.

4. In the Project Java Settings page, enter the package name, the directory of the
Java source code in your project, and output directory where output class files will
be placed, and click Finish.

5. In the Applications window, double-click the application module you want to test.

6. In the overview editor, click the Java navigation tab.

7. In the Java page of the overview editor, click the Edit icon for the Java Class
section.

8. In the Select Java Options dialog, select Generate Application Module Class
and click OK.

9. In the Java page of the overview editor, click the Edit icon for the Class Interface
section.

10. In the Edit Client Interface dialog, shuttle the methods you want to test to the
Selected pane, and click OK.

11. In the Applications window, right-click the test project you have created and
choose New and then From Gallery.

Chapter 48
Regression Testing with JUnit

48-86

12. In the New Gallery, expand General, select Unit Tests and then Business
Components Test Suite, and click OK.

13. In the Configure Tests page of the JUnit BC4J Test Suite wizard, select values for
the following and click Next:

• Business Component Project: Select the project that has the application
module you want to test.

• Application Module: Select the application module you want to test.

• Configuration: Choose a local or shared application module.

• Test Base Class-Application Module Extends: You can specify different
base cases. The generated test case classes will extend from that base class
where all public abstract methods in the base class will have simple and
default implementation method bodies.

• Test Base Class-View Object Extends: You can specify which class the view
object extends. The generated test case classes will extend from that base
class where all public abstract methods in the base class will have simple and
default implementation method bodies.

14. In the Summary page, verify the selections and click Finish.

How to a Create Business Components Test Fixture
When you create a business components test suite, a business components test
fixture is created with it. You can also create Business Components test fixtures
independently.

A generated test fixture class has the format applicationmoduleAMFixture.java and
put into a package with the format package.applicationModule, where package is the
application module package.

Before you begin:

It may be helpful to have an understanding of the using JUnit regression testing to
create test cases. For more information, see Regression Testing with JUnit.

You will need to complete this task:

Create the application modules in the data model project, as described in
Implementing Business Services with Application Modules.

To create a business components test fixture:

1. In the main menu, choose File and then New and then From Gallery.

You will create a separate project for the business components tests.

2. In the New Gallery, expand General, select Projects and then Java Application
Project, and click OK.

3. In the Project Name page of the Create Java Project dialog, enter a name and the
directory path for the test project, and click Next.

4. In the Project Java Settings page, enter the package name and the source and
output directories, and click Finish.

5. In the Applications window, double-click the application module you want to test.

Chapter 48
Regression Testing with JUnit

48-87

6. In the overview editor, click the Java navigation tab and then click the Edit icon for
the Java Class section.

7. In the Select Java Options dialog, select Generate Application Module Class,
and click OK.

8. In the Java page of the overview editor, click the Edit icon for the Class Interface
section.

9. In the Edit Client Interface dialog, shuttle the methods you want to test to the
Selected pane, and click OK.

10. In the Applications window, right-click the test project you have created and
choose New and then From Gallery.

11. In the New Gallery, expand General, select Unit Tests and then Business
Components Test Fixture, and click OK.

12. In the Configure Tests page of the JUnit BC4J Test Fixture wizard, select values
for the following and click Next:

• Business Component Project: Select the project that has the application
module you want to test.

• Application Module: Select the application module you want to test.

• Configuration: Choose a local or shared application module.

13. In the Summary page, verify the test fixture class and click Finish.

How to Run a JUnit Test Suite as Part of an Ant Build Script
Apache Ant is a popular, cross-platform build utility for which JDeveloper offers design
time support. You can incorporate the automatic execution of JUnit tests and test
output report generation by using Ant's built-in junit and junitreport tasks. The
following example shows a task called tests from an Ant build.xml file. It depends
on the build and buildTests targets that Ant ensures have been executed before
running the tests target.

 <target name="testCustomizations" depends="compileExtensionClasses">
 <junit printsummary="yes" haltonfailure="yes">
 <classpath refid="customization.classpath">
 <pathelement location="${customization.build.dir}"/>
 </classpath>
 <formatter type="plain"/>
 <test name="oracle.customization.tests.AllTests"/>
 </junit>
 </target>

The junit tag contains a nested test tag that identifies the test suite class to execute
and specifies a directory in which to report the results. The junitreport tag allows
you to format the test results into a collection of HTML pages that resemble the format
of Javadoc.

To try running the JUnit test from Ant, select the build.xml file in the Applications
window, and choose Run Ant Target > tests from the context menu.

Chapter 48
Regression Testing with JUnit

48-88

49
Refactoring a Fusion Web Application

This chapter describes considerations for renaming, moving, and deleting source files,
configuration files, objects, attributes, and elements in a Fusion web application. In
most cases, JDeveloper can perform the complete refactoring. However, in some
cases, you might need to complete some manual steps to refactor.
This chapter includes the following sections:

• About Refactoring a Fusion Web Application

• Renaming Files

• Moving JSF Pages

• Refactoring pagedef.xml Bindings Objects

• Refactoring ADF Business Components

• Refactoring ADF Business Component Object Attributes

• Refactoring Named Elements

• Refactoring ADF Task Flows

• Refactoring the DataBindings.cpx File

• Refactoring Limitations

• Moving the ADF Business Components Project Configuration File (.jpx)

About Refactoring a Fusion Web Application
JDeveloper offers extensive support for refactoring Fusion web application
components, available through the Refactor main menu selections or via context
menus for selected ADF components. The refactoring of ADF application components
in most cases includes renaming, moving, and deleting these components.

JDeveloper provides refactoring options that allow you to make changes to the name
and location of attributes, named elements, files, and ADF Business Components
objects that your application uses. These refactoring options synchronize your
changes with other parts of the application that are dependent on the changes. For
example, renaming an ADF Business Components object such as a view object using
the Rename option renames any references to it in other XML source files.

In a Fusion Web Application, you can use the refactoring actions (move, rename, and
delete) in JDeveloper to make changes to the names and locations of objects. These
actions are available from the main menu under Refactor, as well as the context menu
for each type of object in the Applications window. The move, rename, and delete
operations are available for most (but not all) objects and file types. When an object
or file is selected in the Applications window, the applicable refactoring operations are
enabled in the Refactor menu.

Additionally, there are limitations to what you can refactor in JDeveloper. In some
cases, such as moving a project configuration file, there are manual procedures that
you can follow. For more information, see Refactoring Limitations .

49-1

Refactoring Use Cases and Examples
During the course of development, you will create objects such as entity objects, as
needed, to satisfy the needs of the application. Then you might find that you need
to subsequently need to delete an object that is no longer used, rename an object
to fit a naming convention, or move a set of objects into a different package to
consolidate their location. Using JDeveloper, you can refactor these objects so that
they are updated and the references to these objects in other objects are also updated
to maintain the integrity of the whole application.

Additional Functionality for Refactoring
You may find it helpful to understand other refactoring features available from
JDeveloper. Following are links to other functionality that may be of interest.

• For additional information about using JDeveloper features for refactoring Java
code, see the Refactoring Java Projects section of Developing Applications with
Oracle JDeveloper.

Renaming Files
You can display the Refactor menu when you right-click on the ADF Business
Component in the Applications window. If you choose to rename a component,
JDeveloper will present a Rename dialog. In this dialog you can specify the new
name for the object and choose to preview the changes that will be generated by the
refactoring process.

You can rename files, such as configuration files, using the following methods:

• In the Applications window, select the file and choose File > Rename from the
main menu.

• In the Applications window, right-click the file and choose Refactor > Rename.

• In the source editor, select a class name, right-click it, and choose Rename.

To move a file between directories, use the Move menu item.

When you rename or move a file, all references to the file are updated as well. For
example when you rename a page definition file, its entry in the DataBindings.cpx file
is updated accordingly.

You cannot rename the XML file or Java files associated with an ADF Business
Components object independently of the object, as these files must be kept in synch.
See Refactoring ADF Business Components .

Moving JSF Pages
You can change the package of the JSF page with the Refactor menu. This updates
the faces-config.xml file, DataBindings.cpx mappings to the page, and the ADF task
flows containing page views.

In addition to the other refactoring operations, you can change the package of a JSF
page. In the Applications window, right-click a JSF page and choose Refactor > Move

Chapter 49
Renaming Files

49-2

to move the page to another package. Moving the JSF page to another package
updates:

• faces-config.xml files that reference the page and its package

• ADF task flows containing views associated with the page

• DataBindings.cpx mappings to the page

Refactoring pagedef.xml Bindings Objects
The pagedef.xml file defines bindings and executables that populate the data in UI
components at runtime. You can choose any data binding or executable and rename
or delete it using the Refactor menu.

The pagedef.xml binding objects that you can refactor include bindings and
executables. See Working with Page Definition Files.

Before you begin:

It may be helpful to have an understanding of the options you have for refactoring. See
About Refactoring a Fusion Web Application .

In JDeveloper, open the application that contains the objects you want to refactor.

To refactor pagedef.xml binding objects:

1. In the Applications window, select the page node on which you have added a
bound object such as an ADF Form or selection list.

2. Right-click the page node and choose Go to Page Definition.

If the page does not already have a page definition, the Create Page Definition
dialog appears. Click OK to create a page definition for the page.

3. In the overview editor, click the Bindings and Executables tab.

Data bindings such as list bindings and iterator bindings defined for the page
display under Bindings and Executables, as shown in Figure 49-1.

Chapter 49
Refactoring pagedef.xml Bindings Objects

49-3

Figure 49-1 Page Data Binding Definition Overview Tab

4. In the Structure window, right-click a data binding or executable, choose Refactor
and a refactoring option, such as Rename or Delete.

5. To display the usages between bindings, executables, and data controls, right-click
a binding or executable and choose Find Usages.

Refactoring ADF Business Components
When it comes to refactoring ADF components in JDeveloper, the common refactoring
features that are used are rename, move or delete ADF Business Components
objects.

ADF Business Components includes objects such as view objects and entity objects.
Table 49-1 shows support for refactoring ADF Business Components.

Table 49-1 Refactoring ADF Business Components

Action Result

Move Moves the object to a different package or directory and updates
all references.

Delete JDeveloper shows all dependencies on the object and permits
a forced delete. The application may not work at this point. You
may need to resolve broken references.

Rename ADF Business Components objects are defined by an XML file.
The XML file has a file name identical to the object name. For
example, the name of the XML file for a view object named
Persons1View is Persons1View.xml. Renaming results in
changing the Name attribute, renaming the XML file, and updating
all references.

For example, the name of an entity (Customer) is stored as an
attribute in the XML file (name=Customer). The XML file has the
same name the entity name (Customer.xml).

Chapter 49
Refactoring ADF Business Components

49-4

Table 49-1 (Cont.) Refactoring ADF Business Components

Action Result

Find Usages JDeveloper shows all dependencies on the object.

Note:

Refactoring does not cross abstraction layers. For example, when a view
object is created based on the Dept entity object, it is named DeptView
by default. Renaming the Dept entity object updates the entity usage in
DeptView, but does not change the name of the view object.

Before you begin:

It may be helpful to have an understanding of the options you have for refactoring. For
more information, see About Refactoring a Fusion Web Application .

In JDeveloper, open the application that contains the object you want to refactor.

To refactor ADF Business Components objects:

1. In the Applications window, expand the project and then the Application Sources
node and then the package containing the object you want to refactor.

2. Right-click the object and choose Refactor and a refactoring option.

• To change the name of the object, choose Rename.

The Rename dialog displays the current name of the object. Enter the new
object name and click OK to proceed with the refactoring or Cancel to cancel.

You can optionally select Preview and click OK to display the usages in the
Log window, which allows you to proceed with the refactoring or cancel. When
you click a usage in the Log window, the file that contains the usage is opened
in the Source editor and the containing line is highlighted.

• To change the location of the object, choose Move.

The Move dialog displays the current location of the object. Enter the new
package name, or click Browse to navigate to it. Click OK to proceed with the
refactoring or Cancel to cancel.

• To remove the object, choose Delete.

The Confirm Delete dialog displays the name of the object and searches for
usages. Click Show Usages to display where the object is used. Click Yes
to proceed with the refactoring or No to cancel. Click Preview to display the
results in the Log window, which allows you to proceed with the refactoring or
cancel. When you click a usage in the Log window, the file that contains the
usage is opened in the Source editor and the containing line is highlighted.

By default JDeveloper searches in the current application for usages of the
object. You can change the scope of the search by choosing from the Finding
Usages In dropdown list, or by clicking the Manage Working Sets icon.

Chapter 49
Refactoring ADF Business Components

49-5

Refactoring ADF Business Component Object Attributes
You can refactor attributes of ADF Business Components entity objects and view
objects.

Table 49-1 shows support for refactoring attributes of ADF Business Component entity
objects and view objects.

Table 49-2 Refactoring Attributes

Action Result

Move Not supported.

Delete JDeveloper shows all dependencies on the attribute and permits
a forced delete. The application may not work at this point. You
may need to resolve broken references.

Rename Attributes share data elements represented in entity and
view objects (see About Entity Objects for more information).
References to the attribute are updated when you rename
the attribute. Renaming results in changing the Name attribute
and updating all references. This includes updating the service
implementation of view attributes used in the generated service
of an application module.

Renaming an attribute does not change the data it represents,
nor does it rename the underlying table column.

Find Usages JDeveloper shows all dependencies on the attribute.

Before you begin:

It may be helpful to have an understanding of the options you have for refactoring. See
About Refactoring a Fusion Web Application .

In JDeveloper, open the application that contains the attribute you want to refactor.

To refactor attributes:

1. In the Applications window, double-click the entity object or view object that
contains the attribute you want to refactor.

2. In the overview editor, click the Attributes navigation tab.

3. In the Name column, right-click the attribute and choose a refactoring option.

• To change the name of the attribute, choose Rename.

The Rename dialog displays the current name of the attribute. Enter the new
attribute name and click OK to proceed with the refactoring or Cancel to
cancel.

You can optionally select Preview and click OK to display the usages in the
Log window, which allows you to proceed with the refactoring or cancel.

• To see where the attribute is used, choose Find Usages.

The Log window displays usages of the attribute. When you click a usage in
the Log window, the file that contains the usage is opened in the Source editor
and the containing line is highlighted.

• To remove the attribute, choose Delete.

Chapter 49
Refactoring ADF Business Component Object Attributes

49-6

In the Confirm Delete dialog, click Show Usages to display where the attribute
is used. Click Yes to proceed with the refactoring or No to cancel. Click
Preview to display the results in the Log window, which allows you to proceed
with the refactoring or cancel.

• To change the type of the attribute, choose Change Type.

In the Change Type dialog, choose the new type from the Type dropdown list,
or click Browse to find the type. Click OK to proceed with the refactoring or
Cancel to cancel.

You can optionally select Preview and click OK to display the usages in the
Log window, which allows you to proceed with the refactoring or cancel.

Refactoring Named Elements
A named element is not an object or attribute. Named elements are elements in the
XML schema that can be referenced by a Name attribute. JDeveloper allows you to
refactor a named element.

Named elements are any elements in the XML schema that can be referenced by a
Name attribute. A named element is not an object or an attribute. Table 49-3 shows
support for refactoring named elements in an XML schema.

Table 49-3 Refactoring Named Elements

Action Result

Move Not supported.

Delete Not supported.

Rename One exception to the definition of named elements is the design
time element Attr, which does have a Name attribute. Attr is
a name-value pair, is not accessible from the code editor, and
should not be renamed.

Find Usages JDeveloper shows all dependencies on the named element.

Before you begin:

It may be helpful to have an understanding of the options you have for refactoring. See
About Refactoring a Fusion Web Application.

In JDeveloper, open the application that contains the named element you want to
refactor.

To refactor named elements:

1. In the Applications window, double-click the entity object or view object that
contains the named element you want to refactor.

2. In the editor window, click the Source tab, and search or scroll to find the named
element.

Named elements are indicated by Name="<element>" in the source code, for
example:

<Key Name="PersonsAffContactChk">

Chapter 49
Refactoring Named Elements

49-7

A named element is not an object or attribute.

3. Right-click the named element you want to refactor and choose Refactor and a
refactoring option.

• To change the name of the element, choose Rename.

The Rename dialog displays the current name of the element. Enter the new
element name and click OK to proceed with the refactoring or Cancel to
cancel.

You can optionally select Preview and click OK to display the usages in the
Log window, which allows you to proceed with the refactoring or cancel.

• To remove the element, choose Delete.

In the Confirm Delete dialog, click Show Usages to display where the element
is used. Click Yes to proceed with the refactoring or No to cancel. Click
Preview to display the results in the Log window, which allows you to proceed
with the refactoring or cancel.

Refactoring ADF Task Flows
You can refactor existing activities, JSF page flows, and JSF pages into new ADF
Controller components such as bounded task flows and task flow templates using
JDeveloper.

For more information, see Refactoring to Create New Task Flows and Task Flow
Templates.

Refactoring the DataBindings.cpx File
In order to rename or move the DataBindings.cpx file, you need to create the new
one and delete the existing one. While doing this you must not forget to update the
adfm.xml file which is the registry of registries and the id property must be similar to
the DataBindings.cpx file name otherwise you will get an error message.

The DataBindings.cpx file defines the Oracle ADF binding context for the entire
application and provides the metadata from which the Oracle ADF binding objects
are created at runtime (see DataBindings.cpx Syntax for more information). This file
is a registry used to quickly find all .cpx, .dcx, .jpx, and .xcfg files, which are
themselves registries of metadata.

If you rename the DataBindings.cpx file to a new name, such as
DataBindingsNew.cpx, the change is added to the adfm.xml file.

The following example shows the contents of the adfm.xml file after DataBindings.cpx
is refactored to DataBindingsNew.cpx.

<?xml version="1.0" encoding="UTF-8" ?>
<MetadataDirectory xmlns="http://xmlns.oracle.com/adfm/metainf"
version="11.1.1.0.0">
<DataBindingRegistry path="adf/sample/view/DataBindingsNew.cpx"/>
</MetadataDirectory>

Additionally, to enable the application to access the correct bindings file, the ID value is
changed to an ID similar to the one shown in the following example.

Chapter 49
Refactoring ADF Task Flows

49-8

<Application xmlns="http://xmlns.oracle.com/adfm/application"
version="11.1.1.49.28" id="DataBindingsNew" SeparateXMLFiles="false"
Package="adf.sample.view" ClientType="Generic">

Refactoring Limitations
JDeveloper has set of refactoring issues and limitations that are listed here.

Table 49-4 summarizes the limitations of JDeveloper's refactoring support.

Table 49-4 Refactoring Limitations

Area Limitation

Database When a database artifact used in an ADF Business Components object
is renamed, the object needs to be updated. This type of refactoring is
currently not supported.

Service interface A service interface defines a contract between two separate pieces of
software. For example, the ADF Business Components service interface
is responsible for exposing business components to the view and
model layers. Changing the name of a service interface can cause a
conflict. While developing the application, consider removing the service
interface, refactoring the object, and regenerating the service interface.
Additionally, if your service interface defines a find operation based on a
view criteria that specifies bind variables, changing the number or order
of the bind variables in the underlying view criteria will require that you
regenerate the service interface.

See Creating SOAP Web Services with Application Modules.

Java literal
references

The Java code generated by ADF Business Components has literal
references to the XML metadata. These literal references are updated
during refactoring operations. Generated (type safe) methods are also
updated. Also, the refactor delete operation is available for local Java
variables.

However, if the application code directly refers to the metadata, these
references are not updated.

Domain If a domain needs to be renamed or moved, you must create the new
domain, then change the type of existing domain usages.For example,
you might rename a domain called EmployeeID to EmployeeNumber.
In addition, the entity Emp has an attribute called Empno that is of type
EmployeeID.After creating the new domain EmployeeNumber, go to the
attributes page for the entity, right-click Empno and choose Change
Type. This switches Empno from EmployeeID to EmployeeNumber.

Security Security policies in the policy store may reference the name of an entity
object, attribute, page, or task flow. These policy definitions are not
updated in response to the refactoring of the object itself.

Chapter 49
Refactoring Limitations

49-9

Table 49-4 (Cont.) Refactoring Limitations

Area Limitation

Resource Bundles Entity object definitions can reference a resource in one or more
arbitrary resource bundle (.properties) files that you create. You can
use this file to define labels for the attributes of entity objects. However,
if you rename the .properties file you created, JDeveloper will not
update the entity object definitions to reflect the new file name. As an
alternative to resource bundle files that you create, you can specify a
project setting to generate a single, default resource bundle file for the
data model project. In this case, JDeveloper will not allow you to rename
this generated file. However, if you attempt to change the project-level
default resource bundle file, JDeveloper will warn you about the change.
The data model project will honor the new ADF Business Components
project-level setting for any objects that have not yet been linked to the
default resource bundle file; all existing Business Components that have
already been linked to the original default file will continue to use it
instead.

.jpx project
configuration file

Renaming the ADF Business Components project configuration file
(.jpx) is not supported.

In previous versions of JDeveloper, ADF Business Components project
configuration .jpx files were created only in the root package of the
src directory of a project and were named with the same base name
as the project. The ADF Business Components objects (entity objects,
view objects, and application modules) were all created in the model
package (for example, /model/AppModule.xml), but the /Model.jpx
is not.This may cause a reusability problem when attempting to package
them in ADF JAR files for use on the class path. There may be name
conflicts because several projects are named Model.

Moving the ADF Business Components Project
Configuration File (.jpx)

If the ADF Business Components Project file (.jpx) is moved to a different package,
then the jbo.project property available in bc4j.xcfg file must be changed accordingly.
However, it is not always changed automatically.

Although refactoring the ADF Business Components project configuration file (.jpx) is
not supported, you may need to change its name or location to avoid conflicts when
sharing your project contents as an ADF library. The .jpx file contains configuration
information that JDeveloper uses in the design time to allow you to create the data
model project with ADF Business Components. If you need to refactor this file, you
must do so manually.

Before you begin:

It may be helpful to have an understanding of the options you have for refactoring. See
About Refactoring a Fusion Web Application.

To manually move the ADF Business Components project configuration file (.jpx):

1. Move the.jpx file to the new source tree location.

Chapter 49
Moving the ADF Business Components Project Configuration File (.jpx)

49-10

For example, you can move the Model.jpx file from src/Model.jpx to src/
newpackage/name/here/Model.jpx.

2. Change the .jpx file contents. The PackageName attribute of the root element
JboProject needs to have the correct value.

For example, you can specify PackageName="newpackage.name.here".

3. Change the jbo.project attributes in all common/bc4j.xcfg files that contain
elements referred to in the.jpx file to include the new package name.

For example:

<AppModuleConfig name="ScottDeptAMLocal"
ApplicationName="newpackage.name.here.ScottDeptAM"
DeployPlatform="LOCAL" JDBCName="scottdb"
jbo.project="newpackage.name.here.Model">

4. Change the contents of the JDeveloper project file (the.jpr file):

• Set the new.jpx package location. If you later change the default package in
the project properties, you will again raise a NotFound error for the.jpx file.

For example:

<value n="defaultPackage" v="newpackage.name.here"/>

• Fix any ownerURL elements in the ownerMap that contain references to the old
location of the.jpx file.

For example:

<url n="ownerURL" path="src/newpackage/name/here/Model.jpx"/>

Chapter 49
Moving the ADF Business Components Project Configuration File (.jpx)

49-11

50
Reusing Application Components

This chapter describes how to package certain Oracle ADF components into the
ADF Library for reuse in Fusion web applications. Reusable ADF components are
application modules, business components (entity objects, view objects, associations),
data controls, task flows, page templates, and declarative components.
This chapter includes the following sections:

• About Reusable Components

• Packaging a Reusable ADF Component into an ADF Library

• Adding ADF Library Components into Projects

• Removing an ADF Library JAR from a Project

About Reusable Components
In the course of ADF application development, certain components will often be
reused. Creating and consuming reusable components should be included in the early
design and architectural phases of the application development. It is advantageous
to package these reusable components into a library that can be shared between
different teams. These shared libraries can be added to a repository. Later if you need
a component, you may look into the repository for something to be reused.

In the course of application development, certain components will often be used more
than once. Whether the reuse happens within the same application, or across different
applications, it is often advantageous to package these reusable components into a
library that can be shared between different developers, across different teams, and
even across departments within an organization.

In the world of Java object-oriented programming, reusing classes and objects is
just standard procedure. With the introduction of the model-view-controller (MVC)
architecture, applications can be further modularized into separate model, view, and
controller layers. By separating the data (model and business services layer) from
the presentation (view and controller layers), you ensure that changes to any one layer
do not affect the integrity of the other layers. You can change business logic without
having to change the UI, or redesign the web pages or front end without having to
recode domain logic.

Oracle ADF and JDeveloper support the MVC design pattern. When you create
an application in JDeveloper, you can choose many application templates that
automatically set up data model and user interface projects. Because the different
MVC layers are decoupled from each other, development can proceed on different
projects in parallel and with a certain amount of independence.

ADF Library further extends this modularity of design by providing a convenient and
practical way to create, deploy, and reuse high-level components. When you first
design your application, you design it with component reusability in mind. If you
created components that can be reused, you can package them into JAR files and
add them to a reusable component repository. If you need a component, you may

50-1

look into the repository for those components and then add them into your project or
application.

For example, you can create an application module for a domain and package it
to be used as the data model project in several different applications. Or, if your
application will be consuming components, you may be able to load a page template
component from a repository of ADF Library JARs to create common look and feel
pages. Then you can put your page flow together by stringing together several task
flow components pulled from the library.

An ADF Library JAR contains ADF components and does not, and cannot, contain
other JARs. It should not be confused with the JDeveloper library, Java EE library, or
Oracle WebLogic shared library.

Table 50-1 lists the reusable components supported by ADF.

Table 50-1 Oracle ADF Reusable Components

Reusable Component Description

Data control Any data control can be packaged into an ADF Library JAR. Some
of the data controls supported by Oracle ADF include application
modules, Enterprise JavaBeans, web services, URL services,
JavaBeans, and placeholder data controls.

Application module When you are using ADF Business Components and you
generate an application module, an associated application
module data control is also generated. When you package an
application module data control, you also package up the ADF
Business Components associated with that application module.
The relevant entity objects, view objects, and associations will be
a part of the ADF Library JAR and available for reuse.

Business components Business components are the entity objects, view objects, and
associations used in the ADF Business Components data model
project. You can package business components by themselves or
together with an application module.

Task flows and taskflow
templates

Task flows can be packaged into an ADF Library JAR for reuse.

If you drop a bounded task flow that uses page fragments,
JDeveloper adds a region to the page and binds it to the dropped
task flow.

ADF bounded task flows built using pages can be dropped onto
pages. The drop will create a link to call the bounded task flow. A
task flow call activity and control flow will automatically be added
to the task flow, with the view activity referencing the page. If there
is more than one existing task flow with a view activity referencing
the page, it will prompt you to select the one to automatically add
a task flow call activity and control flow.

If an ADF task flow template was created in the same project as
the task flow, the ADF task flow template will be included in the
ADF Library JAR and will be reusable.

Page templates You can package a page template and its artifacts into an ADF
Library JAR. If the template uses image files and they are included
in a directory within your project, these files will also be available
for the template during reuse.

Declarative components You can create declarative components and package them for
reuse. The tag libraries associated with the component will be
included and loaded into the consuming project.

Chapter 50
About Reusable Components

50-2

You can also package up projects that have several different reusable components if
you expect that more than one component will be consumed. For example, you can
create a project that has both an application module and a bounded task flow. When
this ADF Library JAR file is consumed, the application will have both the application
module and the task flow available for use. You can package multiple components into
one JAR file, or you can package a single component into a JAR file. Oracle ADF and
JDeveloper give you the option and flexibility to create reusable components that best
suit you and your organization.

You create a reusable component by using JDeveloper to package and deploy the
project that contains the components into a ADF Library JAR file. You use the
components by adding that JAR to the consuming project. At design time, the JAR is
added to the consuming project's class path and so is available for reuse. At runtime,
the reused component runs from the JAR file by reference. For the procedure to add
the JAR manually, see How to Add an ADF Library JAR into a Project Manually. For
the procedure to add the JAR using the JDeveloper Resource Catalog, see How to
Add an ADF Library JAR into a Project using the Resources Window.

Before you proceed to create reusable components, you should review the guidelines
for creating reusable components.

Creating Reusable Components
Creating and consuming reusable components should be included in the early design
and architectural phases of software projects. You and your development team
should consider which components are candidates for reuse, not only in the current
applications but also for future applications and including those applications being
developed in other departments.

You and your team should decide on the type of repository needed to store the
library JARs, where to store them, and how to access them. You should consider
how to organize and group the library JARs in a structure that fits your organizational
needs. You should also consider creating standardized naming conventions so that
both creators and consumers of ADF Library JARs can readily identify the component
functionality.

Tip:

If, in the midst of development, you and your team find a module that
would be a good candidate for reuse, you can use the extensive refactoring
capabilities of JDeveloper to help eliminate possible naming conflicts and
adhere to reusable component naming conventions.

Naming Conventions
When you create reusable components, you should try to create unique and relevant
names for the application, project, application module, task flow, connection, or any
other file or component. Do not accept the JDeveloper wizard default names such
as Application, Project, ViewController, AppModule, task-flow-defintion.xml, or
Connection. You want to try to have unique names to avoid naming conflicts with
other projects, components, or connections in the application. Naming conflicts could
arise from components created in the consuming application and those loaded from
other JAR files. Table 50-2 lists the objects that you may be required to rename.

Chapter 50
About Reusable Components

50-3

Table 50-2 Example Unique and Relevant Names for Reusable Components

Type JDeveloper Default Example

Application Application SummitADF

Project Model

ViewController

Project

BackOfficService

OrderTrackingUI

Package Various possibilities. For more
information, see Naming
Considerations for Packages .

oracle.summit

Application module AppModule SummitAppModuleDataControl

Connection Connection1 summit_adf

Task flow task-flow-defintion.xml customer-task-flow-
definition.xml

Page template templateDef.jspx SummitTemplate.jspx

Declarative
Component

componentDef

componentDef.jspx

SummitsuperwidgetDef

SummitsuperwidgetDef.jspx

ADF Library JAR file adflib<string or 3-digit random
number>N

For more information, see The
Naming Process for the ADF
Library JAR Deployment Profile.

SummitADF_Model_adflibSummitA
DF1

Naming Considerations for Packages

Be aware that some components use the default package name of the project without
allowing the name to be explicitly set. In this situation, you must take extra care to
avoid package name collisions. You can set the package name in the application
creation wizard and you should check the names in the Project Properties dialog
afterwards. If you don't set the package name, it will default to a variant of the project
name, typically with the first letter being lowercase. For example, a project with the
name Project1 will have a default package name of project1. You should manually
change the package name to a more unique name before you proceed to build the
project.

Note:

The basic package naming requirement is that ADF metadata registries
(.dcx,.cpx, and so on) are generated based on the project's package name,
and you should avoid metadata naming conflicts between projects that will
be combined at runtime.

When you are creating a reusable component's web resource files (such as JSPs,
HTMLs, and task flows), you should create them in their own relative directories. When
the JAR is deployed into another application, there will be less chance for conflict
between the reusable component's files and the consuming application's files.

Chapter 50
About Reusable Components

50-4

Note:

You can override the staleness period setting of 364 days for all static web
application resources in ADF Libraries by adding initialization parameters to
the web.xml file. For more information, see web.xml.

Naming Considerations for Connections

Often, several modules in an application will connect to the same data source. You
should standardize the connection name to the same data source to avoid confusion
because there is only one namespace for connections across the application.
This would require coordination with other developers, component producers, and
component consumers. For example, if customers and suppliers both have a
connection to the same database, the connection name should be standardized to
an agreed upon name, such as orders_db.

ADF Library JARs (with connections) may be used in different applications with
different connection requirements. ADF Library JAR producers should choose
connection names that are at least representative of the connection source, if not
the actual standardized connection name. Be aware that consumers of the JAR that
was created with connections will be required to satisfy the connection requirements
when they add the component to the application.

For example, for a database connection, choosing an endpoint host name is usually
not appropriate. The most appropriate name is a complete representative for the
schema. Acceptable example names for connections are oracle-appsdb and oracle-
customersdb. You should realize that if many reusable components use different
names for the same logical connection, then the consumer of the component will have
to satisfy each one individually with duplicate information. The consumer will have to
supply connection details for several different connection names, when in fact they all
refer to the same instance.

Naming Considerations for Applications with EJB Projects

If an application has both EJB projects and a web application project with data binding,
you should check to see that the EJB component names are not in conflict with any
other web application project component names. The EJB project components may
have global scope because the project is automatically added to the global class path
of all web projects in the application. The web application project may mistakenly
access a component with the same name in the EJB project rather than within its own
project.

For example, if both an EJB project and a web-based project have a test1.jspx page,
when the web-based project is run, it may try to run the EJB project test1.jspx page.

At runtime, JDeveloper detects if there are EJB projects and web application projects
with data binding in the same application. If there are both types in the application,
when the project is run and the server starts up, a warning message will appear in the
Log window.

Chapter 50
About Reusable Components

50-5

The Naming Process for the ADF Library JAR Deployment Profile
Before you package the project, you must create a deployment profile with the name
and path for the JAR file. You should choose a name that follows you and your
development team's naming convention and that is descriptive of the function of the
component. You should realize that the consuming project may also include other JAR
files from other software authors.

For example, if the component is a task flow for self-service paying, you
might name it mycompany.hcm.pay.selfservice.taskflows.jar. Other examples are
oracle.apps.hcm.pay.model.jar and mycompany.hcm.pay.model.overrides.jar.

When you create the deployment profile, JDeveloper will present a default name with
the following format:

adflibidentifierN

Where identifier is random number up to three-digits and N is a number that starts
with 1 and increments by 1 for each iteration of the profile.

For example, the default name for a profile may be adflib7491(random number is 749
and suffix is 1). The default name for the another profile may be adflib51 (random
number is 5 and suffix is 1).

You can change this default name to a name of your choice.

Keeping the Relevant Project
When you are creating reusable components, you should eliminate any projects that
are not relevant to the reusable component. For example, if you want to create a
reusable application module, you would need a data model project, but you would not
need a user interface project. In this instance, if you had created an application with
both a data model and a user interface project, you could delete the user interface
project. Of course, you should rename the default name Model to something more
relevant, such as BackOfficeService. Similarly, if you are creating a reusable task
flow that is not databound, you can delete any data model project from the application.

Selecting the Relevant Feature
If you know the technology scope of your consuming projects, you can design your
component with technologies that will be compatible. For example, if the consuming
application uses only standard JSF Faces, then it may not be compatible with a
declarative component that is built with ADF Faces.

When you create your application, you can define the features using the Create
Application Wizard by selecting from the application template.

After the project has been created, you can define the technology using the Features
page of the Project Properties dialog.

Selecting Paths and Folders
If you are using the file system to store your ADF Library JARs, you
should select file system locations that can function as repositories. You may
want to put groups of JARs into a common directory folder, for example,

Chapter 50
About Reusable Components

50-6

C:\ADF\jdev\DevTeamADFRepository. If your team or organization plans to share
ADF Library JARs, you should consider setting up network-accessible repository
folders, directories, or services. The Resources window has provisions to connect
to different repository sources and make multiple connections. For more information
about accessing ADF Library JARs using the Resources window, see Using the
Resources Window.

Including Connections Within Reusable Components
If the project you are packaging into an ADF Library JAR includes a connection, that
information can be included in the JAR and may be available to the consuming project.
Oracle ADF uses connection architecture which defines a connection as two parts, the
connection name and the connection details (or endpoint definition). JDeveloper will
present the producer of the JAR the option to package the connection name only or to
include connection details with the connection name.

If a connection is present in the project, the packaged ADF Library JAR will contain
a jar-connections.xml file and a jar-adf-config.xml file. They will be added to
the META-INF directory. The jar-connections.xml file contains the connection name
and other relevant connection information. The jar-adf-config.xml file stores the
information about the credentials used for the connections. If connection credentials
were also specified, then a jar-credential-jazn-data.xml will also be included for
the credential store. You can select the individual connections or connection types that
you want to be packaged with the ADF Library JAR when you create the ADF Library
JAR deployment profile. You make connection selections in the Create or Edit ADF
Library Deployment Profile Properties dialog Connections page, as described in How
to Package a Component into an ADF Library JAR.

When an ADF Library JAR is being added to a project, JDeveloper checks for conflicts
between the application's connections and the JAR's connections. A dialog will be
presented to allow you to decide whether to proceed with adding the JAR to the
project. Connections defined in the ADF Library JAR may be added to the consuming
project, depending on the following conditions:

• If the connection defined in the JAR is fully configured and there are no connection
name conflicts with the consuming project, a new connection will be added.

• If the connection defined in the JAR is partially configured, a new connection
will be added to the consuming project but it must be configured before use.
Connection dialogs may appear to allow the user to enter connection information.
This partially configured connection may be indicated by an incomplete icon.

• If the connection defined in the JAR has the same name as the application's
connection, it will not be added to the project. The application's existing connection
will be used.

• If the connection defined in the JAR has the same name as the application's
connection but is of different type, the JAR's connection will not be added to the
project. For example, if a database connection in the JAR and a URL connection
in the application have the same name, the database connection will not be added
to the application.

For instructions on how to add an ADF Library to a project that includes connections,
see How to Add an ADF Library JAR into a Project using the Resources Window.

Chapter 50
About Reusable Components

50-7

Note:

In the process of adding the ADF Library to a project, you will see one
message displayed in the Log window for each connection defined in the
JAR. The messages indicate the merge action taking place in the project.

Reusable ADF Components Use Cases and Examples
Packaging projects into ADF Library JARs allows components to be reused multiple
times in the same or in different applications. Different development teams can create
and consume projects and create libraries of reusable modules. ADF Library JARs
support the M-V-C design pattern. You can create ADF Libraries and access them
using drag and drop from the Resources window.

For instance, you can package up an application module into an ADF Library JAR and
place it in a public folder for other team to use. Different implementation teams may
access that JAR to create their applications. They may use the application module to
create different pages for their use instead on having to create their own application
modules. When there is a change in the model, the original developer can repackage
the application module and republish the ADF Library JAR. The other implementation
teams can update their application using the updated ADF Library.

Additional Functionality for Reusable ADF Components
You may find it helpful to understand other ADF features before you work with
reusable ADF components. Following are links to other functionality that may be of
interest.

• You can package business components for reuse. For more information on
application modules, see Getting Started with ADF Business Components.

• You can package application modules for reuse. For more information on
application modules, see Implementing Business Services with Application
Modules.

• You can package task flows for reuse. For more information on task flows, see
Getting Started with ADF Task Flows .

• You can package page templates for reuse. For more information on task flows,
see Getting Started with Your Web Interface .

• You can package page templates for reuse. For more information, see the Using
Declarative Components section of the Developing Web User Interfaces with
Oracle ADF Faces.

Common Functionality of Reusable ADF Components
When you package or consume an ADF Library JAR, you also include and consume
the extension libraries that are associated with the project. When you consume an
ADF Library, you can use the Resources window.

Chapter 50
About Reusable Components

50-8

Using Extension Libraries
An ADF project usually includes a list of extension libraries that it needs to run. These
libraries are loaded in the class path of the project. You can view a project's dependent
libraries by selecting the Libraries and Classpath node of the Project Properties
dialog. Some of the libraries that may appear are JSP Runtime, ADF Page Flow
Runtime, Connection Manager, and Oracle JDBC.

When a project is packaged into an ADF Library JAR, its extension libraries are
packaged with it. And when an ADF Library JAR is being consumed by another
project, JDeveloper automatically resolves any extension library conflicts between
them. During the consuming process, JDeveloper checks to see whether the
consuming project already has the extension libraries of the ADF Library JAR in its
class path and loads only those libraries that it does not have. For example, if JSP
Runtime already exists in the consuming project, it will not be loaded again if the ADF
Library JAR also includes it. The consuming project's extension libraries will be a union
of its own libraries and the libraries in the ADF Library JAR.

If the project you want to package into an ADF Library has a dependent project, you
can include the dependent project's extension libraries directly in the JAR or, if the
dependent project has a deployment profile, you can add the dependent project's JAR
to the ADF Library. For more information about setting up the deployment process, see
How to Package a Component into an ADF Library JAR.

For example, suppose that project View is being packaged into ADF Library
adflibView1.jar and that has a dependency on the Model project. For project
View, the Model project is a dependent project with the deployment profile option
(adflibmodel1) selected, as shown in Figure 50-1.

Figure 50-1 Edit Dependencies Dialog with Deployment Profile Option

When the deployment profile is selected, the dependent project's JAR file will be
added to the ADF Library JAR. As a result, the extension libraries of the dependent
project will also be made available to any consuming project. In Figure 50-2, the ADF

Chapter 50
About Reusable Components

50-9

Library being packaged, adflibView1.jar, includes the dependent adflibModel.jar
as listed under the Library Dependencies node.

Figure 50-2 Resources Window Showing adflibView1.jar and adflibModel.jar
Extension Libraries

Alternately, you can include the dependent project's artifacts and extension libraries
directly into the ADF Library JAR.

For example, project View can also be packaged into ADF Library adflibView2.jar.
It also has a dependency on the Model project. But in this second deployment profile,
the Model project is a dependent project with the Build Output option selected
(as opposed to the deployment profile (adflibmodel1) being selected), as shown in
Figure 50-3.

Chapter 50
About Reusable Components

50-10

Figure 50-3 Edit Dependencies Dialog Used to Built adflibview2.jar

When Build Output is selected, the dependent project's classes and extension
libraries will be added directly to the ADF Library JAR. Figure 50-4 shows the
ADF Library adflibView2.jar, which includes artifacts of the Model project and
its extension libraries. Note that the extension libraries under the adflibView2.jar
Library Dependencies node are the same as the combined extension libraries under
the adflibView1.jar and adflibModel.jar shown in Figure 50-2.

Figure 50-4 Resources Window Showing adflibView2.jar Extension Libraries

How you decide to package the dependent project depends on how you intend
the ADF Library to be used. Including the dependent project as a JAR may be
advantageous when the dependent project is itself a reusable component, or when

Chapter 50
About Reusable Components

50-11

it is a dependent project for several projects that will be packaged into an ADF Library
JAR. In the example, the dependent project Model may be a dependent project for
several view projects. On the other hand, packaging the dependent project as Build
Output is straightforward and eliminates the need for multiple JARs.

Note:

If you are creating an ADF Library JAR that is included in a JDeveloper
extension library, you should include the additional manifest JDevLibrary:
extension_library_name entry in the JAR. When you use Add to Project
from the Resources window to add a ADF Library JAR that has a
JDevLibrary manifest entry, the JDeveloper extension library containing this
JAR will be added instead of the ADF Library JAR itself.

Using the Resources Window
ADF Library JARs can be packaged, deployed, discovered, and consumed like
any other Oracle Library component. Creating an ADF Library JAR is the action
of packaging all the artifacts (and additional control files) of a project into a JAR.
Consuming a reusable component from an ADF Library JAR is the action of loading
that ADF Library JAR into the project's set of libraries.

However, the easiest way to manage and use ADF Library JAR components is
by using JDeveloper's Resources window. With the Resources window, developers
who want to consume reusable components can easily find and discover available
components and add them to their projects. The Resources window provides search
and browse functions across different data management systems to locate the
component. It provides multiple connections to access different sources. It has a
structure tree view for displaying different connections and the ADF Library JAR
component types. Figure 50-5 shows the Resources window with several file system
connections.

The Resources window tree structure displays each JAR as subcategories. Separate
nodes are created for each type of reusable component. For example, application
modules are under the Data Controls node, and task flows are under the ADF Task
Flows node.

The tree structure for the ADF Library JAR lists any connection information under a
Library Connections node and lists all the producing project's extension libraries under
the Library Dependencies node.

Chapter 50
About Reusable Components

50-12

Figure 50-5 Resources Window Showing ADF Library Structure

Packaging a Reusable ADF Component into an ADF Library
These reusable components can be packaged into the ADF Library for reuse in
applications. An ADF Library JAR is like another JAR file, but it contains ADF related
components and project dependent libraries. The purpose of the ADF Library JAR file
is for reuse.

Once you have decided that a certain component or components can be reused,
create an application and a project to develop that component. Follow the guidelines in
Creating Reusable Components to name your application, project, package, and other
objects and files. A project corresponds to one ADF Library JAR. If you create multiple
projects and want to reuse components from each of the projects, you may need to
create an ADF Library JAR for each project. In other situations, you may be able to
involve multiple components under one project to create a single ADF Library JAR.
For example, you may be able to create application modules, business components
(entity object, view objects, associations), task flows, and page templates all under
one project and create one ADF Library JAR.

Creating an ADF Library JAR involves compiling the project and validating the
components, creating a resource service file, control files, an adflibREADME.txt, and
adding the relevant project files into a JAR. For more information about the ADF
Library JAR, see What Happens When You Package a Project to an ADF Library JAR.

If you are packaging a component that itself uses another ADF Library component, the
final consuming project must have both ADF Library JARs added to the project. For
example, say you created a reusable task flow that contains tables dropped from a
data control in another ADF Library JAR. When you add the task flow from an ADF

Chapter 50
Packaging a Reusable ADF Component into an ADF Library

50-13

Library JAR into a consuming project, that project will also require the data control
ADF Library JAR.

If you are packaging a component that has dependent JARs, such as third-party JARs,
you have two options:

• If the consuming environment has control over the placement of JARs, you can
place the ADF Library JAR and its dependent JARs in a JDeveloper Extension
Library. The advantage of using a JDeveloper Extension Library is that it does not
clutter the consuming project with specific references to the dependent JARs.

• If using JDeveloper Extension Library is not possible, you can place the dependent
JARs in the same location as the ADF Library JAR and include a manifest
classpath entry for each dependent JAR.

How to Package a Component into an ADF Library JAR
To package up a reusable component, you first create a deployment profile that
specifies the archive type, the name of the JAR file, and the directory path where
the JAR will be created. Then you deploy the project using the deployment profile.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you package an ADF component. For more information, see Packaging a
Reusable ADF Component into an ADF Library.

You may also find it helpful to understand functionality that can be used with packaging
an ADF component. For more information, see Additional Functionality for Reusable
ADF Components.

You will need to complete this task:

Create a project and determine whether it has dependent projects and JAR that
need to be packaged. For more information, see Packaging a Reusable ADF
Component into an ADF Library.

To package and deploy a project into the ADF Library JAR:

1. In the Applications window, double-click the project that contains the component
you want to make reusable.

2. In the Project Properties dialog, select Deployment and then click New.

3. In the Create Deployment Profile dialog, select ADF Library JAR file for Profile
Type, enter a name or accept the default name for Deployment Profile Name,
and click OK.

Chapter 50
Packaging a Reusable ADF Component into an ADF Library

50-14

Figure 50-6 Create Deployment Profile Dialog with Default Name

4. In the Project Properties dialog, select the deployment profile and click Edit.

5. In the Edit ADF Library JAR Deployment Profile Properties dialog, select the
Library Dependencies node, as shown in Figure 50-7.

Figure 50-7 ADF Library JAR Deployment Profile Properties Dialog

The Library Dependencies pane shows a list of dependent projects for the project
being packaged. You can add the dependent project's build output directly into the
packaging project's library, or you can add selected deployment profile archives to
the class path.

a. To add dependent projects, click the Edit icon to bring up the Edit
Dependencies dialog, as shown in Figure 50-8.

If you select Build Output, the dependent project's extension libraries will
be added directly to the ADF Library JAR. If you select deployment profile,
the dependent project's JAR file (which includes its own extension libraries)
will be added to the ADF Library JAR. For more information about library
dependencies, see Using Extension Libraries.

In this example, the Model project can be set as a dependency only
as Build Output. However, the ViewController project can be set

Chapter 50
Packaging a Reusable ADF Component into an ADF Library

50-15

as a dependency either as Build Output, or as a deployment profile
(SummitADF_ViewController_webapp).

Figure 50-8 ADF Library Deployment Edit Dependencies Dialog

b. For each dependent project, select the Build Output node for the project or
select the dependent profile and click OK.

6. In the Edit ADF Library JAR Deployment Profile Properties dialog, select the
Connections node, as shown in Figure 50-9.

You can select:

• Connection Details (excluding secure content): If the project has a
connection, select this checkbox if you want to include any available
connection details in addition to the connection name. Connection details
include hostname, port number, sid, driver type, and user name. For more
information, see Including Connections Within Reusable Components.

• Connection Name Only: Select this checkbox if you want to add the
connection name without any connection details.

Note:

The connection options available depends on the JDeveloper role.
Connection Details (excluding secure content) and Connection
Name Only are the selections available for the Studio Developer role. If
your JDeveloper is set to a different role, you may have different options
and defaults.

In the Applications Connections tree structure, select the checkbox for the level of
connection you want to include.

Chapter 50
Packaging a Reusable ADF Component into an ADF Library

50-16

Figure 50-9 Connections Page of the Edit ADF Library JAR Deployment
Profile Properties Dialog

7. Select the JAR Options node, as shown in Figure 50-10, verify the default
directory path or enter a new path to store your ADF Library JAR file.

If the ADF Library JAR is to be included in a JDeveloper extension library, create
a text file with a JDevLibrary: extension_library_name entry and place the
file in the project root directory. Click Add to locate and merge that file into the
Manifest.mf file.

When you create your manifest text file, make sure the JDevLibrary entry starts in
column 1 with a space after the colon, and that there is a blank line at the end of
the file.

Chapter 50
Packaging a Reusable ADF Component into an ADF Library

50-17

Figure 50-10 ADF Library JAR Deployment Profile Properties Dialog JAR
Option

8. Select the ADF Validation node.

You can select:

• Ignore Errors: To create the JAR file even when validation fails. This is the
default option.

• Stop Processing: To stop processing when validation fails.

Chapter 50
Packaging a Reusable ADF Component into an ADF Library

50-18

Figure 50-11 ADF Library JAR Deployment Profile Properties Dialog ADF
Validation

9. Click OK to finish setting up the deployment profile.

10. In the Applications window, right-click the project and choose Deploy >
deployment, where deployment is the name of the deployment profile.

11. In the Deploy dialog Deployment Action page, click Next and then click Finish.

JDeveloper will create the ADF Library JAR in the directory specified in Step 7.
You can check that directory to see whether the JAR was created.

What Happens When You Package a Project to an ADF Library JAR
When you deploy the library JAR, JDeveloper packages up all the necessary artifacts,
adds the appropriate control files, generates the JAR file, and places it in the directory
specified in the deployment profile. During deployment, you will see compilation
messages in the Log window.

When you deploy a project into an ADF Library JAR, JDeveloper performs the
following actions:

• Package the HTML root directory artifacts into the JAR. When the JAR is
added to the consuming project, JDeveloper will make the reusable component's
public_html resources available by adding it to the class path.

• Add the adfm.xml file to the JAR. If there are multiple META-INF/adfm.xml files
in the workspace, only the adfm.xml in the project being deployed is added.
JDeveloper modifies this file to include relevant content from any dependent
project's adfm.xml file.

• Add a service resources file,
oracle.adf.common.services.ResourceService.sva, into the META-INF directory
of the JAR. The addition of this file differentiates an ADF Library JAR file from

Chapter 50
Packaging a Reusable ADF Component into an ADF Library

50-19

standard JAR files. This file defines the service strategies of the JAR and allows
the Resources window to properly discover and display the contents of the JAR.

• Add a Manifest.mf file to the JAR. The Manifest.mf file is used to specify
dependencies between JAR files, and to determine whether to copy and include
the contents of a JAR file or to reference it. JDeveloper will create a default
manifest file. For example:

Manifest-Version: 1.0

• Adds a jar-connections.xml file to the JAR for components that require a
connection and that use the connections architecture. Note that in the consuming
application, connection information in configuration files that are defined in the
class path and accessible at runtime may be merged together. If the same
connection is named multiple times in the class path, the connection in the main
application will be given priority.

Different types of reusable components have different artifact files and different entries
in the service resource file.

Application Modules Files Packaged into a JAR
For application modules, JDeveloper adds these control files to the JAR:
oracle.adf.common.services.ResourceService.sva, Manifest.mf, adfm.xml, and
the business components .jpx file. The service resource file for an application module
includes entries for the business components associated with the application module,
as well as an entry for the application module data control.

The jar-connections.xml file may appear for components that use the connection
architecture and that contain connection information regarding the data source.

Data Controls Files Packaged into a JAR
For data controls such as placeholder data controls, JDeveloper includes three control
files in the JAR: oracle.adf.common.services.ResourceService.sva, Manifest.mf,
and DataControl.dcx file. Data controls are used when the data source is not based
on ADF Business Components, and so business components are not included in the
JAR file, as is the case in an application module JAR file. The service resource file for
a standard data control has an entry for the data control.

The JAR also includes the Datacontrol.dcx file from the project to describe the data
control type.

Task Flows Files Packaged into a JAR
For task flows, JDeveloper includes three control files in the JAR:
oracle.adf.common.services.ResourceService.sva, Manifest.mf, and task-flow-
registry.xml. The service resource file for a task flow includes an entry that indicates
that one or more task flows are in the JAR.

Page Templates Files Packaged into a JAR
For page templates, JDeveloper includes two control files in the JAR:
oracle.adf.common.services.ResourceService.sva and Manifest.mf.

Chapter 50
Packaging a Reusable ADF Component into an ADF Library

50-20

Declarative Components Files Packaged into a JAR
For declarative components, JDeveloper includes two control files in the JAR:
oracle.adf.common.services.ResourceService.sva and Manifest.mf.

How to Place and Access JDeveloper JAR Files
If you have JAR files that can be reused by other projects, such as third-part JAR files,
you can use JDeveloper to place them in an accessible location and create a library
file (.library) to designate them. The consumer can use JDeveloper to navigate to
this location and add the JAR to the project.

An ADF Library JAR contains ADF components and does not and cannot contain other
JARs.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you package an ADF component. For more information, see Packaging a
Reusable ADF Component into an ADF Library.

You may also find it helpful to understand functionality that can be used with packaging
an ADF component. For more information, see Additional Functionality for Reusable
ADF Components.

You will need to complete this task:

Place the JAR files in a accessible location for both the producer and the consumer
of these JAR files. For example, the directory may be on a network drive where
other shared files are located. For more information, see Packaging a Reusable
ADF Component into an ADF Library.

To place and access a JDeveloper LIbrary JAR:

1. From the main menu, choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, click Load Dir.

3. In the Load Directory dialog, select the directory where the secondary JAR files
are located.

4. In the Manage Libraries dialog, click New.

5. In the Create Library dialog, enter a library name and click Add Entry.

You have created a library file (with a .library extension). You should place
library files in source control systems.

6. In the Select Path Entry dialog, select the JARs you want to add and click OK.

7. In the Create Library dialog, be sure that the Deployed by Default option is set
correctly for your JAR, click OK and then click OK again.

8. In the consuming project.

a. From the main menu, choose Tools > Manage Libraries.

b. In the Manage Libraries dialog, click Load Dir.

c. In the Load Directory dialog, select the directory where the secondary JAR
files are located and click Select. This should be the same location specified
in Step 3.

Chapter 50
Packaging a Reusable ADF Component into an ADF Library

50-21

d. Right-click the project and select Project Properties.

e. In the Project Properties window, select Libraries and Classpath and click
Add Library.

f. In the Add Library dialog, select the library, click OK and then click OK again.

Adding ADF Library Components into Projects
You can add an ADF Library JAR into your project manually or by using the Resources
window. The project will access and consume the components in the JAR as the ADF
Library JAR file will be added to the class path of the project.

After ADF Library JARs are created, they must be distributed to the developers who
will use these JARs. Distributing the ADF Library JARs may include putting the JARs
into a network file system to be searched, browsed, and discovered. It may include
using other forms of data store or services to access and retrieve these JARs. Since
ADF Library JARs are simply binary files, they can distributed like any other file such
as ftp and email.

Once you have access to the ADF Library JARs, you can use JDeveloper to access
them and add them to your consuming projects. Using the JDeveloper Resources
window is the easiest and most efficient way. You can also use JDeveloper to manually
add the JARs into the project by entering them into the class path.

When a project is packaged into an ADF Library JAR, it captures the list of dependent
JARs the project needs for deployment and runtime. This list is based on the project's
dependent profiles and the information in the project's Libraries and Classpath
with Deployed By Default selected. When the ADF Library JAR is added to the
consuming project, this list of dependent JARs is placed in a library called ADF Library
Dependencies. This is a locked library in the consuming project and its content will
not be shown in the Data Controls panel, Components window, or other places in
JDeveloper. The library is maintained and updated as different ADF Library JARs
are added and deleted from the project. If the dependencies have changed (for
example, the producer project was rebuilt), then you can refresh the dependencies
in the consuming project using a JDeveloper menu command.

Once reusable components have been added, how they are used depends on the type
of component.

How to Add an ADF Library JAR into a Project using the Resources
Window

You can use the Resources window to search, discover, and add the ADF Library JAR
to your project.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you package an ADF component. For more information, see Adding ADF Library
Components into Projects.

You may also find it helpful to understand functionality that can be used with packaging
an ADF component. For more information, see Additional Functionality for Reusable
ADF Components.

You will need to complete this task:

Chapter 50
Adding ADF Library Components into Projects

50-22

Create an ADF Library JAR in a repository folder. If you do not already have a
Resources window connection to this repository, you must know the location of this
folder. For more information, see Adding ADF Library Components into Projects.

To add a component to the project using the Resources Window:

1. From the main menu, choose Window > Resources.

2. In the Resources window, click the New icon, and then choose IDE Connections
> File System.

3. In the Create File System Connection dialog, enter a name and the path of the
folder that contains the JAR.

For file path guidelines, see Selecting Paths and Folders.

4. Click OK.

The new ADF Library JAR appears under the connection name in the Resources
window.

5. To examine each item in the JAR structure tree, use tooltips. The tooltip shows
pertinent information such as the source of the selected item.

Figure 50-12 shows a Resources window with a tooltip message that shows
package information for a business component.

Figure 50-12 Tooltip Message for a Connection in the Resources Window

6. To add the ADF Library JAR or one of its items to the project, right-click the item
and choose Add to Project. In the confirmation dialog that appears, click Add
Library, as shown in Figure 50-13.

Chapter 50
Adding ADF Library Components into Projects

50-23

Figure 50-13 Confirm Add ADF Library Dialog

If you had previously added that library JAR, you will get a Confirm Refresh ADF
Library dialog asking you whether you want to refresh the library.

7. If the ADF Library JAR has changes to its dependencies, you can refresh the
project with the new changes. From the Applications window, right-click the project
and select Refresh ADF Library Dependencies in project.jpr.

For application modules and data controls, you have the option to drag and drop the
application module or data control from the Resources window into the Data Controls
panel.

Note:

JDeveloper will load whichever ADF Library JAR extension libraries are not
already in the consuming project. Extension libraries from the ADF Library's
dependent JARs will also be checked and loaded if not already part of the
consuming project. For more information, see Using Extension Libraries

How to Add an ADF Library JAR into a Project Manually
You can add an ADF Library JAR in the same way as you would other library JARs.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you package an ADF component. For more information, see Adding ADF Library
Components into Projects.

You may also find it helpful to understand functionality that can be used with packaging
an ADF component. For more information, see Additional Functionality for Reusable
ADF Components.

You will need to complete this task:

Create an ADF Library JAR. For more information, see Adding ADF Library
Components into Projects.

To add a component to a project manually:

1. In the Applications window, double-click the project to which the component is to
be added.

2. In the Project Properties dialog, select the Libraries and Classpath node and
then click Add Library.

Chapter 50
Adding ADF Library Components into Projects

50-24

3. In the Add Library dialog, click New.

4. In the Create Library dialog, in the Location dropdown list, select Project and
enter a name for the ADF Library. The preferable name is "ADF Library". Select
Deploy by Default, and click Add Entry.

5. In the Select Path Entry dialog, enter or browse to the ADF Library JAR file and
click Open.

6. The Create Library dialog reappears with the path of the JAR file filled in under the
Class Path node. Click OK.

7. The Add Library dialog reappears with the ADF Library entry filled in under the
Project node. Click OK.

Figure 50-14 Add Library Dialog

8. The Project Properties dialog reappears with the JAR file added to the list of
libraries. Click OK.

What Happens When You Add an ADF Library JAR to a Project
When you add an ADF Library JAR to a project, either by using the Resources window
or by manually adding the JAR, an ADF Library definition is created in the project. The
ADF Library JAR file will be added to the class path of the project. The project will
access and consume the components in the JAR by reference.

By default, the ADF Library Deployed by Default option in the Create Library dialog
is set to true. If this option is set, when the application or module is further archived
or built into a WAR file, the contents of the ADF Library JAR will be copied to that
archive or WAR file. If the Deploy by Default option is not set, then the JARs in the
ADF Library must be loaded in some other way, such as by deploying them in a shared
library.

Figure 50-15 shows the empty Data Controls panel for a consuming project before the
ADF Library was added.

Chapter 50
Adding ADF Library Components into Projects

50-25

Figure 50-15 Data Controls Panel of the Consuming Project

Figure 50-16 shows the adflibview1 ADF Library being added to the consuming
project.

Figure 50-16 Adding the ADF Library JAR to the Project

Figure 50-17 shows several data controls from the ADF Library added to the Data
Controls panel in the consuming project.

Chapter 50
Adding ADF Library Components into Projects

50-26

Figure 50-17 Consuming Project Data Controls Panel with Added Application
Modules

After adding the ADF Library JAR, you may notice some changes to some of
the JDeveloper windows. These changes are different depending on the type of
components being added. Table 50-3 lists the effects on several JDeveloper windows.

Table 50-3 JDeveloper Window After Adding an ADF Library

Added Component Data Controls
Panel

Creation Wizards Components
window

Data controls Data control
appears.

Application module Application module
appears.

Business components Entity objects
available in view
object creation
wizard. View
objects in JAR also
available for use.

Task flows Task flows
appear in
Components
window.

Page template Page template
available during
JSF creation
wizard.

Declarative components Tag library
appears in
Components
window.
Declarative
component
appears in the
list.

Chapter 50
Adding ADF Library Components into Projects

50-27

What You May Need to Know About Using ADF Library Components
Although the procedure to add an ADF Library JAR to a project is standardized, the
component type determines where it appears in JDeveloper and how it can be reused.

Using Data Controls
When you add a data control to a project, the data control appears in the Data
Controls panel. If you are using the Resources window, you have the option of
dragging and dropping the data control from the Resources window onto the Data
Controls panel, and then dragging and dropping from the Data Controls panel onto the
page.

Using Application Modules
When you add an application module to a project, the application module appears in
the Data Controls panel. If you are using the Resources window, you have the option
of dragging and dropping the application module item from the Resources window
onto the Data Controls panel, and then dragging and dropping from the Data Controls
panel onto the page.

Application modules are associated with business components. When the reusable
application module was packaged, the JAR includes the business components used to
create the application module. These components will be available for reuse.

Using Business Components
Business components can also be packaged and reused. The entity objects,
view objects, and associations can be packaged together and added to a
consuming project. By default, packaged application modules will include the business
components in the JAR, but business components can be reused by themselves
without the accompanying application module.

One way to reuse business components is to create new view objects using the
entity objects from an ADF Library JAR. When you add view objects using the
wizard, the entity objects will become available within the wizard to support view
object generation. For instructions on creating view objects, see How to Create an
Entity-Based View Object. When the wizard presents a screen for entity objects used
to create view objects, the entity objects from the ADF Library will be available in the
shuttle window, as shown in Figure 50-18.

Chapter 50
Adding ADF Library Components into Projects

50-28

Figure 50-18 Creating View Object Using Entity Objects from ADF Library

If the consuming project has the Initialize Project for Business Component option
selected (in the Project Properties dialog Business Components page) before the ADF
Library JAR is added, the business components within the JAR will automatically be
made available to the project.

If you add the ADF Library JAR first, and then select Initialize Project for Business
Component, JDeveloper will automatically load the business components.

Using Task Flows
Task flows added to a project will appear in the Components window when you are
adding components to a JSF page. If you are using the Resources window, you can
also drag and drop the task flow directly from the Resources window onto another task
flow or page, as shown in Figure 50-19.

Figure 50-19 Using the Resources Window to Drag and Drop Task Flows

Chapter 50
Adding ADF Library Components into Projects

50-29

For more information about creating task flows, see Getting Started with ADF Task
Flows .

Using Page Templates
When you add a page template to a project, the template will not be exposed in the
Applications window. You will not have direct access to individual supporting files, such
as image files. However, the template retains its access to its supporting files inside
the JAR and is fully reusable within the project. When you apply the template, it will
retain all the images that were loaded with the template.

The page template is exposed and accessible when you create a new JSF page using
the wizard. When the wizard presents you with the option to use a page template,
the ADF Library template will appear in the dropdown list. For example, if you loaded
a page template called SummitTemplate from an ADF Library, when you use the
wizard to create a JSF page, SummitTemplate will appear in the wizard, as shown in
Figure 50-20. For information on how to use page templates and create a JSF page,
see Using Page Templates and the Developing Web User Interfaces with Oracle ADF
Faces.

Figure 50-20 Using a Page Template from ADF Library

Using Declarative Components
When you add a declarative component to a project, the JSP tag libraries that contain
the component will be added to the project. The tag libraries will appear in the

Chapter 50
Adding ADF Library Components into Projects

50-30

Components window, and the declarative components will be available for selection.
For information about creating and using declarative components, see the Using
Declarative Components section of the Developing Web User Interfaces with Oracle
ADF Faces .

What You May Need to Know About Differentiating ADF Library
Components

If you mix components created during application development with components
imported from the ADF Library, you may be able to differentiate between them by
using the tooltips feature of JDeveloper.

Move the cursor over an application module or data control and you will see the full
path of the source. If you see the ADF Library JAR file in the path, that means the
component source is the ADF Library.

Note:

The tooltip for items in the Data Controls panel varies depending on whether
or not the node has ever been opened in this session. To ensure that you are
seeing the most complete tooltip, you should expand the item.

What Happens at Runtime: How ADF Libraries are Added to a Project
After an ADF Library JAR has been added to a project and to the class path,
it behaves like any other library file. During runtime, any component that uses
the component in the ADF Library JAR will reference that object. The process is
transparent and there is no need to distinguish between components that were
developed for the project and those that are in ADF Library JARs. Figure 50-21 shows
the ADF Library and the path to the JAR as defined for a project.

Chapter 50
Adding ADF Library Components into Projects

50-31

Figure 50-21 Edit Library Definition Dialog Showing the ADF Library in the
Class Path

Note:

Once an ADF Library JAR is created, any Java source used to create the
component is not available in the JAR. If you want your consumers to
have access to the source, such as for debugging, they must be delivered
separately (usually in ZIP files). The consumer can then designate those ZIP
files as the related component source for the Source Path entry in their ADF
Library Libraries and Classpath entry in their own projects.

Removing an ADF Library JAR from a Project
You can remove an ADF Library JAR from your project manually or by using the
Resources window.

You can use the Resources window to remove an ADF Library JAR from a project,
or you can manually remove the JAR using the Project Properties dialog. You can
remove an ADF Library JAR only if the components in the project do not have any
dependencies on the components in the ADF Library JAR.

When you remove a JAR, it will no longer be in the project class path and its
components will no longer be available for use.

Chapter 50
Removing an ADF Library JAR from a Project

50-32

How to Remove an ADF Library JAR from a Project Using the
Resources Window

The Resources window allows you to remove previously added ADF Library JARs
from a project using a simple command.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you package an ADF component. For more information, see Removing an ADF
Library JAR from a Project.

You may also find it helpful to understand functionality that can be used with packaging
an ADF component. For more information, see Additional Functionality for Reusable
ADF Components.

You will need to complete this task:

Add the ADF Library JAR using the Resources window. For more information, see
Adding ADF Library Components into Projects.

To remove an ADF Library JAR from the project using the Resources Window:

1. From the main menu, choose Window > Resources.

2. In the Applications window, select the project that has the ADF Library JAR you
want to remove.

3. In the Resources window, locate the ADF Library JAR you want to remove from
the current project.

4. Right-click the JAR and choose Remove from Project.

How to Remove an ADF Library JAR from a Project Manually
When you remove an ADF Library JAR manually, be sure to remove the correct library.
Be aware of other libraries that are critical to the operation of the project.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you package an ADF component. For more information, see Removing an ADF
Library JAR from a Project.

You may also find it helpful to understand functionality that can be used with packaging
an ADF component. For more information, see Additional Functionality for Reusable
ADF Components.

You will need to complete this task:

Add the ADF Library JAR manually. For more information, see Adding ADF Library
Components into Projects.

To remove an ADF Library JAR from the project manually:

1. In the Applications window, double-click the project.

2. In the Project Properties dialog, select the Libraries and Classpath node.

3. In the Classpath Entries list, select ADF Library and click Edit.

Chapter 50
Removing an ADF Library JAR from a Project

50-33

4. In the Edit Library Definition dialog, select the ADF Library JAR you want to
remove under the Class Path node, and click Remove.

5. Click OK to accept the deletion, and click OK again to exit the dialog.

Chapter 50
Removing an ADF Library JAR from a Project

50-34

51
Customizing Applications with MDS

This chapter describes how to develop Fusion web applications that can be
customized and subsequently deployed by a customer, using the customization
features provided by Oracle Metadata Services (MDS) framework. It also covers how
to implement customizations on such applications.
This chapter includes the following sections:

• About Customization and MDS

• Developing a Customizable Application

• Customizing an Application

• How to Package and Deploy Customized Applications

• Extended Metadata Properties

• Enabling Runtime Modification of Customization Configuration

For information on how to deploy customized applications, see Deploying the
Application.

About Customization and MDS
Oracle Metadata Services (MDS) is the framework for handling ADF application
customizations. Customizations are stored in a metadata repository and merged with
base metadata at runtime.

Using the customization features provided by MDS, you can create applications that
fall into the following customization patterns:

• Seeded customization

Seeded customization of an application is the process of taking a generalized
application and making modifications to suit the needs of a particular group, such
as a specific industry or site. Seeded customizations exist as part of the deployed
application, and endure for the life of a given deployment. This chapter describes
how to create a customizable application, and then customize the application
using JDeveloper.

• User customization (change persistence)

User customization allows an end user to change the content of the application at
runtime to suit individual preferences (for example, which columns are visible in
a table), and have those changes "remembered" the next time the user opens
the application. For information about user customization, see Allowing User
Customizations at Runtime .

For more information about the MDS architecture and metadata repositories
(database- and file-based) and archives (EAR, MAR), see Managing the MDS
Repository in Administering Oracle Fusion Middleware.

51-1

Customization and Layers: Use Cases and Examples
A customized application contains a base application and one or more layers
containing customizations. MDS stores the customizations in a metadata repository
and retrieves them at runtime to merge the customizations with the base metadata
to reveal the customized application. Since the customizations are saved separately
from the base, the customizations are upgrade safe; a new patch to base can be
applied without breaking customizations. When a customized application is launched,
the customization content is applied over the base application.

For example, say you have a generalized payroll application with a validation rule that
limits the salary field to 4000. Then you create a customization of that validation rule
that limits the salary field to 3300. At runtime, the customization is applied to the base
application and the validation rule for the salary field limits it to 3300.

A customizable application can have multiple customization layers. Examples
of customization layers are industry and site. Each layer can have multiple
customization layer values, but typically only one such layer value from each layer
is applied at runtime. For example, the industry layer for a customizable application
can contain values for healthcare and financial industries; but in the deployed
customized application, only one of the values from this layer is used at a time.

Layer values from multiple customization layers can be applied, in a specified order
of precedence, on top of the base metadata. For example, a customized application
can contain customizations in the financial layer value of the industry layer and
the Financial Company #1 layer value of the site layer. Each customization layer
corresponds to a customization document that contains a set of instructions that
change the underlying metadata.

The customization context of a customized application is defined by the set of
customization layer values applied to it.

Figure 51-1 illustrates how layers are applied in a customized application.

Figure 51-1 Example of Layered Customization

Chapter 51
About Customization and MDS

51-2

To support this, you use JDeveloper to create customization classes, define layers
and values, and specify the order of precedence. These processes are described in
Developing a Customizable Application.

Static and Dynamic Customization Content
Customizations can be categorized as either static or dynamic. Static customizations
have only one layer value in effect for all executions of the application, while dynamic
customizations can have values that vary based on the execution context of the
application. If a customization can vary for different users executing the application,
then it is dynamic. If a customization has the same value for all users executing the
application then it is static.

When you implement customizations in ADF Business Components objects, the
customizations remain the same for entire runtime of the application. This is because
these objects are loaded only once for an application and reused for the duration
of the application. For example, you can have a customized validation rule in the
Healthcare Company #1 value of the site layer that limits salaries for that site to 3300.
This is static customization content.

However, you can also implement customizations at the controller or view level
that allow the layer value to be determined at runtime, based on user roles
(responsibilities) or other application-specific criteria. For example, you can design an
application so that users from different organizations see different sets of fields on a
given screen. This is dynamic customization content.

The determination of whether a customization is static or dynamic is made in
the customization class. In the customization class, if the getCacheHint() method
returns ALL_USERS, then the customization layer is static. For more information about
CacheHint values, see What You May Need to Know About Customization Classes.

All objects could have a static customization layer, depending on how the
customization classes are implemented. But for ADF Business Components objects,
customizations can only be static.

Additional Functionality for Customization
You may find it helpful to understand other features before you start working with
customization. Following are links to other functionality that may be of interest.

• For information about the MDS architecture and metadata repositories (database-
and file-based) and archives (EAR, MAR), see Managing the MDS Repository in
Administering Oracle Fusion Middleware.

• You can use the ADF Faces change persistence framework to create JSF
pages that users can customize at runtime. See Allowing User Customizations
at Runtime .

Developing a Customizable Application
If you want to customize an ADF application, you must follow certain procedures after
creating the base application.

To create a customizable application, create the base application and perform the
following procedures:

Chapter 51
Developing a Customizable Application

51-3

To prepare an application for customization:

1. Create the customization classes that will be used, as described in How to Create
Customization Classes.

2. Enable seeded customization in the application, as described in How to Enable
Seeded Customizations for User Interface Projects.

3. Specify the customization classes in the adf-config.xml file, as described in How
to Configure the adf-config.xml File .

4. You can optionally restrict runtime customizations on the application, as described
in How to Edit Extended Metadata Properties.

5. After you have prepared the application for customization, you must prepare
JDeveloper so you can use it to implement the customizations, as described in
How to Configure Customization Layers.

How to Create Customization Classes
A customization class is the interface that MDS uses to define which customization
applies to the base definition metadata. Each customization class defines a
customization layer (for example, industry or site) and can contain multiple layer
values. The customization classes that are used in the application must be available
to JDeveloper when customizing the application, and included in the deployed
application.

Customization Classes
A customization class evaluates the current context and returns a String result. This
String result is used to locate the customization layer.

The customization class provides the following information:

• A name, that represents the name of the layer.

• An array of values, that represent the customization layer values. Typically, each
layer returns a single value. If multiple values are returned, the customizations
available in the MDS repository for those values are applied in the order in which
they appear in the array. A null value or an array containing an empty string
("") indicates there is no customization layer to apply. For more information, see
Implementing the getValue() Method in Your Customization Class.

• An IDPrefix, for objects created in the layer. When new objects are created
in a customization layer they need a unique ID. The IDPrefix is added to the
autogenerated identifier for the object to create an ID for the newly added
object. Each layer needs a unique IDPrefix so that objects created at different
customization layers will have unique IDs.

• A cache hint, for the layer defined by the customization class. The cache hint
defines whether a layer is static or dynamic. If the getCacheHint() method
returns ALL_USERS, then the customization layer is static. For more information
about dynamic customizations, see Static and Dynamic Customization Content.
For more information about CacheHint values, see What You May Need to Know
About Customization Classes.

Customizations can be used to tailor an application to suit a specific industry domain
(verticalization). Each such domain denotes a customization layer and is depicted
using a customization class.

Chapter 51
Developing a Customizable Application

51-4

To implement seeded customizations using your customization classes:

• The cust-config section (under mds-config) in the adf-config.xml must contain
a reference to the customization classes (as described in How to Configure the
adf-config.xml File).

The customization configuration (cust-config) section provides the customization
classes and their precedence for a customized application. See How to Configure
the adf-config.xml File .

• The customization classes must be included in the application to support seeded
customizations.

For more information, see Making Customization Classes Available to JDeveloper
at Design Time. At runtime, your customization classes must be available in the
EAR-level application class loader.

• The layer values must be listed in the CustomizationLayerValues.xml file.

This file is located in the jdev_install\jdev directory. The names of the layers in
this file must be consistent with the customization classes. (For more information,
see How to Configure Customization Layers.) JDeveloper uses this file to retrieve
layer values at design time.

When JDeveloper is launched in the Customization Developer role, the
Customization Context window displays the available customization layers and layer
values. You can select the layer and value to which you want to apply customizations
in the Customization Context window. For more information about working in the
Customization Developer role, see Introducing the Customization Developer Role.
The layer you choose to customize is called the tip layer. For more information, see
Introducing the Tip Layer.

The following example shows a sample customization class. Note that all
customization classes should have a single, no-argument constructor.

package mycompany;

import java.io.IOException;
import java.io.InputStream;
import java.util.Properties;
import oracle.mds.core.MetadataObject;
import oracle.mds.core.RestrictedSession;
import oracle.mds.cust.CacheHint;
import oracle.mds.cust.CustomizationClass;

public class IndustryCC extends CustomizationClass {
 private static final String DEFAULT_LAYER_NAME = "industry";
 private String mLayerName = DEFAULT_LAYER_NAME;

 public IndustryCC() {
 }
 public CacheHint getCacheHint() {
 return CacheHint.ALL_USERS;
 }
 public String getName() {
 return mLayerName;
 }

 public String generateIDPrefix(RestrictedSession sess, MetadataObject mo) {
 return "I";
 }

Chapter 51
Developing a Customizable Application

51-5

 public String[] getValue(RestrictedSession sess, MetadataObject mo) {
 // This needs to return the appropriate value at runtime.
 return new String[] {"financial"};
 }
}

This example shows the four methods that define how the customization class will
work: getCacheHint(), getName(), generateIDPrefix(), and getValue().

The return value for getCacheHint() indicates to MDS how widely visible a metadata
object with this customization is, and therefore its likely duration in memory. It
also defines whether or not a layer is static or dynamic. In this example, the
getCacheHint() method returns ALL_USERS, which means the customization layer is
static. For more information about CacheHint values, see What You May Need to
Know About Customization Classes.

The getName() method returns the name of the customization layer. A SiteCC
customization class, for example, might return "site." In this example, the getName()
method returns "industry."

The generateIDPrefix() method creates an IDPrefix. The IDPrefix is a unique,
abbreviated string that identifies the name and value of the layer. It is used as
the prefix of the ID for objects created in the customization layer. The default
implementation (if no IDPrefix is specified) returns name of the layer concatenated
with customization value. For performance reasons, the IDPrefix should be kept short
(4 characters or less). Therefore, the default implementation should be overridden.
The related getIDPrefix() method returns the IDPrefix of the customization layer. In
this example, the getIDPrefix() method would return "I" (for "industry").

The getValue() method returns the customization value (or values) for the
customization class. In this example, the getValue() method returns a single value,
"financial," that defines the customization context when combined with the layer
name. There are additional techniques for using the getValue() method described
in Implementing the getValue() Method in Your Customization Class.

Note:

The possible layer values corresponding to a layer name are
retrieved by JDeveloper in the Customization Developer role from the
CustomizationLayerValues.xml file. The precedence of layers is defined
by the order of the customization classes specified in the adf-config.xml
file. The names of the layers must be consistent in these files and in the
customization classes.

Implementing the getValue() Method in Your Customization Class
The getValue() method is used to retrieve the layer value(s) of the customization
class based on the application context and the metadata. For example, calling
getValue() on a SiteCC customization class might return an array with single entry
"headquarters." Typically, the getValue() method returns an array with a single value,
as described in Customization Classes.

You can also return multiple values from the getValue() method, as shown in the
following example.

Chapter 51
Developing a Customizable Application

51-6

public String[] getValue(RestrictedSession sess, MetadataObject mo) {
 return new String[]{"North America", "US", "CA"}
}

When multiple values are returned, customizations applicable to all values are applied.
Customizations are applied in the order in which they appear in the array. In this
example, North America customizations are applied over the base application, then US
customizations are applied, and finally CA.

Note:

Returning multiple values for a customization layer is an advanced concept
that is typically unnecessary.

The getValue() method can return a layer value based on the current execution
context for the current user, pulled either from static or thread local state maintained by
the client, or from properties set by the client on the MDS session and based on the
metadata object name. The following example shows this type of implementation.

public String[] getValue(RestrictedSession sess, MetadataObject mo) {
 if (mo.getName().equals("/sample/abc.jspx"))
 {
 return new String[]{"Headquarters"};
 }
 else
 {
 return new String[]{"RemoteSite"};
 }
}

In this example, the getValue() method uses the getName() method on the metadata
object to determine if the name of the metadata document is "/sample/abc.jspx". If
so, getValue() returns Headquarters to apply headquarters customizations. If not, it
returns RemoteSite to apply customizations for remote sites.

Note:

Coding the getValue() method to return a value based on the metadata
object is an advanced concept that is typically unnecessary. Customization
context for dynamic layers is typically determined through facets of the
application context, such as user name or responsibility.

An additional technique that can be useful during the development cycle is to use an
external properties file to specify layer values. The following example references a
properties file (customization.properties) that stores the layer values.

public String[] getValue(RestrictedSession sess, MetadataObject mo) {
 Properties properties = new Properties();
 String configuredValue = null;
 Class clazz = IndustryCC.class;
 InputStream is = clazz.getResourceAsStream("/customization.properties");
 if (is != null){

Chapter 51
Developing a Customizable Application

51-7

 try {
 properties.load(is);
 String propValue = properties.getProperty(mLayerName);
 if (propValue != null){
 configuredValue = propValue;
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 try {
 is.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 return new String[] {configuredValue};
}

When an application using this technique is run in JDeveloper, you can change the
layer value in the properties file and refresh the browser to see new customizations
being applied. This customization class and properties file combination allows
you to maintain the layer value in a separate file so you don't need to modify
and recompile Java code to change it for a particular deployment. If you use a
customization.properties file, it must be packaged with the customization classes
so that they are loaded from the same class loader.

The following example shows a sample customization.properties file. When the
IndustryCC class is loaded with this properties file, the layer value healthcare is
applied.

#Configured values for the default layer values
industry=healthcare
site=headquarters

Creating a Customization Class
When creating customization classes, put them in a separate project. This allows you
to deploy them to a JAR and to import the JAR into your customizable application. This
approach increases modularity, making it easier to include the customization classes
in multiple applications across your company, and easier to patch them centrally. For
more information about this approach, see How to Consume Customization Classes.

Alternatively, you can put the customization classes in the data model project if you are
creating customization classes that will be used in a single application only, or if you
just want to run the application locally from JDeveloper or to deploy remotely with MDS
configuration.

Make sure that there is only one copy of the customization classes in the application
and that they are packaged in a JAR file so that they are loaded at the EAR-
level application class loader. By default, adding project dependencies will add the
customization classes to the WAR profile, which will not work correctly after the
application is packaged and deployed. For more information about packaging your
application for deployment, see How to Create Deployment Profiles.

Use the following procedure to create a customization class.

Before you begin:

Chapter 51
Developing a Customizable Application

51-8

It may be helpful to have an understanding of the features of customization classes.
For more information, see Customization Classes.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will need to launch JDeveloper using the Studio Developer role, and open (or
create) the application that will hold the customization classes.

To create a customization class:

1. From the main menu, choose File and then From Gallery.

2. In the New Gallery, expand General, select Projects and then Java Application
Project, and click OK.

3. In the Create Java Project dialog, specify the appropriate settings for your project,
and click Finish.

Note:

You should use a single project to hold all of your customization classes.

For more information about the options in the Create Java Project dialog, see the
online help.

4. In the Applications window, right-click your project and choose Project
Properties.

5. In the Project Properties dialog, select Libraries and Classpath, and then click
Add Library.

6. In the Add Library dialog, select MDS Runtime, and click OK, and then click OK to
close the Project Properties dialog.

7. In the Applications window, right-click the project and choose New and then Java
Class.

8. In the Create Java Class dialog, enter a name for the class and the appropriate
package.

Note:

Customization classes are typically named for the layer name they
return. For example, a customization class that returns the layer name
industry would be named IndustryCC.

9. In the Extends field, enter oracle.mds.cust.CustomizationClass.

For more information about this class, refer to the Javadoc.

10. Make sure that Implement Abstract Methods is selected and click OK.

11. Replace the code in the generated file with code like that described in
Customization Classes.

Chapter 51
Developing a Customizable Application

51-9

12. Save your changes and rebuild the project.

This creates the customization class. The sample code uses the package name
mycompany and the class name IndustryCC. You will need to change these as
appropriate for your application.

What You May Need to Know About Customization Classes
As described in Customization Classes, the customization class defines a CacheHint
which specifies the visibility of metadata objects in a customization layer, and therefore
its likely duration in memory. This information is used by MDS to decide whether or not
to cache a customization, and where to cache it. Any customization layers constructed
using this customization class have this cache hint.

The following constants are supported values of CacheHint:

• ALL_USERS — The customization is applied globally (unconditionally) for a given
deployment. This constant is used for static customization layers.

• MULTI_USER — The customization is applied to multiple users.

• REQUEST — The customization is applied for the duration of the request only.

• USER — The customization is applied for a single user to documents which are
accessed throughout the user's application session. (In web applications the
application session is typically a servlet session.)

Note:

Customization classes are likely to be executed frequently, once for each
document being accessed to get the layer name and layer value, so take
care to ensure their efficiency.

How to Consume Customization Classes
After you have created your customization classes, you can use them at design time in
the Customization Developer role, and at runtime in the application. To be consumed
in an application or in JDeveloper, the classes must be packaged appropriately.

Making Customization Classes Available to JDeveloper at Design Time
After you create the customization classes, you must make them available to
JDeveloper so that you can use them when implementing customizations while
working in the Customization Developer role.

Because the customization classes are reusable components, you can create a
separate project to contain them, and package them into their own JAR file.
You can then import the JAR into the consuming application, which makes the
customization classes available to JDeveloper. For more information about creating
the customization classes in a separate project, see Creating a Customization Class.
For more information about packaging the customization classes into a JAR file, see
Adding Customization Classes into a JAR.

Chapter 51
Developing a Customizable Application

51-10

Note:

This procedure is not required if you created your customization classes in
the data model project of the consuming application.

Use the following procedure to make the customization classes visible to the
application, and then add the customization classes to the cust-config section of
the adf-config.xml file, as described in How to Configure the adf-config.xml File.

Before you begin:

It may be helpful to have an understanding of how customization classes are
packaged. For more information, see Customization Classes.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to complete these tasks:

• Create your customization classes in an external project, as described in Creating
a Customization Class.

• Create a JAR using the procedure described in Adding Customization Classes into
a JAR.

• Launch JDeveloper using the Studio Developer role, and open the application
that you want to customize.

To use customization classes from an external project:

1. In the Applications window, click the Application Menu icon and choose
Application Properties.

2. In the Application Properties dialog, select Libraries and Classpath, and click
Add JAR/Directory.

3. In the Add Archive or Directory dialog, select the JAR file you created that contains
the customization classes, and click Open.

4. Click OK.

Now the customization classes are available to JDeveloper for customization, and
for running your project locally in JDeveloper. They will also be packaged to the
EAR class path when you package the application.

Making Customization Classes Available to the Application at Runtime
When you package and deploy your customized application, the customization classes
must be available at the application level on the application's class path.

When you define the deployment profiles for your application, you need to add the
customization classes JAR file to the EAR assembly, and to avoid duplication, you
need to make sure that the WAR profile does not include the customization classes
JAR file. For more information, see Creating an Application Level EAR Deployment
Profile.

Chapter 51
Developing a Customizable Application

51-11

How to Enable Seeded Customizations for User Interface Projects
Like all customizable components, the XML elements of a customizable metadata
object must be uniquely identifiable by MDS, and therefore must have a unique,
non-null identifier. The component's identifier is used to refer to the element in the
customization instructions in the customization layer. The ID property is the identifier
for each type of component in an ADF Faces .jspx or .jsff file.

To allow for customizations on your JSF and JSP pages, you must enable seeded
customizations in the application's user interface project, which drives some defaults
for your pages. This is not necessary for your model and controller projects.

Note:

MDS requires that pages be XML-based to be customized. Therefore,
customizations are not allowed on .jsp files; use .jspx files instead.

Additionally, facelets files must have a .jsf extension to be customizable.
MDS uses this extension to recognize it as a Facelets file.

Before you begin:

It may be helpful to have an understanding of how seeded customization works. For
more information, see Customization and Layers: Use Cases and Examples.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to launch JDeveloper using the Studio Developer role, and open
the application that you want to make customizable.

To enable seeded customizations in your user interface project:

1. In the Applications window, right-click the user interface project and choose
Project Properties.

2. In the Project Properties dialog, select ADF View and then select the Enable
Seeded Customizations checkbox, as shown in Figure 51-2.

3. Click OK.

4. Save the changes to your project.

Chapter 51
Developing a Customizable Application

51-12

Figure 51-2 Project Properties - Enable Seeded Customizations

How to Enable Seeded Customizations in Existing Pages
If you have pages in your project that were created in an earlier version of JDeveloper,
you must make sure that these preexisting pages are also enabled for seeded
customizations. This is only necessary if you migrated the application from an earlier
version of JDeveloper and did not generate IDs during migration.

Before you begin:

It may be helpful to have an understanding of how seeded customization works. For
more information, see Customization and Layers: Use Cases and Examples.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to launch JDeveloper using the Studio Developer role, and open
the application that you want to make customizable.

To enable seeded customizations in an existing page:

1. Create an audit profile to implement ID tokens for all XML objects in your page:

a. From the main menu, choose Tools > Preferences.

b. In the Preferences dialog, select Audit > Profiles.

c. On the Profiles page, click Rules and deselect all rules.

d. Expand Application Development > ADF Faces > Component ID Rules.

e. Select the rule Check for ID When ADF Faces is Present.

f. From the Default Fix dropdown list, select Generate a unique ID.

Chapter 51
Developing a Customizable Application

51-13

g. Click Save As, then enter an identifiable name for the profile (such as
Generate Unique IDs). and click Save.

h. Click OK to close the Preferences dialog.

2. In the Applications window, select the page for which you want to enable seeded
customizations. Alternatively, you can select a project to run the audit on all the
files it contains.

3. From the main menu, choose Build > Audit.

4. In the Audit dialog, select the profile you created to generate IDs and click Run.

5. Use the Log window to review issues and apply fixes.

6. When the audit is complete, save your changes.

How to Enable Customizations in Resource Bundles
If you plan to create new resource keys when implementing customizations, you can
specify the affected resource bundles using the Application Properties dialog.

Before you begin:

It may be helpful to have an understanding of how seeded customization works. For
more information, see Customization and Layers: Use Cases and Examples.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to launch JDeveloper using the Studio Developer role, and open
the application that you want to make customizable.

To enable customizations in resource bundles:

1. From the Applications window context menu, choose Application Properties.

2. In the Application Properties dialog, click Resource Bundles, and then click Add.

3. In the Select Resource Bundle dialog, navigate to and select the resource bundles
for which you want to enable customization.

4. Click Open.

5. In the Application Properties dialog, select the checkbox in the Overridden
column of the Bundle table.

6. Click OK.

How to Configure the adf-config.xml File
The application's adf-config.xml file must have an appropriate cust-config element
in the mds-config section. The cust-config element allows clients to define an
ordered and named list of customization classes. You use the overview editor for the
adf-config.xml file to add customization classes (see Figure 51-3).

Before you begin:

It may be helpful to have an understanding of how customization classes are created
and packaged. For more information, see Customization Classes.

Chapter 51
Developing a Customizable Application

51-14

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to complete these tasks:

• Create your customization classes, as described in Creating a Customization
Class.

• Create a JAR using the procedure described in Adding Customization Classes into
a JAR.

• Make your classes available to JDeveloper, as described in Making Customization
Classes Available to JDeveloper at Design Time.

• Launch JDeveloper using the Studio Developer role, and open the application
that you want to customize.

To identify customization classes in the adf-config.xml file:

1. In the Application Resources panel, expand the Descriptors and ADF META-INF
nodes, and then double-click adf-config.xml.

2. In the overview editor, click the MDS Configuration navigation tab and then click
the Add icon.

3. In the Edit Customization Class dialog, search for or navigate to the customization
classes you have already created.

4. Select the appropriate classes and click OK.

5. After you have added all of the customization classes, you can use the arrow icons
to put them in the appropriate order.

Figure 51-3 shows the overview editor for the adf-config.xml file with two
customization classes added.

Figure 51-3 adf-config.xml Overview Editor

The order of the customization-class elements defines the precedence of
customization layers. For example, in the code shown in the following example, the
IndustryCC class is listed before the SiteCC class. This means that customizations at
the industry layer are applied to the base application, and then customizations at the
site layer are applied.

Chapter 51
Developing a Customizable Application

51-15

<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <cust-config>
 <match path="/">
 <customization-class name="com.mycompany.IndustryCC"/>
 <customization-class name="com.mycompany.SiteCC"/>
 </match>
 </cust-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

What Happens When You Create a Customizable Application
When you create a customizable application, you have a base application that
includes the pieces necessary for you or someone else to use as the basis for a
customized application.

To perform the customization, you must open the application in JDeveloper using the
Customization Developer role, as described in Customizing an Application.

What You May Need to Know About Customizable Objects and
Applications

Oracle ADF components (such as controller, model, and business components
objects) must have a unique identifier so that they can be customized. ADF
components generated by JDeveloper are created with identifiers by default, with the
exception of JSP and JSF pages in your user interface projects. To cause JDeveloper
to generate identifiers for components on pages in your user interface projects, you
must explicitly specify this at the project level (as explained in How to Enable Seeded
Customizations for User Interface Projects).

Before you implement customizations in an application, make sure that all objects that
you intend to customize have the necessary identifiers. In many cases, you can run
an audit rule to catch and fix any omissions (as explained in How to Enable Seeded
Customizations in Existing Pages).

Also, take care to ensure the efficiency of your customization classes, because they
can be executed frequently, once for each document being accessed to get the layer
name and layer value.

Customizing an Application
Customizations are made with Oracle JDeveloper’s Customization Developer role.
Customizations are made for each defined layer and only existing metadata is
customizable.

Using the Customization Developer role, you can create customizations in a
customizable application.

Chapter 51
Customizing an Application

51-16

Introducing the Customization Developer Role
The Customization Developer role is used to customize the metadata in a
project. Customization features are available only in this role. When you are in the
Customization Developer role, you can do the following:

• Create and update customizations

• Select and edit the tip layer of a customized application

• Remove existing customizations

When you are in the Customization Developer role, the source editor is read-only
and the following JDeveloper features are disabled:

• Workspace migration

• Creation, deletion, and modification of application and IDE connections. You
must configure connections in Default role before opening an application in
Customization Developer role.

When working with an application in the Customization Developer role, new objects
cannot be created, and noncustomizable objects cannot be modified. However, the
following content types are customizable:

• Portal modules

• ADF modules, including ADF Faces, ADF Model, ADF Business Components, and
ADF Controller

Note:

ADF Business Components objects are customizable only if a static
customization class is selected in the Customization Context window.
Otherwise, business components objects are read-only.

When working in the Customization Developer role, you cannot edit
noncustomizable files, such as Java classes, resource bundles, security policies,
deployment descriptors, and configuration files. Noncustomizable files are indicated
by a lock icon when you are working in the Customization Developer role.

Note:

Facelets files must have a .jsf extension to be customizable. MDS uses this
extension to recognize it as a Facelets file.

You are also restricted from modifying project settings and customizing certain ADF
Business Components features, including service interfaces and business event
definitions. Additionally, you cannot refactor, or make changes to customizable files
that would, in turn, necessitate changes in noncustomizable files.

Chapter 51
Customizing an Application

51-17

How to Switch to the Customization Developer Role in JDeveloper
The customization features of JDeveloper are available to you in the Customization
Developer role. To work in this role, you can either choose it when you start
JDeveloper or, if JDeveloper is already running, you can use the Switch Roles menu
to switch to the Customization Developer role.

Before you begin:

It may be helpful to have an understanding of the features of the Customization
Developer role. For more information, see Introducing the Customization Developer
Role.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to launch JDeveloper.

To switch to the Customization Developer role in JDeveloper:

• From the main menu, choose Tools > Switch Roles > Customization
Developer.

Note:

You can optionally toggle the Tools > Switch Roles > Always Prompt for
Role Selection at Startup menu item, to specify whether or not you want
to choose the role when JDeveloper is launched. If deselected, JDeveloper
launches in the role it was in when you last closed it.

Introducing the Tip Layer
When working in the Customization Developer role, the layer and layer value
combination that is selected in the Customization Context window is called the tip
layer. The changes you make while in the Customization Developer role are applied
to this layer.

Note:

When working in the Customization Developer role, if the Customization
Context window is not displayed, you can access it from the Window menu.

The metadata displayed in the JDeveloper editors is a combination of the base
metadata and the customization layers up to and including the tip layer, according to
the precedence set in adf-config.xml, with the values specified in the Customization
Context window for each layer.

When working in the Customization Developer role, you can also see
the noncustomized state of the application. When you select View without

Chapter 51
Customizing an Application

51-18

Customizations in the Customization Context window, there is no current tip layer.
Therefore, what you see is the noncustomized state. While you are in this view, all
customizable files show the lock icon (in the Applications window), indicating that
these files are read-only.

When you make customizations in a tip layer, these customizations are indicated
by an orange icon in the Properties window. A green icon indicates non-tip layer
customizations. When you see an orange icon beside a property, you have the
option of deleting that customization by choosing Remove Customization from the
dropdown menu for that property.

How to Configure Customization Layers
To customize an application, you must specify the customization layers and their
values in the CustomizationLayerValues.xml file so that they are recognized by
JDeveloper.

When you open a customizable application in the Customization Developer
role, JDeveloper reads the adf-config.xml file to determine the customization
classes to use and their order of precedence. JDeveloper also reads the
CustomizationLayerValues.xml file to determine the layer values to make available
in the Customization Context window. If there are layer values defined in the
CustomizationLayerValues.xml file that are not defined in the customization classes
listed in the adf-config.xml file, they are not displayed in the Customization Context
window.

Therefore, you can have a comprehensive list of layer values for all of your
customization projects in the CustomizationLayerValues.xml file, and only those
appropriate for the current application are available in the Customization Context
window. Conversely, you could have a comprehensive list of customization classes
for an application in the adf-config.xml file, and only the subset of layer values that
you will work on in your CustomizationLayerValues.xml file.

Note:

At design time, JDeveloper retrieves customization layer values from the
CustomizationLayerValues.xml file. But at runtime, the layer values are
retrieved from the customization class.

The names of the layers and layer values that you enter in the
CustomizationLayerValues.xml file must be consistent with those specified in your
customization classes. The following example shows the contents of a sample
CustomizationLayerValues.xml file.

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="industry" id-prefix="i">
 <cust-layer-value value="financial" display-name="Financial" id-prefix="f"/>
 <cust-layer-value value="healthcare" display-name="Healthcare" id-
prefix="h"/>
 </cust-layer>
 <cust-layer name="site" id-prefix="s">
 <cust-layer-value value="headquarters" display-name="HQ" id-prefix="hq"/>
 <cust-layer-value value="remoteoffices" display-name="Remote" id-
prefix="rm"/>

Chapter 51
Customizing an Application

51-19

 </cust-layer>
</cust-layers>

For each layer and layer value, you can add an id-prefix token. This helps to ensure
the uniqueness of the id, so that customizations are applied accurately. When you
add a new element (such as a command button) to a page during customization,
JDeveloper adds the id-prefix of the layer and layer value (determined by the
selected tip layer) to the autogenerated identifier for the element to create an id for
the newly added element in the customization metadata file. As the example above
shows, the site layer has an id-prefix of "s" and the headquarters layer value has
an id-prefix of "hq". So, when you select site/headquarters as the tip layer and add
a command button to a page, the command button will have an id of "shqcb1" in the
metadata customization file.

For each layer value, you can also add a display-name token to provide a human-
readable name for the layer value. When you are working in the Customization
Developer role, the value of the display-name token is shown in the Customization
Context window for that layer value.

For each layer, you can optionally provide a value-set-size token that defines the
size of the value set for the customization layer. This can be useful, for example,
when using a design-time, application-specific CustomizationLayerValues.xml file. By
setting value-set-size to "no_values" you can exclude runtime-only layers at design
time.

<cust-layer name="runtime_only_layer" value-set-size="no_values"/>

You can define the customization layer values either globally for JDeveloper or in
an application-specific file. If you use an application-specific file, it takes precedence
over the global file. For more information on configuring layer values globally
for JDeveloper, see Configuring Layer Values Globally. For more information on
configuring application-specific layer values, see Configuring Workspace-Level Layer
Values from the Studio Developer Role.

Configuring Layer Values Globally
The following procedure describes how to configure the
CustomizationLayerValues.xml file globally for JDeveloper.

Before you begin:

It may be helpful to have an understanding of layers and layer values. For more
information, see How to Configure Customization Layers.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to complete these tasks:

• Create your customization classes, as described in Creating a Customization
Class.

• Make your classes available to JDeveloper, as described in Making Customization
Classes Available to JDeveloper at Design Time.

To configure design time customization layer values globally for JDeveloper:

1. Locate and open the CustomizationLayerValues.xml file.

Chapter 51
Customizing an Application

51-20

You can find this file in the jdev subdirectory of your JDeveloper installation
directory (jdev_install\jdev\CustomizationLayerValues.xml).

2. For each layer, enter a cust-layer element, as described in How to Configure
Customization Layers.

3. For each layer value, enter a cust-layer-value element, as described in How to
Configure Customization Layers.

4. Save and close the CustomizationLayerValues.xml file.

5. After you have made changes to the global CustomizationLayerValues.xml file,
you must restart JDeveloper.

Configuring Workspace-Level Layer Values from the Studio Developer Role
When configuring layer values for an application, you can use either the Studio
Developer role or the Customization Developer role. Note that when you configure
an application-specific CustomizationLayerValues.xml file, you can create and
modify layer values, but you cannot create additional customization layers. It is not
necessary to restart JDeveloper to pick up changes made to the application-specific
layer values.

When you create an application-specific CustomizationLayerValues.xml file,
JDeveloper stores it in an application-level directory (for example, workspace-
directory\.mds\dt\customizationLayerValues\CustomizationLayerValues.xml).
You can access this file in the Application Resources panel of the Applications window,
under the MDS DT node.

The following procedure describes how to configure the
CustomizationLayerValues.xml file for a specific application from the Studio
Developer role. This procedure can also be used from the Customization Developer
role.

Before you begin:

It may be helpful to have an understanding of layers and layer values. For more
information, see How to Configure Customization Layers.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to complete these tasks:

• Create your customization classes, as described in Creating a Customization
Class.

• Make your classes available to JDeveloper, as described in Making Customization
Classes Available to JDeveloper at Design Time.

• Launch JDeveloper using the Studio Developer role, and open the application
that you want to customize.

To configure design time customization layer values at the workspace level from the
Studio Developer role:

1. In the Application Resources panel, expand the Descriptors and ADF META-INF
nodes, and then double-click adf-config.xml.

2. In the overview editor, click the MDS Configuration navigation tab.

Chapter 51
Customizing an Application

51-21

3. On the MDS Configuration page, below the table of customization classes, click
the Configure Design Time Customization Layer Values link to open the
workspace-level CustomizationLayerValues.xml file.

When you click the link, the file opens in the source editor. If the override file
doesn't already exist, JDeveloper displays a confirmation dialog. Click Yes to
create and open a copy of the global file.

4. In the file, specify layer values as necessary, as described in How to Configure
Customization Layers.

5. Save your changes.

Configuring Workspace-Level Layer Values from the Customization Developer
Role

You can also configure layer values for an application from the Customization
Developer role. Note that when you configure an application-specific
CustomizationLayerValues.xml file, you can create and modify layer values, but you
cannot create additional customization layers. It is not necessary to restart JDeveloper
to pick up changes made to the application-specific layer values.

When you create an application-specific CustomizationLayerValues.xml file,
JDeveloper stores it in an application-level directory (for example, workspace-
directory\.mds\dt\customizationLayerValues\CustomizationLayerValues.xml).
You can access this file in the Application Resources panel of the Applications window,
under the MDS DT node.

The following procedure describes how to configure the
CustomizationLayerValues.xml file for a specific application from the Customization
Developer role.

Before you begin:

It may be helpful to have an understanding of layers and layer values. For more
information, see How to Configure Customization Layers.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to complete these tasks:

• Create your customization classes, as described in Creating a Customization
Class.

• Make your classes available to JDeveloper, as described in Making Customization
Classes Available to JDeveloper at Design Time.

• Launch JDeveloper using the Customization Developer role, and open the
application that you want to customize.

To configure design time customization layer values at the workspace level from the
Customization Developer role:

1. In the Customization Context window, click the Configure application layer
values link.

Chapter 51
Customizing an Application

51-22

When you click the link, the CustomizationLayerValues.xml file opens in the
source editor. If the override file doesn't already exist, JDeveloper displays a
confirmation dialog. Click Yes to create and open a copy of the global file.

2. Specify layer values as necessary, as described in How to Configure
Customization Layers.

3. Save your changes.

After you make changes to the application-specific
CustomizationLayerValues.xml file while you are in the Customization
Developer role, any tip layer you have selected in the Customization Context
window is deselected. You can then select the desired tip layer.

How to Customize Metadata in JDeveloper
You use the same development procedures and techniques to customize metadata
that you use when developing the base application. To implement customizations,
however, you must be working in the Customization Developer role and specify
the customization context by selecting a tip layer and layer value before editing the
metadata. For an application to be customizable, customizations must be enabled in
your project. For more information, see Developing a Customizable Application.

Before you begin:

It may be helpful to have an understanding of how customization works. For
more information, see Customization and Layers: Use Cases and Examples, and
Customizing an Application.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to complete these tasks:

• Create your customization classes, as described in Creating a Customization
Class.

• Create a JAR using the procedure described in Adding Customization Classes into
a JAR.

• Make your classes available to JDeveloper, as described in Making Customization
Classes Available to JDeveloper at Design Time.

• Update the adf-config.xml file, as described in How to Configure the adf-
config.xml File .

• Enable seeded customizations in your application, as described in How to Enable
Seeded Customizations for User Interface Projects, and How to Enable Seeded
Customizations in Existing Pages.

• Configure the applications customization layers, as described in How to Configure
Customization Layers.

• Launch JDeveloper using the Customization Developer role, and open the
application that you want to customize.

To customize metadata in JDeveloper:

1. In the Customization Context window, select the layer and value for which you
want to implement customizations.

Chapter 51
Customizing an Application

51-23

The Customization Context (displayed at the bottom of the Customization
Context window) changes to reflect your selection, as shown in Figure 51-4.

Figure 51-4 Customization Context Window with site/headquarters
Selected as the Tip Layer

Note:

The selection you make in the Customization Context window indicates
the context for the customizations that you will implement in JDeveloper.
This selection does not directly impact the runtime for the application. At
runtime, the customization context is returned from your customization
classes. For more information, see How to Create Customization
Classes.

2. Edit the metadata as you typically would during development. For example,
double-click an entity object. Then edit the object using the overview editor.

While you use the same techniques for editing metadata during customization
that you would during development, certain restrictions apply. For example,
some string properties, such as button labels, cannot be edited directly in the
Properties window: they must be edited using the Select Text Resource dialog or
the Expression Builder. For more information about restrictions to editing during
customization, see Introducing the Customization Developer Role. For information
about using the Expression Builder, see Opening the Expression Builder from the
Properties Window.

Even though you use the overview editor to implement customizations, you do not
make changes to the base metadata file. Your changes are stored separately in a
customization metadata file.

Note:

To see the uncustomized base metadata, you can select View without
Customizations in the Customization Context window.

3. You can optionally choose Remove Customization from the dropdown menu for a
property (in the Properties window) to clear the existing customization.

Chapter 51
Customizing an Application

51-24

Note:

In the Properties window, tip layer customizations are indicated by an
orange icon, while properties that are not customized in the current
tip layer are indicated by a green icon. A customization can only be
removed in the context in which it was added. So you can remove only
those customizations that have an orange indicator in the Properties
window.

4. From the main menu, choose File > Save to save your changes.

After you have completed your customizations, you can run and test the customized
application.

What Happens When You Customize an Application
When you implement customizations in an application, JDeveloper creates a metadata
file for the customizations and a subpackage to store them in.

The metadata file contains the customizations for the customized object, which are
applied over the base metadata at runtime. The new metadata file is named the
same as the base file for the object with an additional .xml extension. For example,
if you implement customizations for the browseOrders.jsff page, the customization
metadata file is named browseOrders.jsff.xml. Or if you implement customizations
on the OrderItems entity object, the base metadata file is named OrderItems.xml and
the customization metadata file is named OrderItems.xml.xml.

The customization metadata files are stored in a subpackage hierarchy that is created
at the same level as the object you customize. The first-level package is named
mdssys, and it contains a package named cust. The cust package contains a package
for each customization layer for which you have implemented customizations.

For example, say you have a base application that has a package
called oracle.summit.model.entities containing your entity objects, and
you have a customization layer named site with two layer values:
headquarters and remoteoffices. Then you implement customizations for
the OrderItems entity object at the headquarters layer value. When you
implement these customizations, JDeveloper creates the subpackage hierarchy
oracle.summit.model.entities.mdssys.cust.site.headquarters and stores the
customization metadata files there.

Similarly, for pages in your user interface project, JDeveloper creates a directory
structure to store the customization metadata files. For example, if you customize the
BrowseOrders.jsff page in the Web Content node of your user interface project,
JDeveloper creates the directory structure mdssys/cust/site/headquarters under
Web Content and stores the customization metadata file there.

How to Customize ADF Library Artifacts in JDeveloper
In the Customization Developer role, you can use JDeveloper to customize artifacts
in an ADF library. This need can arise when, for example, one development team
produces task flows as part of a framework service and makes them available to other
teams as an ADF library. Then another development team uses one of the task flows

Chapter 51
Customizing an Application

51-25

in a consuming application, and needs to fine-tune it to fit the requirements of the
application.

Customizing an ADF Library Artifact
You can add an ADF library to your project in the Customization Developer role just
as you would add it in the Studio Developer role. However, in the Customization
Developer role, content from an ADF library appears as editable to allow you to
implement customizations, whereas in the Studio Developer role it is read-only.
For more information about working with ADF libraries, see Reusing Application
Components .

Before you begin:

It may be helpful to have an understanding of how customization works. For
more information, see Customization and Layers: Use Cases and Examples, and
Customizing an Application.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to complete these tasks:

• Create your customization classes, as described in Creating a Customization
Class.

• Create a JAR using the procedure described in Adding Customization Classes into
a JAR.

• Make your classes available to JDeveloper, as described in Making Customization
Classes Available to JDeveloper at Design Time.

• Update the adf-config.xml file, as described in How to Configure the adf-
config.xml File .

• Enable seeded customizations in your application, as described in How to Enable
Seeded Customizations for User Interface Projects, and How to Enable Seeded
Customizations in Existing Pages.

• Configure the applications customization layers, as described in How to Configure
Customization Layers.

• Launch JDeveloper using the Customization Developer role, and open the
application that you want to customize.

To customize an ADF library artifact:

1. In the Applications window, click the Applications Window Options icon and
choose Show Libraries.

This displays the libraries in the Applications window, so that you can explore them
and access their artifacts.

2. Add the desired library to your project if it is not already shown among the libraries
in the Applications window.

For information about how to do this, see Adding ADF Library Components into
Projects.

3. Customize the artifacts just as you would customize other content in your project.

Chapter 51
Customizing an Application

51-26

For example, you can drag and drop taskflows from a library to .jspx or .jsff
pages in a consuming project, drag and drop taskflows from a library to a page
or fragment in another library, drag and drop library content or taskflows from the
Resource catalog, drag and drop data controls from Data Controls panel to .jspx
or .jsff pages in a library, edit business components, and drag and drop a data
control from a library to the Data Controls panel and then drop to a page in
another palette. All of these actions result in customizations of the library.

Specifying a Location for ADF Library Customizations
The location where ADF library customizations are stored is project-
dir\libraryCustomizations by default. If your workspace contains multiple projects,
you should change this to a workspace-level location for each project (for example,
workspace-dir\.mds\ADFLibraryCustomizations).

You can change the location of ADF library customizations on the Project Source
Paths > ADF Library Customizations page of the Project Properties dialog. If you
change this location after you have implemented customizations on an ADF library,
you must move the customization metadata files to the new location. To do this, use
the file system to move the customization metadata (XML) files from the old directory
to the new one.

If you have more than one project in the workspace with existing ADF library
customizations that need to be moved to the common location, move the
customizations to the new location one project at a time. For each project, change
the location of ADF library customizations in the Project Properties dialog, and then
move the customization metadata files from the old location to the new location. To
mitigate conflicts where an ADF library artifact has customizations in more than one
project, you have following options:

• From both projects, open the ADF Library artifact for which there are conflicting
customizations, and decide upon which customizations you want. Preserve the
customizations you want to keep and delete the others.

• If both customizations are important, open the ADF library artifact from the
first project and implement the customizations that were previously done in
second project. Then save the customizations in the first project and remove the
customizations from the second project.

Do not open ADF library customization metadata files from multiple projects in a text
editor and merge their contents. This can corrupt the customization metadata file.

Additionally, the location where ADF library customizations are stored is automatically
included when you create a MAR deployment profile. If you change this location after
you have created a MAR profile, you must also change the corresponding entry in the
contributors list on the User Metadata file group page of the Edit MAR Deployment
Profile Properties dialog before packaging. Alternatively, you can re-create the MAR
profile to pick up this change. For more information about creating a MAR deployment
profile, see How to Create Deployment Profiles.

How to View ADF Library Runtime Customizations from Exported
JARs

When working in the JDeveloper Customization Developer role, you can view runtime
customizations implemented on ADF library artifacts contained in an exported JAR.

Chapter 51
Customizing an Application

51-27

Before you begin:

It may be helpful to have an understanding of how customization works. See
Customization and Layers: Use Cases and Examples, and Customizing an
Application.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to complete these tasks:

• Create your customizable application, as described in Developing a Customizable
Application.

• Deploy the application and implement runtime customizations on it, then export the
runtime customizations to a JAR file.

• Launch JDeveloper using the Customization Developer role, and open the
customizable application.

To make runtime customizations viewable from JDeveloper:

1. From the Applications window context menu, choose Application Properties.

2. In the Application Properties dialog, select Customization Libraries.

3. Click Browse, and navigate to the location of the exported JAR file.

4. Select the JAR file and click Select.

5. Click OK.

Now the JAR is available so that JDeveloper can look up customizations on
ADF library artifacts. When you open an object that contains ADF library artifacts,
JDeveloper looks for customizations in this JAR file and displays them if appropriate.
JDeveloper decides what to display for a given artifact in a given customization context
as follows:

• If the artifact has neither runtime customizations nor seeded customizations
associated with it, the artifact from the ADF library is displayed.

• If the artifact has only either runtime customizations or seeded customizations
associated with it (but not both), the customized artifact is displayed.

• If the artifact has both runtime customizations and seeded customizations
associated with it, the seeded customization takes precedence and is displayed.

Additionally, when you run the application locally from JDeveloper, the runtime
customizations are displayed. However, the runtime customizations are not included
in any packaging of the application for deployment.

What Happens When You Customize ADF Library Artifacts
During the development of enterprise applications, there might be artifacts (such as
task flows) that can be reused in multiple applications. To facilitate reuse of these
common artifacts, they can be packaged into an ADF library and distributed. This
allows you to add the ADF library to the list of libraries that the consuming application
depends on. Then when the application is packaged, the customizations from all
such ADF libraries are included in the MAR, which is later deployed to the MDS
repository. Note, however, that ADF library customizations are added to the MAR
deployment profile when you create the profile, which is not automatically updated

Chapter 51
Customizing an Application

51-28

when customizations are implemented after creating the profile. To pick up these
subsequent customizations, use the Update Profile button on the MAR Options page
of the Edit MAR Deployment Profile Properties dialog.

Note:

The ADF library provider should take care to ensure that no name
conflicts arise due to customizations in the library. In the event that name
conflicts arise between customizations packaged in an ADF library and the
customizations from the consuming project, the customizations from the ADF
library are ignored.

When you implement customizations on objects from an ADF library, the
customization metadata is stored by default in a subdirectory of the project called
libraryCustomizations. And although you create ADF library customizations at the
project level, they are merged together during packaging to be available at the
application level at runtime. Essentially, ADF libraries are JARs that are added at
the project level, which map to library customizations being created at the project
level. However, although projects map to web applications at runtime, the MAR (which
contains the library customizations) is at the EAR level, so the library customizations
are seen from all web applications.

Therefore, you can customize an ADF library artifact in only one place in an
application for a given customization context (customization layer and layer value).
Customizing the same library content in different projects for the same customization
context would result in duplication in MAR packaging. To avoid duplicates that would
cause packaging to fail, implement customizations for a given library in only one
project in your application.

Note:

Using the same location for ADF library customizations for all of the projects
in your application can help to avoid duplicate customization. For more
information, see Specifying a Location for ADF Library Customizations.

For example, say the ADF library you are using contains a page fragment text.jsff.
In the consuming application, customize this library page in only one project. By doing
so, customizations are available for all projects in the application that consume this
library at runtime.

You are also restricted from customizing an object from an ADF library when your
project already contains an object with the same name. In case of duplication, you
must fix the projects by deleting one of the duplicate documents or deleting one and
manually merging the differences into the other.

Similarly, if the ADF library contains seeded customizations for an artifact within
a given customization context (customization layer and layer value), you cannot
implement customizations for that artifact within the same customization context.
In this situation, the ADF library artifact is read-only. You can, however, implement
customizations for the artifact within other customization contexts.

Chapter 51
Customizing an Application

51-29

For example, say the ADF library you are using contains seeded customizations for
the Headquarters layer value in the Site layer. When you select this as your tip
layer in the Customization Context window, the customized objects in that ADF library
are read-only. However, if you select Site/Remote Site 1 as your tip layer, then the
objects are customizable.

Note:

When the consuming application implements customizations on content
from an ADF library, the customizations are written to the local project
directories, but they are not automatically injected with the web-app-root
during packaging. For more information, see Creating a MAR Deployment
Profile.

What Happens at Runtime: How Customizations are Applied
At runtime, the application applies the customization metadata files over the base
application in the order of precedence defined in the cust-config section of the
adf-config.xml file.

The layer value is retrieved from the customization class at runtime and evaluated in
the context the application is running, and the appropriate customizations for that layer
value are applied.

What You May Need to Know About Customized Applications
When you are customizing an application, you might be using integrated source
control or customizing resource strings. When you use these features, there is
additional information you need to know.

Customization and Integrated Source Control
When working in the Customization Developer role, your source control integration
complements the process of customization. If JDeveloper is configured to
automatically check out and add new files to source control and you attempt to
customize a base document that is available from a source control system, JDeveloper
behaves in the following way:

• If the corresponding customization file is not already available, then a new
customization file is created in source control and the customizations are written to
it.

• If the corresponding customization file exists, it is checked out and customizations
are written to it.

• If the corresponding customization file exists and it is already checked out or not
yet in version control, customizations are written to it without any further version
control operation.

Since the base document is not modified in the Customization Developer role, the
base document is not checked out.

If JDeveloper is not configured to automatically check out or add new files to source
control, you must manually make the customization files editable and check in newly

Chapter 51
Customizing an Application

51-30

created customization files to source control. For more information about using source
control in JDeveloper, see section Using a Source Control System.

Editing Resource Bundles in Customized Applications
During the course of customizing your application, you might want to customize the
content to use different resource bundle keys or define and use new resource keys.

You can open a customizable application in the Customization Developer role and
use the Properties window to customize the usages of resource bundle strings. You
can change a document to use another already existing resource key in a resource
bundle, or create a new resource. For more information about resource bundles, see
Working with Resource Bundles.

New resource keys (created in the Customization Developer role) are saved to an
application-level override bundle (in XLIFF format), and JDeveloper adds an entry to
the adf-config.xml file like the one shown in the following example to configure the
application-level override bundle.

You must also configure the adf-config.xml file to support the overriding of the base
resource bundle. As the following example shows, you must tag the bundleId element
with override="true" to make it overrideable. After it is marked as overridden,
customizations of that bundle are stored in the application's override bundle.

<adf-resourcebundle-config xmlns="http://xmlns.oracle.com/adf/resourcebundle/
config">
 <applicationBundleName>
 path-to-resource-bundle/bundle-name
 </applicationBundleName>
 <bundleList>
 <bundleId override="true">
 package.BundleID
 </bundleId>
 </bundleList>
</adf-resourcebundle-config>

Note:

If an application is not configured for customization, you can open it in the
Customization Developer role and define new resource keys by choosing
Application > Edit Resource Bundles from the main menu. However,
you cannot change a document to use the new resource keys if it is not
configured for customization.

How to Package and Deploy Customized Applications
You need to deploy your ADF application after you have made the necessary
customizations. The customized metadata is packaged into a MAR file and made
ready for deployment.

After you customize the application, you will want to deploy it. Before you deploy
the customized application, you must follow the configuration procedures for setting
up your MDS repository, as described in Managing the MDS Repository of the
Administering Oracle Fusion Middleware.

Chapter 51
How to Package and Deploy Customized Applications

51-31

An enterprise application can contain model and user interface projects, and both
types of projects can contain customized metadata. The customized metadata is
packaged into a MAR for deployment. By default, the customizations from both types
of projects are added to a single MAR. For information about how to create a MAR
profile, see Creating a MAR Deployment Profile.

Implicitly Creating a MAR Profile
When you use JDeveloper to package a Fusion web application, JDeveloper
creates an auto-generated MAR profile that includes default metadata (such as
customizations), when either of the following conditions are met.

• The Enable User Customizations > Across Sessions using MDS checkbox is
selected on the ADF View settings page of the Project Properties dialog for the
user interface project.

• The MDS configuration section of the adf-config.xml file contains a <metadata-
store-usage> element that is marked as deploy-target="true", as shown in the
following example.

< . . . >
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/oracle/apps" metadata-store-usage="repos1"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="repos1" deploy-target="true">
 . . .
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
< . . . >

Explicitly Creating a MAR Profile
For customizations created in JDeveloper to take effect in the application when it
is deployed, these customizations need to be made available to the application at
runtime. There are two techniques you can use to accomplish this:

• Package the customizations along with the application using a MAR profile.

Create a MAR profile that includes the customization metadata. The MAR profile
should be included in the deployed EAR file to ensure that the customizations are
available at runtime. Your customization classes must be packaged in the EAR file
such that they are in the application-level class loader.

Note:

If you have only seeded customizations, you do not need to create
a MAR profile to import them into the MDS repository unless you
also want to support runtime customizations. If you have seeded
customizations and do not have cross-session persistence enabled, the
seeded customizations will be packaged in the EAR file by default and
loaded from the class path.

Chapter 51
How to Package and Deploy Customized Applications

51-32

• Import the customizations to the runtime repository used by the application.

You typically use this approach if customizations to library metadata need to
be applied to an application that is deployed separately. Using this approach,
you package the customizations into a JAR file and then use the command
importMetadata with Oracle WebLogic Scripting Tool (WLST) to import them to
the MDS runtime repository. For more information about this and other WLST
commands, see the WLST Command Reference for Infrastructure Components.

If your application has customizations on objects from an ADF library, the
customization metadata is implicitly included when you create the MAR profile. If you
change the location of ADF library customizations in the Project Properties dialog, you
must re-create the MAR profile before packaging.

If you plan to use design time at runtime capabilities to add or edit resource keys
in the override bundle at runtime, the override bundle must be packaged as part
of the MAR profile. By default, the override bundle is packaged as part of the auto-
generated MAR profile if the application contains seeded customizations. However, if
the application doesn't contain seeded customizations, you must explicitly create the
MAR deployment profile to package the override bundle. When the MAR profile is
created explicitly, the override bundle is added and included by default as part of the
user metadata.

When you package and deploy the completed customized application, you should do
so from the Studio Developer role, rather than from the Customization Developer
role. For information about how to create a MAR profile, see How to Create
Deployment Profiles.

Extended Metadata Properties
Extended metadata provides additional settings for customization of the Fusion web
application. You can edit the extended metadata properties and identify who and which
parts of metadata can be customized at runtime.

Extended metadata is data that describes the metadata content. The extended
metadata file contains additional information about the metadata file. One use of this
extended information is to identify which parts of the metadata can be customized
at runtime (design time at runtime customizations) and who can customize them.
For information about this use of extended metadata properties, see How to Enable
Customization for Design Time at Runtime.

You can open a metadata file (such as a .jspx file) in JDeveloper and use the
Properties window to view and edit its extended metadata properties. When you open
a metadata file, its extended metadata properties are displayed in the Properties
window. These properties can be edited to add metadata information at either of the
following levels:

• File-level: These properties are displayed in the Properties window when the root
element is selected in the Structure window.

• Element-level: These properties are displayed in the Properties window when an
element is selected in the Structure window. The selected element should have a
non-null identifier.

Extended metadata properties are supported for file types that support customizations
and can be packaged in a MAR, such as .jsff and .jspx files.

Chapter 51
Extended Metadata Properties

51-33

Extended metadata for a metadata document is stored in an associated resource
description framework (RDF) file. RDF is a W3C standard used to define an
XML framework for defining metadata. The RDF file associated with the metadata
document is created when the first property value is specified using the Properties
window. Extended metadata properties are editable only when JDeveloper is in the
Studio Developer role. RDF files are read-only in the Customization Developer role.

The RDF file is stored in the mdssys directory. For example, if the metadata
being described is stored in the file system as /myapp/data/page1.jspx, the
corresponding extended metadata document would be stored as /myapp/data/
mdssys/mdx/page1.jspx.rdf. The extended metadata document must then be
packaged with the corresponding metadata base file and added to the same
deployment profile. For information about creating a MAR deployment profile, see How
to Create Deployment Profiles.

Note:

Don't edit the extended metadata documents directly. Use the Properties
window.

How to Edit Extended Metadata Properties
You can use extended metadata properties to provide additional metadata information
that is not covered in the metadata file (such as a .jspx file). When you open
the metadata file in JDeveloper, extended metadata properties are displayed in the
Properties window, which you can use to edit these properties when you are using
JDeveloper in the Studio Developer role.

For example, suppose you want to deliver a metadata file in some form to external
customers. Along with metadata file, you need to provide additional information
about the file, such as the creator, subject, description, format, and rights. You can
accomplish this by creating an extended metadata property file for your metadata file.

Before you begin:

It may be helpful to have an understanding of how extended metadata is used. For
more information, see Extended Metadata Properties.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to complete this task:

• Launch JDeveloper using the Studio Developer role, and open the application.

To edit extended metadata properties:

1. In the Applications window, select the object for which you want to edit extended
metadata properties.

2. In the Structure window, select the appropriate element (typically the root
element).

3. In the Properties window, expand the appropriate node to edit the properties.

Chapter 51
Extended Metadata Properties

51-34

To display the Properties window with the values for the selected component,
choose Window > Properties from the main menu.

4. Edit the value for the desired property and press Enter.

5. From the main menu, choose File > Save to save your changes.

If you have edited extended metadata properties for a metadata file, you must
package your extended metadata (or RDF) files with the metadata files when you
deploy the application.

How to Enable Customization for Design Time at Runtime
You can also use extended metadata properties to provide information about which
parts of the metadata can be customized at runtime and who can customize the
metadata content.

By default, all components that you can add to a .jspx page are preconfigured to
allow runtime customization to support implicit user personalization (such as changing
the order of columns in a table).

Components that are preconfigured to allow customization need no further
modification to enable design time at runtime customizations. If you use them in
a .jspx page, then they are customizable by default.

Depending on the requirements of your application, you will need to modify
customization properties in the following situations:

• For components that are configured to allow customization, you can override the
default settings to disallow customization.

• For components that are not configured to allow customization and metadata
objects (such as .jspx pages), you can override the settings to allow
customization.

• For components that are configured to allow customization, you can optionally
restrict who is allowed to perform customizations at runtime.

If you edit customization properties, you must package your extended metadata (RDF)
files with the metadata files when you deploy the application.

Additionally, you can restrict customizations on a entire subtree of components by
marking the root of the subtree to disallow customizations. You can then mark
individual components of that subtree as customizable to allow customizations for
those specific components.

Editing Customization Properties in the Properties window
In the Customization group in the Properties window, there are two properties
that allow you to specify whether customizations for an object are permitted at
runtime and who is permitted to do them. The CustomizationAllowed property
can be set on any element to specify whether or not it can be customized. The
CustomizationAllowedBy property controls which users can customize the element.
These settings are not enforced when you are implementing seeded customizations
using JDeveloper, but are instead enforced when the application is customized at
runtime (design time at runtime customizations).

For example, say you have a .jspx page with a form that contains two panels,
and you need to allow runtime customization for content in Panel1, but not Panel2.

Chapter 51
Extended Metadata Properties

51-35

You would set CustomizationAllowed to true for Panel1, and set it to false for
Panel2. If you need to allow runtime customization on an entire page, you would set
CustomizationAllowed to true for the .jspx page root.

Before you begin:

It may be helpful to have an understanding of how extended metadata is used. For
more information, see Extended Metadata Properties.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Customization.

You will also need to complete these tasks:

• Create your customizable application, as described in Developing a Customizable
Application.

• Launch JDeveloper using the Studio Developer role, and open the application.

To edit customization properties:

1. In the Applications window, select the object for which you want to edit
customization properties.

2. In the Structure window, select the appropriate element.

3. In the Properties window, expand the Customization node to edit the
customization properties.

To display the Properties window with the values for the selected component,
choose Window > Properties from the main menu.

4. Edit the property value and press Enter.

For example, to allow runtime customizations on a .jspx file, select the file and set
the CustomizationAllowed property to true.

5. From the main menu, choose File > Save to save your changes.

Using a Standalone Annotations File to Specify Type-Level Customization
Properties

You can optionally use a standalone annotations file to specify whether or not
customizations are allowed for a given type of component. This file allows you to set
customization properties on element types, rather than on instances. You can override
the setting for a given type by explicitly setting true or false on a specific instance.
The following example shows the contents of a sample standalone annotations file.

<?xml version="1.0" encoding="UTF-8"?>
<grammarMetadata xmlns="http://xmlns.oracle.com/bali/xml/metadata"
 xmlns:md="http://xmlns.oracle.com/bali/xml/metadata"
 xmlns:mmd="http://xmlns.oracle.com/bali/xml/metadata/model"
 xmlns:mds="http://xmlns.oracle.com/mds"
 namespace="http://www.oracle.com/mds/restrictCustomizations">
 <elementMetadata elementName="orderDetail">
 <attributeMetadata attributeName="itemTypeRef">
 <mds:customizationAllowedBy>sales admin</mds:customizationAllowedBy>
 </attributeMetadata>
 <attributeMetadata attributeName="description">
 <mds:customizationAllowed>true</mds:customizationAllowed>
 <mds:customizationAllowedBy>hr</mds:customizationAllowedBy>

Chapter 51
Extended Metadata Properties

51-36

 </attributeMetadata>
 <attributeMetadata attributeName="title">
 <mds:customizationAllowed>true</mds:customizationAllowed>
 </attributeMetadata>
 </elementMetadata>

 <elementMetadata elementName="bankTransfer">
 <mds:customizationAllowed>false</mds:customizationAllowed>
 </elementMetadata>

 <elementMetadata elementName="order">
 <mds:customizationAllowed>true</mds:customizationAllowed>
 <attributeMetadata attributeName="paymentRef">
 <mds:customizationAllowedBy>sales</mds:customizationAllowedBy>
 </attributeMetadata>
 <elementMetadata elementName="itemDetail">
 <attributeMetadata attributeName="itemsRef">
 <mds:customizationAllowedBy>hr</mds:customizationAllowedBy>
 </attributeMetadata>
 </elementMetadata>
 </elementMetadata>

</grammarMetadata>

If you use a standalone annotations file, you must register it with MDS in the adf-
config.xml file. Create a mdsc:standalone-definitions section in the mdsc:type-
config section of the adf-config.xml file, as shown in the following example.

<?xml version="1.0"?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:mdsc="http://xmlns.oracle.com/mds/config">
 <mdsdata>
 <mdsc:mds-config version="11.1.1.000" >
 <mdsc:type-config>
 <mdsc:type-definitions>

 <mdsc:url>jar:file:/c:/jdev/lib/oafwk.jar!/oracle/apps/schemas/oa.xsd</mdsc:url>

 <mdsc:mds>/oracle/mds/TypeSeven.xml</mdsc:mds>
 <mdsc:mds>/oracle/mds/TypeEight.xml</mdsc:mds>
 <mdsc:file>typefile7.xsd</mdsc:file>
 <mdsc:file>typefile8.xsd</mdsc:file>
 </mdsc:type-definitions>
 <mdsc:standalone-definitions>

 <mdsc:url>jar:file:/c:/jdev/lib/oafwk.jar!/oracle/apps/schemas/
oa.xsd</mdsc:url>

 <mdsc:mds>/oracle/mds/standAloneSeven.xml</mdsc:mds>
 <mdsc:mds>/oracle/mds/standAloneEight.xml</mdsc:mds>
 <mdsc:file>standAloneFile7.xsd</mdsc:file>
 <mdsc:file>standAloneFile8.xsd</mdsc:file>
 </mdsc:standalone-definitions>
 </mdsc:type-config>

 </mdsc:mds-config>
 </mdsdata>
</adf-config>

Chapter 51
Extended Metadata Properties

51-37

Enabling Runtime Modification of Customization
Configuration

For a given session, you can make modifications to the customized configuration at
runtime.

You can prepare your customized application to accept overrides to the customization
configuration (the cust-config section of the adf-config.xml file) at runtime on a per-
session basis, thus allowing the user to change the way customizations are applied for
a given session (or web request).

Consider a scenario where an application is configured with a site layer and a user
layer and you want to make design time at runtime customizations to the site layer.
If you use the application's customization configuration (defined in the adf-config.xml
file), any customizations that you implement are applied to the user layer. So, you
need to be able to adjust the customization configuration for a given session to allow
your customizations to be applied to the site layer.

Or perhaps you have a requirement that an administrator wants to see the base
metadata document with the site layer customizations alone. For cases like this, you
need to specify a modified customization configuration, other than what was originally
specified in application's adf-config.xml file.

For each web request, Oracle ADF creates an MDS session. For any MDS
customization configuration modifications that apply to a session (web request),
the user could programmatically provide modified MDS session options with a new
customization configuration to Oracle ADF that would be applied on top of the original
MDS configuration while creating a MDS session.

To implement this functionality, use the following ADF interfaces for
sessionOptionsFactory:

• oracle.adf.share.mds.SessionOptionsFactory is the interface you use to
specify modified MDS session options for a web request in a Fusion web
application.

SessionOptionsFactory :: oracle.mds.core.SessionOptions
createSessionOptions(oracle.mds.core.SessionOptions defaultOptions)

You implement this method to return the modified MDS sessionOptions to ADF.

• oracle.adf.share.config.ConfigUtils is the public class you can use to register
your session options factory with ADF.

ConfigUtils :: public static void setSessionOptionsFactory(ADFContext
context, SessionOptionsFactory factory)

See your ADF API documentation for further detail on these interfaces.

You register your sessionOptionsFactory with Oracle ADF so that ADF can get
modified session options from your implementation before the MDS session is created
in request lifecycle.

The following example shows how you can implement sessionOptionsFactory. This
example sets a modified customization configuration for the session to use the site
customization layer alone regardless of the customization configuration specified in the
adf-config.xml file. See the Javadoc for oracle.mds for more information.

Chapter 51
Enabling Runtime Modification of Customization Configuration

51-38

package mycompany;

import oracle.adf.share.mds.SessionOptionsFactory;
import oracle.mds.config.CustClassListMapping;
import oracle.mds.config.CustConfig;
import oracle.mds.config.MDSConfigurationException;
import oracle.mds.core.SessionOptions;
import oracle.mds.cust.CustClassList;
import oracle.mds.cust.CustomizationClass;

public class MySessionOptionsFactory implements SessionOptionsFactory {
 public MySessionOptionsFactory() {
 super();
 }
 /**
 * Called to allow the application code to create a new SessionOptions object.
 * The application code should make sure to read the values from the
 * defaultOptions object as part of contruction of their new object and make
 * sure they only override the intended values.
 * @param defaultOptions
 * @return modified MDS session options
 */
 public SessionOptions createSessionOptions(SessionOptions defaultOptions) {
 // create new mds Customization configuration
 CustConfig custconfig = null;

 // create customization class array. Just put SiteCC implementation as we
 // wish to apply site customizations alone.
 CustomizationClass[] custclassarray = new CustomizationClass[] {new
SiteCC()};

 CustClassList custclasslist = new CustClassList(custclassarray);

 // specify the base metdata package namespace mapping on which site
 // customizations would apply
 CustClassListMapping[] mappings =
 new CustClassListMapping[] {new CustClassListMapping("mycompany/package",
 null, null, custclasslist)};
 // create new customization configuration
 try{
 custconfig = new CustConfig(mappings);
 }
 catch (Exception ex){
 //do nothing
 }

 // now return modified sessionOptions to ADF with new mds customization
 // configuration. Only use newly created customization configuration in here.
 // For rest of option, use whatever available in defaultOptions.
 return new SessionOptions(defaultOptions.getIsolationLevel(),
 defaultOptions.getLocale(),
 custconfig,
 defaultOptions.getVersionContext(),
 defaultOptions.getVersionCreatorName(),
 defaultOptions.getCustomizationPolicy(),
 defaultOptions.getServletContextAsObject());
 }
}

Chapter 51
Enabling Runtime Modification of Customization Configuration

51-39

52
Allowing User Customizations at Runtime

This chapter describes how to use the ADF Faces change persistence framework to
create JSF pages that users can customize at runtime.
This chapter includes the following sections:

• About User Customizations

• Enabling Runtime User Customizations for a Fusion Web Application

• Configuring User Customizations

• Controlling User Customizations in Individual JSF Pages

• Implementing Custom User Customizations

• Creating Implicit Change Persistence in Custom Components

About User Customizations
JDeveloper allows you to save the attributes of ADF Faces components based on your
specific requirements.

Certain ADF Faces components have attributes that can be saved for a specific user.
For example, the value of the disclosed attribute on a panelBox component can
be saved for a specific user during the current session. Say the myOrders page in
an application contains four panelBox components that display order information. By
default, they are expanded, as shown in Figure 52-1.

52-1

Figure 52-1 panelBox Components Are Expanded by Default

However, suppose a user decides to collapse one of the boxes, as shown in
Figure 52-2.

Chapter 52
About User Customizations

52-2

Figure 52-2 panelBox Component Remains Collapsed

Because this application is configured to allow user customizations, then during the
user's session, anytime that user returns to the page, the Payment Information box
remains collapsed. You need only to enable user customizations for the project in
order for these changes to be persisted to the user's session.

Note:

The user session begins when the user logs in to the application, and
ends when the user leaves the application. It is possible that while using
an application, the user could navigate across application boundaries (for
example, to a peer application) and thereby leave the application, at which
point the user session would end.

Table 52-1 shows the attribute value changes persisted by an ADF Faces application,
after you configure the application to allow user customizations.

Chapter 52
About User Customizations

52-3

Table 52-1 Implicitly Persisted Attribute Values

Component Attribute Affect at Runtime

panelBox

showDetail

showDetailHeader

showDetailItem

disclosed Users can display or hide content
using an icon in the header. Detail
content will either display or be
hidden, based on the last action of
the user.

showDetailItem (used
in a panelAccordion
component)

flex The heights of multiple
showDetailItem components are
determined by their relative
value of the flex attribute. The
showDetailItem components with
larger flex values will be taller than
those with smaller values. Users
can change these proportions, and
the new values will be persisted.

showDetailItem (used
in a panelAccordion
component)

inflexibleHeight Users can change the size of a
panel, and that size will remain.

panelSplitter collapsed Users can collapse either side of
the splitter. The collapsed state will
remain as last configured by the
user.

panelSplitter splitterPosition The position of the splitter in the
panel will remain where last moved
by user.

richTextEditor editMode The editor will display using the
mode (either WYSIWYG or source)
last selected by the user.

calendar activeDay The day considered active in the
current display will remain the active
day.

calendar view The view (day, week, month, or list)
that currently displays activities will
be retained.

panelWindow

dialog

contentHeight Users can change the height of
a panelWindow or dialog popup
component, and that height will
remain.

panelWindow

dialog

contentWidth Users can change the width of
a panelWindow or dialog popup
component, and that width will
remain.

button

link

commandMenuItem

commandNavigationItem

windowHeight When users change the
contentHeight attribute value
of a panelWindow or dialog
component, any associated
windowHeight value on a
command component is also
changed and will remain.

Chapter 52
About User Customizations

52-4

Table 52-1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute Affect at Runtime

button

link

commandMenuItem

commandNavigationItem

windowWidth When users change the
contentWidth attribute value
of a panelWindow or dialog
component, any associated
windowWidth value on a command
component is also changed and will
remain.

column displayIndex ADF Faces columns can be
reordered by the user at runtime.
The displayIndex attribute
determines the order of the
columns. (By default, the value is
set to -1 for each column, which
means the columns will display in
the same order as the data source).
When a user moves a column, the
value on each column is changed
to reflect the new order. These new
values will be persisted.

column frozen ADF Faces columns can be
frozen so that they will not scroll.
When a column's frozen attribute
is set to true, all columns
before that column (based on
the displayIndex value) will not
scroll. When you use the table with
a panelCollection component,
you can configure the table so that
a button appears that allows the
user to freeze a column.

column noWrap The content of the column will either
wrap or not. You need to create
code that allows the user to change
this attribute value. For example,
you might create a context menu
that allows a user to toggle the
value from true to false.

column selected The selected column is based on
the column last selected by the
user.

column visible The column will either be visible or
not, based on the last action of the
user. You will need to write code
that allows the user to change this
attribute value. For example, you
might create a context menu that
allows a user to toggle the value
from true to false.

column width The width of the column will remain
the same size as the user last set it.

Chapter 52
About User Customizations

52-5

Table 52-1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute Affect at Runtime

table filterVisible ADF Faces tables can contain a
component that allows users to filter
the table rows by an attribute value.
For a table that is configured to use
a filter, the filter will either be visible
or not, based on the last action of
the user. You will need to write code
that allows the user to change this
attribute value. For example, you
might create a button that allows a
user to toggle the value from true
to false.

dvt:areaGraph

dvt:barGraph

dvt:bubbleGraph

dvt:comboGraph

dvt:horizontal
BarGraph

dvt:lineGraph

dvt:scatterGraph

timeRangeMode The time range for the data
displayed on a graph time axis can
be specified for all data visualization
graph components. By default, all
data is displayed. The time range
can also be set for a relative time
range from the last or first data
point, or an explicit time range.
You will need to write code that
allows the user to change this
attribute value. For example, you
might create a dropdown list to
choose the time range for a graph.

dvt:ganttLegend visible The legend for data visualization
project, resource utilization, and
scheduling Gantt chart components
will either be visible or not inside
the information panel. You will need
to write code that allows the user
to change this attribute value, for
example, a hide and show button to
display the legend.

dvt:hierarchyViewer layout The data visualization hierarchy
viewer component supports nine
hierarchy layout options including a
top-to-bottom vertical, tree, circle,
radial, and so on. Users can change
the layout in the map control panel
and the last selected layout will be
retained.

dvt:map mapZoom This data visualization geographic
map component attribute specifies
the beginning zoom level of the
map. The zoom levels are defined in
the map cache instance as part of
the base map. You will need to write
code that allows the user to change
this attribute value.

Chapter 52
About User Customizations

52-6

Table 52-1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute Affect at Runtime

dvt:map srid This data visualization geographic
map component attribute specifies
the srid (spatial reference id) of all
the coordinates of the map, which
includes the center of the map,
defined by startingX and startingY,
and all the points in the point
theme. You will need to write code
that allows the user to change this
attribute value.

dvt:map startingX, startingY This data visualization geographic
map component attribute specifies
the X and Y coordinate of the
center of the map. The srid for
the coordinate is specified in the
srid attribute. If the srid attribute is
not specified, this attribute assumes
that its value is the longitude of the
center of the map. You will need to
write code that allows the user to
change this attribute value.

dvt:projectGantt

dvt:resource
UtilizationGantt

dvt:schedulingGantt

splitterPosition The position of the splitter in the
panel will remain where last moved
by user.

dvt:timeAxis scale Data visualization components for
project, resource utilization, and
scheduling Gantt charts use this
facet to specify the major and
minor time axes in the Gantt
chart. The time scale (twoyears,
year, halfyears, quarters,
twomonths, months, weeks,
twoweeks, days, sixhours,
threehours, hours, halfhours,
quarterhours) can be set by the
user using the menu bar View
menu and the selection will be
retained. Note that a custom time
scale can also be named for this
component value.

dvt:timeSelector explicitStart,
explicitEnd

Data visualization area, bar, combo,
line, scatter, and bubble graph
components use this child tag
attribute to specify the explicit start
and end dates for the time selector.
Only value-binding is supported for
this attribute. You will need to write
code that allows the user to change
this attribute value.

Chapter 52
About User Customizations

52-7

Runtime User Customization Use Cases and Examples
You can configure an application so that the value of the attributes listed in Table 52-1
can be persisted across sessions using the MDS repository. For example, if an
application allowed persistence to the MDS repository, then a user could collapse the
Payment Information box, as shown in Figure 52-2, and it would be collapsed the next
time that user entered the application.

Note:

Before you can enable persistence to the repository, you must first follow
all MDS configuration procedures as documented in Managing the MDS
Repository of the Administering Oracle Fusion Middleware.

Along with the automatic persistence available through ADF Faces, you can create
your own custom user customization capabilities for the following types of changes:

• Changing an attribute value

• Adding or removing a facet

• Adding or removing a child component

• Reordering child components

• Moving a child component to a different parent

If you want to create these types of custom user customizations, you need to add code
(for example, in an event handler) that will call the APIs to handle the persistence.

Enabling an application to use the change persistence framework requires that you
first enable your application to allow user customizations. Part of this process is
determining where those changes should be persisted, either to the session or the
MDS repository.

If you choose to persist changes to the session, by default all values as shown in
Table 52-1 will be saved for the user's session. However if you choose to persist
changes to a repository, you must explicitly configure which of these attribute values
will be persisted to the repository. Instead of persisting all these attribute values, you
can restrict changes so that only certain attribute value changes for a component are
persisted, or so that only specific instances of the components persist changes.

Note:

You cannot persist changes to a component that is contained inside
(anywhere in the subtree) of af:forEach or af:iterator tags using the
addComponentChange() method. While such structure results in multiple
copies of a component in the view tree, each component has only a single
representation in the JSP document. However, the addDocumentChange()
method does allow persistence for such components. See the discussion of
the DocumentChange and ComponentChange classes in What You May Need to
Know About the Change Persistence Framework API.

Chapter 52
About User Customizations

52-8

For any applications that persist changes to an MDS repository, when you deploy your
application, you must create a metadata archive (MAR) profile in the application's EAR
assembly. See How to Create Deployment Profiles.

Additional Functionality for Runtime User Customization
You may find it helpful to understand other features before you start working with user
customizations. Following are links to other functionality that may be of interest.

• For information about the MDS architecture and metadata repositories (database-
and file-based) and archives (EAR, MAR), see Managing the MDS Repository in
Administering Oracle Fusion Middleware.

• The MDS framework allows you to create customizable applications that can
be customized and subsequently deployed by a customer. See Customizing
Applications with MDS .

Enabling Runtime User Customizations for a Fusion Web
Application

In order to enable an ADF application to use the change persistence framework, you
need to edit the web.xml and adf-config.xml files.

Enabling an application to allow user customizations (whether for the default changes
that some ADF Faces components provide, or for custom capabilities that you create)
requires that you configure your application to use the change persistence framework
and that you also determine where those changes should be persisted (either the
session or the MDS repository).

Note:

If you are planning on persisting changes to the MDS repository, before
configuring an ADF Faces application to use change persistence, you must
first follow all MDS configuration procedures as documented in Managing the
MDS Repository of the Administering Oracle Fusion Middleware.

How to Enable User Customizations
You enable your application to use the change persistence framework by editing the
web.xml and adf-config.xml files.

Before you begin:

It may be helpful to have an understanding of the features of runtime user
customization. For more information, see Enabling Runtime User Customizations for a
Fusion Web Application.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Runtime User Customization.

Chapter 52
Enabling Runtime User Customizations for a Fusion Web Application

52-9

You will need to launch JDeveloper using the Studio Developer role, and open (or
create) the application in which you want to enable runtime user customization.

To enable user customizations:

1. In the Applications window, double-click the web project in your application.

2. In the Project Properties dialog, select the ADF View node.

3. On the ADF View page, select the Enable User Customizations checkbox. If you
want the changes to be persisted to only the session, select the For Duration of
Session radio button. If you want the changes to persist to the MDS repository,
select Across Sessions Using MDS.

4. If you choose to persist to the repository, you now need to declare each
component tag and associated attribute values that you want persisted to the
repository (if you choose to persist only to the session, all values will be persisted).

For procedures to accomplish this task, see Configuring User Customizations.
Once that configuration is complete, you can override those settings on a per
component instance basis. For procedures, see Controlling User Customizations
in Individual JSF Pages.

Note:

If you have created custom user customization capabilities as
documented in Implementing Custom User Customizations, then you
also need to declare those attribute values or operations.

What Happens When You Enable User Customizations
When you elect to save changes only to the session, JDeveloper adds the
CHANGE_PERSISTENCE context parameter to the web.xml file, and sets the value to
session. This context parameter registers the ChangeManager class that will be used to
handle persistence. If you instead elect to save the changes to the MDS repository, the
value is set to oracle.adf.view.rich.change.FilteredPersistenceChangeManager,
as shown in the following example.

<context-param>
 <param-name>org.apache.myfaces.trinidad.CHANGE_PERSISTENCE</param-name>
 <param-value>
 oracle.adf.view.rich.change.FilteredPersistenceChangeManager
 </param-value>
</context-param>

Tip:

If needed, you can manually set this value to
oracle.adf.view.rich.change.MDSDocumentChangeManager if you do not
want any customizations to be restricted based on configurations in the
adf-config.xml file or on the individual JSF pages, and you always want the
changes to be persisted to the MDS repository and not the session.

Chapter 52
Enabling Runtime User Customizations for a Fusion Web Application

52-10

When you elect to persist to the repository, JDeveloper also does the following:

• Adds the following JARs to the class path if they don't exist:

– javatools-nodep.jar

– facesconfigmodel.jar

– taglib.jar

• Adds another context parameter to web.xml to register the MDSJSPProviderHelper
class to handle merging MDS customization documents with the base JSP
document, as shown in the following example.

<context-param>
 <param-name>oracle.adf.jsp.provider.0</param-name>
 <param-value>oracle.mds.jsp.MDSJSPProviderHelper</param-value>
</context-param>

• Adds the ADF Faces Change Manager Runtime 11 library to the project.

• In the adf-config.xml descriptor file, sets the persistent-change-manager
element to the MDSDocumentChangeManager, which is the class that will be used to
persist the changes. The following example shows the configuration for persisting
to the MDS repository.

<persistent-change-manager>
 <persistent-change-manager-class>
 oracle.adf.view.rich.change.MDSDocumentChangeManager
 </persistent-change-manager-class>
</persistent-change-manager>

• Creates JSF JSP pages as XML documents. See Controlling User Customizations
in Individual JSF Pages.

Additionally, when you elect to save the changes to the MDS repository, and
you include facelets in your application, JDeveloper adds the faceletCache
context parameter to the web.xml file. The value of this parameter is set to
oracle.adfinternal.view.faces.facelets.rich.MDSFaceletCache, as shown in the
following example.

<context-param>
 <param-name>com.sun.faces.faceletCache</param-name>

 <param-value>oracle.adfinternal.view.faces.facelets.rich.MDSFaceletCache</param-value>

</context-param>

The facelets cache enhances the performance of your application and the cache
capacity can be configured in MDS on the server. See Managing the MDS Repository
in Administering Oracle Fusion Middleware.

Configuring User Customizations
You can configure your ADF application to use any type of change persistence (the
session or a repository). By default, the attribute values are persisted to the user’s
session. You must declare the attributes values if you choose to persist the changes to
the repository.

If you choose to persist changes to an MDS repository, you must decide which of the
attribute values that are by default persisted to the session (as shown in Table 52-1)

Chapter 52
Configuring User Customizations

52-11

should also be persisted to the repository. Alternatively, you can configure which
changes you do not want persisted.

Tip:

Often, a system administrator is the one to set the configurations in the
adf-config.xml. The persist and dontPersist attributes on a component
allow page authors to override that setting as needed.

For example, suppose you decide that you don't want the value for the width attribute
on columns to be persisted to the repository, but you do want all other default attribute
changes for columns to be persisted. You must explicitly set the other default column
values that you want to be persisted, and you also must explicitly configure the
application to NOT persist the width attribute.

Note:

If you have created custom user customization capabilities as documented in
Implementing Custom User Customizations, then you must explicitly declare
those attribute values or operations as well.

You set (and unset) these values using the overview editor for the adf-config.xml
file. Figure 52-3 shows the overview editor where only certain attribute values for the
column component will be persisted.

Figure 52-3 Overview Editor for the adf-config.xml File

Chapter 52
Configuring User Customizations

52-12

Once set, you can override persistence for a specific component on a page. For
example, suppose you want to disallow change on the width attribute on only one
table's columns. You want the rest of the tables in the application to persist changes
to that attribute. You would configure the columns to globally persist changes to the
width attribute, but then for that one table, you would override the global configuration
directly on the JSF page. For more information, see Controlling User Customizations
in Individual JSF Pages.

Note:

If you've enabled just session persistence, then all attribute values shown in
Table 52-1 will be persisted to the session. There is no way to override this
either globally or on an instance.

How to Configure Change Persistence
By default, when you configure your application to use any type of change persistence
(that is, to either the session or a repository), the values of all attributes shown in
Table 52-1 will always be persisted to the user's session. If you configured your
changes to be persisted to a repository, then you must declare the attributes whose
values should be persisted to that repository. If there are any values that you don't
want persisted, then you need to configure those values as well.

Before you begin:

It may be helpful to have an understanding of how runtime user customization are
persisted. For more information, see Configuring User Customizations.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Runtime User Customization.

You will need to launch JDeveloper using the Studio Developer role, and open (or
create) the application in which you want to enable runtime user customization.

To declare attribute value persistence to a repository:

1. In the Application Resources panel, expand the Descriptors and ADF META-INF
nodes, and then double-click adf-config.xml.

2. In the overview editor, click the View navigation tab.

3. In the View page, in the Tag Persistence section, in the Components table,
select the component whose changes you want to persist (or not persist) to the
repository.

If the component does not appear in the table, click the Add icon to select and add
it.

Chapter 52
Configuring User Customizations

52-13

Note:

The filter rules specified in the adf-config.xml file are applicable only
when you have chosen to persist to the MDS repository (see How to
Enable User Customizations). These rules do not apply for persistence
within session scope.

If persistence fails for any reason (for example if one of the filter rules
fails or there are MDS repository errors), then the values will be stored
only within the session scope.

The Attributes table displays all the attributes for the selected component whose
values can be persisted.

4. In the Attributes table, select Persist Changes for each of the attributes whose
values you want persisted. Deselect any if you do not want the values persisted.

Note:

If you are implementing custom user customizations (see Implementing
Custom User Customizations), then you will need to edit the adf-config.xml
manually to add the configuration. See What Happens When You
Configure Change Persistence for an example on how to configure user
customizations.

What Happens When You Configure Change Persistence
When you select the component tags and attribute values to be persisted in the
adf-config.xml file, JDeveloper enters tag library information for the components
and attributes that are to be persisted. The following example shows the entry for
persisting the value of the disclosed attribute on the panelBox component.

<taglib-config>
 <taglib uri="http://xmlns.oracle.com/adf/faces/rich">
 <tag name="panelBox">
 <attribute name="disclosed">
 <persist-changes>
 true
 </persist-changes>
 </attribute>
...
 </tag>
 </taglib>
</taglib-config>

Controlling User Customizations in Individual JSF Pages
Using an ADF Faces component’s persist and dontPersist attributes, you can override
any globally set persistence configuration for a component.

Once you have enabled your application to allow user customizations, you can control
user customizations for specific components on the page.

Chapter 52
Controlling User Customizations in Individual JSF Pages

52-14

By default, the framework persists changes for all component instances, based on
the configuration in the adf-config.xml file. You can override this default behavior by
explicitly setting what should be persisted and what should not be persisted on each
component instance using the persist and dontPersist attributes.

Note:

The filter rules specified using the persist and dontPersist attributes are
applicable only when you have chosen to persist to the MDS repository
(see How to Enable User Customizations). These rules do not apply for
persistence within session scope.

If persistence fails for any reason (for example if one of the filter rules fails
or there are MDS repository errors), then the values will be stored only within
the session scope.

The following components support the persist and dontPersist attributes:

• panelBox

• showDetail

• showDetailHeader

• showDetailItem

• column

• tree

• treeTable

• panelSplitter

• calendar

• dvt:projectGantt

• dvt:resourceUtilizationGantt

• dvt:schedulingGantt

• dvt:ganttLegend

• dvt:hierarchyViewer

• dvt:timeAxis

How to Control User Customizations on a JSF Page
You can override any globally set persistence configuration for a component using its
persist and dontPersist attributes.

Chapter 52
Controlling User Customizations in Individual JSF Pages

52-15

Tip:

Often, a system administrator is the one to set the configurations in the adf-
config.xml. The persist and dontPersist attributes allow page authors to
override that setting as needed.

Before you begin:

It may be helpful to have an understanding of how runtime user customizations
can be restricted on an individual page. For more information, see Controlling User
Customizations in Individual JSF Pages.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Runtime User Customization.

You will need to launch JDeveloper using the Studio Developer role, open the
application, and open the page for which you want to modify user customization
behavior.

To implement user customizations on a JSF Page:

1. In the Applications window, double-click the page that contains components that
will be persisting changes.

2. If you want to persist all persistable attributes for a component:

a. In the Properties window, expand the Advanced section.

b. From the dropdown list for the Persist field, select All Available.

3. If you do not want to persist any attributes, repeat Step 2 for the Don'tPersist
field.

4. If more than one attribute can be persisted for the component, and you do not
want to persist all of them:

a. In the Properties window, from the dropdown menu to the right of the Persist
field, choose Edit.

b. In the Edit Property dialog, shuttle any attributes to be persisted from
Available to Selected.

5. If you do not want to persist an attribute value, repeat Step 4 for the Don't Persist
field.

Chapter 52
Controlling User Customizations in Individual JSF Pages

52-16

Note:

The filter rules specified using the persist and dontPersist attributes
take precedence over any adf-config.xml configuration set for global
component-level restrictions.

Values specified for the dontPersist attribute take precedence over values
specified for the persist attribute. For example, if for a panelBox component
you set disclosed as the value for both the persist and dontPersist
attributes, the value of the disclosed attribute will not be persisted.

If you set the value of the persist or dontPersist attribute to All
Available, then any values entered as choices using the Edit dialog and
the shuttle will be ignored and all available attribute values will be persisted
or not persisted.

What Happens at Runtime: How Changes are Persisted
When an application is configured to persist changes to the session, any changes
made during the session are recorded in a session variable in a data structure that
is indexed according to the view ID and the component's ID attribute value. Every
time the page is requested, in the subsequent create View or Restore View phase,
all changes are applied in the same order as they were added. This means that
the changes registered through the session will be applied only during subsequent
requests in the same session.

When an application is configured to persist changes to the MDS repository, any
changes made during the session are recorded by mutating the Document Object
Model that MDS maintains for the JSP document behind the view. A JSF phase
listener registered by ADF controller triggers a commit on the MDS session during
the appropriate lifecycle phase, resulting in the change document being persisted in
the MDS store. Every time the page is requested, Oracle's JSP engine seeks the
JSP document from an MDS JSP provider, which provides a flattened document after
merging the stored changes to the base document. MDS records the change against
the unique value of the component's ID attribute.

Tip:

If changes are applied in response to a partial submit of the page (for
example, a button with the partialSubmit attribute set to true), the
component for which changes are applied must be set as the value for the
partialTarget attribute.

Additionally, be aware that when you run the application from JDeveloper in the
Integrated WebLogic Server, MDS creates a local file-based repository to persist
metadata customizations. In contrast, when the application is deployed to a test
or production environment, customizations are persisted to the configured MDS
repository. For more information about MDS repository configuration, see the
Administering Oracle Fusion Middleware. For more information about deploying an
application, see Deploying the Application.

Chapter 52
Controlling User Customizations in Individual JSF Pages

52-17

What You May Need to Know About Using Change Persistence on
Templates and Regions

How changes are persisted for components on templates or regions is handled
differently, depending on whether the changes are persisted to the session or to the
MDS repository. With session persistence, changes are recorded and restored on
components against the viewId for the given session. As a result, when the change
is applied on a component that belongs to a region or page template, that change
is applicable only in scope of the page that uses the region or template. It does
not span all pages that consume the region or template.For example, suppose you
have pageOne.jspx and pageTwo.jspx, and they both contain the region defined in
region.jsff, which in turn contains a showDetail component. When pageOne.jspx
is rendered and the disclosed attribute on the showDetail component changes, the
implicit attribute change is recorded and will be applied only for pageOne.jspx. If the
user navigates to pageTwo.jspx, no attribute change is applied.

When you persist changes to the MDS repository, MDS records and restores
customizations for a document identified by a combination of the JSP page path and
customization name/value configuration setting as set on the customization class (for
more information, see Customization Classes). As a result, for a given page that is
rendered, when MDS applies a change on a component within a region or template, it
is applicable for all pages that consume the region or template and that have the same
customization name and value as the source page.

In the previous example, assume that the showDetail component uses the ID of
myShowDetail. When pageOne.jspx is rendered and the disclosed attribute on the
showDetail component changes, the attribute change is recorded for region.jsff
(and not the page that consumes it). This change is applied when any page that
contains the region is rendered, as long as the ID remains the same.

Implementing Custom User Customizations
Apart from the in-built user customization capabilities present in specific ADF Faces
components, the change persistence framework allows you to create your own custom
user customization capabilities.

In addition to the user customization capabilities built in to certain ADF Faces
components, you can create your own custom user customization capabilities. The
change persistence framework supports the following types of user customizations:

• Changing an attribute value

• Adding or removing a facet

• Adding or removing a child component

• Reordering child components

• Moving a child component to a different parent

To create custom user customizations, you must create a customization class for
each type of user customization and then configure your application to use that
class. You also need to set up the layers of customization for your application. For
more information about both of these procedures, see Developing a Customizable
Application.

Chapter 52
Implementing Custom User Customizations

52-18

Once those prerequisites are satisfied, you add logic that calls methods on the
ADF Faces classes that handle persisting change either to the session or the MDS
repository. To handle the change, you create code that uses the APIs from one of
the ADF Faces specialized component change classes. For most cases, you add this
code to the event handler method on a managed bean associated with the page the
persisting component is on. If you want all instances of a component to persist the
same change, you need to add this code for each page on which that component
appears.

If you are creating a custom component, you can implement user customizations
for the component by adding code directly to the custom component class. In that
case, you will need to add the code only to the component class, and not once for
each instance of the component. See Creating Implicit Change Persistence in Custom
Components.

What You May Need to Know About the Change Persistence
Framework API

To better understand what you need to do to create custom user customizations,
it may help to have a deeper understanding of the change persistence and MDS
frameworks. When you elect to persist changes to the MDS repository, the change
persistence framework works in conjunction with the MDS framework. Where and
how the customizations are saved are determined by how you set up your MDS
repository, your customization layers, and your customization classes. Details about
the MDS framework and the repository and how to use it are covered in Customizing
Applications with MDS .

The change persistence framework uses the underlying change manager classes from
Apache MyFaces Trinidad (in the org.apache.myfaces.trinidad.change package)
along with a few ADF Faces-specific classes (in the oracle.adf.view.rich.change
package). The instance of the registered ChangeManager class is accessible through
the RequestContext object. It is responsible for gathering changes as they are created
and added during a request, and then persisting them. The SessionChangeManager
class is an implementation of ChangeManager which handles persistence within a
session only, while the MDSDocumentChangeManager class is an implementation that
persists to the MDS repository only. The FilteredPersistenceChangeManager class is
an implementation of ChangeManager that stores the changes that pass the filter rules
into the repository using the registered persistence change manager. Any change
that does not get persisted to the repository will be persisted to the session when
FilteredPersistenceChangeManager is used.

Additional classes are used to describe the changes to a component. You use
these APIs to handle persisting any changes to components other than the implicit
value changes the ADF Faces framework provides (as shown in Table 52-1).
ComponentChange is the base class for all classes used to implement specific changes
that act on the JSF component hierarchy, such as adding or removing a facet or a
child component. These changes are automatically applied during subsequent creation
of the view, in the same order in which they were added. Classes that extend the
ComponentChange class and that also implement the DocumentChange interface can
directly persist changes to the MDS repository. Classes that do not implement the
DocumentChange interface can persist changes only to the session.

Table 52-2 describes the specialized classes that handle specific customizations.
If "yes" appears in the Repository column, then the class implements the
DocumentChange interface and it can persist changes to the MDS repository.

Chapter 52
Implementing Custom User Customizations

52-19

Table 52-2 Classes Used to Handle Change Persistence

Class Name Repository Description

AddChildDocumentChange

AddComplexChildDocumentChange

Yes

Yes

Adds a child or complex child (dvt:)
component using document mark
up. While applying this change, the
child or complex child component is
created and added to the document.

AddComplexChildAttributeChange Yes Adds a complex child (dvt:)
component attribute.

AttributeComponentChange

ComplexAttributeComponentChange

No

Yes

Changes the value of an attribute.

AttributeDocumentChange

ComplexAttributeDocumentChange

Yes

Yes

Changes the value of a facet attribute.

MoveChildComponentChange Yes Moves a child from one container to
another.

RemoveChildComponentChange Yes Removes a child component.

RemoveComplexChildAttributeCompo
nentChange

RemoveComplexChildAttributeDocum
entChange

Yes

Yes

Removes a complex child (dvt:)
component attribute.

SetFacetChildComponentChange No Adds a child component to the facet
using a document markup. While
applying this change, the markup will
be added to the document.

SetFacetChildDocumentChange Yes Adds a child component to a facet.
While applying this change, the DOM
element corresponding to the child
component is added to the document.
If the facet doesn't exist, it will be
created. If the facet does exist, all of
its content will be removed and the
new content added.

RemoveFacetComponentChange Yes Removes a facet.

ReorderChildrenComponentChange Yes Reorders children of a component.

Aside from a ChangeManager class, you may also need to implement and
register the DocumentChangeFactory interface with the ChangeManager class. If the
DocumentChangeFactory implementation can provide an equivalent DocumentChange
for a ComponentChange, the ChangeManager will use it to persist the DocumentChange to
the repository.

How to Create Code for Custom User Customizations
You need to add code to handle any explicit changes you want to create, and to
configure the components on the JSF page to handle customization. As with the
default user customizations, you also must register the custom changes in the adf-
config.xml file.

Chapter 52
Implementing Custom User Customizations

52-20

Note:

When the changes are expressible in more than one form, the change must
be recorded in the form with highest precedence. For example:

• Attribute change for a component: The attribute can be specified on the
component tag or it can be expressed using the <f:attribute> tag. In
a JSF JSP document, <f:attribute> takes lesser precedence over the
attribute specified on the component tag. Therefore, the attribute change
on the component tag will be recorded for customization.

• Column header text in a column component: The header text for the
column can be specified using either the headerText attribute or using
header facet. In this case, the facet component will have precedence.

Before you begin:

It may be helpful to have an understanding of the features of custom runtime user
customization. For more information, see Implementing Custom User Customizations.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Runtime User Customization.

You will need to launch JDeveloper using the Studio Developer role, open the
application, and open the page for which you want to modify user customization
behavior.

To create custom user customizations:

1. Create a managed bean for the page that contains the component, as described in
Using a Managed Bean in a Fusion Web Application.

For more information regarding managed beans and how they are used as
backing beans for JSF pages, see the "Creating and Using Managed Beans"
section in Developing Web User Interfaces with Oracle ADF Faces.

2. Add code to the event handler method for the component that will be used to make
the change. This code should obtain the component that contains the change. It
should then use the component and the appropriate APIs to create, record, and
persist the change.

The following example shows the code on the action event handler for a command
button for a change that will be persisted to the MDS repository. When a user
clicks the button, that source graphic file changes. The event handler method
accesses the component and changes the source attribute for the graphic. It then
calls the private addAttributeChange method, which first uses the component API
to record the change, and then uses the AttributeComponentChange class to set
the new source attribute value.

public void modifyObjectImage(ActionEvent event) {
 UIComponent uic = event.getComponent().findComponent("oi1");
 String source = "/images/mediumAd.gif";
 uic.getAttributes().put("source", source);
 _addAttributeChange(uic, "source", source);
 }
. . .
private static void _addAttributeChange(UIComponent uic, String attribName,

Chapter 52
Implementing Custom User Customizations

52-21

 Object attribValue) {
 FacesContext fc = FacesContext.getCurrentInstance();
 ChangeManager cm =
 RequestContext.getCurrentInstance().getChangeManager();
 ComponentChange cc =
 new AttributeComponentChange(attribName, attribValue);
 cm.addComponentChange(fc, uic, cc);
 }

Note:

When you persist changes, in addition to explicitly recording a change
on the component (which is done in the example above using
uic.getAttributes().put("source", source) method), you must also
directly apply the change using the component API, as was done using
the private _addAttributeChange(uic, "source", source) method.
Applying the change in this way allows the user to see the change
in response to the same request. If the change is recorded on the
component, then the change will not be seen until a subsequent request.

Additionally, if you know that the component will always persist to the
repository regardless of any restricted change persistence settings,
you can instead call the AdfFacesContext.getCurrentInstance().
getPersistentChangeManager() method.

3. The ChangeManager class provides support for automatically converting an
AttributeComponentChange into an AttributeDocumentChange, thereby allowing
persistence to a repository. However, if you need to convert another type of
change and you use a specialized change manager class that does not implement
the DocumentChange class, you need to create a custom DocumentFactory
implementation that converts the component change to a document change.

Note:

Automatic conversion of AttributeComponentChange into an
AttributeDocumentChange assumes that the component attribute is
represented as an attribute of the same name on the associated element
in the JSPX document.

Only those attribute values that are expressible in the JSPX document
can be persisted using AttributeDocumentChange. In other words,
CharSequence, Number, Boolean and ValueExpression are the only
supported data types.

Only values that implement java.io.Serializable can be persisted
using AttributeComponentChange.

4. If you create a custom DocumentFactory implementation, you need to register it
with the appropriate change manager class using the following method in your
bean:

public static void registerDocumentFactory(String targetClassName,
 String converterClassName)

Chapter 52
Implementing Custom User Customizations

52-22

Where targetClassName is the name of the ComponentChange class and
converterClassName is the name of your DocumentChangeFactory extension that
is capable of converting the target ComponentChange into a DocumentChange.
The semantics of name for these classes is same as that of getName() in the
java.lang.Class class.

5. If the class you use to create the component change adds a child that has a
subtree of components, and you want to persist the changes to the repository, you
must create a DocumentFragment to represent the change.

The following example shows how to use the AddComponentDocumentChange
specialized class to create a DocumentChange object and use a DocumentFragment
to represent the change.

public void appendChildToDocument(ActionEvent event)
{
 UIComponent eventSource = event.getComponent();
 UIComponent uic = eventSource.findComponent("pg1");
 // only allow the image to be added once
 if (_findChildById(uic,"oi3") != null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 DocumentFragment imageFragment = _createDocumentFragment(_IMAGE_MARK_UP);
 DocumentChange change = new AddChildDocumentChange(imageFragment);
 ChangeManager apm = RequestContext.getCurrentInstance().getChangeManager();
 apm.addDocumentChange(fc, uic, change);
}
 private static final String _IMAGE_MARK_UP =
 "<af:objectImage id='oi3' height='100' width='120' " +
 "source='http://www.somewhere.com/someimage.jpg' " +
 "xmlns:af='http://xmlns.oracle.com/adf/faces'/>";

private static DocumentFragment _createDocumentFragment(
 String markUp)
{
 // prepend XML declaration
 markUp = "<?xml version = '1.0' encoding = 'ISO-8859-1'?>" + markUp;
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 factory.setValidating(false);
 DocumentBuilder builder;
 try
 {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException pce)
 {
 _LOG.log(Level.WARNING, "Unable to get XML Parser:", pce);
 return null;
 }
 try
 {
 // use a version explicitly with ISO-8859-1 instead
 byte[] markupBytes = markUp.getBytes();
 Document newDoc = builder.parse(new ByteArrayInputStream(markupBytes));
 DocumentFragment fragment = newDoc.createDocumentFragment();
 // add the document's root element to the fragment
 fragment.appendChild(newDoc.getDocumentElement());
 return fragment;
 }
 catch (SAXException se)

Chapter 52
Implementing Custom User Customizations

52-23

 {
 _LOG.log(Level.WARNING, "Unable to parse markup:" + markUp, se);
 return null;
 }
 catch (IOException ioe)
 {
 _LOG.log(Level.WARNING, "IO Problem with markup:" + markUp, ioe);
 return null;
 }
}

6. Register the user customizations in the adf-config.xml file, as documented
in Configuring User Customizations. If the custom changes are of any type
other than AttributeDocumentChange, you will need to manually edit the adf-
config.xml file and indicate that all changes are allowed for the component, as
shown in the following example.

<tag name="inputText">
 <attribute name="label">
 <persist-changes>true</persist-changes>
 </attribute>
 <persist-operations>ALL</persist-operations>
</tag>

Creating Implicit Change Persistence in Custom
Components

Changes are persisted as component changes in the session. Attribute changes
are handled by ADF Faces runtime code. Implicit change persistence applies to
component specific list of attributes.

When you create a custom component, you may decide that you want certain attribute
values on that component to be persisted whenever change persistence is enabled
in an application. Setting implicit change on a custom component is similar to setting
explicit change persistence on existing components. You add code that executes the
actual persistence, but instead of you placing that code on a managed bean, that
code can be handled directly by the component class. If your component's attribute
values are synchronized with the server using events, then you can use the broadcast
method to persist the changes. If the attribute value that you want to persist does not
use events, then you need to add code in the renderer and component class.

How to Set Implicit Change Persistence For Attribute Values that Use
Events

When an attribute value uses events, you need to add code to the component class.

Before you begin:

It may be helpful to have an understanding of how persistence is implemented in
custom components. For more information, see Creating Implicit Change Persistence
in Custom Components.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Runtime User Customization.

Chapter 52
Creating Implicit Change Persistence in Custom Components

52-24

You will need to launch JDeveloper using the Studio Developer role, and open the
application.

To set implicit change persistence for attribute values that use events:

1. In the Applications window, double-click the custom component class Java file.

2. Add code to the broadcast method that will use the specialized class to create a
new ComponentChange object and then call the ChangeManager to add the change.

The following example shows the code added to the UIXShowDetail class
that persists a change to the disclosed attribute. In this case, the
AttributeComponentChange class is used.

public class UIXShowDetail extends UIXComponentBase
{
 ...
 public void broadcast(FacesEvent event) throws AbortProcessingException
 {
 super.broadcast(event);
 ...
 if (event instanceof DisclosureEvent)
 {
 boolean isDisclosed = ((DisclosureEvent) event).isExpanded();
 setDisclosed(isDisclosed);
 //Record a Change for 'disclosed' attribute
 AttributeComponentChange aa =
 new AttributeComponentChange('disclosed', isDisclosed ?
Boolean.TRUE : Boolean.FALSE);
 AdfFacesContext adfContext = AdfFacesContext.getCurrentInstance();
 adfContext.getChangeManager().addComponentChange(getFacesContext(),
this, aa);
 ...
 }
 }
 ...

How to Set Implicit Change Persistence For Other Attribute Values
When an attribute does not use events, you need to place code in the component's
renderer class.

Before you begin:

It may be helpful to have an understanding of how persistence is implemented in
custom components. For more information, see Creating Implicit Change Persistence
in Custom Components.

You may also find it helpful to understand additional customization functionality that
can be added to your applications. For more information, see Additional Functionality
for Runtime User Customization.

You will need to launch JDeveloper using the Studio Developer role, and open the
application.

To set implicit change persistence for other attribute values:

1. In the Applications window, double-click the custom component's render class
Java file.

Chapter 52
Creating Implicit Change Persistence in Custom Components

52-25

2. Use the findTypeConstants method, which takes a ClientMetadata instance and
use the addPersistedProperty method to mark certain properties as persisted.
The following example shows code from the renderer class used for the ADF
Faces PanelSplitter component, which implicitly persists the splitterPosition
attribute value.

// Code from PanelSplitterRenderer.java
protected void findTypeConstants(
 FacesBean.Type type,
 ClientMetadata metadata)
 {
 super.findTypeConstants(type, metadata);
 metadata.addRequiredProperty(
 _orientationKey = type.findKey("orientation"));
 metadata.addRequiredProperty(
 _positionedFromEndKey = type.findKey("positionedFromEnd"));
 metadata.addRequiredProperty(
 _disabledKey = type.findKey("disabled"));
 metadata.addRequiredProperty(
 _splitterPositionKey = type.findKey("splitterPosition"));
 metadata.addPersistedProperty(_splitterPositionKey);
 }

3. In the JavaScript component peer class, define the attribute value to be persisted,
using the setProperty function. This function needs to be invoked with the
attribute name (as defined in the renderer in the previous step), the value, and
"true", meaning the value of the attribute will be set. The following example shows
code from the panelSplitter class that sets the splitter position.

// Code from AdfDhtmlPanelSplitterPeer.js file where we set the
 splitter position

 var component = this.getComponent();
 component.setProperty("splitterPosition",position, true);
// position is the value to be set

Chapter 52
Creating Implicit Change Persistence in Custom Components

52-26

53
Using the Active Data Service

This chapter describes how to work with the ADF Model layer and Active Data Service
(ADS) to provide real-time updates to ADF Faces components.
This chapter includes the following sections:

• About the Active Data Service

• Configuring the Active Data Service

• Configuring Components to Use the Active Data Service

• Using the Active Data Proxy

• What You May Need to Know About Maintaining Read Consistency

• Using the Active Data with a Scalar Model

About the Active Data Service
ADF Faces provides a mechanism called Active Data Service (ADS) that allows us
push changes from the server to the client. Through ADS, you can inform the browser
about the fact that changes are available.

The Fusion technology stack includes Active Data Service (ADS), which is a server-
side push framework that allows you to provide real-time data updates for ADF Faces
components. You bind ADF Faces components to a data source and ADS pushes
the data updates to the browser client without requiring the browser client to explicitly
request it. For example, you may have a table bound to attributes of an ADF data
control whose values change on the server periodically, and you want the updated
values to display in the table. You can configure your application and the component
so that whenever the data changes on the server, the ADF Model layer notifies
the component and the component rerenders the changed data with the new value
highlighted, as shown in Figure 53-1.

Figure 53-1 Table Displays Updated Data as Highlighted

53-1

Active Data Service Use Cases and Examples
Using ADS is an alternative to using automatic partial page rendering (PPR) to
rerender data that changes on the backend as a result of business logic associated
with the ADF data control bound to the ADF Faces component. Whereas automatic
PPR requires sending a request to the server (typically initiated by the user), ADS
enables changed data to be pushed from the data store as the data arrives on the
server. Also, in contrast to PPR, ADS makes it possible for the component to rerender
only the changed data instead of the entire component. This makes ADS ideal for
situations where the application needs to react to data that changes periodically.

To use this functionality, you must configure the application to use ADS. If your
application services do not support ADS, then you also need to create a proxy of
the service so that the components can display the data as it updates in the source.

Any ADF Faces page can use ADS. However, you can configure only the following
ADF Faces components and ADF Data Visualization (DVT) components to work with
active data:

• activeImage

• activeOutputText

• chart (all types)

• gauge (all types)

• pivotTable

• tree

• treeTable

• geoMap (mapPointTheme only)

• sunburst

• treemap

For specific information about ADS support for DVT components, see Active Data
Support in Developing Web User Interfaces with Oracle ADF Faces.

Additionally, note that collection-based components (such as table, tree, and
pivotTable) support ADS only when the outputText component or sparkChart is
configured to display the active data; other components are not supported inside the
collection-based component.

Limitations of the Active Data Service Framework
The framework for ADS has the following limitations.

• ADS does not support active data on ADF Faces table components with filtering
enabled. Once a table is filtered at runtime, active data cannot be displayed.

• ADS does not time out from user inactivity by default. To ensure that an active
session is not maintained indefinitely, you can configure the web.xml context-
parameter oracle.adf.view.rich.poll.TIMEOUT to specify how long ADS should
run before it times out from user inactivity. For more information, see How to
Configure Session Timeout for Active Data Service.

Chapter 53
About the Active Data Service

53-2

• ADS does not restart if the user attempts to navigate away from the browser
page and then chooses to stay on the page by canceling the exit action in
the browser-displayed warning dialog. To workaround this limitation, ADF Faces
provides client listener support to handle beforeunload events for browsers that
support displaying a Confirm on Page Exit dialog. The ADF document that handles
this event will allow the user to cancel the exit before ADS stops processing.
For more information, see What You May Need to Know About Navigating Away
From the ADS Enabled Page in Developing Web User Interfaces with Oracle ADF
Faces.

• ADS executes on a non-request thread and does not support the forced execution
of component-level EL expressions. Therefore EL expressions on ADF Faces
components that you may use to calculate component properties (such as fill color
in a chart configured to use active data) will not be executed when the component
value is updated by ADS. To execute EL in this scenario, you should calculate the
property value in the model and use EL to bind the component property to the
model. Alternatively, your page may apply JavaScript inline to apply the property
value change after the active data update occurs. This latter solution effectively
forces ADF Faces to rerender the component.

Note:

The ADF DVT components may impose additional limitations. For details,
see Active Data Support in Developing Web User Interfaces with Oracle ADF
Faces.

Active Data Service Framework
The framework for ADS contains a number of components that work together to
send the active data from the source to the UI component. When a data event
occurs, if the associated ADF Model layer binding is configured for active data, the
Active Data model delivers the data to the Event Manager. The Event Manager then
retrieves the data and invokes the Push Service, which delivers the data to the correct
component, based on how the service is configured (for more information, see Data
Transport Modes). The component then applies the new data pushed from the server.
Figure 53-2 shows the ADS framework.

Chapter 53
About the Active Data Service

53-3

Figure 53-2 Active Data Service Framework

In order to use the Active Data Service, you need to have a data store that publishes
events when data is changed, and you need to create business services that react to
those events. By default, ADF Business Components does not react to data events.
The Active Data Proxy framework allows all types of data sources, including ADF
Business Components, to work with ADS. It combines the ActiveDataModel with the
JSF model, so that you need to override functionality only on this proxy rather than on
both the ActiveDataModel and the JSF model.

The following comprise the ADS framework:

• ActiveDataModel interface: Abstraction of the active data model. Its
responsibilities include:

– Starting and stopping active data

– Keeping track of the current active data event ID

– Letting the renderer know whether the model needs active data or not.

• Event Manager: A server-side component that works with the ADF Model layer. It
is responsible for the following:

– Listening to binding events

– Retrieving active data

– Managing active data encoding

– Invoking the Push service to send the encoded active data

Chapter 53
About the Active Data Service

53-4

• Push service: A delivery channel that interacts with the Event Manager on the
server side and with the Active Data Manager on the client side. It provides the
following:

– Establishing and maintaining the connection between the server and the client

– Transmitting the active data over this connection from the server to the client

– Ensuring that active data gets delivered within desired parameters and forcing
component update if not

• Active Data Manager: A client-side component that distributes the active data to
the correct component. Specifically, it is responsible for the following;

– Delivering events from the server side that are coming through the channel,
using an event delivery service

– Handling multiple browser windows through a shared channel

– Dispatching active data events to rich client components, so that the
components can render the change accordingly

• Active Data Proxy: A proxy that allows all types of data sources to enable push
functionality. Specifically, the proxy is responsible for the following:

– Implementing and delegating ActiveDataModel functionality

– Delegating to JSF models

– Listening to data change events from the data source

– Generating active data events based on the data change events

Data Transport Modes
Active data is sent to the client using data streaming (push) or one of two types of data
polling. With data streaming, there is only one request, which stays open. When a data
change event occurs, a partial response is sent (the response is not closed), the client
is notified, and the associated component is updated to show the new data, as shown
in Figure 53-3.

Figure 53-3 Streaming Mode

With data polling, the application is configured to poll the data source at specified
intervals, as shown in Figure 53-4. With each request, a response is sent and closed,
whether or not a data change event has occurred. If the data has changed, then the
client is notified and the component is updated.

Chapter 53
About the Active Data Service

53-5

Figure 53-4 Poll Mode

Long polling is similar to streaming. When the page is rendered, a request is sent to
the active channel. However, a response is not returned until there is a data change
event. At that point, the connection is closed. As soon as the connection is closed, a
new connection is initiated, which results in the connection being active most of the
time: there are no specific intervals. Long polling results in the majority of data change
events being received when they occur, because the connection is already established
and ready to send a response to the client, as shown in Figure 53-5. See What You
May Need to Know About Configuring an ADS Transport Mode.

Figure 53-5 Long Polling Mode

To use ADS, you need to configure your application to determine the method of
data transport, as well as other performance options.You also need to configure
the bindings for your components so that they can use ADS. If you are using ADF
Business Components, you need to modify your model to implement the ActiveModel
interface to register itself as the listener for active data events using the Active Data
Proxy.

Configuring the Active Data Service
The adf-config.xml file is used to configure ADS. You can configure your ADF
application and the component so that whenever the data changes on the server,
the component is notified and rerenders with the new value highlighted. ADS can use
any of the three modes to determine active data to the component: streaming, polling,
or long polling.

Chapter 53
Configuring the Active Data Service

53-6

You need to configure ADS to determine the data transport mode, as well as to set
other configurations, such as a latency threshold and reconnect information.

Note:

If you enable ADS but do not configure it, the ADS framework will use the
default values shown in Table 53-1.

How to Configure the Active Data Service
Configuration for running the Fusion web application with ADS in JDeveloper and
Integrated WebLogic Server is done in the adf-config.xml file. For information
about the adf-config.xml file, including how to create one if you need to, see the
Configuration in adf-config.xml section of Developing Web User Interfaces with Oracle
ADF Faces.

Note:

To support automatic replication and failover for web applications within a
clustered environment, Oracle WebLogic Server supports mechanisms for
replicating HTTP session state across clusters. You can configure Oracle
Application Development Framework (Oracle ADF) to ensure the Fusion
web application's state can be restored from any server in the cluster. To
support failover for pages configured to display active data, it is necessary
to enable failover for the ADF Business Components application module
and to enable ADF Controller to track changes to the ADF memory scopes.
With these ADF settings configured, when failover occurs, the ADF server
will detect the failover and request all pages configured to display active
data to refresh themselves, after that ADS restarts and data is pushed
to the client. For details about how to enable failover for the Fusion web
application in a high availability environment, see Configuring Oracle ADF for
High Availability.

Before you begin:

It may be helpful to have an understanding of the ADS configuration choices.
See Configuring the Active Data Service and What You May Need to Know About
Configuring an ADS Transport Mode.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. See About the Active Data Service.

To configure the Active Data Service:

1. In the Application Resources panel, expand the Descriptors and ADF Meta-INF
nodes, and then double-click adf-config.xml.

2. Click the Source tab to open the file in the source editor, and create an entry for
each of the elements shown in Table 53-1.

Chapter 53
Configuring the Active Data Service

53-7

Table 53-1 ADS Configuration Elements in adf-config.xml

Element Description Default
Value (in
milliseconds
)

Minimum
Value (in
milliseconds)

<transport> The method by which data
will be delivered to the client.
Value values are:

• streaming (default)
• polling
• long-polling

<latency threshold> Latency threshold in
milliseconds. Active data
messages with network
delays greater than this
threshold will be treated as
late.

10000 1000

<keep-alive-interval> Frequency in milliseconds
for sending keep-alive
messages when no events
are generated.

10000 5000

<polling-interval> When <transport> set
to polling, frequency in
milliseconds of the poll
request.

5000 1000

<max-reconnect-
attempt-time>

Maximum period of time
in milliseconds a client will
attempt to reconnect the
push channel to the server
upon getting disconnected.

1800000 (30
minutes)

0

<reconnect-wait-time> Time interval in milliseconds
to wait between reconnect
attempts.

10000 1000

Performance Tip:

Keep the following in mind when configuring the ADS.

• Set the latency threshold to more than 1000 to avoid frequent
component refreshing.

• Set the keep-alive interval and reconnect wait time to be less than
the browser's keep-alive timeout.

• Set the max reconnect time to be less than your web server's
session timeout.

The following example shows a sample configuration that has content pushed to
the client.

<?xml version="1.0" encoding="utf-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:ads="http://xmlns.oracle.com/adf/activedata/config">

Chapter 53
Configuring the Active Data Service

53-8

 <ads:adf-activedata-config xmlns=
 "http://xmlns.oracle.com/adf/activedata/config">
 <transport>streaming</transport>
 <latency-threshold>5000</latency-threshold>
 <keep-alive-interval>10000</keep-alive-interval>
 <max-reconnect-attempt-time>90000</max-reconnect-attempt-time>
 <reconnect-wait-time>8000</reconnect-wait-time>
 </ads:adf-activedata-config>
</adf-config>

3. Synchronize the clocks on the data server and on the application server. If these
are not synchronized, then events may appear to ADS to have occurred in the
future.

What You May Need to Know About Configuring an ADS Transport
Mode

ADS can use one of three transport modes to deliver active data to the component:
streaming, polling, or long polling.

When you configure ADS to use the streaming mode, data is pushed to the client
whenever a change event is raised by the data. On the client side, after the push
channel is established, if there is no activity within the time of the value for the
latency-threshold element plus the keep-alive-interval, an establish-channel-
request will be sent out repeatedly based on the value of the reconnect-wait-time
element, until the amount of time passed reaches the value of the max-reconnect-
attempt-time element. After that, the connection will be considered disconnected. For
example, given the values shown in How to Configure the Active Data Service, if there
is no activity in 15,000 milliseconds, an establish channel request will be sent out
every 8,000 milliseconds for up to 90,000 milliseconds. After that, the connection will
be considered disconnected.

On the server side, the server disconnects the push channel and starts a timer to
clean up with a cleanup-delay-time when there is an empty active data message
or when it fails to send out an active data message. The cleanup-delay-time is
calculated as max-reconnect-attempt-time + 30 * 1000 ms. Its default value is 30
minutes.

When you configure ADS to use the polling mode, on the client side the polling
request is scheduled to be sent out repeatedly after the value of the polling-interval
element has been reached. If no response is received after the value of the max-
reconnect-attempt-time has elapsed, the connection is treated as disconnected and
no more requests will be sent. After receiving a polling response, if the time the
response has taken is greater than the polling-interval element, the service sends
the next request out right away. If it is less, the next request will be sent as scheduled.

For the server side, the session ends after the polling response is returned. At that
point, a timer with a cleanup-delay-time is set up to trigger cleanup. If a new request
comes in before the timer fires, the old timer is canceled, and new timer is created.

When you configure ADS to use the long polling mode, requests are made as they are
in streaming mode; however, as soon as the connection is treated as disconnected, a
new connection is initiated. The result is a significant reduction in latency.

Table 53-2 compares the three different modes.

Chapter 53
Configuring the Active Data Service

53-9

Table 53-2 Comparison of Streaming, Polling, and Long-Polling Modes

Comparison
Benchmark

Streaming Polling Long-Polling

Latency Very good.

Directly after an
event occurs on the
server side, a partial
response is sent to
the client. If there
is another event,
immediately, it is also
sent as a partial
response. There is
almost no latency
with this approach.

Poor, depending on the
polling interval.

If the polling interval
is short (for example,
0.5 seconds), it will
slow down the network
because the connections
are repeatedly opened. It
is also expensive on the
client- and server-side
resources.

Good.

However, when there is
a new event immediately
after a response has
been closed, there is
some latency until the
new data appears on the
client side. On average,
this is not a problem.

HTTP Proxy Poor.

For some older
servers, because the
response is never
released, when a
proxy is sitting
between client and
server, it is possible
that the proxy will
buffer responses.

This is an unfortunate
optimization that
prevents real-time
data from flowing into
the browser. Long
polling should be
used if a proxy is
used.

Good. Good.

Number of live
connections

Poor.

Many concurrent
connections, as the
stream is always live.

Good.

Connections are live only
during the actual poll.
Note however that if
there is a high polling
rate then the number of
concurrent connections
will also be high.

Poor.

Many concurrent
connections, as the
stream is almost always
live.

Communication
channel

HTTP GET

This can result in
the display of a
"busy" cursor or
the animation of a
browser's "throbber"
icon.

XMLHttpRequest (XHR)

HTTP GET

XMLHttpRequest (XHR)

HTTP GET

How to Configure Session Timeout for Active Data Service
By default, applications that you configure to use ADS will not time out. In polling
mode, the client periodically sends polling request to server. In long polling mode, the

Chapter 53
Configuring the Active Data Service

53-10

client sends a new polling request immediately after a polling request is returned from
the server. In steaming mode, the server holds the GET request response and will
indefinitely write active data to it. Due to the behavior of each data transport mode,
ADS will maintain the application session active whether or not the user interacts with
the application.

To prevent this situation of maintaining an active session indefinitely due to ADS, the
web.xml configuration file contains the oracle.adf.view.rich.poll.TIMEOUT context-
parameter, which specifies how long ADS should run before it times out from user
inactivity. The ADS client is considered eligible to time out if there is no keyboard
or mouse activity. The default timeout period is set at ten minutes. So if the user
remains inactive for ten minutes, that is, does not use the keyboard or mouse, then
ADS will stop polling or will abort its connection with server, and from that point on, the
application participates in the standard server-side session timeout. For example, if the
server-side session timeout is 65 minutes, and the polling timeout parameter is set to
15 minutes, then it is expected that the session should expire when the user is inactive
for more than 80 minutes.

You can override this timeout setting for a specific web page using the ADF Faces poll
component timeout attribute. The poll component allows you to deliver a heartbeat
to the server to prevent users from being timed out of their session for specific
pages. For more information about the oracle.adf.view.rich.poll.TIMEOUT context-
parameter and individual web pages, see the Using Polling Events to Update Pages
section of Developing Web User Interfaces with Oracle ADF Faces.

Before you begin:

It may be helpful to have an understanding of the ADS configuration choices. For more
information, see Configuring the Active Data Service.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see About the Active Data Service.

To configure the Active Data Service to timeout after session becomes inactive:

1. In the Applications window, in the user interface project, expand the Web Content
and WEB-INF nodes, and then double-click web.xml.

2. In the overview editor for the web.xml file, click the Application navigation tab and
in the Context Initialization Parameters section, click the Create icon to add the
polling timeout parameter as follows:

Name: Enter the context parameter oracle.adf.view.rich.poll.TIMEOUT.

Value: Enter the amount of time in milliseconds after which all pages configured
to use active data will time out and ADS will stop. To disable ADF time out
due to user inactivity, enter -1. The default value for ADS to timeout is 600000
milliseconds (ten minutes).

Configuring Components to Use the Active Data Service
The process of configuring components to use Active Data Service (ADS) is
dependent on the usage of the Active Data proxy. You can configure components
to use ADS with or without the proxy.

How you configure components to use ADS depends on whether or not you must use
the Active Data proxy. If your application uses a data store that publishes events when

Chapter 53
Configuring Components to Use the Active Data Service

53-11

data is changed, and your business services react to those events (for example, if your
application uses BAM), then you do not need to use the Active Data proxy.

If your business services do not react to those events (for example, if your application
uses ADF Business Components), then you must use the Active Data proxy and follow
different procedures for configuring your components.

Note:

If your business service requires the use of the Active Data proxy, then you
can only use the following components with active data:

• table

• tree

• treeTable

• ADF Data Visualization chart, gauge, mapPointTheme, pivotTable,
pivotFilterBar, sunburst, and treemap components

How to Configure Components to Use the Active Data Service Without
the Active Data Proxy

To use ADS without the proxy, you need to set a value on the binding element in the
corresponding page definition file.

Before you begin:

It may be helpful to have an understanding of the ADS configuration choices. For more
information, see Configuring Components to Use the Active Data Service.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see About the Active Data Service.

To configure a component to display active data without the Active Data proxy:

1. From the Data Controls panel, drag and drop a collection onto a JSF page, and
from the context menu, choose the desired component.

2. If you are dropping the collection as an ADF bound tree or tree table, you need to
ensure the following:

• That the binding represents homogeneous data (that is, only one rule),
although an accessor can still access a like accessor.

• That the binding rule contains a single attribute.

• That the table does not use filtering.

• That the tree component's nodeStamp facet contains a single outputText tag
and contains no other tags, as described in What You May Need to Know
About Displaying Active Data in ADF Trees.

3. From the Application window, right-click the page and choose Go to Page
Definition.

The editor for the page definition file opens for the selected page.

Chapter 53
Configuring Components to Use the Active Data Service

53-12

4. In the Structure window, select the node that represents the attribute binding for
the component.

5. In the Properties window, expand the Advanced section, and select Push from
the ChangeEventPolicy dropdown menu.

Tip:

You can use the statusIndicator component to indicate the server state.
For more information, see the Displaying Application Status Using Icons
section of Developing Web User Interfaces with Oracle ADF Faces.

How to Configure Components to Use the Active Data Service with the
Active Data Proxy

To use ADS with the proxy, you need bind the value of your component to decorator
class that will use the proxy. For more information about this class, see Using the
Active Data Proxy to set a value on the binding element in the corresponding page
definition file.

Before you begin:

It may be helpful to have an understanding of the ADS configuration choices. For more
information, see Configuring Components to Use the Active Data Service.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see About the Active Data Service.

To configure a component to display active data with the Active Data proxy:

1. From the Data Controls panel, drag and drop a collection onto a JSF page, and
from the context menu, choose the desired component.

2. If you are using an ADF bound tree or tree table, you need to ensure the following:

• That the binding represents homogeneous data (that is, only one rule),
although an accessor can still access a like accessor.

• That the binding rule contains a single attribute.

• That the table does not use filtering.

• That the tree component's nodeStamp facet contains a single outputText tag
and contains no other tags, as described in What You May Need to Know
About Displaying Active Data in ADF Trees.

3. From the Application window, right-click the page and choose Go to Page
Definition.

The editor for the page definition file opens for the selected page.

4. In the Structure window, select the node that represents the attribute binding for
the component.

5. In the Properties window, change the value attribute to be bound to a decorator
class that you will create for use with the proxy.

For more information, see Using the Active Data Proxy.

Chapter 53
Configuring Components to Use the Active Data Service

53-13

What You May Need to Know About Displaying Active Data in ADF
Trees

When you create an ADF Faces tree (or tree table) component, you configure a
nodeStamp facet, which is a holder for the component used to display the data for each
node of the tree. Each node is rendered (stamped) once, repeatedly for all nodes.

Because of this stamping behavior, only certain types of components are supported
as children inside an ADF Faces tree component. When the tree component is not
bound to an active data source, all components that have no behavior are supported.
However, when you configure the tree to use ADS, only the outputText component
is supported inside of the nodeStamp facet, as shown in the following example. The
nodeStamp facet must not contain any other tags. So, for example, active data will not
work if you add panelGroupLayout tags to the nodeStamp facets of a tree configured to
use ADS.

<f:facet name="nodeStamp">
 <af:outputText value="#{row.str2}"/>
</f:facet>

What Happens at Runtime: How Components Render When Bound to
Active Data

After you configure your application and the component for ADS, whenever the data
changes on the server, the component is notified and rerenders with only the changed
data. In contrast, a component not configured for either active data or automatic PPR
will need to be explicitly refreshed after a data change occurs. The explicit refresh
will refetch all data that is visible on the client, including data that has not changed.
Consequently, this will force the entire component to rerender. Additionally, when the
component is bound to an active data source (with active data policy "Push"), the
component rerenders with the new value highlighted.

What You May Need to Know About Running ADS in a Google
Chrome Browser

When the Fusion web application runs in the Google Chrome web browser and a
user presses Ctrl+N (or Ctrl+T) to open a new window (or tab) and then copies
the URL from the original window into the new window, active data in the original
window will stop streaming. According to the Google Chrome process model, the new
browser window will be created in a separate process and both windows will share
the same HTTP session. However, because browser windows that are created in
two separate processes cannot communicate with each other, ADS will become out
of sync between the client and server and will stop streaming. As a workaround, to
allow active data in multiple Google Chrome windows, before copying the URL from
the original window into the new window users must press Ctrl-Shift-N to open the
browser window in incognito mode (private browsing). Because Ctrl-Shift-N opens the
window in a separate process and a separate HTTP session, ADS will not attempt to
synchronize between the windows and streaming will be unaffected.

Chapter 53
Configuring Components to Use the Active Data Service

53-14

Using the Active Data Proxy
In order to make business services react to events, you need to use the Active
Data proxy in the ADF application. Certain procedures must be followed to configure
components.

You use the active data proxy when your business services do not react to data
events. If you want your components to update based on events passed into ADF
Business Components, then you need to use the Active Data Proxy.

Tip:

If your application uses BAM for the business service, then you do not need
to use the Active Data Proxy.

Note:

If your business service requires the use of the Active Data Proxy, then you
can only use the following components with active data:

• table

• tree

• treeTable

• ADF Data Visualization mapPointTheme, pivotTable, pivotFilterBar,
sunburst, and treemap components

How to Use the Active Data Proxy
You will create a Java class that subclasses one of the following decorator classes:

• ActiveCollectionModelDecorator class

• ActiveGeoMapDataModelDecorator class

These classes are wrapper classes that delegate the active data functionality to a
default implementation of ActiveDataModel. The ActiveDataModel class listens for
data change events and interacts with the Event Manager. Specifically, it does the
following:

• Starts and stops the active data and the ActiveDataModel object, and registers
and unregisters listeners to the data source.

• Wraps the JSF model interface. For example, the
ActiveCollectionModelDecorator class wraps the CollectionModel class.

• Generates active data events based on data change events from the data source.

• Manages listeners from the Event Manager and pushes active data events to the
Event Manager.

Chapter 53
Using the Active Data Proxy

53-15

You need to implement methods on this Java class that registers itself as the listener
of the active data source and gets the model to which the data is being sent.

Note:

The Active Data framework does not support complicated business logic or
transformations that require the ADF runtime context, such as a user profile
or security. For example, the framework cannot convert an ADF context
locale-dependent value and return a locale-specific value.

As an example of complicated business logic, say you have logic that allows
a user to move an order from open status to pending. This change results in
an update event, which should cause the order to be removed from a data
object called "Open Orders." The framework cannot handle this event type
transformation based on business logic. Instead, you need to have your data
source handle this before publishing the data change event.

Before you begin:

It may be helpful to have an understanding of the active data proxy. For more
information, see Using the Active Data Proxy.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see About the Active Data Service.

You will need to complete this task:

Implement the logic to fire the active data events asynchronously from the data
source. For example, this logic might be a business process that updates the
database, or a JMS client that gets notified from JMS.

To use the active data service:

1. Create a Java class that extends the decorator class appropriate for your
component. The following example shows a class created for a table.

package view;

import oracle.adf.view.rich.model.ActiveCollectionModelDecorator;
import oracle.adf.view.rich.activedata.ActiveDataEventUtil;
import oracle.adf.view.rich.activedata.JboActiveDataEventUtil;

/**
 * This code wraps the existing collection model in the page and implements
the
 ActiveDataModel interface to enable ADS for the existing page.
 */
public class DeptModel
 extends ActiveCollectionModelDecorator
{
}

2. Implement the method that returns the model. The following example shows an
implementation of the getCollectionModel() method that relies on expression
language (EL) to avoid needing to typecast to an internal class. The method
returns the DepartmentsView1 collection from the binding container.

Chapter 53
Using the Active Data Proxy

53-16

public CollectionModel getCollectionModel()
{
 if (_model == null)
 {
 FacesContext fc = FacesContext.getCurrentInstance();
 Application app = fc.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext el = fc.getELContext();

 // This is EL to avoid typecasting to an Internal class.
 ValueExpression ve = elFactory.createValueExpression(el,
 "#{bindings.DepartmentsView1.collectionModel}",
Object.class);

 // Now GET the collectionModel
 _model = (CollectionModel)ve.getValue(el);
 }
 return _model;
}

3. Create an inner class that is your own implementation of an ActiveDataModel
class, which the decorator can use to start and stop the active data and connect
and disconnect from the data source. This class should also use the changeCount
API to maintain data read consistency, as shown in the following example. For
more information, see What You May Need to Know About Maintaining Read
Consistency.

public class MyActiveDataModel extends BaseActiveDataModel
{
 protected void startActiveData(Collection<Object> rowKeys,
 int startChangeCount)
 {
 _listenerCount.incrementAndGet();
 if (_listenerCount.get() == 1)
 {
 System.out.println("start up");

 Runnable dataChanger = new Runnable()
 {
 public void run()
 {
 System.out.println("MyThread starting.");
 try
 {
 Thread.sleep(2000);
 System.out.println("thread running");
 triggerDataChange(MyActiveDataModel.this);
 }
 catch (Exception exc)
 {
 System.out.println("MyThread exceptioned out.");
 }
 System.out.println("MyThread terminating.");
 }
 };
 Thread newThrd = new Thread(dataChanger);
 newThrd.start();
 }
 }

 protected void stopActiveData(Collection<Object> rowKeys)

Chapter 53
Using the Active Data Proxy

53-17

 {
 _listenerCount.decrementAndGet();
 if (_listenerCount.get() == 0)
 {
 System.out.println("tear down");
 }
 }

 public int getCurrentChangeCount()
 {
 return _currEventId.get();
 }

 public void bumpChangeCount()
 {
 _currEventId.incrementAndGet();
 }

 public void dataChanged(ActiveDataUpdateEvent event)
 {
 fireActiveDataUpdate(event);
 }

 private final AtomicInteger _listenerCount = new AtomicInteger(0);
 private final AtomicInteger _currEventId = new AtomicInteger();
}

4. Implement the method that will return the ActiveDataModel class, as shown in the
following example.

public ActiveDataModel getActiveDataModel()
 {
 return _activeDataModel;
 }

5. Create a method that creates application-specific events that can be used to insert
or update data on the active model.

The following example shows the triggerDataChange() method, which
uses the active model (an instance of MyActiveDataModel) to create
ActiveDataUpdateEvent objects to insert and update data. You will
need to import oracle.adf.view.rich.activedata.ActiveDataEventUtil and
oracle.adf.view.rich.activedata.JboActiveDataEventUtil to implement this
method.

public void triggerDataChange(MyActiveDataModel l)
 throws Exception
 {

 // do an update on dept 1
 l.bumpChangeCount();
 ActiveDataUpdateEvent event =
 ActiveDataEventUtil.buildActiveDataUpdateEvent(ActiveDataEntry.ChangeType.UPDATE,
 l.getCurrentChangeCount(),
 JboActiveDataEventUtil.convertKeyPath(new Key
 (new Object[]{ new Long(1), new Integer(0) })),
 null,
 new String[] { "name" },
 new Object[] { "Name Pushed" });

 l.dataChanged(event);

Chapter 53
Using the Active Data Proxy

53-18

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {
 ie.printStackTrace();
 }
 // insert dept 99

 l.bumpChangeCount();
 event =

ActiveDataEventUtil.buildActiveDataUpdateEvent(ActiveDataEntry.ChangeType.INSERT_AFTER,
 l.getCurrentChangeCount(),
 JboActiveDataEventUtil.convertKeyPath(new Key
 (new Object[]{ new Long(99), new Integer(0) })),
 JboActiveDataEventUtil.convertKeyPath(null),
 new String[]{ "addr1", "name" },
 new Object[]{ "Addr Inserted", "Name Inserted" });

 l.dataChanged(event);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {
 ie.printStackTrace();
 }

 // delete dept 10

 l.bumpChangeCount();
 event =
 ActiveDataEventUtil.buildActiveDataUpdateEvent(ActiveDataEntry.ChangeType.REMOVE,
 l.getCurrentChangeCount(),
 JboActiveDataEventUtil.convertKeyPath(new Key
 (new Object[]{ new Long(9), new Integer(0) })),
 null, null, null);

 l.dataChanged(event);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {
 ie.printStackTrace();
 }

 // refresh the entire table

 l.bumpChangeCount();
 event =

Chapter 53
Using the Active Data Proxy

53-19

 ActiveDataEventUtil.buildActiveDataUpdateEvent(ActiveDataEntry.ChangeType.REFRESH,
 l.getCurrentChangeCount(),
 null, null, null, null);

 l.dataChanged(event);
 }

 private MyActiveDataModel _activeDataModel = new MyActiveDataModel();

 private CollectionModel _model = null;

}

What You May Need to Know About Maintaining Read
Consistency

Read consistency guarantees a consistent view of the data in ADF application runtime.
In order to use active data, your application must maintain read consistency.

Using active data means that your component has two sources of data: the active
data feed and the standard data fetch. Because of this, you must make sure your
application maintains read consistency.

For example, say your page contains a table and that table has active data enabled.
The table has two methods of delivery from which it updates its data: normal table
data fetch and active data push. Say the back end data changes from foo to bar to
fred. For each of these changes, an active data event is fired. If the table is refreshed
before those events hit the browser, the table will display fred because standard
data fetch will always get the latest data. But then, because the active data event
might take longer, some time after the refresh the data change event would cause
foo to arrive at the browser, and so the table would update to display foo instead of
fred for a period of time. Therefore, you must implement a way to maintain the read
consistency.

To achieve read consistency, the ActiveDataModel has the concept of a change count,
which effectively timestamps the data. Both data fetch and active data push need to
maintain this changeCount object by monotonically increasing the count, so that if any
data returned has a lower changeCount, the active data event can throw it away. For
an example of an implementation of the ActiveDataModel class that maintains read
consistency, see How to Use the Active Data Proxy.

Using the Active Data with a Scalar Model
ADS is very much model driven and requires no extra setups in the declarative view.
It supports ADF components such as activeCommandToolbarButton, activeImage,
activeOutputText, table, tree, and DVT components. Let’s take a look on how to use
activeOutputText with a Java Bean, as you may not have a model.

ADF components that display collection-based data can be configured to work with
ADS and require no extra setup in the view layer. However, imagine that your JSPX
page uses an activeOutputText component to display new counts based on a Java
timer. In this case, you will replace the model layer with scalar or "flat" data that you
display from a Java Bean.

Chapter 53
What You May Need to Know About Maintaining Read Consistency

53-20

How to Use the Active Data with a Scalar Model
To implement the scalar model, follow these basic steps (as illustrated in the following
example):

1. Use the ActiveModelContext API to register the bean with ADS so the bean (a
scalar model) imitates an actual model.

Add the registration code to the active attribute's getter method. Adding the
registration code to the bean's constructor can cause ADS to fail.

2. Implement a custom mechanism to push the data to the view layer, as shown in
the following example.

package oracle.adfdemo.view.feature.rich;

import java.util.Collection;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.atomic.AtomicInteger;

import oracle.adf.view.rich.activedata.ActiveModelContext;
import oracle.adf.view.rich.activedata.BaseActiveDataModel;
import oracle.adf.view.rich.activedata.ActiveDataEventUtil;
import oracle.adf.view.rich.event.ActiveDataEntry;
import oracle.adf.view.rich.event.ActiveDataUpdateEvent;

public class CounterBean extends BaseActiveDataModel
// Example using a Java timer to create new counts
{
 public CounterBean()
 {
 timer.schedule(new UpdateTask(), 2000, 2000);
 }

 public String getState()
 {
 // 1. Use the ActiveModelContext API to register the scalar model key path
for
 // the "state" attribute.
 ActiveModelContext context = ActiveModelContext.getActiveModelContext();
 Object[] keyPath = new String[0];
 context.addActiveModelInfo(this, keyPath, "state");

 return String.valueOf(counter);
 }

 // Not needed. We do not need to connect to a (real) active data scource.
 protected void startActiveData(Collection<Object> rowKeys, int
 startChangeCount) {}

 // Not needed. We do not need to connect to a (real) active data scource.

 protected void stopActiveData(Collection<Object> rowKeys) {}

 public int getCurrentChangeCount()
 {
 return counter.get();
 }

Chapter 53
Using the Active Data with a Scalar Model

53-21

 protected class UpdateTask extends TimerTask
 {
 public void run()
 {
 counter.incrementAndGet();

 // 2. Use ActiveDataEventUtil to create an event object to update the
model.
 ActiveDataUpdateEvent event =
 ActiveDataEventUtil.buildActiveDataUpdateEvent(
 ActiveDataEntry.ChangeType.UPDATE,
 counter.get(),
 new String[0],
 null,
 new String[] { "state" },
 new Object[] { counter.get() });
 fireActiveDataUpdate(event);
 }
 }

 private static final Timer timer = new Timer();
 private final AtomicInteger counter = new AtomicInteger(0);
}

After you create the bean, register the bean as a managed bean in the faces-
config.xml file, as the following example for counterBean illustrates:

...
<managed-bean>
 <managed-bean-name>counterBean</managed-bean-name>
 <managed-bean-class>
 oracle.adfdemo.view.feature.rich.CounterBean
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

Once the bean is registered, you can use ADS to stream the data to the view layer.
Your ADF Faces component use expression language to receive the pushed data,
as illustrated by the activeOutputText component value attribute in the following
example:

...
<f:view>
 <af:document title="Active Data Visual Design Demo"
 binding="#{templateBindings.documentComponent}"
 smallIconSource="#{aboutBean.smallIconSource}"
 largeIconSource="#{aboutBean.largeIconSource}" theme="dark"
 id="d1">
 <af:pageTemplate id="dmoTpl" viewId="#{templates.componentTemplate}">
 <f:attribute name="tagName" value="Active Data Visual Design"/>
 <f:attribute name="demoKind" value="visualDesign"/>
 <f:attribute name="customEditorPresent" value="true"/>
 <f:facet name="center">
 <af:panelGroupLayout layout="scroll">
 <af:activeOutputText
 value="#{counterBean.state}"
 inlineStyle=
 "color:brown;
 font-size:100px;
 font-weight:bold;

Chapter 53
Using the Active Data with a Scalar Model

53-22

 text-align:center;"
 />
 </af:panelGroupLayout>
 </f:facet>
 </af:pageTemplate>
 </af:document>
</f:view>

Chapter 53
Using the Active Data with a Scalar Model

53-23

54
Configuring High Availability for Fusion
Web Applications

This chapter describes considerations for developing Fusion web applications that you
intend to deploy to a high availability, clustered server environment.
This chapter includes the following topics:

• About Oracle ADF High Availability

• Configuring Oracle ADF for High Availability

• Troubleshooting Fusion Web Applications for High Availability

About Oracle ADF High Availability
Oracle ADF is used to build large enterprise applications. And if you want to have your
application run on high availability servers, then you should understand what is high
availability. High availability for a Fusion web application refers to the ability of users to
access a system without loss of service.

High availability for the Fusion web application is the ability of the application to be
available when it is needed.

A high availability environment ensures that users can access the application without
loss of service. Deploying the Fusion web application to a high availability environment
minimizes the time when the application is down, or unavailable, and maximizes the
time when it is running, or available.

High availability comes from redundant systems and components. You can categorize
high availability solutions by their level of redundancy into active-active solutions and
active-passive solutions.

An active-active solution deploys two or more active servers and can be used
to improve scalability and provide high availability. In active-active deployments, all
instances handle requests concurrently. Oracle recommends active-active solutions for
all single-site middleware deployments. Active-passive solutions deploy an active
instance that handles requests and a passive instance that is on standby.

For information about high availability environments, see What is High Availability in
High Availability Guide.

Oracle ADF Scope and Session State Considerations
At runtime, ADF objects such as the binding container and managed beans are
instantiated. Each of these objects has a defined life span set by its scope attribute.

For more information about the life span of ADF objects, see About Object Scope
Lifecycles.

54-1

Oracle ADF Failover and Expected Behavior Considerations
An Oracle WebLogic cluster provides application high availability. If one member of the
cluster is unavailable, any other available member of the cluster is able to handle the
request. You should familiarize yourself with failover requirements and the expected
behavior of an application in the event of a failover.

Session Failover Requirements
For seamless failover of a Fusion web application, the application must meet the
following conditions:

• The application is in a cluster and at least one member of the application cluster is
available to serve the request.

• For stateful applications, state replication is configured correctly, as described in
Configuring Oracle ADF for High Availability.

• If you use Oracle HTTP Server, the server is configured with the WebLogicCluster
directive to balance among all available application instances.

• If you use a hardware load balancer, the load balancer is:

– Routing traffic to all available instances

– Configured correctly with a health monitor to mark unavailable instances

– Configured to support persistence of session state

Expected Behavior for Application Failover
If the environment is configured correctly, application users do not notice when an
application instance in a cluster becomes unavailable. The sequence of events in an
application failover is, for example, as follows:

1. A user makes a request and is routed by a hardware load balancer to Instance A
of the application.

2. Instance A of the application becomes unavailable because of node failure,
process failure, or network failure.

3. The hardware load balancer marks Instance A as unavailable.

4. The user makes a subsequent request. The request is routed to Instance B.

5. Instance B is configured as a replication partner of Instance A and has the user's
session state.

6. The application resumes using the session state on Instance B and the user
continues working without interruption.

ADF Application Module for Oracle RAC Considerations
When you configure the ADF application module to access a highly available database
system, such as redundant databases or Oracle Real Application Clusters (Oracle
RAC) as the backend, the data source must be container-defined. In this scenario,
you must use a GridLink data source or a multi data source. However, from the
standpoint of the application module configuration, the naming convention for the multi
data source or GridLink data source is the same as it is for a non-multi data source or

Chapter 54
About Oracle ADF High Availability

54-2

GridLink data source. This naming convention ensures that the correct data source is
used at runtime.

To more information about configuring GridLink data sources or multi data sources
for high availability applications, see the Database Considerations chapter of the High
Availability Guide.

For information about high availability considerations related to modifying the mdsDS
data source URL post deployment of the Fusion web application, see the Configuring
High Availability for Other Components chapter of the High Availability Guide.

Configuring Oracle ADF for High Availability
When a failover happens in the cluster environment, the ADF application state must
be saved in a shared location either in a file system or database or in memory and
this should be available to all the nodes in the cluster to replicate the state of the
session. Most of the configurations for a high availability will be done in the application
metadata files and the development needs to be done keeping in mind that code
should support high availability for any kind of J2EE applications.

To support automatic replication and failover for web applications in a clustered
environment, Oracle WebLogic Server supports mechanisms for replicating HTTP
session state across clusters. You can configure Oracle ADF to ensure the Fusion
web application's state can be restored from any server in the cluster.

How to Configure Application Modules for High Availability
An application module is the transactional component that the Fusion web
application uses to work with application data. It defines an updateable data model
and top-level procedures and functions, called service methods, related to a logical
unit of work related to an end-user task. An application module supports passivating,
or storing, its transaction state as a snapshot in the database. It also supports
the reverse operation of activating the transaction state from one of these saved
snapshots.

For more information on application module state management, see About Fusion
Web Application State Management.

To enable support for ADF Business Components failover, set the jbo.dofailover
parameter to true so that the application module state is saved on release. This
enables Oracle ADF to restore the application module state from a snapshot saved
from a previous check in. By contrast, when the failover feature is disabled, which it is
by default, then application module state is saved only when the application is reused
by a subsequent user session and only when the application module pool cannot find
an unused application module.

You can set this parameter in your application module configuration on the Pooling
and Scalability tab of the overview editor for application module configurations (on
the bc4j.xcfg file).

To configure application modules for high availability:

1. Launch JDeveloper and open the application.

2. In the Applications window, expand the project that contains the data model and
double-click the application module.

Chapter 54
Configuring Oracle ADF for High Availability

54-3

3. In the overview editor for the application module, select the Configurations
navigation tab and click the configuration hyperlink for the configuration you want
to configure for high availablity.

4. In the overview editor for application module configurations (on the bc4j.xcfg file),
click the Database and Scalability tab.

5. Select the Failover Transaction State Upon Managed Release checkbox and
save the change.

How to Enable Support for Replicating HTTP Session State
To enable support for replicating HTTP session state, you must assign a value to
the persistent-store-type element in the Oracle WebLogic Server weblogic.xml
file. The value replicated_if_clustered ensures that the in-effect persistent store
type will be replicated so that sessions on the clustered environment are stored in
accordance with the value set for the cluster of servers to which this server belongs.

Note:

Oracle ADF applications such as the Oracle WebCenter Portal Suite are
preconfigured and do not need additional configuration.

To configure the weblogic.xml file for high availability:

1. Launch JDeveloper and open the application.

2. In the Applications window, expand the project that contains the web application
and expand the WEB-INF folder.

3. Double-click the weblogic.xml file, and click the Source tab to edit the file.

4. In the file, add the persistent-store-type definition to the session-descriptor
element:

<weblogic-web-app>
 <session-descriptor>
 <persistent-store-type>
 replicated_if_clustered
 </persistent-store-type>
 </session-descriptor>
</weblogic-web-app>

How to Ensure Oracle ADF Receives Notifications From Managed
Bean Changes

When you design an application to run in a clustered environment, you must ensure
that Oracle ADF is aware of changes to managed beans stored in ADF scopes (view
scope and page flow scope).

When a value within a managed bean in either view scope or page flow scope is
modified, the application must notify Oracle ADF so that it can ensure the bean's new
value is replicated.

Chapter 54
Configuring Oracle ADF for High Availability

54-4

To enable ADF Controller to track changes to ADF memory scopes and replicate the
page flow scope and view scope within the server cluster, you must set the ADF
Controller parameter <adf-scope-ha-support> in the application's adf-config.xml
file to true. For example, when set to true for an application and that application
adds or removes a bean from a page flow scope during a request, the change will
automatically replicated within a cluster.

The adf-config.xml file is the central configuration file for all ADF components. The
file contains sections to configure the runtime behavior for ADF components, including,
ADF Controller.

Note:

If your application uses MDS and will use an Oracle database that supports
failover, Oracle recommends enabling MDS retry on failover. To do this, add
the following retry-connection entry to the MDS configuration section of
adf-config.xml.

<persistence-config>
 <metadata-namespaces>...
 <metadata-store-usages>...
 <external-change-detection enabled="false" />
 <read-only-mode enabled="true"/>
 <retry-connection enabled="true"/>
</persistence-config>

To configure the adf-config.xml file for high availability:

1. In the Application window, expand the Application Resources.

2. Select Descriptors, and then select the ADF META-INF node.

3. Double-click the adf-config.xml file, and click the Source tab to edit the file.

4. Add the following to the file:

<adf-controller-config xmlns="http://xmlns.example.com/adf/controller/
config">
 <adf-scope-ha-support>true</adf-scope-ha-support>
</adf-controller-config>

For more information about using the adf-config.xml file to configure ADF, see adfc-
config.xml.

What You May Need to Know About Using Application Scoped
Managed Beans in a Clustered Environment

JSF Application Scope beans are backed by a servlet context which can only have
one instance per cluster node. Therefore, for each design time configured bean, there
will be a runtime instance of the bean for each node in a cluster. Because there is
no synchronization across nodes, each instance of the application running on different
nodes will have separate instances of that bean with separate values. Therefore,
application scoped managed beans should not be used to carry application-wide
values that can be updated to be shared across all nodes in a cluster. They can,

Chapter 54
Configuring Oracle ADF for High Availability

54-5

however, be used to carry constants, read-only values, or values to reflect the state of
a single node within the cluster (such as the number of users on a node).

How to Disable Design Time Optimizations
The org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION context parameter
provides optimization for developing and testing the Fusion web application in the
JDeveloper. Leaving this parameter set to true when the application runs in a high
availability environment can lead to errors after failover occurs. Note that this limitation
should not affect your work because you typically use this parameter in a development
environment only, not a high availability environment.

To configure the CHECK_FILE_MODIFICATION parameter for high availability:

1. In the Applications window, expand the user interface project and expand the
WEB-INF folder.

2. Double-click the web.xml file and click the Application navigation tab.

3. In the overview editor, expand the Context Initialization Parameters section and
confirm that the org.apache.myfaces.trinidata.CHECK_MODIFICATION parameter
definition is set to false.

The web.xml file definition will be:

<web-app>
 ...
 <context-param>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_
 MODIFICATION</param-name>
 <param-value>false</param-value>
 </context-param>
</web-app>

Troubleshooting Fusion Web Applications for High
Availability

There are procedures to troubleshoot common issues with Fusion web applications at
design time and also after deployment.

This section describes procedures for troubleshooting possible issues with Fusion web
applications at design time and after deployment.

How to Test the Fusion Web Application With Failover Mode Enabled
When running or debugging an application that uses failover support (jbo.dofailover
is enabled) within the JDeveloper environment, you are frequently starting and
stopping the application server. The ADF failover mechanism has no way of knowing
whether you stopped the server to simulate an application server failure, or whether
you stopped it because you want to retest something from scratch in a fresh server
instance. If you intend to do the latter, exit out of your browser before restarting the
application on the server. This eliminates the chance that you will be confused by the
correct functioning of the failover mechanism when you didn't intend to be testing that
aspect of your application.

Chapter 54
Troubleshooting Fusion Web Applications for High Availability

54-6

How to Troubleshoot High Availability Issues at Design Time
When you develop the Fusion web application in Oracle JDeveloper, the integrated
development environment provides support for detecting potential high availability
issues. The warnings that JDeveloper provides are generated by the audit framework
and are triggered to appear in the JDeveloper source editors. The warnings the editors
show are based on the audit rules for high availability applications.

The high availability audit rules that JDeveloper enables by default are:

• ADF Controller Configuration - High Availability for ADF Scopes is not
Enabled warns the developer that the adf-scope-ha-support flag in the adf-
config.xml file is set is not set to true. This audit rule fires only when the
<adf-controller-config> element is in the ADF application-level configuration
file (adf-config.xml).

• ADF Page Flows - Bean in Scope Map is Modified warns the developer when
the some code calls a setter method on a bean to indicate that the code did not
subsequently call the ControllerContext.markScopeDirty() method. This audit
rule fire only when the adf-scope-ha-support flag in the adf-config.xml file is
set to true.

• ADF Page Flows - EL Bean is Modified warns the developer when some code
evaluates an EL expression that mutates a bean to indicate that the code did not
subsequently call the ControllerContext.markScopeDirty() method. This audit
rule fire only when the adf-scope-ha-support flag in the adf-config.xml file is
set to true.

• ADF Page Flows - Managed Bean Class Not Serializable warns the developer
that a managed bean has a non-serializable class defined in viewScope,
pageFlowScope, or sessionScope. This audit rule fire only when the adf-scope-ha-
support flag in the adf-config.xml file is set to true.

You can modify the high availability audit rule settings using the Preference dialog in
JDeveloper. From the JDeveloper toolbar, choose Tools - Preferences, under Audit -
Profiles expand ADF Controller Configuration or ADF Pages Flows and make the
desired audit rule selections.

You can also trigger the audit by choosing Build - Audit project.jpr from the
JDeveloper toolbar.

How to Troubleshoot High Availability Issues After Deployment
There are two actions to take if you encounter Fusion web application deployment
issues: verify the JRF Runtime and verify the status of application deployments.

Verifying the JRF Runtime Installation
The first step to troubleshooting an Fusion web application deployment is to verify
that the JRF Runtime is installed on the WebLogic Server domain. ADF applications
require the JRF and ADF runtime. You cannot run ADF applications with a standalone
WebLogic Server domain or just the WebLogic Server portion of the Application
Development product; you must extend it with the JRF extension template.

For more information on the JRF Template, see Oracle JRF and ADF Templates in
Domain Template Reference.

Chapter 54
Troubleshooting Fusion Web Applications for High Availability

54-7

Verifying the Success of All Application Deployments
Fusion web applications deploy when the Managed Server first starts. Use the
Administration Console to check that all application deployments were successful:

1. Click Deployments in the left hand pane. The right hand pane shows the
application deployments and their status. The state of all applications, assuming
all the servers are running, should be ACTIVE.

2. If an application deployment has failed, the server logs may provide some
indication of why the application was not deployed successfully. The server logs
are located in the DOMAIN_HOME/servers/server_name/logs directory. Common
issues include:

• Unavailability of external resources, such as database resources. Examine the
error, fix it, and attempt to redeploy the application.

• The appropriate applications or libraries are not targeted correctly to the right
Managed Server or Cluster.

How to Troubleshoot Oracle ADF Replication and Failover Issues
State Replication is most prominent in failover scenarios. A user working on one
server may discover that, upon failover:

• Windows may close or the state might reset.

• Screens may require a reset.

• The application may redirect to the logon screen.

To diagnose and troubleshoot state replication issues.

1. Confirm that this is not a known replication issue.

See Oracle ADF Failover and Expected Behavior Considerations for possible
expected behaviors. Before proceeding to further diagnose the issue, first confirm
that the failover behavior is not an expected behavior.

2. Check load balancer settings.

For replication and failover to function correctly, the load balancer must be
configured with the appropriate persistence settings. For more details on
configuring Hardware Load Balancers for Oracle WebLogic Server, see Load
Balancing in a Cluster in Administering Clusters for Oracle WebLogic Server.

3. Check the cluster status.

Replication occurs within the context of a cluster. For failover to be successful,
there must be at least one other healthy member of the cluster available. You can
check cluster status in one of two ways:

• Check the cluster status using the Oracle WebLogic Server Administration
Console - In the Left-hand pane, click on Servers. Verify the state of all
servers in the cluster.

• Check the cluster status using the weblogic.Admin utility. You can use the
weblogic.Admin utility to query the state of all servers in a specific cluster. For
example:

Chapter 54
Troubleshooting Fusion Web Applications for High Availability

54-8

$ java weblogic.Admin -url Adminhost:7001 -username <username> -password
 <password> CLUSTERSTATE -clustername Spaces_Cluster

This example returns:

There are 2 server(s) in cluster: Spaces_Cluster
The alive servers and their respective states are listed below:
Application Server---RUNNING
Managed Server---RUNNING

4. Check cluster communications.

Even if all cluster members are running, there may be communication issues
which prevent them from communicating replication information to each other.
There are two types of cluster communication configurations. Troubleshooting
depends on the cluster type:

• Checking Unicast cluster communications - For Unicast clusters, Managed
Servers must be able to access each other's hosts and each other's default
listening port.

Ensure that all individual Managed Servers have their Listen Address set
correctly. You can find this setting by selecting Configuration, General for
each Managed Server.

• Checking Multicast cluster communications - For multicast clusters, servers
must be able to intercept the same multicast traffic. Ensure that multicast is
configured correctly by running the WebLogic utility utils.MulticastTest on
each machine. For example:

$ java utils.MulticastTest -H

5. Confirm Oracle WebLogic Server application configuration.

Oracle WebLogic Server is not configured by default for failover. In-memory
replication takes place only with the proper setting in the weblogic.xml file:

<session-descriptor>
<persistent-store-type>replicated_if_clustered</persistent-store-type>
</session-descriptor>

A persistent-store-type of replicated is also acceptable. This setting can be made
in JDeveloper, as described in How to Enable Support for Replicating HTTP
Session State .

6. Confirm Oracle ADF Business Components configuration.

Oracle ADF is not configured by default for failover. Failover is supported only with
the proper setting in the ADF Business Components configuration file (bc4j.xcfg):

<AppModuleConfig ...
 <AM-Pooling jbo.dofailover="true"/>
</AppModuleConfig>

This setting is made in JDeveloper through the Edit Business Components
Configuration dialog, as described in How to Configure Application Modules for
High Availability.

7. Confirm Oracle WebLogic Server connection pool parameter.

Set an appropriate value for the weblogic-application.xml deployment
descriptor parameter inactive-connection-timeout-seconds on the element
<connection-check-params> pool-params.

Chapter 54
Troubleshooting Fusion Web Applications for High Availability

54-9

When enabling application module state passivation, a failure can occur when
Oracle WebLogic Server is configured to forcibly release connections back into the
pool. The failure creates an exception "Connection has already been closed"
that gets saved to the server log. The user interface does not show this exception.

Set inactive-connection-timeout-seconds to several minutes. In most cases,
this setting avoids forcing the inactive connection timeout and passivation failure.
Adjust the setting as needed for your environment.

8. Confirm ADF Controller configuration.

Oracle ADF is not configured by default to replicate changes to ADF objects in
ADF memory scopes. ADF object replication is supported only with the proper
setting in the ADF application-level configuration file (adf-config.xml):

<adfc:adf-controller-config>
 <adfc:adf-scope-ha-support>true</adfc:adf-scope-ha-support>
</adfc:adf-controller-config>

This setting is made in JDeveloper through the source editor. See How to
Configure Application Modules for High Availability.

9. Check default logger messages.

By default the ADF log shows high-level messages (INFO level). The default
logging often reports problems with serialization and replication without the need
to enable more detailed log messages.

10. Enable log messages for ADF high availability applications.

Configure the ADF logger to output runtime messages for high availability. By
default the ADF log shows high-level messages (INFO level). You enable high
availability diagnostics for ADF Controller by setting the logging level in Fusion
Middleware Control to FINE.

When enabled, the logger outputs a warning if the adfc:adf-scope-ha-support
setting in the adf-config.xml file is not set.

11. Enable debug.

Check the server logs for any unusual messages on Managed Server startup.
In particular, if the Managed Server is unable to locate other members of the
cluster. The server logs are located in the DOMAIN_HOME/servers/SERVER_NAME/
logs directory.

For further debugging, enable the flags DebugCluster,
DebugClusterAnnouncements, DebugFailOver, DebugReplication, and
DebugReplicationDetails. You can enable each flag with the weblogic.Admin
utility:

$ java weblogic.Admin -url Adminhost:7001 -username <username> -password
 <password> SET -type ServerDebug -property DebugCluster true

12. Enable component state serialization checking.

Enable server checking to ensure no unserializable state content on session
attributes is detected. This check is disabled by default to reduce runtime
overhead. Serialization checking is supported by the Java server system property
org.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION.

Table 54-1 shows the options you can use with the property. Use commas to
delimit the options.

Chapter 54
Troubleshooting Fusion Web Applications for High Availability

54-10

Table 54-1 CHECK_STATE_SERIALIZATION Options

Option Description

tree Checks whether the entire component tree is serializable. This is the fastest
component check. Most testing should be performed with this flag enabled.

component Checks each component individually for serializability. This option is much
slower than "tree." It is typically turned on only after testing with "tree"
reports an error. This option narrows down the problematic component.

property Checks each component attribute individually for serializability. This is slower
than "component" and narrows down the specific problematic component
attribute after a failure has been detected in the "tree" or "component"
modes.

session Checks that all attributes in the JSF Session Map that are marked as
Serializable are serializable.

application Checks that all attributes in the JSF Application Map that are marked as
Serializable are serializable.

beans Checks that any serializable object in the appropriate map has been marked
as dirty if the serializable content of the object changes during the request.

all Checks everything.

For high availability testing, start off by validating that the Session and JSF state is
serializable by launching the application server with the system property:

-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=session,tree

Add the beans option to check that any serializable object in the appropriate map
has been marked as dirty if the serialized content of the object has changed during
the request:

-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=session,tree,beans

If a JSF state serialization failure is detected, relaunch the application server with
the system property to enable component and property flags and rerun the test:

-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=all

These are Java system properties and you must specify them when you start the
application server.

Chapter 54
Troubleshooting Fusion Web Applications for High Availability

54-11

55
Deploying Fusion Web Applications

This chapter describes how to deploy Oracle ADF applications to a target application
server. It describes how to create deployment profiles, how to create deployment
descriptors, and how to load ADF runtime libraries. It includes instructions for running
an application in the Integrated WebLogic Server as well as deploying to a standalone
Oracle WebLogic Server.
This chapter includes the following sections:

• About Deploying Fusion Web Applications

• Running a Fusion Web Application in Integrated WebLogic Server

• Preparing the Application

• Deploying the Application

• Postdeployment Configuration

• Testing the Application and Verifying Deployment

About Deploying Fusion Web Applications
In order to run a web application, it needs to be deployed to a web server. Using
JDeveloper, you can directly deploy an Oracle ADF application to an integrated
application server or deploy to any standalone application server.

Deployment is the process of packaging application files as an archive file and
transferring that file to a target application server. You can use JDeveloper to deploy
Oracle ADF applications directly to the application server (such as Oracle WebLogic
Server), or indirectly to an archive file as the deployment target, and then install
this archive file to the target server. For application development, you can also use
JDeveloper to run an application in Integrated WebLogic Server. JDeveloper supports
deploying to server clusters, but you cannot use JDeveloper to deploy to individual
Managed Servers that are members of a cluster.

Figure 55-1 shows the flow diagram that describes the overall deployment process.
Note that preparing the target application server for deployment by installing the
ADF runtime is described in Deploying ADF Applications in Administering Oracle ADF
Applications.

55-1

Figure 55-1 Deployment Overview Flow Diagram

Note:

Normally, you use JDeveloper to deploy applications for development
and testing purposes. If you are deploying Oracle ADF applications for
production purposes, you can use Enterprise Manager or scripts to deploy
to production-level application servers.

For more information about deployment to later-stage testing or production
environments, see Deploying Using Oracle Enterprise Manager Fusion
Middleware Control in Administering Oracle ADF Applications.

ADF Java EE applications are based on standardized, modular components and can
be deployed to the following application server:

• Oracle WebLogic Server

Oracle WebLogic Server provides a complete set of services for those
modules and handles many details of application behavior automatically,
without requiring programming. For information about which versions of
Oracle WebLogic Server are compatible with JDeveloper, see the certification

Chapter 55
About Deploying Fusion Web Applications

55-2

information website at http://www.oracle.com/technetwork/developer-tools/
jdev/documentation/index.html.

Deploying a Fusion web application is slightly different from deploying a standard Java
EE application. JSF applications that contain ADF Faces components have a few
additional deployment requirements:

• ADF Faces requires Sun's JSF Reference Implementation 1.2 and MyFaces 1.0.8
(or later).

You can use JDeveloper to:

• Run applications in Integrated WebLogic Server

You can run and debug applications using Integrated WebLogic Server and then
deploy to standalone WebLogic Server.

• Deploy directly to the standalone application server

You can deploy applications directly to the standalone application server by
creating a connection to the server and choosing the name of that server as the
deployment target.

• Deploy to an archive file

You can deploy applications indirectly by choosing an EAR file as the deployment
target. The archive file can subsequently be installed on a target application
server.

The Summit sample application for Oracle ADF demonstrates the use of the Fusion
web application technology stack to create transaction-based web applications. You
can run the Summit sample application in JDeveloper using Integrated WebLogic
Server. For more information about the Summit ADF sample applications, see
Introduction to the ADF Sample Application.

Developing Applications with Integrated WebLogic Server
If you are developing an application in JDeveloper and you want to run the
application in Integrated WebLogic Server, you do not need to perform the tasks
required for deploying directly to Oracle WebLogic Server or to an archive file.
JDeveloper has a default connection to Integrated WebLogic Server and does
not require any deployment profiles or descriptors. Integrated WebLogic Server
has a preconfigured domain that includes the ADF libraries, as well as the
-Djps.app.credential.overwrite.allowed=true setting, that are required to run
Oracle ADF applications. You can run an application by choosing Run from the
JDeveloper main menu.

You debug the application using the features described in Testing and Debugging ADF
Components.

Developing Applications to Deploy to Standalone Application Server
Typically, for deployment to standalone application servers, you test and develop
your application by running it in Integrated WebLogic Server. You can then test
the application further by deploying it to standalone Oracle WebLogic Server in
development mode to more closely simulate the production environment.

In general, you use JDeveloper to prepare the application or project for deployment by:

• Creating a connection to the target application server

Chapter 55
About Deploying Fusion Web Applications

55-3

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

• Creating deployment profiles (if necessary)

• Creating deployment descriptors (if necessary, and that are specific to the target
application server)

• Updating application.xml and web.xml to be compatible with the application
server (if required)

• Enabling the application for Real User Experience Insight (RUEI) in web.xml (if
desired)

• Migrating application level security policy data to a domain-level security policy
store

• Configuring the Oracle Single Sign-On (Oracle SSO) service and properties in
the domain jps-config.xml file when you intend the web application to run using
Oracle SSO

You must already have an installed application server. For Oracle WebLogic Server,
you can use the Oracle 12c Installer or the Oracle Fusion Middleware 12c Application
Developer Installer to install one. For other application servers, follow the instructions
in the applications server documentation to obtain and install the server.

You must also prepare the application server for Fusion web application deployment.
See Preparing the Standalone Application Server for Deployment in Administering
Oracle ADF Applications.

• Extending Oracle WebLogic Server domains to be ADF-compatible using the ADF
runtime

• For WebLogic, setting the Oracle WebLogic Server credential store overwrite
setting as required (-Djps.app.credential.overwrite.allowed=true setting).

• Creating a global JDBC data source for applications that require a connection to a
data source

After the application and application server have been prepared, you can:

• Use JDeveloper to:

– Directly deploy to the application server using the deployment profile and the
application server connection.

– Deploy to an EAR file using the deployment profile. For Oracle ADF
applications, WAR and MAR files can be deployed only as part of an EAR
file.

• Use Enterprise Manager, scripts, or the application server's administration tools to
deploy the EAR file created in JDeveloper. See Deploying Using Oracle Enterprise
Manager Fusion Middleware Control in Administering Oracle ADF Applications.

Running a Fusion Web Application in Integrated WebLogic
Server

In order to test run an ADF application during development, you can use JDeveloper
to run an application in Integrated WebLogic Server. You do not have to manually
complete many of the steps that are necessary for deployment to a standalone server.

JDeveloper is installed with Integrated WebLogic Server which you can use to test
and develop your application. For most development purposes, Integrated WebLogic

Chapter 55
Running a Fusion Web Application in Integrated WebLogic Server

55-4

Server will suffice. When your application is ready to be tested, you can select the run
target and then choose the Run command from the main menu.

Note:

The first time you run an application in Integrated WebLogic Server, the
Create Default Domain dialog appears for you to define an administrative
password for the new domain.

When you run the application target, JDeveloper detects the type of Java EE module
to deploy based on artifacts in the projects and workspace. JDeveloper then creates
an in-memory deployment profile for deploying the application to Integrated WebLogic
Server. JDeveloper copies project and application workspace files to an "exploded
EAR" directory structure. This file structure closely resembles the EAR file structure
that you would have if you were to deploy the application to an EAR file. JDeveloper
then follows the standard deployment procedures to register and deploy the "exploded
EAR" files into Integrated WebLogic Server. The "exploded EAR" strategy reduces the
performance overhead of packaging and unpackaging an actual EAR file.

In summary, when you select the run target and run the application in Integrated
WebLogic Server, JDeveloper:

• Detects the type of Java EE module to deploy based on the artifacts in the project
and application

• Creates a deployment profile in memory

• Copies project and application files into a working directory with a file structure that
would simulate the "exploded EAR" file of the application.

• Performs the deployment tasks to register and deploy the simulated EAR into
Integrated WebLogic Server

• Automatically migrates identities, credentials, and policies

Later on, if you plan to deploy the application to a standalone WebLogic Server
instance, you will need to migrate this security information. See How to Deploy
Applications with ADF Security Enabled.

Note:

JDeveloper ignores the deployment profiles that were created for the
application when you run the application in Integrated WebLogic Server.

The application will run in the base domain in Integrated WebLogic Server. This base
domain has the same configuration as a base domain in a standalone WebLogic
Server instance. In other words, this base domain will be the same as if you had used
the Oracle Fusion Middleware Configuration Wizard to create a base domain with the
default options in a standalone WebLogic Server instance.

JDeveloper will extend this base domain with the necessary domain extension
templates, based on the JDeveloper technology extensions. For example, if you have
installed JDeveloper Studio, JDeveloper will automatically configure the Integrated

Chapter 55
Running a Fusion Web Application in Integrated WebLogic Server

55-5

WebLogic Server environment with the ADF runtime template (JRF Fusion Middleware
runtime domain extension template).

You can explicitly create a default domain for Integrated WebLogic Server. You can
use the default domains to run and test your applications. Open the Application
Servers window, right-click IntegratedWebLogicServer and choose Create Default
Domain.

How to Run an Application in Integrated WebLogic Server
You can test an application by running it in Integrated WebLogic Server. You can also
set breakpoints and then run the application within the ADF Declarative Debugger.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you run an application in the Integrated WebLogic Server. For more information,
see Running a Fusion Web Application in Integrated WebLogic Server.

To run an application in Integrated WebLogic Server:

1. In the Applications window, select the project, unbounded task flow, JSF page, or
file as the run target.

2. Right-click the run target and choose Run or Debug.

The Create Default Domain dialog appears for the first time you run your
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

How to Run an Application with Metadata in Integrated WebLogic
Server

When an application is running in Integrated WebLogic Server, the MAR (Metadata
Archive) profile itself will not be deployed to a repository, but a simulated MDS
repository will be configured for the application that reflects the metadata information
contained in the MAR. This metadata information is simulated, and the application
runs based on this location in source control.

Any customizations or documents created by the application that are not configured to
be stored in other MDS repositories are written to this simulated MDS repository
directory. For example, if you customize an object, the customization is written to the
simulated MDS repository. If you execute code that creates a new metadata object,
then this new metadata object is also written to the same location in the simulated
MDS repository. You can keep the default location for this directory
(ORACLE_HOME\jdeveloper\systemXX.XX\o.mds.dt\adrs\Application\AutoGenerate
dMar\mds_adrs_writedir), or you can set it to a different directory. You also have the
option to preserve this directory across different application runs, or to delete this
directory before each application run.

If your workspace has different working sets, only the metadata from the projects
defined in the working set and their dependent projects will be included in
the MAR. You can view and change a project's dependencies by right-clicking
the project in the Applications window, choosing Project Properties, and then
selecting Dependencies. For instance, an application may have several projects
but workingsetA is defined to be viewcontroller2 and viewcontroller5; and

Chapter 55
Running a Fusion Web Application in Integrated WebLogic Server

55-6

viewcontroller5 has a dependency on modelproject1. When you run or debug
workingsetA, only the metadata for viewcontroller2, viewcontroller5, and
modelproject1 will be included in the MAR for deployment.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you run an application with metadata in the Integrated WebLogic Server. For
more information, see Running a Fusion Web Application in Integrated WebLogic
Server.

You will need to complete this task:

Created a MAR profile, either manually or automatically by JDeveloper.

To deploy the MAR profile to Integrated WebLogic Server:

1. In the Applications window, right-click the application and choose Application
Properties.

2. In the Application Properties dialog, expand Run and choose MDS.

3. On the Run MDS page:

• Select the MAR profile from the MAR Profile dropdown list

• Enter a directory path in Override Location if you want to customize the
location of the simulated MDS repository.

• Select the Directory Content option. You can chose to preserve the
customizations across application runs or delete customizations before each
run.

Select the MAR profile from the MAR Profile dropdown list. Figure 55-2 shows
Demometadata1 selected as the MAR profile.

Figure 55-2 Setting the Run MDS Options

Chapter 55
Running a Fusion Web Application in Integrated WebLogic Server

55-7

Preparing the Application
Once your application is developed, you must perform some essential tasks to deploy
the Fusion web application to an integrated or standalone WebLogic Server.

Before you deploy a Fusion web application to a standalone application server, you
must perform prerequisite tasks within JDeveloper to prepare the application for
deployment.

Figure 55-3 show the process flow to prepare the application for deployment. After
the application has been prepared and the application server has been prepared
as described in Preparing the Standalone Application Server for Deployment in
Administering Oracle ADF Applications, you can proceed to deploy the application
as described in Deploying the Application.

Figure 55-3 Preparing the Application for Deployment Flow Diagram

How to Create a Connection to the Target Application Server
You can deploy applications to the application server via JDeveloper application server
connections.

Chapter 55
Preparing the Application

55-8

If your application involves customization using MDS, you should register your MDS
repository with the application server:

• WebLogic: register the MDS into the WebLogic Domain

For information about registering MDS in WebLogic, see Registering and
Deregistering a Database-Based MDS Repository in Administering Oracle Fusion
Middleware.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you prepare an application for deployment. See Preparing the Application.

You will need to complete this task:

Installed an application server.

To create a connection to an application server:

1. Launch the Application Server Connection wizard.

You can:

• In the Applications Servers window, right-click Application Servers and
choose New Application Server.

• In the New Gallery, expand General, select Connections and then
Application Server Connection, and click OK.

• In the Resources window, choose New > IDE Connections > Application
Server.

2. In the Create Application Server Connection dialog, on the Usage page, select
Standalone Server and click Next.

3. On the Name and Type page, enter a connection name.

4. In the Connection Type dropdown list, choose:

• WebLogic to create a connection to Oracle WebLogic Server

5. Click Next.

6. On the Authentication page, enter a user name and password for the
administrative user authorized to access the application server.

7. Click Next.

8. On the Configuration page, enter the information for your server:

For WebLogic:

• The Oracle WebLogic host name is the name of the WebLogic Server instance
containing the TCP/IP DNS where your application (.jar,.war,.ear) will be
deployed.

• In the Port field, enter a port number for the WebLogic Server instance on
which your application (.jar,.war,.ear) will be deployed.

If you don't specify a port, the port number defaults to 7001.

• In the SSL Port field, enter an SSL port number for the WebLogic Server
instance on which your application (.jar,.war,.ear) will be deployed.

Specifying an SSL port is optional. It is required only if you want to ensure a
secure connection for deployment.

Chapter 55
Preparing the Application

55-9

If you don't specify an SSL port, the port number defaults to 7002.

• Select Always Use SSL to connect to the WebLogic Server instance using the
SSL port.

• Optionally enter a WebLogic Domain only if WebLogic Server is configured to
distinguish non-administrative server nodes by name.

9. Click Next.

10. Click Next.

11. If the SSl Signer Exchange Prompt dialog appears, click Y.

12. On the Test page, click Test Connection to test the connection.

JDeveloper performs several types of connections tests. The JSR-88 test must
pass for the application to be deployable. If the test fails, return to the previous
pages of the wizard to fix the configuration.

13. Click Finish.

How to Create Deployment Profiles
A deployment profile defines the way the application is packaged into the archive
that will be deployed to the target environment. The deployment profile:

• Specifies the format and contents of the archive file that will be created

• Lists the source files, deployment descriptors, and other auxiliary files that will be
packaged

• Describes the type and name of the archive file to be created

• Highlights dependency information, platform-specific instructions, and other
information

You need a WAR deployment profile for each web user interface project that you want
to deploy in your application. If you want to package seeded customizations or place
base metadata in the MDS repository, you need an application level metadata archive
(MAR) deployment profile as well. For more information about seeded customizations,
see Customizing Applications with MDS . If the application has customization classes,
you need a JAR file for those classes and you need to add that JAR when you create
the EAR file. Finally, you need an application level EAR deployment profile and you
must select the projects (such as WAR and MAR profiles and customization classes
JAR files) to include from a list. When the application is deployed, the EAR file will
include all the projects that were selected in the deployment profile.

Note:

If you create your project or application using the ADF Fusion Web
Application template, JDeveloper automatically creates default WAR, EAR,
MAR, and JAR deployment profiles. Typically, you would not need to edit or
create deployment profiles manually.

For Oracle ADF applications, you can deploy the application only as an EAR file. The
WAR and MAR files that are part of the application should be included in the EAR file
when you create the deployment profile.

Chapter 55
Preparing the Application

55-10

Note:

If your Fusion web application has business services that you want to deploy,
you will need to create a Business Component Service Interface deployment
profile and deploy it. For more information about business services, see How
to Deploy Web Services to Oracle WebLogic Server.

Creating a WAR Deployment Profile
You will need to create a WAR deployment profile for each web-based project you
want to package into the application. Typically, the WAR profile will include the
dependent data model projects it requires.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a WAR deployment profile. For more information, see Preparing the
Application.

You will need to complete this task:

Create web-based projects. If you used the ADF Fusion Web Application template,
you should already have a default WAR deployment profile.

To create WAR deployment profiles for an application:

1. In the Applications window, right-click the web project that you want to deploy and
choose New > From Gallery.

You will create a WAR profile for each web project.

2. In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

If you don't see Deployment Profiles in the Categories tree, click the All
Features tab.

3. In the Create Deployment Profile -- WAR File dialog, enter a name for the project
deployment profile and click OK.

4. In the Edit WAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane. Configure the profile by setting
property values in the pages of the dialog.

• If you have customization classes in your application, they must be loaded
from the EAR-level application class loader and not from the WAR. You will
later add these customization classes to the EAR.

By default, customization classes that are implemented in the data model
project are added to the data model project's WAR class path. So for each
WAR, you must exclude the customization classes.

If you created your customization classes in an extension project of the
application and included them using the Libraries and Classpath page of
the Application Properties dialog, they will be packaged at the EAR level by
default. No further action is necessary to remove them from the WAR profile.

However, if you created your customization classes in the data model project
of the application, they must be removed from the WAR profile. Deselect

Chapter 55
Preparing the Application

55-11

any customization classes in the Edit WAR Deployment Profiles Properties
dialog Filters page for each user interface project. If you are using a
customization.properties file, it should also be deselected.

• You might also want to change the Java EE web context root setting. To do so,
choose General in the left pane.

By default, when Use Project's Java EE Web Context Root is selected,
the associated value is set to the project name, for example, Application1-
Project1-context-root. You need to change this if you want users to use a
different name to access the application.

If you are using custom JAAS LoginModule for authentication with JAZN, the
context root name also defines the application name that is used to look up the
JAAS LoginModule.

5. Click OK to exit the Deployment Profile Properties dialog.

6. Click OK again to exit the Project Properties dialog.

7. Repeat Steps 1 through 7 for all web projects that you want to deploy.

Creating a MAR Deployment Profile
If you have seeded customizations or base metadata that you want to place in the
MDS repository, you need to create a MAR deployment profile.

The namespace configuration under <mds-config> for MAR content in the adf-
config.xml file is generated based on your selections in the MAR Deployment Profile
Properties dialog.

Although uncommon, an enterprise application (packaged in an EAR) can contain
multiple web application projects (packaged in multiple WARs), but the metadata for
all these web applications will be packaged into a single metadata archive (MAR).
The metadata contributed by each of these individual web applications can be global
(available for all the web applications) or local to that particular web application.

To avoid name conflicts for metadata with global scope, make sure that all metadata
objects and elements have unique names across all the web application projects that
forms part of the enterprise application.

JDeveloper creates an auto-generated MAR when the Enable User Customizations
and Across Sessions using MDS options are selected in the ADF View page of the
Project Properties dialog or when you explicitly specify the deployment target directory
in the adf-config.xml file.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a MAR deployment profile. See Preparing the Application.

You will need to complete this task:

Create an MDS repository for your customization requirements to deploy metadata
using the MAR deployment profile. For more information, see the section about
managing the MDS repository in Managing the MDS Repository in Administering
Oracle Fusion Middleware. If you used the ADF Fusion Web Application template,
you should already have a default MAR deployment profile.

To create a MAR deployment profile:

Chapter 55
Preparing the Application

55-12

1. In the Applications window, right-click the application in which you want to create a
MAR profile and choose New > From Gallery.

You will create a MAR profile if you want to include customizations.

2. In the New Gallery, expand General, select Deployment Profiles and then MAR
File, and click OK.

If you don't see Deployment Profiles in the Categories tree, click the All
Features tab.

3. In the Create Deployment Profile -- MAR File dialog, enter a name for the MAR
deployment profile and click OK.

4. In the Edit MAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane.

Figure 55-4 shows a sample User Metadata directory tree.

Figure 55-4 Selecting Items for the MAR Deployment Profiles

Note the following important points:

• To include all customizations, you need only create a file group with the
desired directories.

• ADF Model and ADF view directories are added by default. No further action
is required to package the ADF Model and ADF view customizations into the
MAR. ADF view content is added to HTML Root dir, while ADF Model and
Business Components content is added to User Metadata.

• To include the base metadata in the MDS repository, you need to explicitly
select these directories in the dialog.

When you select the base document to be included in the MAR, you also
select specific packages. When you select one package, all the documents

Chapter 55
Preparing the Application

55-13

(including subpackages) under that package will be used. When you select a
package, you cannot deselect individual items under that package.

• To include files from other than ADF Model and ADF view, users should
create a new file group under User Metadata with the desired directories and
explicitly select the required content in the Directories page.

• If a dependent ADF library JAR for the project contains seeded
customizations, they will automatically be added to the MAR during MAR
packaging. They will not appear in the MAR profile.

• If ADF Library customizations were created in the context of the consuming
project, those customizations would appear in the MAR profile dialog by
default.

5. Click OK to exit the Deployment Profile Properties dialog.

6. Click OK again to exit the Application Properties dialog.

Creating an Application Level EAR Deployment Profile
The EAR file contains all the necessary application artifacts for the application to run
in the application server. If you used the ADF Fusion Web Application template, you
should already have a default EAR deployment profile. For more information about the
EAR file, see What You May Need to Know About EAR Files and Packaging.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create an EAR deployment profile. For more information, see Preparing the
Application.

You will need to complete these tasks:

1. Add classes into a JAR file, as described in Adding Customization Classes into a
JAR.

2. Create the WAR deployment profiles, as described in Creating a WAR Deployment
Profile.

To create an EAR deployment profile for an application:

1. In the Applications window, right-click the application and choose New > From
Gallery.

You will create an EAR profile for the application.

2. In the New Gallery, expand General, select Deployment Profiles and then EAR
File, and click OK.

If you don't see Deployment Profiles in the Categories tree, click the All
Features tab.

3. In the Create Deployment Profile -- EAR File dialog, enter a name for the
application deployment profile and click OK.

4. In the Edit EAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane. Configure the profile by setting
property values in the pages of the dialog.

Be sure that you:

Chapter 55
Preparing the Application

55-14

• Select Application Assembly and then in the Java EE Modules list, select all
the project profiles that you want to include in the deployment, including any
WAR or MAR profiles.

• Select Platform, select the application server you are deploying to, and
then select the target application connection from the Target Connection
dropdown list.

Note:

If you are using a custom JAAS LoginModule for authentication with
JAZN, the context root name also defines the application name that is
used to look up the JAAS LoginModule.

5. If you have customization classes in your application, configure these classes so
that they load from the EAR-level application class loader.

Note:

If you created your customization classes in an extension project of the
application and included them using the Libraries and Classpath page
of the Application Properties dialog, this step is not necessary because
they will be packaged at the EAR level by default.

a. In the Edit EAR Deployment Profile Properties dialog, select Application
Assembly.

b. Select the JAR deployment profile that contains the customization classes,
and enter lib in the Path in EAR field at the bottom of the dialog.

Note:

You should have created this JAR as described in Adding
Customization Classes into a JAR.

The JAR file containing the customization classes is added to the EAR file's lib
directory.

Note:

If you have customization classes in your application, you must also
make sure they are not loaded from the WAR. By default, customization
classes that are added to the data model project's libraries and class
path are packaged to the WAR class path.

If you created your customization classes in the data model project of the
consuming application, deselect any customization classes in the Edit
WAR Deployment Profile Properties dialog Filters page.

Chapter 55
Preparing the Application

55-15

6. Click OK again to exit the Edit EAR Deployment Profile Properties dialog.

7. Click OK again to exit the Application Properties dialog.

Note:

To verify that your customization classes are put correctly in the EAR class
path, you can deploy the EAR profile to file system. Then you can examine
the EAR to make sure that the customization class JAR is available in the
EAR class path (the EAR/lib directory) and not available in the WAR class
path (the WEB-INF/lib and WEB-INF/classes directories).

Adding Customization Classes into a JAR
If your application has customization classes, create a JAR that contains only these
customization classes. When you create your EAR, you can add the JAR to the EAR
assembly. And when you create WAR profiles for your web projects, you must make
sure they don't include the customization classes JAR.

Before you begin:

It may be helpful to have an understanding of the options that are available to
you when you add customization classes. For more information, see Preparing the
Application.

You will need to complete this task:

Make sure that your project has customization classes. You do not need to
perform this procedure if the application does not have customization classes. For
more information about customization classes, see How to Create Customization
Classes.

To add customization classes into a JAR:

1. In the Applications window, right-click the data model project that contains the
customization classes for which you want to create a JAR, and choose New >
From Gallery.

2. In the New Gallery, expand General, select Deployment Profiles and then JAR
File, and click OK.

Alternatively, if you want to create a shared library, select Shared Library JAR
File from the list of profile types, and click OK.

Note:

If you don't see Deployment Profiles in the Categories tree, click the
All Features tab.

3. In the Create Deployment Profile -- JAR File dialog, enter a name for the project
deployment profile (for example, CCArchive) and click OK.

4. In the Edit JAR Deployment Profile Properties dialog, select JAR Options.

5. Enter the location for the JAR file.

Chapter 55
Preparing the Application

55-16

6. Expand Files Groups > Project Output > Filters to list the files that can be
selected to be included in the JAR.

7. In Filters page, in the Files tab, select the customization classes you want to add
to the JAR file.

If you are using a customization.properties file, it needs to be in the same
class loader as the JAR file. You can select the customization.properties file to
package it along with the customization classes in the same JAR.

8. Click OK to exit the Edit JAR Deployment Profile Properties dialog.

9. Click OK again to exit the Project Properties dialog.

10. In the Applications window, right-click the project containing the JAR deployment
profile, and choose Deploy > deployment profile > to JAR file.

Note:

If this is the first time you deploy to a JAR from this deployment profile,
you choose Deploy > deployment profile and select Deploy to JAR in
the wizard.

Delivering Customization Classes as a Shared Library
As an alternative to adding your customization classes to the EAR, as described
in Creating an Application Level EAR Deployment Profile, you can also include the
customization classes in the consuming application as a shared library.

Note:

This procedure describes how to create and use a shared library if you are
deploying to Oracle Weblogic Server.

Before you begin:

It may be helpful to have an understanding of the options that are available to
you when you create and use a shared library for customization classes. For more
information, see Preparing the Application.

You will need to complete this task:

Add customization classes into a JAR using JDeveloper in Studio Developer role.
Follow the procedure described in Adding Customization Classes into a JAR, and
make sure that you select Shared Library JAR File as the type of archive to
create.

To create and use a shared library for your customization classes:

1. In the Applications window, right-click the customization classes project, and
choose Deploy > deployment-profile.

2. In the Deploy wizard, select Deploy to Application Server and click Next.

3. Select the appropriate application server, and click Finish.

Chapter 55
Preparing the Application

55-17

This makes the shared library available on the application server. You must now
add a reference to the shared library from the consuming application.

4. Open the application you want to customize in JDeveloper in the Studio Developer
role.

5. In the Application Resources panel of the Applications window, double-click the
weblogic-application.xml file.

6. In the overview editor, click the Libraries navigation tab.

7. On the Libraries page, in the Shared Library References section, click the Add
icon.

8. In the Library Name field of the newly created row in the Shared Library
References table, enter the name of the customization classes shared library you
deployed, and save your changes.

Viewing and Changing Deployment Profile Properties
After you have created a deployment profile, you can view and change its properties.

Before you begin:

It may be helpful to have an understanding of the options that are available to
you when you view deployment profiles. For more information, see Preparing the
Application.

To view, edit, or delete a project's deployment profile:

1. In the Applications window, right-click the project which you want to view or edit
and choose Project Properties.

2. In the Project Properties dialog, click Deployment.

The Deployment Profiles list displays all profiles currently defined for the project.

3. In the Deployment Profiles section, select a deployment profile.

4. To edit or delete a deployment profile, click Edit or Delete.

How to Create and Edit Deployment Descriptors
Deployment descriptors are server configuration files that define the configuration of
an application for deployment and that are deployed with the Java EE application
as needed. The deployment descriptors that a project requires depend on the
technologies the project uses and on the type of the target application server.
Deployment descriptors are XML files that can be created and edited as source files,
but for most descriptor types, JDeveloper provides dialogs or an overview editor that
you can use to view and set properties. If you cannot edit these files declaratively, the
XML file opens in the source editor for you to edit its contents.

In addition to the standard Java EE deployment descriptors (for example,
application.xml and web.xml), you can also have deployment descriptors that are
specific to your target application server. For example, if you are deploying to Oracle
WebLogic Server, you can also have weblogic.xml, weblogic-application.xml, and
weblogic-ejb-jar.xml.

For WebLogic Server, make sure that the application EAR file includes a weblogic-
application.xml file that contains a reference to adf.oracle.domain, and that it
includes an ADFApplicationStateListener to clean up application resources between

Chapter 55
Preparing the Application

55-18

deployment and undeployment actions. The following example shows a sample
weblogic-application.xml file:

<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-application">
 <listener>
 <listener-class>oracle.adf.share.weblogic.listeners.
 ADFApplicationStateListener</listener-class>
 </listener>
 <listener>
 <listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
 </listener>
 <library-ref>
 <library-name>adf.oracle.domain</library-name>
 </library-ref>
</weblogic-application>

If you are deploying web services, you may need to modify your weblogic-
application.xml and web.xml files as described in How to Deploy Web Services to
Oracle WebLogic Server.

If you want to enable the application for Real User Experience Insight (RUEI)
monitoring, you must add a parameter to the web.xml file, as described in Enabling
the Application for RUEI and Click History.

During deployment, the application's security properties are written to the weblogic-
application.xml file to be deployed with the application in the EAR file. For more
information, see What Happens When You Configure Security Deployment Options.

Because Oracle WebLogic Server runs on the Java EE Platform, you may need to
modify the application.xml and web.xml files to be compatible with the application
server.

Creating Deployment Descriptors
JDeveloper automatically creates many of the required deployment descriptors for
you. If they are not present, or if you need to create additional descriptors, you can use
JDeveloper to create them.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create deployment descriptors. For more information, see Preparing the
Application.

You will need to complete this task:

Check to see whether JDeveloper has already generated deployment descriptors.

To create a deployment descriptor:

1. In the Applications window, right-click the project for which you want to create a
descriptor and choose New > From Gallery.

2. In the New Gallery, expand General, select Deployment Descriptors and then a
descriptor type, and click OK.

If you can't find the item you want, make sure that you chose the correct project,
and then choose the All Features tab or use the Search field to find the
descriptor. If the item is not enabled, check to make sure that the project does

Chapter 55
Preparing the Application

55-19

not already have a descriptor of that type. A project is allowed only one instance of
a descriptor.

JDeveloper starts the Create Deployment Descriptor wizard and then opens
the file in the overview or source editor, depending on the type of deployment
descriptor you choose.

Note:

For EAR files, do not create more than one deployment descriptor file of
the same type per application or workspace. These files can be assigned
to projects, but have application workspace scope. If multiple projects in
an application have the same deployment descriptor, the one belonging to
the launched project will supersede the others. This restriction applies to
application.xml, weblogic-jdbc.xml, jazn-data.xml, and weblogic.xml.

The best place to create an application level descriptor is in the Descriptors
node of the Application Resources panel in the Applications window. This
ensures that the application is created with the correct descriptors.

Application level descriptors created in the project will be ignored at runtime.
Only the application resources descriptors or descriptors generated at the
EAR level will be used by the runtime.

Viewing or Modifying Deployment Descriptor Properties
After you have created a deployment descriptor, you can change its properties by
using JDeveloper dialogs or by editing the file in the source editor. The deployment
descriptor is an XML file (for example, application.xml) typically located under the
Application Sources node.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you view deployment descriptors. For more information, see Preparing the
Application.

To view or change deployment descriptor properties:

1. In the Applications window or in the Application Resources panel, double-click the
deployment descriptor.

2. In the editor window, select either the Overview tab or the Source tab, and
configure the descriptor by setting property values.

If the overview editor is not available, the file opens in the source editor.

Configuring the application.xml File for Application Server Compatibility
You may need to configure your application.xml file to be compliant with your Java
EE version.

Chapter 55
Preparing the Application

55-20

Note:

Typically, your project has an application.xml file that is compatible and
you would not need to perform this procedure.

Before you begin:

It may be helpful to have an understanding of the options that are available to
you when you configure application.xml. For more information, see Preparing the
Application.

To configure the application.xml file:

1. In the Applications window, right-click the application and choose New > From
Gallery.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Java EE Deployment Descriptor Wizard, and click OK.

3. In the Create Java EE Deployment Descriptor dialog, on the Select Descriptor
page, select application.xml and click Next.

4. On the Select Version page, select 5.0 to be compatible with Java EE 5.0 or
higher, and click Next.

5. On the Summary page, click Finish.

6. Edit the application.xml file with the appropriate values.

Configuring the web.xml File for Application Server Compatibility
You may need to configure your web.xml file to be compliant with your Java EE
version. See web.xml.

Note:

Typically, your project has a web.xml file that is compatible and you would
not need to perform this procedure. JDeveloper creates a starter web.xml file
when you create a project.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you configure web.xml. See Preparing the Application.

To configure the web.xml file:

1. In the Applications window, right-click the project in which you want to configure a
web.xml file and choose New > From Gallery.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Java EE Deployment Descriptor, and click OK.

3. In the Create Java EE Deployment Descriptor dialog, on the Select Descriptor
page, select web.xml and click Next.

Chapter 55
Preparing the Application

55-21

4. On the Select Version page, select the version you want to use and click Next.

Version 3.0 is compatible with Java EE 6.0 or higher, and version 2.5 is compatible
with Java EE 5.0.

5. On the Summary page, click Finish.

Enabling the Application for RUEI and Click History
Real User Experience Insight (RUEI) is a web-based utility to report on real-user traffic
requested by, and generated from, your network. It measures the response times of
pages and transactions at the most critical points in the network infrastructure. Session
diagnostics allow you to perform root-cause analysis.

RUEI enables you to view server and network times based on the real-user
experience, to monitor your Key Performance Indicators (KPIs) and Service Level
Agreements (SLAs), and to trigger alert notifications on incidents that violate their
defined targets. You can implement checks on page content, site errors, and the
functional requirements of transactions. Using this information, you can verify your
business and technical operations. You can also set custom alerts on the availability,
throughput, and traffic of all items identified in RUEI.

For information about RUEI, see the Oracle Real User Experience Insight
documentation at http://docs.oracle.com/en/enterprise-manager/?tab=3.

Click History is a feature that is built into ADF that reports user actions on UI
components such as button clicks and mouse scrolling. Click History needs to be
enabled on the WebLogic server as well as within the application using the web.xml
and weblogic.xml files.

For information about Click History and how to enable it in WebLogic server, see Click
History in Administering Oracle ADF Applications.

To enable RUEI and Click History in the web.xml file:

1. In the Applications window, expand WEB-INF and double-click web.xml.

2. In the overview editor, add the context-param tag to the web.xml file, as shown in
the following example.

<context-param>
 <description>This parameter notifies ADF Faces that the
 ExecutionContextProvider service provider is enabled.
 When enabled, this will start monitoring and aggregating
 user activity information for the client initiated
 requests. By default this param is not set or is false.
 </description>
 <param-name>
 oracle.adf.view.faces.context.ENABLE_ADF_EXECUTION_CONTEXT_PROVIDER
 </param-name>
 <param-value>true</param-value>
</context-param>

For Click History, in addition to adding the parameter to the web.xml file, you also need
to define the odl.clickhistory.webapp library in the weblogic.xml file.

To finish enabling Click History using the weblogic.xml file:

1. In the Applications window, expand WEB-INF and double-click weblogic.xml.

Chapter 55
Preparing the Application

55-22

http://docs.oracle.com/en/enterprise-manager/?tab=3

2. In the overview editor, add the library entry to the weblogic.xml file, as shown in
the following example.

<library-ref>
 <library-name>odl.clickhistory.webapp</library-name>
</library-ref>

If there is an EndUserMonitoringService service provider available, you can use it
to log performance metrics and data by registering it in your application. The service
provider should have been implemented by extending the EndUserMonitoringService
class. For more information about this class, see the Javadoc.

Note that the context-parameter
oracle.adf.view.faces.context.ENABLE_ADF_EXECUTION_CONTEXT_PROVIDER needs
to be set when an EndUserMonitoringServive provider is used within an ADF
application.

To enable End User Monitoring in an application:

1. Verify that an EndUserMonitoringService service provider has been implemented.

2. Navigate to the application's <application_home>/src/META-INF/services folder
using your operating system tools.

If the services folder does not exist, create one.

3. In the <application_home>/src/META-INF/services folder, create a file named
oracle.adf.view.rich.monitoring.EndUserMonitoringService

where EndUserMonitoringService is the name of the service interface.

4. Open the file in an editor and add this entry:
<package>.MyEndUserMonitoringService

where package is the Java package name where the service provider resides
and MyEndUserMonitoringService is the name of the EndUserMonitoringService
service provider.

How to Deploy Applications with ADF Security Enabled
If you are developing an application in JDeveloper using Integrated WebLogic Server,
application security deployment properties are configured by default, which means
that the application and security credentials and policies will be overwritten each time
you redeploy for development purposes. However, the application security deployment
properties are the same for Integrated WebLogic Server and the standalone WebLogic
Server.

You can change the default behavior in the Application Properties dialog, as described
in How to Configure, Deploy, and Run a Secure Application in JDeveloper.

Applications That Will Run Using Oracle Single Sign-On (SSO)
Before you can deploy and run the web application with ADF Security enabled on the
application server, the administrator of the target server must configure the domain-
level jps-config.xml file for the Oracle Access Manager (OAM) security provider. To
complete this configuration task, you can use Oracle WebLogic Scripting Tool (WLST)
provided with the JDeveloper install. For details about running WLST (with command
addOAMSSOProvider(loginuri, logouturi, autologinuri)), see Integrating Access
Manager With Web Applications Using Oracle ADF Security and the OPSS SSO

Chapter 55
Preparing the Application

55-23

Framework and Integrating Oracle ADF Applications with Access Manager SSO of the
Administrator’s Guide for Oracle Access Management.

Running the addOAMSSOProvider() command ensures that the ADF Security
framework defers to the OAM service provider to clear the ObSSOCookie token. OAM
uses this token to save the identity of authenticated users and, unless it is cleared
during logout, the user will be unable to log out.

After the system administrator runs the command on the target server, the domain
jps-config.xml file will contain the following security provider definition that is specific
for ADF Security:

<propertySet name="props.auth.uri">
 <property name="login.url.FORM" value="/${app.context}/adfAuthentication"/>
 <property name="logout.url" value=""/>
</propertySet>

Additionally, the authentication type required by SSO is CLIENT-CERT. The web.xml
authentication configuration for the deployed application must specify the <auth-
method> element as one of the following CLIENT-CERT types.

WebLogic supports two types of authentication methods:

• For FORM-type authentication method, specify the elements like this:

<login-config>
 <auth-method>CLIENT-CERT,FORM</auth-method>
 <realm-name>myrealm</realm-name>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/error.html</form-error-page>
 </form-login-config>
</login-config>

• For BASIC-type authentication method, specify the elements like this:

<login-config>
 <auth-method>CLIENT-CERT,BASIC</auth-method>
 <realm-name>myrealm</realm-name>
</login-config>

You can configure the web.xml file either before or after deploying the web application.
For further details about setting up the authentication method for Single Sign-On, see
Managing Access Manager SSO, Policies, and Testing of the Administrator’s Guide for
Oracle Access Management.

Configuring Security for Weblogic Server
In a development environment, JDeveloper will automatically migrate application level
credentials, identities, and policies to the standalone WebLogic Server instance only
if the server is set up to be in development mode. Integrated WebLogic Server is
set up in development mode by default. You can set up a standalone WebLogic
Server to be in development mode during Oracle WebLogic Server domain creation
using the Oracle Fusion Middleware Configuration Wizard. For more information about
configuring Oracle WebLogic Server domains, see Introduction to WebLogic Domains
in Creating WebLogic Domains Using the Configuration Wizard.

JDeveloper will not migrate application level security credentials to WebLogic Server
set up in production mode. Typically, in a production environment, administrators

Chapter 55
Preparing the Application

55-24

will use Enterprise Manager or WLST to deploy an application, including its security
requirements.

When you deploy an application to WebLogic Server, credentials (in the cwallet.sso
file) and security policies (in the jazn-data.xml file) will either overwrite or merge
with the WebLogic Server's domain-level credential store, depending on whether an
option in weblogic-application.xml is set to OVERWRITE or MERGE. In production-mode
WebLogic Server, to avoid security risks, only MERGE is allowed. For development-
mode WebLogic Server, you can set to OVERWRITE to test user names and passwords.
You can also set the option by running setDomainEnv.cmd or setDomainEnv.sh
with the following option added to the command (usually located in ORACLE_HOME/
user_projects/domains/MyDomain/bin).

For setDomainEnv.cmd:

set EXTRA_JAVA_PROPERTIES=-Djps.app.credential.overwrite.allowed=true
 %EXTRA_JAVA_PROPERTIES%

For setDomainEnv.sh:

EXTRA_JAVA_PROPERTIES="-Djps.app.credential.overwrite.allowed=true
 ${EXTRA_JAVA_PROPERTIES}"
export EXTRA_JAVA_PROPERTIES

If the Administration Server is already running, you must restart it for this setting to
take effect.

You can check to see whether WebLogic Server is in production mode by using the
Oracle WebLogic Server Administration Console or by verifying the following line in
WebLogic Server's config.xml file:

<production-mode-enabled>true</production-mode-enabled>

By default, JDeveloper sets the application's credential, identities, and policies
to OVERWRITE mode. That is, the Application Policies, Credentials, and Users
and Groups options are selected by default in the Application Properties dialog
Deployment page. However, an application's credentials will be migrated only
if the target WebLogic Server instance is set to development mode with -
Djps.app.credential.overwrite.allowed=true

Policy migration only works in development-mode. Identity migration only works when
using JDeveloper to directly deploy to WebLogic Server regardless of whether it is in
development or production-mode.

When your application is ready for deployment to a production environment, you
should remove the identities from the jazn-data.xml file or disable the migration of
identities by deselecting Users and Groups from the Application Properties dialog.
Application credentials must be manually migrated outside of JDeveloper.

Chapter 55
Preparing the Application

55-25

Note:

Before you migrate the jazn-data.xml file to a production environment,
check that the policy store does not contain duplicate permissions for a
grant. If a duplicate permission (one that has the same name and class)
appears in the file, the administrator migrating the policy store will receive
an error and the migration of the policies will be halted. You should manually
edit the jazn-data.xml file to remove any duplicate permissions from a grant
definition.

For more information about migrating application credentials and other jazn-data
user credentials, see the Configuring the OPSS Security Store chapter in Securing
Applications with Oracle Platform Security Services.

Applications with JDBC URL for WebLogic
If your application has components that use JDBC URL connections, the connection
user names and passwords are also stored in the application level credential and
policy stores. For the deployed application to be able to connect to the database
using the JDBC URL, these credentials and policies must be migrated. That is, if
WebLogic Server is in production mode, system administrators must migrate this
security information. If WebLogic Server is in development mode, it must have domain-
level credential and policy stores set to OVERWRITE to allow the migration of security
information.

Applications with JDBC Data Source for WebLogic

If your application uses application level JDBC data sources with password indirection
for database connections, you may need to create credential maps in WebLogic
Server to enable the database connection. See Creating a JDBC Data Source for
Oracle WebLogic Server in Administering Oracle ADF Applications.

How to Replicate Memory Scopes in a Clustered Environment
If you are deploying an application that is intended to run in a clustered environment,
you need to ensure that all managed beans with a lifespan longer than one request
are serializable, and that Oracle ADF is aware of changes to managed beans stored in
ADF scopes (view scope and page flow scope).

For more information, see How to Set Managed Bean Memory Scopes in a Server-
Cluster Environment.

How to Enable the Application for ADF MBeans
A Fusion web application uses many XML files for setting configuration information.
Three of these configuration files have ADF MBean counterparts that are deployed
with the application. After the application has been deployed, you can change
configuration properties by accessing the ADF MBeans using the Enterprise Manager
Fusion Middleware Control MBean browser.

Chapter 55
Preparing the Application

55-26

To enable ADF MBeans, register them in the web.xml file. The following example
shows a web.xml file with listener entries for connections, configuration, and business
components.

<listener>
 <listener-class>
 oracle.adf.mbean.share.connection.ADFConnectionLifeCycleCallBack
 </listener-class>
</listener>
<listener>
 <listener-class>
 oracle.adf.mbean.share.config.ADFConfigLifeCycleCallBack</listener-class>
</listener>
<listener>
 <listener-class>
 oracle.bc4j.mbean.BC4JConfigLifeCycleCallBack</listener-class>
</listener>

Additionally, you must configure a writable MDS repository to enable post-deployment
configuration of connections.xml using ADF Connections MBeans and bc4j.xcfg
using ADF Business Components MBeans.

MDS configuration entries in the adf-config.xml file for a database-based MDS
are shown in the example below. For more information about configuring MDS, see
Changing MDS Configuration Attributes for Deployed Applications in Administering
Oracle Fusion Middleware.

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <persistence-config>
 <metadata-store-usages>
 <metadata-store-usage
 default-cust-store="true" deploy-target="true" id="myStore">
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
</adf-mds-config>

In a production environment, an MDS repository that uses a database is required.
You can use JDeveloper, Enterprise Manager Fusion Middleware Control or scripts to
switch from a file-based repository to a database MDS repository.

Additionally, if several applications are sharing the same MDS configuration,
each application can achieve distinct customization layers by defining a adf:adf-
properties-child property in the adf-config.xml file. JDeveloper automatically
generates this entry when creating applications. If your adf-config.xml file does not
have this entry, add it to the file with code similar to this one:

<adf:adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="adfAppUID" value="Application3-4434"/>
 <adf-property name="partition_customizations_by_application_id"
 value="true"/>
</adf:adf-properties-child>

The value attribute is either generated by JDeveloper or you can set it to any unique
identifier within the server farm where the application is deployed. This value can be
set to the value attribute of the adfAppUID property.

Chapter 55
Preparing the Application

55-27

When adf-property name is set to adfAppUid, then the corresponding value property
should be set to the name of the application. By default, JDeveloper generates the
value property using the application's package name. If the package name is not
specified, JDeveloper generates the value property by using the workspace name and
a four digit random number.

For more information about configuring ADF applications using ADF MBeans, see
Modifying ADF Application Configurations Using MBeans in Administering Oracle ADF
Applications.

What You May Need to Know About JDBC Data Source for Oracle
WebLogic Server

ADF applications can use either a JDBC data source or a JDBC URL for database
connections. You use the Oracle WebLogic Server Administration Console to configure
a JDBC data source. For more information about database access, see Configuring
Your Application Module Database Connection.

Note:

Fusion web applications are not compatible with data sources defined with
the JDBC XA driver. When creating a data source on Oracle WebLogic
Server, be sure to change the Fusion web application data source's JDBC
driver from “Oracle's Driver (Thin XA)" to “Oracle's Driver (Thin)". Because
XA data sources close all cursors upon commit, random JBO-27122 and
closed statement errors may result when running the Fusion web application
with an XA data source.

The application module in the data model project of a Fusion web application can
be configured to use a JDBC URL connection type, a JDBC data source connection
type, or a combination of both types. By default, Fusion web application modules
use a JDBC URL connection. A component that uses a JDBC URL will attempt to
connect directly to the database using the JDBC URL, and it will ignore any JDBC
data sources (global or application level) that are available in WebLogic Server. For
more information about migrating JDBC URL security information (user names and
passwords) from the application to WebLogic Server, see How to Deploy Applications
with ADF Security Enabled.

A Fusion web application can use a JDBC data source to connect to the database. A
JDBC data source has three types: global, application level, and application level with
password indirection. You generally set up a global JDBC data source in WebLogic
Server. Any application that requires access to that database can use that JDBC data
source. An application can also include application level JDBC data sources. When
the application is packaged for deployment, if the Auto Generate and Synchronize
weblogic-jdbc.xml Descriptor During Deployment option is selected, JDeveloper
creates a connection_name-jdbc.xml file for each connection that was defined. Each
connection's information is written to the corresponding connection_name-jdbc.xml
file (entries are also changed in weblogic-application.xml and web.xml). When the
application is deployed to WebLogic Server, the server looks for application level data
source information before it looks for the global data source.

Chapter 55
Preparing the Application

55-28

If the application is deployed with password indirection set to true, WebLogic Server
will look for the connection_name-jdbc.xml file for user name information and it will
then attempt to locate application level credential maps for these user names to
obtain the password. If you are using JDeveloper to directly deploy the application to
WebLogic Server, JDeveloper automatically creates the credential map and populates
the map to the server using an MBean call.

However, if you are deploying to an EAR file, JDeveloper will not be able to make the
MBean call to WebLogic Server. You must set up the credential maps using the Oracle
WebLogic Administration Console. Even if you have a global JDBC data source set up,
if you do not also have credential mapping set up, WebLogic Server will not be able to
map the credentials with passwords and the connection will fail.

Once the data source has been created in Oracle WebLogic Server, it can be
used by an application module. See Preparing the Standalone Application Server for
Deployment in Administering Oracle ADF Applications.

Deploying the Application
Once the target environment is set up and the ADF application is prepared for
deployment, the final step is to deploy the application to the target environment.

You can use JDeveloper to deploy ADF applications directly to the standalone
application server or you can create an archive file and use other tools to deploy
to the application server.

Note:

Before you begin to deploy applications that use Oracle ADF to the
standalone application server, you need to prepare the application server
environment by performing tasks such as installing the ADF runtime and
creating and extending domains or cells. See Preparing the Standalone
Application Server for Deployment.

Figure 55-5 show the process flow for deploying an application and also for deploying
customizations to the target standalone application server.

Chapter 55
Deploying the Application

55-29

Figure 55-5 Application Deployment Flow Diagram

Table 55-1 describes some common deployment techniques that you can use during
the application development and deployment cycle. The deployment techniques
are listed in order from deploying on development environments to deploying on
production environments. It is likely that in the production environment, the system
administrators deploy applications by using Enterprise Manager Fusion Middleware
Control or scripts.

Chapter 55
Deploying the Application

55-30

Table 55-1 Deployment Techniques for Development or Production Environments

Deployment Technique Environment When to Use

Run directly from JDeveloper Test or
Development

When you are developing your application. You want
deployment to be quick because you will be repeating
the editing and deploying process many times.

JDeveloper contains Integrated WebLogic Server, on
which you can run and test your application.

Use JDeveloper to directly deploy to the
target application server

Test or
Development

When you are ready to deploy and test your application
on an application server in a test environment.

On the test server, you can test features (such as LDAP
and Oracle Single Sign-On) that are not available on the
development server.

You can also use the test environment to develop your
deployment scripts, for example, using Ant.

Use JDeveloper to deploy to an EAR file,
then use the target application server's
tools for deployment

Test or
Development

When you are ready to deploy and test your application
on an application server in a test environment. As an
alternative to deploying directly from JDeveloper, you
can deploy to an EAR file and then use other tools to
deploy to the application server.

On the test server, you can test features (such as LDAP
and Oracle Single Sign-On) that are not available on the
development server.

You can also use the test environment to develop your
deployment scripts, for example, using Ant.

Use Enterprise Manager or WLST to
deploy applications

Production When your application is in a test and production
environment. In production environments, system
administrators usually use Enterprise Manager Fusion
Middleware Control or run WLST to deploy applications.

Any necessary MDS repositories must be registered with the application server. If the
MDS repository is a database, the repository maps to a data source with MDS-specific
requirements.

If you are deploying the application to Oracle WebLogic Server, make sure to target
this data source to the WebLogic Administration Server and to all Managed Servers to
which you are deploying the application. For information about registering MDS, see
Registering and Deregistering a Database-Based MDS Repository in Administering
Oracle Fusion Middleware.

If you are using the application server's administrative console or scripts to deploy
an application packaged as an EAR file that requires MDS repository configuration in
adf-config.xml, you must run the getMDSArchiveConfig command to configure MDS
before deploying the EAR file. MDS configuration is required if the EAR file contains a
MAR file or if the application is enabled for DT@RT (Design Time At RunTime).

For information about WLST commands, see the WLST Command Reference for
Infrastructure Components.

If you plan to configure ADF connection information, ADF Business Components
information, or adf-config.xml using ADF MBeans after the application has been
deployed, make sure that the application is configured with MDS and have the MBean
listeners enabled in the web.xml file. See How to Enable the Application for ADF
MBeans.

Chapter 55
Deploying the Application

55-31

Note:

If your Fusion web application has business services that you want to deploy
to WebLogic Server, see How to Deploy Web Services to Oracle WebLogic
Server.

How to Deploy to the Application Server from JDeveloper
Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you deploy an application. See Deploying the Application.

You will need to complete this task:

Create an application level deployment profile that deploys to an EAR file as
described in Creating an Application Level EAR Deployment Profile.

Note:

When you are deploying to Oracle WebLogic Server from JDeveloper,
ensure that the HTTP Tunneling property is enabled in the Oracle WebLogic
Server Administration Console. This property is located under Servers
> ServerName > Protocols. ServerName refers to the name of Oracle
WebLogic Server.

Note:

JDeveloper does not support deploying applications to individual Managed
Servers that are members of a cluster. You may be able to target one or
more Managed Servers within a cluster using the Oracle WebLogic Server
Administration Console or other Oracle WebLogic tools; however, the cluster
can be negatively affected. For more information about deploying to Oracle
WebLogic Server clusters, see Deploying an Application to Managed Servers
in Administering Oracle Fusion Middleware.

To deploy to the target application server from JDeveloper:

1. In the Applications window, right-click the application and choose Deploy >
deployment profile.

2. In the Deploy wizard, on the Deployment Action page, select Deploy to
Application Server and click Next.

3. On the Select Server page, select the application server connection, and click
Next.

4. If you are deploying to a WebLogic Server instance, the WebLogic Options page
appears. Select a deployment option and click Next.

Chapter 55
Deploying the Application

55-32

Note:

If you are deploying an ADF application, do not use the Deploy to all
instances in the domain option.

5. Click Finish.

During deployment, you can see the process steps displayed in the deployment
Log window. You can inspect the contents of the modules (archives or exploded
EAR) being created by clicking on the links that are provided in the log window.
The archive or exploded EAR file will open in the appropriate editor or directory
window for inspection.

If the adf-config.xml file in the EAR file requires MDS repository configuration,
the Deployment Configuration dialog appears for you to choose the target
metadata repository or shared metadata repositories, as shown in Figure 55-6.
The Repository Name dropdown list allows you to choose a target metadata
repository from a list of metadata repositories registered with the Administration
Server. The Partition Name dropdown list allows you to choose the metadata
repository partition to which the application's metadata will be imported during
deployment. You can use Oracle WebLogic Scripting Tool (WLST) and Oracle
WebLogic Server Administration Tool to configure and register MDS. For more
information about managing the MDS Repository, see Managing the MDS
Repository in Administering Oracle Fusion Middleware.

Figure 55-6 MDS Configuration and Customization for Deployment

Chapter 55
Deploying the Application

55-33

Note:

If you are deploying a Java EE application, click the application menu
next to the Java EE application in the Applications window.

For more information on creating application server connections, see How to
Create a Connection to the Target Application Server.

How to Create an EAR File for Deployment
You can also use the deployment profile to create an archive file (EAR file). You can
then deploy the archive file using Enterprise Manager, Oracle WebLogic Scripting Tool
(WLST), or Oracle WebLogic Server Administration Console.

Although a Fusion web application is encapsulated in an EAR file (which usually
includes WAR, MAR, and JAR components), it may have parts that are not deployed
with the EAR. For instance, ADF Business Services can be deployed as a JAR. For
more information about business services, see How to Deploy Web Services to Oracle
WebLogic Server.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create an EAR file for deployment. For more information, see Deploying the
Application.

You will need to complete this task:

Create an application level deployment profile that deploys to an EAR file as
described in Creating an Application Level EAR Deployment Profile.

To create an EAR archive file:

1. In the Applications window, right-click the application containing the deployment
profile, and choose Deploy > deployment profile.

2. In the Deploy wizard, on the Deployment Action page, select Deploy to EAR and
click Finish.

If an EAR file is deployed at the application level, and it has dependencies on a
JAR file in the data model project and dependencies on a WAR file in the user
interface project, then the files will be located in the following directories by default:

• ApplicationDirectory/deploy/EARdeploymentprofile.EAR

• ApplicationDirectory/ModelProject/deploy/JARdeploymentprofile.JAR

• ApplicationDirectory/ViewControllerProject/deploy/
WARdeploymentprofile.WAR

Tip:

Choose View >Log to see messages generated during creation of the
archive file.

Chapter 55
Deploying the Application

55-34

How to Deploy New Customizations Applied to ADF Library
If you have created new customizations for an ADF Library, you can use the MAR
profile to deploy these customizations to any deployed application that consumes
that ADF Library. For instance, suppose applicationA, which consumes ADFLibraryB,
is deployed to a standalone application server. Later on, when new customizations
are added to ADFLibraryB, you only need to deploy the updated customizations into
applicationA. You do not need to repackage and redeploy the whole application nor
do you need to manually patch the MDS repository.

Note:

This procedure is for applying ADF Library customizations changes to an
application that has already been deployed to a standalone application
server. It is not for the initial packaging of customizations into a MAR that
will eventually be a part of an EAR. For information about initial packaging of
the customization using a MAR, see Creating a MAR Deployment Profile.

To deploy ADF Library customizations, create a new MAR profile and only include the
customizations to be deployed and then use JDeveloper to:

• Deploy the customizations directly into the MDS repository in the standalone
application server.

• Deploy the customizations to a JAR. And then import the JAR into the MDS
repository using tools such as the Fusion Middleware Control.

Exporting Customization to a Deployed Application
You can export the customizations directly from JDeveloper into the MDS repository
for the deployed application on the standalone application server.

Before you begin:

It may be helpful to have an understanding of the options that are available to
you when you export customizations directly into the application server. For more
information, see Deploying the Application.

You will need to complete this task:

Create new customizations to the ADF Library. For more information on
customizations, see How to Customize ADF Library Artifacts in JDeveloper.

To export the customizations directly into the application server:

1. In the Applications window, right-click the application and choose Deploy >
metadata.

2. In the Deploy metadata dialog, on the Deployment Action page, select Export to a
Deployed Application and click Next.

If the MAR profile is included in the EAR profile of any application, Export to a
Deployed Application will be dimmed and disabled.

Chapter 55
Deploying the Application

55-35

3. On the Application Server page, select the application server connection and click
Next.

4. For WebLogic Server, the Server Instance page appears. In this page, select the
server instance where the deployed application is located and click Next.

5. On the Deployed Application page, select the application you want to apply the
customizations to and click Next.

6. On the Sandbox Instance page, if you want to deploy to a sandbox, select Deploy
to an associated sandbox, choose the sandbox instance, and click Next.

7. On the Summary page, verify the information and click Finish.

Deploying Customizations to a JAR
When you deploy the ADF Library customizations to a JAR, you are packaging the
contents as defined by the MAR profile.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you deploy customizations as a JAR. For more information, see Deploying the
Application.

You will need to complete this task:

Create new customizations to the ADF Library. For more information on
customizations, see How to Customize ADF Library Artifacts in JDeveloper.

To deploy the customizations as a JAR:

1. In the Applications window, right-click the application and choose Deploy >
metadata.

2. In the Deploy Metadata dialog, on the Deployment Action page, select Deploy to
MAR.

3. On the Summary page, click Finish.

4. Use Enterprise Manager Fusion Middleware Control or the application server's
administration tool to import the JAR into the MDS repository.

For information about Fusion Middleware Control, see Getting Started Using Oracle
Enterprise Manager Fusion Middleware Control in Administering Oracle Fusion
Middleware

What You May Need to Know About ADF Libraries
An ADF Library is a JAR file that contains JAR services registered for ADF
components such as ADF task flows, pages, or application modules. If you want the
ADF components in a project to be reusable, you create an ADF Library deployment
profile for the project and then create an ADF Library JAR based on that profile.

An application or project can consume the ADF Library JAR when you add it using the
Resources window or manually by adding it to the library classpath. When the ADF
Library JAR is added to a project, it will be included in the project's WAR file if the
Deployed by Default option is selected.

For more information, see Reusing Application Components.

Chapter 55
Deploying the Application

55-36

What You May Need to Know About EAR Files and Packaging
When you package a Fusion web application into an EAR file, it can contain the
following:

• WAR files: Each web-based view controller project should be packaged into a
WAR file.

• MAR file: If the application has customizations that are deployed with the
application, it should be packaged into a MAR.

• ADF Library JAR files: If the application consumes ADF Library JARs, these JAR
files may be packaged within the EAR.

• Other JAR files: The application may have other dependent JAR files that are
required. They can be packaged within the EAR.

How to Deploy the Application Using Scripts and Ant
You can deploy the application using commands and automate the process by
putting those commands in scripts. The ojdeploy command can be used to deploy
an application without JDeveloper. You can also use Ant scripts to deploy the
application. JDeveloper has a feature to help you build Ant scripts. Depending on
your requirements, you may be able to integrate regular scripts with Ant scripts.

For more information about commands, scripts, and Ant, see Deploying Using Scripts
and Ants in Administering Oracle ADF Applications.

How to Deploy ADF Faces Library JARs with the Application
You can develop applications that only use ADF Faces without using ADF Model. In
that case, you can deploy the ADF Faces JARs with the application into the application
server.

Before you begin:

Create an application with a web-based project. If you used the Fusion Web
Application (ADF) template, you should already have a default WAR deployment
profile.

To deploy ADF Faces JARs as part of the application:

1. In the Applications window, right-click the web project that you want to deploy and
choose Project Properties.

2. In the Project Properties dialog, select Deployment and then the deployment
profile and click Edit.

If your project does not have a WAR deployment profile, follow Steps 1 to 3 in
Creating a WAR Deployment Profile, to create a new WAR deployment profile.

3. Navigate to File Groups > WEB-INF/lib > Contributors and select ADF Faces
Runtime 11.

4. Click OK to exit the Deployment Profile Properties dialog.

5. Click OK again to exit the Project Properties dialog.

Chapter 55
Deploying the Application

55-37

6. Deploy your application as described in this chapter either directly using
JDeveloper or by creating a EAR and deploying it using the Enterprise Manager
Fusion Middleware Control, the Oracle WebLogic Server Administration Console,
or other methods.

Make sure your application-level EAR contains the WAR file as described in
Creating an Application Level EAR Deployment Profile.

What You May Need to Know About JDeveloper Runtime Libraries
When an application is deployed, it includes some of its required libraries with the
application. The application may also require shared libraries that have already been
loaded to WebLogic Server as JDeveloper runtime libraries. It may be useful to know
which JDeveloper libraries are packaged within which WebLogic Server shared library.
For a listing of the contents of the JDeveloper runtime libraries, see ADF Runtime
Libraries in Administering Oracle ADF Applications.

Postdeployment Configuration
After deployment, you can perform configuration tasks such migrate a Fusion web
application from one WebLogic Server to another and enable an application for ADF
MBeans.

After you have deployed your application to WebLogic Server, you can perform
configuration tasks.

How to Migrate an Application
If you want to migrate a Fusion web application from one WebLogic Server to another
WebLogic Server, you may need to perform some of the same steps you did for a first
time deployment.

In general, to migrate an application, you would:

• Load the ADF runtime (if it is not already installed) to the target application server.
See Preparing the Standalone Application Server for Deployment in Administering
Oracle ADF Applications.

• Configure the target application server with the correct database or URL
connection information.

• Migrate security information from the source to the target. For instructions, see
How to Deploy Applications with ADF Security Enabled.

• Deploy the application using Enterprise Manager, administration console, or
scripts. See Deploying Using Oracle Enterprise Manager Fusion Middleware
Control in Administering Oracle ADF Applications.

How to Configure the Application Using ADF MBeans
If ADF MBeans were enabled and packaged with the deployed application, you
can configure ADF properties using the Enterprise Manager MBean Browser. For
instructions on how to enable an application for MBeans, see How to Enable the
Application for ADF MBeans.

Chapter 55
Postdeployment Configuration

55-38

For information on how to configure ADF applications using ADF MBeans, see
Configuring Application Properties Using the MBean Browser in Administering Oracle
ADF Applications.

Testing the Application and Verifying Deployment
In order to ensure the deployment of the ADF application has been successful, you
should test-run the application.

After you deploy the application, you can test it from the application server. To test-run
your ADF application, open a browser window and enter a URL:

• For non-Faces pages: http://<host>:port/<context root>/<page>

• For Faces pages: http://<host>:port/<context root>/faces/<view_id>

where <view_id> is the view ID of the ADF task flow view activity.

Tip:

The context root for an application is specified in the user interface project
settings by default as ApplicationName/ProjectName/context-root. You can
shorten this name by specifying a name that is unique across the target
application server. Right-click the user interface project, and choose Project
Properties. In the Project Properties dialog, select Java EE Application and
enter a unique name for the context root.

Note:

/faces has to be in the URL for Faces pages. This is because JDeveloper
configures your web.xml file to use the URL pattern of /faces in order to be
associated with the Faces Servlet. The Faces Servlet does its per-request
processing, strips out /faces part in the URL, then forwards the URL to the
JSP. If you do not include the /faces in the URL, then the Faces Servlet is
not engaged (since the URL pattern doesn't match). Your JSP is run without
the necessary JSF per-request processing.

Chapter 55
Testing the Application and Verifying Deployment

55-39

56
Using State Management in a Fusion Web
Application

This chapter describes the Fusion web application state management facilities for ADF
application modules to support stateful applications on the web.
This chapter includes the following sections:

• About Fusion Web Application State Management

• Managing When Passivation and Activation Occurs

• Testing to Ensure Your Application Module is Activation-Safe

• Controlling Where Model State Is Saved

• Cleaning Up the Model State

• Managing the HttpSession in Fusion Web Applications

• Managing Custom User-Specific Information During Passivation

• Managing the State of View Objects During Passivation

About Fusion Web Application State Management
State management in the ADF application is the process by which you maintain state
and page information over multiple requests for the same or different pages.

Most real-world business applications need to support multi-step user tasks.
Transactional web sites tend to use a step-by-step style user interface to guide the
end user through a logical sequence of pages to complete these tasks. When the
task is done, the user can save or cancel everything as a unit. However, the HTTP
protocol is built on the concept of individual, stateless requests, so the responsibility
of grouping a sequence of user actions into a logical, stateful unit of work falls to the
application developer.

The limitations of the HTTP protocol have led developers to invent solutions involving
a "shadow" set of database tables with no constraints and with all of the column types
defined as character-based. Using such a solution becomes very complex very quickly.
Ultimately, some kind of generic application state management facility is needed to
address these issues in a more generic and workable way. The solution comes in the
form of ADF Business Components, which implements this for you out of the box.

State management enables you to easily create web applications that support multi-
step use cases without falling prey to the memory, reliability, or implementation
complexity problems. Oracle ADF simplifies the process of implementing and
maintaining session state through the use of application module pools, which are
configurable resource managers that release application module caches safely. By
default, the ADF Business Components project enables one application module pool
for each application module definition in your application.

In Fusion web applications, state management is provided at these levels:

56-1

• Save For Later feature in the ADF Controller layer implemented in task flows, as
described in Using Save Points in Task Flows.

Save For Later is activated at the ADF Controller layer and automatically saves a
"snapshot" of the current UI and controller states, and delegates to the ADF Model
layer to save its state as well. Save for Later saves an incomplete transaction
without enforcing validation rules or submitting the data. You can use it to save
data and state information about a region, view port, or portlet. Later, you can
restore application state and data associated with a save point that supports both
explicit saves (initiated by the user) or implicit saves (without user action). The end
user can resume working on the same transaction with the same data that was
originally saved when the application was exited.

• Application state management facility in the ADF Model layer implemented in
application modules.

Through the application state management facility, the ADF runtime automatically
manages the application state of each user session and supports highly scalable
applications. An application module supports passivating (storing) its pending
transaction state to an XML document, which is stored either in-memory or in the
database in a single, generic table, keyed by a unique passivation snapshot ID. It
also supports the reverse operation of activating pending transaction state from
one of these saved XML snapshots. This passivation and activation is performed
automatically by the application module pool when needed, and is controlled by
configuration properties that you can specify. Understanding what happens behind
the scenes is essential to make the most efficient use of this important feature, as
explained in Managing When Passivation and Activation Occurs.

• Application state management support for a server farm, or clustered server
environment with failover.

If you deploy in a multiple application server environment with failover enabled,
then subsequent end-user requests may be handled by any server in your server
farm or cluster. To support this scenario, the application state management facility
passivates the application module at the end of every request. In the event failover
occurs, where the user session is redirected to another server node, the session
cookie can reactivate the pending application state from the database-backed
XML snapshot, regardless of which server handles the request. Thus application
module passivation and activation provides built-in support for cluster failover
without additional configuration. For more information about ADF support for
failover, see Configuring High Availability for Fusion Web Applications.

The ADF Business Components application module lets you implement completely
stateless applications or support a unit of work that spans multiple browser pages.
Figure 56-1 illustrates the basic architecture of the state management facility to
support these multi-step scenarios.

Chapter 56
About Fusion Web Application State Management

56-2

Figure 56-1 ADF Provides Generic, Database-Backed State Management

The ADF binding context is the one object that lives in the HttpSession for each
end user. It holds references to lightweight application module data control objects
that manage acquiring an application module instance from the pool during the request
(when the data control is accessed) and releasing it to the pool at the end of each
request. The data control holds a reference to the application module handle that
identifies the user session. In particular, serialized session objects of the application
module state created or modified in the pending transaction are not saved in the
HttpSession using this approach. This minimizes both the session memory required
per user and eliminates the network traffic related to session replication if the servers
are configured in a cluster.

What You May Need to Know About Multi-Step Tasks
In a typical search-then-edit scenario, the end user searches to find an appropriate
row to update, then may open several different pages of related master-detail
information to make edits before deciding to save or cancel work. Consider another
scenario where the end user wants to book a vacation online. The process may
involve the end user's entering details about:

• One or more flight segments that comprise the journey

• One or more passengers taking the trip

• Seat selections and meal preferences

• One or more hotel rooms in different cities

• Car they will rent

Along the way, the user might decide to complete the transaction, save the reservation
for finishing later, or abandon the transaction before saving.

Chapter 56
About Fusion Web Application State Management

56-3

It's clear these scenarios involve a logical unit of work that spans multiple web pages.
You've seen in previous chapters how to use JDeveloper's JSF page navigation
diagram to design the page flow for these use cases, but that is only part of the puzzle.
The pending changes the end user makes to business domain objects along the way
— Trip, Flight, Passenger, Seat, HotelRoom, Auto, etc. — represent the in-progress
state of the application for each end user. Along with this, other types of "bookkeeping"
information about selections made in previous steps comprise the complete picture of
the application state.

What You May Need to Know About the Stateless HTTP Protocol
While it may be easy to imagine the multi-step application scenarios, implementing
them in web applications is complicated by the stateless nature of HTTP, the hypertext
transfer protocol. Figure 56-2 illustrates how an end user's visit to a site comprises
a series of HTTP request/response pairs. However, HTTP affords a web server no
way to distinguish one user's request from another user's, or to differentiate between
a single user's first request and any subsequent requests that user makes while
interacting with the site. The server gets each request from any user always as if it
were the first (and only) one they make.

Figure 56-2 Web Applications Use the Stateless HTTP Protocol

What You May Need to Know About Session Cookies
As shown in Figure 56-3, the technique used to recognize an ongoing sequence of
requests from the same end user over the stateless HTTP protocol involves a unique
identifier called a cookie. A cookie is a name/value pair that is sent in the header
information of each HTTP request the user makes to a site. On the initial request
made by a user, the cookie is not part of the request. The server uses the absence
of the cookie to detect the start of a user's session of interactions with the site, and it
returns a unique identifier to the browser that represents this session for this user. In
practice, the cookie value is a long string of letters and numbers, but for the simplicity
of the illustration, assume that the unique identifier is a letter like "A" or "Z" that
corresponds to different users using the site.

Web browsers support a standard way of recognizing the cookie returned by the
server that allows the browser to identify the following:

• the site that sent the cookie

• how long it should remember the cookie value

Chapter 56
About Fusion Web Application State Management

56-4

On each subsequent request made by that user, until the cookie expires, the browser
sends the cookie along in the header of the request. The server uses the value of the
cookie to distinguish between requests made by different users.

Cookies can be set to live beyond a single browser session so that they might expire
in a week, a month, or a year from when they were first created, while a session
cookie expires when the user closes the browser.

Figure 56-3 Tracking State Using a Session Cookies and Server-Side Session

Java EE-compliant web servers provide a standard server-side facility called the
HttpSession that allows a web application to store Java objects related to a particular
user's session as named attribute/value pairs. An object placed in this session Map on
one request can be retrieved by the application while handling a subsequent request
during the same session.

The session remains active while the user continues to send new requests within the
timeframe specified by the <session-timeout> element in the web.xml file. The default
session length is typically around 30 minutes, depending on the container.

What You May Need to Know About Using HttpSession
The HttpSession facility is an ingredient in most application state management
strategies, but it can present performance and reliability problems if not used
judiciously. First, because the session-scope Java objects the application creates are
held in the memory of the Java EE web server, the objects in the HTTP session are
lost if the server should fail.

As shown in Figure 56-4, one way to improve the reliability is to configure multiple
Java EE servers in a cluster. By doing this, the Java EE application server replicates
the objects in the HTTP session for each user across multiple servers in the cluster so
that if one server goes down, the objects exist in the memory of the other servers
in the cluster that can continue to handle the users requests. Since the cluster
comprises separate servers, replicating the HTTP session contents among them
involves broadcasting the changes made to HTTP session objects over the network.

Chapter 56
About Fusion Web Application State Management

56-5

Figure 56-4 Session Replication in a Server Cluster

You can begin to see some of the performance implications of overusing the HTTP
session:

• The more active users, the more HTTP sessions will be created on the server.

• The more objects stored in each HTTP session, the more memory you will need.
Note that the memory is not reclaimed when the user becomes inactive; this
only happens with a session timeout or an explicit session invalidation. Session
invalidations don't always happen because users don't always logout.

• In a cluster, the more objects in each HTTP session that change, the more
network traffic will be generated to replicate the changed objects to other servers
in the cluster.

At the outset, it would seem that keeping the number of objects stored in the session
to a minimum addresses the problem. However, this implies leveraging an alternative
mechanism for temporary storage for each user's pending application state. The
solution comes in the form of ADF Business Components, which implements this
for you out of the box.

Managing When Passivation and Activation Occurs
Passivation and activation, in the ADF application is designed to keep temporary user
data across requests, when there are more online users than the application pool can
handle.

The passivation/activation cycle supports application module pooling and was
designed originally to maintain a reasonable number of caches in memory, as well
as to support failover in high-availability, clustered server environments. This process
however requires the application module state to be written to and read from the
database, and is itself an expensive operation. In legacy system, comprised of 32-
bit platforms, where generally smaller amounts of memory were available than on

Chapter 56
Managing When Passivation and Activation Occurs

56-6

today’s middle-tier servers, the passivation of application module instances helped
compensate for memory limitations.

In today’s systems, where RAM generally is not a limitation, passivation/activation
provides little benefit by reducing middle-tier server memory usage. Today the best
use of the passivation/activation cycle built into application module pooling is to
support failure conditions in a clustered server environment.

The following scenario depicts when the automatic passivation and activation of
application module state occurs. This background may help you to understand later
how application module pooling can be tuned to limit the use of passivation/activation.

1. At the beginning of an HTTP request, the application module data control handles
the beginrequest event by checking out an application module instance from the
pool.

The application module pool returns an unreferenced instance. An unreferenced
application module is one that is not currently managing the pending state for any
other user session.

2. At the end of the request, the application module data control handles the
endrequest event by checking the application module instance back into the pool
in "managed state" mode.

That application module instance is now referenced by the data control that
just used it. And the application module instance is an object that still contains
pending transaction state made by the data control (that is, entity object and view
object caches; updates made but not committed; and cursor states), stored in
memory. As you'll see below, the instance is not dedicated to this data control, just
referenced by it.

3. On a subsequent request, the same data control — identified by its application
module handle — checks out an application module instance again.

Due to the "stateless with user affinity" algorithm the pool uses, the pool returns
the exact same application module instance, with the state still there in memory.

The default configuration of application module pooling dictates, at peak usage times,
with a high number of users simultaneously accessing the site, application module
instances must be sequentially reused by different user sessions. In this case, the
application pool will recycle a currently referenced application module instance for use
by another session, as follows:

1. The application module data control for User A's session checks an application
module instance into the application pool at the end of a request. Assume this
instance is named AM1.

2. The application module data control for User Z's new session requests an
application module instance from the pool for the first time, but there are no
unreferenced instances available. The application module pool then:

• Passivates the state of instance AM1 to the database.

• Resets the state of AM1 in preparation to be used by another session.

• Returns the AM1 instance to User Z's data control.

3. On a subsequent request, the application module data control for User A's session
requests an application module instance from the pool. The application module
pool then:

• Obtains an unreference instance.

Chapter 56
Managing When Passivation and Activation Occurs

56-7

This could be instance AM1, obtained by following the same tasks as in Step 2,
or another AM2 instance if it had become unreferenced in the meantime.

• Activates the appropriate pending state for User A from the database.

• Returns the application module instance to User A's data control.

In summary, the process of passivation, activation, and recycling preserves the
state referenced by the data control across requests without requiring a dedicated
application module instance for each data control. Both browser users in the above
scenario are carrying on an application transaction that spans multiple HTTP requests,
but the end users are unaware whether the passivation and activation is occurring in
the background. They just continue to see the pending changes. While the pending
changes never need to be saved into the underlying application database tables until
the end user is ready to commit the logical unit of work. The application module pool
makes a best effort to keep an application module instance "sticky" to the current data
control whose pending state it is managing. This is known as maintaining user session
affinity.

The best performance is achieved by minimizing the need for passivation/activation
cycle in the deployed Fusion web application. You can control this by changing the
default configuration parameters that specify the size of the application module pool,
control the resource cleanup behavior of the pool manager, and tune the JDBC
connection disconnect behavior used by application module instance at the end of
a user request. For more information about design time configuration parameters that
let you tune application module pools to reduce passivation, see What You May Need
to Know About Application Module Pooling Configuration Parameters.

How to Confirm That Fusion Web Applications Use Optimistic Locking
Oracle recommends using optimistic locking, the default mode for web applications.
Pessimistic locking should not be used for web applications as it creates pending
transactional state in the database in the form of row-level locks. If pessimistic locking
is set, state management will work, but the locking mode will not perform as expected.
Behind the scenes, every time an application module is recycled, a rollback is issued
in the JDBC connection. This releases all the locks that pessimistic locking had
created.

Note that under normal circumstances with optimistic locking,
RowInconsistentException is thrown when inconsistent data is detected while
locking a row during the commit operation. However, ADF can also raise
RowInconsistentException outside of the commit operation, such as during
application module activation, even though the framework is configured for optimistic
lock.

Performance Tip:

Always use the default mode optimistic locking for web applications. Only
optimistic locking is compatible with the application module unmanaged
release level mode, which allows the application module instance to be
immediately released when a web page terminates. This provides the best
level of performance for web applications that expect many users to access
the application simultaneously.

Chapter 56
Managing When Passivation and Activation Occurs

56-8

To ensure your configuration uses optimistic locking, open the Business Components
page of the adf-config.xml overview editor and confirm that Locking Mode
(corresponding to the jbo.locking.mode property) is set to optimistic or optupdate.
To open the adf-config.xml editor, in the Application Resources window, expand
Descriptors and ADF META-INF folders and double-click the file node.

Optimistic locking (optimistic) issues a SELECT FOR UPDATE statement to lock the
row, then detects whether the row has been changed by another user by comparing
the change indicator attribute — or, if no change indicator is specified, the values of all
the persistent attributes of the current entity as they existed when the entity object was
fetched into the cache.

Optimistic update locking (optupdate) does not perform any locking. The UPDATE
statement determines whether the row was updated by another user by including a
WHERE clause that will match the existing row to update only if the attribute values are
unchanged since the current entity object was fetched.

What You May Need to Know About Pending Changes Across HTTP
Requests

The ADF state management mechanism relies on passivation and activation to
manage the state of an application module instance. Implementing this feature in a
robust way is only possible if all pending changes are managed by the application
module transaction in the middle tier. The most scalable strategy is to keep pending
changes in middle-tier objects and not perform operations that cause pending
database state to exist across HTTP requests. This allows the highest leverage of
the performance optimizations offered by the application module pool and the most
robust runtime behavior for your application.

Caution:

When the jbo.doconnectionpooling configuration parameter is set to true
— typically in order to share a common pool of database connections across
multiple application module pools — upon releasing your application module
to the application module pool, its JDBC connection is released back to the
database connection pool and a ROLLBACK will be issued on that connection.
This implies that all changes which were posted but not committed will be
lost. On the next request, when the application module is used, it will receive
a JDBC connection from the pool, which may be a different JDBC connection
instance from the one it used previously. Those changes that were posted to
the database but not committed during the previous request are lost.

The jbo.doconnectionpooling configuration parameter is set by checking
the Disconnect Application Module Upon Release property on the
Database and Scalability tab of the overview editor for application module
configurations (on the bc4j.xcfg file).

Chapter 56
Managing When Passivation and Activation Occurs

56-9

What You May Need to Know About Release Levels and
postChanges() Method

The transaction-level postChanges() method exists to force the transaction to post
unvalidated changes without committing them. This method is not recommended for
use in web applications unless you can guarantee that the transaction will definitely be
committed or rolled back during the same HTTP request. Failure to heed this advice
can lead to strange results in an environment where both application modules and
database connections can be pooled and shared serially by multiple different clients.

If for some reason you need to create a transactional state in the database in a
particular request by invoking the postChanges() method or by calling a PL/SQL
stored procedure, but you cannot issue a commit or rollback by the end of that same
request, then you must release the application module instance with the reserved
level from that request until a subsequent request when you either commit or rollback.

Note:

Use as short a period of time as possible between creation of transactional
state in the database and performing the concluding commit or rollback. This
ensures that reserved level doesn’t have to be used for a long time, as it has
adverse effects on application’s scalability and reliability.

Once an application module has been released with reserved level, it remains at that
release level for all subsequent requests until release level is explicitly changed back
to managed or unmanaged level. So, it is your responsibility to set release level back
to managed level once commit or rollback has been issued.

Testing to Ensure Your Application Module is Activation-Safe
It is important during the development process that you test your ADF application
modules for being activation-safe. This is done by disabling ADF application module
pooling in the application module configuration.

If you have not explicitly tested that your application module functions when its
pending state gets activated from a passivation snapshot, then you may encounter
an unpleasant surprise in your production environment when heavy system load tests
this aspect of your system for the first time.

How To Disable Application Module Pooling to Test Activation
As part of your overall testing plan, you should adopt the practice of testing your
application modules with the jbo.ampool.doampooling configuration parameter set
to false. This setting completely disables application module pooling and forces
the system to activate your application module's pending state from a passivation
snapshot on each page request. It is an excellent way to detect problems that might
occur in your production environment due to assumptions made in your custom
application code.

Chapter 56
Testing to Ensure Your Application Module is Activation-Safe

56-10

Note:

It is important to reenable application module pooling after you conclude
testing and are ready to deploy the application to a production environment.
The configuration property jbo.ampool.doampooling set to false is not a
supported configuration for production applications and must be set to true
before deploying the application.

For example, if you have transient view object attributes you believe should be getting
passivated, this technique allows you to test that they are working as you expect. In
addition, consider situations where you might have introduced:

• Private member fields in application modules, view objects, or entity objects

• Custom user session state in the Session user data hashtable

Your custom code likely assumes that this custom state will be maintained across
HTTP requests. As long as you test with a single user on the JDeveloper Integrated
WebLogic Server, or test with a small number of users, things will appear to work
fine. This is due to the "stateless with affinity" optimization of the ADF application
module pool. If system load allows, the pool will continue to return the same
application module instance to a user on subsequent requests. However, under
heavier load, during real-world use, it may not be able to achieve this optimization
and will need to resort to grabbing any available application module instance and
reactivating its pending state from a passivation snapshot. If you have not correctly
overridden passivateState() and activateState() (as described in Managing
Custom User-Specific Information During Passivation) to save and reload your custom
component state to the passivation snapshot, then your custom state will be missing
(i.e. null or back to your default values) after this reactivation step. Testing with
jbo.ampool.doampooling set to false allows you to quickly isolate these kinds of
situations in your code.

For more information about configuring Business Component configuration properties,
How to Set Configuration Properties Declaratively.

What You May Need to Know About the jbo.ampool.doampooling
Configuration Parameter

The jbo.ampool.doampooling configuration property corresponds to the Enable
Application Module Pooling option in the Database and Scalability tab of the
overview editor for application module configurations (on the bc4j.xcfg file). By
default, this checkbox is checked so that application module pooling is enabled.
Whenever you deploy your application in a production environment the default setting
of jbo.ampool.doampooling=true is the way you will run your application. But, as long
as you run your application in a test environment, setting the property to false can
play an important role in your testing. When this property is false, there is effectively
no application pool. When the application module instance is released at the end of
a request it is immediately removed. On subsequent requests made by the same
user session, a new application module instance must be created to handle it and
the pending state of the application module must be reactivated from the passivation
store.

Chapter 56
Testing to Ensure Your Application Module is Activation-Safe

56-11

For more information about configuring Business Component properties, How to Set
Configuration Properties Declaratively.

What You May Need to Know About State Management and Data
Consistency

When an entity object is updated concurrently by more than one user and one of those
users loses affinity with their application module during the update, it is possible to
experience data corruption if a change indicator has not been defined for the entity
object.

Consider a scenario where two users (User A and User B) access the same entity
object at the same time.

• After querying, User B changes the value of an attribute (for example, changing
the Dept attribute value from Accounting to Research) and then commits.

• Meanwhile, User A has also queried and sees the same record where the value of
the Dept attribute is Accounting.

• User A loses affinity with the application module that was used to query, resulting
in passivation.

• User A then changes the Dept attribute value from Accounting to Sales and
commits, resulting in activation.

• When activation occurs, the new value of the Dept attribute is activated but the
browser is unaware of the data change, and the commit proceeds without issue.

To avoid this type of scenario, define a change indicator attribute for all entity objects.
For more information, see How to Protect Against Losing Simultaneously Updated
Data.

What You May Need to Know About State Management and
Subclassed Entity Objects

If your application employs subclassed entity objects, the key attribute of new entities
must be prepopulated. If the key is not prepopulated, passivation and activation will
fail. You can prepopulate the key attribute by overriding the create() method or by
using the DBSequence type that will assign a temporary negative value to the key
before the real value is fetched from the database after commit. For more information,
see How to Get Trigger-Assigned Primary Key Values from a Database Sequence.

Controlling Where Model State Is Saved
You can control where you want to save passivation snapshot by configuring an option
in the ADF application module configuration. You can either save it in the database
(default option) or in a file stored on the local file system.

By default, passivation snapshots are saved in the database, but you can configure it
to use the file system as an alternative.

When saving to the database, the passivated XML snapshot is written to a
BLOB column in a table named PS_TXN, using a connection specified by the
jbo.server.internal_connection property. Each time a passivation record is saved,

Chapter 56
Controlling Where Model State Is Saved

56-12

it is assigned a unique passivation snapshot ID based on the sequence number taken
from the PS_TXN_SEQ sequence. The application module handle held by the application
module data control in the ADF binding context remembers the latest passivation
snapshot ID that was created on its behalf and remembers the previous ID that was
used.

How to Control the Schema Where the State Management Table
Resides

The ADF runtime recognizes a configuration property named
jbo.server.internal_connection that controls which database connection and
schema should be used for the creation of the PS_TXN table and the PS_TXN_SEQ
sequence. If you don't set the value of this configuration parameter explicitly, then the
state management facility creates the temporary tables using the credentials of the
current application database connection.

To keep the temporary information separate, the state management facility uses a
different connection instance from the database connection pool, but the database
credentials are the same as the current user. Since the framework creates temporary
tables, and possibly a sequence if they don't already exist, the implication of not
setting a value for the jbo.server.internal_connection is that the current database
user must have CREATE TABLE, CREATE INDEX and CREATE SEQUENCE privileges. Since
this is often not desirable, Oracle recommends always supplying an appropriate value
for the jbo.server.internal_connection property, providing the credentials for a
state management schema where table and schema be created. Valid values for the
jbo.server.internal_connection property in your configuration are:

• A fully qualified JDBC connection URL like:

jdbc:oracle:thin:username/password@host:port:SID

• A JDBC datasource name like:

java:/comp/env/jdbc/YourJavaEEDataSourceName

Performance Tip:

When creating the PS_TXN table, use securefiles to store LOB data (the
content column), and create a primary column index on the PS_TXN table as
global, partitioned reverse key index. The securefile configuration delivers
superior performance over the basicfile configuration when working with LOB
data. The reverse key index helps by reducing contention that can happen
when the rate of inserts is high.

How to Configure the Passivation Store
Passivated information can be stored in several places. You can control it by
configuring an option in the application module configuration. The choices are
database or a file stored on local file system:

• File

Chapter 56
Controlling Where Model State Is Saved

56-13

This choice may be the fastest available, because access to the file is faster
then access to the database. This choice is good if the entire middle tier is
either installed on the same machine or has access to a commonly shared file
system, so passivated information is accessible to all. Usually, this choice may
be good for a small middle tier where one Oracle WebLogic Server domain is
used. In other words this is a very suitable choice for small middle tier such as
one Oracle WebLogic Server instance with all its components installed on one
physical machine. The location and name of the persistent snapshot files are
determined by jbo.tmpdir property if specified. It follows usual rules of ADF
property precedence for a configuration property. If nothing else is specified, then
the location is determined by user.dir if specified. This is a default property and
the property is OS specific.

• Database

This is the default choice. While it may be a little slower than passivating to file,
it is by far the most reliable choice. With passivation to file, the common problem
might be that it is not accessible to Oracle WebLogic Server instances that are
remotely installed. In this case, in a cluster environment, if one node goes down
the other may not be able to access passivated information and then failover will
not work. Another possible problem is that even if file is accessible to the remote
node, the access time for the local and remote node may be very different and
performance will be inconsistent. With database access, time should be about the
same for all nodes.

To set the value of your choice in design time, set the property jbo.passivationstore
to database or file. The value null will indicate that a connection-type-specific
default should be used. This will use database passivation for Oracle or DB2, and
file serialization for any others.

What Happens at Runtime: What Model State Is Saved and When It Is
Cleaned Up

The information saved by application model passivation is divided in two parts:
transactional and nontransactional state. Transactional state is the set of updates
made to entity object data – performed either directly on entity objects or on
entities through view object rows – that are intended to be saved into the database.
Nontransactional state comprises view object runtime settings, such as the current row
index, WHERE clause, and ORDER BY clause.

The information saved as part of the application module passivation snapshot includes
the following.

Transactional State

• New, modified, and deleted entities in the entity caches of the root application
module for this user session's (including old/new values for modified ones).

Nontransactional State

• For each active view object (both statically and dynamically created):

– Current row indicator for each row set (typically one)

Chapter 56
Controlling Where Model State Is Saved

56-14

– New rows and their positions. (New rows are treated differently then updated
ones. Their index in the view object is traced as well.)

– ViewCriteria and all related parameters such as view criteria row, etc.

– Flag indicating whether or not a row set has been executed

– Range start and Range size

– Access mode

– Fetch mode and fetch size

– Any view object-level custom data

Note:

Transient view object attributes can be saved if they are selected
for passivation at design time. However, use this feature judiciously
because this results in a snapshot that will grow in size with the
number of rows that have been retrieved. See How to Manage the
State of View Objects for information on enable the passivation of
transient attributes.

– SELECT, FROM, WHERE, and ORDER BY clause if created dynamically or changed
from the View definition

Note:

If you enable ADF Business Components runtime diagnostics, the contents
of each XML state snapshot are also saved. See How to Enable ADF
Business Components Debug Diagnostics for information on how to enable
diagnostics.

Other information, such as user-specific information or instant variables in ADF
Business Components objects, is not saved as part of the passivation snapshot. To
save this type of information, use the techniques described in Managing Custom
User-Specific Information During Passivation.

Cleaning Up the Model State
The adfbc_purge_statesnapshots.sql script in JDeveloper helps you to clean up the
ADF application module passivation snapshot records time to time.

Under normal circumstances, the ADF state management facility provides automatic
cleanup of the passivation snapshot records.

How to Clean Up Temporary Storage Tables Resulting from
Passivation

JDeveloper supplies the adfbc_purge_statesnapshots.sql script to help with
periodically cleaning up the application module state management table. You can

Chapter 56
Cleaning Up the Model State

56-15

find this file in the oracle_common subdirectory of your Oracle Middleware installation
directory (for example, ORACLE_HOME\oracle_common\common\sql).

Persistent snapshot records can accumulate over time if the server has been
shutdown in an abnormal way, such as might occur during development or due to
a server failure. Running the script in SQL*Plus will create the BC4J_CLEANUP PL/SQL
package. The two relevant procedures in this package are:

• PROCEDURE Session_State(olderThan DATE)

This procedure cleans up application module session state storage for sessions
older than a given date.

• PROCEDURE Session_State(olderThan_minutes INTEGER)

This procedure cleans up application module session state storage for sessions
older than a given number of minutes.

You can schedule periodic cleanup of your ADF temporary persistence storage by
submitting an invocation of the appropriate procedure in this package as a database
job.

You can use an anonymous PL/SQL block like the one shown in the following example
to schedule the execution of bc4j_cleanup.session_state() to run starting tomorrow
at 2:00 am and each day thereafter to cleanup sessions whose state is over 1 day
(1440 minutes) old.

SET SERVEROUTPUT ON
DECLARE
 jobId BINARY_INTEGER;
 firstRun DATE;
BEGIN
 -- Start the job tomorrow at 2am
 firstRun := TO_DATE(TO_CHAR(SYSDATE+1,'DD-MON-YYYY')||' 02:00',
 'DD-MON-YYYY HH24:MI');
 -- Submit the job, indicating it should repeat once a day
 dbms_job.submit(job => jobId,
 -- Run the ADF Purge Script for Session State
 -- to cleanup sessions older than 1 day (1440 minutes)
 what => 'bc4j_cleanup.session_state(1440);',
 next_date => firstRun,
 -- When completed, automatically reschedule
 -- for 1 day later
 interval => 'SYSDATE + 1'
);
 dbms_output.put_line('Successfully submitted job. Job Id is '||jobId);
END;
.
/

What Happens at Runtime: When a Passivation Record Is Updated
When a passivation record is saved to the database on behalf of a session cookie, this
passivation record gets a new, unique snapshot ID. The passivation record with the
previous snapshot ID used by that same session cookie is deleted as part of the same
transaction. In this way, assuming no server failures, there will only ever be a single
passivation snapshot record per active end-user session.

Chapter 56
Cleaning Up the Model State

56-16

What Happens at Runtime: When a Passivation Snapshot is Removed
on Unmanaged Release

The passivation snapshot record related to a session cookie is removed when the
application module is checked into the pool with the unmanaged state level. This can
occur when:

• Your code specifically calls resetState() on the application module data control.

• Your code explicitly invalidates the HttpSession, for example, as part of
implementing an explicit "Logout" functionality.

• The HttpSession times out due to exceeding the session timeout threshold for idle
time and failover mode is disabled (which is the default).

In each of these cases, the application module pool also resets the application module
referenced by the session cookie to be "unreferenced" again. Since no changes
were ever saved into the underlying database tables, once the pending session
state snapshots are removed, there remains no trace of the unfinished work the user
session had completed up to that point.

What Happens at Runtime: Passivation Snapshot Retained in Failover
Mode

When the failover mode is enabled, if the HttpSession times out due to session
inactivity, then the passivation snapshot is retained so that the end user can resume
work upon returning to the browser.

After a break in the action, when the end user returns to the browser and continues
to use the application, it continues working as if nothing had changed. The session
cookie is used to reactivate any available application module instance with the user's
last pending state snapshot before handling the request. So, even though the users
next request will be processed in the context of a new HttpSession (perhaps even in a
different application server instance), the user is unaware that this has occurred.

Note:

If an application module was released with Reserved level then when the
HttpSession times out, the user will have to go through an authentication
process, and all unsaved changes are lost.

Managing the HttpSession in Fusion Web Applications
The <session-timeout> tag in the web.xml file allows you to configure the timeout
threshold so that the HTTP session is freed in Fusion web applications when the user
is away or inactive.

Since HTTP is a stateless protocol, the server receives no implicit notice that a
client has closed the browser or gone away for the weekend. Therefore any Java
EE-compliant server provides a standard, configurable session timeout mechanism

Chapter 56
Managing the HttpSession in Fusion Web Applications

56-17

to allow resources tied to the HTTP session to be freed when the user has stopped
performing requests. You can also programmatically force a timeout.

How to Configure the Implicit Timeout Due to User Inactivity
You configure the session timeout threshold using the <session-timeout> tag in the
web.xml file. The default value is typically around 30 minutes, depending on the
container.

How to Code an Explicit HttpSession Timeout
To end a user's session before the session timeout expires, you can call the
invalidate() method on the HttpSession object from a backing bean in response
to the user's click on a Logout button or link. This cleans up the HttpSession in the
same way as if the session time had expired. Using JSF and ADF, after invalidating
the session, you must perform a redirect to the next page you want to display, rather
than just doing a forward. The following example shows sample code to perform this
task from a Logout button.

public String logoutButton_action() throws IOException{
 ExternalContext ectx = FacesContext.getCurrentInstance().getExternalContext();
 HttpServletResponse response = (HttpServletResponse)ectx.getResponse();
 HttpSession session = (HttpSession)ectx.getSession(false);
 session.invalidate();
 response.sendRedirect("Welcome.jspx");
 return null;
}

As with the implicit timeouts, when the HTTP session is cleaned up this way, it ends up
causing any referenced application modules to be marked unreferenced.

What Happens at Runtime: How Application Modules are Handled
When the HTTP Times Out

When the HttpSession times out, the BindingContext goes out of scope, and along
with it, any data controls that might have referenced application modules released to
the pool in the managed state level. The application module pool resets any of these
referenced application modules and marks the instances unreferenced again.

Managing Custom User-Specific Information During
Passivation

You can add custom user-defined information in the ADF application
module by overriding the passivateState() and activateState() methods in the
ApplicationModuleImpl class.

It is fairly common practice to add custom user-defined information in the application
module in the form of member variables or some custom information stored
in oracle.jbo.Session user data hashtable. The ADF state management facility
provides a mechanism to save this custom information to the passivation snapshot as
well, by overriding the passivateState() method and the activateState() methods
in the ApplicationModuleImpl class.

Chapter 56
Managing Custom User-Specific Information During Passivation

56-18

Note:

Similar methods are available on the ViewObjectImpl class and the
EntityObjectImpl class to save custom state for those objects to the
passivation snapshot as well.

How to Passivate Custom User-Specific Information
You can override passivateState() and activateState() to ensure that custom
application module state information is included in the passivation/activation cycle. The
following example shows how this is done.

In the example, jbo.counter contains custom values you want to preserve across
passivation and activation of the application module state. Each application module
has an oracle.jbo.Session object associated with it that stores application module-
specific session-level state. The session contains a user data hashtable where
you can store transient information. For the user-specific data to "survive" across
application module passivation and reactivation, you need to write code to save and
restore this custom value into the application module state passivation snapshot.

/**
 * Overridden framework method to passivate custom XML elements
 * into the pending state snapshot document
 */
public void passivateState(Document doc, Element parent) {
 // 1. Retrieve the value of the value to save
 int counterValue = getCounterValue();
 // 2. Create an XML element to contain the value
 Node node = doc.createElement(COUNTER);
 // 3. Create an XML text node to represent the value
 Node cNode = doc.createTextNode(Integer.toString(counterValue));
 // 4. Append the text node as a child of the element
 node.appendChild(cNode);
 // 5. Append the element to the parent element passed in
 parent.appendChild(node);
}
/**
 * Overridden framework method to activate custom XML elements
 * into the pending state snapshot document
 */
public void activateState(Element elem) {
 super.activateState(elem);
 if (elem != null) {
 // 1. Search the element for any <jbo.counter> elements
 NodeList nl = elem.getElementsByTagName(COUNTER);
 if (nl != null) {
 // 2. If any found, loop over the nodes found
 for (int i=0, length = nl.getLength(); i < length; i++) {
 // 3. Get first child node of the <jbo.counter> element
 Node child = nl.item(i).getFirstChild();
 if (child != null) {
 // 4. Set the counter value to the activated value
 setCounterValue(new Integer(child.getNodeValue()).intValue()+1);
 break;
 }
 }

Chapter 56
Managing Custom User-Specific Information During Passivation

56-19

 }
 }
}
/*
 * Helper Methods
 */
private int getCounterValue() {
 String counterValue = (String)getSession().getUserData().get(COUNTER);
 return counterValue == null ? 0 : Integer.parseInt(counterValue);
}
private void setCounterValue(int i) {
 getSession().getUserData().put(COUNTER,Integer.toString(i));
}
private static final String COUNTER = "jbo.counter";

What Happens When You Passivate Custom Information
As the example in How to Passivate Custom User-Specific Information illustrates,
when activateState() is overridden, the following steps are performed:

1. Search the element for any jbo.counter elements.

2. If any are found, loop over the nodes found in the node list.

3. Get first child node of the jbo.counter element.

It should be a DOM Text node whose value is the string you saved when
your passivateState() method above got called, representing the value of the
jbo.counter attribute.

4. Set the counter value to the activated value from the snapshot.

When passivateState() is overridden, it performs the reverse job by doing the
following:

1. Retrieve the value of the value to save.

2. Create an XML element to contain the value.

3. Create an XML text node to represent the value.

4. Append the text node as a child of the element.

5. Append the element to the parent element passed in.

Note:

The API's used to manipulate nodes in an XML document are provided by
the Document Object Model (DOM) interfaces in the org.w3c.dom package.
These are part of the Java API for XML Processing (JAXP). See the Javadoc
for the Node, Element, Text, Document, and NodeList interfaces in this
package for more details.

What You May Need to Know About Activating Custom Information
The activateState() method is called at the end of the activation process after
the view objects have been activated. Most of the time this is where you want
to place the application module state activation logic. However, if your application

Chapter 56
Managing Custom User-Specific Information During Passivation

56-20

module activation logic needs to set up custom state information before the ADF
state management facility activates the view objects (for example, you might
need to write custom code to allow the view objects to internally reference
custom values at execution time), then the prepareForActivation() method in
the ApplicationModuleImpl class would be the right place because it fires at the
beginning of the activation process.

Managing the State of View Objects During Passivation
ADF Business Components view objects are marked as passivated by default. But a
transient view object (containing only transient attributes) only passivates the updates
related to the current row and other nontransactional state.

By default, all view objects are marked as passivation-enabled, so their state will
be saved. However, view objects that have transient attributes do not have those
attributes passivated by default. You can change how a view object is passivated,
and even which attributes are passivated, using the Tuning page of the view object
overview editor.

How to Manage the State of View Objects
Each view object can be declaratively configured to be passivation-enabled or not. If a
view object is not passivation enabled, then no information about it gets written in the
application module passivation snapshot.

Performance Tip:

There is no need to passivate read-only view objects that are not used
to display values in the UI but are simply used in re-entrant methods for
calculation or derivation of values. This eliminates the performance overhead
associated with passivation and activation and reduces the CPU usage
needed to maintain the application module pool.

Before you begin:

It may be helpful to have an understanding of passivation in view objects. For more
information, see Managing the State of View Objects During Passivation.

To set the passivation state of a view object:

1. In the Applications window, double-click the view object for which you want to set
the passivation state.

2. In the overview editor, click the General navigation tab.

3. On the General page, expand the Tuning section and select Passivate State to
make sure the view object data is saved.

4. Optionally, you can select Including All Transient Attributes to passivate all
transient attributes at this time, but see What You May Need to Know About
Passivating Transient View Objects for additional information.

Chapter 56
Managing the State of View Objects During Passivation

56-21

What You May Need to Know About Passivating View Objects
The activation mechanism is designed to return your view object to the state it was
in when the last passivation occurred. To ensure that, Oracle ADF stores in the state
snapshot the values of any bind variables that were used for the last query execution.
These bind variables are in addition to those that are set on the row set at the time of
passivation. The passivated state also stores the user-supplied WHERE clause on the
view object related to the row set at the time of passivation.

How to Manage the State of Transient View Objects and Attributes
Because view objects are marked as passivated by default, a transient view object —
one that contains only transient attributes — is marked to be passivation enabled, but
only passivates its information related to the current row and other nontransactional
state. Note that to enable a transient view object to passivate or activate correctly, it
needs a non-null key attribute value.

Performance Tip:

Transient view object attributes are not passivated by default. Due to their
nature, they are usually intended to be read-only and are easily re-created.
So, it often doesn't make sense to passivate their values as part of the
XML snapshot. This also avoids the performance overhead associated with
passivation and activation and reduces the CPU usage needed to maintain
the application module pool.

Before you begin:

It may be helpful to have an understanding of passivation in view objects. For more
information, see Managing the State of View Objects During Passivation.

You will also need to perform the following task:

• Open the application in JDeveloper.

To individually set the passivation state for transient view object attributes:

1. In the Applications window, double-click the view object that contains the transient
attributes for which you want to specify the passivation state.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the transient attribute you want to passivate and
click the Details tab.

4. In the Details page, select the Passivate checkbox.

What You May Need to Know About Passivating Transient View
Objects

Passivating transient view object attributes is more costly resource-wise and
performance- wise, because transactional functionality is usually managed on the
entity object level. Since transient view objects are not based on an entity object, this

Chapter 56
Managing the State of View Objects During Passivation

56-22

means that all updates are managed in the view object row cache and not in the entity
cache. Therefore, passivating transient view objects or transient view object attributes
requires special runtime handling. For a transient VO to passivate or activate correctly,
it needs a non-null key attribute value.

Usually passivation only saves the values that have been changed, but with transient
view objects passivation has to save entire row. The row will include only the view
object attributes marked for passivation.

Note:

The ADF passivation and activation logic will take care of restoring transient
attribute values in the entity object and view object only as long as the
entity object is in an unposted state. Once the user Saves their changes to
the database, the entity object is posted to the database and in the next
activation cycle, the view row is restored using the database query. Since the
attribute is transient, its value will remain null. If you want your entity object
or view object-based transient attribute values to survive failover, you need
to define the transient attribute value using an expression and the expression
should point to a getter method that can supply the value.

How to Use Transient View Objects to Store Session-level Global
Variables

Using passivation, you can use a view object to store one or more global variables,
each on a different transient attribute. When you mark a transient attribute as
passivated, the ADF Business Components framework will remember the transient
values across passivation and activation in high-throughput and failover scenarios.
Therefore, it is an easy way to implement a session-level global value that is backed
up by the state management mechanism, instead of the less-efficient HTTP Session
replication. This also makes it easy to bind to controls in the UI if necessary.

There are two basic approaches to store values between invocations of different
screens, one is controller-centric, and the other is model-centric.

To implement this task in the ADF Controller layer using the controller-centric
approach involves storing and referencing values using attributes in the pageFlow
scope. This approach might be appropriate if the global values do not need to be
referenced internally by any implementations of ADF Business Components. For more
information about pageFlow scope, see What You May Need to Know About Memory
Scope for Task Flows.

The model-centric approach involves creating a transient view object, which is
conceptually equivalent to a nondatabase block in Oracle Forms.

Before you begin:

It may be helpful to have an understanding of passivation in view objects. For more
information, see Managing the State of View Objects During Passivation.

You will also need to perform the following tasks:

1. Open the application in JDeveloper.

Chapter 56
Managing the State of View Objects During Passivation

56-23

2. Create a new view object using the View Object wizard, as described in How to
Create an Entity-Based View Object.

a. On Page 1 of the wizard, select the option for Data Source: Programmatic.

b. On Page 2, click New to define the transient attribute names and types the
view object should contain.

c. On Page 3, set the Updatable option to Always for each attribute.

d. Click Finish and the newly created view object appears in the overview editor.

3. Add an instance of the view object with transient attributes to your application
module's data model, as described in Adding Master-Detail View Object Instances
to an Application Module.

To store session-level global variables using the model-centric approach:

1. Disable any entries from being performed in the view object:

a. In the overview editor, on the General page, expand the Tuning section.

b. In the Retrieve from the Database group, select the No Rows option.

2. Make sure data in the view object is not cleared out during a rollback operation. To
implement this, you enable a custom Java class for the view object and override
two rollback methods.

a. In the overview editor, click the Java navigation tab, and click the Edit icon for
the Java Classes section.

b. In the Select Java Options dialog, select Generate View Object Class and
click OK.

c. In the overview editor, click the link next to View Object Class in the Java
Classes section.

d. From the main menu, choose Source > Override Methods.

e. In the Override Methods dialog, select the beforeRollback() and
afterRollback() methods to override, and click then OK.

f. In both the beforeRollback() and afterRollback() methods, comment out
the call to super in the Java code.

3. Create an empty row in the view object when a new user begins using the
application module:

a. In the Applications window, double-click the application module.

b. Generate an application module Java class if you don't have one yet, as
described in How to Generate a Custom Class for an Application Module.

c. Override the prepareSession() method of the application module, as
described in How to Override a Built-in Framework Method.

d. After the call to super.prepareSession(), add code to create a new row in the
transient view object and insert it into the view object.

Now you can bind read-only and updatable UI elements to the "global" view object
attributes just as with any other view object using the Data Controls panel.

Chapter 56
Managing the State of View Objects During Passivation

56-24

57
Tuning Application Module Pools

This chapter describes how ADF Business Components application module pools
work and how you can tune application module pools to optimize application
performance.
This chapter includes the following sections:

• About Application Module Pooling

• Setting Pool Configuration Parameters

• Initializing Database State and Pooling Considerations

About Application Module Pooling
An ADF application module pool is a collection of instances of a single application
module type which are shared by multiple application clients. The amount of time
between submitting web pages enables a smaller number of application module
components to serve a larger number of active users. This reduces memory usage
and improves performance.

An application module pool is a collection of application module runtime instances of
the same type. To provision a number of users visiting it, the Fusion web application
can be configured to provide one or more application module instances from the pool
to service users at runtimee.

Each application module instance in a pool is shared by multiple browser clients
whose typical "think time" between submitting web pages allows optimizing the
number of application module components to be effectively smaller than the total
number of active users working on the system. For example, twenty users visiting
the website from their browser might be able to be serviced by 5 or 10 application
module instances instead of having as many application module instances as you
have browser users. Therefore, not only can the pool service more users than the
number of application modules available, but in addition the middle tier requires less
memory to service this smaller set of application modules allowing ADF applications to
scale further on limited hardware resources.

Through your design-time configuration, application modules can be used to support
Fusion web application scenarios that are completely stateless, or they can be used
to support a unit of work that spans multiple browser pages. As a performance
optimization, when an instance of an application module is returned to the pool in
"managed state" mode, the pool tracks session references to the application module.
The application module instance is still in the pool and available for use, but it would
prefer to be used by the same session that was using it the last time because
maintaining this "session affinity" improves performance.

So, at any one moment in time, the instances of application modules in the pool are
logically partitioned into three groups, reflecting their state:

• Checked into the pool and unconditionally available for use

57-1

• Checked into the pool and available for use, but referenced for session affinity
reuse by an active user session

• Checked out of the pool and unavailable, inasmuch as it's currently in use (at that
very moment) by some thread in the web container

Understanding what happens behind the scenes is essential to make the most efficient
use of application module pooling. For details about session state management of
application modules, see Managing When Passivation and Activation Occurs.

For details about the configuration parameters that can be set at design time to affect
the behavior of the application module pool, see What You May Need to Know About
Application Module Pool Configuration Parameters.

Application Module Pools
Application Module components can be used at runtime in two ways:

• As an application module the client accesses directly

• As a reusable component aggregated (or "nested") inside of another application
module instance

When a client accesses it directly, an application module is called a root application
module. Clients access nested application modules indirectly as a part of their
containing application module instance. It's possible, but not common, to use the same
application module at runtime in both ways. The important point is that ADF Business
Components only creates an application module pool for a root application module.

The basic rule is that one application module pool is created for each root application
module used by a Fusion web application in each Java VM where a root application
module of that type is used by the ADF Controller layer. For advanced topics related
to the number of application module pools your application may need, see Deployment
Environment Scenarios and Pooling.

Deployment Environment Scenarios and Pooling
The number of pools and the type of pools that your application will utilize will depend
upon how the target platform is configured. For example, will there be more than one
Java Virtual Machine (JVM) available to service the web requests coming from your
application users and will there be more than one Oracle WebLogic Server domain? To
understand how many pools of which kinds are created for an application in both
a single-JVM scenario and a multiple-JVM runtime scenario, review the following
assumptions:

• Your Fusion web application makes use of two application modules HRModule and
PayablesModule.

• You have a CommonLOVModule containing a set of commonly used view objects
to support list of values in your application, and that both HRModule and
PayablesModule aggregate a nested instance of CommonLOVModule to access the
common LOV view objects it contains.

• You have configured both HRModule and PayablesModule to use the same
JDeveloper connection definition named appuser.

Chapter 57
About Application Module Pooling

57-2

Single Oracle WebLogic Server Domain, Single Oracle WebLogic Server
Instance, Single JVM

If you deploy this application to a single Oracle WebLogic Server domain, configured
with a single Oracle WebLogic Server instance, there is only a single Java VM
available to service the web requests coming from your application users.

Assuming that all the users are making use of web pages that access both the
HRModule and the PayablesModule, this will give:

• One application module pool for the HRModule root application module

• One application module pool for the PayablesModule root application module

This gives a total of two application module pools in this single Java VM.

Note:

There is no separate application module pool for the nested instances of
the reusable CommonLOVModule. Instances of CommonLOVModule are wrapped
by instances of HRModule and PayablesModule in their respective application
module pools.

Multiple Oracle WebLogic Server Domains, Multiple Oracle WebLogic Server
Instance, Multiple JVMs

Next consider a deployment environment involving multiple Java VMs. Assume that
you have configured four different physical machines as two Oracle WebLogic Server
domains, with a hardware load-balancer in front. On these four machines, each Oracle
WebLogic Server instance will have a single JVM. As users of your application access
the application, their requests are shared across these two Oracle WebLogic Server
domains, and within each domain, across the two JVMs that its Oracle WebLogic
Server instances have available.

Again assuming that all the users are making use of web pages that access both the
HRModule and the PayablesModule, this will give:

• Four application module pools for HRModule, one in each of four JVMs.

(1 HRModule root application module) x (2 Oracle WebLogic Server domains) x (2
Oracle WebLogic Server JVMs each)

• Four application module pools for PayablesModule, one in each of four JVMs.

(1 PayablesModule root application module) x (2 Oracle WebLogic Server
domains) x (2 Oracle WebLogic Server JVMs each)

This gives a total of eight application module pools spread across four JVMs.

As you begin to explore the configuration parameters for the application module
pools in What You May Need to Know About Application Module Pool Configuration
Parameters, keep in mind that the parameters apply to a given application module
pool for a given application module in a single JVM.

Chapter 57
About Application Module Pooling

57-3

As the load balancing spreads user requests across the multiple JVMs where Oracle
ADF is running, each individual application module pool in each JVM will have to
support one n th of the user load — where n is the number of JVMs available to service
those user requests. The appropriate values of the application module pools need to
be set with the number of Java VMs in mind. The basic approach is to base sizing
parameters on load testing and the results of the application module pooling statistics,
then divide that total number by the n number of pools you will have based on your use
of multiple application server domains and multiple Oracle WebLogic Server instances.
For example, if you decide to set the minimum number of application modules in the
pool to ten and you end up with five pools due to having five Oracle WebLogic Server
instances servicing this application, then you would want to configure the parameter to
2 (ten divided by five), not 10 (which would only serve a given application module in a
single JVM).

For details about available sizing parameters, see Pool Sizing Parameters.

Setting Pool Configuration Parameters
Configuration parameters set in the ADF application allow you to control the runtime
behavior of an application module pool. There are three logical categories of the
application module pool configuration parameters: Pool behavior, Pool Sizing, and
Pool Cleanup Behavior.

You control the runtime behavior of an application module pool by setting appropriate
configuration parameters. You can set these declaratively in an application module
configuration, supply them as Java System parameters, or set them programmatically
at runtime.

How to Set Configuration Properties Declaratively
You use the Database and Scalability tab of the overview editor for application
module configurations shown in Figure 57-1 for viewing and setting runtime
configuration properties of individual application modules.

Chapter 57
Setting Pool Configuration Parameters

57-4

Figure 57-1 Database and Scalability Tab of the Edit Configuration Dialog

Chapter 57
Setting Pool Configuration Parameters

57-5

Before you begin:

It may be helpful to have an understanding of application module pooling. For more
information, see Setting Pool Configuration Parameters.

Familiarize yourself with the application module configuration parameters. For more
information about configuration parameters for application module pool tuning,
see What You May Need to Know About Application Module Pool Configuration
Parameters.

For best practice guidelines that may help you to tune the Fusion web application
for an expected level of usage, see the Tuning Oracle Application Development
Framework chapter of Tuning Performance.

Note that if your application defines a JDBC URL connection type (legacy only), refer
to the 11g release version of this guide to obtain documentation on the ADF database
connection pool configuration parameters.

To edit your application module's pooling configuration:

1. In the Applications window, double-click the application module.

2. In the overview editor, click the Configurations navigation tab.

3. In the Configurations page, click the configuration hyperlink for the configuration
you want to edit.

4. In the overview editor for application module configurations, click the Database
and Scalability tab and edit the desired runtime properties and click OK to save
the changes for your configuration.

What Happens When You Set Configuration Properties Declaratively
The values that you supply through the overview editor for application module
configurations are saved in an XML file named bc4j.xcfg in the ./common subdirectory
relative to the application module's XML definition. All of the configurations for all
of the application modules in a single Java package are saved in that same file.
Typically, you do not modify the bc4j.xcfg file directly and use the overview editor
to change configuration settings for specific application modules. To display the
application module configuration overview editor, double-click the application module
in the Applications window and, in the overview editor, select the Configurations
navigation tab. Then, in the Configurations page of the overview editor, click the
configuration hyperlink.

For example, if you look at the overview editor for application module configurations
for the BackOfficeAppModule application module in the SummitADF application (on
the bc4j.xcfg file in the ./src/oracle/summit/model/services/common directory),
you will see the two named configurations for the BackOfficeAppModule application
module. In this case, as the following example shows, the BackOfficeAppModuleLocal
and the BackOfficeAppModuleShared configurations specify JDBC URL connections
for use by the Oracle ADF Model Tester. The connection details for the JDBC
connections appear in the connections.xml file located in the ./.adf/META-INF
subdirectory relative to the project directory.

<BC4JConfig version="11.1" xmlns="http://xmlns.oracle.com/bc4j/configuration">
...
 <AppModuleConfigBag
 ApplicationName="oracle.summit.model.services.BackOfficeAppModule">
 <AppModuleConfig

Chapter 57
Setting Pool Configuration Parameters

57-6

 name="BackOfficeAppModuleLocal"
 jbo.project="oracle.summit.model.Model"
 ApplicationName="oracle.summit.model.services.BackOfficeAppModule"
 DeployPlatform="LOCAL" JDBCName="summit_adf">
 <Database jbo.TypeMapEntries="Java"/>
 <Security

AppModuleJndiName="oracle.summit.model.services.BackOfficeAppModule"/>
 </AppModuleConfig>
 <AppModuleConfig
 name="BackOfficeAppModuleShared"
 jbo.project="oracle.summit.model.Model"
 ApplicationName="oracle.summit.model.services.BackOfficeAppModule"
 DeployPlatform="LOCAL" JDBCName="summit_adf">
 <AM-Pooling jbo.ampool.maxpoolsize="1"
 jbo.ampool.isuseexclusive="false"/>
 <Database jbo.TypeMapEntries="Java"/>
 <Security

AppModuleJndiName="oracle.summit.model.services.BackOfficeAppModule"/>
 </AppModuleConfig>
 </AppModuleConfigBag>
</BC4JConfig>

Note that attributes of child elements of the <AppModuleConfig> tag have
names beginning with jbo that match the names of their ADF Business
Components properties (for example, the <AM-Pooling> tag defines the attribute
jbo.ampool.maxpoolsize that corresponds to the property jbo.ampool.maxpoolsize).
It's also important to understand that if a property is currently set to its runtime default
value in the application module configurations editor, then JDeveloper does not write
the entry to the bc4j.xcfg file.

How to Programmatically Set Configuration Properties
When your application requires control over application module configuration
properties at runtime, you can dynamically set these properties using ADF Business
Components API. For example, in a typical ADF application, your application module
may configure a static JDBC data source. However, when the application needs to
display data, depending upon the user, from various databases, you might set the data
source name and application module pool parameters at runtime.

You can set configuration properties programmatically by creating a Java class
that implements the EnvInfoProvider interface in the oracle.jbo.common.ampool
package. In your class, you override the getInfo() method and call put() to put
values into the environment Hashtable passed in as shown in the following example.

package devguide.advanced.customenv.view;
import java.util.Hashtable;
import oracle.jbo.common.ampool.EnvInfoProvider;
/**
 * Custom EnvInfoProvider implementation to set
 * environment properties programmatically
 */
public class CustomEnvInfoProvider implements EnvInfoProvider {
 /**
 * Overridden framework method to set custom values in the
 * environment hashtable.
 *
 * @param string - ignore

Chapter 57
Setting Pool Configuration Parameters

57-7

 * @param environment Hashtable of config parameters
 * @return null - not used
 */
 public Object getInfo(String string, Object environment) {
 Hashtable envHashtable = (Hashtable)environment;
 envHashtable.put("some.property.name","some value");
 return null;
 }
 /* Required to implement EnvInfoProvider */
 public void modifyInitialContext(Object object) {}
 /* Required to implement EnvInfoProvider */
 public int getNumOfRetries() {return 0;}
}

When creating an application module for a stateless or command-line-client, with the
createRootApplicationModule() method of the Configuration class, you can pass
the custom EnvInfoProvider as the optional second argument. In order to use a
custom EnvInfoProvider in an ADF web-based application, you need to implement
a custom session cookie factory class as shown in the following example. To use
your custom session cookie factory, set the jbo.ampool.sessioncookiefactoryclass
configuration property to the fully qualified name of your custom session cookie factory
class.

package devguide.advanced.customenv.view;
import java.util.Properties;
import oracle.jbo.common.ampool.ApplicationPool;
import oracle.jbo.common.ampool.EnvInfoProvider;
import oracle.jbo.common.ampool.SessionCookie;
import oracle.jbo.http.HttpSessionCookieFactory;
/**
 * Example of custom http session cookie factory
 * to install a custom EnvInfoProvider implementation
 * for an ADF web-based application.
 */
public class CustomHttpSessionCookieFactory
 extends HttpSessionCookieFactory {
 public SessionCookie createSessionCookie(String appId,
 String sessionId,
 ApplicationPool pool,
 Properties props) {
 SessionCookie cookie =
 super.createSessionCookie(appId, sessionId,pool, props);
 EnvInfoProvider envInfoProv = new CustomEnvInfoProvider();
 cookie.setEnvInfoProvider(envInfoProv);
 return cookie;
 }
}

Then add the JAR file containing the oracle.jbo.http.HttpSessionCookieFactory
class to the project file. The JAR file adfmweb.jar can be found in
the [JDEV_INSTALL]\Oracle_common\modules\oracle.adf.model\ directory.
This file is also called ADF Web Runtime in the libraries. To add the JAR file follow
these steps:

1. Right-click the project and select Project Properties.

2. Select Libraries and Classpath.

3. Click Add Library.

4. Select ADF Web Runtime and click OK.

Chapter 57
Setting Pool Configuration Parameters

57-8

Note:

If you do not add the JAR file, the IDE displays an error when you set
jbo.envinfoprovider to set the Data Source name and Application Module
Pool parameters dynamically at runtime

What You May Need to Know About Configuration Property Scopes
Each runtime configuration property used by ADF Business Components has a scope.
The scope of each property indicates when the property's value is evaluated and
whether its value is effectively shared (i.e. static) in a single Java VM, or not. The
ADF Business Components PropertyManager class is the registry of all supported
properties. It defines the property names, their default values, and their scope. This
class contains a main() method so that you can run the class from the command line
to see a list of all the configuration property information.

Assuming JDEVHOME is the JDeveloper installation directory, to see this list of
settings for reference, do the following:

$ java -cp JDEVHOME/BC4J/lib/bc4jmt.jar oracle.jbo.common.PropertyManager

Issuing this command will send all of the ADF Business Components configuration
properties to the console. It also lists a handy reference about the different levels at
which you can set configuration property values and remind you of the precedence
order these levels have:

Properties loaded from following sources, in order:
1. Client environment [Provided programmatically
 or declaratively in bc4j.xcfg]
2. Applet tags
3. -D flags (appear in System.properties)
4. bc4j.properties file (in current directory)
5. /oracle/jbo/BC4J.properties resource
6. /oracle/jbo/commom.jboserver.properties resource
7. /oracle/jbo/common.Diagnostic.properties resource
8. System defined default

You'll see each property is listed with one of the following scopes:

• MetaObjectManager

Properties at this scope are initialized once per Java VM when the ADF
PropertyManager is first initialized.

• SessionImpl

Properties at this scope are initialized once per invocation of
ApplicationModule.prepareSession().

• Configuration

Properties at this scope are initialized when the application module pool is first
created and the application module's configuration is read the first time.

• Diagnostic

Chapter 57
Setting Pool Configuration Parameters

57-9

Properties at this scope are specific to the built-in ADF Business Components
diagnostic facility.

At each of these scopes, the layered value resolution described above is performed
when the properties are initialized. Whenever property values are initialized, if you
have specified them in the Client Environment (level 1 in the resolution order) the
values will take precedence over values specified as System parameters (level 3 in the
resolution order).

The Client Environment is a hashtable of name/value pairs that you can either
programmatically populate, or which will be automatically populated for you by the
Configuration object when loaded, with the name/value pairs it contains in its entry
in the bc4j.xcfg file. The implication of this is that for any properties scoped at
MetaObjectManager level, the most reliable way to ensure that all of your application
modules use the same default value for those properties is to do both of the following:

1. Make sure the property value does not appear in any of your application module's
bc4j.xcfg file configuration name/value pair entries.

2. Set the property value using a Java system property in your runtime environment.

If, instead, you leave any MetaObjectManager-scoped properties in your bc4j.xcfg
files, you will have the undesirable behavior that they will take on the value specified in
the configuration of the first application module whose pool gets created after the Java
VM starts up.

What You May Need to Know About Application Module Pool
Configuration Parameters

The application module pool configuration parameters fall into three logical categories
relating to pool behavior, pool sizing, and pool cleanup behavior. By default Fusion
web applications enable application module pooling.

Pool Behavior Parameters
The application module defines configuration parameters that affect the behavior of the
application module pool and whether application module instances holds onto JDBC
connection that they obtain from the connection pool after an instance is removed from
the application module pool.

How ADF application module pools use the database connection pool depends on
the setting of the Disconnect Application Module Upon Release configuration
parameter jbo.doconnectionpooling. As shown in Figure 57-1, by default the setting
is disabled and the parameter has the setting jbo.doconnectionpooling=false.

.

Note:

The setting jbo.doconnectionpooling=false does not mean that there is
no database connection pooling happening. What it means is that the
application module is not disconnected from its JDBC connection upon check
in back to the application module pool.

Chapter 57
Setting Pool Configuration Parameters

57-10

When an application module instance is created in the application module pool it
acquires a JDBC connection. By default, ADF favors maintaining session affinity so
that across the request of a single user, ADF will try and reuse the same application
module instance (including its associated memory and JDBC connection and state),
with the goal of speeding up performance for such users. The default setting of
jbo.doconnectionpooling=false enables this behavior which enforces application
module instances keep their JDBC PreparedStatement objects cached and reusable
across subsequent requests by clients.

However, as the number of users who access the Fusion web application increases,
so does the memory requirement on the server to hold onto the JDBC connection,
prepare statement, and result sets. When the application module pool is configured
to support several thousand users, the demands of not releasing JDBC connections
after each request can place demands on server load with a fraction of the supported
managed user sessions. This situation is particularly notable in a deployment
environment configured to use database drivers that optimize performance over
memory consumption, as has been the case for Oracle JDBC drivers since Oracle
Database 10g.

To avoid the situation where server memory can be rapidly consumed by the
JDBC driver, you can override the default application module instance connection
behavior by setting jbo.doconnectionpooling=true, then each time a user session
finishes using an application module (typically at the end of each HTTP request), the
application module instance disassociates itself with the JDBC connection it was using
on that request and it returns the connection to the JDBC connection pool. The next
time that application module instance is used by a user session, it will reacquire a
JDBC connection from the JDBC connection pool and use it for the span of time
that application module is checked out of the application module pool (again, typically
the span of one HTTP request). Since the application module instance "unplugs"
itself from the JDBC connection object used to create each PreparedStatement, in
this situation it follows that the prepareSession() method will fire each time the
application module is checked out of the pool to reinitialize the database state. So,
when releasing JDBC connections is enabled for sessions, the trade-off is slightly
more JDBC overhead setup each time, in return for holding onto a smaller number of
overall database connections.

The key difference is seen when many application module pools are all using the same
underlying database user for their application connection.

• If 50 different application module pools each have even just a single application
module instance in them, with jbo.doconnectionpooling=false there will be
50 JDBC application connections in use. If the application module pooling size
parameters are set such that the application module pools are allowed to shrink
to 0 instances after an appropriate instance idle timeout by setting the Minimum
Available Size configuration parameter jbo.ampool.minavailablesize=0, then
when the application module is removed from its pool, it will put back the
connection its holding onto. This situation is optimal when the number of managed
application module instances remains low, outside of peak demand times or when
the application needs to support a low number of simultaneous users.

• In contrast, if 50 different application module pools each have a single application
module instance and jbo.doconnectionpooling=true, then the amount of JDBC
connections in use will depend on how many of those application modules are
simultaneously being used by different clients. If an application module instance
is in the pool and is not currently being used by a user session, then with
jbo.doconnectionpooling=true it will have released its JDBC connection back
to the connection pool and while the application module instance is sitting there

Chapter 57
Setting Pool Configuration Parameters

57-11

waiting for either another user to need it again, or to eventually be cleaned up
by the application module pool monitor, it will not be "hanging on" to a JDBC
connection. This situation is optimal in ensuring the scalability of the Fusion web
application during peak demand times or when the number of simultaneous users
is expected to increase.

When you set jbo.doconnectionpooling to true, the default setting 1 for the
Transaction Disconnect Level configuration parameter jbo.txn.disconnect_level
ensures that all application modules, view objects and row sets remain in memory
and stay valid after their corresponding references to JDBC connections are dropped.
This configuration reduces the memory requirement associated with this situation
where application module passivation is normally performed upon release. Instead,
upon activation, the framework only needs to reexecute and synchronize the cursor
positions.

Alternatively, you may be able to achieve a balance between conserving JDBC
connections and holding onto connections by configuring the Connection Threshold
configuration parameter jbo.ampool.connection_threshold. This parameter specifies
the maximum number of connections that application modules in all application
module pools combined may hold onto without releasing back to the
connection pool during application module pool cleanup. Note that setting the
jbo.ampool.connection_threshold parameter to a maximum number of connections
(greater than 0) implies disconnecting application modules during pool cleanup is
desired and therefore the configuration parameter jbo.doconnectionpooling must
not be enabled. For more details about how the jbo.ampool.connection_threshold
parameter affects application module pooling, see What You May Need to Know About
Optimizing Application Module Pooling.

Pool Sizing Parameters
The application module defines configuration parameters that affect the sizing of the
application module pool. When the pool monitor performs one of its resource cleanup
passes, it will try to bring the number of application module instances into the range
specified by the maximum and minimum available size parameters.

When the pool monitor cannot reduce the pool size below the maximum size by
removing unused and idle application module instance, it will then remove active
instances that have not timed out and passivate the state of these active application
modules. The Referenced Pool Size configuration parameter jbo.recyclethreshold
determines how many active application modules will remain in the pool monitor when
passivation occurs. By default, the threshold over which the pool monitor will begin
passivating is 10 application module instances.

You can use the Maximum Available Pool Size configuration parameter
jbo.ampool.maxavailablesize to specify the upper range of the pool size after
resource cleanup by the pool monitor. Typically, you override the default maximum
available size 25 based on the number of concurrent users and how frequently the
users need to access the services of the application module. However, when server
memory is not the limiting factor for application performance, the maximum available
size may be set to an arbitrarily large value to minimize the affect of passivation and
activation of application module instances that are still tied to active user sessions.

Chapter 57
Setting Pool Configuration Parameters

57-12

Note:

Specifying a sufficiently large maximum pool size is especially important
when configuring pool cleanup not to reclaim unused application module
instances and to allow idle times of 30 minutes for a typical HTTP session
timeout. For more information about configuring pool cleanup, see Pool
Behavior Parameters.

Similarly, you can use the Minimum Available Pool Size configuration parameter
jbo.ampool.minavailablesize to specify the lower range of the pool size, when the
default of 5 instances is not sufficient to ensure a baseline of available application
module instance. Typically, consider setting this value equal to the number of
concurrent users at non-peak usage. Setting this value too low results in needless
instantiation of application module instances that can affect performance.

Pool Cleanup Parameters
The application module defines configuration parameters that affect how resources are
reclaimed when the pool monitor does one of its resource cleanup passes.

A single application module pool monitor per Java VM runs in a background
thread and wakes up to scan through the pool to perform cleanup at the
interval of 600000 milliseconds (10 minutes) by default. To change the default
Pool Polling Interval, you can configure the Pool Polling Interval parameter
jbo.ampool.monitorsleepinterval.

The pool monitor uses the following two, independent strategies to identify which
application module instances are candidates to be removed from the pool and
reclaimed as a potential new resource.

1. The application module pool monitor removes application module instances from
the pool that have not been used for more than 3600000 milliseconds (which
is the default value and is exactly one hour). These unused application module
instances will be reclaimed regardless of the minimum available size configured
for the pool. To override the maximum time to live for an application module,
you can set the Maximum Instance Time to Live configuration parameter
jbo.ampool.timetolive. However, for most Fusion web applications, you will not
need to reclaim unused application module instance and can set this parameter
value to -1.

2. The application module pool monitor removes application module instances that
have remained idle for 600000 milliseconds (which is the default value and is
exactly 10 minutes). This cleanup stops when the number of instances in the
pool reaches the minimum available size. You can override the idle timeout
for application module instances using the Idle Instance Timeout configuration
parameter jbo.ampool.maxinactiveage when you want to allow idle user sessions
of more than 10 minutes.

Chapter 57
Setting Pool Configuration Parameters

57-13

Best Practice:

When you specify the length of time between application module pool
cleanup passes, set the same value for Pool Polling Interval configuration
parameter jbo.ampool.monitorsleepinterval for all application modules.
Since there is only a single application monitor pool monitor per Java
VM, the value that will effectively be used for the application module pool
monitor polling interval will be the value found in the application module
configuration read by the first application module pool that gets created.
Setting all application modules to use the same value ensures that this value
is set in a predictable way.

What You May Need to Know About Optimizing Application Module
Pooling

You may be able to achieve a balance between conserving JDBC connections
and holding onto connections by configuring the Connection Threshold
configuration parameter jbo.ampool.connection_threshold. This parameter specifies
the maximum number of connections that application modules in all application
module pools combined may hold onto without releasing back to the connection pool
upon the next pool cleanup cycle.

When the Connection Threshold parameter jbo.ampool.connection_threshold
is enabled (value greater than 0), application module connections are released
during pool cleanup, not during checkin. The cleanup monitor makes a
best effort to disconnect least recently-used application modules until the
total number of JDBC connections falls below the specified threshold limit.
Since enabling the jbo.ampool.connection_threshold parameter changes when
application module pool cleanup is performed, this implies setting the parameter
jbo.ampool.connection_threshold=true is not compatible.

Note:

When configuring a threshold value for disconnecting application modules
during the pool cleanup cycle, be sure to disable jbo.doconnectionpooling
so the value is false (default). The Connection Threshold parameter
is not compatible with the setting jbo.doconnectionpooling=true since
this setting causes JDBC connections to release back to the connection
pool upon checkin of the application module, and the setting works
in combination with the jbo.txn.disconnect_level parameter to ensure
business components remain in memory. For more information about the
jbo.doconnectionpooling parameter, see Pool Behavior Parameters.

For example, assume the Connection Threshold parameter is set to 10 for two
application module pools, where application module pool 1 has seven application
modules and pool 2 has eight application modules for a total of 15 JDBC connections.
When the application module pool cleanup monitor runs, the monitor will make a best
effort to reclaim five connections (15 connection resources - 10 connection threshold).
The monitor disconnects application modules proportional to the total number of

Chapter 57
Setting Pool Configuration Parameters

57-14

connected application modules for each pool. In this case, one third of the application
modules connections (5/15) from each pool will be disconnected. So pool 1 will loose
two connections (7/3) and pool 2 will release three connections (8/3), where the
fraction of the pool size will be rounded up.

The cleanup monitor makes a best effort to disconnect application modules until the
connected resource number falls below the specified limit but note that it may not be
able to do so if there are not enough application modules in an available state. To
ensure JDBC connections are released efficiently, you can configure the Pool Polling
Interval parameter jbo.ampool.monitorsleepinterval to shorten the monitor sleep
period.

Initializing Database State and Pooling Considerations
You can set database state on a per-user basis for your Fusion web application. This
is of great benefit as there may be a need to call upon stored procedures to initialize
database state related to a particular user's session.

Sometimes you may need to invoke stored procedures to initialize database state
related to the current user's session. The correct place to perform this initialization is in
an overridden prepareSession() method of your application module.

How to Set Database State Per User
The Fusion web application can set database state on a per-user basis. You typically
create a database CONTEXT namespace, associate a PL/SQL procedure with it, and
then use the SYS_CONTEXT() SQL function to reference values from the context.

For example, you can use the PL/SQL package to set and get a package-level
variable that holds the name of the currently authenticated Fusion web application
user as shown in the following example.

create or replace package context_pkg as
 procedure set_app_user_name(username varchar2);
 function app_user_name return varchar2;
end context_pkg;

Then your application can define the WHERE clause of a view object to reference the
context_pkg.app_user_name function and query the per-user state.

To set the database state, the application module framework extension class
(AppModuleImpl.java) defines a callStoredProcedure() helper method similar to
the ones in How to Invoke Stored Procedure with Only IN Arguments. The
custom application module class then extends this framework extension class and
defines the setCurrentUserInPLSQLPackage() helper method shown in the following
example. The helper method uses the callStoredProcedure() method to invoke
the context_pkg.set_app_user_name() stored procedure, passing the value of the
currently authenticated user as a parameter value.

// In CustomAppModuleImpl.java
public void setCurrentUserInPLSQLPackage() {
 String user = getUserPrincipalName();
 callStoredProcedure("context_pkg.set_app_user_name(?)",new Object[]{user});
}

With this helper method in place, the custom application module class then overrides
the prepareSession() method as shown in the following example.

Chapter 57
Initializing Database State and Pooling Considerations

57-15

// In CustomAppModuleImpl.java
 protected void prepareSession(Session session) {
 super.prepareSession(session);
 getLoggedInUser().retrieveUserInfoForAuthenticatedUser();
 setUserIdIntoUserDataHashtable();
 setCurrentUserInPLSQLPackage();
 }

Chapter 57
Initializing Database State and Pooling Considerations

57-16

Part VII
Appendixes

This part provides information that developers may need to know when building Fusion
web applications with Oracle ADF.

Specifically, it contains the following appendixes:

• Oracle ADF XML Files

• Oracle ADF Binding Properties

• ADF Security Permission Grants

• Most Commonly Used ADF Business Components Methods

• ADF Business Components Java EE Design Pattern Catalog

• ADF Equivalents of Common Oracle Forms Triggers

• Performing Common Oracle Forms Tasks in Oracle ADF

• Deploying ADF Applications to GlassFish

A
Oracle ADF XML Files

This appendix provides a reference for the Oracle ADF metadata files that you create
in your data model and user interface projects. You may use this information when you
want to edit the contents of the metadata these files define.
This appendix includes the following sections:

• About ADF Metadata Files

• ADF File Overview Diagram

• ADF File Syntax Diagram

• adfm.xml

• modelProjectName.jpx

• bc4j.xcfg

• DataBindings.cpx

• pageNamePageDef.xml

• adfc-config.xml

• task-flow-definition.xml

• adf-config.xml

• adf-settings.xml

• web.xml

• logging.xml

About ADF Metadata Files
An Oracle Fusion web application uses various metadata XML files that summarizes
basic information about data, which can make finding and working with particular
instances of data easier. These files are used to configure the runtime behavior of the
system.

Metadata files in a Fusion web application are structured XML files used by the
application to:

• Specify the parameters, methods, and return values available to your application's
Oracle ADF data control usages

• Create objects in the Oracle ADF binding context and define the runtime
behavior of those objects

• Define configuration information about the UI components in JSF and ADF Faces

• Define application configuration information for the Java EE application server

In the case of ADF bindings, you can use the binding-specific editors to customize
the runtime properties of the binding objects. You can open a binding editor when you

A-1

display the Structure window for a page definition file and choose Go to Properties
from the context menu.

Additionally, you can view and edit the contents of any metadata file in JDeveloper's
XML editor. The easiest way to work with these files is through the Structure window
and Properties window. In the Structure window, you can choose an element and
in the Properties window, you can define attribute values for the element, often by
choosing among dropdown menu choices. Use this appendix to learn the choices you
can choose in the case of the Oracle ADF-specific elements.

ADF File Overview Diagram
The Oracle ADF File Hierarchy diagram helps you to understand the interrelationship
of the metadata files used to work with the ADF Business Components data control in
a view layer project.

The relationship between the Oracle ADF metadata files defines dependencies
between the model data and the user interface projects. The dependencies are
defined as file references within XML elements of the files, where these design
time definitions in the Model project reference the DataBindings.jpx file in the
ViewController project, which in turn references the page definition files.

Figure A-1 illustrates the hierarchical relationship of the XML metadata files that you
might work with in a Fusion web application that uses an ADF Business Components
application module as a service interface to JSF web pages.

Figure A-1 Oracle ADF File Hierarchy Overview for the Fusion Web Application

Application Configuration Files

Oracle ADF Data Binding Files

View Controller Project

<pageName>PageDef.xml

Oracle ADF Data Control Files

Model Project with ADF Business Components

AppModule.xml

Model.jpx

<entityObjectXMLDescriptorFile>.xml

<viewObjectXMLDescriptorFile>.xml

Web Configuration Files

web.xml

trinidad-config.xml

adfc-config.xml

task-flow-definition.xml

Oracle ADF Configuration Files

adf-settings.xml

bc4j.xcfg

DataBindings.cpx

adf-config.xml

Appendix A
ADF File Overview Diagram

A-2

Oracle ADF Data Control Files
In a Fusion web application containing ADF Business Components, the data control
implementation files are contained within the application. The application module and
view object XML component descriptor files provide the references for the data
control. These files, with the bc4j.xcfg file, provide the necessary information for the
data control.

An application that uses ADF Business Components in one project and a non-ADF
Business Components data control in another project may have a DataControls.dcx
file, as well as supporting <sessionbeanname>.xml and <beanname>.xml files.

Oracle ADF Data Binding Files
These standard XML configuration files for a Fusion web application appear in your
user interface project:

• adfm.xml: This file lists the DataBindings.cpx file that is available in the current
project.

See adfm.xml for more information.

• DataBindings.cpx : This file contains the page map, page definitions references,
and data control references. The file is created the first time you create a data
binding for a UI component (either from the Structure window or from the Data
Controls panel). The DataBindings.cpx file defines the Oracle ADF binding
context for the entire application. The binding context provides access to the
bindings and data controls across the entire application. The DataBindings.cpx
file also contains references to the <pagename>PageDef.xml files that define the
metadata for the Oracle ADF bindings in each web page.

For more information, see DataBindings.cpx.

• <pagename>PageDef.xml: This is the page definition XML file. It associates web
page UI components with data, or data controls. JDeveloper creates this file each
time you design a new web page using the Data Controls panel or Structure
window. These XML files contain the metadata used to create the bindings that
populate the data in the web page's UI components. For every web page that
refers to an ADF binding, there must be a corresponding page definition file with
binding definitions.

For more information, see pageNamePageDef.xml.

Web Configuration Files
These standard XML configuration files required for a JSF application appear in your
user interface project:

• web.xml: Part of the application's configuration is determined by the contents of
its Java EE application deployment descriptor, web.xml. The web.xml file defines
everything about your application that a server needs to know. The file plays a role
in configuring the Oracle ADF data binding by setting up the ADFBindingFilter.
Additional runtime settings include servlet runtime and initialization parameters,
custom tag library location, and security settings.

Appendix A
ADF File Overview Diagram

A-3

For more information about ADF data binding and JSF configuration options, see
web.xml.

An ADF Faces application typically uses its own set of configuration files in
addition to web.xml. For more information, see Configuration in trinidad-config.xml
in Developing Web User Interfaces with Oracle ADF Faces.

• adfc-config.xml: The configuration file for an ADF unbounded task flow.
The configuration file contains metadata about the activities and control flows
contained in the unbounded task flow. The default name for this file is adfc-
config.xml, but an end user can change the name.

For more information, see adfc-config.xml.

• task-flow-definition.xml: The configuration file for an ADF bounded task flow.
The configuration file contains metadata about the activities and control flows
contained in the bounded task flow. The default name for this file can be task-
flow-defintion.xml or whatever an end user specifies in the Create ADF Task
Flow dialog. The same application can contain multiple task flow definition files.

For more information, see task-flow-definition.xml.

ADF File Syntax Diagram
Oracle ADF File Syntax Diagram helps you to understand the hierarchical
interrelationship of the XML metadata files in a web application that uses an ADF
application module as a service interface to ADF Business Components.

Figure A-2 illustrates the hierarchical relationship of the XML metadata files that you
might work with in a web application that uses an ADF application module as a service
interface to ADF Business Components. At runtime, the objects created from these
files interact in this sequence:

1. When the first request for an ADF databound web page occurs, the servlet
registers the Oracle ADF servlet filter ADFBindingFilter named in the web.xml
file.

2. The binding filter creates an empty binding context.

3. When a page is rendered, the binding filter asks the binding context to load a
corresponding PageDef.xml for the page.

4. The binding context creates the binding container by loading the <page> file as
referenced by the <pagemap> element in the DataBindings.cpx file.

5. The adfm.xml file loads the DataBindings.cpx contents and finds the
right PageDef.xml based on the <pagemap> element reference to the
<pageDefinitionUsage> element.

6. The binding container's prepareModel phase prepares and refreshes all relevant
executables (most are marked deferred by default).

7. An iterator binding gets executed by referencing the named method on the data
control found through the data control factory named in the case of ADF Business
Components in the bc4j.xcfg file.

8. The binding container also creates the bindings defined in the <bindings> section
of the pagenamePageDef.xml file for the mapped web page.

9. The web page references to ADF bindings through EL using the expression
#{bindings} are resolved by accessing the binding container of the page.

Appendix A
ADF File Syntax Diagram

A-4

10. The page pulls the available data from the bindings in the binding container.

Figure A-2 Oracle ADF File Hierarchy and Syntax Diagram for an ADF BC-
based Web Application

web.xml
...

...

DataBindings.cpx
<Application>

 ...

</Application>

<pagename>PageDef.xml*
<pageDefinition>

 ...

 ...

</pageDefinition>

<pagename>.jsf
...

<af:xxx

 ...

 ...

</af:xxx>

...

adfm.xml
<MetaDataDirectory>

...

...

<MetaDataDirectory>

bc4j.xcfg
<BC4JConfig>

 ...

</BC4JConfig>

<ApplicationModuleName>.xml

<ViewUsage

 Name=”OrdersFor

 Customer”

 ViewObjectName=

 ”oracle.summit.model.

 views.OrdVO“/>

<ViewUsage

 Name=”ItemsForOrder“

 ViewObjectName=

 ”oracle.summit.model.

 views.ItemVO“/>

<fi lter>

 <filter-name>adfBindings

 </ filter-name>

 <filter-class>

oracle.adf.model.servlet.ADF

BindingFilter

</ filter-class>

</ filter>

<DataBindingRegistry

path=”oracle/summit/view/

DataBindings.cpx”/>

<dataControlUsages>

 <BC4JDataControl id=”

 <appmodulename>”

 Package=”<pkgame>”

 Configuration=”Store

 ServiceAMLocal”/>

</dataControlUsages>

<AppModuleConfigBag>

 <AppModuleConfigname=

“CustomerSelfServiceLocal”>
<pageDefinitionUsages>

 <page id=”<pagename>

 PageDef”

 path=”<pkgname>”/> ...

</pageDefinitionUsages>

<executables>

 <iterator=id=”<vo name>

 Iterator”

Binds=”<vo name>”

 />...

<executables>

first=”# { bindings find

<beanname>rangeStart} ”

value=”# { bindings find

<beanname>collection.Model} ”

rows=”# { bindings find

<beanname>rangeSize} ”

Legend

Denotes multiple files of

this type may exist in the

project

Solid lines indicate

hierarchy of metadata

Dotted lines indicate

references to objects in the

ADF binding context

Presentation layer

ADF BC and Oracle ADF

Model layer

*

<bindings>

 <...

IterBinding=”<vo name>

 Iterator”>...

 />...

</bindings>

adfm.xml
The adfm.xml file is a registry of registries used by the ADF framework to quickly
find all metadata files used at runtime. This registry XML file records four types of
metadata files —.cpx, .dcx, .xcfg, .jpx.

The adfm.xml file contains the classpath-relative paths for the .cpx, .dcx, .jpx,
and .xcfg files in each design time project that is included in the runtime deployed
application. The adfm.xml file operates as a dynamically maintained "Registry of
Registries" that is used to quickly find all .cpx, .dcx, .jpx, and .xcfg files (which
are themselves registries of metadata).

The file registry is used extensively by the ADF Library resource catalog browsing
implementations, by ADF Model layer design time, and at runtime during merge and
discovery.

Appendix A
adfm.xml

A-5

When a developer creates a binding on a page, JDeveloper adds metadata files (for
example, page definitions) in the project source tree. The adfm.xml file then notes the
location of each.

When a project is built, the adfm.xml file is put in project-root/adfmsrc/META-INF/
adfm.xml. The project-level archive deployment profiles locate the file at META-INF/
adfm.xml.

At runtime, the application classpath is scanned to build the list of .cpx files that
comprise the application. The application then loads each.cpx as needed to create the
binding context. For details about ADF Model layer usage, see What Happens When
You Use the Data Controls Panel.

Four types of sub registries are recorded by the adfm.xml file:

• DataBindingRegistry (.cpx)

• DataControlRegistry (.dcx)

• BusinessComponentServiceRegistry (.xcfg)

• BusinessComponentProjectRegistry (.jpx)

modelProjectName.jpx
JDeveloper uses the modelProjectName.jpx file as a registry to track the contents of
the model packages. It also contains metadata for shared ADF application modules
present in the project, which is used by both design-time and runtime components.

The.jpx file contains configuration information that JDeveloper uses in the design time
to allow you to create the data model project with ADF Business Components. It also
contains metadata that defines how a shared application module is used at runtime.
Because the shared application module can be accessed by any data model project
in the same Fusion web application, JDeveloper maintains the scope of the shared
application module in the ADF Business Components project configuration file.

This file is saved in the src directory of the project. For example, the Summit sample
application for Oracle ADF stores the Model.jpx file in the .src/oracle/summit/model
subdirectory of the Model project.

The following example displays a sample default.jpx file.

<JboProject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="Model"
 Version="12.1.2.66.11"
 SeparateXMLFiles="true"
 PackageName="oracle.summit.model">
 <DesignTime>
 <Attr Name="_appModuleNames2"
 Value="oracle.summit.model.services.BackOfficeAppModule"/>
 <Attr Name="_jprName" Value="../../../../Model.jpr"/>
 <Attr Name="_appModuleNames1"
 Value="oracle.summit.model.services.CustomerSelfServiceAppModule"/>
 <Attr Name="_appModuleNames0"
 Value="oracle.summit.model.services.SummitAppModule"/>
 <Attr Name="_jbo.TypeMapEntries" Value="Java"/>
 <Attr Name="_NamedConnection" Value="summit_adf"/>
 </DesignTime>
 <Containee

Appendix A
modelProjectName.jpx

A-6

 Name="assoc"
 PackageName="oracle.summit.model.entities.assoc"
 ObjectType="JboPackage">
 <DesignTime>
 <Attr Name="_AS" Value="true"/>
 </DesignTime>
 </Containee>
 <Containee
 Name="entities"
 PackageName="oracle.summit.model.entities"
 ObjectType="JboPackage">
 <DesignTime>
 <Attr Name="_EO" Value="true"/>
 <Attr Name="_VO" Value="true"/>
 </DesignTime>
 </Containee>
 <Containee
 Name="services"
 PackageName="oracle.summit.model.services"
 ObjectType="JboPackage">
 <DesignTime>
 <Attr Name="_AM" Value="true"/>
 </DesignTime>
 </Containee>
 <Containee
 Name="links"
 PackageName="oracle.summit.model.views.links"
 ObjectType="JboPackage">
 <DesignTime>
 <Attr Name="_VL" Value="true"/>
 </DesignTime>
 </Containee>
 <Containee
 Name="readonly"
 PackageName="oracle.summit.model.views.readonly"
 ObjectType="JboPackage">
 <DesignTime>
 <Attr Name="_VO" Value="true"/>
 </DesignTime>
 </Containee>
 <Containee
 Name="views"
 PackageName="oracle.summit.model.views"
 ObjectType="JboPackage">
 <DesignTime>
 <Attr Name="_VO" Value="true"/>
 </DesignTime>
 </Containee>
</JboProject>

bc4j.xcfg
The bc4j.xcfg file contains metadata information about the ADF application module
and runtime parameters that have been configured to manage the runtime behavior of
each application module instance.

The bc4j.xcfg file contains metadata information about application module names,
the database connection used by the application module, and the runtime parameters
the user has configured for the application module.

Appendix A
bc4j.xcfg

A-7

The bc4j.xcfg file is located in the ./common subdirectory relative to the application
module's XML component definition. All of the configurations for all of the application
modules in a single Java package are saved in that same file. For example, if
you look at the bc4j.xcfg file in the /Model/src/oracle/summit/model/services/
common directory of the Summit ADF sample application's Model project, you see the
configurations for its application modules. For details about editing the configurations,
see How to Change Your Application Module's Runtime Configuration and Setting Pool
Configuration Parameters.

Example A-1 displays a sample bc4j.xcfg file from the Summit ADF sample
application.

Example A-1 Sample bc4j.xcfg File

<?xml version = '1.0' encoding = 'UTF-8'?>
<BC4JConfig version="11.1" xmlns="http://xmlns.oracle.com/bc4j/configuration">
 <AppModuleConfigBag
ApplicationName="oracle.summit.model.services.SummitAppModule">
 <AppModuleConfig name="SummitAppModuleLocal" DeployPlatform="LOCAL"
JDBCName="summit_adf" jbo.project="oracle.summit.model.Model"
java.naming.factory.initial="oracle.jbo.common.
 JboInitialContextFactory"
ApplicationName="oracle.summit.model.services.SummitAppModule">
 <Database jbo.TypeMapEntries="Java"/>
 <Security
AppModuleJndiName="oracle.summit.model.services.SummitAppModule"/>
 </AppModuleConfig>
 <AppModuleConfig name="SummitAppModuleShared" DeployPlatform="LOCAL"
JDBCName="summit_adf" jbo.project="oracle.summit.model.Model"
java.naming.factory.initial="oracle.jbo.common.JboInitialContextFactory"

ApplicationName="oracle.summit.model.services.SummitAppModule">
 <AM-Pooling jbo.ampool.isuseexclusive="false"
jbo.ampool.maxpoolsize="1"/>
 <Database jbo.TypeMapEntries="Java"/>
 <Security
AppModuleJndiName="oracle.summit.model.services.SummitAppModule"/>
 </AppModuleConfig>
 </AppModuleConfigBag>
 <AppModuleConfigBag
ApplicationName="oracle.summit.model.services.CustomerSelfServiceAppModule">
 <AppModuleConfig
name="CustomerSelfServiceLocal" jbo.project="oracle.summit.model.Model"
ApplicationName="oracle.summit.model.services.CustomerSelfServiceAppModule"
 DeployPlatform="LOCAL"
JDBCName="summit_adf">
 <Database jbo.TypeMapEntries="Java"/>
 <Security
AppModuleJndiName="oracle.summit.model.services.CustomerSelfServiceAppModule"/>
 </AppModuleConfig>
 <AppModuleConfig
name="CustomerSelfServiceShared" jbo.project="oracle.summit.model.Model"
ApplicationName="oracle.summit.model.services.CustomerSelfServiceAppModule"
 DeployPlatform="LOCAL"
JDBCName="summit_adf">
 <AM-Pooling jbo.ampool.maxpoolsize="1"
jbo.ampool.isuseexclusive="false"/>
 <Database jbo.TypeMapEntries="Java"/>
 <Security
AppModuleJndiName="oracle.summit.model.services.CustomerSelfServiceAppModule"/>
 </AppModuleConfig>

Appendix A
bc4j.xcfg

A-8

 </AppModuleConfigBag>
 <AppModuleConfigBag
ApplicationName="oracle.summit.model.services.BackOfficeAppModule">
 <AppModuleConfig
name="BackOfficeAppModuleLocal" jbo.project="oracle.summit.model.Model"
ApplicationName="oracle.summit.model.services.BackOfficeAppModule"
DeployPlatform="LOCAL" JDBCName="summit_adf">
 <Database jbo.TypeMapEntries="Java"/>
 <Security
AppModuleJndiName="oracle.summit.model.services.BackOfficeAppModule"/>
 </AppModuleConfig>
 <AppModuleConfig
name="BackOfficeAppModuleShared" jbo.project="oracle.summit.model.Model"
ApplicationName="oracle.summit.model.services.BackOfficeAppModule"
DeployPlatform="LOCAL" JDBCName="summit_adf">
 <AM-Pooling jbo.ampool.maxpoolsize="1"
jbo.ampool.isuseexclusive="false"/>
 <Database jbo.TypeMapEntries="Java"/>
 <Security
AppModuleJndiName="oracle.summit.model.services.BackOfficeAppModule"/>
 </AppModuleConfig>
 </AppModuleConfigBag>
</BC4JConfig>

DataBindings.cpx
In an ADF web application, as soon as you drop a databound component on your
page, a DataBindings.cpx file gets created. The DataBindings.cpx keeps track of the
individual page definition files used within the project, as well as the DataControls
mapping to things such as ADF Business Components Application Modules.

The DataBindings.cpx file is created in the user interface project the first time you
drop a data control usage onto a web page in the visual editor. The DataBindings.cpx
file defines the Oracle ADF binding context for the entire application and provides
the metadata from which the Oracle ADF binding objects are created at runtime. It is
used extensively by the ADF Library resource catalog browsing implementations, and
also by the .cpx and .dcx design time and runtime merge and discovery. When you
insert a databound UI component into your document, the page will contain binding
expressions that access the Oracle ADF binding objects at runtime.

The DataBindings.cpx file appears in the /src directory of the user interface project.
When you double-click the file node, the binding context description appears in the
XML source editor. (To edit the binding context parameters, use the Properties window
and choose the desired parameter in the Structure window.)

DataBindings.cpx Syntax
The top level element of the DataBindings.cpx file is <Application>. For example:

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="11.1.1.56.60" id="DataBindings" SeparateXMLFiles="false"
 Package="oracle.summit.view" ClientType="Generic">

Figure A-3 shows the structure definition of the DataBindings.cpx file in the Summit
standalone sample applications for Oracle ADF.

Appendix A
DataBindings.cpx

A-9

Figure A-3 Structure of the DataBindings.cpx File

The child elements have the following usages:

• <definitionFactories> registers a factory class to create the ADF binding
objects associated with a particular namespace at runtime. The factory class is
specific to the namespace associated with the type of ADF binding (for instance, a
task flow binding).

• <pageMap> maps all user interface URLs and the corresponding page definition
usage name. This map is used at runtime to map a URL to its page definition.

• <pageDefinitionUsages> maps a page definition usage (BindingContainer
instance) name to the corresponding page definition. The id attribute represents
the usage ID. The path attribute represents the full path to the page definition.

• <dataControlUsages> declares a list of data control usages (shortnames) and
corresponding path to the data control definition entries in the .dcx or .xcfg file.

Table A-1 describes the attributes of the DataBindings.cpx elements.

Table A-1 Attributes of the DataBindings.cpx File Elements

Element Syntax Attributes Attribute Description

<definitionFactories>
<factory/></
definitionFactories>

nameSpace A URI. Identifies the location of the executable
elements in the page definition usage.

className The fully qualified class name. Identifies the location
of the factory class that creates the page definition
usage objects.

<pageMap> <page /></
pageMap>

path The full directory path. Identifies the location of the
user interface page.

usageId A unique qualifier. Names the page definition ID that
appears in the ADF page definition file. The ADF
binding servlet looks at the incoming URL requests
and checks that the bindings variable is pointing to
the ADF page definition associated with the URL of
the incoming HTTP request.

Appendix A
DataBindings.cpx

A-10

Table A-1 (Cont.) Attributes of the DataBindings.cpx File Elements

Element Syntax Attributes Attribute Description

<pageDefinitionUsages>
<page/></
pageDefinitionUsages>

id A unique qualifier. References the page definition ID
that appears in the ADF page definition file.

path The fully qualified package name. Identifies the
location of the user interface page's ADF page
definition file.

<dataControlUsages>
<dc.../></
dataControlUsages>

id A unique qualifier. Identifies the data control usage as
is defined in the DataControls.dcx file.

path The fully qualified package name. Identifies the
location of the data control.

DataBindings.cpx Sample
Example A-2 shows the syntax for the DataBindings.cpx file in the Summit ADF
sample application.

The ADF executable definition factory (factory element) is named by a className
attribute and is associated with a namespace. At runtime, the factory class creates the
executable definition objects that leads to the creation of the binding objects for the
ADF binding container associated with a particular page definition. The factory locates
the page definition through two DataBindings.cpx file elements: the pageMap element
that maps the page URL to the page definition ID (usageId attribute) assigned at
design time and the pageDefinitionUsages element that maps the ID to the location of
the page definition from the project or project classpath.

Additionally, the ADF Business Components data control (BC4JDataControl element)
is named by the id attribute. The combination of the Package attribute and the
Configuration attribute is used to locate the bc4j.xcfg file in the ./common
subdirectory of the indicated package. The configuration contains the information of
the application module name and all the runtime parameters the user has configured.

Example A-2 Sample DataBindings.cpx File

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="11.1.1.56.60" id="DataBindings" SeparateXMLFiles="false"
 Package="oracle.summit.view" ClientType="Generic">
 <definitionFactories>
 <factory nameSpace="http://xmlns.oracle.com/adf/controller/binding"

className="oracle.adf.controller.internal.binding.TaskFlowBindingDefFactoryImpl"/
>
 <dtfactory
className="oracle.adf.controller.internal.dtrt.binding.BindingDTObjectFactory"/>
 <factory nameSpace="http://xmlns.oracle.com/adfm/dvt"

className="oracle.adfinternal.view.faces.dvt.model.binding.FacesBindingFactory"/>
 </definitionFactories>
 <pageMap>
 <page path="/index.jsf" usageId="oracle_summit_view_indexPageDef"/>
 <page path="/Customers.jsff" usageId="oracle_summit_view_CustomersPageDef"/>
 <page path="/orders/Orders.jsff"
 usageId="oracle_summit_view_OrdersPageDef"/>

Appendix A
DataBindings.cpx

A-11

 <page path="/carousel/InventoryControl.jsff"
usageId="oracle_summit_view_InventoryControlTestPageDef"/>
 </pageMap>
 <pageDefinitionUsages>
 <page id="oracle_summit_view_CustomersPageDef"
 path="oracle.summit.view.pageDefs.CustomersPageDef"/>
 <page id="oracle_summit_view_indexPageDef"
 path="oracle.summit.view.pageDefs.indexPageDef"/>
 <page id="oracle_summit_view_OrdersPageDef"
 path="oracle.summit.view.pageDefs.OrdersPageDef"/>
 <page id="oracle_summit_view_InventoryControlTestPageDef"
 path="oracle.summit.view.pageDefs.InventoryControlPageDef"/>
 </pageDefinitionUsages>
 <dataControlUsages>
 <BC4JDataControl id="BackOfficeAppModuleDataControl"
 Package="oracle.summit.model.services"
 FactoryClass="oracle.adf.model.bc4j.DataControlFactoryImpl"
 SupportsTransactions="true" SupportsFindMode="true"
 SupportsRangesize="true" SupportsResetState="true"
 SupportsSortCollection="true"
 Configuration="BackOfficeAppModuleLocal"
 syncMode="Immediate"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"/>
 </dataControlUsages>
</Application>

pageNamePageDef.xml
In an ADF web application, as soon as you draga component from Data
Control panel to a JSF page, a page definition file gets created with the name
pageNamePageDef.xml. The pageNamePageDef.xml file contains binding metadata
for each data bound UI element present on the page.

The pageNamePageDef.xml files are created each time you insert a databound
component into a web page using the Data Controls panel or Structure window.
These XML files define the Oracle ADF binding container for each web page in the
application. The binding container provides access to the bindings within the page.
You will have one XML file for each databound web page.

Caution:

The DataBindings.cpx file maps JSF pages to their corresponding page
definition files. If you change the name of a page definition file or a JSF
page, JDeveloper does not automatically refactor the DataBindings.cpx file.
You must manually update the page mapping in the DataBindings.cpx file.

The PageDef.xml file appears in the /src/view directory of the user interface project.
The Applications window displays the file in the view package of the Application
Sources node. When you double-click the file node, the page description appears
in the XML source editor. To edit the page description parameters, use the Properties
window and choose the desired parameter in the Structure window. See Working with
Page Definition Files.

There are important differences in how the page definitions are generated for methods
that return a single value and a collection.

Appendix A
pageNamePageDef.xml

A-12

PageDef.xml Syntax
The top-level element of the PageDef.xml file is <pageDefinition>:

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.59.23" id="<pagename>PageDef"
 Package="oracle.summit.view.pageDefs">

where the XML namespace attribute (xmlns) specifies the URI to which the ADF
binding container binds at runtime. Only the package name is editable; all other
attributes should have the values shown.

The following example displays the child element hierarchy of the <pageDefinition>
element. Note that each business service for which you have created a data control
will have its own <AdapterDataControl> definition.

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition>
 <parameters>
 ...
 </parameters>
 <executables>
 ...
 </executables>
 <bindings>
 ...
 </bindings>
</pageDefinition>

The child elements have the following usages:

• <parameters> defines page-level parameters that are EL accessible. These
parameters store information local to the web page request and may be accessed
in the binding expressions.

• <executables> defines the list of items (methods, view objects, and accessors)
to execute during the prepareModel phase of the ADF page lifecycle. Methods to
be executed are defined by <methodIterator>. The lifecycle performs the execute
in the sequence listed in the <executables> section. Whether or not the method
or operation is executed depends on its Refresh or RefreshCondition attribute
value. Built-in operations on the data control are defined by:

– <page>: definition for a nested page definition (binding container)

– <iterator>: definition to a named collection in DataControls

– <accessorIterator>: definition to get an accessor in a data control hierarchy

– <methodIterator>: definition to get to an iterator returned by an invoked
method defined by a methodAction in the same file

– <variableIterator>: internal iterator that contains variables declared for the
binding container

– <invokeAction>: definition of which method to invoke as an executable

Appendix A
pageNamePageDef.xml

A-13

Note:

Only use invokeAction when your application does not use the
ADF Controller module from the Fusion web application technology
stack. If your application uses the ADF Controller module, Oracle
recommends that you use a task flow method call activity, as
described in Using Method Call Activities.

• <bindings> refers to an entry in <executables> to get to the collection from which
bindings extract/submit attribute level data.

Table A-2 describes the attributes of the top-level <pageDefinition> element.

Table A-2 Attributes of the PageDef.xml File <pageDefinition> Element

Element Syntax Attributes Attribute Description

<pageDefinition> ControllerClass Fully qualified class name to create when
controller requests a PageController object for this
bindingContainer.

EnableTokenValidatio
n

Enables currency validation for this bindingContainer when
a postback occurs. This is to confirm that the web tier state
matches the state that particular page was rendered with.

FindMode FindMode is for legacy (10.1.2) use only and indicates
whether this bindingContainer should start out in findMode
when initially prepared.

MsgBundleClass Fully qualified package name. Identifies the class which
contains translation strings for any bindings.

SkipValidation Determines if data validation occurs. The supported values
are:

• true: skips data validation. Note that attribute
validation on the client side at the binding level still
occurs. For example, validates non-null and type
conversion errors.

• false: validates all rows for all data controls
referenced in the current page. This is the default
value.

• skipDataControls: validates the current rows of
iterator bindings modified in the current page.

• custom: set to custom if your
application implements an instance of the
oracle.binding.BindingContainerValidator
interface and references it through an EL expression
entry named CustomValidator in the binding
container.

Setting a value for this attribute can be useful if you want
to skip data validation on, for example, a train component.
For more information, see How to Create the Train Model
in Developing Web User Interfaces with Oracle ADF Faces.

Viewable An EL expression that should resolve at runtime to whether
this binding and the associated component should be
rendered or not.

Table A-3 describes the attributes of the child element of <parameters>.

Appendix A
pageNamePageDef.xml

A-14

Table A-3 Attributes of the PageDef.xml File <parameters> Element

Element Syntax Attributes Attribute Description

<parameter> evaluate Specifies when the parameter should be evaluated:
eachUse, firstUse, or inPrepareModel.

id Unique identifier. May be referenced by ADF bindings.

option Indicates the usage of the variable within the binding
container:

• Final indicates that this parameter cannot be passed
in by a usage of this binding container. It must use the
default value in the definition.

• Optional indicates that the variable value need not be
provided.

• Mandatory specifies that the parameter value must be
provided at runtime using Java or an EL expression.
Failure to provide a value for a mandatory parameter
or binding leads to an exception being thrown during
binding validation.

readonly Indicates whether the parameter value may be modified or
not. Set to true when you do not want the application to
modify the parameter value.

value A default value, which can be an EL expression.

Table A-4 describes the attributes of the PageDef.xml <executables> elements.

Table A-4 Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

<accessorIterator> Accessor Specifies any other accessor defined by this binding.

Binds Specifies the view or action to which the iterator is bound.

BeanClass Identifies the Java type of beans in the associated iterator
or collection.

CacheResults If true, manages the data collection between requests.

ChangeEventRate Specifies the rate of events when a component is wired to
data via this iterator and is in polling event mode.

DataControl Interprets and returns the collection referred to by this
iterator binding.

id Unique identifier. May be referenced by any ADF value
binding.

MasterBinding Reference to the methodIterator (or iterator) that binds
the data collection that serves as the master to the
accessor iterator's detail collection.

ObjectType Used for ADF Business Components only. A boolean value
determines whether the collection is an object type or not.

Appendix A
pageNamePageDef.xml

A-15

Table A-4 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

RangeSize Specifies the number of data objects in a range to fetch
from the bound collection. The range defines a window
you can use to access a subset of the data objects in
the collection. Typically, when you create a component by
dragging an object from the Data Controls panel, the range
size is set to 25. Use RangeSize when you want to work
with an entire set or when you want to limit the number of
data objects to display in the page. Note that the values
-1 and 0 have specific meaning: the value -1 returns all
available objects from the collection, while the value 0 will
return the same number of objects as the collection uses to
retrieve from its data source. If the RangeSize attribute is
not specified at all, all available objects are returned.

Appendix A
pageNamePageDef.xml

A-16

Table A-4 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

Refresh Determines when to invoke the executable. Oracle
recommends that you do not change from the default value
(deferred) for the Refresh attribute and that you do
use an EL expression for the RefreshCondition attribute
to determine if an executable should be refreshed. For
completeness' sake, the following is the list of valid attribute
values:

• always: Invokes the executable each time the binding
container is prepared. This occurs when the page
displays and when the user submits changes, or when
the application posts back to the page.

• deferred: Refresh occurs when another binding
requires or refers to this executable. Since refreshing
an executable may impact performance, you can set
the refresh to occur only if deferred is used in a
binding that is being rendered. This is the default value
for ADF Faces applications.

• <default>: Always set to deferred by default.
• ifNeeded: Whenever the framework needs to refresh

the executable because it has not been refreshed to
this point. For example, when you have an accessor
hierarchy such that a detail is listed first in the page
definition, the master could be refreshed twice (once
for the detail and again for the master's iterator).
Using ifNeeded avoids duplicate refreshes. This is the
default value for all view technologies other than ADF
Faces.

• never: The application itself calls refresh on the
executable during one of the controller phases and
does not want the framework to refresh the executable
at all.

• prepareModel: Invokes the executable each time the
page's binding container is prepared.

• prepareModelIfNeeded: Invokes the executable
during the Prepare Model phase if this executable has
not been refreshed to this point. See also ifNeeded.

• renderModel: Invokes the executable each time the
page is rendered.

• renderModelIfNeeded: Invokes the executable
during the page's Render Model phase on the
condition that it is needed. See also ifNeeded.

RefreshCondition An EL expression that determines if the executable should
be refreshed. Use with the executable's Refresh attribute
to make the refresh of the executable predictable. The
Refresh attribute is evaluated if the EL expression that you
set for RefreshCondition returns true.

RefreshAfter Use to handle dependencies between executables. For
example, you can set a condition so that this executable
refreshes after another executable.

Appendix A
pageNamePageDef.xml

A-17

Table A-4 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

RowCountThreshold Specify a value to determine if a result set returns
the number of rows you specify as a value. If you
set RowCountThreshold to 0, the iterator returns the
estimated row count in the result set by executing the count
query. If you set RowCountThreshold to less than 0, the
iterator does not execute the count query.

Set RowCountThreshold to a value greater than 0 if
you want the iterator to execute the count query with
the maximum value equal to the value you specify for
RowCountThreshold. If the estimated row count is less
than the value of RowCountThreshold, return the number
of rows in the estimated row count. If the estimated row
count is greater than the value of RowCountThreshold,
return -1.

Sortable Specifies whether the iterator is sortable or not.

<invokeAction> Only use <invokeAction> when your application does
not use the ADF Controller module from the Fusion web
application technology stack. Oracle recommends that you
use a task flow method call activity, as described in Using
Method Call Activities, if your application uses the ADF
Controller module.

Binds Determines the action to invoke. This may be on any
actionBinding. Additionally, in the case, of the EJB
session facade data control, you may bind to the finder
method exposed by the data control. Built-in actions
supported by the EJB session facade data control include:

• Execute executes the bound action defined by the
data collection.

• Find retrieves a data object from a collection.
• First navigates to the first data object in the data

collection range.
• Last navigates to the first data object in the data

collection range.
• Next navigates to the first data object in the data

collection range. If the current range position is already
on the last data object, then no action is performed.

• Previous navigates to the first data object in the data
collection range. If the current position is already on the
first data object, then no action is performed.

• setCurrentRowWithKey passes the row key as a
String converted from the value specified by the input
field. The row key is used to set the currency of the
data object in the bound data collection. When passing
the key, the URL for the form will not display the row
key value. You may use this operation when the data
collection defines a multipart attribute key.

• setCurrentRowWithKeyValue is used as above, but
when you want to use a primary key value instead of
the stringified key.

id Unique identifier. May be referenced by any ADF action
binding.

Appendix A
pageNamePageDef.xml

A-18

Table A-4 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

Refresh See Refresh for <accessorIterator>.

RefreshCondition See RefreshCondition for <accessorIterator>.

<iterator> and
<methodIterator>

BeanClass Identifies the Java type of beans in the associated iterator
or collection.

BindingClass This is for backward compatibility to indicate which class
implements the runtime for this binding definition. Not used
in current JDeveloper release.

Binds See Binds for <invokeAction>.

CacheResults See CacheResults for <accessorIterator>.

ChangeEventRate Specifies the rate of events when a component is wired to
data via this iterator and is in polling event mode.

DataControl Name of the DataControl usage in the bindingContext
(.cpx) which this iterator is associated with.

DefClass Used internally by ADF.

id Unique identifier. May be referenced by any ADF value
binding.

ObjectType Not used by EJB session facade data control (used by ADF
Business Components only).

RangeSize See RangeSize for <accessorIterator>.

Refresh See Refresh for <accessorIterator>.

RefreshAfter Specifies the condition after which the page should be
refreshed.

RefreshCondition See RefreshCondition for <accessorIterator>.

RowCountThreshold See RowCountThreshold for <accessorIterator>.

<page> and
<variableIterator>

id Unique identifier. In the case of <page>, refers to nested
page or region that is included in this page. In the case
of the <variableIterator> executable, the identifier may
be referenced by any ADF value binding.

ChangeEventRate Specifies the rate of events when a component is wired to
data via this iterator and is in polling event mode.

path Used by <page> executable only. Advanced, a fully
qualified path that may reference another page's binding
container.

Refresh See Refresh for <accessorIterator>.

RefreshAfter Specifies the condition after which the page should be
refreshed.

RefreshCondition See RefreshCondition for <accessorIterator>.

Table A-5 describes the attributes of the PageDef.xml <bindings> element.

Appendix A
pageNamePageDef.xml

A-19

Table A-5 Attributes of the PageDef.xml File <bindings> Element

Element Syntax Attributes Attribute Description

<action> Action Fully qualified package name. Identifies the class for
which the data control is created. In the case of the EJB
session facade, this is the session bean.

BindingClass This is for backward compatibility to indicate which class
implements the runtime for this binding definition. This is
used by earlier versions of JDeveloper.

DataControl Name of the DataControl usage in
the bindingContext (.cpx) which this
iteratorBinding or actionBinding is associated
with.

Execute Used by default when you drop an operation from the
Data Controls panel in the automatically configured
ActionListener property. It results in executing the
action binding's operation at runtime.

InstanceName Specifies the instance name for the action.

IterBinding Specifies the iteratorBinding instance in this
bindingContainer to which this binding is associated.

Outcome Use if you want to use the result of a method action
binding (once converted to a String) as a JSF
navigation outcome name.

<attributeValues> ApplyValidation Set to true by default. When true, controlBinding
executes validators defined on the binding. You can set
to false in the case of ADF Business Components,
when running in local mode and the same validators are
already defined on the corresponding attribute.

BindingClass This is for backward compatibility to indicate which class
implements the runtime for this binding definition. This is
used by earlier versions of JDeveloper.

ChangeEventPolicy Specifies the event strategy for the component when run
with ADS (Active Data Services). Can be specified as

push

poll

ppr

none

ControlClass Used internally by ADF.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DefClass Used internally by ADF.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

Appendix A
pageNamePageDef.xml

A-20

Table A-5 (Cont.) Attributes of the PageDef.xml File <bindings> Element

Element Syntax Attributes Attribute Description

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

<button> ApplyValidation Set to true by default. When true, controlBinding
executes validators defined on the binding. You can set
to false in the case of ADF Business Components,
when running in local mode and when the same
validators are already defined on the corresponding
attribute.

BindingClass This is for backward compatibility to indicate which class
implements the runtime for this binding definition. This is
used by earlier versions of JDeveloper.

BoolVal Identifies whether the value at the zero index in the static
value list in this boolean list binding represents true or
false.

ControlClass Used internally by ADF.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DefClass Used internally by ADF.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

ListIter Refers to the iteratorBinding that is associated with
the source list of this listBinding.

ListOperMode Determines whether this list binding is for navigation,
contains a static list of values or is an LOV type list.

NullValueFlag Describes whether this list binding has a null value and, if
so, whether it should be displayed at the beginning or the
end of the list.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

<gantt> ChangeEventPolicy Identifies the update policy for the component. Valid
values are none, ppr, and push. The default is ppr.

xmlns Used internally by ADF.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

Appendix A
pageNamePageDef.xml

A-21

Table A-5 (Cont.) Attributes of the PageDef.xml File <bindings> Element

Element Syntax Attributes Attribute Description

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

ganttDataMap Wraps the data binding XML for the ADF Faces Gantt
chart component.

<gauge> type Identifies the gauge type.

ledStyle Identifies the LED style for the gauge.

ChangeEventPolicy Identifies the update policy for the component. Valid
values are none, ppr, and push. The default is ppr.

xmlns Used internally by ADF.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

gaugeDataMap Wraps the data binding XML for the ADF Faces gauge
component.

<graph> type Identifies the graph type.

ChangeEventPolicy Identifies the update policy for the component. Valid
values are none, ppr, and push. The default is ppr.

xmlns Used internally by ADF.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

graphDataMap Wraps the data binding XML for the ADF Faces graph
component.

Appendix A
pageNamePageDef.xml

A-22

Table A-5 (Cont.) Attributes of the PageDef.xml File <bindings> Element

Element Syntax Attributes Attribute Description

<list> ApplyValidation Set to true by default. When true, controlBinding
executes validators defined on the binding. You can set
to false in the case of ADF Business Components,
when running in local mode and when the same
validators are already defined on the corresponding
attribute.

BindingClass This is for backward compatibility to indicate which class
implements the runtime for this binding definition. This is
used by earlier versions of JDeveloper.

ControlClass Used internally by ADF.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DefClass Used internally by ADF.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

ListIter Refers to the iteratorBinding that is associated with
the source list of this listBinding.

ListOperMode Determines whether this list binding is for navigation,
contains a static list of values, or is an LOV type list.

Mode The value of this attribute determines if the list binding
passes the actual value (Object) or the location of the
value in an index (Index). For more information about
setting this attribute, see What You May Need to Know
About Values in a Selection List .

MRUCount Specifies the number of items to display in a choice list
when you want to provide a shortcut for the end user to
display their most recent selections. For example, a form
might display a choice list of supplier ID values to drive
a purchase order form. In this case, you can allow users
to choose from a list of their most recently view suppliers,
where the number of supplier choices is determined by
the count you enter. The default for the choice list is to
display all values for the attribute and is specified by the
count 0 (zero).

MRUId Specifies the String that will be the discriminator line for
the MRU list.

NullValueFlag Describes whether this list binding has a null value and, if
so, whether it should be displayed at the beginning of the
list or the end.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

StaticList Defines a static list of values that will be rendered in the
bound list component.

Appendix A
pageNamePageDef.xml

A-23

Table A-5 (Cont.) Attributes of the PageDef.xml File <bindings> Element

Element Syntax Attributes Attribute Description

<mapTheme> ChangeEventPolicy Identifies the update policy for the component. Valid
values are none, ppr, and push. The default is ppr.

xmlns Used internally by ADF.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

mapThemeDataMap Wraps the data binding XML for the ADF Data
Visualization geographic map component.

<methodAction> Action Fully qualified package name. Identifies the class for
which the data control is created. In the case of the EJB
session facade, this is the session bean.

BindingClass This is for backward compatibility to indicate which class
implements the runtime for this binding definition. This is
used by earlier versions of JDeveloper.

ClassName This is the class to which the method being invoked
belongs.

DataControl Name of the DataControl usage in
the bindingContext (.cpx) which this
iteratorBinding or actionBinding is associated
with.

DefClass Used internally by ADF.

id Unique identifier. May be referenced by any ADF action
binding.

InstanceName A dot-separated EL path to a Java object instance on
which the associated method is to be invoked.

IsLocalObjectRefer
ence

Set to true if the instanceName contains an EL path
relative to this bindingContainer.

IsViewObjectMethod Set to true if the instanceName contains an instance
path relative to the associated data control's application
module.

MethodName Indicates the name of the operation on the given
instance or class that needs to be invoked for this
methodActionBinding.

RequiresUpdateMode
l

Whether this action requires that the model be updated
before the action is to be invoked.

ReturnName The EL path of the result returned by the associated
method.

Appendix A
pageNamePageDef.xml

A-24

Table A-5 (Cont.) Attributes of the PageDef.xml File <bindings> Element

Element Syntax Attributes Attribute Description

<pivotTable> ChangeEventPolicy Identifies the update policy for the component. Valid
values are none, ppr, and push. The default is ppr.

xmlns Used internally by ADF.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

pivotTableDataMap Wraps the data binding XML for the ADF Data
Visualization pivot table component.

<table> and <tree> ApplyValidation Set to true by default. When true, controlBinding
executes validators defined on the binding. You can set
to false in the case of ADF Business Components,
when running in local mode and when the same
validators are already defined on the corresponding
attribute.

BindingClass This is for backward compatibility to indicate which class
implements the runtime for this binding definition.This is
used by earlier versions of JDeveloper.

CollectionModel Accesses the CollectionModel object, the data model
that is used by ADF table components. A table's
value is bound to the CollectionModel attribute. The
table wraps the result set from the iterator binding in
a CollectionModel object. The CollectionModel
attribute allows each item in the collection to be available
within the table component using the var attribute.

ControlClass Used internally for testing purposes.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DefClass Used internally by ADF.

DiscrValue Indicates the discriminator value for a hierarchical type
binding (type definition for a tree node). This value is
used to determine whether a given row in a collection
being rendered in a polymorphic tree binding should be
rendered using the containing hierarchical type binding.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

Appendix A
pageNamePageDef.xml

A-25

Table A-5 (Cont.) Attributes of the PageDef.xml File <bindings> Element

Element Syntax Attributes Attribute Description

TreeModel The data model used by ADF Tree components.
TreeModel extends CollectionModel to add support
for container rows. Rows in the TreeModel may
(recursively) contain other rows.

adfc-config.xml
ADF Faces uses adfc-config.xml to store its configurations. It is an unbounded
taskflow and the adfc-config.xml file contains activies, control flow rules, and
managed beans interacting to allow a user to complete a task.

The adfc-config.xml file is the source file for the ADF unbounded task flow that
JDeveloper creates by default when you create an application using the ADF Fusion
Web Application template. By default, JDeveloper stores the adfc-config.xml file in
the following directory:

application_root\ViewController\Web Content\WEB-INF

If you create additional unbounded task flows, JDeveloper proposes the following file
name for the source files of the additional unbounded task flows:

adfc-configN.xml

where N is a number that increments each time you create a new unbounded task
flow. Alternatively, you choose the file name you want for an unbounded task flow's
source file.

Each source file for an unbounded task flow contains the metadata for activities,
control flow rules, and managed beans that you added to an unbounded task flow so
that end users can interact with the Fusion web application to complete a task.

The XML schema definition file (XSD) that defines valid metadata entries for the
adfc-config.xml file is adfc-config_1_0.xsd. The adfc-config_1_0.xsd file is stored
in the adf-controller-schema.jar file in the following directory of your JDeveloper
installation:

jdev_install\oracle_common\modules\oracle.adf.model_12.1.2

Use JDeveloper's XSD Visual Editor to view the adfc-config_1_0.xsd file. Using
this editor, you can identify the valid metadata elements and attributes for the adfc-
config.xml file.

The following example shows the source file for an unbounded task flow where view
activities, control flow rules, and so on have yet to be added.

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
</adfc-config>

Figure A-4 shows the Diagram view of the Summit sample application for ADF task
flows' adfc-config.xml file. Example A-3 shows the corresponding source view of the
unbounded task flow that appears in Figure A-4.

Appendix A
adfc-config.xml

A-26

For more information about unbounded task flows, see Getting Started with ADF Task
Flows .

Figure A-4 Diagram View of Summit ADF Task Flow Sample Application´s
adfc-config.xml File

Example A-3 Source View of Summit ADF Task Flow Sample Application´s adfc-config.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <view id="index">
 <page>/index.jsf</page>
 </view>
 <managed-bean id="__1">
 <managed-bean-name>login</managed-bean-name>
 <managed-bean-class>oracle.summit.bean.LoginBean</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean id="__2">
 <managed-bean-name>WelcomePageBean</managed-bean-name>
 <managed-bean-class>oracle.summit.bean.WelcomePageBean</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
</adfc-config>

task-flow-definition.xml
The task-flow-definition.xml file stores metadata definition for a bounded task flow. You
can specify the task flow definition XML filename and location when you generate the
task flow.

The default file name that JDeveloper proposes for the source file of the first ADF
bounded task flow that you create is task-flow-definition.xml. This file stores the
metadata for a bounded task flow. It contains entries for each view activity, method call
activity, task flow call, and so on that you add to the bounded task flow.

JDeveloper proposes the following file name for subsequent bounded task flows that
you create:

task-flow-definitionN.xml

where N is a number that increments each time you create a new bounded task flow.
Alternatively, you choose the file name you want for a bounded task flow's source
file. By default, JDeveloper stores the task-flow-definition.xml file in the following
directory:

application_root\ViewController\Web Content\WEB-INF

Appendix A
task-flow-definition.xml

A-27

The XML schema definition files (XSD) that define the valid metadata entries for the
source file of a bounded task flow are stored in the adf-controller-schema.jar file in
the following directory of your JDeveloper installation:

jdev_install\oracle_common\modules\oracle.adf.model_12.1.2

Use JDeveloper's XSD Visual Editor to view these XSD files and identify the valid
metadata elements and attributes for the source file of a bounded task flow.

The following example shows the content of a source file when you create a new
bounded task flow using the Create Task Flow dialog. The <task-flow-definition>
element identifies this file as a bounded task flow. JDeveloper generates the <task-
flow-definition> element when you select the Create as Bounded Task Flow
checkbox in the Create Task Flow dialog. The value of the <task-flow-definition>
element's id attribute (task-flow-definition) corresponds to the value that you enter
in the Task Flow ID field of the Create Task Flow dialog. The <use-page-fragments/>
element indicates that all view activities in this bounded task flow must be associated
with page fragments. JDeveloper generates this entry when you select the Create
with Page Fragments checkbox in the Create Task Flow dialog.

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <task-flow-definition id="task-flow-definition">
 <use-page-fragments/>
 </task-flow-definition>
</adfc-config>

Example A-4 shows the Summit ADF task flow sample application's customers-
task-flow-definition.xml file. You can view entries for the activities shown in the
Structure window in Figure A-5. See Getting Started with ADF Task Flows .

Figure A-5 Structure View of the customers-task-flow-definition.xml File

Example A-4 Source View of the customers-task-flow-definition.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <task-flow-definition id="customer-task-flow-definition">

Appendix A
task-flow-definition.xml

A-28

 <default-activity id="__1">isCustomerLogin</default-activity>
 <managed-bean id="__11">
 <managed-bean-name id="__9">CustomersBackingBean</managed-bean-name>
 <managed-bean-class id="__10">oracle.summit.backing.CustomersBackingBean</managed-bean-
class>
 <managed-bean-scope id="__8">backingBean</managed-bean-scope>
 </managed-bean>
 <view id="Customers">
 <page>/customers/Customers.jsff</page>
 </view>
 <method-call id="SetCurrentRowWithKeyValue">
 <method>#{bindings.setCurrentRowWithKeyValue.execute}</method>
 <outcome>
 <fixed-outcome>setCurrentRowWithKey</fixed-outcome>
 </outcome>
 </method-call>
 <router id="isCustomerLogin">
 <case id="__4">
 <expression>#{securityContext.userInRole['Application Customer Role']}</expression>
 <outcome>customerLogin</outcome>
 </case>
 <default-outcome>notCustomerLogin</default-outcome>
 </router>
 <control-flow-rule id="__2">
 <from-activity-id>SetCurrentRowWithKeyValue</from-activity-id>
 <control-flow-case id="__3">
 <from-outcome>setCurrentRowWithKey</from-outcome>
 <to-activity-id>Customers</to-activity-id>
 </control-flow-case>
 </control-flow-rule>
 <control-flow-rule id="__5">
 <from-activity-id>isCustomerLogin</from-activity-id>
 <control-flow-case id="__6">
 <from-outcome>notCustomerLogin</from-outcome>
 <to-activity-id>Customers</to-activity-id>
 </control-flow-case>
 <control-flow-case id="__7">
 <from-outcome>customerLogin</from-outcome>
 <to-activity-id>SetCurrentRowWithKeyValue</to-activity-id>
 </control-flow-case>
 </control-flow-rule>
 <critical/>
 <use-page-fragments/>
 </task-flow-definition>
</adfc-config>

adf-config.xml
The adf-config.xml file contains application-level settings, that manages the runtime
infrastructure such as failover behavior for the ADF application modules, global fetch
limit for all the view objects, caching of resource bundles, automated refresh of page
bindings, and so on for your application.

JDeveloper generates the adf-config.xml file when you create an application using
the ADF Fusion Web Application template. JDeveloper stores this application-level
descriptor file in the following directory:

application_root\.adf\META-INF

Appendix A
adf-config.xml

A-29

In JDeveloper, you can locate the file in the Application Resources panel of the
Applications window by expanding the Descriptors > ADF META-INF nodes.

The adf-config.xml file specifies application-level settings that you define during
development. You can use a deployment profile to specify settings that are used at
application deploy time. You can change some of the settings at runtime using Oracle
Enterprise Manager.

Examples of tasks that you can accomplish by changing settings in the adf-
config.xml file include the following:

• Enable or disable the validation of ADF Controller metadata

• Replicate memory scope if you deploy your Fusion web application in a clustered
environment

• Configure properties to manage the caching of resource bundles where your
application uses EL expressions to retrieve strings at runtime from resource
bundles

The properties that you can configure are:

– initial-size

Specifies the initial number of resource bundles that your application can
cache. The default value is 100.

– max-size

Specifies the maximum number of resource bundles that your application can
cache. The default value is 100.

– load-factor

The default value is 0.75.

– expire-time

The default value is 43200 seconds (12 hours).

You specify these properties as attribute values of the <resource-bundle-
cache> element in the adf-config.xml file. Example A-5 demonstrates how
you might configure these values for your application in the adf-config.xml
file.

As an alternative to configuring the caching of resource bundles in the adf-
config.xml file, you can specify the resource bundle caching properties as
parameters for the Java Virtual Machine (JVM). If you specify the properties as
parameters for the JVM, the changes apply to all applications managed by the
JVM. For this reason, consider configuring the resource bundle caching properties
in the adf-config.xml file for you application. Use the following property names
if you decide to specify the resource bundle caching properties as parameters for
the JVM:

– resource-bundle-cache-initial-size

– resource-bundle-cache-max-size

– resource-bundle-cache-load-factor

– resource-bundle-cache-expire-time

Appendix A
adf-config.xml

A-30

At runtime, the Fusion web application loads the adf-config.xml file from the META-
INF directory. If the Fusion web application finds more than one adf-config.xml file, it
stops loading the file and logs a warning.

The following tasks modify or require you to modify the adf-config.xml file:

• In the ADF Controller layer

– Creating task flows

By default, the ADF Controller uses a user session level cache to store
the application's unbounded task flow metadata. This enables support for
user specific seeded customization or design time at runtime customization
of unbounded task flow metadata in your application. Clear the Allow
Unbounded Task Flow Customizations checkbox in the Controller page
of the adf-config.xml's file overview editor to disable this behavior and set
the value of the <allow-unbounded-task-flow-customizations> element to
false. You can still have customizations of the unbounded task flow metadata
in your application. However, these customizations are shared by all users
of the application. For information about customizations, see Customizing
Applications with MDS . For information about task flows, see Getting Started
with ADF Task Flows .

– Configure an integer value for the root-view-port-request-lock-timeout
property that specifies the number of seconds a request can hold a lock on
the root view port before timing out and allowing other requests to acquire the
lock. The default value is 600 seconds. For information about the root view
port, see About View Ports and ADF Regions.

– Minimize the number of active root view ports in an application by specifying a
value for the <max-root-view-ports> property. See Minimizing the Number of
Active Root View Ports in an Application.

– Modify the number of events collected or stop the collection of events by ADF
Controller. Both tasks involve configuring the value of the <debug-history-
size> element in your application's adf-config.xml file. See Reporting
Incidents to the Diagnostic Framework.

– Enabling implicit save points

See How to Enable Implicit Save Points.

– Specify a bounded task flow that does not require authorization to invoke
when a user attempts to invoke a bounded task flow in a region for which
they do not have security permissions. See Handling Access to Secured Task
Flows by Unauthorized Users.

– Enable ADF Controller to track changes to ADF memory scopes and replicate
the page flow scope and view scope within the server cluster. You must set
the ADF Controller parameter <adf-scope-ha-support> in the application's
adf-config.xml file to true. See How to Ensure Oracle ADF Receives
Notifications From Managed Bean Changes .

• In the ADF Model layer

– Disable automatic partial page rendering as the default behavior for an
application. This requires you to change the value for the changeEventPolicy
attribute from the default value of ppr:

<defaults changeEventPolicy="ppr"/>

Appendix A
adf-config.xml

A-31

See What You May Need to Know About Partial Page Rendering and Iterator
Bindings.

– Configure all Query components in the user interface project to render input
search fields using a bind variable.

See What You May Need to Know About Named Bind Variables in Search
Forms.

– Control the dispatch of contextual events

See How to Control Contextual Events Dispatch.

• Persisting saved searches in MDS

See How to Persist Saved Searches into MDS.

• Creating RESTful web services from ADF application modules and managing the
release version identifiers of REST resources

See Creating ADF REST Resources Using the Application Module and see
Versioning the ADF REST Resource.

• Configuring ADF Business Components global settings

See Using Fetch Size to Limit the Maximum Number of Records Fetched for
a View Object and How to Initialize the Data Model Project With a Database
Connection.

• Enabling or disabling Oracle ADF Security

See Enabling ADF Security and Disabling ADF Security.

• Enabling seeded customizations

See How to Enable Seeded Customizations for User Interface Projects and How
to Enable Seeded Customizations in Existing Pages.

• Configuring change persistence

See How to Enable User Customizations.

• Enabling user customizations

See What Happens When You Enable User Customizations.

Example A-5 shows example entries for an application's adf-config.xml file.

Example A-5 Sample adf-config.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:sec="http://xmlns.oracle.com/adf/security/config">
 <sec:adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
 <CredentialStoreContext credentialStoreClass=

"oracle.adf.share.security.providers.jps.CSFCredentialStore"
 credentialStoreLocation="../../src/META-
INF/jps-config.xml"/>
 <!-- The Configure ADF Security wizard modifies JaasSecurityContext settings
-->
 <JaasSecurityContext initialContextFactoryClass=

"oracle.adf.share.security.JAASInitialContextFactory"
 jaasProviderClass=

"oracle.adf.share.security.providers.jps.JpsSecurityContext"

Appendix A
adf-config.xml

A-32

 authorizationEnforce="true"
 authenticationRequire="true"/>
 </sec:adf-security-child>
 <adf-controller-config xmlns="http://xmlns.oracle.com/adf/controller/config">
 <savepoint-datasource>java:comp/env/jdbc/summit_adfDS</savepoint-datasource>
 <enable-implicit-savepoints>true</enable-implicit-savepoints>
 <unauthorized-region-taskflow>/WEB-INF/task-flow-definition.xml</
unauthorized-region-taskflow>
 </adf-controller-config>
 <adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/config">
 <persistent-change-manager>
 <persistent-change-manager-class>
 oracle.adf.view.rich.change.MDSDocumentChangeManager
 </persistent-change-manager-class>
 </persistent-change-manager>
 <taglib-config>
 <taglib uri="http://xmlns.oracle.com/adf/faces/rich">
 <tag name="calendar">
 <attribute name="activeDay">
 <persist-changes>true</persist-changes>
 </attribute>
 </tag>
 <!-- Additional tags omitted to make this example concise -->
 <tag name="table">
 <attribute name="filterVisible">
 <persist-changes>true</persist-changes>
 </attribute>
 </tag>
 </taglib>
 </taglib-config>
 </adf-faces-config>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <cust-config>
 <match path="/">
 <customization-class name="oracle.adf.share.config.UserCC"/>
 </match>
 </cust-config>
 </mds-config>
 </adf-mds-config>
 <adf-adfm-config xmlns="http://xmlns.oracle.com/adfm/config">
 <defaults rowLimit="100"/>
 <startup>
 <amconfig-overrides>
 <config:Database jbo.SQLBuilder="Oracle" jbo.locking.mode="optimistic"/>
 </amconfig-overrides>
 </startup>
 </adf-adfm-config>
<!-- Properties to manage the caching of a resource bundle in your application
-->
<adf-resourcebundle-config xmlns="http://xmlns.oracle.com/adf/resourcebundle/
config">
 <applicationBundleName>
 path-to-resource-bundle/bundle-name
 </applicationBundleName>
 <resource-bundle-cache initial-size="20" max-size="100" expire-time="30000"
load-factor=".75"/>
 <bundleList>
 <bundleId override="true">
 package.BundleID
 </bundleId>

Appendix A
adf-config.xml

A-33

 </bundleList>
 </adf-resourcebundle-config>
</adf-config>

adf-settings.xml
The adf-settings.xml file is used by ADF application developers to extend and
customize the ADF lifecycle with custom ADF phase listeners.

The adf-settings.xml file holds project-level and library-level settings such as ADF
Faces help providers and ADF Controller phase listeners.

The configuration settings for adf-settings.xml are fixed and cannot be changed
during or after application deployment. There can be multiple adf-settings.xml files
in an application. The users of adf-settings.xml files are responsible for merging the
contents of their configuration.

JDeveloper creates an adf-settings.xml file when you:

• Create an application using the ADF Fusion Web Application template

• Add ADF Page Flow (ADF Controller) as a feature to an existing project

By default, JDeveloper stores the adf-settings.xml file in the following directory:

application_root\ViewController\src\META-INF

The following tasks modify or require you to modify the adf-settings.xml file:

• Registering a phase listener

See How to Register a Listener Globally.

• Creating help for ADF Faces components

See Displaying Help for Components in Developing Web User Interfaces with
Oracle ADF Faces.

For information about how to edit the adf-settings.xml file, see How to Configure
for ADF Faces in adf-settings.xml in Developing Web User Interfaces with Oracle ADF
Faces.

Example A-6 shows a sample adf-setting.xml file with settings configured for a
phase listener and a help provider.

Example A-6 Sample adf-settings.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<adf-settings xmlns="http://xmlns.oracle.com/adf/config">
 <adfc-controller-config xmlns="http://xmlns.oracle.com/adf/controller/config">
 <lifecycle>
 <phase-listener>
 <listener-id>SummitPhaseListener</listener-id>
 <class>oracle.summit.listeners.SummitPhaseListener</class>
 </phase-listener>
 </lifecycle>
 </adfc-controller-config>
 <adf-faces-config>
 <help-provider prefix="MYAPP">
 <help-provider-class>oracle.summit.MyHelpProvider</help-provider-class>
 <property>
 <property-name>myCustomProperty</property-name>

Appendix A
adf-settings.xml

A-34

 <value>someValue</value>
 </property>
 </help-provider>
 </adf-faces-config>
</adf-settings>

web.xml
The web.xml file is used as a deployment descriptor file by Java web applications to
determine how URLs map to servlets, which URLs require authentication, and other
information. This file is an XML document that defines everything about your ADF
application that a server needs to know.

Oracle ADF has specific configuration settings for the standard web.xml deployment
descriptor file.

When you create a project in JDeveloper that uses JSF technology, a starter web.xml
file with default settings is created for you in the /WEB-INF folder. To edit the file,
double-click web.xml in the Applications window to open it in the XML editor.

The following must be configured in web.xml for all applications that use JSF and ADF
Faces:

• ADF Library resource servlet and mapping: Serves up web application resources
(images, style sheets, JavaScript libraries) from ADF Library JAR files on the
application class path.

By default, static web application resources (including resources in ADF Libraries),
such as images, have a staleness period setting of 364 days. This staleness
period setting requests that the client not make a request to the server to validate
the static web application resources until one of the following events occur:

– Staleness period expires

– Browser cache no longer contains the static resource

– User executes a page refresh

If the client does make a request to the server and the resources have not
changed, the server returns a HTTP 304 response (Not Modified) with no body.

You can override the staleness period setting of 364 days for all static web
application resources in ADF Libraries by adding initialization parameters to the
web.xml file. The following example demonstrates how to set these initialization
parameters using a number of examples.

<!-- Expires all static resources in 30 days -->
 <init-param>
 <param-name>expires</param-name>
 <param-value>60*60*24*30</param-value>
 </init-param>

<!-- Expires static resources with the .js file extension in 1 day -->
 <init-param>
 <param-name>expires.js</param-name>
 <param-value>60*60*24</param-value>
 </init-param>

<!-- Turns off staleness setting. Use for testing -->
 <init-param>
 <param-name>expires</param-name>

Appendix A
web.xml

A-35

 <param-value>OFF</param-value>
 </init-param>

The following example shows the default file extensions. You can add additional
file extensions by configuring the extensions parameter value to include the file
extensions that you want. Note that you must prepend and append "." to the file
extension. The example also shows how you specify visibility for cache control.

<!-- Specify file extensions for a number of different file formats -->
 <init-param>
 <param-name>extensions</param-name>
 <param-value>.png.jpg.jpeg.gif.js.css.</param-value>
 </init-param>

<!-- Specify visibility for cache control, for example -->
 <init-param>
 <param-name>visibility</param-name>
 <param-value>Public</param-value>
 </init-param>

• JSF servlet and mapping: The servlet javax.faces.webapp.FacesServlet that
manages the request-processing lifecycle for web applications utilizing JSF to
construct the user interface.

• ADF Faces filter and mapping: A servlet filter to ensure that ADF Faces is properly
initialized by establishing a AdfFacesContext object. This filter also processes file
uploads.

The JSF servlet and mapping configuration settings are automatically added to the
starter web.xml file when you first create a JSF project. When you insert an ADF
Faces component into a JSF page for the first time, JDeveloper automatically inserts
the configuration settings for ADF Faces filter and mapping, and resource servlet
and mapping. See ADF Faces Configuration in Developing Web User Interfaces with
Oracle ADF Faces.

logging.xml
ADF Logger is integrated in the WebLogic enterprise manager, and gives you the
flexibility to adjust your log-levels at runtime. You can configure the logging session by
editing the logging.xml file.

ADF Logger is a diagnostic tool that you can use in JDeveloper to capture runtime
traces messages when you debug an application. You configure the use of this tool by
editing the logging.xml file.

For information about the logging.xml file and using the ADF Logger, see Using the
ADF Logger.

Appendix A
logging.xml

A-36

B
Oracle ADF Binding Properties

This appendix describes the properties of the ADF bindings that you use can access
at runtime in an Oracle ADF application.
Table B-1 shows the properties that you can use in EL expressions to access values of
the ADF binding objects at runtime. The properties appear in alphabetical order.

Table B-1 EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Actio
n

Attribute Button List Table Tree

actionEnabled Use operationEnabled
instead.

n/a yes n/a n/a n/a n/a n/a

allRowsInRange Returns an array of the
current set of rows from the
associated collection. Calls
getAllRowsInRange() on
the RowSetIterator object.

yes n/a n/a n/a n/a n/a n/a

attributeDef Returns the attribute definition
for the first attribute with which
the binding is associated.

n/a n/a yes yes yes n/a n/a

attributeDefs Returns the attribute definitions
for all the attributes to which
the binding is associated.

n/a n/a yes yes yes n/a n/a

attributeValue Returns an unformatted and
typed (appropriate Java type)
value in the current row, for the
attribute to which the control
binding is bound.

n/a n/a yes yes yes n/a n/a

attributeValues Returns the value of all
the attributes to which the
binding is associated in an
ordered array. Returns an
array of unformatted and typed
(appropriate Java type) values
in the current row for all the
attributes to which the control
binding is bound.

n/a n/a yes yes yes n/a n/a

bindings Returns a new binding for
each cell or attribute exposed
under the rows of a tree node
binding.

no no no no no no yes

children Returns the child nodes of a
tree node binding.

n/a n/a n/a n/a n/a n/a yes

currentRow Returns the current row on
an action binding bound to an
iterator (for example, built-in
navigation actions).

n/a yes n/a n/a n/a n/a n/a

B-1

Table B-1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Actio
n

Attribute Button List Table Tree

dataControl Returns the iterator's
associated data provider.

yes n/a n/a n/a n/a n/a n/a

displayData Returns a list of map elements.
Each map entry contains the
following elements:

• selected: A boolean
true if the current entry
should be selected.

• index: The index value of
the current entry.

• prompt: A string value
that may be used to render
the entry in the UI.

• displayValues: An
ordered list of display
attribute values for all
display attributes in the list
binding.

n/a n/a n/a n/a yes n/a n/a

displayHint Returns the display hint for the
first attribute to which the
binding is associated. The hint
identifies whether the attribute
should be displayed or not. For
more information, see
oracle.jbo.AttributeHint
s.displayHint.

n/a n/a n/a n/a yes n/a n/a

Appendix B

B-2

Table B-1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Actio
n

Attribute Button List Table Tree

displayHints Returns a list of name-value
pairs for UI hints for all
display attributes to which the
binding is associated. The
map contains the following
elements:

• label: The label to
display for the current
attribute.

• tooltip: The tooltip to
display for the current
attribute.

• displayHint: The
display hint for the current
attribute.

• displayHeight: The
height in lines for the
current attribute.

• displayWidth: The width
in characters for the
current attribute.

• controlType: The control
type hint for the current
attribute.

• format: The format to
be used for the current
attribute.

n/a n/a n/a yes yes n/a n/a

enabled Use the operationEnabled
property.

n/a n/a n/a n/a n/a n/a n/a

enabledString Returns disabled if the action
binding is not ready to be
invoked. Otherwise, returns an
empty string ("").

n/a yes n/a n/a n/a n/a n/a

error Returns any exception that
was cached while updating
the associated attribute value
for a value binding or when
invoking an operation bound by
an operation binding.

yes yes yes yes yes yes yes

estimatedRowCount Returns the maximum row
count of the rows in the
collection with which this
iterator binding is associated

yes n/a n/a n/a n/a yes yes

findMode Returns true if the iterator
is currently operating in
find mode. Otherwise, returns
false.

yes n/a n/a n/a n/a n/a n/a

Appendix B

B-3

Table B-1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Actio
n

Attribute Button List Table Tree

fullName Returns the fully qualified
name of the binding object
in the Oracle ADF binding
context.

yes yes yes yes yes yes yes

hints Returns the value of the UI hint
indicated for the binding. See
displayHints for the list of UI
hint keywords.

yes yes yes yes yes yes yes

inputValue Returns the value of the first
attribute to which the binding is
associated. If the binding was
used to set the value on the
attribute and the set operation
failed, this method returns the
invalid value that was being
set.

n/a n/a yes yes yes yes yes

iteratorBinding Returns the iterator binding
that provides access to the
data collection.

n/a yes yes yes yes yes yes

label Returns the label (if supplied
by control hints) for the first
attribute of the binding.

n/a n/a yes yes yes n/a n/a

labels Returns a map of labels
(if supplied by control hints)
keyed by attribute name for all
attributes to which the binding
is associated.

n/a n/a yes yes yes yes n/a

labelSet Returns an ordered set of
labels for all the attributes
to which the binding is
associated.

n/a n/a yes yes yes yes n/a

mandatory Returns whether the first
attribute to which the binding is
associated is required.

n/a n/a yes yes yes n/a n/a

name Returns the name of the
binding object in the context
of the binding container to
which it is registered. Note this
property is not visible in the EL
expression builder dialog.

yes yes yes yes yes yes yes

operationEnabled Returns true or false,
depending on the state of the
action binding. For example,
the action binding may be
enabled (true) or disabled
(false) based on the currency
(as determined, for example,
when the user clicks the First,
Next, Previous, Last navigation
buttons).

n/a yes n/a n/a n/a n/a n/a

Appendix B

B-4

Table B-1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Actio
n

Attribute Button List Table Tree

rangeSet Returns a list of map elements
over the range of rows from
the associated iterator binding.
The elements in this list
are wrapper objects over the
indexed row in the range
that restricts access to the
attributes to which the binding
is bound. The properties
returned on the reference
object are:

• index: The range index of
the row this reference is
pointing to.

• key: The key of the row
this reference is pointing
to.

• keyStr: The string format
of the key of the row this
reference is pointing to.

• currencyString: The
current indexed row as a
string. Returns "*" if the
current entry belongs to
the current row; otherwise,
returns " ". This property is
useful in JSP applications
to display the current row.

• attributeValues: The
array of applicable
attribute values from the
row.

You may also access an
attribute value by name
on a range set like
rangeSet.dname if dname is
a bound attribute in the range
binding.

n/a n/a n/a n/a n/a yes yes

rangeSize Returns the range size of the
ADF iterator binding's row set.
This allows you to determine
the number of data objects to
bind from the data source.

yes n/a n/a n/a n/a yes yes

rangeStart Returns the absolute index in a
collection of the first row in
range. See the javadoc for
oracle.jbo.RowSetIterato
r.getRangeStart().

yes n/a n/a n/a n/a yes yes

result Returns the result of a method
that is bound and invoked by a
method action binding.

n/a yes n/a n/a n/a n/a n/a

Appendix B

B-5

Table B-1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Actio
n

Attribute Button List Table Tree

rootNodeBinding Returns the root node of a tree
binding.

n/a n/a n/a n/a n/a n/a yes

selectedValue Returns the value
corresponding to the current
selected index in the list or
button binding.

n/a n/a n/a yes yes n/a n/a

tooltip Returns the tooltip hint for
the first attribute to which the
binding is associated.

n/a n/a yes yes yes n/a n/a

updateable Returns true if the first
attribute to which the binding
is associated is updateable.
Otherwise, returns false.

n/a n/a yes yes yes n/a n/a

Appendix B

B-6

C
ADF Security Permission Grants

This appendix lists the security-aware components of Oracle ADF and the actions that
their Permission implementation classes define.
Table C-1 shows the ADF components and their permission grants that you can
define to create ADF security policies. You add grants to the policy store using
the overview editor for ADF security policies. A permission grant specifies the fully
qualified permission class name, the fully qualified resource name, the action that can
be performed against the resource, and the application role target of the grant. When
you enable ADF security to enforce authorization checking against the security policies
of the policy store, the operations supported by ADF components will be inaccessible
to users who do not possess sufficient access rights as defined by grants to their
application role.

For complete details about defining ADF security policies in Fusion web applications,
see Enabling ADF Security in a Fusion Web Application.

Table C-1 ADF Security Permission Grants

ADF Component Grantable Action Corresponding Implementation

ADF bounded task
flow

View The View action controls who can read and execute a bounded task
flow. Pages that the user accesses within the process of executing a
bounded task flow will not be individually security checked and will
run under the permission of the task flow.

ADF bounded task
flow

Customize Reserved for future use. This action is not checked at runtime.

ADF bounded task
flow

Grant Reserved for future use. This action is not checked at runtime.

ADF bounded task
flow

Personalize Reserved for future use. This action is not checked at runtime.

ADF page definition View The View action controls who can view the page. Page-level security
is checked for pages that have an associated page definition binding
file only if the page is accessed in the process of an unbounded task
flow. There is a one-to-one relationship between the page definition
file and the web page it secures.

ADF Business
Components entity
objects

read The read action controls who can view a row of the bound
collection.

ADF Business
Components entity
objects

update The update action controls who can update any attribute of the
bound collection.

ADF Business
Components entity
objects

delete The delete action controls who can delete a row from the
bound collection. This action corresponds to the entity object
removeCurrentRow operation.

ADF Business
Components
attributes of entity
objects

update The update action controls who can update a specific attribute of
the bound collection.

C-1

D
Most Commonly Used ADF Business
Components Methods

This appendix lists the most commonly used methods in the interfaces and classes of
the ADF Business Components layer of Oracle ADF.
This appendix contains the following sections:

• Methods for Creating Your Own Layer of Framework Base Classes

• Methods Used in the Client Tier

• Methods Used in the Business Service Tier

Methods for Creating Your Own Layer of Framework Base
Classes

You can create custom framework classes that extend ADF’s base Business
Components classes and that your own business components definitions use or
extend. This is true for application modules as well.

Before you begin to develop application-specific business components, you can create
a layer of classes that extend all of the ADF Business Components framework
base implementation classes described in this appendix. An example of a customized
framework base class for application module components might look like this:

package com.yourcompany.adfextensions;
import oracle.jbo.server.ApplicationModuleImpl;
public class CustomApplicationModuleImpl extends ApplicationModuleImpl {
 /*
 * We might not yet have any custom code to put here yet, but
 * the first time we need to add a generic feature that all of
 * our company's application modules need, we will be very happy
 * that we thought ahead to leave ourselves a convenient place
 * in our class hierarchy to add it so that all of the application
 * modules we have created will instantly benefit by that new feature,
 * behavior change, or even perhaps, bug workaround.
 */
}

A common set of customized framework base classes in a package name
of your own choosing like com.yourcompany.adfextensions, each importing the
oracle.jbo.server.* package, would consist of the following classes:

• public class CustomEntityImpl extends EntityImpl

• public class CustomEntityDefImpl extends EntityDefImpl

• public class CustomViewObjectImpl extends ViewObjectImpl

• public class CustomViewRowImpl extends ViewRowImpl

• public class CustomApplicationModuleImpl extends ApplicationModuleImpl

D-1

• public class CustomDBTransactionImpl extends DBTransactionImpl2

• public class CustomDatabaseTransactionFactory extends
DatabaseTransactionFactory

For completeness, you may also want to create customized framework classes for the
following classes as well:

• public class CustomViewDefImpl extends ViewDefImpl

• public class CustomEntityCache extends EntityCache

• public class CustomApplicationModuleDefImpl extends
ApplicationModuleDefImpl

Overriding anything in these classes would be a fairly rare requirement.

Methods Used in the Client Tier
The client tier contains code that runs on the client and with which an ADF user
interacts. There are several interface methods in the client tier for the key ADF
Business Components.

All of the interfaces described in this section are designed so that you may expose
method for use in the client tier. These interface methods part of the oracle.jbo.*
package.

This section provides a summary of the most frequently called, written, and overridden
methods for the key ADF Business Components interfaces.

Note:

The corresponding implementation classes for these oracle.jbo.*
interfaces are intentionally designed to not be directly accessed by
client code. Methods Used in the Business Service Tier shows that the
implementation classes reside in the oracle.jbo.server.* package and
generally have the suffix Impl in their name to help remind you not to use
them in your client-layer code.

ApplicationModule Interface
An application module is a business service component that acts as a transactional
container for other ADF components and coordinates with them to implement a
number of Java EE design patterns important to business application developers.
These design pattern implementations enable your client code to work easily with
updatable collections of value objects, based on fast-lane reader SQL queries
that retrieve only the data needed by the client, in the way the client wants to
view it. Changes made to these value objects are automatically coordinated with
your persistent business domain objects in the business service tier to enforce
business rules consistently and save changes back to the database. Table D-1
describes the operations that you can perform on an application module using the
ApplicationModule interface.

Appendix D
Methods Used in the Client Tier

D-2

Note:

For the complete list of design patterns that ADF Business Components
implements, see ADF Business Components Java EE Design Pattern
Catalog.

Table D-1 ApplicationModule Interface

If you want to... Call this ApplicationModule interface
method

Access an existing view object instance
using the assigned instance name (for
example, MyVOInstanceName)

findViewObject()

Create a new view object instance from an
existing definition

createViewObject()

Create a new view object instance from a SQL
Statement

createViewObjectFromQueryStmt()

Notes:
This incurs runtime overhead to describe the
"shape" of the dynamic query's SELECT list.
Use this method only when you cannot know
the SELECT list for the query at design time.
Furthermore, if you are creating the dynamic
query based on some kind of custom runtime
repository, you can follow the steps to create
(both read-only and updatable) dynamic view
objects without the runtime-describe overhead,
as described in Creating a View Object with
Multiple Updatable Entities. If only the WHERE
needs to be dynamic, create the view object
at design time, then set the WHERE clause
dynamically as needed using ViewObject
APIs.

Access a nested application module
instance by name

findApplicationModule()

Create a new nested application module
instance from an existing definition

createApplicationModule()

Find a view object instance in a nested
application module using a dot-notated name
(for example,
MyNestedAMInstanceName.OneOfItsVONam
es)

findViewObject()

Notes:
You can use this method to find an
instance of a view object belonging to
a nested application module in a single
method call. This way you do not need
to first call findApplicationModule() to
find the nested application module, before
calling findViewObject() on that nested
application module.

Access the current transaction object getTransaction()

In addition to generic application module access, JDeveloper can generate a custom
YourApplicationModuleName interface containing service-level custom methods that
you've chosen to expose to the client. You use the Client Interface page of the Edit

Appendix D
Methods Used in the Client Tier

D-3

Application Module dialog to select the methods that you want to appear in your client
interface.

Transaction Interface
The Transaction interface exposes methods allowing the client to manage pending
changes in the current transaction. Table D-2 describes the operations that you can
perform on the transaction using the Transaction interface.

Table D-2 Transaction Interface

If you want to... Call this Transaction interface method

Commit pending changes commit()

Roll back pending changes rollback()

Execute a one-time database command or
block of PL/SQL

executeCommand()

Notes:
Do not use this command with methods that
require retrieving OUT parameters and that will
be executed more than once, or that could
benefit from using bind variables. Instead,
expose a custom method on your application
module.

Validate all pending invalid changes in the
transaction

validate()

Change the default locking mode setLockingMode()

Notes:
You can set the locking mode in
your configuration by setting the property
jbo.locking.mode to one of the four
supported values: none, optimistic,
pessimistic, optupdate. If you don't
explicitly set the locking mode, it will default
to optimistic. For Fusion web applications,
use optimistic or optupdate modes.

Decide whether to use bundled exception
reporting mode or not

setBundledExceptionMode()

Notes:
The ADF Controller layer support sets this
parameter to true automatically for Fusion
web applications.

Decide whether entity caches will be cleared
upon a successful commit of the transaction

setClearCacheOnCommit()

Notes:
Default is false.

Decide whether entity caches will be cleared
upon a rollback of the transaction

setClearCacheOnRollback()

Notes:
Default is true.

Clear the entity cache for a specific entity
object

clearEntityCache()

Appendix D
Methods Used in the Client Tier

D-4

ViewObject Interface
A view object is a component that encapsulates a database query and simplifies
working with the row set of results it produces. You use view objects to project, filter,
join, or sort business data using SQL from one or more tables to cast the data into
exactly the format that the user should see on the page or panel. You can create
"master-detail" hierarchies of any depth or complexity by connecting view objects
together using view links. View objects can produce read-only query results, or when
associated with one or more entity objects at design time, can be fully updatable.
Updatable view objects can support insertion, modification, and deletion of rows in the
result collection, with automatic delegation to the correct business domain objects.

Every view object contains a "default row set" for simplifying the 90 percent of use
cases where you work with a single row set of results for the view object's query. A
view object implements all the methods on the RowSet interface by delegating them
to this default RowSet. That means you can invoke any RowSet methods on any view
object as well.

Every view object implements the StructureDef interface to provide information
about the number and types of attributes in a row of its row sets. So you can call
StructureDef methods directly on any view object.

Table D-3 describes the operations that you can perform on a view object using the
ViewObject interface

Table D-3 ViewObject Interface

If you want to... Call this ViewObject interface method

Set an additional runtime WHERE clause on the
row set

setWhereClause()

Notes:
This WHERE clause augments any WHERE
clause specified at design time in the base
view object. It does not replace it.

Set a dynamic ORDER BY clause setSortBy()

Create a Query-by-Example criteria collection createViewCriteria()

Notes:
You then create one or more
ViewCriteriaRow objects using the
createViewCriteriaRow() method on the
ViewCriteria object you created. Then you
add() these view criteria rows to the view
criteria collection and apply the criteria using
the applyViewCriteria() method.

Apply a Query-by-Example criteria collection applyViewCriteria()

Set a query optimizer hint setQueryOptimizerHint()

Access the attribute definitions for the key
attributes in the view object

getKeyAttributeDefs()

Add a dynamic attribute to rows in this view
object's row sets

addDynamicAttribute()

Clear all row sets produced by a view object clearCache()

Appendix D
Methods Used in the Client Tier

D-5

Table D-3 (Cont.) ViewObject Interface

If you want to... Call this ViewObject interface method

Remove a view object instance and its
resources

remove()

Set an upper limit on the number of rows that
the view object will attempt to fetch from the
database

setMaxFetchSize()

Notes:
Default is -1, which means to impose no limit
on how many rows would be retrieved from the
database if you iterated through them all. By
default, as you iterate through them, they are
fetched lazily.

In addition to generic ViewObject access, JDeveloper can generate you a custom
YourViewObjectName interface containing view object-level custom methods that
you've chosen to expose to the client. You use the Client Interface page of the
Edit View Object dialog to select the methods that you want to appear in your client
interface.

RowSet Interface
A row set is an object that contains a set of rows, typically produced by executing a
view object's query.

Every RowSet aggregates a "default row set iterator" for simplifying the 90 percent
of use cases where you need only a single iterator over the row set. A RowSet object
implements all the methods on the RowSetIterator interface by delegating them to
this default RowSetIterator. This means you can invoke any RowSetIterator method
on any RowSet object (or view object, since it implements RowSet, as well for its default
RowSet).

Table D-4 describes the operations that you can perform on a row set using the RowSet
interface.

Table D-4 RowSet Interface

If you want to... Call this RowSet interface method

Set a WHERE clause bind variable value setWhereClauseParams()

Notes:
Bind variable ordinal positions are zero-based.

Avoid view object row caching if data is being
read only once

setForwardOnly()

Appendix D
Methods Used in the Client Tier

D-6

Table D-4 (Cont.) RowSet Interface

If you want to... Call this RowSet interface method

Force a row set's query to be (re)executed (in
the case of exclusive view object instances)
or potentially executed (in the case of shared
view object instances)

executeQuery()

Notes:
The behavior of this method differs depending
on whether the view object belongs to a
shared application module or not. When
reexecuting the query for an exclusive view
object (not an instance of a shared module),
a new query collection is created. Before
executing the query for a shared view
object instance, a check is performed to
determine whether the results already exist.
Already cached results will be reused for
the shared view object instance instead of
reexecuting the query. If you want to ensure
that the results for a shared view object
instance are refreshed, you can invoke the
forceExecuteQueryOfSharedVO() method.
However, if at the time of invoking force
execute a user is iterating over the collection
of a shared view object instance, then the
behavior is undefined and exceptions may
result.

Estimate the number of rows in a view object's
query result

getEstimatedRowCount()

Produce an XML document for rows in a view
object row set

writeXML()

Process all rows from an incoming XML
document

readXML()

Set whether a row set will automatically see
new rows based on the same entity object
created through other row sets

setAssociationConsistent()

Create a secondary iterator to use for
programmatic iteration

createRowSetIterator()

Notes:
If you plan to find and use the secondary
iterator by name later, then pass in a string
name as the argument; otherwise, pass null
for the name and make sure to close the
iterator when done iterating by calling its
closeRowSetIterator() method.

RowSetIterator Interface
A row set iterator is an iterator over the rows in a row set. By default it allows you
to iterate both forward and backward through the rows. Table D-5 describes the
operations that you can perform on a row set using the RowSetIterator interface.

Appendix D
Methods Used in the Client Tier

D-7

Table D-5 RowSetIterator Interface

If you want to... Call this RowSetIterator interface method

Get the first row of the iterator's row set first()

Test whether there are more rows to iterate hasNext()

Get the next row of an iterator's row set next()

Find a row in this iterator's row set with a given
key value

findByKey()

Notes:
It's important that the Key object that you
pass to findByKey be created using the
exact same data types as the attributes that
comprise the key of the rows in the view object
you're working with.

Create a new row to populate for insertion createRow()

Notes:
The new row will already have default values
set for attributes which either have a static
default value supplied at the entity object or
view object level, or if the values have been
populated in an overridden create() method
of the underlying entity object(s).

Create a view row with an initial set of foreign
key and/or discriminator attribute values

createAndInitRow()

Notes:
You use this method when working with view
objects that can return one of a "family"
of entity object subtypes. By passing in the
correct discriminator attribute value in the call
to create the row, the framework can create
you the correct matching entity object subtype
underneath.

Insert a new row into the iterator's row set insertRow()

Notes:
It's a good habit to always immediately insert
a newly created row into the rowset. That way
you will avoid a common gotcha of creating the
row but forgetting to insert it into the rowset.

Get the last row of the iterator's row set last()

Get the previous row of the iterator's row set previous()

Reset the current row pointer to the slot before
the first row

reset()

Close an iterator when done iterating closeRowSetIterator()

Set a given row to be the current row setCurrentRow()

Remove the current row removeCurrentRow()

Remove the current row to later insert it at a
different location in the same iterator

removeCurrentRowAndRetain()

Remove the current row from the current
collection but do not remove it from the
transaction.

removeCurrentRowFromCollection()

Appendix D
Methods Used in the Client Tier

D-8

Table D-5 (Cont.) RowSetIterator Interface

If you want to... Call this RowSetIterator interface method

Set/change the number of rows in the range (a
"page" of rows the user can see)

setRangeSize()

Scroll to view the nth page of rows (1-based) scrollToRangePage()

Scroll to view the range of rows starting with
row number n

scrollRangeTo()

Set row number n in the range to be the
current row

setCurrentRowAtRangeIndex()

Get all rows in the range as a row array getAllRowsInRange()

Row Interface
A row is generic value object. It contains attributes appropriate in name and Java type
for the view object that it is related to. Table D-6 describes the operations that you can
perform on a view object row using the Row interface.

Table D-6 Row Interface

If you want to... Call this Row interface method

Get the value of an attribute by name getAttribute()

Set the value of an attribute by name setAttribute()

Produce an XML document for a single row writeXML()

Eagerly validate a row validate()

Read row attribute values from XML readXML()

Remove the row remove()

Flag a newly created row as temporary (until
updated again)

setNewRowState(Row.STATUS_INITIALIZE
D)

Retrieve the attribute structure definition
information for a row

getStructureDef()

Get the Key object for a row getKey()

In addition to generic Row access, JDeveloper can generate a custom
YourViewObjectNameRow interface containing your type-safe attribute getter and setter
methods, as well as any desired row-level custom methods that you've chosen to
expose to the client. You use the Client Row Interface page of the Edit View Object
dialog to select the methods that you want to appear in your client interface.

StructureDef Interface
The StructureDef interface provides access to runtime metadata about the structure
of a Row object.

In addition, for convenience every view object implements the StructureDef interface
as well, providing access to metadata about the attributes in the resulting view rows
that its query will produce.

Appendix D
Methods Used in the Client Tier

D-9

Table D-7 describes the operations that you can perform on a view object row using
the StructureDef interface.

Table D-7 StructureDef Interface

If you want to... Call this StructureDef interface method

Access attribute definitions for all attributes in
the view object row

getAttributeDefs()

Find an attribute definition by name findAttributeDef()

Get attribute definition by index getAttributeDef()

Get number of attributes in a row getAttributeCount()

AttributeDef Interface
The AttributeDef interface provides attribute definition information for any attribute
of a view object row or entity object instance like attribute name, Java type, and
SQL type. It also provides access to custom attribute-specific metadata properties
that can be inspected by generic code you write, as well as UI hints that can assist
in rendering an appropriate user interface display for the attribute and its value.
Table D-8 describes the operations that you can perform on an attribute using the
AttributeDef interface.

Table D-8 AttributeDef Interface

If you want to... Call this AttributeDef interface method

Get the Java type of the attribute getJavaType()

Get the SQL type of the attribute getSQLType()

Notes:
The int value corresponds to constants in the
JDBC class java.sql.Types.

Determine the kind of attribute getAttributeKind()

Notes:
A simple attribute is one that returns
one of the constants ATTR_PERSISTENT,
ATTR_SQL_DERIVED, ATTR_TRANSIENT,
ATTR_DYNAMIC, ATTR_ENTITY_DERIVED. If
the attribute is a 1-to-1 or many-
to-1 association/viewlink accessor, it
returns ATTR_ASSOCIATED_ROW. If the
attribute is a 1-to-many or many-to-many
association/viewlink accessor, it returns
ATTR_ASSOCIATED_ROWITERATOR

Get the Java type of elements contained in an
Array-valued attribute

getElemJavaType()

Get the SQL type of elements contained in an
Array-valued attribute

getElemSQLType()

Get the name of the attribute getName()

Get the index position of the attribute getIndex()

Appendix D
Methods Used in the Client Tier

D-10

Table D-8 (Cont.) AttributeDef Interface

If you want to... Call this AttributeDef interface method

Get the precision of a numeric attribute or the
maximum length of a string attribute

getPrecision()

Get the scale of a numeric attribute getScale()

Get the underlying column name
corresponding to the attribute

getColumnNameForQuery()

Get attribute-specific custom property values getProperty(), getProperties()

Get the UI AttributeHints object for the
attribute

getUIHelper()

Test whether the attribute is mandatory isMandatory()

Test whether the attribute is queriable isQueriable()

Test whether the attribute is part of the primary
key for the row

isPrimaryKey()

AttributeHints Interface
The AttributeHints interface exposes UI hint information that you can use
to render an appropriate user interface display for the attribute and its value.
Table D-9 describes the operations that you can perform on an attribute using the
AttributeHints interface.

Table D-9 AttributeHints Interface

If you want to... Call this AttributeHints interface method

Get the UI label for the attribute getLabel()

Get the tooltip for the attribute getTooltip()

Get the formatted value of the attribute, using
any format mask supplied

getFormattedAttribute()

Get the display hint for the attribute getDisplayHint()

Notes:
The display hint will have a string value of
either Display or Hide.

Get the preferred control type for the attribute getControlType()

Parse a formatted string value using any
format mask supplied for the attribute

parseFormattedAttribute()

Methods Used in the Business Service Tier
The Business Service tier contains the business logic. There are several methods in
the business service tier for the key ADF Business Components.

The implementation classes corresponding to the oracle.jbo.* interfaces, as
described in Methods Used in the Client Tier, are intentionally designed to not
be directly accessed by client code. They reside in a different package named

Appendix D
Methods Used in the Business Service Tier

D-11

oracle.jbo.server.* and have the Impl suffix in their name to help remind you not to
use them in your client-layer code.

In your business service tier implementation code, you can use any of the same
methods that are available to clients, but in addition you can also:

• Safely cast any oracle.jbo.* interface to its oracle.jbo.server.* package
implementation class and use any methods on that Impl class as well.

• Override any of the public or protected methods for the base framework
implementation classes and write custom code in your component subclass before
or after calling super.methodName() to augment or change the default functionality.

This section provides a summary of the most frequently called, written, and overridden
methods for the key ADF Business Components classes.

Controlling Custom Java Files for Your Components
Before examining the specifics of individual classes, it's important to understand how
you can control which custom Java files each of your components will use. When you
don't need a customized subclass for a given component, you can just let the base
framework class handle the implementation at runtime.

Each business component you create comprises a single XML component descriptor,
and zero or more related custom Java implementation files. Each component that
supports Java customization has a Java page in its component overview editor in
the JDeveloper IDE. By selecting or deselecting the different Java classes, you
control which ones will be created for your component. If none of the classes is
specified, then your component will be an XML-only component, which simply uses
the base framework class as its Java implementation. Otherwise, tick the checkbox
of the related Java classes for the current component that you need to customize.
JDeveloper will create a custom subclass of the framework base class in which you
can add your code.

Note:

You can set up global IDE preferences for the Java classes to be generated
by default for each ADF business component type by choosing Tools
> Preferences > Business Components and ticking the checkboxes to
indicate what you want your defaults to be.

A best practice is to always generate entity object and view row classes, even if you
don't require any custom code in them other than the automatically generated getter
and setter methods. These getter and setter methods offer you compile-time type
checking that prevents errors surfacing at runtime in response to an attribute having
been set to an incorrect kind of value.

ApplicationModuleImpl Class
The ApplicationModuleImpl class is the base class for application module
components. Since the application module is the ADF component used to implement
a business service, think of the application module class as the place where you
can write your service-level application logic. The application module coordinates

Appendix D
Methods Used in the Business Service Tier

D-12

with view object instances to support updatable collections of value objects that are
automatically "wired" to business domain objects. The business domain objects are
implemented as ADF entity objects.

Methods You Typically Call on ApplicationModuleImpl
Table D-10 describes the operations that you can perform on an application module
using the ApplicationModuleImpl class.

Table D-10 Methods You Typically Call on ApplicationModuleImpl

If you want to... Call this method of the
ApplicationModuleImpl class

Perform any of the common application
module operations from inside your class,
which can also be done from the client

For a list of these methods, see
ApplicationModule Interface.

Access a view object instance that you added
to the application module's data model at
design time

getViewObjectInstanceName()

Notes:
JDeveloper generates this type-safe view
object instance getter method for you to reflect
each view object instance in the application
module's design time data model.

Access the current DBTransaction object getDBTransaction()

Access a nested application module instance
that you added to the application module at
design time

getAppModuleInstanceName()

Notes:
JDeveloper generates this type-safe
application module instance getter method for
you to reflect each nested application module
instance added to the current application
module at design time.

Methods You Typically Write in Your Custom ApplicationModuleImpl Subclass
Table D-11 describes the operations that you can perform on an application module
using your custom ApplicationModuleImpl class.

Appendix D
Methods Used in the Business Service Tier

D-13

Table D-11 Methods You Typically Write in Your Custom
ApplicationModuleImpl Subclass

If you want to... Write a method like this in your custom
ApplicationModuleImpl class

Invoke a database stored procedure someCustomMethod()

Notes:
Use the appropriate method on the
DBTransaction interface to create a
JDBC PreparedStatement. If the stored
procedure has OUT parameters, then create a
CallableStatement instead.

For sample code that demonstrates
encapsulating a call to a PL/SQL stored
procedure inside your application module, see
Invoking Stored Procedures and Functions.

Expose custom business service methods on
your application module

someCustomMethod()

Notes:
Select the method name on the Client
Interface page of the Edit Application Module
dialog to expose it for client access if required.

JDeveloper can generate a custom YourApplicationModuleName interface containing
service-level custom methods that you've chosen to expose to the client. You can use
the Client Interface page of the Edit Application Module dialog to select the methods
that you want to appear in your client interface.

Methods You Typically Override in Your Custom ApplicationModuleImpl
Subclass

Table D-12 describes the operations that you can override on an application module
using your custom ApplicationModuleImpl class.

Appendix D
Methods Used in the Business Service Tier

D-14

Table D-12 Methods You Typically Override in Your Custom
ApplicationModuleImpl Subclass

If you want to... Override this method in your custom
ApplicationModuleImpl class

Perform custom setup code the first time
an application module is created and each
subsequent time it gets used by a different
client session.

prepareSession()

Notes:
This is the method you'd use to set up per-
client context info for the current user in order
to use Oracle's Virtual Private Database (VPD)
features. It can also be used to set other kinds
of PL/SQL package global variables, whose
values might be client-specific, on which other
stored procedures might rely.

This method is also useful to perform setup
code that is specific to a given view object
instance in the application module. If instead
of the view object setup code being instance-
specific, you want it to be initialized for
every instance ever created of that view
object component, then put the setup logic
in an overridden create() method in your
ViewObjectImpl subclass instead.

Perform custom setup code after the
application module's transaction is associated
with a database connection from the
connection pool.

afterConnect()

Notes:
Can be a useful place to
write a line of code that uses
getDBTransaction().executeCommand()
to perform an ALTER SESSION SET SQL
TRACE TRUE to enable database SQL trace
logging for the current application connection.
These logs can then be processed with the
TKPROF utility to study the SQL statements
being performed and the query optimizer plans
that are getting used.

For details about working with the TKPROF
utility, see section "Understanding SQL Trace
and TKPROF" in the "Performing Application
Tracing" chapter of the Oracle Database SQL
Tuning Guide.

Appendix D
Methods Used in the Business Service Tier

D-15

Table D-12 (Cont.) Methods You Typically Override in Your Custom
ApplicationModuleImpl Subclass

If you want to... Override this method in your custom
ApplicationModuleImpl class

Perform custom setup code before the
application module's transaction releases its
database connection back to the database
connection pool.

beforeDisconnect()

Notes:
If you have set jbo.doconnectionpooling
to true, then the connection is released
to the database connection pool each time
the application module is returned to the
application module pool.

In order to clear custom database
state when the Application Module
returns to the Application Module
pool, applications should override the
beforeDisconnect()method. The method
resetState() is not recommended for
this purpose since Application Modules may
participate in transaction sharing. Cleaning
up database state in resetState() from
one Application Module while others are still
referencing the same DB Transaction can lead
to issues.

Write custom application module state to the
state management XML snapshot.

passivateState()

Read and restore custom application module
state from the state management XML
snapshot.

activateState()

DBTransactionImpl2 Class
The DBTransactionImpl2 class — which extends the base DBTransactionImpl class,
and is constructed by the DatabaseTransactionFactory class — is the base class that
implements the DBTransaction interface, representing the unit of pending work in the
current transaction.

Methods You Typically Call on DBTransaction
Table D-13 describes the operations that you can perform on a transaction using the
DBTransaction class.

Table D-13 Methods You Typically Call on DBTransaction

If you want to... Call this method on the DBTransaction
class

Commit the transaction commit()

Roll back the transaction rollback()

Eagerly validate any pending invalid changes
in the transaction

validate()

Appendix D
Methods Used in the Business Service Tier

D-16

Table D-13 (Cont.) Methods You Typically Call on DBTransaction

If you want to... Call this method on the DBTransaction
class

Create a JDBC PreparedStatement using
the transaction's Connection object

createPreparedStatement()

Create a JDBC CallableStatement using
the transaction's Connection object

createCallableStatement()

Create a JDBC Statement using the
transaction's Connection object

createStatement()

Add a warning to the transaction's warning list addWarning()

Methods You Typically Override in Your Custom DBTransactionImpl2 Subclass
Table D-14 describes the operations that you can perform on a transaction using your
custom DBTransactionImpl2 subclass.

Table D-14 Methods You Typically Override in Your Custom
DBTransactionImpl2 Subclass

If you want to... Override this method in your custom
DBTransactionImpl2 class

Perform custom code before or after the
transaction commit operation

commit()

Perform custom code before or after the
transaction rollback operation

rollback()

In order for your custom DBTransactionImpl2 subclass to be used at runtime, there
are you must follow these steps:

1. Create a custom subclass of DatabaseTransactionFactory that overrides the
create method to return an instance of your custom DBTransactionImpl2 subclass
like this:

package com.yourcompany.adfextensions;
import oracle.jbo.server.DBTransactionImpl2;
import oracle.jbo.server.DatabaseTransactionFactory;
import com.yourcompany.adfextensions.CustomDBTransactionImpl;
public class CustomDatabaseTransactionFactory
 extends DatabaseTransactionFactory {
 /**
 * Return an instance of our custom CustomDBTransactionImpl class
 * instead of the default implementation.
 *
 * @return An instance of our custom DBTransactionImpl2 implementation.
 */
 public DBTransactionImpl2 create() {
 return new CustomDBTransactionImpl();
 }
}

2. Tell the framework to use your custom transaction factory class by setting the
value of the TransactionFactory configuration property to the fully qualified class

Appendix D
Methods Used in the Business Service Tier

D-17

name of your custom transaction factory. As with other configuration properties,
if not supplied in the configuration XML file, it can be provided alternatively as a
Java system parameter of the same name.

EntityImpl Class
The EntityImpl class is the base class for entity objects, which encapsulate the data,
validation rules, and business behavior for your business domain objects.

Methods You Typically Call on EntityImpl
Table D-15 describes the operations that you can perform on an entity object using the
EntityImpl class.

Table D-15 Methods You Typically Call on EntityImpl

If you want to... Call this method in the EntityImpl class

Get the value of an attribute getAttributeName()

Notes:
This code-generated getter method calls
getAttributeInternal(), but provides
compile-time type checking.

Set the value of an attribute setAttributeName()

Notes:
This code-generated setter method calls
setAttributeInternal(), but provides
compile-time type checking.

Get the value of an attribute by name getAttributeInternal()

Set the value of an attribute by name setAttributeInternal()

Eagerly perform entity object validation validate()

Refresh the entity from the database refresh()

Populate the value of an attribute without
marking it as being changed, but sending
notification of its being changed so that the UI
refreshes the value on the screen/page

populateAttributeAsChanged()

Access the Definition object for an entity getDefinitionObject()

Get the Key object for an entity getKey()

Determine the state of the entity instance,
irrespective of whether it has already been
posted (but not yet committed) in the current
transaction

getEntityState()

Notes:
This method will return one of
the constants STATUS_UNMODIFIED,
STATUS_INITIALIZED, STATUS_NEW,
STATUS_MODIFIED, STATUS_DELETED, or
STATUS_DEAD, indicating the status of the
entity instance in the current transaction.

Appendix D
Methods Used in the Business Service Tier

D-18

Table D-15 (Cont.) Methods You Typically Call on EntityImpl

If you want to... Call this method in the EntityImpl class

Determine the state of the entity instance getPostState()

Notes:
This method is typically relevant only if you are
programmatically using the postChanges()
method to post but not yet commit, entity
changes to the database and need to detect
the state of an entity with regard to its posting
state.

Get the value originally read from the database
for a given attribute

getPostedAttribute()

Get the metadata for a view object or entity
object

getStructureDef()

Notes:
Downcasting the return value of
EntityImpl.getStructureDef() method
invocation to EntityCache is not supported.
To obtain the instance of EntityCache invoke
an existing getEntityCache()method on the
EntityImpl object.

Eagerly lock the database row for an entity
instance

lock()

Copy the values from masterRow that are
relevant for the entity object to a newly created
row.

masterRow.findOrCreateAssociationAcc
essorRS(accessorName)

Note:

This API returns
a RowSet and
follow the familiar
pattern of
createRow and
insertRow.

Methods You Typically Write in Your Custom EntityImpl Subclass
Table D-16 describes the operations that you can perform on an entity object using
your custom EntityImpl subclass.

Appendix D
Methods Used in the Business Service Tier

D-19

Table D-16 Methods You Typically Write in Your Custom EntityImpl Subclass

If you want to... Write a method like this in your custom
EntityImpl subclass

Perform attribute-specific validation public boolean
validateSomething(AttrTypevalue)

Notes:
Register the attribute validator method by
adding a MethodValidator rule on the correct
attribute in the Validation page of the Edit
Entity Object dialog.

Perform entity-level validation public boolean validateSomething()

Notes:
Register the entity-level validator method by
adding a MethodValidator rule on the entity in
the Validation panel of the Edit Entity Object
dialog.

Calculate the value of a transient attribute Add your calculation code to the generated
getAttributeName() method.

Methods You Typically Override in Your Custom EntityImpl Subclass
Table D-17 describes the operations that you can override on an entity object using
your custom EntityImpl subclass.

Table D-17 Methods You Typically Override in Your Custom EntityImpl
Subclass

If you want to... Override this method in your EntityImpl
subclass

Set calculated default attribute values,
including programmatically populating the
primary key attribute value of a new entity
instance

create()

Notes:
After calling super.create(), call the
appropriate setAttrName() method(s) to set
the default values for the attributes.

Modify attribute values before changes are
posted to the database

prepareForDML()

Augment or change the standard INSERT,
UPDATE, or DELETE DML operation that the
framework will perform on your entity object's
behalf to the database

doDML()

Notes:
This method checks the value of the
operation flag to the constants DML_INSERT,
DML_UPDATE, or DML_DELETE to test what
DML operation is being performed.

Perform complex, SQL-based validation after
all entity instances have been posted to
the database but before those changes are
committed

beforeCommit()

Notes:
This method is invoked for each entity row in
the transaction.

Appendix D
Methods Used in the Business Service Tier

D-20

Table D-17 (Cont.) Methods You Typically Override in Your Custom EntityImpl
Subclass

If you want to... Override this method in your EntityImpl
subclass

Perform custom processing after all entity
instances have been committed to the
database

afterCommit()

Notes:
This method is invoked for each entity row in
the transaction list of pending changes.

Insure that a related, newly created, parent
entity gets posted to the database before the
current child entity on which it depends

postChanges()

Notes:
If the parent entity is related to this child
entity via a composition association, then
the framework already handles posting the
changes automatically. If they are only
associated (but not composed), then you
need to override postChanges() to force a
newly created parent entity to post before
the current, dependent child entity. For an
example of the code you typically write in
your overridden postChanges() method to
accomplish this, see Overriding postChanges()
to Control Post Order.

Programmatically define default attribute
values or to perform custom initialization
before a modified row is refreshed back to
its initialization state or after the row is first
created

initDefaultExpressionAttributes()

Notes:
This method is invoked just before the end of
the initialization cycle, which makes it suitable
for executing custom code.

Note:

It is possible to write attribute-level validation code directly inside
the appropriate setAttributeName method of your EntityImpl class;
however, adopting the MethodValidator approach suggested in Table D-16
conveniently places all the validations in effect on the Validation Rules page
of the overview editor for the attributes of the entity object.

Appendix D
Methods Used in the Business Service Tier

D-21

WARNING:

It is also possible to override the validateEntity() method to write entity-
level validation code; however, if you want to maintain the benefits of the
ADF bundled exception mode — where the framework collects and reports
a maximal set of validation errors back to the client user interface —
use the MethodValidator approach suggested in Table D-16. This allows
the framework to automatically collect all of your exceptions that your
validation methods throw without your having to understand the bundled
exception implementation mechanism. Overriding the validateEntity()
method directly shifts the responsibility onto your own code to correctly catch
and bundle the exceptions that Oracle ADF would have caught by default,
which is nontrivial and a chore to remember and hand-code each time.

EntityDefImpl Class
The EntityDefImpl class is a singleton, shared metadata object for all entity objects of
a given type in a single Java VM. For instance, if the Java VM contains two instances
of the EntityDefImpl class, one with the customers XML data and one with the
orders, there would only ever be one instance of each. This class defines the structure
of the entity instances and provides methods to create new entity instances and find
existing instances by their primary key.

Methods You Typically Call on EntityDefImpl
Table D-18 describes the operations that you can perform on an entity object using the
EntityDefImpl class.

Table D-18 Methods You Typically Call on EntityDefImpl

If you want to... Call this method in the EntityDefImpl class

Find an entity object of a given type by its
primary key

findByPrimaryKey()

Notes:
For a tip about getting findByPrimaryKey()
to find entity instances of subtype entities
as well, see Subtype Entity Objects and the
findByPrimaryKey() Method.

Access the current DBTransaction object getDBTransaction()

Find any EntityDefImpl object by its fully
qualified name

findDefObject() (static method)

Retrieve the value of an entity object's custom
property

getProperty(), getProperties()

Set the value of an entity object's custom
property

setProperty()

Appendix D
Methods Used in the Business Service Tier

D-22

Table D-18 (Cont.) Methods You Typically Call on EntityDefImpl

If you want to... Call this method in the EntityDefImpl class

Create a new instance of an entity object createInstance2()

Notes:
Alternatively, you can expose custom
createXXX() methods with your own
expected signatures in that same custom
EntityDefImpl subclass. See Methods You
Typically Write in Your Custom EntityDefImpl
Class for details.

Iterate over the entity instances in the cache of
this entity type

getAllEntityInstancesIterator()

Access an array list of entity definition objects
for entities that extend the current one.

getExtendedDefObjects()

Methods You Typically Write in Your Custom EntityDefImpl Class
Table D-19 describes the operations that you can perform on an entity object using
your custom EntityDefImpl class.

Table D-19 Methods You Typically Write on EntityDefImpl

If you want to... Write a method like this in your custom
EntityDefImpl class

Allow other classes to create an entity instance
with an initial type-safe set of attribute values
or setup information

createXXX(Type1arg1,..., TypeNargN)

Notes:
Internally, using this method would
create and populate an instance of a
NameValuePairs object (which implements
AttributeList) and call the protected
method createInstance(), passing that
NameValuePairs object. Make sure that the
method is public if other classes need to be
able to call it.

Methods You Typically Override in Your Custom EntityDefImpl
Table D-20 describes the operations that you can perform on an entity object using the
EntityDefImpl class.

Table D-20 Methods You Typically Override on EntityDefImpl

If you want to... Override this method in your custom
EntityDefImpl class

Perform custom metadata initialization when
this singleton metaobject is loaded

createDef()

Appendix D
Methods Used in the Business Service Tier

D-23

Table D-20 (Cont.) Methods You Typically Override on EntityDefImpl

If you want to... Override this method in your custom
EntityDefImpl class

Avoid using the RETURNING INTO clause to
support refresh-on-insert or refresh-on-update
attributes

isUseReturningClause()

Notes:
Set this method to return false to disable
the use of RETURNING INTO, necessary
sometimes when your entity object is based
on a view with INSTEAD OF triggers that don't
support RETURNING INTO at the database
level.

Control whether the UPDATE statements
issued for this entity update only changed
columns or for all columns

isUpdateChangedColumns()

Notes:
Defaults to true.

Find any EntityDefImpl object by its fully
qualified name

findDefObject()

Notes:
Static method.

Set the value of an entity object's custom
property

setProperty()

Allow other classes to create a new instance of
an entity object without doing so implicitly via a
view object

createInstance()

Notes:
If you don't write a custom create method as
noted in Methods You Typically Write in Your
Custom EntityDefImpl Class, you'll need to
override this method and widen the visibility
from protected to public to allow other
classes to construct an entity instance.

ViewObjectImpl Class
The ViewObjectImpl class is the base class for view objects.

Methods You Typically Call on ViewObjectImpl
Table D-21 describes the operations that you can perform on a view object using the
ViewObjectImpl class.

Table D-21 Methods You Typically Call on ViewObjectImpl

If you want to... Call this method in the ViewObjectImpl
class

Perform any of the common view object, row
set, or row set iterator operations from inside
your class, which can also be done from the
client

For more information about operations at the
view object, row set, or row set iterator level ,
see ViewObject Interface, RowSet Interface,
and RowSetIterator Interface.

Search a view instance's in-memory row set
without changing the default row set

findByViewCriteria()

Appendix D
Methods Used in the Business Service Tier

D-24

Table D-21 (Cont.) Methods You Typically Call on ViewObjectImpl

If you want to... Call this method in the ViewObjectImpl
class

Fetch all the rows from the database and
then determine the total row count in the view
object row set

getRowCount()

Notes:
Use this method carefully: Performance may
be affected when a large number of rows is
involved.

Determine the total number of rows in view
object row set after each invocation by the
client

getQueryHitCount()

Determine the total number of rows in the view
object row set

getEstimatedRowCount()

Notes:
This is the preferred way to find row count
since it requires only one database query
(after the count is obtained, it will be
maintained as rows are added and removed).

Execute a count query but with a cap
argument to manage execution in the case
where a large number of rows may affect
performance

getCappedQueryHitCount()

Define a named bind parameter defineNamedWhereClauseParam()

Remove a named bind parameter removeNamedWhereClauseParam()

Set bind variable values on the default row set
by name

setNamedWhereClauseParam()

Notes:
Only works when you have formally defined
named bind variables on your view object.

Set bind variable values on the default row set setWhereClauseParams()

Notes:
Use this method for view objects with
binding style of "Oracle Positional" or "JDBC
Positional" when you have not formally defined
named bind variables.

Retrieve a subset of rows in a view object's
row set based on evaluating an in-memory
filter expression

getFilteredRows()

Retrieve a subset of rows in the current range
of a view object's row set based on evaluating
an in-memory filter expression

getFilteredRowsInRange()

Override the runtime display of criteria items
that appear inside an ADF query component.
Subclasses may override to return custom
AttributeHints implementation for the
given criteria item. Returns null by default.

getCriteriaItemAttributeHints()

Appendix D
Methods Used in the Business Service Tier

D-25

Table D-21 (Cont.) Methods You Typically Call on ViewObjectImpl

If you want to... Call this method in the ViewObjectImpl
class

Set the number of rows that will be fetched
from the database per roundtrip for this view
object

setFetchSize()

Notes:
The default fetch size is a single row at a time.
This is definitely not optimal if your view object
intends to retrieve many rows, so you should
either set the fetch size higher at design time
on the Tuning page of the Edit View Object
dialog, or set it at runtime using this method.

Force a row set's query to be (re)executed
specifically on a lookup view object instance
in a shared application module

forceExecuteQueryOfSharedVO()

Notes:
Reexecuting the query forces a new query
collection and will prevent the application
module cache from being used. You should
only use this method when you are sure
that you are accessing the shared application
module during setup and not during runtime.
This method when used during normal
runtime may have unintended side-effects that
disrupt the navigation of users accessing the
collection concurrently. If you want to refresh
the collection from the cache without creating
a new query collection, call executeQuery()
instead.

Methods You Typically Write in Your Custom ViewObjectImpl Subclass
Table D-22 describes the operations that you can perform on a view object using your
custom ViewObjectImpl subclass.

Table D-22 Methods You Typically Write in Your Custom ViewObjectImpl
Subclass

If you want to... Write a method like this in your custom
ViewObjectImpl subclass

Provide clients with type-safe methods to
set bind variable values without exposing
positional details of the bind variables
themselves

someMethodName(Type1arg1,...,
TypeNargN)

Notes:
Internally, this method would call the
setWhereClauseParams() method to set the
correct bind variables with the values provided
in the type-safe method arguments.

JDeveloper can generate a custom YourViewObjectName interface containing view
object custom methods that you've chosen to expose to the client. You can use the
Client Interface page of the Edit View Object to select the methods that you want to
appear in your client interface.

Appendix D
Methods Used in the Business Service Tier

D-26

Methods You Typically Override in Your Custom ViewObjectImpl Subclass
Table D-23 describes the operations that you can perform on a view object using your
custom ViewObjectImpl subclass.

Table D-23 Methods You Typically Override in Your Custom ViewObjectImpl
Subclass

If you want to... Override this method in your custom
ViewObjectImpl subclass

Initialize custom view object class members
(not row attributes) when the view object
instance is created for the first time

create()

Notes:
This method is useful to perform set up logic
that is applicable to every instance of a view
object that will ever get created, in the context
of any application module.

If instead of generic view object setup logic,
you need to perform logic specific to a
given view object instance in an application
module, then override the prepareSession()
method of your application module's
ApplicationModuleImpl subclass and
perform the logic there after calling
findViewObject() to find the view object
instance whose properties you want to set.

Write custom view object instance state to the
state management XML snapshot

passivateState()

Read and restore custom view object instance
state from the state management XML
snapshot

activateState()

Appendix D
Methods Used in the Business Service Tier

D-27

Table D-23 (Cont.) Methods You Typically Override in Your Custom
ViewObjectImpl Subclass

If you want to... Override this method in your custom
ViewObjectImpl subclass

Customize the execution of the view object
query to utilize an alternative data source

executeQueryForCollection()

Notes:
By default view objects read their data
from the database and automate the task
of working with the JDBC layer to process
the database result sets. However, by
overriding appropriate methods in its custom
Java class, you can create a view object
that programmatically retrieves data from
alterative data sources, as described in Using
Programmatic View Objects for Alternative
Data Sources.

It is not correct to override
executeQueryForCollection() to make
changes to WHERE clauses and parameters.
By the time the method is called, ADF
Business Components assumes that the
parameters are already calculated and that
row filters are constructed. If you change
the query before it gets executed each
time, ADF Business Components could never
reuse an existing cached statement handle.
Instead, when you want to specify bind
parameters before the query is executed, you
can override prepareRowSetForQuery() on
ViewObjectImpl since it provides access to
the row set that is being executed.

Customize the programmatic view object
to utilize an alternative data source and
determine whether the query collection has
more rows to fetch from the query execution

hasNextForCollection()

Customize the programmatic view object to
utilize an alternative data source and log bind
parameter names and values used in the
query

bindParametersForCollection()

Customize the programmatic view object to
utilize an alternative data source and populate
each row of the retrieved data

createRowFromResultSet()

Customize the programmatic view object to
utilize an alternative data source and return
a count of the number of rows that will be
retrieved

getQueryHitCount()

Customize the programmatic view object to
utilize an alternative data source and to
determine whether the query would return
more rows than the capped value specified by
a global row fetch limit.

getCappedQueryHitCount()

Appendix D
Methods Used in the Business Service Tier

D-28

Table D-23 (Cont.) Methods You Typically Override in Your Custom
ViewObjectImpl Subclass

If you want to... Override this method in your custom
ViewObjectImpl subclass

Customize the programmatic view object to
access the row set that is being executed
and change the view object WHERE clause
and specify bind parameter values before the
query is executed. This is the recommended
hook point for overriding query and setting
bind parameters. This method is invoked by
the framework every time a row set is about to
be executed.

prepareRowSetForQuery()

Customize the programmatic view object to
utilize an alternative data source and release
any resources that may be associated with a
row set that is being closed

releaseUserDataForCollection()

Change or augment the way
that the ViewCriteria collection of
ViewCriteriaRows is converted into a
Query-by-Example WHERE clause

getViewCriteriaClause(boolean)

Customize the programmatic view object to
implement range paging.

buildRangePagingQuery()

Customize the programmatic view object
to implement range paging and pass in
parameters to control the range start and size
for the current range of rows to fetch from a
data source.

bindRangePagingParams()

ViewRowImpl Class
The ViewRowImpl class is the base class for view row objects.

Methods You Typically Call on ViewRowImpl
Table D-24 describes the operations that you can perform on a view object row using
your custom ViewRowImpl class.

Table D-24 Methods You Typically Call on ViewRowImpl

If you want to... Call this method in your custom
ViewRowImpl class

Perform any of the common view row
operations from inside your class, which can
also be done from the client

For more information about the row-level
operations, see Row Interface.

Get the value of an attribute getAttrName()

Set the value of an attribute setAttrName()

Appendix D
Methods Used in the Business Service Tier

D-29

Table D-24 (Cont.) Methods You Typically Call on ViewRowImpl

If you want to... Call this method in your custom
ViewRowImpl class

Access the underlying entity instance to which
this view row is delegating attribute storage

getEntityUsageAliasName()

Notes:
You can change the name of the entity usage
alias name on the Entity Objects page of the
Edit View Object dialog.

Copy the values from masterRow that are
relevant for the view link to a newly created
row.

masterRow.findOrCreateViewLinkAccess
orRS(accessorName)

Note:

This API returns
a RowSet and
follow the familiar
pattern of
createRow and
insertRow.

Methods You Typically Write in Your Custom ViewRowImpl Class
Table D-25 describes the operations that you can perform on a view object row using
your custom ViewRowImpl class.

Table D-25 Methods You Typically Write on ViewRowImpl

If you want to... Write a method like this in your custom
ViewRowImpl class

Calculate the value of a view object-level
transient attribute

getAttrName()

Notes:
JDeveloper generates the skeleton of the
method for you, but you need to write the
custom calculation logic inside the method
body.

Perform custom processing of the setting of a
view row attribute

setAttrName()

Notes:
JDeveloper generates the skeleton of the
method for you, but you need to write
the custom logic inside the method body if
required.

Determine the updateability of an attribute in a
conditional way

isAttributeUpdateable()

Appendix D
Methods Used in the Business Service Tier

D-30

Table D-25 (Cont.) Methods You Typically Write on ViewRowImpl

If you want to... Write a method like this in your custom
ViewRowImpl class

Expose logical operations on the current row,
optionally callable by clients

doSomething()

Notes:
Often these view-row-level custom methods
simply turn around and delegate to a method
call on the underlying entity object related to
the current row.

JDeveloper can generate a custom YourViewObjectNameRow interface containing view
row custom methods that you've chosen to expose to the client. You can use the
Client Row Interface page of the Edit View Object dialog to select the methods that
you want to appear in your client interface.

Methods You Typically Override in Your Custom ViewRowImpl Subclass
Table D-26 describes the operations that you can perform on a view object row using
your custom ViewRowImpl subclass.

Table D-26 Methods You Typically Override in Your Custom ViewRowImpl
Subclass

If you want to... Write a method like this in your
ViewRowImpl subclass

Determine the updateability of an attribute in a
conditional way

isAttributeUpdateable()

Appendix D
Methods Used in the Business Service Tier

D-31

E
ADF Business Components Java EE
Design Pattern Catalog

This appendix summarizes the Java Platform, Enterprise Edition (Java EE) design
patterns that ADF Business Components implements for you.
By using the Oracle Application Development Framework's business components
building-blocks and related design time extensions to JDeveloper, you get a
prescriptive architecture for building richly functional and cleanly layered Java EE
business services with great performance.

Table E-1 provides a brief overview of the numerous design patterns that the
ADF Business Components layer implements for you. Some are the familiar
patterns from Sun's Java EE BluePrints and some are design patterns that ADF
Business Components adds to the list. For details about Java EE BluePrints,
see the BluePrints page at the Oracle Technology Network website at http://
www.oracle.com/technetwork/java/index-jsp-136701.html.

Table E-1 Java EE Design Patterns Implemented by ADF Business
Components

Pattern Name and Description How ADF Business Components
Implements It

Model/View/Controller
Cleanly separates the roles of data and
presentation, allowing multiple types of client
displays to work with the same business
information.

The ADF application module provides
a generic implementation of a Model/View/
Controller "application object" that simplifies
exposing the application data model for
any application or service, and facilitates
declaratively specifying the boundaries of
a logical unit of work. Additional UI-centric
frameworks and tag libraries provided in
JDeveloper help you implement the view and
controller layers.

Interface / Implementation Separation
Cleanly separates the API or Interface for
components from their implementation class.

ADF Business Components enforces a
logical separation of client-tier accessible
functionality (via interfaces) and its business
tier implementation. JDeveloper handles the
creation of custom interfaces and client proxy
classes automatically.

Service Locator
Abstracts the technical details of locating a
service so that the client can use it more
easily.

ADF application modules are looked up using
a simple configuration object which hides
the low-level details of finding the service
instance behind the scenes. For Fusion web
applications, it also hides the implementation
of the application module pool usage, a
lightweight pool of service components that
improves application scalability.

E-1

http://www.oracle.com/technetwork/java/index-jsp-136701.html
http://www.oracle.com/technetwork/java/index-jsp-136701.html

Table E-1 (Cont.) Java EE Design Patterns Implemented by ADF Business
Components

Pattern Name and Description How ADF Business Components
Implements It

Inversion of Control
A containing component orchestrates the
lifecycle of the components it contains,
invoking specific methods that you can
override at the appropriate times, so as to be
able to focus more on what the code should
do, instead of when it should be executed.

ADF components contain a number of easy-to-
override methods that the framework invokes
as needed during the course of application
processing.

Dependency Injection
Simplifies application code, and increases
configuration flexibility by deferring component
configuration and assembly to the container.

ADF Business Components configures all its
components from externalized XML metadata
definition files. At runtime, the framework
automatically injects dependent objects like
view object instances into your application
module service component and entity
objects into your view rows, implementing
lazy loading. It supports runtime factory
substitution of components by any customized
subclass of that component to simplify onsite
application customization scenarios. Much of
the ADF Business Components functionality is
implemented via dynamic injection of validator
and listener subscriptions that coordinate the
framework interactions depending on what
declarative features have been configured for
each component in their XML metadata.

Active Record
Avoids the complexity of "anything to anything"
object/relational mapping, by providing an
object that wraps a row in a database table or
view, encapsulates the database access, and
adds domain logic on that data.

ADF entity objects handle the database
mapping functionality you use most frequently,
including inheritance, association, and
composition support, so you don't have to
focus on object/relational mapping. They
also provide a place to encapsulate both
declarative business rules and one-off
programmatic business domain.

Data Access Objects
Prevents unnecessary marshalling overhead
by implementing dependent objects as
lightweight, persistent classes instead of each
as an individual enterprise bean. Isolates
persistence details into a single, easy-to-
maintain class.

ADF view objects automate the
implementation of data access for reading
data using SQL statements. ADF entity objects
automate persistent storage of lightweight
business entities. ADF view objects and entity
objects cooperate to provide a sophisticated,
performant data access objects layer, where
any data queried through a view object can
optionally be made fully updatable without
requiring that you write any "application
plumbing" code.

Session Facade
Prevents inefficient client access of entity
beans and inadvertent exposure of sensitive
business information by wrapping entity beans
with a session bean.

ADF application modules are designed to
implement a coarse-grained "service facade"
architecture in any of their supported
deployment modes. When deployed as
a service interface, they provide an
implementation of the Session Facade pattern
automatically.

Appendix E

E-2

Table E-1 (Cont.) Java EE Design Patterns Implemented by ADF Business
Components

Pattern Name and Description How ADF Business Components
Implements It

Value Object
Prevents unnecessary network roundtrips by
creating one-off "transport" objects to group
a set of related attributes needed by a client
program.

ADF Business Components provides an
implementation of a generic Row object,
which is a metadata-driven container of any
number and kind of attributes that need
to be accessed by a client. The developer
can work with the generic Row interface
and do late-bound getAttribute("Price")
and setAttribute("Quantity")calls, or
optionally generate early-bound row interfaces
like OverdueOrdersRow, to enable type-
safe method calls like getPrice() and
setQuantity(). Smarter than just a simple
"bag 'o attributes", the ADF Row object can
be introspected at runtime to describe the
number, names, and types of the attributes
in the row, enabling sophisticated, generic
solutions to be implemented.

Page-by-Page Iterator
Prevents sending unnecessary data to the
client by breaking a large collection into page-
sized "chunks" for display.

ADF Business Components provides an
implementation of a generic RowSet interface
which manages result sets produced by
executing view object SQL queries. The
RowSet interface allows you to set a desired
page size, for example 10 rows, and page up
and down through the query results in these
page-sized chunks. Since data is retrieved
lazily, only data the user actually visits will
ever be retrieved from the database on the
backend, and in the client tier the number of
rows in the page can be returned over the
network in a single roundtrip.

Fast-Lane Reader
Prevents unnecessary overhead for read-
only data by accessing JDBC APIs directly.
This allows an application to retrieve only
the attributes that need to be displayed,
instead of finding all of the attributes by
primary key when only a few are required
by the client. Typically, implementations of
this pattern sacrifice data consistency for
performance, since queries performed at the
raw JDBC level do not "see" pending changes
made to business information represented by
enterprise beans.

ADF view objects read data directly from
the database for best performance; however,
they give you a choice regarding data
consistency. If updateability and/or consistency
with pending changes is desired, you need
only associate your view object with the
appropriate entity objects whose business
data is being presented. If consistency is
not a concern, view objects can simply
perform the query with no additional overhead.
In either case, you never have to write
JDBC data access code. You need only
provide appropriate SQL statements in XML
descriptors.

(Bean) Factory
Allows runtime instantiation and configuration
of an appropriate subclass of a given interface
or superclass based on externally configurable
information.

All ADF component instantiation is done
based on XML configuration metadata through
factory classes allowing runtime substitution of
specialized components to facilitate application
customization.

Appendix E

E-3

Table E-1 (Cont.) Java EE Design Patterns Implemented by ADF Business
Components

Pattern Name and Description How ADF Business Components
Implements It

Entity Facade
Provides a restricted view of data and behavior
of one or more business entities.

ADF view objects can surface any set of
attributes and methods from any combination
of one or more underlying entity objects to
furnish the client with a single, logical value
object to work with.

Value Messenger
Keeps client value object attributes in sync
with the middle-tier business entity information
that they represent in a bidirectional fashion.

The ADF Business Components value object
implementation coordinates with a client-side
value object cache to batch attribute changes
to the EJB tier and receive batch attribute
updates which occur as a result of middle-tier
business logic. The ADF Value Messenger
implementation is designed to not require any
kind of asynchronous messaging to achieve
this effect.

Continuations
Gives you the simplicity and productivity of a
stateful programming model with the scalability
of a stateless web solution.

ADF Business Components application
module pooling and state management
functionality combine to deliver this value-
add. Application module pooling eliminates
the need to dedicate application server tier
resources to individual users and supports a
"stateless with user affinity" optimization that
you can tune.

Appendix E

E-4

F
ADF Equivalents of Common Oracle Forms
Triggers

This appendix provides a summary of how basic tasks performed with the most
common Oracle Forms triggers are accomplished using Oracle ADF.
This appendix includes the following sections:

• Validation and Defaulting (Business Logic)

• Query Processing

• Database Connection

• Transaction "Post" Processing (Record Cache)

• Error Handling

Validation and Defaulting (Business Logic)
You will learn how Oracle Forms Validation and Defaulting Triggers are performed
using Oracle ADF equivalents.

Table F-1 ADF Equivalents for Oracle Forms Validation and Defaulting Triggers

Forms Trigger ADF Equivalent

WHEN-VALIDATE-RECORD

Execute validation code at the record
level

In the custom EntityImpl class for your entity object,
write a public method returning a boolean type with
a method name like validateXXXX() and have it
return true if the validation succeeds or false if the
validation fails. Then, add a Method validator for this
validation method to your entity object at the entity level.
When doing that, you can associate a validation failure
message with the rule.

WHEN-VALIDATE-ITEM

Execute validation code at the field
level

In the custom EntityImpl class for your entity object,
write a public method returning a boolean type
and accepting a single argument of the same data
type as your attribute, having a method name like
validateXXXX(). Have it return true if the validation
succeeds or false if the validation fails. Then, add a
Method validator for this validation method to the entity
object at the attribute level for the appropriate attribute.
When doing that, you can associate a validation failure
message with the rule.

WHEN-DATABASE-RECORD

Execute code when a row in the data
block is marked for insert or update

Override the addToTransactionManager() method
of your entity object. Write code after calling the super.

F-1

Table F-1 (Cont.) ADF Equivalents for Oracle Forms Validation and Defaulting
Triggers

Forms Trigger ADF Equivalent

WHEN-CREATE-RECORD

Execute code to populate complex
default values when a new record
in the data block is created, without
changing the modification status of
the record

Override the create() method of your entity
object and after calling the super, use appropriate
setAttrName() methods to set default values for
attributes as necessary.

To immediately set a primary key attribute to
the value of a sequence, construct an instance
of the SequenceImpl helper class and call its
getSequenceNumber() method to get the next
sequence number. Assign this value to your primary key
attribute.

If you want to wait to assign the sequence number
until the new record is saved, but still without using
a database trigger, you can use this technique in an
overridden prepareForDML() method in your entity
object.

If instead you want to assign the primary key from a
sequence using your own BEFOREINSERTFOREACHROW
database trigger, then use the special data type called
DBSequence for your primary key attribute instead of
the regular Number type.

WHEN-REMOVE-RECORD

Execute code whenever a row is
removed from the data block

Override the remove() method of your entity object
and write code either before or after calling the super.

Query Processing
You will learn how Oracle Forms Query Processing Triggers are performed using
Oracle ADF equivalents.

Table F-2 ADF Equivalents for Oracle Forms Query Processing Triggers

Forms Trigger ADF Equivalent

PRE-QUERY

Execute logic before executing a
query in a data block, typically to
set up values for Query-by-Example
criteria in the "example record"

Override the executeQueryForCollection()
method on your view object class and write code
before calling the super.

ON-COUNT

Override default behavior to count the
query hits for a data block

Override the getQueryHitCount() method in your
view object and do something instead of calling the
super.

Appendix F
Query Processing

F-2

Table F-2 (Cont.) ADF Equivalents for Oracle Forms Query Processing Triggers

Forms Trigger ADF Equivalent

POST-QUERY

Execute logic after retrieving each
row from the data source for a data
block.

Generally instead of using a POST-QUERY style
technique to fetch descriptions from other tables based
on foreign key values in the current row, in ADF
it's more efficient to build a view object that has
multiple participating entity objects, joining in all the
information you need in the query from the main
table, as well as any auxiliary or lookup-value tables.
This way, in a single roundtrip to the database you
get all the information you need. If you still need a
per-fetched-row trigger like POST-QUERY, override the
createInstanceFromResultSet() method in your
view object class.

ON-LOCK

Override default behavior to attempt
to acquire a lock on the current row in
the data block

Override the lock() method in your entity object class
and do something instead of calling the super.

Database Connection
You will learn how Oracle Forms Database Connection Triggers are performed using
Oracle ADF equivalents.

Table F-3 ADF Equivalents for Oracle Forms Database Connection Triggers

Forms Trigger ADF Equivalent

POST-LOGON

Execute logic after logging into the
database

Override the afterConnect() method on your
custom application module. Since an application
module instance can stay connected while serving
different logical client sessions, you can override the
prepareSession() method, which is fired after initial
login, as well as after any time the application module is
accessed by a user that was different from the one that
accessed it last time.

PRE-LOGOUT

Execute logic before logging out of
the database

Override the beforeDisconnect() method on your
custom application module class.

Transaction "Post" Processing (Record Cache)
You will learn how Oracle Forms Transactional Processing Triggers are performed
using Oracle ADF equivalents.

Appendix F
Database Connection

F-3

Table F-4 ADF Equivalents for Oracle Forms Transactional Triggers

Forms Trigger ADF Equivalent

PRE-COMMIT

Execute code before commencing processing
of the changed rows in all data blocks in the
transaction

Override the commit() method in a custom
DBTransactionImpl class and write code
before calling the super.

Note:
For an overview of creating and using a
custom DBTransaction implementation, see
Creating a Custom Database Transaction
Framework Extension Class.

PRE-INSERT

Execute code before a new row in the data
block is inserted into the database during
"post" processing

Override the doDML() method in your
entity class, and if the operation equals
DML_INSERT, then write code before calling
the super.

ON-INSERT

Override default processing for inserting a new
row into the database during "post" processing

Override the doDML() method in your
entity class, and if the operation equals
DML_INSERT, then write code instead of
calling the super.

POST-INSERT

Execute code after new row in the data block
is inserted into the database during "post"
processing

Override the doDML() method in your
entity class, and if the operation equals
DML_INSERT, then write code after calling the
super.

PRE-DELETE

Execute code before a row removed from the
data block is deleted from the database during
"post" processing

Override the doDML() method in your
entity class, and if the operation equals
DML_DELETE, then write code before calling
the super.

ON-DELETE

Override default processing for deleting a
row removed from the data block from the
database during "post" processing

Override the doDML() method in your
entity class, and if the operation equals
DML_DELETE, then write code instead of
calling the super.

POST-DELETE

Execute code after a row removed from the
data block is deleted from the database during
"post" processing

Override the doDML() method in your
entity class, and if the operation equals
DML_DELETE, then write code after calling the
super.

PRE-UPDATE

Execute code before a row changed in the
data block is updated in the database during
"post" processing

Override the doDML() method in your
entity class, and if the operation equals
DML_UPDATE, then write code before calling
the super.

ON-UPDATE

Override default processing for updating a row
changed in the data block from the database
during "post" processing

Override the doDML() method in your
entity class, and if the operation equals
DML_UPDATE, then write code instead of
calling the super.

POST-UPDATE

Execute code after a row changed in the data
block is updated in the database during "post"
processing

Override the doDML() method in your
entity class, and if the operation equals
DML_UPDATE, then write code after calling the
super.

Appendix F
Transaction "Post" Processing (Record Cache)

F-4

Table F-4 (Cont.) ADF Equivalents for Oracle Forms Transactional Triggers

Forms Trigger ADF Equivalent

POST-FORMS-COMMIT

Execute code after Forms has "posted" all
necessary rows to the database, but before
issuing the data commit to end the transaction

If you want a single block of code for the whole
transaction, you can override the doCommit()
method in a custom DBTransactionImpl
object and write code before calling the super.

To execute entity-specific code before commit
for each affected entity in the transaction,
override the beforeCommit() method on your
entity object, and write code there.

POST-DATABASE-COMMIT

Execute code after database transaction has
been committed

Override the commit() method in a custom
DBTransactionImpl class, and write code
after calling the super.

Error Handling
You will learn how Oracle Forms Error Handling Triggers are performed using Oracle
ADF equivalents.

Table F-5 ADF Equivalents for Oracle Forms Error Handling Triggers

Forms Trigger ADF Equivalent

ON-ERROR

Override default behavior for handling an error

Install a custom error handler
(DCErrorHandler) on the ADF
BindingContext.

Appendix F
Error Handling

F-5

G
Performing Common Oracle Forms Tasks
in Oracle ADF

This appendix describes how common Oracle Forms tasks are implemented in Oracle
ADF. In Oracle Forms, you do some tasks in the data block, and others in the UI. For
this reason, the appendix is divided into two sections: tasks that relate to data, and
tasks that relate to the UI.
This appendix includes the following sections:

• Concepts Familiar to Oracle Forms Developers

• Performing Tasks Related to Data

• Performing Tasks Related to the User Interface

Concepts Familiar to Oracle Forms Developers
ADF Business Components provide components that implement functionality similar
to what you are used to in the Java world, with responsibilities divided along the
cleanly-separated functional lines.

ADF Business Components implements all of the data-centric aspects of Oracle
Forms runtime functionality, but in a way that is independent of the user interface.
Responsibilities between the querying and entity-related functions are cleanly
separated, resulting in better reuse, as described in Table G-1.

Table G-1 Concepts for Oracle Forms Developers

This concept Maps to Oracle ADF With these similarities

Headless Form
Module

Application Module The application module component is the "data portion" of the
form. The application module is a smart data service containing a
data model of master-detail-related queries that your client interface
needs to work with. It also provides a transaction and database
connection used by the components it contains. It can contain form-
level procedures and functions, referred to as service methods, that
are encapsulated within the service implementation. You can decide
which of these procedures and functions should be private and which
ones should be public.

Forms Record
Manager

Entity Object The entity object component implements the "validation and database
changes" portion of the data block functionality. In the Forms runtime,
this duty is performed by the record manager. The record manager
is responsible for keeping track of which of the rows in the data
block have changed, for firing the block-level and item-level validation
triggers when appropriate, and for coordinating the saving of changes
to the database. This is exactly what an entity object does for you. The
entity object is a component that represents your business domain
entity through an underlying database table. The entity object gives
you a single place to encapsulate business logic related to validation,
defaulting, and database modification behavior for that business
object.

G-1

Table G-1 (Cont.) Concepts for Oracle Forms Developers

This concept Maps to Oracle ADF With these similarities

Data Block View Object The view object component performs the "data retrieval" portion
of the data block functionality. Each view object encapsulates a
SQL query, and at runtime each one manages its own query
result set. If you connect two or more view objects in a master-
detail relationship, that coordination is handled automatically. While
defining a view object, you can link any of its query columns to
underlying entity objects. By capturing this information, the view object
and entity object can cooperate automatically for you at runtime to
enforce your domain business logic, regardless of the "shape" of the
business data required by the user's task.

Performing Tasks Related to Data
In Oracle Forms, you perform some tasks in the data block, and others in the UI. You
will learn how tasks that are particularly related to data are performed.

In Oracle Forms, tasks that relate solely to data are performed in the data block.
In Oracle ADF, these tasks are done on the business components that persist data
(entity objects) and on the objects that query data (view objects).

How to Retrieve Lookup Display Values for Foreign Keys
In Oracle Forms, an editable table often has foreign key lookup columns to other
tables. The user-friendly display values corresponding to the foreign key column
values exist in related tables. You often need to present these related display values to
the user.

In Oracle Forms, this was a complicated task that required adding nondatabase items
to the data block, adding a block-level POST-QUERY trigger to the data block, and writing
a SQL select statement for each foreign key attribute. Additionally, if the user changed
the data, you needed to sync the foreign key values with an item-level WHEN-VALIDATE-
ITEM trigger. This process is much easier in Oracle ADF.

Implementation of the task in Oracle ADF

1. Create a view object that includes the following:

• The main, editable entity object as the primary entity usage

• Secondary "reference" entity usages for the one or more associated entities
whose underlying tables contain the display text

For more information, see How to Create Joins for Entity-Based View Objects.

2. Select the desired attributes (at least the display text) from the secondary entity
usages as described in How to Select Additional Attributes from Reference Entity
Usages.

At runtime, the data for the main entity and all related lookup display fields is
retrieved from the database in a single join.

If the user can change the data, no additional steps are required. If the
user changes the value of a foreign key attribute, the reference information is
automatically retrieved for the new, related row in the associated table.

Appendix G
Performing Tasks Related to Data

G-2

How to Get the Sysdate from the Database
In Oracle Forms, when you wanted to get the current date and time, you retrieved the
sysdate from the database. In Oracle ADF, you also have the option of getting the
system date using a Java method or a Groovy expression.

Implementation of the task in Oracle ADF

To get the system date from the database, you can use the following Groovy
expression at the entity level:

DBTransaction.currentDbTime

Note:

The DBTransaction reference is for entity-level Groovy expressions only.

If you want to assign a default value to an attribute using this Groovy expression, see
How to Define a Default Value Using an Expression.

To get the system date from Java, you call the getCurrentDate() method. For more
information, see Accessing the Current Date and Time.

How to Implement an Isolation Mode That Is Not Read Consistent
In Oracle Forms, you might have been concerned with read consistency, that is, the
ability of the database to deliver the state of the data at the time the SQL statement
was issued.

Implementation of the task in Oracle ADF

If you use an entity-based view object, the query sees the changes currently in
progress by the current user's session in the pending transaction. This is the default
behavior, and the most accurate.

If instead, you want a snapshot of the data on the database without considering the
pending changes made by the current user, you can use a read-only view object
and reexecute the query to see the latest committed database values. For more
information on read-only view objects, see How to Create a Custom SQL Mode View
Object.

How to Implement Calculated Fields
Calculated fields are often used to show the sum of two values, but they could also be
used for the concatenated value of two or more fields, or the result of a method call.

Implementation of the task in Oracle ADF

Calculated attributes are usually not stored in the database, as their values can easily
be obtained programmatically. Attributes that are used in the middle tier, but that are
not stored in the database are called transient attributes. Transient attributes can be
defined at the entity object level or the view object level.

Appendix G
Performing Tasks Related to Data

G-3

If a transient attribute will be used by more than one view object that might be based
on an entity object, then define the attribute at the entity object level. Otherwise, define
the transient attribute at the view object level for a particular view object.

To define transient attributes at the entity object level, see Adding Transient and
Calculated Attributes to an Entity Object. To define transient attributes at the view
object level, see Adding Calculated and Transient Attributes to a View Object.

How to Implement Mirrored Items
In Oracle Forms, you may be used to using mirrored items to show two or more fields
that share identical values.

Implementation of the task in Oracle ADF

There is no need to have mirrored items in Oracle ADF, because the UI and data
are separated. The same view object can appear on any number of pages, so you
don't need to create mirrored items that have the same value. Likewise, a form could
have the same field represented in more than one place and it would not have to be
mirrored.

How to Use Database Columns of Type CLOB or BLOB
If you are used to working with standard database types, you may be wondering how
to use the CLOB and BLOB types in Oracle ADF.

Implementation of the task in Oracle ADF

In Oracle ADF, use the built-in data types ClobDomain or BlobDomain. These are
automatically created when you reverse-engineer entity objects or view objects from
existing tables with these column types. For more information, see How to Set
Database and Java Data Types for an Entity Object Attribute.

Performing Tasks Related to the User Interface
In Oracle Forms, you perform some tasks in the data block, and others in the UI. You
will learn how tasks particularly related to the UI are performed.

In Oracle ADF, common UI-related tasks (such as master-detail screens, popup list of
values, and page layout) are handled quite differently than they were in Oracle Forms.

How to Lay Out a Page
Oracle Forms is based on an absolute pixel or point-based layout, as compared to the
container-based approach of JSF.

Implementation of the task in Oracle ADF

See Developing Web User Interfaces with Oracle ADF Faces for information on how to
lay out a page in Oracle ADF.

How to Stack Canvases
In Oracle Forms, stacked canvases were often used to hide and display areas of the
screen.

Appendix G
Performing Tasks Related to the User Interface

G-4

Implementation of the task in Oracle ADF

The analog of stacked canvases in Oracle ADF is panels (layout containers) with the
rendered property set to true or false. See Developing Web User Interfaces with
Oracle ADF Faces for more information.

How to Implement a Master-Detail Screen
Master-detail relationships in Oracle ADF are coordinated through a view link. A view
link is conceptually similar to an Oracle Forms relation.

Implementation of the task in Oracle ADF

For information on how create view links, see Working with Multiple Tables in a
Master-Detail Hierarchy. Once you have established a relationship between two view
objects with a view link, see How to Enable Active Master-Detail Coordination in the
Data Model.

How to Implement an Enter Query Screen
In Oracle Forms, another common task was creating an enter query screen. That is, a
screen that starts in Find mode.

Implementation of the task in Oracle ADF

In Oracle ADF, this accomplished with a search form. Complete information on how
to create a search form is covered in Creating ADF Databound Search Forms. In
particular, you may want to look at How to Set Search Form Properties on the View
Criteria.

How to Implement an Updatable Multi-Record Table
In Oracle Forms, you may be used to creating tables where you can edit and insert
many records at the same time. This can be slightly more complicated when using
a JSF page in Oracle ADF, because the operations to edit an existing record and to
create a new record are not the same.

Implementation of the task in Oracle ADF

In Oracle ADF, this is done using an input table. To create an input table, see Creating
an Input Table.

How to Create a Popup List of Values
In Oracle Forms, it was simple to create a list of values (LOV) object and then
associate that object with a field in a declarative manner. This LOV would display a
popup window and provide the following capabilities:

• Selection of modal values

• Query area at the top of the LOV dialog

• Display of multiple columns

• Automatic reduction of LOV contents, possibly based on the contents of the field
that launched the LOV

Appendix G
Performing Tasks Related to the User Interface

G-5

• Automatic selection of the list value when only one value matches the value in the
field when the LOV function is invoked

• Validation of the field value based on the values cached by the LOV

• Automatic popup of the LOV if the field contents are not valid

Implementation of the task in Oracle ADF

To implement a popup list in Oracle ADF, you configure one of the view object's
attributes to be of LOV type, and select Input Text with List of Values as the style for
its UI hint. For a description of how to do this, see Working with List of Values (LOV) in
View Object Attributes.

How to Implement a Dropdown List as a List of Values
In Oracle Forms, you could create a list of values (LOV) object and then associate that
object with a field in a declarative manner. In Oracle ADF, you can implement an LOV
(lookup-value) screen with a search item, usable for a lookup field with many possible
values.

Implementation of the task in Oracle ADF

To implement a dropdown list in Oracle ADF, you configure one of the view object's
attributes to be of LOV type, and select Input Text with List of Values as the style for
its UI hint. For a description of how to do this, see Working with List of Values (LOV) in
View Object Attributes.

How to Implement a Dropdown List with Values from Another Table
In Oracle Forms, you could create a list of values (LOV) object and then associate
that object with a field in a declarative manner. In Oracle ADF, you can implement a
dropdown list with string values from a different table. These string values populate the
field with an id code that is valid input in the table that the screen is based on.

Implementation of the task in Oracle ADF

To implement a dropdown list of this type in Oracle ADF, you configure one of the view
object's attributes to be of LOV type, and select Choice List as the style for its UI
hint. For a description of how to do this, see Working with List of Values (LOV) in View
Object Attributes.

How to Implement Immediate Locking
In Oracle ADF, you can lock a record in the database at the first moment it is obvious
that the user is going to change a specific record.

Implementation of the task in Oracle ADF

Immediate row locking can be configured in ADF Business Components, although
it is not the default and is typically not used in web application scenarios. For web
applications, use the default configuration setting jbo.locking.mode=optimistic. For
more information, see How to Confirm That Fusion Web Applications Use Optimistic
Locking.

Appendix G
Performing Tasks Related to the User Interface

G-6

How to Throw an Error When a Record Is Locked
When a record has been locked by a user, it's helpful to throw an error to let other
users know that the record is not currently updatable.

Implementation of the task in Oracle ADF

Locking rows and throwing an exception if the row is already locked is built-in ADF
Business Components functionality. There are a couple of different ways that you can
handle the error message, depending on whether you want a static error message or a
custom message with information about the current row.

• To throw a static message, register a custom message bundle in your data model
project to substitute the default RowAlreadyLockedException's error message with
something more meaningful or user-friendly.

• To throw a message that contains information about the row, override the lock()
method on the entity object, using a try/catch block to catch the RowAlreadyLocked
exception. After you catch the exception, you can throw an error message that
might contain more specific information about the current row.

Appendix G
Performing Tasks Related to the User Interface

G-7

H
Deploying ADF Applications to GlassFish

This appendix describes how to deploy Oracle ADF applications to a GlassFish
application server. It describes how to create deployment profiles, how to create
deployment descriptors, and how to deploy the application.
This appendix includes the following sections:

• About Deploying ADF Applications to GlassFish Server

• Running an ADF Application in Integrated WebLogic Server

• Preparing the Application

• Deploying the Application

• Testing the Application and Verifying Deployment

About Deploying ADF Applications to GlassFish Server
In order to run an ADF application, it must be first deployed on an application server
such as GlassFish Server. Deployment in the context of web applications is the act of
installing the application on a server that allows requests to be handled and so on.

Deployment is the process of packaging application files as an archive file and
transferring that file to a target GlassFish application server. You can use JDeveloper
to deploy ADF applications directly to the GlassFish Server, or indirectly to an
archive file as the deployment target, and then install this archive file to the target
GlassFish Server. For application development, you can also use JDeveloper to run an
application in Integrated WebLogic Server.

You can use JDeveloper to:

• Run applications in Integrated WebLogic Server

You can run and debug applications using Integrated WebLogic Server and then
deploy to standalone GlassFish Server.

• Deploy directly to the standalone GlassFish Server

You can deploy applications directly to the standalone GlassFish Server by
creating a connection to the server and choosing the name of that server as the
deployment target.

• Deploy to an archive file

You can deploy applications indirectly by choosing an EAR file as the deployment
target. The archive file can subsequently be installed on the target GlassFish
Server.

Developing Applications with Integrated WebLogic Server
If you are developing an application in JDeveloper and you want to run the
application in Integrated WebLogic Server, you do not need to perform the tasks
required for deploying directly to Oracle WebLogic Server or to an archive file.

H-1

JDeveloper has a default connection to Integrated WebLogic Server and does
not require any deployment profiles or descriptors. Integrated WebLogic Server
has a preconfigured domain that includes the ADF libraries, as well as the -
Djps.app.credential.overwrite.allowed=true setting, that are required to run ADF
applications. You can run an application by choosing Run from the JDeveloper main
menu.

You debug the application using the features described in Testing and Debugging ADF
Components.

Developing Applications to Deploy to Standalone GlassFish Server
Typically, for deployment to standalone application servers, you test and develop
your application by running it in Integrated WebLogic Server. You can then test the
application further by deploying it to standalone GlassFish Server.

In general, you use JDeveloper to prepare the application or project for deployment by:

• Creating a connection to the target GlassFish Server

• Creating deployment profiles (if necessary)

• Creating deployment descriptors that are specific to GlassFish

• Updating application.xml and web.xml to be compatible with the GlassFish
Server (if required)

You must already have an installed GlassFish Server. For instructions on obtaining
and installing GlassFish, see https://javaee.github.io/glassfish/download.

Note:

For information about the GlassFish Server version supported by JDeveloper
and ADF, see the Certification Information link for your JDeveloper release
on OTN at http://www.oracle.com/technetwork/developer-tools/jdev/
documentation/index.html.

You must also prepare the GlassFish Server for ADF application deployment. For
more information, see Configuring GlassFish Server in Administering Oracle ADF
Applications.

• Installing the ADF runtime into the GlassFish Server installation:

• Setting JVM cache size and simple option

• Enabling Secure Admin on the GlassFish Server to allow for remote logins and
remote connections in order for JDeveloper to run on a different machine than
GlassFish.

• Creating a global JDBC data source for applications that require a connection to a
data source

After the application and the GlassFish Server have been prepared, you can:

• Use JDeveloper to:

– Directly deploy to the GlassFish Server using the deployment profile and the
application server connection.

Appendix H
About Deploying ADF Applications to GlassFish Server

H-2

https://javaee.github.io/glassfish/download
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

– Deploy to an EAR file using the deployment profile. For ADF applications,
WAR files can be deployed only as part of an EAR file.

• Use the GlassFish Server's administration tools to deploy the EAR file created in
JDeveloper.

Running an ADF Application in Integrated WebLogic Server
In order to test run an ADF application during development, you can use JDeveloper
to run an application in Integrated WebLogic Server. You do not have to manually
complete many of the steps that are necessary for deployment to a standalone server.

JDeveloper is installed with Integrated WebLogic Server which you can use to test
and develop your application. For most development purposes, Integrated WebLogic
Server will suffice. When your application is ready to be tested, you can select the run
target and then choose the Run command from the main menu.

Note:

The first time you run an application in Integrated WebLogic Server, the
Create Default Domain dialog appears for you to define an administrative
password for the new domain.

When you run the application target, JDeveloper detects the type of Java EE module
to deploy based on artifacts in the projects and workspace. JDeveloper then creates
an in-memory deployment profile for deploying the application to Integrated WebLogic
Server. JDeveloper copies project and application workspace files to an "exploded
EAR" directory structure. This file structure closely resembles the EAR file structure
that you would have if you were to deploy the application to an EAR file. JDeveloper
then follows the standard deployment procedures to register and deploy the "exploded
EAR" files into Integrated WebLogic Server. The "exploded EAR" strategy reduces the
performance overhead of packaging and unpackaging an actual EAR file.

In summary, when you select the run target and run the application in Integrated
WebLogic Server, JDeveloper:

• Detects the type of Java EE module to deploy based on the artifacts in the project
and application

• Creates a deployment profile in memory

• Copies project and application files into a working directory with a file structure that
would simulate the "exploded EAR" file of the application.

• Performs the deployment tasks to register and deploy the simulated EAR into
Integrated WebLogic Server

Note:

JDeveloper ignores the deployment profiles that were created for the
application when you run the application in Integrated WebLogic Server.

Appendix H
Running an ADF Application in Integrated WebLogic Server

H-3

The application will run in the base domain in Integrated WebLogic Server. This base
domain has the same configuration as a base domain in a standalone WebLogic
Server instance. In other words, this base domain will be the same as if you had used
the Oracle Fusion Middleware Configuration Wizard to create a base domain with the
default options in a standalone WebLogic Server instance.

JDeveloper will extend this base domain with the necessary domain extension
templates, based on the JDeveloper technology extensions. For example, if you have
installed JDeveloper Studio, JDeveloper will automatically configure the Integrated
WebLogic Server environment with the ADF runtime template (JRF Fusion Middleware
runtime domain extension template).

You can explicitly create a default domain for Integrated WebLogic Server. You can
use the default domains to run and test your applications. Open the Application
Servers window, right-click IntegratedWebLogicServer and choose Create Default
Domain.

How to Run an Application in Integrated WebLogic Server
You can test an application by running it in Integrated WebLogic Server. You can also
set breakpoints and then run the application within the ADF Declarative Debugger.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you run an application in Integrated WebLogic Server. For more information, see
Running an ADF Application in Integrated WebLogic Server.

To run an application in Integrated WebLogic Server:

1. In the Applications window, select the project, unbounded task flow, JSF page, or
file as the run target.

2. Right-click the run target and choose Run or Debug.

The Create Default Domain dialog displays the first time you run your application
and start a new domain in Integrated WebLogic Server. Use the dialog to define
an administrator password for the new domain. Passwords you enter can be eight
characters or more and must have a numeric character.

Preparing the Application
Once your application is developed, you must perform some essential tasks to deploy
the ADF application to a standalone GlassFish Server. You also need to configure
GlassFish-specific security within the ADF application.

Before you deploy an ADF application to a standalone GlassFish Server, you
must perform prerequisite tasks within JDeveloper to prepare the application for
deployment.

The tasks are:

• How to Create a Connection to the Target Application Server

• How to Create Deployment Profiles

• How to Create and Edit Deployment Descriptors

• How to Enable JDBC Data Source for GlassFish

Appendix H
Preparing the Application

H-4

• How to Change Initial Context Factory

Note:

ADF Security is not supported on ADF Essentials for GlassFish. You
should configure GlassFish-specific security within the ADF application.
For information about configuring GlassFish security, see http://
docs.oracle.com/cd/E18930_01/html/821-2418/beabg.html#scrolltoc.

How to Create a Connection to the Target Application Server
You can deploy applications to the GlassFish Server via JDeveloper application server
connections.

Before you begin:

It may be helpful to have an understanding of the options that are available to
you when you create an application server connection. For more information, see
Preparing the Application.

You will need to complete this task:

Install the GlassFish Server.

To create a connection to an application server:

1. Launch the Application Server Connection wizard.

You can:

• In the Application Servers window, right-click Application Servers and
choose New Application Server.

• In the New Gallery, expand General, select Connections and then
Application Server Connection, and click OK.

• In the Resources window, choose New > IDE Connections > Application
Server.

2. In the Create Application Server Connection dialog, on the Usage page, select
Standalone Server.

3. On the Name and Type page, enter a connection name.

4. In the Connection Type dropdown list, choose:

• GlassFish 3.1 to create a connection to the GlassFish Server

5. Click Next.

6. On the Authentication page, enter a user name and password for the
administrative user authorized to access the GlassFish Server.

7. Click Next.

8. On the Configuration page, enter the information for the GlassFish Server:

• Host Name: Enter the name of the machine where the GlassFish Server is
running. If no name is entered, the name defaults to localhost.

Appendix H
Preparing the Application

H-5

http://docs.oracle.com/cd/E18930_01/html/821-2418/beabg.html#scrolltoc
http://docs.oracle.com/cd/E18930_01/html/821-2418/beabg.html#scrolltoc

• RMI Port: If necessary, change to the RMI port number for the server. The
default is 8686.

• HTTP Port: By default, GlassFish listens to port 8080 for HTTP requests. If
necessary, you can change the port number here.

• Admin HTTP Port: By default, GlassFish uses port 4848 for administration. If
necessary, you can change the port number here.

• Secure Admin Enabled: select if you want GlassFish to allow remote logins
and remote connections

Note:

If you are using GlassFish 3.1.2 and you are running JDeveloper on a
different machine than GlassFish, you need to enable Secure Admin in
GlassFish to allow remote logins. You do not need to enable Secure
Admin if both JDeveloper and GlassFish are on the same machine.

9. Click Next.

10. On the Test page, click Test Connection to test the connection.

JDeveloper performs several types of connections tests. The JSR-88 test must
pass for the application to be deployable. If the test fails, return to the previous
pages of the wizard to fix the configuration.

11. Click Finish.

How to Create Deployment Profiles
A deployment profile defines the way the application is packaged into the archive
that will be deployed to the target environment. The deployment profile:

• Specifies the format and contents of the archive file that will be created

• Lists the source files, deployment descriptors, and other auxiliary files that will be
packaged

• Describes the type and name of the archive file to be created

• Highlights dependency information, platform-specific instructions, and other
information

You need a WAR deployment profile for each web user interface project that you want
to deploy in your application. You need an application-level EAR deployment profile
and you must select the projects (such as WAR profiles) to include from a list. When
the application is deployed, the EAR file will include all the projects that were selected
in the deployment profile.

Note:

If you create your project or application using the ADF Fusion Web
Application template, JDeveloper automatically creates default WAR and
EAR deployment profiles. Typically, you would not need to edit or create
deployment profiles manually.

Appendix H
Preparing the Application

H-6

For ADF applications, you can deploy the application only as an EAR file. The WAR
files that are part of the application should be included in the EAR file when you create
the deployment profile.

Creating a WAR Deployment Profile
You will need to create a WAR deployment profile for each web-based project you
want to package into the application. Typically, the WAR profile will include the
dependent data model projects it requires.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create a WAR deployment profile. For more information, see Preparing the
Application.

You will need to complete this task:

Create web-based projects. If you used the ADF Fusion Web Application template,
you should already have a default WAR deployment profile.

To create WAR deployment profiles for an application:

1. In the Applications window, right-click the web project that you want to deploy and
choose New and then From Gallery.

You will create a WAR profile for each web project.

2. In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

If you don't see Deployment Profiles in the Categories tree, click the All
Features tab.

3. In the Create Deployment Profile -- WAR File dialog, enter a name for the project
deployment profile and click OK.

4. In the Edit WAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane. Configure the profile by setting
property values in the pages of the dialog. Note that some items list below may not
be in your particular application.

• Ensure that ADF Faces Runtime 11, JSTL 1.2, and the ADFm, ADFc, and
ADFv libraries are marked deployed in the WEB-INF/lib/Contributors panel.

• Select File Groups > Web Files > Filters > WEB-INF and deselect
weblogic.xml.

• Select File Groups > Web Files/Classes > Filters > META-INF and deselect
ejb-jar.xml.

• Select File Groups > Web Files/Classes > Filters > path and deselect
serviceinterface.

• Select File Groups > Web Files/Classes > Filters > path and deselect
server.

• You might also want to change the Java EE web context root setting. To do so,
choose General in the left pane.

By default, when Use Project's Java EE Web Context Root is selected,
the associated value is set to the project name, for example, Application1-

Appendix H
Preparing the Application

H-7

Project1-context-root. You need to change this if you want users to use a
different name to access the application.

• Select Glassfish 3.1 as the Platform

5. Click OK to exit the Deployment Profile Properties dialog.

6. Click OK again to exit the Project Properties dialog.

7. Repeat Steps 1 through 6 for all web projects that you want to deploy.

Creating an Application-Level EAR Deployment Profile
The EAR file contains all the necessary application artifacts for the application to run
in the application server. If you used the ADF Fusion Web Application template, you
should already have a default EAR deployment profile. For more information about the
EAR file, see What You May Need to Know About EAR Files and Packaging.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create an application-level EAR deployment profile. For more information,
see Preparing the Application.

You will need to complete this task:

Create the WAR deployment profiles, as described in Creating a WAR Deployment
Profile.

To create an EAR deployment profile for an application:

1. In the Applications window, right-click the application and choose New and then
From Gallery.

You will create an EAR profile for the application.

2. In the New Gallery, expand General, select Deployment Profiles and then EAR
File, and click OK.

If you don't see Deployment Profiles in the Categories tree, click the All
Features tab.

3. In the Create Deployment Profile -- EAR File dialog, enter a name for the
application deployment profile and click OK.

4. In the Edit EAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane. Configure the profile by setting
property values in the pages of the dialog.

• Select File Groups > Application Descriptors > Filters and deselect
weblogic-application.xml.

• Select Application Assembly and then in the Java EE Modules list, select all
the project profiles that you want to include in the deployment, including any
WAR profiles.

• Select Platform, select the application server you are deploying to, and
then select the target application connection from the Target Connection
dropdown list. For GlassFish, select GlassFish 3.1.

5. Click OK again to exit the Edit EAR Deployment Profile Properties dialog.

6. Click OK again to exit the Application Properties dialog.

Appendix H
Preparing the Application

H-8

Note:

To verify that your customization classes are put correctly in the EAR class
path, you can deploy the EAR profile to file system. Then you can examine
the EAR to make sure that the customization class JAR is available in the
EAR class path (the EAR/lib directory) and not available in the WAR class
path (the WEB-INF/lib and WEB-INF/classes directories).

Viewing and Changing Deployment Profile Properties
After you have created a deployment profile, you can view and change its properties.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you view and change deployment profile properties. For more information, see
Preparing the Application.

To view, edit, or delete a project's deployment profile:

1. In the Applications window, right-click the project and choose Project Properties.

2. In the Project Properties dialog, click Deployment.

The Deployment Profiles list displays all profiles currently defined for the project.

3. In the list, select a deployment profile.

4. To edit or delete a deployment profile, click Edit or Delete.

How to Create and Edit Deployment Descriptors
Deployment descriptors are server configuration files that define the configuration of
an application for deployment and that are deployed with the Java EE application
as needed. The deployment descriptors that a project requires depend on the
technologies the project uses and on the type of the target application server.
Deployment descriptors are XML files that can be created and edited as source files,
but for most descriptor types, JDeveloper provides dialogs or an overview editor that
you can use to view and set properties. If you cannot edit these files declaratively,
JDeveloper opens the XML file in the source editor for you to edit its contents.

In addition to the standard Java EE deployment descriptors (for example,
application.xml and web.xml), you can also have deployment descriptors that are
specific to your target application server.

Creating Deployment Descriptors
JDeveloper automatically creates many of the required deployment descriptors for
you. If they are not present, or if you need to create additional descriptors, you can use
JDeveloper to create them.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create deployment descriptors. For more information, see Preparing the
Application.

Appendix H
Preparing the Application

H-9

You will need to complete this task:

Check to see whether JDeveloper has already generated deployment descriptors.

To create a deployment descriptor:

1. In the Applications window, expand the user interface project, select WEB-INF and
click New and then From Gallery.

2. In the New Gallery, expand General, choose XML Document and click OK.

3. In the Create XML File dialog, enter a name for your descriptor and click OK.

For instance, you may want to create a glassfish-web.xml to define GlassFish-
specific information.

4. In the overview editor, add entries for GlassFish.

The following example shows a sample glassfish-web.xml descriptor.

The glassfish-web.xml descriptor can be used to add additional settings that
are not defined in web.xml or to modify the settings that are already defined
in web.xml. For instance, you can override the jdbc/Connections1DS setting
defined in web.xml by adding the entries res-ref-name and jndi-name to
glassfish-web.xml as shown below. After setting glassfish-web.xml, jdbc/
NewConnections1DS will be used instead of jdbc/Connections1DS. Note that the
res-ref-name section is optional.

<glassfish-web-app>
 <context-root>DeptApp-ViewController-context-root</context-root>
 <resource-ref>
 <res-ref-name>jdbc/Connection1DS</res-ref-name>
 <jndi-name>jdbc/NewConnection1DS</jndi-name>
 </resource-ref>
 <class-loader delegate="false"/>
 <property value="true" name="useBundledJsf"/>
</glassfish-web-app>

Note:

For EAR files, do not create more than one deployment descriptor file of
the same type per application or workspace. These files can be assigned
to projects, but have application workspace scope. If multiple projects in
an application have the same deployment descriptor, the one belonging to
the launched project will supersede the others. This restriction applies to
application.xml.

The best place to create an application-level descriptor is in the Descriptors
node of the Application Resources panel in the Applications window. This
ensures that the application is created with the correct descriptors.

Application-level descriptors created in the project will be ignored at runtime.
Only the application resources descriptors or descriptors generated at the
EAR level will be used by the runtime.

Appendix H
Preparing the Application

H-10

Viewing or Modifying Deployment Descriptor Properties
After you have created a deployment descriptor, you can change its properties by
using JDeveloper dialogs or by editing the file in the source editor. The deployment
descriptor is an XML file (for example, application.xml) typically located under the
Application Sources node.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you view or modify deployment descriptors. For more information, see Preparing
the Application.

To view or change deployment descriptor properties:

1. In the Applications window or in the Application Resources panel, double-click the
deployment descriptor.

2. In the overview editor, select either the Overview tab or the Source tab, and
configure the descriptor by setting property values.

If the overview editor is not available, JDeveloper opens the file in the source
editor.

Configuring the application.xml File for Application Server Compatibility
You may need to configure your application.xml file to be compliant with your Java
EE 1.5.

Note:

Typically, your project has an application.xml file that is compatible and
you would not need to perform this procedure.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you configure the application.xml file. For more information, see Preparing the
Application.

To configure the application.xml file:

1. In the Applications window, right-click the application and choose New and then
From Gallery.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Java EE Deployment Descriptor Wizard, and click OK.

3. In the Create Java EE Deployment Descriptor dialog, on the Select Descriptor
page, select application.xml and click Next.

4. On the Select Version page, select 5.0 to be compatible with Java EE 5.0 or higher
and click Next.

5. On the Summary page, click Finish.

6. Edit the application.xml file with the appropriate values.

Appendix H
Preparing the Application

H-11

Configuring the web.xml File for GlassFish Server Compatibility
You may need to configure your web.xml file to be compliant with your Java EE
version).

The following example shows a web.xml file with a setting for a JDBC connection. For
more information and other settings that are required, see web.xml.

<resource-ref>
 <description>DB Connection</description>
 <res-ref-name>jdbc/Connection1DS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Note:

Typically, your project has a web.xml file that is compatible and you would
not need to perform this procedure. JDeveloper creates a starter web.xml file
when you create a project.

Before you begin:

It may be helpful to have an understanding of the options that are available to
you when you configure the web.xml file. For more information, see Preparing the
Application.

To configure the web.xml file:

1. In the Applications window, right-click the project and choose New and then From
Gallery.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Java EE Deployment Descriptor, and click OK.

3. In the Create Java EE Deployment Descriptor dialog, on the Select Descriptor
page, select web.xml and click Next.

4. On the Select Version page, select the version you want to use and click Next.

Version 3.0 is compatible with Java EE 6.0 or higher, and version 2.5 is compatible
with Java EE 5.0.

5. On the Summary page, click Finish.

6. Open the web.xml file in the overview editor.

7. Select the Filters tab and remove JpsFilter.

How to Enable JDBC Data Source for GlassFish
If you are using ADF Business Components in your application, you may need to
check that the data source defined for the ADF Business Components as part of the
application matches the data source defined in the GlassFish container.

You can configure the ADF application to use a JDBC Data Source in the application
by editing the application's bc4j.xcfg file.

Appendix H
Preparing the Application

H-12

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you configure JDBC. For more information, see Preparing the Application.

To configure the bc4j.xcfg file to enable JDBC data source:

1. In the Applications window, expand the model project and click the application
module.

2. In the overview editor for the application module, choose Configurations and click
bc4j.xcfg.

3. In the overview editor for bc4j.xcfg, select the Source tab.

4. Check that the Custom JDBCDataSource entry defined in the file matches the
JDBC datasource defined for the GlassFish Server as described in Configuring
GlassFish Server in Administering Oracle ADF Applications.

For instance, the following example shows the JDBCDataSource property defined in
the bc4j.xcfg file:

<BC4JConfig version="11.1" xmlns="http://xmlns.oracle.com/bc4j/
configuration">
 <AppModuleConfigBag ApplicationName="model.AppModule">
 <AppModuleConfig name="AppModuleLocal" jbo.project="model.Model"
 ApplicationName="model.AppModule" DeployPlatform="LOCAL">
 <Database jbo.TypeMapEntries="OracleApps"/>
 <Security AppModuleJndiName="model.AppModule"/>
 <Custom ns0:JDBCDataSource="jdbc/OracleDS"
 xmlns:ns0="http://xmlns.oracle.com/bc4j/configuration"/>
 </AppModuleConfig>
 <AppModuleConfig name="AppModuleShared" jbo.project="model.Model"
 ApplicationName="model.AppModule" DeployPlatform="LOCAL">
 <AM-Pooling jbo.ampool.maxpoolsize="1"
 jbo.ampool.isuseexclusive="false"/>
 <Database jbo.TypeMapEntries="OracleApps"/>
 <Security AppModuleJndiName="model.AppModule"/>
 <Custom ns0:JDBCDataSource="jdbc/OracleDS"
 xmlns:ns0="http://xmlns.oracle.com/bc4j/configuration"/>
 </AppModuleConfig>
 </AppModuleConfigBag>
</BC4JConfig>

How to Change Initial Context Factory
If your application requires JNDI lookup, such as in EJB-based applications, you need
to change the initial context factory class name to the GlassFish context factory.

To change the initial context factory:

1. In the Applications window, expand the model project and double-click the
DataControls.dcx file

2. In the overview editor, click the Source tab.

3. Edit the initial-context-factory entry to be initial-context-
factory="com.sun.enterprise.naming.SerialInitContextFactory"

Appendix H
Preparing the Application

H-13

Deploying the Application
Once the target environment is set up and the ADF application is prepared for
deployment, the final step is to deploy the application to the target environment.

You can use JDeveloper to deploy ADF applications directly to the GlassFish Server or
you can create an archive file and use other tools to deploy to the application server.

Note:

Before you begin to deploy applications that use Oracle ADF to the
standalone application server, you need to prepare the GlassFish Server
environment by performing tasks such as installing the ADF runtime libraries
and setting configuration values. See Configuring GlassFish Server in
Administering Oracle ADF Applications.

Table H-1 describes some common deployment techniques that you can use during
the application development and deployment cycle. The deployment techniques
are listed in order from deploying on development environments to deploying on
production environments. It is likely that in the production environment, the system
administrators deploy applications by using the GlassFish Administration Console or
scripts.

Table H-1 Deployment Techniques for Development or Production Environments

Deployment Technique Environment When to Use

Run directly from JDeveloper Test or
Development

When you are developing your application. You want
deployment to be quick because you will be repeating
the editing and deploying process many times.

JDeveloper contains Integrated WebLogic Server, on
which you can run and test your application.

Note that you are testing your application in an
integrated WebLogic Server and not in an Integrated
GlassFish Server. After testing on the Integrated
WebLogic Server, you can test further by deploying to
the standalone GlassFish Server.

Use JDeveloper to directly deploy to the
target GlassFish Server

Test or
Development

When you are ready to deploy and test your application
on an application server in a test environment.

You can also use the test environment to develop your
deployment scripts, for example, using Ant.

Use JDeveloper to deploy to an EAR file,
then use the target GlassFish Server's
tools for deployment

Test or
Development

When you are ready to deploy and test your application
on an application server in a test environment. As an
alternative to deploying directly from JDeveloper, you
can deploy to an EAR file and then use other tools to
deploy to the application server.

You can also use the test environment to develop your
deployment scripts, for example, using Ant.

Appendix H
Deploying the Application

H-14

Table H-1 (Cont.) Deployment Techniques for Development or Production Environments

Deployment Technique Environment When to Use

Use GlassFish asadmin commands or
GlassFish Administration Console.

Production When your application is in a test and production
environment. In production environments, system
administrators usually use GlassFish asadmin
commands or the GlassFish Administration Console.

How to Deploy to the Application Server from JDeveloper
Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you deploy to the application server from JDeveloper. For more information, see
Preparing the Application.

You will need to complete this task:

Create an application-level deployment profile that deploys to an EAR file.

To deploy to the target application server from JDeveloper:

1. In the Applications window, right-click the application and choose Deploy >
deployment profile.

Make sure you choose a GlassFish deployment profile.

2. In the Deploy wizard, on the Deployment Action page, select Deploy to
Application Server and click Next.

3. On the Select Server page, select the application server connection, and click
Next.

4. Click Finish.

During deployment, you can see the process steps displayed in the deployment
Log window. You can inspect the contents of the modules (archives or exploded
EAR) being created by clicking on the links that are provided in the log window.
The archive or exploded EAR file will open in the appropriate editor or directory
window for inspection.

Note:

If you are deploying a Java EE application, click the application menu
next to the Java EE application in the Applications window.

For more information on creating application server connections, see How to
Create a Connection to the Target Application Server.

What You May Need to Know About Deploying from JDeveloper
When you deploy an application using the EAR deployment profile created for
GlassFish, JDeveloper:

Appendix H
Deploying the Application

H-15

• Inserts the required ADF Model, ADF Controller, and ADF View library JARs into
the EAR file.

• Inserts adf-share-glassfish.jar into the WAR.

• Inserts an entry for the GlassFish application lifecycle listener
ADFGlassFishAppLifeCycleListener into the web.xml file.

• Removes the other listener entries, ADFConnectionLifeCycleCallBack,
ADFConfigLifeCycleCallBack, and BC4JConfigLifeCycleCallBack, from the
web.xml files.

How to Create an EAR File for Deployment
You can also use the deployment profile to create an archive file (EAR file). You can
then deploy the archive file using GlassFish Administration Console.

Although an ADF application is encapsulated in an EAR file (which usually includes
WAR components), it may have parts that are not deployed with the EAR.

Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you create an EAR file for deployment. For more information, see Preparing the
Application.

You will need to complete this task:

Create an application-level deployment profile that deploys to an EAR file.

To create an EAR archive file:

• In the Applications window, right-click the application containing the deployment
profile, and choose Deploy > deployment profile > to EAR file.

If an EAR file is deployed at the application level, and it has dependencies on a
JAR file in the data model project and dependencies on a WAR file in the user
interface project, then the files will be located in the following directories by default:

– ApplicationDirectory/deploy/EARdeploymentprofile.EAR

– ApplicationDirectory/ModelProject/deploy/JARdeploymentprofile.JAR

– ApplicationDirectory/ViewControllerProject/deploy/
WARdeploymentprofile.WAR

Tip:

Choose View >Log to see messages generated during creation of the
archive file.

What You May Need to Know About ADF Libraries
An ADF Library is a JAR file that contains JAR services registered for ADF
components such as ADF task flows, pages, or application modules. If you want the
ADF components in a project to be reusable, you create an ADF Library deployment
profile for the project and then create an ADF Library JAR based on that profile.

Appendix H
Deploying the Application

H-16

An application or project can consume the ADF Library JAR when you add it using the
Resources window or manually by adding it to the library classpath. When the ADF
Library JAR is added to a project, it will be included in the project's WAR file if the
Deployed by Default option is selected.

For more information, see Reusing Application Components.

What You May Need to Know About EAR Files and Packaging
When you package an ADF application into an EAR file, it can contain the following:

• WAR files: Each web-based view controller project should be packaged into a
WAR file.

• ADF Library JAR files: If the application consumes ADF Library JARs, these JAR
files may be packaged within the EAR.

• Other JAR files: The application may have other dependent JAR files that are
required. They can be packaged within the EAR.

How to Deploy to the Application Server using asadmin Commands
Before you begin:

It may be helpful to have an understanding of the options that are available to you
when you deploy to the application server from JDeveloper. For more information, see
Preparing the Application.

To deploy to the target application server using asadmin command:

1. Start an asadmin shell for GlassFish Server.

2. Invoke the deploy command.

For instance, the following command deploys application1.ear to the GlassFish
Server.

deploy \--target=server \--force /path/application1.ear

How to Deploy the Application Using Scripts and Ant
You can deploy the application using commands and automate the process by
putting those commands in scripts. The ojdeploy command can be used to deploy
an application without JDeveloper. You can also use Ant scripts to deploy the
application. JDeveloper has a feature to help you build Ant scripts. Depending on
your requirements, you may be able to integrate regular scripts with Ant scripts.

For more information about commands, scripts, and Ant, see Deploying Using
Scripting Commands and Deploying Using Scripts and Ant in Administering Oracle
ADF Applications.

Testing the Application and Verifying Deployment
In order to ensure the deployment of the ADF application has been successful, you
should test-run the application.

After you deploy the application, you can test it from the application server. To test-run
your ADF application, open a browser window and enter a URL:

Appendix H
Testing the Application and Verifying Deployment

H-17

• For non-Faces pages: http://<host>:port/<context root>/<page>

• For Faces pages: http://<host>:port/<context root>/faces/<view_id>

where <view_id> is the view ID of the ADF task flow view activity.

Tip:

The context root for an application is specified in the user interface project
settings by default as ApplicationName/ProjectName/context-root. You can
shorten this name by specifying a name that is unique across the target
application server. Right-click the user interface project, and choose Project
Properties. In the Project Properties dialog, select Java EE Application and
enter a unique name for the context root.

Note:

/faces has to be in the URL for Faces pages. This is because JDeveloper
configures your web.xml file to use the URL pattern of /faces in order to be
associated with the Faces Servlet. The Faces Servlet does its per-request
processing, strips out /faces part in the URL, then forwards the URL to the
JSP. If you do not include the /faces in the URL, then the Faces Servlet is
not engaged (since the URL pattern doesn't match). Your JSP is run without
the necessary JSF per-request processing.

Appendix H
Testing the Application and Verifying Deployment

H-18

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide for Release 12c (12.2.1.4.0)
	New and Changed Features for Release 12c (12.2.1.4.0)
	Other Significant Changes in this Document for Release 12c (12.2.1.4.0)

	Part I Getting Started with Fusion Web Applications
	1 Introduction to Building Fusion Web Applications with Oracle ADF
	Introduction to Oracle ADF
	Oracle ADF Architecture
	Overview of Building an Application with Oracle ADF
	Creating an Application Workspace
	Modeling with Database Object Definitions
	Creating Use Cases
	Designing Application Control and Navigation Using ADF Task Flows
	Identifying Shared Resources
	Creating a Data Model to Access Data with ADF Business Components
	Creating a Layer of Business Domain Objects for Tables
	Building the Business Services
	Testing and Debugging Business Services with the Oracle ADF Model Tester

	Implementing the User Interface with JSF
	Data Binding with ADF Model
	Validation and Error Handling
	Adding Security
	Testing and Debugging the Web Client Application
	Refactoring Application Artifacts
	Deploying a Fusion Web Application
	Integrating a Fusion Web Application

	Working Productively in Teams
	Enforcing Standards
	Using a Source Control System

	Generation of Complete Web Tier Using Oracle JHeadstart
	Other Resources for Learning Oracle ADF

	2 Introduction to the ADF Sample Application
	About the Summit Sample Applications for Oracle ADF
	Setting Up the Summit Sample Applications for Oracle ADF
	How to Download the Application Resources
	How to Install the Summit ADF Schema
	What Happens When You Install the Summit ADF Schema
	How to Create the Database Connection for Summit Sample Applications for Oracle ADF

	Running the Core Summit ADF Sample Application in the SummitADF Workspace
	How to Run the Core Summit ADF Sample Application
	Taking a Look at the Sample Application in the SummitADF Workspace
	Browsing the Application
	Browsing the Customers List
	Searching for Customers
	Viewing Customer Details
	Viewing Order Details

	The Ordering Process

	Running the Standalone Samples from the SummitADF_Examples Workspace
	How to Run the Summit ADF Standalone Sample Applications
	Running the Standalone Sample Applications From a Java Test Client
	Running the Standalone Applications Without a Test Client

	Overview of the Summit ADF Standalone Sample Applications

	Running the Sample Application in the SummitADF_TaskFlows Workspace
	How to Run the Summit Sample Application for ADF Task Flows
	Overview of the Summit Sample Application for ADF Task Flows

	Running the Standalone Samples in the SummitADF_DVT Workspace
	Overview of the Summit ADF DVT Standalone Samples
	How to Run the Summit ADF DVT Sample Application Pages

	Part II Building Your Business Services
	3 Getting Started with ADF Business Components
	About ADF Business Components
	ADF Business Components Use Cases and Examples
	Additional Functionality for ADF Business Components

	Creating the ADF Business Components Data Model Project
	How to Create a Data Model Project for ADF Business Components
	How to Create a Data Model Project for ADF REST Web Applications
	How to Add an ADF Business Components Data Model Project to an Existing Application
	How to Initialize the Data Model Project With a Database Connection
	How to Change the Data Model Project to Work With Offline Database Objects
	What You May Need to Know About Application Server or Database Independence
	What You May Need to Know About ADF Business Components Data Types
	What You May Need to Know About Displaying Numeric Values
	How to Customize Model Project Properties for ADF Business Components
	How to Customize ADF Business Components Preferences

	Creating and Editing Business Components
	How to Create New Components Using Wizards
	How to Create New Components Using the Context Menu
	What Happens When You Create Business Components
	What You May Need to Know About the Model Project Organization
	What You May Need to Know About Package Naming Conventions
	What You May Need to Know About Renaming Components
	How to Edit Components Using the Component Overview Editor

	Testing, Refactoring, and Visualizing Business Components
	How to Use the Oracle ADF Model Tester
	What You May Need to Know About Obtaining Oracle ADF Source Code
	How to Find Business Component Usages in the Data Model Project
	How to Explorer Business Component Dependencies in the Data Model Project
	How to Refactor Business Components in the Data Model Project
	How to Refactor Offline Database Objects and Update Business Components
	How to Display Related Business Components Using Diagrams
	What You May Need to Know About Using UML Diagrams

	Customizing Business Components
	How to Generate Business Component Java Subclasses
	How to Expose Business Component Methods to Clients
	What Happens When You Generate Custom Classes
	What You May Need to Know About Custom Interface Support
	What You May Need to Know About Generic Versus Strongly Typed APIs

	Using Groovy Scripting Language With Business Components
	How to Enter Groovy Expressions on Business Components
	What Happens When You Enter Expressions
	What You May Need to Know About Groovy Project Settings
	What You May Need to Know About Where Groovy Expressions Can Be Used
	What You May Need to Know About Groovy Expression Syntax
	What You May Need to Know About Referencing Business Components in Groovy Expressions
	What You May Need to Know About Untrusted Groovy Expressions
	What You May Need to Know About Referencing Custom Business Components Methods and Attributes in Groovy Expressions
	Referencing Members of the Same Business Component
	Referencing Members of Other Business Components

	What You May Need to Know About Manipulating Business Component Attribute Values in Groovy Expressions

	What You May Need to Know About Migrating Groovy Snippets
	How to Create a Script Expression Class File

	4 Creating a Business Domain Layer Using Entity Objects
	About Entity Objects
	Entity Object Use Cases and Examples
	Additional Functionality for Entity Objects

	Creating Entity Objects and Associations
	How to Create Multiple Entity Objects and Associations from Existing Tables
	How to Create Single Entity Objects Using the Create Entity Wizard
	What Happens When You Create Entity Objects and Associations from Existing Tables
	Foreign Key Associations Generated When Entity Objects Are Derived from Tables
	Entity Object Key Generated When a Table Has No Primary Key

	What Happens When You Create an Entity Object for a Synonym or View
	How to Edit an Existing Entity Object or Association
	How to Create Database Tables from Entity Objects
	How to Synchronize an Entity with Changes to Its Database Table
	Removing an Attribute Associated with a Dropped Column
	Addressing a Data Type Change in the Underlying Table

	How to Store Data Pertaining to a Specific Point in Time
	What Happens When You Create Effective Dated Entity Objects
	What You May Need to Know About Creating Entities from Tables

	Creating and Configuring Associations
	How to Create an Association
	What Happens When You Create an Association
	How to Change Entity Association Accessor Names
	How to Rename and Move Associations to a Different Package
	What You May Need to Know About Using a Custom View Object in an Association
	What You May Need to Know About Composition Associations

	Creating a Diagram of Entity Objects for Your Business Layer
	How to Show Entity Objects in a Business Components Diagram
	What Happens When You Create an Entity Diagram
	What You May Need to Know About the XML Component Descriptors
	What You May Need to Know About Changing the Names of Components

	Defining Property Sets
	How to Define a Property Set
	How to Apply a Property Set

	Defining Attribute Control Hints for Entity Objects
	How to Add Attribute Control Hints
	What Happens When You Add Attribute Control Hints
	About Formatters and Masks
	How to Define Format Masks

	Working with Resource Bundles
	How to Set Message Bundle Options
	How to Use Multiple Resource Bundles
	How to Internationalize the Date Format

	Defining Business Logic Groups
	How to Create a Business Logic Group
	How to Create a Business Logic Unit
	How to Add Logic to a Business Logic Unit
	How to Override Attributes in a Business Logic Unit
	What Happens When You Create a Business Logic Group
	What Happens at Runtime: How Business Logic Groups Are Invoked

	Configuring Runtime Behavior Declaratively
	How to Configure Declarative Runtime Behavior
	What Happens When You Configure Declarative Runtime Behavior
	How to Use Update Batching

	Setting Attribute Properties
	How to Set Database and Java Data Types for an Entity Object Attribute
	How to Indicate Data Type Length, Precision, and Scale
	How to Control the Updatability of an Attribute
	How to Make an Attribute Mandatory
	How to Define the Primary Key for the Entity
	How to Define a Static Default Value
	How to Define a Default Value Using an Expression
	What Happens When You Create a Default Value Using a Groovy expression
	How to Synchronize with Trigger-Assigned Values
	How to Get Trigger-Assigned Primary Key Values from a Database Sequence
	What You May Need to Know About Changing the Value of Primary Keys
	How to Protect Against Losing Simultaneously Updated Data
	How to Protect Against Truncated Attribute Values at Runtime
	How to Track Created and Modified Dates Using the History Column
	How to Configure Composition Behavior
	Orphan-Row Protection for New Composed Entity Objects
	Ordering of Changes Saved to the Database
	Cascade Update of Composed Details from Refresh-On-Insert Primary Keys
	Cascade Delete Support
	Cascade Update of Foreign Key Attributes When Primary Key Changes
	Locking of Composite Parent Entity Objects
	Using Batch Update with Composition Entity Objects
	Updating of Composing Parent History Attributes

	How to Set the Discriminator Attribute for Entity Object Inheritance Hierarchies
	How to Define Alternate Key Values
	What Happens When You Define Alternate Key Values
	What You May Need to Know About Alternate Key Values

	Adding Transient and Calculated Attributes to an Entity Object
	How to Add a Transient Attribute
	What Happens When You Add a Transient Attribute
	How to Base a Transient Attribute on a Groovy Expression
	What Happens When You Base a Transient Attribute on a Groovy Expression
	How to Add Java Code in the Entity Class to Perform Calculation

	Creating Business Events
	Introducing Event Definitions
	Introducing Event Points
	What You May Need to Know About Event Points
	How to Create a Business Event
	What Happens When You Create a Business Event
	What You May Need to Know About Payload
	How to Define a Publication Point for a Business Event
	How to Subscribe to Business Events

	Generating Custom Java Classes for an Entity Object
	How to Generate Custom Classes
	What Happens When You Generate Custom Classes
	What Happens When You Generate Entity Attribute Accessors
	How to Navigate to Custom Java Files
	What You May Need to Know About Custom Java Classes
	Framework Base Classes for an Entity Object
	Safely Adding Code to the Custom Component File
	Configuring Default Java Generation Preferences
	Attribute Indexes and InvokeAccessor Generated Code

	Programmatic Example for Comparison Using Custom Entity Class References

	Working Programmatically with Entity Objects and Associations
	How to Find an Entity Object by Primary Key
	How to Access an Associated Entity Using the Accessor Attribute
	How to Update or Remove an Existing Entity Row
	How to Create a New Entity Row
	Assigning the Primary Key Value Using an Oracle Sequence
	How to Update a Deleted Flag Instead of Deleting Rows
	Updating a Deleted Flag When a Row Is Removed
	Forcing an Update DML Operation Instead of a Delete

	How to Control Entity Posting Order to Prevent Constraint Violations
	Default Post Processing Order
	Compositions and Default Post Processing Order
	Overriding postChanges() to Control Post Order
	Observing the Post Ordering Problem First Hand
	Forcing the Department to Post Before the Employee
	Associations Based on DBSequence-Valued Primary Keys
	Refreshing References to DBSequence-Assigned Foreign Keys

	Advanced Entity Association Techniques
	Modifying Association SQL Clause to Implement Complex Associations
	Exposing View Link Accessor Attributes at the Entity Level

	What You May Need to Know About Custom Entity Object Methods

	Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticEntityImpl
	How to Create an Entity Object Class Extending ProgrammaticEntityImpl
	Key Framework Methods to Override for ProgrammaticEntityImpl Based Entity Objects
	What You May Need to Know About Programmatic Entity Object Triggers
	Defining Triggers for Programmatic Entity Objects

	Creating Custom, Validated Data Types Using Domains
	How to Create a Domain
	What Happens When You Create a Domain
	What You May Need to Know About Domains
	Domains as Entity and View Object Attributes
	DataCreationException in Custom validate() Method
	String Domains and String Value Aggregation
	Simple Domains and Built-In Types
	Simple Domains As Immutable Java Classes
	Creating Domains for Oracle Object Types When Useful
	Domains Packaged in the Common JAR
	Custom Domain Properties and Attributes in Entity and View Objects
	Inherited Restrictive Properties of Domains in Entity and View Objects

	Creating New History Types
	How to Create New History Types
	How to Remove a History Type

	Basing an Entity Object on a PL/SQL Package API
	How to Create an Entity Object Based on a View
	What Happens When You Create an Entity Object Based on a View
	How to Centralize Details for PL/SQL-Based Entities into a Base Class
	How to Implement the Stored Procedure Calls for DML Operations
	How to Add Select and Lock Handling
	Updating PLSQLEntityImpl Base Class to Handle Lock and Select
	Implementing Lock and Select for the Product Entity
	Refreshing the Entity Object After RowInconsistentException

	Basing an Entity Object on a Join View or Remote DBLink
	How to Disable the Use of the RETURNING Clause
	What Happens at Runtime: Refresh Behavior With Disabled RETURNING Clause

	Using Inheritance in Your Business Domain Layer
	Understanding When Inheritance Can Be Useful
	How to Create Entity Objects in an Inheritance Hierarchy
	Identifying the Discriminator Column and Distinct Values
	Identifying the Subset of Attributes Relevant to Each Kind of Entity
	Creating the Base Entity Object in an Inheritance Hierarchy
	Creating a Subtype Entity Object in an Inheritance Hierarchy

	How to Add Methods to Entity Objects in an Inheritance Hierarchy
	Adding Methods Common to All Entity Objects in the Hierarchy
	Overriding Common Methods in a Subtype Entity Object
	Adding Methods Specific to a Subtype Entity Object

	What You May Need to Know About Using Inheritance
	Introducing a New Base Entity
	Subtype Entity Objects and the findByPrimaryKey() Method
	View Objects with Polymorphic Entity Usages

	5 Defining SQL Queries Using View Objects
	About View Objects
	View Object Use Cases and Examples
	Additional Functionality for View Objects

	Populating View Object Rows from a Single Database Table
	How to Create an Entity-Based View Object
	Creating a View Object with All the Attributes of an Entity Object
	Creating an Entity-Based View Object from a Single Table

	What Happens When You Create an Entity-Based View Object
	What You May Need to Know About Non-Updatable View Objects
	How to Edit a View Object
	Overriding the Inherited Properties from Underlying Entity Object Attributes
	Customizing View Object Attribute Display in the Overview Editor
	Modifying the Order of Attributes in the View Object Source File

	How to Show View Objects in a Business Components Diagram

	Working with View Objects in Declarative SQL Mode
	How to Create Declarative SQL View Objects
	How to Filter Declarative SQL-Based View Objects When Table Joins Apply
	How to Filter Master-Detail Related View Objects with Declarative SQL Mode
	How to Support Programmatic Execution of Declarative SQL Mode View Objects
	Forcing Attribute Queries for All Declarative SQL Mode View Objects
	Forcing Attribute Queries for Specific Declarative SQL Mode View Objects

	What Happens When You Create a View Object in Declarative SQL Mode
	What Happens at Runtime: Declarative SQL Mode Queries
	What You May Need to Know About Working Programmatically with Declarative SQL Mode View Objects

	Creating View Objects Populated With Static Data
	How to Create Static Data View Objects with Data You Enter
	How to Create Static Data View Objects with Data You Import
	What Happens When You Create a Static Data View Object
	How to Edit Static Data View Objects
	What You May Need to Know About Static Data View Objects

	Adding Calculated and Transient Attributes to a View Object
	How to Add a SQL-Calculated Attribute
	What Happens When You Add a SQL-Calculated Attribute
	What You May Need to Know About SQL-Calculated Attributes
	How to Add a Transient Attribute
	How to Add a Transient Attribute Defined by an Entity Object
	How to Add a Validation Rule to a Transient Attribute
	What Happens When You Add a Transient Attribute
	What You May Need to Know About Transient Attributes and Calculated Values
	What You May Need to Know About View Object Queries with Primary Keys Defined by Transient Attributes

	Limiting View Object Rows Using Effective Date Ranges
	How to Create a Date-Effective View Object
	How to Create New View Rows Using Date-Effective View Objects
	How to Update Date-Effective View Rows
	How to Delete Date-Effective View Rows
	What Happens When You Create a Date-Effective View Object
	What You May Need to Know About Date-Effective View Objects and View Links

	Working with Multiple Tables in Join Query Results
	How to Create Joins for Entity-Based View Objects
	How to Modify a Default Join Clause to Be an Outer Join When Appropriate
	How to Select Additional Attributes from Reference Entity Usages
	How to Remove Unnecessary Key Attributes from Reference Entity Usages
	How to Hide the Primary Key Attributes from Reference Entity Usages
	What Happens When You Reference Multiple Entities in a View Object
	What You May Need to Know About Outer Joins
	What You May Need to Know About Entity Based Joins and Entity Cardinality
	What You May Need to Know About Entity Based Joins and Participates in Row Delete
	What You May Need to Know About Composition Associations and Joins
	How to Create Joins for Read-Only View Objects
	How to Test the Join View
	How to Use the SQL Statement Dialog with Read-Only View Objects

	Working with View Objects and Custom SQL
	How to Create a Custom SQL Mode View Object
	What Happens When You Create a Custom SQL View Object
	How to Customize SQL Statements in Custom SQL Mode
	What Happens When You Enable Custom SQL Mode
	What You May Need to Know About Custom SQL Mode
	Attribute Names for Calculated Expressions in Custom SQL Mode
	Attribute Mapping Assistance in Custom SQL Mode
	Custom Edits in Custom SQL Mode
	Changes to SQL Expressions in Custom SQL Mode
	SQL Calculations that Change Entity Attributes in Custom SQL Mode
	Formatting of the SQL Statement in Custom SQL Mode
	Query Clauses in Custom SQL Mode
	Inline View Wrapping at Runtime
	Custom SQL Affect on Dependent Objects
	Custom SQL Affect on View Object Query Auto Refresh
	SQL Types of Attributes in Custom SQL Mode

	Working with Named View Criteria
	How to Create Named View Criteria Declaratively
	What Happens When You Create a Named View Criteria
	What You May Need to Know About Bind Variables in View Criteria
	What You May Need to Know About Nested View Criteria Expressions
	How to Set User Interface Hints on View Criteria to Support Search Forms
	How to Test View Criteria Using the Oracle ADF Model Tester
	How to Use View Criteria to Filter a View Object for the Current User
	How to Create View Criteria Programmatically
	What Happens at Runtime: How the View Criteria Is Applied to a View Object
	What You May Need to Know About the View Criteria API
	Referencing Attribute Names in View Criteria
	Referencing Bind Variables in View Criteria
	Searching for a Row Whose Attribute Is NULL
	Searching for Rows Using a Date Comparison
	Searching for Rows Whose Attribute Value Matches a Value in a List
	Searching Case-Insensitively
	Clearing View Criteria in Effect
	Altering Compound Search Conditions Using Multiple View Criteria

	What You May Need to Know About Query-by-Example Criteria

	Working with Bind Variables
	How to Add View Criteria Bind Variables to a View Object Definition
	How to Add WHERE Clause Bind Variables to a View Object Definition
	What Happens When You Add Named Bind Variables
	How to Test Named Bind Variables
	How to Add a WHERE Clause with Named Bind Variables at Runtime
	How to Set Existing WHERE Clause Bind Variable Values at Runtime
	What Happens at Runtime: Dynamic Read-Only View Object WHERE Clause
	What You May Need to Know About Named Bind Variables
	Errors Related to the Names of Bind Variables
	Default Value of NULL for Bind Variables

	Working with Row Finders
	How to Add Row Finders to a View Object Definition
	What Happens When You Define a Row Finder
	What You May Need to Know About View Criteria and Row Finder Usage
	Programmatically Invoking the Row Finder

	Working with List of Values (LOV) in View Object Attributes
	How to Define a Single LOV-Enabled View Object Attribute
	How to Define Cascading Lists for LOV-Enabled View Object Attributes
	Creating a Data Source View Object to Control the Cascading List
	Creating a View Accessor to Filter the Cascading List

	How to Specify Multiple LOVs for a Single LOV-Enabled View Object Attribute
	How to Define an LOV to Display a Reference Attribute
	How to Set User Interface Hints on a View Object LOV-Enabled Attribute
	How to Handle Date Conversion for List Type UI Components
	How to Automatically Refresh the View Object of the View Accessor
	How to Test LOV-Enabled Attributes Using the Oracle ADF Model Tester
	What Happens When You Define an LOV for a View Object Attribute
	What Happens at Runtime: How an LOV Queries the List Data Source
	What You May Need to Know About Lists
	Inheritance of AttributeDef Properties from Parent View Object Attributes
	Using Validators to Validate Attribute Values

	Defining UI Hints for View Objects
	How to Add Attribute-Specific UI Hints
	How to Add View Object UI Hints
	How to Access UI Hints Using EL Expressions
	What Happens When You Add UI Hints
	How to Define UI Category Hints
	What Happens When You Assign Attributes to UI Categories
	What You May Need to Know About Resource Bundles

	6 Defining Master-Detail Related View Objects
	About Master-Detail View Objects
	Master-Detail View Object Use Cases and Examples
	Additional Functionality for View Objects

	Working with Multiple Tables in a Master-Detail Hierarchy
	How to Create a Master-Detail Hierarchy Based on Entity Associations
	How to Create a Master-Detail Hierarchy Based on View Objects Alone
	What Happens When You Create Master-Detail Hierarchies Using View Links
	How to Enable Active Master-Detail Coordination in the Data Model
	How to Test Master-Detail Coordination
	How to Access the Detail Collection Using the View Link Accessor
	Accessing Attributes of Row by Name
	Programmatically Accessing a Detail Collection Using the View Link Accessor
	Optimizing View Link Accessor Access to Display Master-Detail Data

	What You May Need to Know About View Link Accessors Versus Data Model View Link Instances
	Enabling a Dynamic Detail Row Set with Active Master-Detail Coordination
	Programmatically Accessing a Detail Row Set Using View Link Accessor Attributes
	What Happens At Runtime: When You Combine the Programmatic Access Using View LInk Accessors

	How to Create a Master-Detail Hierarchy With Multiple Masters
	How to Create a Master-Detail Hierarchy for Entity Objects Consisting of Transient-Only Attributes
	How to Find Rows of a Master View Object Using Row Finders
	Defining a Row Finder on the Master View Object
	What Happens When You Create a Row Finder for a Master View Object

	Working with a Single Table in a Recursive Master-Detail Hierarchy
	How to Create a Recursive Master-Detail Hierarchy for an Entity-Based View Object
	Creating an Association-Based, Self-Referential View Link
	Exposing the View Instance and Filter with a View Criteria

	What Happens When You Create a Recursive Master-Detail Hierarchy

	Working with Master-Detail Related View Objects in View Criteria

	7 Defining Polymorphic View Objects
	About Polymorphic View Objects
	Polymorphic Entity Usages and Polymorphic View Rows Usages

	Working with Polymorphic Entity Usages
	How to Create a Subtype View Object with a Polymorphic Entity Usage
	What Happens When You Create a Subtype View Object with a Polymorphic Entity Usage
	What You May Need to Know About Polymorphic Entity Usages
	Your Query Must Limit Rows to Expected Entity Subtypes
	Exposing Selected Entity Methods in View Rows Using Delegation
	Creating New Rows With the Desired Entity Subtype

	Working with Polymorphic View Rows
	How to Create a View Object with Polymorphic View Rows
	What Happens When You Create a View Object With Polymorphic View Rows
	What You May Need to Know About Polymorphic View Rows
	Selecting Subtype-Specific Attributes in Extended View Objects
	Delegating to Subtype-Specific Methods After Overriding the Entity Usage
	Working with Different View Row Interface Types in Client Code

	What You May Need to Know About the Discriminator Attribute
	Updating the Application Module to Expose Subtype Usages
	How to Expose Subtype Usages on the Data Model
	What Happens When You Add Subtype View Objects to the Application Module

	8 Testing View Instance Queries
	About View Instance Queries
	View Instance Use Cases and Examples
	Additional Functionality for Testing View Instances

	Creating an Application Module to Test View Instances
	How to Create the Application Module with Individual View Object Instances
	How to Create the Application Module with Master-Detail View Object Instances

	Testing View Object Instances Using the Oracle ADF Model Tester
	How to Run the Oracle ADF Model Tester
	How to Run the Oracle ADF Model Tester Using Configurations
	How to Test Language Message Bundles and UI Hints
	How to Test Entity-Based View Objects Interactively
	How to Update the Oracle ADF Model Tester to Display Project Changes
	What Happens When You Use the Oracle ADF Model Tester
	How to Simulate End-User Interaction in the Oracle ADF Model Tester
	Testing Master-Detail Coordination
	Testing UI Hints
	Testing Business Domain Layer Validation
	Testing View Objects That Reference Entity Usages
	Testing Row Creation and Default Value Generation
	Testing That New Detail Rows Have Correct Foreign Keys

	How to Test Multiuser Scenarios in the Oracle ADF Model Tester
	How to Customize Configuration Options Before Running the Tester
	How to Enable ADF Business Components Debug Diagnostics
	What Happens at Runtime: How View Objects and Entity Objects Cooperate
	What Happens at Runtime: After a View Object Executes Its Query
	What Happens at Runtime: After a View Row Attribute Is Modified
	What Happens at Runtime: After a Foreign Key Attribute is Changed
	What Happens at Runtime: After a Transaction is Committed
	What Happens at Runtime: After a View Object Requeries Data
	How Unmodified Attributes are Handled During Requery
	How Modified Attributes are Handled During Requery
	How Overlapping Subsets of Attributes are Handled During Requery

	What You May Need to Know About Optimizing View Object Runtime Performance

	Testing View Object Instances Programmatically
	ViewObject Interface Methods for Working with the View Object's Default RowSet
	The Role of the Key Object in a View Row or Entity Row
	The Role of the Entity Cache in the Transaction

	How to Create a Command-Line Java Test Client
	Generating a Test Client with Skeleton Code
	Modifying the Skeleton Code to Create the Test Client

	What Happens When You Run a Test Client Program
	What You May Need to Know About Running a Test Client
	How to Count the Number of Rows in a Row Set
	How to Access a Detail Collection Using the View Link Accessor
	How to Iterate Over a Master-Detail-Detail Hierarchy
	How to Find a Row and Update a Foreign Key Value
	How to Create a New Row for a View Object Instance
	How to Retrieve the Row Key Identifying a Row
	What You May Need to Know About Using Partial Keys with findByKey()
	How to Authenticate Test Users in the Test Client

	9 Tuning View Object Performance
	About View Object Tuning
	Maintaining New Row Consistency Between View Objects Based on the Same Entity
	What Happens at Runtime: When View Link Consistency is Enabled
	What You May Need to Know About Changing the Default View Link Consistency Setting
	Using RowMatch to Qualify Which New, Unposted Rows Get Added to a Row Set
	What You May Need to Know About the Dynamic WHERE Clause and View Link Consistency

	Using Bind Variables for Parameterized Queries
	Use Bind Variables to Avoid Reparsing of Queries
	Use Bind Variables to Prevent SQL-Injection Attacks
	Log Bind Parameter Values

	Working with Multiple Row Sets and Row Set Iterators
	Using Entity-Based View Objects for Read-Only Data
	Using SQL Tracing to Identify Ill-Performing Queries
	Using the Appropriate View Object Tuning Settings
	What You May Need to Know About the Retrieve from Database Options
	Consider Whether Fetching One Row at a Time is Appropriate
	Specify a Query Optimizer Hint if Necessary

	Using Fetch Size to Limit the Maximum Number of Records Fetched for a View Object
	Using Range Size to Present and Scroll Data a Page at a Time
	Using Range Paging to Efficiently Scroll Through Large Result Sets
	Understanding How Oracle Supports "TOP-N" Queries
	How to Enable Range Paging for a View Object
	What Happens When You Enable Range Paging
	What Happens When View Rows are Cached When Using Range Paging
	How to Scroll to a Given Page Number Using Range Paging
	How to Estimate the Number of Pages in the Row Set Using Range Paging
	Understanding the Tradeoffs of Using a Range Paging Mode

	Using Forward Only Mode to Avoid Caching View Rows
	Using Retain Row Set to Optimize View Link Accessor Access
	Using Dynamic Attributes On View Objects to Store UI State

	10 Defining Validation and Business Rules Declaratively
	About Declarative Validation
	Declarative Validation Use Cases and Examples
	Additional Functionality for Declarative Validation

	Determining Where to Implement Validation
	Understanding the Validation Cycle
	Types of Entity Object Validation Rules
	Attribute-Level Validation Rules
	Entity-Level Validation Rules

	Understanding Commit Processing and Validation
	Understanding the Impact of Composition on Validation Order
	Avoiding Infinite Validation Cycles
	What Happens When Validations Fail
	Understanding Entity Objects Row States
	Understanding Bundled Exception Mode

	Adding Validation Rules to Entity Objects and Attributes
	How to Add a Validation Rule to an Entity or Attribute
	How to View and Edit a Validation Rule on an Entity Object or Attribute
	What Happens When You Add a Validation Rule
	What You May Need to Know About Entity and Attribute Validation Rules
	What You May Need to Know About List of Values and Attribute Validation Rules

	Using the Built-in Declarative Validation Rules
	How to Ensure That Key Values Are Unique
	What Happens When You Use a Unique Key Validator
	How to Validate Based on a Comparison
	What Happens When You Validate Based on a Comparison
	How to Validate Using a List of Values
	What Happens When You Validate Using a List of Values
	What You May Need to Know About the List Validator
	How to Make Sure a Value Falls Within a Certain Range
	What Happens When You Use a Range Validator
	How to Validate Against a Number of Bytes or Characters
	What Happens When You Validate Against a Number of Bytes or Characters
	How to Validate Using a Regular Expression
	What Happens When You Validate Using a Regular Expression
	How to Use the Average, Count, or Sum to Validate a Collection
	What Happens When You Use Collection Validation
	How to Determine Whether a Key Exists
	What Happens When You Use a Key Exists Validator
	What You May Need to Know About Declarative Validators and View Accessors

	Using Entity-Level Triggers
	How to Implement Business Rules Using Entity-Level Triggers
	What Happens When You Create an Entity-Level Trigger

	Using Groovy Expressions For Business Rules and Triggers
	How to Reference Entity Object Methods in Groovy Expressions
	How to Validate Using a True/False Expression
	What Happens When You Add a Groovy Expression

	Triggering Validation Execution
	How to Specify Which Attributes Fire Validation
	What Happens When You Constrain Validation Execution with Triggering Attributes
	How to Set Preconditions for Validation
	How to Set Transaction-Level Validation
	What You May Need to Know About the Order of Validation Execution

	Creating Validation Error Messages
	How to Create Error Messages for Validators and Triggers
	How to Localize Validation Messages
	How to Conditionally Raise Error Messages Using Groovy
	How to Embed a Groovy Expression in an Error Message

	Setting the Severity Level for Validation Exceptions
	Bulk Validation in SQL

	11 Working Programmatically with View Objects
	Generating Custom Java Classes for a View Object
	How To Generate Custom Classes
	Generating View Row Attribute Accessors
	Exposing View Row Accessors to Clients
	Configuring Default Java Generation Preferences

	What Happens When You Generate Custom Classes
	Viewing and Navigating to Custom Java Files

	What You May Need to Know About Custom Classes
	About the Framework Base Classes for a View Object
	You Can Safely Add Code to the Custom Component File
	Attribute Indexes and InvokeAccessor Generated Code
	Avoid Creating Dependencies on Parent Application Module Types

	Working Programmatically with Multiple Named View Criteria
	Applying One or More Named View Criteria
	What You May Need to Know about Applying One or More Named View Criteria
	Removing All Applied Named View Criteria
	Using the Named Criteria at Runtime

	Performing In-Memory Sorting and Filtering of Row Sets
	Understanding the View Object's SQL Mode
	Sorting View Object Rows In Memory
	Combining setSortBy and setQueryMode for In-Memory Sorting
	Simplified In-Memory Sorting
	Extensibility Points for In-Memory Sorting

	Performing In-Memory Filtering with View Criteria
	Performing In-Memory Filtering with RowMatch
	Applying a RowMatch to a View Object
	Using RowMatch to Test an Individual Row
	How a RowMatch Affects Rows Fetched from the Database

	Reading and Writing XML
	How to Produce XML for Queried Data
	What Happens When You Produce XML
	What You May Need to Know About Reading and Writing XML
	Controlling XML Element Names
	Controlling Element Suppression for Null-Valued Attributes
	Printing or Searching the Generated XML Using XPath
	Using the Attribute Map For Fine Control Over Generated XML
	Use the Attribute Map Approach with Bi-Directional View Links
	Transforming Generated XML Using an XSLT Stylesheet
	Generating XML for a Single Row

	How to Consume XML Documents to Apply Changes
	What Happens When You Consume XML Documents
	How ViewObject.readXML() Processes an XML Document
	Using readXML() to Processes XML for a Single Row

	Working Programmatically with Custom Data Sources and the Framework Base Class ProgrammaticViewObjectImpl
	How to Create a View Object Class Extending ProgrammaticViewObjectImpl
	Key Framework Methods to Override for ProgrammaticViewObjectImpl Based View Objects
	What You May Need to Know About Programmatic View Object Triggers
	Key Framework Methods to Override for ProgrammaticViewRowImpl Based View Objects

	Using Classic Style Programmatic View Objects for Alternative Data Sources
	How to Create a Read-Only Programmatic View Object
	How to Create an Entity-Based Programmatic View Object
	Key Framework Methods to Override for Programmatic View Objects
	How to Create a View Object on a REF CURSOR
	The Overridden create() Method
	The Overridden executeQueryForCollection() Method
	The Overridden createRowFromResultSet() Method
	The Overridden hasNextForCollectionMethod()
	The Overridden releaseUserDataForCollection() Method
	The Overridden getQueryHitCount() Method

	Creating a View Object with Multiple Updatable Entities
	How to Programmatically Create New Rows With Multiple Updatable Entity Usages
	What Happens at Runtime: View Row Creation

	Programmatically Creating View Definitions and View Objects
	What You May Need to Know About MDS Repository Configuration
	What You May Need to Know About Creating View Objects at Runtime

	Declaratively Preventing Insert, Update, and Delete
	What You May Need to Know About Programmatic View Object Triggers
	Defining Triggers for Programmatic View Objects

	12 Implementing Validation and Business Rules Programmatically
	About Programmatic Business Rules
	Programmatic Business Rules Use Cases and Examples
	Additional Functionality for Programmatic Business Rules

	Using Method Validators
	How to Create an Attribute-Level Method Validator
	What Happens When You Create an Attribute-Level Method Validator
	How to Create an Entity-Level Method Validator
	What Happens When You Create an Entity-Level Method Validator
	What You May Need to Know About Translating Validation Rule Error Messages

	Assigning Programmatically Derived Attribute Values
	How to Provide Default Values for New Rows at Create Time
	Choosing Between create() and initDefaultExpressionAttributes() Methods
	Eagerly Defaulting an Attribute Value from a Database Sequence

	How to Assign Derived Values Before Saving
	How to Assign Derived Values When an Attribute Value Is Set

	Undoing Pending Changes to an Entity Using the Refresh Method
	How to Control What Happens to New Rows During a Refresh
	How to Cascade Refresh to Composed Children Entity Rows

	Using View Objects for Validation
	How to Use View Accessors for Validation Against View Objects
	How to Validate Conditions Related to All Entities of a Given Type
	What You May Need to Know About Row Set Access with View Accessors

	Accessing Related Entity Rows Using Association Accessors
	How to Access Related Entity Rows
	How to Access Related Entity Row Sets

	Referencing Information About the Authenticated User
	Accessing Original Attribute Values
	Storing Information About the Current User Session
	How to Store Information About the Current User Session
	How to Use Groovy to Access Information About the Current User Session

	Accessing the Current Date and Time
	Sending Notifications Upon a Successful Commit
	Conditionally Preventing an Entity Row from Being Removed
	Determining Conditional Updatability for Attributes
	Implementing Custom Validation Rules
	How to Create a Custom Validation Rule
	How to Register and Use a Custom Rule in JDeveloper
	Registering a Custom Validator at the Project Level
	Registering a Custom Validator at the IDE Level

	13 Implementing Business Services with Application Modules
	About Application Modules
	Application Module Use Cases and Examples
	Additional Functionality for Application Modules

	Creating and Modifying an Application Module
	How to Create an Application Module
	What Happens When You Create an Application Module
	How to Add a View Object Instance to an Application Module
	Adding a View Object Instance to an Existing Application Module
	Adding Master-Detail View Object Instances to an Application Module
	Customizing a View Object Instance that You Add to an Application Module

	What Happens When You Add a View Object Instance to an Application Module
	How to Edit an Existing Application Module
	How to Change the Data Control Name Before You Begin Building Pages
	What You May Need to Know About Application Module Granularity
	What You May Need to Know About View Object Components and View Object Instances

	Configuring Your Application Module Database Connection
	How to Use a JDBC Data Source Connection Type
	What Happens When You Create an Application Module Database Connection
	How to Change Your Application Module's Runtime Configuration
	How to Change the Database Connection for Your Project

	Defining Nested Application Modules
	How to Define a Nested Application Module
	What You May Need to Know About Root Application Modules Versus Nested Application Module Usages

	Creating an Application Module Diagram for Your Business Service
	How to Create an Application Module Diagram
	What Happens When You Create an Application Module Diagram
	How to Use the Diagram to Edit the Application Module
	How to Control Diagram Display Options
	How to Filter Method Names Displayed in the Diagram
	How to Show Related Objects and Implementation Files in the Diagram
	How to Publish the Application Module Diagram
	How to Test the Application Module from the Diagram

	Supporting Multipage Units of Work
	How to Simulate State Management in the Oracle ADF Model Tester
	What Happens at Runtime: How the Application Uses Application Module Pooling and State Management

	Customizing an Application Module with Service Methods
	How to Generate a Custom Class for an Application Module
	What Happens When You Generate a Custom Class for an Application Module
	What You May Need to Know About Default Code Generation
	How to Add a Custom Service Method to an Application Module
	How to Test the Custom Application Module Using a Static Main Method
	What You May Need to Know About Programmatic Row Set Iteration

	Customizing Application Module Message Strings
	How to Add a Resource Bundle File for the Application Module
	What Happens When You Add a Resource Bundle to an Application Module

	Publishing Custom Service Methods to UI Clients
	How to Publish a Custom Method on the Application Module's Client Interface
	What Happens When You Publish Custom Service Methods
	How to Generate Client Interfaces for View Objects and View Rows
	How to Test Custom Service Methods Using the Oracle ADF Model Tester
	What You May Need to Know About Method Signatures on the Client Interface
	What You May Need to Know About Passing Information from the Data Model

	Working Programmatically with an Application Module's Client Interface
	How to Work Programmatically with an Application Module's Client Interface
	What Happens at Runtime: How the Application Module's Client Interface is Accessed
	How to Access an Application Module Client Interface in a Fusion Web Application

	Overriding Built-in Framework Methods
	How to Override a Built-in Framework Method
	What Happens When You Override a Built-in Framework Method
	How to Override prepareSession() to Set Up an Application Module for a New User Session

	Calling a Web Service from an Application Module
	How to Call an External Service Programmatically
	Creating a Web Service Proxy Class to Programmatically Access the Service
	Calling the Web Service Proxy Template to Invoke the Service
	Calling a Web Service Method Using the Proxy Class in an Application Module

	What Happens When You Create the Web Service Proxy
	How to Create a New Web Service Connection
	What Happens at Runtime: How the Web Service Proxy Handles a Web Service Invocation
	What You May Need to Know About Web Service Proxies
	Using a Try-Catch Block to Handle Web Service Exceptions
	Separating Application Module and Web Services Transactions
	Setting Browser Proxy Information
	Invoking Application Modules with a Web Service Proxy Class

	14 Sharing Application Module View Instances
	About Shared Application Modules
	Shared Application Module Use Cases and Examples
	Additional Functionality for Shared Application Modules

	Sharing an Application Module Instance
	How to Create a Shared Application Module Instance
	What Happens When You Define a Shared Application Module
	What You May Need to Know About Design Time Scope of the Shared Application Module
	What You May Need to Know About the Design Time Scope of View Instances of the Shared Application Module
	What You May Need to Know About Managing the Number of Shared Query Collections
	What You May Need to Know About Shared Application Modules and Connection Pooling

	Defining a Base View Object for Use with Lookup Tables
	How to Create a Base View Object Definition for a Lookup Table
	What Happens When You Create a Base View Object
	How to Define the WHERE Clause of the Lookup View Object Using View Criteria
	What Happens When You Create a View Criteria with the Editor
	What Happens at Runtime: How a View Instance Accesses Lookup Data

	Accessing View Instances of the Shared Service
	How to Create a View Accessor for an Entity Object or View Object
	How to Validate Against the Attribute Values Specified by a View Accessor
	What Happens When You Define a View Accessor Validator
	What You May Need to Know About Dynamic Filtering with View Accessors
	How to Create an LOV Based on a Lookup Table
	What Happens When You Define an LOV for a View Object Attribute
	What Happens at Runtime: How the Attribute Displays the List of Values
	What You May Need to Know About Displaying List of Values From a Lookup Table
	What You May Need to Know About Programmatically Invoking Database Change Notifications
	What You May Need to Know About Inheritance of AttributeDef Properties
	What You May Need to Know About Using Validators

	Testing View Object Instances in a Shared Application Module
	How to Test the Base View Object Using the Oracle ADF Model Tester
	How to Test LOV-Enabled Attributes Using the Oracle ADF Model Tester
	What Happens When You Use the Oracle ADF Model Tester
	What Happens at Runtime: How Another Service Accesses the Shared Application Module Cache

	15 Creating SOAP Web Services with Application Modules
	About Service-Enabled Application Modules
	Service-Enabled Application Module Use Cases and Examples
	Additional Functionality for Service-Enabled Application Modules

	Publishing Service-Enabled Application Modules
	How to Enable the Application Module Service Interface
	What Happens When You Create an Application Module Service Interface
	Annotations Generated in the Web Service Interface
	Web Service Schema Generated in the Web Service Schema File
	WSDL Generated in the Web Service Definition File
	Stateless Session Bean Specified by the Service Implementation Class
	Lookup Defined in the connections.xml File

	What Happens When You Create an Application Module Service Interface With Polymorphic View Objects
	What You May Need to Know About Method Signatures on the ADF Web Service Interface
	What You May Need to Know About Row Finders and the ADF Web Service Operations
	How to Service-Enable Individual View Objects
	How to Customize the SDO Properties of Service-Enabled View Objects
	Excluding Individual SDO Properties in a Generated SDO Component
	Associating Related SDO Properties Using Complex Data Types

	How to Support Nested Processing in Service-Enabled Master-Detail View Objects
	What Happens When You Create SDO Classes
	Property Accessors Generated in the SDO Interface
	View Object Interface Implemented by SDO Class
	View Object Schema Generated in the SDO Schema File
	Container Object Implemented by SDO Result Class and Interface

	How to Expose a Declarative Find Operation Filtered By a Required Bind Variable
	How to Expose a Custom Find Method Filtered By a Required Bind Variable
	How to Generate Asynchronous ADF Web Service Methods
	What Happens When You Generate Asynchronous ADF Web Service Methods
	What Happens at Runtime: How the Asynchronous Call Is Made
	How to Set Preferences for Generating the ADF Web Service Interface
	How to Set Display Names for Service View Instances and Attributes
	How to Secure the ADF Web Service for Access By SOAP Clients
	How to Secure the ADF Web Service for Access By RMI Clients
	Enabling Authentication for RMI Clients
	Configuring Authorization for RMI Clients

	How to Grant Test Users Access to the Service
	How to Enable Support for Binary Attachments for SOAP Clients
	How to Specify Character Encoding for ClobDomain Type Attributes
	How to Test the Web Service Using Integrated WebLogic Server
	How to Prevent Custom Service Methods from Timing Out
	How to Deploy Web Services to Oracle WebLogic Server

	Accessing Remote Data Over the Service-Enabled Application Module
	How to Use Service-Enabled Entity Objects and View Objects
	Creating Entity Objects Backed by SDO Services
	Using Complex Data Types with Service-Backed Entity Object Attributes
	Creating View Objects Backed by SDO Services

	What Happens When You Create Service-Backed Business Components
	How to Update the Data Model for Service-Backed Business Components
	How to Configure the Service-Backed Business Components Runtime
	Adding the SDO Client Library to the Classpath
	Registering the ADF Business Components Service in the Consuming Application's connections.xml for the EJB RMI Protocol
	Registering the ADF Business Components Service in the Consuming Application's connections.xml for the SOAP Protocol
	Registering the ADF Business Components Service in the Consuming Application's connections.xml for Fabric SDO Binding

	How to Test the Service-Backed Components in the Oracle ADF Model Tester
	How to Invoke Operations of the Service-Backed Components in the Consuming Application
	What You May Need to Know About Creating Service Data Objects in the Consuming Application
	What You May Need to Know About Invoking Built-In Service Methods in the Consuming Application
	What Happens at Runtime: How the Application Accesses the Published Application Module
	What You May Need to Know About Service-Backed Entity Objects and View Objects

	Accessing Polymorphic Collections in the Consuming Application
	How to Generate Web Service Client Proxy Classes From the Service-Enabled Application Module
	How to Invoke Operations of Polymorphic View Object Using Generated Proxy Classes
	What Happens When You Generate Java Proxy Classes With the SDO Schema
	What You May Need to Know About Invoking Service Methods in the Client Application

	Working with the Find Method Filter Model in the Consuming Application
	How to Control Find Method Behavior Using a SOAP Request
	How to Control Find Method Behavior Using a Java Client

	16 Creating ADF RESTful Web Services with Application Modules
	About RESTful Web Services and ADF Business Components
	RESTful Web Services Use Cases and Examples
	Additional Functionality for RESTful Web Services

	Creating ADF REST Resources Using the Application Module
	How to Create ADF REST Resources Using the Create Business Components from Tables Wizard
	How to Create ADF REST Resources from View Object Instances
	What Happens When You Create REST Resources in the ADF Business Components Project
	How to Edit the ADF REST Resource Definition
	How to Expose Child Resources in the ADF REST Resource
	What You May Need to Know About Optimizing Child Resource Database Queries
	How to Add and Remove Resources Based on the Same View Instance
	How to Hide a Resource from the Catalog Describe
	How to Rename the ADF REST Resource
	What You May Need to Know About Naming ADF REST Resources
	How to Hide and Expose Attributes in the ADF REST Resource
	What You May Need to Know About ADF REST Attribute Hints
	How to Control the ADF REST Response Payload Fields
	What You May Need to Know About Response Payload When a Shape is Defined on a Resource
	What You May Need to Know About Modifying the ADF REST Resource Structure
	What You May Need to Know About ADF REST Resources and LOB Attributes
	What You May Need to Know About LOV Accessors in the ADF REST Resource
	What You May Need to Know About Mandatory Attributes in the ADF REST Resource
	What You May Need to Know About Case Sensitivity in Resource Collection Query Operations

	Customizing the ADF REST Resource Representation
	How to Expose Canonical Resources in the ADF REST Resource
	How to Support Create Operations on ADF REST Resources with LOV Attributes
	How to Enable Row Finder Keys in the ADF REST Resource
	What You May Need to Know About Configuring LOV Resources for Row Finders
	What You May Need to Know About Row Finders in ADF REST Resource Requests
	How to Expose Subtype View Objects in the ADF REST Resource
	How to Expose Standard HTTP Actions in the ADF REST Resource
	What You May Need to Know About Optimizing ADF REST Resource Get Operations
	How to Control Caching of ADF REST Resources
	What You May Need to Know About the Cache-Control Header
	How to Control the Format of the ADF REST Response

	Versioning the ADF REST Resource
	How to Version the ADF REST Resource
	What You May Need to Know About Versioning ADF REST Resources
	What Happens At Runtime: Invoking ADF REST Resource Versions

	Versioning the ADF REST Runtime Framework
	How to Version the ADF REST Runtime Framework
	What You May Need to Know About Versioning the ADF REST Framework
	What You May Need to Know About the Advanced Query Syntax in ADF REST Framework Version 2
	What Happens At Runtime: Invoking an ADF REST Framework Version

	Granting Client Access to the ADF REST Resource
	How to Create a Resource Grant for ADF REST Resources

	Deploying the ADF REST Resource
	How to Deploy the ADF REST Resource to Integrated WebLogic Server
	How to Configure the ADF REST Resources Deployment Profile For Standalone Oracle WebLogic Server Deployment
	How to Deploy the ADF REST Resource to Standalone Oracle WebLogic Server
	What You May Need to Know About Modifying the Target URL Used by Service Clients
	What You May Need to Know About Deploying ADF REST Resources With MDS Customization Support

	Testing the ADF REST Resources Using Integrated WebLogic Server

	17 Extending Business Components Functionality
	About Extending Business Components Functionality
	Additional Functionality for Extending Business Components

	Creating ADF Business Components Extension Classes
	How To Create a Framework Extension Class
	What Happens When You Create a Framework Extension Class
	What You May Need to Know About Customizing Framework Extension Bases Classes
	How to Base a Business Component on a Framework Extension Class
	How to Define Framework Extension Classes for All New Components
	How to Define Framework Extension Classes for All New Projects
	What Happens When You Base a Component on a Framework Extension Class
	XML-Only Components
	Components with Custom Java Classes

	What You May Need to Know About Updating the Extends Clause in Custom Component Java Files
	How to Package Your Framework Extension Layer in a JAR File
	How to Create a Library Definition for Your Framework Extension JAR File

	Customizing Framework Behavior with Extension Classes
	How to Access Runtime Metadata For View Objects and Entity Objects
	How to Implement Generic Functionality Using Runtime Metadata
	How to Implement Generic Functionality Driven by Custom Properties
	What You May Need to Know About the Kinds of Attributes
	What You May Need to Know About Custom Properties

	Creating Generic Extension Interfaces
	Invoking Stored Procedures and Functions
	How to Invoke Stored Procedures with No Arguments
	How to Invoke Stored Procedure with Only IN Arguments
	How to Invoke Stored Function with Only IN Arguments
	How to Call Other Types of Stored Procedures

	Accessing the Current Database Transaction
	Customizing Business Components Error Messages
	How to Customize Base ADF Business Components Error Messages
	What Happens When You Customize Base ADF Business Components Error Messages
	How to Display Customize Error Messages as Nested Exceptions
	How to Customize Error Messages for Database Constraint Violations
	How to Implement a Custom Constraint Error Handling Routine
	Creating a Custom Database Transaction Framework Extension Class
	Configuring an Application Module to Use a Custom Database Transaction Class

	Creating Extended Components Using Inheritance
	How To Create a Component That Extends Another
	How To Extend a Component After Creation
	What Happens When You Create a Component That Extends Another
	Attributes in an Extended Component Inherited from the Parent Component
	Attributes Added to the Extended Component's XML Descriptor
	Java Classes Generated for an Extended Component

	What You May Need to Know About Extending Components
	Parent Classes and Interfaces for Extended Components
	Generated Classes for Extended Components
	Business Component Types
	New Attributes in an Extended Component

	Substituting Extended Components in a Delivered Application
	How To Substitute an Extended Component
	What Happens When You Substitute
	How to Enable the Substituted Components in the Base Application

	Part III Using the ADF Model Layer
	18 Using ADF Model in a Fusion Web Application
	About Using ADF Model in a Fusion Web Application
	About ADF Data Controls
	About JSF Data Binding
	About ADF Data Binding

	Additional Functionality for ADF Model Layer
	Exposing Application Modules with ADF Data Controls
	How an Application Module Data Control Appears in the Data Controls Panel
	How the Data Model and Service Methods Appear in the Data Controls Panel
	How Transaction Control Operations Appear in the Data Controls Panel
	How View Objects Appear in the Data Controls Panel
	How Nested Application Modules Appear in the Data Controls Panel
	How a Row Finder Appears in the Data Controls Panel

	How to Open the Data Controls Panel
	How to Refresh the Data Controls Panel
	Packaging a Data Control for Use in Another Project

	Using the Data Controls Panel
	How to Use the Data Controls Panel
	What Happens When You Use the Data Controls Panel
	What Happens at Runtime: How the Binding Context Works

	Working with the DataBindings.cpx File
	How JDeveloper Creates a DataBindings.cpx File
	What Happens When JDeveloper Creates a DataBindings.cpx File

	Configuring the ADF Binding Filter
	How JDeveloper Configures the ADF Binding Filter
	What Happens When JDeveloper Configures an ADF Binding Filter
	What Happens at Runtime: How the ADF Binding Filter Works

	Working with Page Definition Files
	How JDeveloper Creates a Page Definition File
	What Happens When JDeveloper Creates a Page Definition File
	Control Binding Objects Defined in the Page Definition File
	Executable Binding Objects Defined in the Page Definition File

	Creating ADF Data Binding EL Expressions
	How to Create an ADF Data Binding EL Expression
	Opening the Expression Builder from the Properties Window
	Using the Expression Builder

	What You May Need to Know About ADF Binding Properties

	Using Simple UI First Development
	How to Apply ADF Model Data Binding to Existing UI Components
	What Happens When You Apply ADF Model Data Binding to UI Components

	19 Using Validation in the ADF Model Layer
	About ADF Model Layer Validation
	ADF Model Layer Validation Use Cases and Examples
	Additional Functionality for ADF Model Layer Validation

	Defining Validation Rules in the ADF Model Layer
	How to Add ADF Model Layer Validation
	What Happens at Runtime: Model Validation Rules
	What You May Need to Know About Default Error Handling

	Customizing Error Handling
	How to Customize the Detail Portion of a Message
	How to Display an Informational Message from a Custom Error Handler
	How to Write an Error Handler to Deal with Multiple Threads

	20 Designing a Page Using Placeholder Data Controls
	About Placeholder Data Controls
	Placeholder Data Controls Use Cases and Examples
	Additional Functionality for Placeholder Data Controls

	Creating Placeholder Data Controls
	How to Create a Placeholder Data Control
	What Happens When You Create a Placeholder Data Control

	Creating Placeholder Data Types
	How to Create a Placeholder Data Type
	How to Add Attributes and Sample Data to a Placeholder Data Type
	Manually Adding Attributes to a Placeholder Data Type
	Adding Sample Data Manually
	How to Import Attributes and Sample Data to a Placeholder Data Type
	What Happens When You Add Sample Data

	What Happens When You Create a Placeholder Data Type
	How to Configure a Placeholder Data Type Attribute to Be a List of Values
	Configuring an Attribute to Be a Fixed LOV
	Configuring an Attribute to Be a Dynamic LOV

	How to Create Master-Detail Data Types
	What Happens When You Create a Master-Detail Data Type

	Using Placeholder Data Controls
	Limitations of Placeholder Data Controls
	Creating Layout
	Creating a Search Form
	Binding Components
	Rebinding Components
	Packaging Placeholder Data Controls to ADF Library JARs

	21 Creating ADF REST Data Controls from ADF RESTful Web Services
	About Data Controls for RESTful Web Services Based on Application Modules
	REST Web Service Data Control Use Cases and Examples
	Additional Functionality for REST Web Service Data Controls

	Consuming Business Components as REST Resources with a REST Data Control
	How to Create a REST Connection
	What Happens When You Create a REST Connection
	How to Create a Data Control From ADF REST Resources

	How to Create an ADF Data Control Using the Web Service Data Control Wizard
	What Happens When You Create a Data Control Based on a REST Connection

	Using REST Data Controls
	Configuring REST Data Controls Published by Application Modules
	How to Configure a REST Data Control
	What Happens When You Edit a Data Control
	What You May Need to Know About Primary Keys in REST Data Controls

	22 Consuming ADF RESTful Web Services
	About the ADF REST Framework
	ADF REST Resource Use Cases and Examples
	Additional Functionality for RESTful Web Services
	About the Resource Samples in This Chapter
	Sample Project Files and Data Model
	Sample Project Resources and Resource Version Identifiers
	Entity Object and View Object Customization

	Understanding ADF Business Components Resources
	Retrieving the ADF REST Catalog Describe
	Retrieving the Full Catalog Describe
	Retrieving a Minimal Catalog Describe
	Retrieving the Catalog Describe Based on Resource Visibility Declaration

	Retrieving the ADF REST Resource Describe
	Describing a Resource Collection
	Describing a Resource Item
	Describing a Nested Resource
	Describing Multiple Resource Collections
	Partially Describing a Nested Resource Collection
	Describing a Resource Collection with Specified Fields
	Using ETags in Describe Requests

	Retrieving Resource Versions
	Retrieving All Available Release Version Names
	Retrieving a Resource By a Specific Version

	Retrieving the ADF REST Resource
	Fetching a Resource Collection
	Paging a Resource Collection
	Filtering a Resource Collection with Primary Key Values
	Filtering a Resource Collection with a Query Parameter
	Fetching a Resource Item
	Fetching Nested Child Resources
	Sorting a Resource Collection
	Fetching a Resource with Grouped Context Information

	Creating a Resource Item
	Creating a Resource Item in a Collection
	Creating a Child Resource Item

	Updating a Resource Item
	Updating or Creating Resource Items (Upsert)
	Deleting a Resource Item
	Checking for Data Consistency
	Checking for Data Consistency When Updating ADF REST Resource Items
	Checking for Data Consistency When Retrieving ADF REST Resource Items

	Working with Attachments
	Streaming Attachments Using a Resource Item Enclosure Link
	Replacing LOB Content Using Base64

	Working with LOV
	Retrieving Non-Dependent LOV-Enabled Attribute Values with Framework Versions 1 Through 4
	Retrieving Dependent LOV-Enabled Attribute Values with Framework Versions 1 Through 4
	Retrieving LOV-Enabled Attribute Values with Framework Version 5 and Later

	Working with ADF REST Framework Versions
	Retrieving ADF REST Framework Versions for Resource Versions
	Executing a Request Using the Header to Specify the Framework Version
	Executing Requests Using the Declared Default Framework Version

	Working with Warning and Error Responses
	Understanding the Exception Payload Error Response
	Obtaining the Standard Error Message Response
	Obtaining an Exception Payload Error Response
	Obtaining Warning Messages in the Payload Response

	Advanced Operations
	Querying With Filtering Attributes (Partial Get)
	Filtering a Resource Collection with a Row Finder
	Returning Only Resource Data in a Payload
	Returning the Estimated Count of Resource Items
	Overriding the HTTP Method and Performing an Update
	Making Batch Requests

	ADF REST Framework Reference
	ADF REST Describe links Object Structure
	rel Attribute Values
	href Attribute Value
	cardinality Attribute Values

	ADF REST API Framework Versions
	ADF REST Payload Compression Support
	ADF REST Media Types
	ADF REST Data Types
	ADF REST HTTP Codes
	ADF REST HTTP Headers Support
	ADF REST HTTP Method and Payload Support
	GET Method Operations
	POST Method Operations
	PATCH Method Operations
	DELETE Method

	Part IV Creating ADF Task Flows
	23 Getting Started with ADF Task Flows
	About ADF Task Flows
	About Unbounded Task Flows
	About Bounded Task Flows
	About Control Flows
	ADF Task Flow Use Cases and Examples
	Additional Functionality for ADF Task Flows

	Creating a Task Flow
	How to Create a Task Flow
	What Happens When You Create a Task Flow
	What You May Need to Know About the Default Activity in a Bounded Task Flow
	What You May Need to Know About Memory Scope for Task Flows
	What You May Need to Know About the Source Files for Task Flows

	Adding Activities to a Task Flow
	How to Add an Activity to a Task Flow
	What Happens When You Add an Activity to a Task Flow

	Adding Control Flow Rules to Task Flows
	How to Add a Control Flow Rule to a Task Flow
	How to Add a Wildcard Control Flow Rule
	What Happens When You Create a Control Flow Rule
	What Happens at Runtime: How Task Flows Evaluate Control Flow Rules

	Testing Task Flows
	How to Run a Bounded Task Flow That Contains Pages
	How to Run a Bounded Task Flow That Uses Page Fragments
	How to Run a Bounded Task Flow That Has Parameters
	How to Run a JSF Page When Testing a Task Flow
	How to Run an Unbounded Task Flow
	How to Set a Run Configuration for a Project
	What Happens at Runtime: Testing Task Flows

	Refactoring to Create New Task Flows and Task Flow Templates
	How to Extract a Bounded Task Flow from an Existing Task Flow
	What Happens When You Extract a Bounded Task from an Existing Task Flow
	How to Create a Task Flow from JSF Pages
	How to Convert Bounded Task Flows

	24 Working with Task Flow Activities
	About Task Flow Activities
	Task Flow Activities Use Cases and Examples
	Additional Functionality for Task Flow Activities

	Using View Activities
	Passing Control Between View Activities
	How to Pass Control Between View Activities
	What Happens When You Pass Control Between View Activities

	Bookmarking View Activities
	How to Create a Bookmarkable View Activity
	What Happens When You Designate a View as Bookmarkable

	Specifying HTTP Redirect for a View Activity
	How to Specify HTTP Redirect for a View Activity
	What Happens When You Specify HTTP Redirect for a View Activity

	Specifying URL Aliases for View Activities
	How to Specify a URL Alias for a View Activity
	What Happens When You Specify a URL Alias for a View Activity

	Using URL View Activities
	How to Add a URL View Activity to a Task Flow
	What Happens When You Add a URL View Activity to a Task Flow
	What You May Need to Know About URL View Activities

	Using Router Activities
	How to Configure Control Flow Using a Router Activity
	What Happens When You Configure Control Flow Using a Router Activity

	Using Method Call Activities
	How to Add a Method Call Activity
	How to Specify Method Parameters and Return Values
	What Happens When You Add a Method Call Activity

	Using Task Flow Call Activities
	How to Call a Bounded Task Flow Using a Task Flow Call Activity
	What Happens When You Call a Bounded Task Flow Using a Task Flow Call Activity
	How to Specify Input Parameters on a Task Flow Call Activity
	How to Call a Bounded Task Flow Using a URL
	What Happens When You Configure a Bounded Task Flow to be Invoked by a URL
	What You May Need to Know About Calling a Bounded Task Flow Using a URL
	How to Specify Before and After Listeners on a Task Flow Call Activity
	What Happens When You Add a Task Flow Call Activity
	What Happens at Runtime: How a Task Flow Call Activity Invokes a Task Flow

	Using Task Flow Return Activities
	How to Add a Task Flow Return Activity to a Bounded Task Flow
	What Happens When You Add a Task Flow Return Activity to a Bounded Task Flow

	Using Task Flow Activities with Page Definition Files
	How to Associate a Page Definition File with a Task Flow Activity
	What Happens When You Associate a Page Definition File with a Task Flow Activity

	25 Using Parameters in Task Flows
	About Using Parameters in Task Flows
	Task Flow Parameters Use Cases and Examples
	Additional Functionality for Task Flows Using Parameters

	Passing Parameters to a View Activity
	How to Pass Parameters to a View Activity
	What Happens When You Pass Parameters to a View Activity
	What You May Need to Know About Specifying Parameter Values

	Passing Parameters to a Bounded Task Flow
	How to Pass an Input Parameter to a Bounded Task Flow
	What Happens When You Pass an Input Parameter to a Bounded Task Flow

	Configuring a Return Value from a Bounded Task Flow
	How to Configure a Return Value from a Bounded Task Flow
	What Happens When You Configure a Return Value from a Bounded Task Flow

	26 Using Task Flows as Regions
	About Using Task Flows in ADF Regions
	About Page Fragments and ADF Regions
	About View Ports and ADF Regions
	Task Flows and ADF Region Use Cases and Examples
	Additional Functionality for Task Flows that Render in ADF Regions

	Creating an ADF Region
	How to Create an ADF Region
	What Happens When You Create an ADF Region

	Specifying Parameters for an ADF Region
	How to Specify Parameters for an ADF Region
	What Happens When You Specify Parameters for an ADF Region

	Specifying Parameters for ADF Regions Using Parameter Maps
	How to Create a Parameter Map to Specify Input Parameters for an ADF Region
	What Happens When You Create a Parameter Map to Specify Input Parameters

	Configuring an ADF Region to Refresh
	How to Configure the Refresh of an ADF Region
	What You May Need to Know About Configuring an ADF Region to Refresh
	What You May Need to Know About Refreshing an ADF Region

	Configuring Activation of an ADF Region
	How to Configure Activation of an ADF Region
	What Happens When You Configure Activation of an ADF Region

	Navigating Outside an ADF Region's Task Flow
	How to Trigger Navigation Outside of an ADF Region's Task Flow
	What Happens When You Configure Navigation Outside a Task Flow
	What You May Need to Know About How a Page Determines the Capabilities of an ADF Region

	Configuring Transaction Management in an ADF Region
	Creating ADF Dynamic Regions
	How to Create an ADF Dynamic Region
	What Happens When You Create an ADF Dynamic Region

	Adding Additional Task Flows to an ADF Dynamic Region
	How to Create an ADF Dynamic Region Link
	What Happens When You Create an ADF Dynamic Region

	Configuring a Page To Render an Unknown Number of Regions
	How to Configure a Page to Render an Unknown Number of Regions
	What Happens When You Configure a Page to Render an Unknown Number of Regions
	What You May Need to Know About Configuring a Page to Render an Unknown Number of Regions

	Handling Access to Secured Task Flows by Unauthorized Users
	How to Handle Access to Secured Task Flows by Unauthorized Users
	What Happens When You Handle Access to Secured Task Flows by Unauthorized Users

	Creating Remote Regions in a Fusion Web Application
	How to Configure an Application to Produce Task Flows for Use in Remote Regions
	What Happens When You Produce Task Flows for Use in Remote Regions
	What You May Need to Know About Securing Remote Regions
	How to Configure an Application to Render Remote Regions
	What Happens When You Configure an Application to Render Remote Regions
	What Happens at Runtime: How an Application Renders Remote Regions
	How to Add Custom Error Messages for Remote Regions
	What You May Need to Know About ADF Skins and Remote Regions

	27 Creating Complex Task Flows
	About Creating Complex Task Flows
	Complex Task Flows Use Cases and Examples
	Additional Functionality for Complex Task Flows

	Sharing Data Controls Between Task Flows
	How to Share a Data Control Between Task Flows
	What Happens When You Share a Data Control Between Task Flows
	What Happens at Runtime: How Task Flows Share Data Controls

	Managing Transactions in Task Flows
	How to Enable Transactions in a Bounded Task Flow
	What Happens When You Specify Transaction Options
	What You May Need to Know About Sharing Data Controls and Managing Transactions
	Creating Completely Separate Transactions
	Guaranteeing a Called Bounded Task Joins an Existing Transaction
	Using an Existing Transaction if Possible

	What You May Need to Know About ADF Business Component Database Connections and Task Flow Transaction Options

	Reentering Bounded Task Flows
	How to Set Reentry Behavior
	How to Set Outcome-Dependent Options
	What Happens When You Configure a Bounded Task Flow for Reentry

	Handling Exceptions in Task Flows
	How to Designate an Activity as an Exception Handler
	What Happens When You Designate an Activity as an Exception Handler
	How to Designate Custom Code as an Exception Handler
	What Happens When You Designate Custom Code as an Exception Handler
	What You May Need to Know About Handling Exceptions During Transactions
	What You May Need to Know About Handling Validation Errors

	Configuring Your Application to Use Save Points
	How to Configure Your Fusion Web Application to Use Save Points
	What Happens When You Configure a Fusion Web Application to Use Save Points
	What You May Need to Know About the Database Table for Save Points

	Using Save Points in Task Flows
	How to Add a Save Point to a Task Flow
	What Happens When You Add Save Points to a Task Flow
	How to Restore a Save Point
	What Happens When You Restore a Save Point
	How to Use the Save Point Restore Finalizer
	What Happens When a Task Flow Invokes a Save Point Restore Finalizer
	How to Enable Implicit Save Points
	What You May Need to Know About Enabling Implicit Save Points
	What You May Need to Know About the Time-to-Live Period for a Save Point

	Minimizing the Number of Active Root View Ports in an Application
	How to Minimize the Number of Active Root View Ports
	What Happens When You Minimize the Number of Active Root View Ports

	Using Train Components in Bounded Task Flows
	Creating a Task Flow as a Train
	How to Create a Train in a Bounded Task Flow
	What Happens When You Create a Task Flow as a Train

	Invoking a Child Bounded Task Flow from a Train Stop
	How to Invoke a Child Bounded Task Flow From a Train Stop

	Grouping Task Flow Activities to Execute Between Train Stops
	Disabling the Sequential Behavior of Train Stops in a Train
	How to Disable the Sequential Behavior of a Train
	What Happens When You Disable the Sequential Behavior of a Train Stop

	Changing the Label of a Train Stop
	How to Change the Label of a Train Stop
	What Happens When You Change the Label of a Train Stop

	Configuring a Train to Skip a Train Stop
	How to Configure a Train to Skip a Train Stop
	What Happens When You Configure a Train to Skip a Train Stop

	Creating Task Flow Templates
	How to Create a Task Flow Template
	What Happens When You Create a Task Flow Template
	What You May Need to Know About Task Flow Templates

	Creating a Page Hierarchy Using Task Flows
	How to Create a Page Hierarchy
	How to Create an XMLMenuModel Metadata File
	How to Create a Submenu with a Hierarchy of Group and Child Nodes
	How to Attach a Menu Hierarchy to Another Menu Hierarchy

	What Happens When You Create a Page Hierarchy

	Reporting Incidents to the Oracle Fusion Middleware Diagnostic Framework

	28 Using Dialogs in Your Application
	About Using Dialogs in Your Application
	Using Dialogs in Your Application Use Cases and Examples
	Additional Functionality for Using Dialogs in Your Application

	Running a Bounded Task Flow in a Modal Dialog
	How to Run a Bounded Task Flow in a Modal Dialog
	How to Return a Value From a Modal Dialog
	How to Refresh a Page After a Modal Dialog Returns
	What You May Need to Know About Dialogs in an Application that Uses Task Flows

	Using the ADF Faces Dialog Framework Instead of Bounded Task Flows
	How to Define a JSF Navigation Rule for Opening a Dialog
	How to Create the JSF Page That Opens a Dialog
	How to Create the Dialog Page and Return a Dialog Value
	What Happens at Runtime: How to Raise the Return Event from the Dialog
	How to Pass a Value into a Dialog
	What Happens at Runtime: How the LaunchEvent is Handled
	How to Handle the Return Value
	What Happens at Runtime: How the Launching Component Handles the ReturnEvent

	Part V Creating a Databound Web User Interface
	29 Getting Started with Your Web Interface
	About Developing a Web Application with ADF Faces
	Page Template and Managed Beans Use Cases and Examples
	Additional Functionality for Page Templates and Managed Beans

	Using Page Templates
	How to Use ADF Data Binding in ADF Page Templates
	What Happens When You Use ADF Model Layer Bindings on a Page Template
	How to Add a Databound Page Template to a Page Dynamically
	What Happens at Runtime: How Pages Use Templates

	Creating a Web Page
	How to Create a Web Page
	What You May Need to Know About Creating Blank Web Pages
	What You May Need to Know About Securing a Web Page

	Using a Managed Bean in a Fusion Web Application
	How to Use a Managed Bean to Store Information
	What Happens When You Create a Managed Bean
	How to Set Managed Bean Memory Scopes in a Server-Cluster Environment

	30 Understanding the Fusion Page Lifecycle
	About the Fusion Page Lifecycle
	About the JSF and ADF Page Lifecycles
	What You May Need to Know About Partial Page Rendering and Iterator Bindings
	What You May Need to Know About Task Flows and the Lifecycle

	About Object Scope Lifecycles
	What You May Need to Know About Object Scopes and Task Flows

	Customizing the ADF Page Lifecycle
	How to Create a Custom Phase Listener
	How to Register a Listener Globally
	What You May Need to Know About Listener Order
	How to Register a Lifecycle Listener for a Single Page

	31 Creating a Basic Databound Page
	About Creating a Basic Databound Page
	ADF Databound Form Use Cases and Examples
	Additional Functionality for Databound Pages

	Creating Text Fields Using Data Control Attributes
	How to Create a Text Field
	What Happens When You Create a Text Field
	Iterator Bindings Created in the Page Definition File
	Value Bindings Created in the Page Definition File
	Component Tags Created in JSF Page

	Creating Basic Forms Using Data Control Collections
	How to Create a Form Using a Data Control Collection
	What Happens When You Create a Form Using a Data Control Collection

	Creating Command Components Using Data Control Operations
	How to Create Command Components From Operations
	What Happens When You Create Command Components Using Operations
	Action Bindings Created for Operations
	Iterator RangeSize Attribute Defined
	EL Expressions Created to Bind to Operations

	What Happens at Runtime: How Action Events and Action Listeners Work
	What You May Need to Know About Overriding Declarative Methods

	Incorporating Range Navigation into Forms
	How to Manually Insert Navigation Controls into a Form
	What Happens When You Manually Add Navigation Buttons
	What Happens at Runtime: Navigation Controls
	What You May Need to Know About the Browser Back Button and Navigating Through Records
	What You May Need to Know About the CacheResults Property

	Creating a Form to Edit an Existing Record
	How to Create an Edit Form
	What Happens When You Create Edit Forms
	What You May Need to Know About Working With Data Controls for Stateless Business Services

	Using Parameters to Create a Form
	How to Create a Form Using Parameters
	What Happens When You Create a Parameter Form
	What Happens at Runtime: How Parameters are Populated

	Creating an Input Form
	How to Create an Input Form
	Creating an Input Form Using a Bounded Task Flow
	Using a Commit Button Instead of a Return Activity Within a Task Flow
	Creating an Input Form That Allows Multiple Entries in a Single Transaction

	What Happens When You Create an Input Form
	What Happens at Runtime: CreateInsert Action from the Method Activity
	What You May Need to Know About Displaying Sequence Numbers
	What You May Need to Know About Input Forms Backed By Stateless Services

	Creating a Form with Dynamic Components
	About Dynamic Components
	How to Create a Dynamic Form
	What Happens When You Create Dynamic Forms
	Bindings Created for the Dynamic Form
	Tags Created for a Dynamic Form without Grouping
	Tags Created for a Dynamic Form with Grouping

	What Happens at Runtime: How Attribute Values Are Dynamically Determined
	How to Apply Validators and Converters to a Dynamic Component
	What You May Need to Know About Mixing Dynamic Components with Static Components
	How to Programmatically Set Dynamic Component Behavior
	How to Access a Dynamic Component Programmatically
	How to Access a Dynamic Component's Binding Instance Programmatically

	Modifying the UI Components and Bindings on a Form
	How to Modify the UI Components and Bindings
	What Happens When You Modify Attributes and Bindings

	32 Creating ADF Databound Tables
	About Creating ADF Databound Tables
	ADF Databound Tables Use Cases and Examples
	Additional Functionality for Databound Tables

	Creating a Basic Table
	How to Create a Basic Table
	What Happens When You Create a Table
	Iterator and Value Bindings for Tables
	Code on the JSF Page for an ADF Faces Table

	What You May Need to Know About Setting the Current Row in a Table
	What You May Need to Know About Getting Row Data Programmatically
	What You May Need to Know About Table Scrolling Behavior and Row Count

	Creating an Editable Table
	How to Create an Editable Table
	What Happens When You Create an Editable Table

	Creating an Input Table
	How to Create an Input Table
	What Happens When You Create an Input Table
	What Happens at Runtime: How CreateInsert and Partial Page Refresh Work
	What You May Need to Know About Creating a Row and Sorting Columns
	What You May Need to Know About Create and CreateInsert
	What You May Need to Know About Saving Multiple Rows in a JPA-Based Data Control

	Creating a List View of a Collection
	How to Create a Databound List View
	What Happens When You Create a Databound List View

	Creating a Table with Dynamic Components
	How to Create a Dynamic Table
	What Happens When You Use Dynamic Components
	Tags Created for a Dynamic Table without Grouping
	Tags Created for a Dynamic Table with Grouping

	What Happens at Runtime: How Attribute Values Are Dynamically Determined
	How to Create a Dynamic Table with a detailStamp Facet

	Modifying the Attributes Displayed in the Table
	How to Modify the Displayed Attributes
	How to Change the Binding for a Table
	What Happens When You Modify Bindings or Displayed Attributes

	33 Using Command Components to Invoke Functionality in the View Layer
	About Command Components
	Command Component Use Cases and Examples
	Additional Functionality for Command Components

	Creating Command Components to Execute Methods
	How to Create a Command Component Bound to a Custom Method
	What Happens When You Create Command Components Using a Method
	Action Bindings
	Method Parameters
	ADF Faces Component Code
	EL Expressions Used to Bind to Methods
	Using the Return Value from a Method Call

	What Happens at Runtime: Command Button Method Bindings

	Setting Parameter Values Using a Command Component
	How to Set Parameters Using setPropertyListener Within a Command Component
	What Happens When You Set Parameters Using a setPropertyListener
	What Happens at Runtime: setPropertyListener for a Command Component

	Overriding Declarative Methods
	How to Override a Declarative Method
	What Happens When You Override a Declarative Method

	34 Displaying Master-Detail Data
	About Displaying Master-Detail Data
	Master-Detail Tables, Forms, and Trees Use Cases and Examples
	Additional Functionality for Master-Detail Tables, Forms, and Trees

	Prerequisites for Master-Detail Tables, Forms, and Trees
	How to Identify Master-Detail Objects on the Data Controls Panel

	Using Tables and Forms to Display Master-Detail Objects
	How to Display Master-Detail Objects in Tables and Forms Using Master-Detail Widgets
	How to Create Master-Detail Forms from Separate Components
	What Happens When You Create Master-Detail Tables and Forms
	Code Generated in a Master-Detail JSF Page
	Binding Objects Defined in a Master-Detail Page Definition File

	What Happens at Runtime: ADF Iterator for Master-Detail Tables and Forms
	How to Display Master-Detail Components on Separate Pages

	Using Trees to Display Master-Detail Objects
	How to Display Master-Detail Objects in Trees
	What Happens When You Create an ADF Databound Tree
	Code Generated in the JSF Page
	Binding Objects Defined in the Page Definition File

	What Happens at Runtime: How an ADF Databound Tree Is Displayed
	How to Synchronize Other Parts of a Page With a Tree Selection

	Using Tree Tables to Display Master-Detail Objects
	How to Display Master-Detail Objects in Tree Tables
	What Happens When You Create a Databound Tree Table
	Code Generated in the JSF Page
	Binding Objects Defined in the Page Definition File

	What Happens at Runtime: Events for Tree Tables

	Using List Views to Display Master-Detail Objects
	How to Display Master-Detail Objects in List Views
	What Happens When You Create a Master-Detail List View

	About Selection Events in Trees and Tree Tables

	35 Creating Databound Selection Lists and Shuttles
	About Selection Lists and Shuttles
	Selection Lists and Shuttles Use Cases and Examples
	Additional Functionality for Selection Lists and Shuttles

	Creating List of Values (LOV) Components
	How to Create an LOV
	How to Configure an LOV Attribute as inputSearch
	What Happens When You Create an inputSearch Component
	How to Provide af:inputSearch LOV Component the REST URL
	What Happens When You Create an LOV
	What You May Need to Know About List Validators and LOV
	What You May Need to Know About InputComboboxListOfValues and Null Values

	Creating a Selection List
	How to Create a Model-Driven List
	What Happens When You Create a Model-Driven Selection List
	How to Create a Selection List Containing Fixed Values
	What Happens When You Create a Fixed Selection List
	How to Create a Selection List Containing Dynamically Generated Values
	What Happens When You Create a Dynamic Selection List
	What You May Need to Know About Values in a Selection List

	Creating a List with Navigation List Binding
	How to Create a List with Navigation List Binding
	What Happens When You Create a Navigational List Binding

	Creating a Databound Shuttle
	How to Create a Databound Shuttle
	What Happens When You Create a Databound Shuttle

	36 Creating ADF Databound Search Forms
	About Creating Search Forms
	Implicit and Named View Criteria
	List of Values (LOV) Input Fields
	Search Form Use Cases and Examples
	Additional Functionality for Search Forms

	Creating Query Search Forms
	How to Create a Query Search Form with a Results Table or Tree Table
	How to Create a Query Search Form and Add a Results Component Later
	How to Persist Saved Searches into MDS
	What You May Need to Know About Named Bind Variables in Search Forms
	What You May Need to Know about Default Search Binding Behavior
	What You May Need to Know About Dependent Criterion
	What Happens When You Create a Query Form
	What Happens at Runtime: Search Forms

	Setting Up Search Form Properties
	How to Set Search Form Properties on the View Criteria
	How to Set Search Form Properties on the Query Component
	How to Set Timezone Control Hint for Timestamp Attribute
	How to Create Custom Operators
	How to Remove Standard Operators
	How to Set Uniform Operator Field Width

	Creating Quick Query Search Forms
	How to Create a Quick Query Search Form with a Results Table or Tree Table
	How to Create a Quick Query Search Form and Add a Results Component Later
	How to Set the Quick Query Layout Format
	What Happens When You Create a Quick Query Search Form
	What Happens at Runtime: Quick Query

	Creating Standalone Filtered Search Tables from Named View Criteria
	How to Create Filtered Table and Query-by-Example Searches

	37 Creating Databound Calendar and Carousel Components
	About Databound ADF Faces Calendar and Carousel Components
	Databound ADF Faces Calendar and Carousel Components Use Cases and Examples
	Additional Functionality of Databound ADF Faces Calendar and Carousel Components

	Using the ADF Faces Calendar Component
	How to Create the ADF Faces Calendar
	What Happens When You Create a Calendar
	What Happens at Runtime: How the Calendar Binding Works

	Using the ADF Faces Carousel Component
	How to Create a Databound Carousel Component
	What Happens When You Create a Carousel

	38 Creating Databound Chart, Picto Chart, and Gauge Components
	About ADF Data Visualization Chart, Picto Chart, and Gauge Components
	Data Visualization Components Use Cases and Examples
	End User and Presentation Features
	Additional Functionality for Data Visualization Components

	Creating Databound Charts
	How to Create an Area, Bar, Combination, Horizontal Bar, or Line Chart Using Data Controls
	What Happens When You Use the Data Controls Panel to Create a Chart
	How to Create Databound Funnel Charts
	How to Create Databound Pie Charts
	Creating a Databound Spark Chart Using Data Controls
	How to Create Databound Bubble and Scatter Charts
	How to Create Databound Polar and Radar Charts
	How to Create Databound Stock Charts
	What You May Need to Know About Using Attribute Labels

	Creating Databound Gauges
	How to Create a Databound Dial Gauge
	What Happens When You Create a Dial Gauge from a Data Control
	How to Create a Databound Rating Gauge
	Including Gauges in Databound ADF Tables
	How to Include a Gauge in a Databound ADF Table
	What Happens When You Include a Gauge in an ADF Table

	Creating Databound Picto Charts
	How to Create a Databound Picto Chart
	What Happens When You Create a Picto Chart from a Data Control

	39 Creating Databound NBox Components
	About ADF Data Visualization NBox Components
	End User and Presentation Features
	Data Visualization Components Use Cases and Examples
	Additional Functionality for Data Visualization Components

	Creating Databound NBox Components
	How to Create an NBox Component Using ADF Data Controls
	What Happens When You Create a Databound NBox
	Bindings for NBox Components
	Editing the NBox Binding
	Code on the JSF page for an NBox Component
	Modifying NBox Properties and Layout

	40 Creating Databound Pivot Table and Pivot Filter Bar Components
	About ADF Data Visualization Pivot Table and Pivot Filter Bar Components
	Data Visualization Components Use Cases and Examples
	End User and Presentation Features
	Additional Functionality for Data Visualization Components

	Creating Databound Pivot Tables
	How to Create a Pivot Table Using ADF Data Controls
	What Happens When You Use the Data Controls Panel to Create a Pivot Table
	What You May Need to Know About Aggregating Attributes in the Pivot Table
	Default Aggregation of Duplicate Data Rows
	Custom Aggregation of Duplicate Rows

	What You May Need to Know About Specifying an Initial Sort for a Pivot Table
	What You May Need to Know About Configuring Editable Data Cells

	41 Creating Databound Geographic and Thematic Map Components
	About ADF Data Visualization Map Components
	Use Cases and Examples
	End User and Presentation Features
	Additional Functionality for Data Visualization Components

	Creating Databound Geographic Maps
	How to Configure a Geographic Base Map
	How to Create a Geographic Map with a Point Theme
	How to Create Point Style Items for a Point Theme
	What Happens When You Create a Geographic Map with a Point Theme
	What You May Need to Know About Adding Custom Point Style Items to a Map Point Theme
	How to Create a Geographic Map with a Color Theme
	What Happens When You Add a Color Theme to a Geographic Map
	What You May Need to Know About Customizing Colors in a Map Color Theme
	How to Create a Geographic Map with a Pie or Bar Graph Theme
	What Happens When You Add a Pie or Bar Graph Theme to a Geographic Map

	Creating Databound Thematic Maps
	How to Create a Thematic Map Using ADF Data Controls
	What Happens When You Use Data Controls to Create a Thematic Map
	How to Add Data Layers to Thematic Maps
	How to Add an Area Data Layer to a Map Layer
	How to Add a Point Data Layer to a Map Layer

	Styling Areas, Markers and Images to Display Data
	How to Style Areas to Display Data
	How to Style Markers to Display Data using a Default Stamp
	How to Style Markers to Display Data using Categorical Groups
	What You May Need to Know About Styling Markers
	What You May Need to Know About Default Style Values for Attribute Groups
	How to Use Images to Display Data
	How to Use a Marker Image Source to Display Data

	What You May Need to Know About Base Map Location Ids
	What You May Need to Know About Configuring Master-Detail Relationships
	How to Define a Custom Map Layer
	How to Configure Drilling in Thematic Maps
	Creating Databound Legends

	42 Creating Databound Gantt Chart and Timeline Components
	About ADF Data Visualization Components
	Data Visualization Components Use Cases and Examples
	End User and Presentation Features
	Additional Functionality for Data Visualization Components

	Creating Databound Gantt Charts
	How to Create a Databound Project Gantt Chart
	What Happens When You Create a Project Gantt Chart from a Data Control
	How to Create a Databound Resource Utilization Gantt Chart
	What Happens When You Create a Resource Utilization Gantt Chart
	How to Create a Databound Scheduling Gantt Chart
	What Happens When You Create a Scheduling Gantt Chart
	What You May Need to Know About Data Change Event Handling

	Creating Databound Timelines
	How to Create a Timeline Using ADF Data Controls
	What Happens When You Use Data Controls to Create a Timeline
	What You May Need to Know About Using Data Controls to Create a Dual Timeline

	43 Creating Databound Hierarchy Viewer, Treemap, and Sunburst Components
	About ADF Data Visualization Components
	End User and Presentation Features
	Data Visualization Components Use Cases and Examples
	Additional Functionality for Data Visualization Components

	Creating Databound Hierarchy Viewers
	How to Create a Hierarchy Viewer Using ADF Data Controls
	What Happens When You Create a Databound Hierarchy Viewer
	How to Configure an Alternate View Object for a Databound Panel Card
	What Happens When You Use an Alternate View Object for a Hierarchy Viewer Panel Card

	How to Create a Databound Search in a Hierarchy Viewer

	Creating Databound Treemaps and Sunbursts
	How to Create Treemaps and Sunbursts Using ADF Data Controls
	What Happens When You Create a Databound Treemap or Sunburst
	What Happens at Runtime: How Databound Sunbursts or Treemaps Are Initially Displayed

	44 Creating Databound Diagram Components
	About ADF Data Visualization Diagram Components
	End User and Presentation Features
	Data Visualization Components Use Cases and Examples
	Additional Functionality for Data Visualization Components

	Creating Databound Diagram Components
	How to Create a Diagram Using ADF Data Controls
	What Happens When You Create a Databound Diagram
	Bindings for Diagram Components
	Code on the JSF Page for a Diagram Component
	Default Client Layout Files and Location
	Modifying Diagram Properties and Layout

	45 Creating Databound Tag Cloud Components
	About ADF Data Visualization Tag Cloud Components
	Data Visualization Components Use Cases and Examples
	End User and Presentation Features
	Additional Functionality for Data Visualization Components

	Creating Databound Tag Cloud Components
	How to Create a Databound Tag Cloud
	What Happens When You Create a Databound Tag Cloud

	46 Using Contextual Events
	About Creating Contextual Events
	Contextual Events Use Cases and Examples
	Additional Functionality for Contextual Events

	Creating Contextual Events Declaratively
	How to Publish Contextual Events
	How to Subscribe to and Consume Contextual Events
	What Happens When You Create Contextual Events
	How to Control Contextual Events Dispatch
	What Happens at Runtime: Contextual Events

	Creating Contextual Events Manually
	How to Create Contextual Events Manually

	Creating Contextual Events Using Managed Beans
	How to Create Contextual Events Using Managed Beans
	What Happens When You Create Contextual Events Using Managed Beans
	How to Dynamically Create and Handle Contextual Events Using Managed Beans

	Creating Contextual Events Using Plain Java Objects (POJOs)
	How to Configure a Generic Callback Message Handler for a Task Flow

	Creating Contextual Events Using JavaScript
	Creating the Event Map Manually
	How to Create the Event Map Manually

	Registering a Custom Dispatcher
	How to Register a Custom Dispatcher

	Part VI Completing Your Application
	47 Enabling ADF Security in a Fusion Web Application
	About ADF Security
	Integration of ADF Security and Java Security
	ADF Security Use Cases and Examples
	Additional Functionality for ADF Security

	ADF Security Process Overview
	Enabling ADF Security
	How to Enable ADF Security
	What Happens When You Enable ADF Security
	What Happens When You Generate a Default Form-Based Login Page
	What You May Need to Know About the Configure ADF Security Wizard
	What You May Need to Know About ADF Authentication
	What You May Need to Know About the Built-In test-all Role
	What You May Need to Know About the valid-users Role

	Creating Application Roles
	How to Create Application Roles
	What Happens When You Create Application Roles
	What You May Need to Know About Enterprise Roles and Application Roles

	Defining ADF Security Policies
	How to Make an ADF Resource Public
	What Happens When You Make an ADF Resource Public
	What Happens at Runtime: How the Built-in Roles Are Used
	How to Define Policies for ADF Bounded Task Flows
	How to Define Policies for Web Pages That Reference a Page Definition
	How to Define Policies to Control User Access to ADF Methods
	Creating a Resource Grant to Control Access to ADF Methods
	Enforcing the Resource Grant in the User Interface

	What Happens When You Define the Security Policy
	What Happens at Runtime: How ADF Security Policies Are Enforced
	What You May Need to Know About Defining Policies for Pages with No ADF Bindings
	How to Use Regular Expressions to Define Policies on Groups of Resources
	How to Define Policies for Data
	Defining Permission Maps on ADF Entity Objects
	Defining Permission Maps on ADF Entity Object Attributes
	Granting Permissions on ADF Entity Objects and Entity Attributes

	How to Aggregate Resource Grants as Entitlement Grants
	What Happens After You Create an Entitlement Grant

	Creating Test Users
	How to Create Test Users in JDeveloper
	What Happens When You Create Test Users
	How to Associate Test Users with Application Roles
	What Happens When You Configure Application Roles

	Creating a Login Page
	How to Create a Login Link Component and Add it to a Public Web Page for Explicit Authentication
	How to Create a Login Page Specifically for Explicit Authentication
	Creating Login Code for the Backing Bean
	Creating an ADF Faces-Based Login Page Specifically for Explicit Authentication
	Ensuring That the Login Page Is Public

	How to Ensure That the Custom Login Page's Resources Are Accessible for Explicit Authentication
	How to Create a Public Welcome Page
	Ensuring That the Welcome Page Is Public
	Adding Login and Logout Links
	Hiding Links to Secured Pages

	How to Redirect a User After Authentication
	How to Trigger a Custom Login Page Specifically for Implicit Authentication
	How to Ensure That the Redirect Destination Page is Available
	What You May Need to Know About Redirecting to a Different Host Server
	What You May Need to Know About Fusion Web Application Logout and Browser Caching
	What You May Need to Know About Displaying Error Pages in Internet Explorer

	Testing Security in JDeveloper
	How to Configure, Deploy, and Run a Secure Application in JDeveloper
	What Happens When You Configure Security Deployment Options
	How to Use the Built-In test-all Application Role
	What Happens at Runtime: How ADF Security Handles Authentication
	What Happens at Runtime: How ADF Security Handles Authorization

	Preparing the Secure Application for Deployment
	How to Remove the test-all Role from the Application Policy Store
	How to Remove Test Users from the Application Identity Store
	How to Secure Resource Files Using a URL Constraint

	Disabling ADF Security
	How to Disable ADF Security
	What Happens When You Disable ADF Security

	Advanced Topics and Best Practices
	Using Expression Language (EL) with ADF Security
	How to Evaluate Policies Using EL
	What Happens When You Use the Expression Builder Dialog
	What You May Need to Know About Delayed Evaluation of EL

	How to Protect UI Components Using OPSS Resource Permissions and EL
	Creating the Custom Resource Type
	Creating a Resource Grant for a Custom Resource Type
	Associating the Rendering of a UI Component with a Resource Grant

	How to Perform Authorization Checks for Entity Object Operations
	Getting Information from the ADF Security Context
	How to Determine Whether Security Is Enabled
	How to Determine Whether the User Is Authenticated
	How to Determine the Current User Name
	How to Determine Membership of a Java EE Security Role
	How to Determine Permission Using Java

	Best Practices for Working with ADF Security

	48 Testing and Debugging ADF Components
	About ADF Debugging
	Correcting Simple Oracle ADF Compilation Errors
	Correcting Simple Oracle ADF Runtime Errors
	Reloading Oracle ADF Metadata in Integrated WebLogic Server
	Validating ADF Controller Metadata
	Using the ADF Logger
	How to Set ADF Logging Levels
	How to Create an Oracle ADF Debugging Configuration
	How to Turn On Diagnostic Logging for Non-Oracle ADF Loggers
	How to Use the Log Analyzer to View Log Messages
	Viewing Diagnostic Messages in the Log Analyzer
	Using the Log Analyzer to Analyze the ADF Request
	Sorting Diagnostic Messages By ADF Events

	What You May Need to Know About ADF Loggers and Log Levels
	What You May Need to Know About ADF Logging and Log Output
	What You May Need to Know About ADF Logging and Oracle WebLogic Server

	Using the Oracle ADF Model Tester for Testing and Debugging
	How to Run in Debug Mode and Test with the Oracle ADF Model Tester
	How to Run the Oracle ADF Model Tester and Test with a Specific Application Module Configuration
	What Happens When You Run the Oracle ADF Model Tester in Debug Mode
	How to Verify Runtime Artifacts in the Oracle ADF Model Tester
	How to Refresh the Oracle ADF Model Tester with Application Changes

	Using the ADF Declarative Debugger
	Using ADF Source Code with the Debugger
	How to Set Up the ADF Source User Library
	How to Add the ADF Source Library to a Project
	How to Use the EL Expression Evaluator
	How to View and Export Stack Trace Information

	Setting ADF Declarative Breakpoints
	How to Set and Use Task Flow Activity Breakpoints
	How to Set and Use Page Definition Executable Breakpoints
	How to Set and Use Page Definition Action Binding Breakpoints
	How to Set and Use Page Definition Value Binding Breakpoints
	How to Set and Use Page Definition Contextual Event Breakpoints
	How to Set and Use ADF Lifecycle Phase Breakpoints
	How to Use the ADF Structure Window
	How to Use the ADF Data Window
	What Happens When You Set an ADF Declarative Breakpoint

	Setting Breakpoints in Java Code and Groovy Script
	How to Set Breakpoints in Groovy Script
	How to Set Java Breakpoints on Classes and Methods
	How to Optimize Use of the Source Editor
	How to Set Breakpoints and Debug Using ADF Source Code
	How to Use Debug Libraries for Symbolic Debugging
	What You May Need to Know About Setting Java Code Breakpoints
	How to Edit Breakpoints for Improved Control
	How to Filter Your View of Class Members
	What You May Need to Know About Oracle ADF Breakpoints

	Debugging Groovy Expressions in Business Components
	How to Debug Groovy Expressions
	How to Control Groovy Debugging
	What Happens When You Debug Groovy Expressions

	Regression Testing with JUnit
	How to Obtain the JUnit Extension
	How to Create a JUnit Test Case
	How to Create a JUnit Test Fixture
	How to Create a JUnit Test Suite
	How to Create a Business Components Test Suite
	How to a Create Business Components Test Fixture
	How to Run a JUnit Test Suite as Part of an Ant Build Script

	49 Refactoring a Fusion Web Application
	About Refactoring a Fusion Web Application
	Refactoring Use Cases and Examples
	Additional Functionality for Refactoring

	Renaming Files
	Moving JSF Pages
	Refactoring pagedef.xml Bindings Objects
	Refactoring ADF Business Components
	Refactoring ADF Business Component Object Attributes
	Refactoring Named Elements
	Refactoring ADF Task Flows
	Refactoring the DataBindings.cpx File
	Refactoring Limitations
	Moving the ADF Business Components Project Configuration File (.jpx)

	50 Reusing Application Components
	About Reusable Components
	Creating Reusable Components
	Naming Conventions
	Naming Considerations for Packages
	Naming Considerations for Connections
	Naming Considerations for Applications with EJB Projects

	The Naming Process for the ADF Library JAR Deployment Profile
	Keeping the Relevant Project
	Selecting the Relevant Feature
	Selecting Paths and Folders
	Including Connections Within Reusable Components

	Reusable ADF Components Use Cases and Examples
	Additional Functionality for Reusable ADF Components
	Common Functionality of Reusable ADF Components
	Using Extension Libraries
	Using the Resources Window

	Packaging a Reusable ADF Component into an ADF Library
	How to Package a Component into an ADF Library JAR
	What Happens When You Package a Project to an ADF Library JAR
	Application Modules Files Packaged into a JAR
	Data Controls Files Packaged into a JAR
	Task Flows Files Packaged into a JAR
	Page Templates Files Packaged into a JAR
	Declarative Components Files Packaged into a JAR

	How to Place and Access JDeveloper JAR Files

	Adding ADF Library Components into Projects
	How to Add an ADF Library JAR into a Project using the Resources Window
	How to Add an ADF Library JAR into a Project Manually
	What Happens When You Add an ADF Library JAR to a Project
	What You May Need to Know About Using ADF Library Components
	Using Data Controls
	Using Application Modules
	Using Business Components
	Using Task Flows
	Using Page Templates
	Using Declarative Components

	What You May Need to Know About Differentiating ADF Library Components
	What Happens at Runtime: How ADF Libraries are Added to a Project

	Removing an ADF Library JAR from a Project
	How to Remove an ADF Library JAR from a Project Using the Resources Window
	How to Remove an ADF Library JAR from a Project Manually

	51 Customizing Applications with MDS
	About Customization and MDS
	Customization and Layers: Use Cases and Examples
	Static and Dynamic Customization Content
	Additional Functionality for Customization

	Developing a Customizable Application
	How to Create Customization Classes
	Customization Classes
	Implementing the getValue() Method in Your Customization Class
	Creating a Customization Class

	What You May Need to Know About Customization Classes
	How to Consume Customization Classes
	Making Customization Classes Available to JDeveloper at Design Time
	Making Customization Classes Available to the Application at Runtime

	How to Enable Seeded Customizations for User Interface Projects
	How to Enable Seeded Customizations in Existing Pages
	How to Enable Customizations in Resource Bundles
	How to Configure the adf-config.xml File
	What Happens When You Create a Customizable Application
	What You May Need to Know About Customizable Objects and Applications

	Customizing an Application
	Introducing the Customization Developer Role
	How to Switch to the Customization Developer Role in JDeveloper
	Introducing the Tip Layer
	How to Configure Customization Layers
	Configuring Layer Values Globally
	Configuring Workspace-Level Layer Values from the Studio Developer Role
	Configuring Workspace-Level Layer Values from the Customization Developer Role

	How to Customize Metadata in JDeveloper
	What Happens When You Customize an Application
	How to Customize ADF Library Artifacts in JDeveloper
	Customizing an ADF Library Artifact
	Specifying a Location for ADF Library Customizations

	How to View ADF Library Runtime Customizations from Exported JARs
	What Happens When You Customize ADF Library Artifacts
	What Happens at Runtime: How Customizations are Applied
	What You May Need to Know About Customized Applications
	Customization and Integrated Source Control
	Editing Resource Bundles in Customized Applications

	How to Package and Deploy Customized Applications
	Implicitly Creating a MAR Profile
	Explicitly Creating a MAR Profile

	Extended Metadata Properties
	How to Edit Extended Metadata Properties
	How to Enable Customization for Design Time at Runtime
	Editing Customization Properties in the Properties window
	Using a Standalone Annotations File to Specify Type-Level Customization Properties

	Enabling Runtime Modification of Customization Configuration

	52 Allowing User Customizations at Runtime
	About User Customizations
	Runtime User Customization Use Cases and Examples
	Additional Functionality for Runtime User Customization

	Enabling Runtime User Customizations for a Fusion Web Application
	How to Enable User Customizations
	What Happens When You Enable User Customizations

	Configuring User Customizations
	How to Configure Change Persistence
	What Happens When You Configure Change Persistence

	Controlling User Customizations in Individual JSF Pages
	How to Control User Customizations on a JSF Page
	What Happens at Runtime: How Changes are Persisted
	What You May Need to Know About Using Change Persistence on Templates and Regions

	Implementing Custom User Customizations
	What You May Need to Know About the Change Persistence Framework API
	How to Create Code for Custom User Customizations

	Creating Implicit Change Persistence in Custom Components
	How to Set Implicit Change Persistence For Attribute Values that Use Events
	How to Set Implicit Change Persistence For Other Attribute Values

	53 Using the Active Data Service
	About the Active Data Service
	Active Data Service Use Cases and Examples
	Limitations of the Active Data Service Framework
	Active Data Service Framework
	Data Transport Modes

	Configuring the Active Data Service
	How to Configure the Active Data Service
	What You May Need to Know About Configuring an ADS Transport Mode
	How to Configure Session Timeout for Active Data Service

	Configuring Components to Use the Active Data Service
	How to Configure Components to Use the Active Data Service Without the Active Data Proxy
	How to Configure Components to Use the Active Data Service with the Active Data Proxy
	What You May Need to Know About Displaying Active Data in ADF Trees
	What Happens at Runtime: How Components Render When Bound to Active Data
	What You May Need to Know About Running ADS in a Google Chrome Browser

	Using the Active Data Proxy
	How to Use the Active Data Proxy

	What You May Need to Know About Maintaining Read Consistency
	Using the Active Data with a Scalar Model
	How to Use the Active Data with a Scalar Model

	54 Configuring High Availability for Fusion Web Applications
	About Oracle ADF High Availability
	Oracle ADF Scope and Session State Considerations
	Oracle ADF Failover and Expected Behavior Considerations
	Session Failover Requirements
	Expected Behavior for Application Failover

	ADF Application Module for Oracle RAC Considerations

	Configuring Oracle ADF for High Availability
	How to Configure Application Modules for High Availability
	How to Enable Support for Replicating HTTP Session State
	How to Ensure Oracle ADF Receives Notifications From Managed Bean Changes
	What You May Need to Know About Using Application Scoped Managed Beans in a Clustered Environment
	How to Disable Design Time Optimizations

	Troubleshooting Fusion Web Applications for High Availability
	How to Test the Fusion Web Application With Failover Mode Enabled
	How to Troubleshoot High Availability Issues at Design Time
	How to Troubleshoot High Availability Issues After Deployment
	Verifying the JRF Runtime Installation
	Verifying the Success of All Application Deployments

	How to Troubleshoot Oracle ADF Replication and Failover Issues

	55 Deploying Fusion Web Applications
	About Deploying Fusion Web Applications
	Developing Applications with Integrated WebLogic Server
	Developing Applications to Deploy to Standalone Application Server

	Running a Fusion Web Application in Integrated WebLogic Server
	How to Run an Application in Integrated WebLogic Server
	How to Run an Application with Metadata in Integrated WebLogic Server

	Preparing the Application
	How to Create a Connection to the Target Application Server
	How to Create Deployment Profiles
	Creating a WAR Deployment Profile
	Creating a MAR Deployment Profile
	Creating an Application Level EAR Deployment Profile
	Adding Customization Classes into a JAR
	Delivering Customization Classes as a Shared Library
	Viewing and Changing Deployment Profile Properties

	How to Create and Edit Deployment Descriptors
	Creating Deployment Descriptors
	Viewing or Modifying Deployment Descriptor Properties
	Configuring the application.xml File for Application Server Compatibility
	Configuring the web.xml File for Application Server Compatibility
	Enabling the Application for RUEI and Click History

	How to Deploy Applications with ADF Security Enabled
	Applications That Will Run Using Oracle Single Sign-On (SSO)
	Configuring Security for Weblogic Server
	Applications with JDBC URL for WebLogic
	Applications with JDBC Data Source for WebLogic

	How to Replicate Memory Scopes in a Clustered Environment
	How to Enable the Application for ADF MBeans
	What You May Need to Know About JDBC Data Source for Oracle WebLogic Server

	Deploying the Application
	How to Deploy to the Application Server from JDeveloper
	How to Create an EAR File for Deployment
	How to Deploy New Customizations Applied to ADF Library
	Exporting Customization to a Deployed Application
	Deploying Customizations to a JAR

	What You May Need to Know About ADF Libraries
	What You May Need to Know About EAR Files and Packaging
	How to Deploy the Application Using Scripts and Ant
	How to Deploy ADF Faces Library JARs with the Application
	What You May Need to Know About JDeveloper Runtime Libraries

	Postdeployment Configuration
	How to Migrate an Application
	How to Configure the Application Using ADF MBeans

	Testing the Application and Verifying Deployment

	56 Using State Management in a Fusion Web Application
	About Fusion Web Application State Management
	What You May Need to Know About Multi-Step Tasks
	What You May Need to Know About the Stateless HTTP Protocol
	What You May Need to Know About Session Cookies
	What You May Need to Know About Using HttpSession

	Managing When Passivation and Activation Occurs
	How to Confirm That Fusion Web Applications Use Optimistic Locking
	What You May Need to Know About Pending Changes Across HTTP Requests
	What You May Need to Know About Release Levels and postChanges() Method

	Testing to Ensure Your Application Module is Activation-Safe
	How To Disable Application Module Pooling to Test Activation
	What You May Need to Know About the jbo.ampool.doampooling Configuration Parameter
	What You May Need to Know About State Management and Data Consistency
	What You May Need to Know About State Management and Subclassed Entity Objects

	Controlling Where Model State Is Saved
	How to Control the Schema Where the State Management Table Resides
	How to Configure the Passivation Store
	What Happens at Runtime: What Model State Is Saved and When It Is Cleaned Up

	Cleaning Up the Model State
	How to Clean Up Temporary Storage Tables Resulting from Passivation
	What Happens at Runtime: When a Passivation Record Is Updated
	What Happens at Runtime: When a Passivation Snapshot is Removed on Unmanaged Release
	What Happens at Runtime: Passivation Snapshot Retained in Failover Mode

	Managing the HttpSession in Fusion Web Applications
	How to Configure the Implicit Timeout Due to User Inactivity
	How to Code an Explicit HttpSession Timeout
	What Happens at Runtime: How Application Modules are Handled When the HTTP Times Out

	Managing Custom User-Specific Information During Passivation
	How to Passivate Custom User-Specific Information
	What Happens When You Passivate Custom Information
	What You May Need to Know About Activating Custom Information

	Managing the State of View Objects During Passivation
	How to Manage the State of View Objects
	What You May Need to Know About Passivating View Objects
	How to Manage the State of Transient View Objects and Attributes
	What You May Need to Know About Passivating Transient View Objects
	How to Use Transient View Objects to Store Session-level Global Variables

	57 Tuning Application Module Pools
	About Application Module Pooling
	Application Module Pools
	Deployment Environment Scenarios and Pooling
	Single Oracle WebLogic Server Domain, Single Oracle WebLogic Server Instance, Single JVM
	Multiple Oracle WebLogic Server Domains, Multiple Oracle WebLogic Server Instance, Multiple JVMs

	Setting Pool Configuration Parameters
	How to Set Configuration Properties Declaratively
	What Happens When You Set Configuration Properties Declaratively
	How to Programmatically Set Configuration Properties
	What You May Need to Know About Configuration Property Scopes
	What You May Need to Know About Application Module Pool Configuration Parameters
	Pool Behavior Parameters
	Pool Sizing Parameters
	Pool Cleanup Parameters

	What You May Need to Know About Optimizing Application Module Pooling

	Initializing Database State and Pooling Considerations
	How to Set Database State Per User

	Part VII Appendixes
	A Oracle ADF XML Files
	About ADF Metadata Files
	ADF File Overview Diagram
	Oracle ADF Data Control Files
	Oracle ADF Data Binding Files
	Web Configuration Files

	ADF File Syntax Diagram
	adfm.xml
	modelProjectName.jpx
	bc4j.xcfg
	DataBindings.cpx
	DataBindings.cpx Syntax
	DataBindings.cpx Sample

	pageNamePageDef.xml
	PageDef.xml Syntax

	adfc-config.xml
	task-flow-definition.xml
	adf-config.xml
	adf-settings.xml
	web.xml
	logging.xml

	B Oracle ADF Binding Properties
	C ADF Security Permission Grants
	D Most Commonly Used ADF Business Components Methods
	Methods for Creating Your Own Layer of Framework Base Classes
	Methods Used in the Client Tier
	ApplicationModule Interface
	Transaction Interface
	ViewObject Interface
	RowSet Interface
	RowSetIterator Interface
	Row Interface
	StructureDef Interface
	AttributeDef Interface
	AttributeHints Interface

	Methods Used in the Business Service Tier
	Controlling Custom Java Files for Your Components
	ApplicationModuleImpl Class
	Methods You Typically Call on ApplicationModuleImpl
	Methods You Typically Write in Your Custom ApplicationModuleImpl Subclass
	Methods You Typically Override in Your Custom ApplicationModuleImpl Subclass

	DBTransactionImpl2 Class
	Methods You Typically Call on DBTransaction
	Methods You Typically Override in Your Custom DBTransactionImpl2 Subclass

	EntityImpl Class
	Methods You Typically Call on EntityImpl
	Methods You Typically Write in Your Custom EntityImpl Subclass
	Methods You Typically Override in Your Custom EntityImpl Subclass

	EntityDefImpl Class
	Methods You Typically Call on EntityDefImpl
	Methods You Typically Write in Your Custom EntityDefImpl Class
	Methods You Typically Override in Your Custom EntityDefImpl

	ViewObjectImpl Class
	Methods You Typically Call on ViewObjectImpl
	Methods You Typically Write in Your Custom ViewObjectImpl Subclass
	Methods You Typically Override in Your Custom ViewObjectImpl Subclass

	ViewRowImpl Class
	Methods You Typically Call on ViewRowImpl
	Methods You Typically Write in Your Custom ViewRowImpl Class
	Methods You Typically Override in Your Custom ViewRowImpl Subclass

	E ADF Business Components Java EE Design Pattern Catalog
	F ADF Equivalents of Common Oracle Forms Triggers
	Validation and Defaulting (Business Logic)
	Query Processing
	Database Connection
	Transaction "Post" Processing (Record Cache)
	Error Handling

	G Performing Common Oracle Forms Tasks in Oracle ADF
	Concepts Familiar to Oracle Forms Developers
	Performing Tasks Related to Data
	How to Retrieve Lookup Display Values for Foreign Keys
	How to Get the Sysdate from the Database
	How to Implement an Isolation Mode That Is Not Read Consistent
	How to Implement Calculated Fields
	How to Implement Mirrored Items
	How to Use Database Columns of Type CLOB or BLOB

	Performing Tasks Related to the User Interface
	How to Lay Out a Page
	How to Stack Canvases
	How to Implement a Master-Detail Screen
	How to Implement an Enter Query Screen
	How to Implement an Updatable Multi-Record Table
	How to Create a Popup List of Values
	How to Implement a Dropdown List as a List of Values
	How to Implement a Dropdown List with Values from Another Table
	How to Implement Immediate Locking
	How to Throw an Error When a Record Is Locked

	H Deploying ADF Applications to GlassFish
	About Deploying ADF Applications to GlassFish Server
	Developing Applications with Integrated WebLogic Server
	Developing Applications to Deploy to Standalone GlassFish Server

	Running an ADF Application in Integrated WebLogic Server
	How to Run an Application in Integrated WebLogic Server

	Preparing the Application
	How to Create a Connection to the Target Application Server
	How to Create Deployment Profiles
	Creating a WAR Deployment Profile
	Creating an Application-Level EAR Deployment Profile
	Viewing and Changing Deployment Profile Properties

	How to Create and Edit Deployment Descriptors
	Creating Deployment Descriptors
	Viewing or Modifying Deployment Descriptor Properties
	Configuring the application.xml File for Application Server Compatibility
	Configuring the web.xml File for GlassFish Server Compatibility

	How to Enable JDBC Data Source for GlassFish
	How to Change Initial Context Factory

	Deploying the Application
	How to Deploy to the Application Server from JDeveloper
	What You May Need to Know About Deploying from JDeveloper
	How to Create an EAR File for Deployment
	What You May Need to Know About ADF Libraries
	What You May Need to Know About EAR Files and Packaging
	How to Deploy to the Application Server using asadmin Commands
	How to Deploy the Application Using Scripts and Ant

	Testing the Application and Verifying Deployment

