
Oracle® JavaScript Extension Toolkit
(Oracle JET)
Developing Oracle JET Apps Using Virtual
DOM Architecture

17.0.0
F96381-01
August 2024

Oracle JavaScript Extension Toolkit (Oracle JET) Developing Oracle JET Apps Using Virtual DOM Architecture, 17.0.0

F96381-01

Copyright © 2021, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Get Started with Virtual DOM Architecture in Oracle JET

About Oracle JET Virtual DOM Architecture 1-1

What Can You Do with the Oracle JET Virtual DOM Architecture? 1-1

Prerequisite Knowledge 1-2

Create a Development Environment for Virtual DOM Apps 1-3

Install Oracle JET Tooling 1-3

Install Node.js 1-4

Use the npx Node.js Package Runner 1-4

Install the Oracle JET Command-Line Interface 1-5

Yarn Package Manager 1-5

2 Understand the Web App Workflow

Scaffold a Web App 2-1

About the Virtual DOM App Layout 2-3

About the Binding Provider for Virtual DOM Apps 2-6

Add Progressive Web App Support to Web Apps 2-7

Build a Web App 2-8

Serve a Web App 2-9

About ojet serve Command Options and Express Middleware Functions 2-10

Serve a Web App to a HTTPS Server Using a Self-signed Certificate 2-11

Customize the Web App Tooling Workflow 2-14

About the Script Hook Points for Web Apps 2-15

About the Process Flow of Script Hook Points 2-17

Change the Hooks Subfolder Location 2-19

Create a Hook Script for Web Apps 2-19

Pass Arguments to a Hook Script for Web Apps 2-22

Use Webpack in Oracle JET App Development 2-23

Configure Oracle JET's Default Webpack Configuration 2-25

3 Understand VComponent-based Web Components

Hello VComponent, an Introduction 3-1

Metadata for VComponents 3-3

iii

Nest VComponents 3-4

VComponent Properties 3-5

Declare VComponent Properties 3-5

Reference Properties in JSX 3-6

Access Properties 3-6

Reference Properties of a Child Component in JSX 3-7

Type-Checking Support 3-7

Global HTML Attributes 3-8

Children and Slot Content 3-8

Default Slots 3-9

Named Slots 3-9

Refresh Custom Elements with Dynamic Children and Slot Content 3-11

Template Slots 3-12

Provide Template Slot Content within HTML 3-14

Template Slots in JSX 3-14

Understand Events and Actions 3-16

Listeners 3-16

Actions 3-18

Declare Actions 3-18

Dispatch Actions 3-18

Respond to Actions 3-19

Action Payloads 3-19

Manage State Properties 3-20

Declare State 3-21

Update State 3-22

Understand the State Mechanism 3-24

Reference Child VComponents by Value 3-24

4 Work with Oracle JET VComponent-based Web Components

Create Web Components 4-1

Create Standalone Web Components 4-1

Create JET Packs 4-4

Create Resource Components for JET Packs 4-8

Create Reference Components for Web Components 4-11

Add Web Components to Your Page 4-13

Generate API Documentation for VComponent-based Web Components 4-14

Build Web Components 4-16

Package Web Components 4-17

iv

5 Use Oracle JET Components and Data Providers

Access Subproperties of Oracle JET Component Properties 5-1

Mutate Properties on Oracle JET Custom Element Events 5-1

Avoid Repeated Data Provider Creation 5-2

Avoid Data Provider Re-creation When Data Changes 5-3

Use Oracle JET Popup and Dialog Components 5-5

6 Add Third-Party Tools or Libraries to Your Oracle JET App

7 Test and Debug Oracle JET Apps

Test Oracle JET Apps 7-1

Testing Types 7-1

About the Oracle JET Testing Technology Stack 7-4

Configure Oracle JET Apps for Testing 7-5

Debug Oracle JET Apps 7-8

Debug Web Apps 7-8

Use Preact Developer Tools 7-8

8 Package and Deploy Apps

Package Web Apps 8-1

Deploy Web Apps 8-1

Remove and Restore Non-Source Files from Your JET App 8-1

A Properties in the oraclejetconfig.json File

v

Preface

Developing Oracle JET Apps Using Virtual DOM Architecture describes how to build
responsive web apps and web components using the Oracle JET virtual DOM architecture.

Topics:

• Audience

• Documentation Accessibility

• Related Resources

• Conventions

Audience
Developing Oracle JET Apps Using Virtual DOM Architecture is intended for intermediate to
advanced front-end developers who want to create client-side responsive web apps and web
components based on the virtual DOM architecture supported by Oracle JET.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources
For more information, see these Oracle resources:

• Oracle JET Web Site

• Oracle JET Function-Based VComponent Tutorial

Conventions
The following text conventions are used in this document:

Audience

6

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/webfolder/technetwork/jet/index.html
https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-VComponent-Tutorial-VDOM/public_html/index.html

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Conventions

7

1
Get Started with Virtual DOM Architecture in
Oracle JET

Oracle JET provides the capability to build apps and web components using a virtual DOM
architecture that renders components using a virtual DOM engine.

About Oracle JET Virtual DOM Architecture
Virtual DOM architecture is a different way of building apps and web components from the
Model-View-ViewModel (MVVM) architecture that Oracle JET has offered to date. Both
architectures are supported. You choose the architecture that you want to use.

Virtual DOM architecture is a programming pattern where a virtual representation of the DOM
is kept in memory and synchronized with the live DOM by a JavaScript library. As a pattern, it
has gained popularity for its ability to efficiently update the browser’s DOM (the live DOM).
Preact is the JavaScript library that Oracle JET uses to synchronize changes in the virtual
DOM to the live DOM.

The following diagram illustrates how virtual DOM architecture apps use the virtual DOM to
compute the difference when a state change occurs so that only one action, a re-render of the
DOM node(s) affected, occurs in the live DOM.

React, as one of the JavaScript libraries, to popularize the use of the virtual DOM architecture
provides extensive documentation that describes many of the main concepts. To learn more
about these concepts, consider reading the React documentation. Preact is the JavaScript
library that Oracle JET uses to manage the virtual DOM and update the live DOM of apps and
Web Components that you develop using Oracle JET’s virtual DOM architecture. For more
information, see https://preactjs.com/.

What Can You Do with the Oracle JET Virtual DOM Architecture?
You can build web apps and you can also build web components that you publish for inclusion
in other Oracle JET web apps.

1-1

https://react.dev/learn
https://preactjs.com/

To accomplish either of these tasks, you must first install the Oracle JET tooling, as described
in Install Oracle JET Tooling. Once you have installed the Oracle JET Tooling, you create a
virtual DOM app using the following command:

ojet create your-First-JET-VDOM-app --template=basic --vdom
Once Oracle JET tooling creates the virtual DOM app for you, you can start to develop the
functionality of the app. To do this, you write TypeScript and JavaScript XML (JSX). Use of
JavaScript is not supported by the virtual DOM architecture.

If you are using the virtual DOM app that you created as a location to develop VComponent-
based web components that you later publish to a component exchange, you’ll be familiar with
the steps if you previously developed Composite Component Architecture-based web
components using the Oracle JET tooling. That is, you do the following:

1. Use the Oracle JET tooling to create the component by running the following command:
ojet create component oj-hello-world --vcomponent
Use of the --vcomponent parameter is optional, unless you want to create a class-based
VComponent, in which case you specify the class option with the --vcomponent
parameter:

ojet create component oj-hello-world --vcomponent=class
By default, Oracle JET tooling creates function-based VComponents.

2. If creating multiple components, use JET Pack. The following commands illustrate how you
create a JET Pack, yourJETPack, and add three components to it (two function
components and one class component).

ojet create pack yourJETPack
ojet create component oj-class-component-1 --pack=yourJETPack
ojet create component oj-function-component --vcomponent=function --
pack=yourJETPack
ojet create component oj-class-component-2 --vcomponent=class --
pack=yourJETPack

We'll go into more detail for these tasks later in this guide. This brief introduction is for those of
you who are already familiar with Oracle JET web app and web component development.

Prerequisite Knowledge
To develop virtual DOM apps and components, you need to understand the following topics:

• Preact: Understand how Preact and, by extension, React works. To get started, read the
Main Concepts section of the React documentation. If you are familiar with React
concepts, read the Differences to React section of the Preact documentation.

• TypeScript and JSX: You write all virtual DOM apps and web components using TypeScript
and JSX. If you previously developed Oracle JET apps using the MVVM architecture, you
need to know that the virtual DOM architecture uses JSX to implement binding and
conditional behavior that the MVVM architecture implemented in the View (HTML) layer. To
learn more about TypeScript, see https://www.typescriptlang.org/ and to learn more about
JSX, see JSX In Depth in React’s documentation.

Chapter 1
Prerequisite Knowledge

1-2

https://reactjs.org/docs/hello-world.html
https://preactjs.com/guide/v10/differences-to-react/
https://www.typescriptlang.org/
https://reactjs.org/docs/jsx-in-depth.html

Create a Development Environment for Virtual DOM Apps
You can develop virtual DOM apps in any integrated development environment (IDE) that
supports TypeScript, HTML, and CSS. However, an IDE is not required, and you can use any
text editor to develop your app.

You can use an IDE in conjunction with the Oracle JET Tooling, where you create a virtual
DOM app by using the provided app template. You proceed to develop the app in the IDE of
your choice by opening the project that was created using the Oracle JET Tooling, in that IDE.
After saving changes to your app files in the IDE, you use the Oracle JET Tooling to build and
run the app, as demonstrated in the following example from Microsoft Visual Studio Code.

Install Oracle JET Tooling
You must install Node.js to use Oracle JET tooling to develop Oracle JET apps. You’ll also
need the Oracle JET CLI, ojet-cli. You can use the ojet-cli through the Node.js package
runner (npx), or you can install it on your development platform.

If you already have Oracle JET tooling installed on your development platform, check that you
are using the minimum versions supported by Oracle JET and upgrade as needed. For the list
of minimum supported versions, see Oracle JET Support.

Chapter 1
Create a Development Environment for Virtual DOM Apps

1-3

https://www.oracle.com/webfolder/technetwork/jet/index.html?_ojCoreRouter=help

Install Node.js
Install Node.js on your development machine.

From a web browser, download and install one of the installers appropriate for your OS from
the Node.js download page. Oracle JET recommends that you install the latest LTS version.
Node.js is pre-installed on macOS, but is likely an old version, so upgrade to the latest LTS
version if necessary.

After you complete installation and setup, you can enter npm commands from a command
prompt to verify that your installation succeeded. For example, enter npm config list to show
config settings for Node.js.

If your computer is connected to a network, such as your company's, that requires you to use a
proxy server, run the following commands so that your npm installation can work successfully.
This task is only required if your network requires you to use a proxy server. If, for example,
you connect to the internet from your home, you may not need to perform this task.

npm config set proxy http-proxy-server-URL:proxy-port
npm config set https-proxy https-proxy-server-URL:proxy-port

Include the complete URL in the command. For example:

npm config set proxy http://my.proxyserver.com:80
npm config set https-proxy http://my.proxyserver.com:80

Use the npx Node.js Package Runner
We recommend that you use the npx Node.js package runner to create and manage Oracle
JET apps. With the npx Node.js package runner, you won’t need to uninstall and reinstall the
NPM packages that deliver the ojet-cli if you frequently change releases of the ojet-cli.

To use npx, you must install Node.js and you must uninstall any globally installed instances of
the Oracle JET CLI from your computer. To list globally-installed packages, run the npm list
--depth=0 -g command in a terminal window. To uninstall a globally installed instance of the
Oracle JET CLI, run the npm -g un @oracle/ojet-cli command.

Once you have installed Node.js, you can use npx and the version of the Oracle JET CLI NPM
package that you want to use, plus the appropriate command. The following examples
demonstrate how you create Oracle JET apps using different releases of the CLI and then
serve them on your local development computer.

// Create and serve an Oracle JET 15.0.0 app
$ npx @oracle/ojet-cli@15.0.0 create myJET15app --template=basic --vdom
$ cd myJET15app
$ npx @oracle/ojet-cli@15.0.0 serve

// Create and serve an Oracle JET 17.0.0 app
$ npx @oracle/ojet-cli@17.0.0 create myJETapp --template=basic --vdom
$ cd myJETapp
$ npx @oracle/ojet-cli@17.0.0 serve

Chapter 1
Create a Development Environment for Virtual DOM Apps

1-4

https://nodejs.org/en/download/

You can use all the Oracle JET CLI commands (create, build, serve, strip, restore, and so
on) by following the syntax shown in the previous examples (npx package command).

The npx package runner fetches the necessary package (for example, @oracle/ojet-
cli@17.0.0) from the NPM registry and runs it. The package is installed in a temporary cache
directory, as in the following example for a Windows computer:

C:\Users\JDOE\AppData\Roaming\npm-cache_npx
No NPM packages for the releases of the Oracle JET CLI shown in the previous examples are
installed on your computer, as you will see if you run the command to list globally installed
NPM packages:

$ npm list --depth=0 -g
C:\Users\JDOE\AppData\Roaming\npm
+-- json-server@0.16.3
+-- node-gyp@9.0.0
+-- typescript@4.2.3
`-- yarn@1.22.18

Use the following command to clear the temporary cache directory:

npx clear-npx-cache
To learn more about npx, see the Node.js documentation. For more information about the
commands that the Oracle JET CLI provides, see Understand the Web App Workflow.

Install the Oracle JET Command-Line Interface
Use npm to install the Oracle JET command-line interface (ojet-cli).

• At the command prompt of your development machine, enter the following command as
Administrator on Windows or use sudo on Macintosh and Linux machines:

[sudo] npm install -g @oracle/ojet-cli

It may not be obvious that the installation succeeded. Enter ojet help to verify that the
installation succeeded. If you do not see the available Oracle JET commands, scroll
through the install command output to locate the source of the failure.

– If you receive an error related to a network failure, verify that you have set up your
proxy correctly if needed.

– If you receive an error that your version of npm is outdated, type the following to update
the version: [sudo] npm install -g npm.

You can also verify the Oracle JET version with ojet --version to display the current
version of the Oracle JET command-line interface. If the current version is not displayed,
please reinstall by using the npm install command for your platform.

Yarn Package Manager
Oracle JET CLI supports usage of the Yarn package manager.

You must install Node.js as Oracle JET uses the npm package manager by default. However, if
you install Yarn, you can use it instead of the default npm package manager by specifying the
--installer=yarn parameter option when you invoke an Oracle JET command.

Chapter 1
Create a Development Environment for Virtual DOM Apps

1-5

https://www.npmjs.com/package/npx

The --installer=yarn parameter can be used with the following Oracle JET commands:

• ojet create --installer=yarn
• ojet build --installer=yarn
• ojet serve --installer=yarn
• ojet strip --installer=yarn
Enter ojet help at a terminal prompt to get additional help with the Oracle JET CLI.

As an alternative to specifying the --installer=yarn parameter option for each command,
add "installer": "yarn" to your Oracle JET app's oraclejetconfig.json file, as follows:

{
. . .
 "generatorVersion": "17.0.0",
 "installer": "yarn"
}

The Oracle JET CLI then uses Yarn as the default package manager for the Oracle JET app.

For more information about the Yarn package manager, including how to install it, see Yarn's
website.

Chapter 1
Create a Development Environment for Virtual DOM Apps

1-6

https://yarnpkg.com/
https://yarnpkg.com/

2
Understand the Web App Workflow

Developing virtual DOM apps with Oracle JET is designed to be simple and efficient using the
development environment of your choice and a starter template to ease the development
process.

Oracle JET supports creating web apps from a command-line interface:

• Before you can create your first Oracle JET web app using the CLI, you must install the
prerequisite packages if you haven’t already done so. For details, see Install Oracle JET
Tooling.

• Then, use the Oracle JET command-line interface package (ojet-cli) to scaffold a web
app using a basic starter template that creates a pre-configured app that you can modify
as needed.

• After you have scaffolded the app, use the ojet-cli to build the app, serve it in a local
web browser, and create a package ready for deployment.

You must not use more than one version of Oracle JET to add components to the same HTML
document of your web app. Oracle JET does not support running multiple versions of Oracle
JET components in the same web page.

Scaffold a Web App
Scaffolding is the process you use in the Oracle JET command-line interface (CLI) to create an
app that is pre-configured with a content area, a header and a footer layout. After scaffolding,
you can modify the app as needed.

The following image shows an app generated by the starter template. It includes responsive
styling that adjusts the display when the screen size changes.

2-1

Before you can create your first Oracle JET web app using the CLI, you must also install the
prerequisite packages if you haven’t already done so. For details, see Install Oracle JET
Tooling.

To scaffold an Oracle JET web app:

1. At a command prompt, enter ojet create with optional arguments to create the Oracle
JET app and scaffolding.

ojet create [directory]
 [--template={template-name:[basic]|template-url|template-
file}]
 [--vdom]
 [--use-global-tooling]
 [--help]

Tip:

You can enter ojet help at a terminal prompt to get additional help with the
Oracle JET CLI.

Chapter 2
Scaffold a Web App

2-2

For example, the following command creates a web app in the my-First-JET-VDOM-app
directory using the basic template:

ojet create my-First-JET-VDOM-app --template=basic --vdom

To scaffold the web app that will use the globally-installed @oracle/oraclejet-tooling
rather than install it locally in the app directory, enter the following command:

ojet create my-web-app --use-global-tooling --vdom

2. Wait for confirmation.

The scaffolding will take some time to complete. When successful, the console displays:

Oracle JET: Your app is ready! Change to your new app directory my-First-
JET-VDOM-app and try ojet build and serve...

3. In your development environment, update the code for your app.

About the Virtual DOM App Layout
Oracle JET Tooling creates an app for you with the necessary source files and directory
structure.

The new application will have a directory structure similar to the one shown in the following
image.

The application folders contain the application and configuration files that you will modify as
needed for your own application.

Chapter 2
Scaffold a Web App

2-3

Directory or File Description

node_modules Contains the Node.js modules used by the tooling.

scripts Contains template hook scripts that you can modify to define
new build and serve steps for your application. See
Customize the Web App Tooling Workflow

src Site root for your application. Contains the application files
that you can modify as needed for your own application and
should be committed to source control. The starter template
includes an app component that imports footer, header,
and content components to help you get started.

.gitignore Defines rules for application folders to ignore when using a
GIT repository to check in application source. Users who do
not use a GIT repository can use ojet strip to avoid
checking in content that Oracle JET always regenerates.
Note this file must not be deleted since the ojet strip
command depends on it.

oraclejetconfig.json Contains the default source and staging file paths that you
can modify if you need to change your application's file
structure.

package.json Defines npm dependencies and project metadata.

Whether you are developing a virtual DOM app or a VComponent-based web component,
you'll write your code in the files under the src directory. The Oracle JET Tooling creates a
corresponding web and dist directory when you build and/or serve the app, or publish a JET
Pack with web components.

||| Contents of virtual DOM app directory prior to build or serve
| oraclejetconfig.json
| package-lock.json
| package.json
| path_mapping.json
| tsconfig.json
+---scripts
| +---config
| \---hooks
\---src
 | index.html
 | index.ts
 | main.js
 +---components
 | | app.tsx
 | | footer.tsx
 | | header.tsx
 | \---content
 | index.tsx
 \---styles
 | app.css
 +---fonts
 \---images
 ...
 oracle_logo.svg

Chapter 2
Scaffold a Web App

2-4

Oracle JET virtual DOM architecture uses modules to organize VComponents and the Oracle
JET Tooling manages the modules in a project.

Custom element-based VComponents must reside in a directory with a name that matches the
name of the component. That is, the oj-hello-world custom component must reside in a
directory named oj-hello-world. By default, the name of the directory where you store all
components in your virtual DOM app is components, but you can change it to a different value
by editing the value of components in the oraclejetconfig.json file in your virtual DOM app's
root directory.

{
 "paths": {
 "source": {
 ...,
 "components": "changeToYourPreferredValue",
 ...
 },
 ...

Each custom element-based VComponent requires an accompanying loader.ts module file,
as illustrated by the following example for a custom element-based VComponent named oj-
hello-world. Oracle JET Tooling includes this file as Oracle Visual Builder, the Oracle
Component Exchange, and the Oracle JET Tooling itself require it.

...
+---src
| index.html
...
+---components
| | app.tsx
| | footer.tsx
| | header.tsx
| |
| +---content
| | index.tsx
| |
| \---oj-hello-world
| | loader.ts
| | oj-hello-world-styles.css
| | oj-hello-world.tsx
| | README.md
| |
| +---resources
| | \---nls
| | oj-hello-world-strings.ts
| |
...

The Oracle JET Tooling can manage components individually but we recommend that you
manage components in a pack (also known as a JET Pack) if you intend to create more than
one component.

Chapter 2
Scaffold a Web App

2-5

About the Binding Provider for Virtual DOM Apps
Oracle JET's default binding provider is Knockout. The binding provider that you use affects
how Oracle JET custom elements render.

If the default binding provider (data-oj-binding-provider="knockout") is used, all Oracle
JET custom elements, such as oj-list-view, wait on the apply bindings traversal to complete
before rendering. When Oracle JET custom elements are used in a Preact environment (virtual
DOM app), you must use the preact binding provider (data-oj-binding-provider="preact").

VComponent-based web components implicitly set the binding provider to preact on behalf of
their child components. As a result, Oracle JET custom elements inside of a VComponent use
the preact binding provider. However, for virtual DOM apps, you, the app developer, must
configure the binding provider manually (data-oj-binding-provider="preact") somewhere in
the DOM above where you add Oracle JET custom elements. The following code snippet
shows three examples of how you can set the binding provider to preact.

// Update the entry in the appRootDir/src/index.html file of your virtual DOM
app
<body class="oj-web-applayout-body" data-oj-binding-provider="preact">

// Set the data-oj-binding-provider="preact" on a parent element to a
collection
// of JET custom elements
<body>
 <div id="preact-content-goes-here" data-oj-binding-provider="preact">
 <oj-c-button . . .>
 <oj-list-view . . .>
 </div>

// Set the data-oj-binding-provider="preact" on an individual JET custom
element
<oj-list-view data-oj-binding-provider="preact"...>

Note:

The index.html file that the Oracle JET Tooling generates when you create a virtual
DOM app is a regular HTML document with no active binding provider. For this
reason, its use of <body ... data-oj-binding-provider="none"> is appropriate.
Note too that the <app-root> element that the Oracle JET Tooling also generates in
the index.html file is a VComponent-based web component and it, like other
VComponent-based web components, sets the binding provider to preact on behalf
of any child components that it references.

For more information about the binding provider, see the Binding Providers section in the
Oracle® JavaScript Extension Toolkit (JET) API Reference for Oracle JET.

Chapter 2
Scaffold a Web App

2-6

https://docs.oracle.com/en/middleware/developer-tools/jet/17/reference-api/CustomElementOverview.html#ce-databind-bindingprovider-section

Add Progressive Web App Support to Web Apps
Add Progressive Web App (PWA) support to your JET web app if you want to give users a
native-like mobile app experience on the device where they access your JET web app.

Using the ojet add pwa command, you add both a service worker script and a web manifest to
your JET web app. You can customize these artifacts to determine how your JET web app
behaves when accessed as a PWA.

Using the ojet add pwa command, you add both a service worker script, an assets folder with
a series of image files for app launcher icons and splash screens, plus a web manifest file to
your JET web app. You can customize these artifacts to determine how your JET web app
behaves when accessed as a PWA.

To add PWA support to your web app:

• At a terminal prompt, in your app's top level directory, enter the following command to add
PWA support to your JET web app:

ojet add pwa
When you run the command, Oracle JET tooling makes the following changes to your JET web
app:

• Adds the following two files to the app’s src folder:

– assets folder

The assets folder contains an additional two sub-folders, icons and splashscreens,
that contain image files of various dimensions to use as app launcher icons and splash
screens on the devices where you install the JET web app.

– manifest.json
This file tells the browser about the PWA support in your JET web app, and how it
should behave when installed on a user's desktop or mobile device. Use this file to
specify the app name to appear on a user’s device, plus device-specific icons. For
information about the properties that you can specify in this file, see Add a web app
manifest.

– swinit.js
This is the initialization file for the service worker script (sw.js).

– sw.js
This is the service worker script that the browser runs in the background. Use this file
to specify any additional resources from your JET app that you want to cache on a
user’s device if the PWA service worker is installed. By default, JET specifies the
following resources to cache:

const resourcesToCache = [
 'index.js',
 'index.html',
 'bundle.js',
 'manifest.json',
 'components/',
 'libs/',
 'styles/',

Chapter 2
Scaffold a Web App

2-7

https://web.dev/add-manifest/
https://web.dev/add-manifest/

 'assets/'
];

• Registers the splash screen files, the manifest file, and the service worker script in the JET
web app's ./src/index.html file:

<html lang="en-us">
 <head>
 . . .
 <meta name="apple-mobile-web-app-title" content="Oracle JET" />
 <meta name="theme-color" content="#000000">
 <!-- Splash screens -->
 <link rel="apple-touch-startup-image" href="assets/splashscreens/
splash-640x1136.jpg" . . .">
 . . .
 <link rel="manifest" href="manifest.json">
</head>
 . . .
<script src="swinit.js"></script>
</body>

With these changes, a user on a mobile device, such as an Android phone, can initially access
your JET web app through its URL using the Chrome browser, add it to the Home screen of the
device, and subsequently launch it like any other app on the phone. Note that browser and
platform support for PWA is not uniform. To ensure an optimal experience, test your PWA-
enabled JET web app on your users' target platforms (Android, iOS, and so on) and the
browsers (Chrome, Safari, and so on).

PWA-enabled JET web apps and service workers require HTTPS. The production environment
where you deploy your PWA-enabled JET web app will serve the app over HTTPS. If, during
development, you want to serve your JET web app to a HTTPS-enabled server, see Serve a
Web App to a HTTPS Server Using a Self-signed Certificate.

Build a Web App
Use the Oracle JET command-line interface (CLI) to build a development version of your web
app before serving it to a browser. This step is optional.

Change to the app’s root directory and use the ojet build command to build your app.

ojet build [--cssvars=enabled|disabled
 --theme=themename
 --themes=theme1,theme2,...]

Tip:

You can enter ojet help at a terminal prompt to get help for specific Oracle JET CLI
options.

Chapter 2
Build a Web App

2-8

The command will take some time to complete. If it’s successful, you’ll see the following
message:

Done.

The command will also create a web folder in your app’s root to contain the built content.

Note:

You can also use the ojet build command with the --release option to build a
release-ready version of your app. For information, see Package and Deploy Apps.

Serve a Web App
Use ojet serve to run your web app in a local web server for testing and debugging. By
default, the Oracle JET live reload option is enabled which lets you make changes to your app
code that are immediately reflected in the browser.

To run your web app from a terminal prompt:

1. At a terminal prompt, change to the app’s root directory and use the ojet serve command
with optional arguments to launch the app.

ojet serve [--server-port=server-port-number --livereload-port=live-reload-
port-number
 --livereload
 --watch-files
 --build
 --theme=themename --themes=theme1,theme2,...
 --server-only
 --server-url=server-url
]

For example, the following command launches your app in the default web browser with
live reload enabled.

ojet serve

2. Make any desired code change in the src folder, and the browser will update automatically
to reflect the change unless you set the --no-livereload flag.

While the app is running, the terminal window remains open, and the watch task waits for
any changes to the app. For example, if you change the content in src/components/oj-
hello-world/oj-hello-world-styles.css , the watch task will reflect the change in the
terminal as shown below on a Windows desktop.

. . .
Watcher: themes is ready.
Changed: C:\jetVDOMapp\src\components\content\index.tsx
Running before_watch hook.
Compile application typescript
Running before_app_typescript hook.
Compile application typescript finished

Chapter 2
Serve a Web App

2-9

Running after_watch hook.
Page reloaded resume watching.

3. To terminate the process, close the app and press Ctrl+C at the terminal prompt. You may
need to enter Ctrl+C a few times before the process terminates.

To get additional help for the supported ojet serve options, enter ojet serve --help at a
terminal prompt.

About ojet serve Command Options and Express Middleware Functions
Use ojet serve to run your web app in a local web server for testing and debugging.

The following table describes the available ojet serve options and provides examples for their
use.

Oracle JET tooling uses Express, a Node.js web app framework, to set up and host the web
app when you run ojet serve. If the ready-to-use ojet serve options do not meet your
requirements, you can add Express configuration options or write Express middleware
functions in Oracle JET’s before_serve.js hook point. For an example that demonstrates how
to add Express configuration options, see Serve a Web App to a HTTPS Server Using a Self-
signed Certificate.

The before_serve hook point provides options to determine whether to replace the existing
middleware or instead prepend and append a middleware function to the existing middleware.
Typically, you’ll prepend a middleware function (preMiddleware) that you write if you want live
reload to continue to work after you serve your web app. Live reload is the first middleware that
Oracle JET tooling uses. You must use the next function as an argument to any middleware
function that you write if you want subsequent middleware functions, such as live reload, to be
invoked by the Express instance. In summary, use one of the following arguments to determine
when your Express middleware function executes:

• preMiddleware: Execute before the default Oracle JET tooling middleware. The default
Oracle JET tooling middleware consists of connect-livereload, serve-static, and
serve-index, and executes in that order.

• postMiddleware: Execute after the default Oracle JET tooling middleware.

• middleware: Replaces the default Oracle JET tooling middleware. Use if you need strict
control of the order in which middleware runs. Note that you will need to redefine all the
default middleware that was previously added by Oracle JET tooling.

Option Description

server-port Server port number. If not specified, defaults to 8000.

livereload-port Live reload port number. If not specified, defaults to 35729.

watch-files Enable the watch files feature. Watch files is enabled by default (--watch-files=true).

Use --watch-files=false or --no-watch-files to disable the watch files feature.

Disabling watch files also disables the live reload feature.

Configure the interval at which the watch files feature polls the Oracle JET project for updates by
configuring a value for the watchInterval property in the oraclejetconfig.json file. The
default value is 1000 milliseconds.

Chapter 2
Serve a Web App

2-10

https://expressjs.com/

Option Description

livereload Enable the live reload feature. Live reload is enabled by default (--livereload=true).

Use --livereload=false or --no-livereload to disable the live reload feature.

Disabling live reload can be helpful if you’re working in an IDE and want to use that IDE’s
mechanism for loading updated apps.

The interval at which the live reload feature polls the Oracle JET project depends on the watch-
files option.

build Build the app before you serve it. By default, an app is built before you serve it (--build=true).

Use --build=false or --no-build to suppress the build if you’ve already built the app and just
want to serve it.

theme Theme to use for the app. The theme defaults to redwood.

themes Themes to use for the app, separated by commas.

If you don’t specify the --theme flag as described above, Oracle JET will use the first element that
you specify in --themes as the default theme. Otherwise Oracle JET will serve the app with the
theme specified in --theme.

server-only Serves the app, as if to a browser, but does not launch a browser. Use this option in cloud-based
development environments so that you can attach your browser to the app served by the
development machine.

server-url Specify the server URL to serve from. For example, ojet serve --server-url=https://
www.example.com/jet. If not specified, defaults to localhost.

Serve a Web App to a HTTPS Server Using a Self-signed Certificate
You can customize the JET CLI tooling to serve your web app to a HTTPS server instead of
the default HTTP server that the Oracle JET ojet serve command uses.

Do this if, for example, you want to approximate your development environment more closely
to a production environment where your web app will eventually be deployed. Requests to your
web app when it is deployed to a production environment will be served from an SSL-enabled
HTTP server (HTTPS).

To implement this behavior, you’ll need to install a certificate in your web app directory. You’ll
also need to configure the before_serve.js hook to do the following:

• Create an instance of Express to host the served web app.

• Set up HTTPS on the Express instance that you’ve created. You specify the HTTPS
protocol, identify the location of the self-signed certificate that you placed in the app
directory, and specify a password.

• Pass the modified Express instance and the SSL-enabled server to the JET tooling so that
ojet serve uses your middleware configuration rather than the ready-to-use middleware
configuration provided by the Oracle JET tooling.

• To ensure that live reloads works when your web app is served to the HTTPS server, you’ll
also create an instance of the live reload server and configure it to use SSL.

If you can’t use a certificate issued by a certificate authority, you can create your own certificate
(a self-signed certificate). Tools such as OpenSSL, Keychain Access on Mac, and the Java
Development Kit’s keytool utility can be used to perform this task for you. For example, using
the Git Bash shell that comes with Git for Windows, you can run the following command to
create a self-signed certificate with the OpenSSL tool:

openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes

Chapter 2
Serve a Web App

2-11

Once you've obtained the self-signed certificate that you want to use, install it in your app's
directory. For example, place the two files generated by the previous command in your app’s
root directory:

...

.gitignore
cert.pem
key.pem
node_modules
...

Once you have installed the self-signed certificates in your app, you configure the script for the
before_serve hook point. To do this, open the AppRootDir/scripts/hooks/before_serve.js
with your editor and configure it as described by the comments in the following example
configuration.

'use strict';

module.exports = function (configObj) {
 return new Promise((resolve, reject) => {
 console.log("Running before_serve hook.");

 // Create an instance of Express, the Node.js web app framework that
Oracle
 // JET tooling uses to host the web apps that you serve using ojet serve
 const express = require("express");

 // Set up HTTPS
 const fs = require("fs");
 const https = require("https");

 // Specify the self-signed certificates. In our example, these files
exist
 // in the root directory of our project.
 const key = fs.readFileSync("./key.pem");
 const cert = fs.readFileSync("./cert.pem");
 // If the self-signed certificate that you created or use requires a
 // password, specify it here:
 const passphrase = "1234";

 const app = express();

 // Pass the modified Express instance and the SSL-enabled server to the
Oracle JET tooling
 configObj['express'] = app;
 configObj['urlPrefix'] = 'https';
 configObj['server'] = https.createServer({
 key: key,
 cert: cert,
 passphrase: passphrase
 }, app);

 // Enable the Oracle JET live reload option using its default port number
so that

Chapter 2
Serve a Web App

2-12

 // any changes you make to app code are immediately reflected in the
browser after you
 // serve it
 const tinylr = require("tiny-lr");
 const lrPort = "35729";

 // Configure the live reload server to also use SSL
 configObj["liveReloadServer"] = tinylr({ lrPort, key, cert, passphrase });

 resolve(configObj);
 });
};

Once you have completed these configuration steps, run the series of commands (ojet build
and ojet serve, for example) that you typically run to build and serve your web app. As the
certificate that you are using is a self-signed certificate rather than a certificate issued by a
certificate authority, the browser that you use to access the web app displays a warning the
first time that you access the web app. Acknowledge the warning and click the options that
allow you to access your web app. On Google Chrome, for example, you click Advanced and
Proceed to localhost (unsafe) if your web app is being served to https://localhost:8000/.

Once your web app opens in the browser, you'll see that the HTTPS protocol is used and an
indicator that the connection is not secure, because you are not using a certificate from a
certificate authority. You can also view the certificate information to confirm that it is the self-
signed certificate that you created. In Google Chrome, click Not secure and Certificate to
view the certificate information.

Chapter 2
Serve a Web App

2-13

The before_serve hook point is one of a series of script hook points that you can use to
customize the tooling workflow for Oracle JET apps. See Customize the Web App Tooling
Workflow.

Customize the Web App Tooling Workflow
Hook points that Oracle JET tooling defines let you customize the behavior of the JET build
and serve processes when you want to define new steps to execute during the tooling
workflow using script code that you write.

When you create an app, Oracle JET tooling generates script templates in the /scripts/hooks
app subfolder. To customize the Oracle JET tooling workflow, you can edit the generated
templates with the script code that you want the tooling to execute for specific hook points
during the build and serve processes. If you do not create a custom hook point script, Oracle
JET tooling ignores the script templates and follows the default workflow for the build and
serve processes.

To customize the workflow for the build or serve processes, you edit the generated script
template file named for a specific hook point. For example, to trigger a script at the start of the

Chapter 2
Customize the Web App Tooling Workflow

2-14

tooling's build process, you would edit the before_build.js script named for the hook point
triggered before the build begins. That hook point is named before_build.

Therefore, customization of the build and serve processes that you enforce on Oracle JET
tooling workflow requires that you know the following details before you can write a
customization script.

• The Oracle JET build or serve mode that you want to customize:

– Debug — The default mode when you build or serve your app, which produces the
source code in the built app.

– Release — The mode when you build the app with the --release option, which
produces minified and bundled code in a release-ready app.

• The appropriate hook point to trigger the customization.

• The location of the default hook script template to customize.

About the Script Hook Points for Web Apps
The Oracle JET hooks system defines various script trigger points, also called hook points, that
allow you to customize the create, build, serve, package, and restore workflow across the
various command-line interface processes. Customization relies on script files and the script
code that you want to trigger for a particular hook point.

The following table identifies the hook points and the workflow customizations they support in
the Oracle JET tooling create, build, serve, and restore processes. Unless noted, hook points
for the build and serve processes support both debug and release mode.

Hook Point Supported
Tooling
Process

Description

after_app_create create This hook point triggers the script with the default name
after_app_create.js immediately after the tooling concludes
the create app process.

after_app_restor
e

restore This hook point triggers the script with the default name
after_app_restore.js immediately after the tooling concludes
the restore app process.

before_build build This hook point triggers the script with the default name
before_build.js immediately before the tooling initiates the
build process.

before_release_b
uild

build (release
mode only)

This hook point triggers the script with the default name
before_release_build.js before the minification step and the
requirejs bundling step occur.

before_app_types
cript

build / serve This hook point triggers the script with the default name
before_app_typescript.js after the build process or serve
process steps occur and before the app is transpiled. Use the
hook to update, add or remove TypeScript compiler options
defined by your app's tsconfig.json compiler configuration file.
The hook system passes your reference to the modified
tsconfig object to the TypeScript compiler. A script for this hook
point can only be used with a TypeScript app.

Chapter 2
Customize the Web App Tooling Workflow

2-15

Hook Point Supported
Tooling
Process

Description

after_app_typesc
ript

build / serve This hook point triggers the script with the default name
after_app_typescript.js after the build process or serve
process steps occur and immediately after the
before_app_typescript hook point executes. This hook
provides an entry point for apps that require further processing,
such as compiling generated .jsx output using babel. A script for
this hook point can only be used with a TypeScript app.

before_component
_typescript

build / serve This hook point triggers the script with the default name
before_component_typescript.js after the build process or
serve process steps occur and before the component is
transpiled. Use the hook to update, add or remove TypeScript
compiler options defined by your app's tsconfig.json compiler
configuration file. The hook system passes your reference to the
modified tsconfig object to the TypeScript compiler. A script for
this hook point can only be used with a TypeScript app.

after_component_
typescript

build / serve This hook point triggers the script with the default name
after_component_typescript.js after the build process or
serve process steps occur and immediately after the
before_component_typescript hook point executes. This
hook provides an entry point for apps that require further
processing, such as compiling generated .jsx output using
babel. A script for this hook point can only be used with a
TypeScript app.

before_injection build / serve This hook point triggers the script with the default name
before_injection.js after the tooling concludes the before
build process and before the tooling performs the tasks to insert
the CSS theme into the app. In other words, this hook point
provides an entry point to customize the main.js/index.html/
theme injection process in the build.

before_optimize build / serve
(release mode
only)

This hook point triggers the script with the default name
before_optimize.js before the release mode build/serve
process minifies the content.

before_component
_optimize

build / serve This hook point triggers the script with the default name
before_component_optimize.js before the build/serve
process minifies the content. A script for this hook point can be
used to modify the build process specifically for a project that
defines a Web Component.

after_build build This hook point triggers the script with the default name
after_build.js immediately after the tooling concludes the
build process.

after_component_
create

build This hook point triggers the script with the default name
after_component_create.js immediately after the tooling
concludes the create Web Component process. A script for this
hook point can be used to modify the build process specifically for
a project that defines a Web Component.

after_component_
build

build (debug
mode only)

This hook point triggers the script with the default name
after_component_build.js immediately after the tooling
concludes the Web Component build process. A script for this
hook point can be used to modify the build process specifically for
a project that defines a Web Component.

Chapter 2
Customize the Web App Tooling Workflow

2-16

Hook Point Supported
Tooling
Process

Description

before_serve serve This hook point triggers the script with the default name
before_serve.js before the web serve process connects to
and watches the app.

after_serve serve This hook point triggers the script with the default name
after_serve.js after all build process steps complete and the
tooling serves the app.

before_watch serve This hook point triggers the script with the default name
before_watch.js after the tooling serves the app and before
the tooling starts watching for app changes.

after_watch serve This hook point triggers the script with the default name
after_watch.js after the tooling starts the watch and after the
tooling detects a change to the app.

after_component_
package

package This hook point triggers the script with the default name
after_component_package.js immediately after the tooling
concludes the component package process.

before_component
_package

package This hook point triggers the script with the default name
before_component_package.js immediately before the tooling
initiates the component package process.

About the Process Flow of Script Hook Points
The Oracle JET hooks system defines various script trigger points, also called hook points, that
allow you to customize the create, build, serve, and restore workflow across the various
command-line interface processes.

The following diagram shows the script hook point flow for the create process.

The following diagram shows the script hook point flow for the build process.

Chapter 2
Customize the Web App Tooling Workflow

2-17

The following diagram shows the script hook point flow for the serve and restore processes.

Chapter 2
Customize the Web App Tooling Workflow

2-18

Change the Hooks Subfolder Location
When you create an app, Oracle JET tooling generates script templates in the /scripts/hooks
app subfolder. Your development effort may require you to relocate hook scripts to a common
location, for example to support team development.

By default, the hooks system locates the scripts in the hooks subfolder using a generated
JSON file (hooks.json) that specifies the script paths. When the tooling reaches the hook
point, it executes the corresponding script which it locates using the hooks.json file. If you
relocate hook script(s) to a common location, you must edit the hooks.json file to specify the
new location for the hook scripts that you relocated, as illustrated by the following example.

{
 "description": "OJET-CLI hooks configuration file",
 "hooks": {
 "after_app_create": "scripts/hooks/after_app_create.js",
 ...
 "after_serve": "http://example.com/cdn/common/scripts/hooks/
after_serve.js "
 }
}

Create a Hook Script for Web Apps
You can create a hook point script to define a new command-line interface process step for
your web app. To create a hook script, you edit the hook script template associated with a
specific hook point in the tooling build and serve workflow.

The Oracle JET hooks system defines various script trigger points, also called hook points, that
allow you to customize the build and serve workflow across the various build and serve modes.
Customization relies on script files and the script code that you want to trigger for a particular
hook point. Note that the generated script templates that you modify with your script code are
named for their corresponding hook point.

To customize the workflow for the build or serve processes, you edit the generated script
template file named for a specific hook point. For example, to trigger a script at the start of the
tooling's build process, you would edit the before_build.js script named for the hook point
triggered before the build begins. That hook point is named before_build.

A basic example illustrates a simple customization using the before_optimize hook, which
allows you to control the RequireJS properties shown in bold to modify the app's bundling
configuration.

requirejs.config(
{
 baseUrl: "web/js",
 name: "main-temp",
 paths: {
 // injector:mainReleasePaths
 "knockout":"libs/knockout/knockout-3.x.x.debug",
 "jquery":"libs/jquery/jquery-3.x.x",
 "jqueryui-amd":"libs/jquery/jqueryui-amd-1.x.x",
 ...
 }

Chapter 2
Customize the Web App Tooling Workflow

2-19

 // endinjector
 out: "web/main.js"
}
...

A script for this hook point might add one line to the before_optimize script template, as
shown below. When you build the app with this customization script file in the default location,
the tooling triggers the script before calling requirejs.out() and changes the out property
setting to a custom directory path. The result is that the app-generated main.js is created in
the named directory instead of the default web/js/main.js location.

module.exports = function (configObj) {
 return new Promise((resolve, reject) => {
 console.log("Running before_optimize hook.");
 configObj.requirejs.out = 'myweb/js/main.js';
 resolve(configObj);
 });
};

You can retrieve more information about the definition of configObj that is passed into many
script hook points as a parameter by making the following modification in one of the build-
related hook points and then running ojet build. For example, the before_build.js hook
point can be modified as follows:

module.exports = function (configObj) {
 return new Promise((resolve, reject) => {
 console.log("Running before_build hook.", configObj);
 resolve(configObj);
 });
};

The console from where you run the ojet build command then displays the available options
that you can customize in configObj.

Cleaning staging path.
Running before_build hook {
 buildType: 'dev',
 opts: {
 stagingPath: 'web',
 injectPaths: {
 startTag: '// injector:mainReleasePaths',
. . .

Elsewhere, read examples that illustrate how to use the configObj to customize a hook point
to, for example, add Express configuration options or write Express middleware functions in
the before_serve.js hook point if the ready-to-use ojet serve options do not meet your
requirements. See Serve a Web App to a HTTPS Server Using a Self-signed Certificate.

Chapter 2
Customize the Web App Tooling Workflow

2-20

Tip:

If you want to change app path mappings, it is recommended to always edit the
path_mappings.json file. An exception might be when you want app runtime path
mappings to be different from the mappings used by the bundling process, then you
might use a before_optimize hook script to change the requirejs.config paths
property.

The following example illustrates a more complex build customization using the after_build
hook. This hook script adds a customize task after the build finishes.

'use strict’;

const fs = require('fs');
const archiver = require('archiver');

module.exports = function (configObj) {
 return new Promise((resolve, reject) => {
 console.log("Running after_build hook.");

 //Set up the archive
 const output = fs.createWriteStream('my-archive.war');
 const archive = archiver('zip');

 //Callbacks for the archiver
 output.on('close', () => {
 console.log('Files were successfully archived.');
 resolve();
 });

 archive.on('warning', (error) => {
 console.warn(error);
 });

 archive.on('error', (error) => {
 reject(error);
 });

 //Archive the web folder and close the file
 archive.pipe(output);
 archive.directory('web', false);
 archive.finalize();
 });
};

In this example, assume the script templates reside in the default folder generated when you
created the app. The goal is to package the app into a ZIP file. Because packaging occurs
after the app build process completes, this script is triggered for the after_build hook point.
For this hook point, the modified script template after_build.js will contain the script code to
ZIP the app, and because the .js file resides in the default location, no hooks system
configuration changes are required.

Chapter 2
Customize the Web App Tooling Workflow

2-21

Tip:

Oracle JET tooling reports when hook points are executed in the message log for the
build and serve process. You can examine the log in the console to understand the
tooling workflow and determine exactly when the tooling triggers a hook point script.

Pass Arguments to a Hook Script for Web Apps
You can pass extra values to a hook script from the command-line interface when you build or
serve the web app. The hook script that you create can use these values to perform some
workflow action, such as creating an archive file from the contents of the web folder.

You can add the --user-options flag to the command-line interface for Oracle JET to define
user input for the hook system when you build or serve the web app. The --user-options flag
can be appended to the build or serve commands and takes as arguments one or more space-
separated, string values:

ojet build --user-options="some string1" "some string2" "some stringx"

For example, you might write a hook script that archives a copy of the build output after the
build finishes. The developer might pass the user-defined parameter archive-file set to the
archive file name by using the --user-options flag on the Oracle JET command line.

ojet build web --user-options="archive-file=deploy.zip"

If the flag is appended and the appropriate input is passed, the hook script code may write a
ZIP file to the /deploy directory in the root of the project. The following example illustrates this
build customization using the after_build hook. The script code parses the user input for the
value of the user defined archive-file flag with a promise to archive the app after the build
finishes by calling the NodeJS function fs.createWriteStream(). This hook script is an
example of taking user input from the command-line interface and processing it to achieve a
build workflow customization.

'use strict';
const fs = require('fs');
const archiver = require('archiver');
const path = require('path');

module.exports = function (configObj) {
 return new Promise((resolve, reject) => {
 console.log("Running after_build hook.");

 //Check to see if the user set the flag
 //In this case we're only expecting one possible user defined
 //argument so the parsing can be simple
 const options = configObj.userOptions;
 if (options){
 const userArgs = options.split('=');
 if (userArgs.length > 1 && userArgs[0] === 'archive-file'){
 const deployRoot = 'deploy';
 const outputArchive = path.join(deployRoot,userArgs[1]);

Chapter 2
Customize the Web App Tooling Workflow

2-22

 //Ensure the output folder exists
 if (!fs.existsSync(deployRoot)) {
 fs.mkdirSync(deployRoot);
 }

 //Set up the archive
 const output = fs.createWriteStream(outputArchive);
 const archive = archiver('zip');

 //callbacks for the archiver
 output.on('close', () => {
 console.log(`Archive file ${outputArchive} successfully created.`);
 resolve();
 });

 archive.on('error', (error) => {
 console.error(`Error creating archive ${outputArchive}`);
 reject(error);
 });

 //Archive the web folder and close the file
 archive.pipe(output);
 archive.directory('web', false);
 archive.finalize();
 }
 else {
 //Unexpected input - fail with information message
 reject(`Unexpected flags in user-options: ${options}`);
 }
 }
 else {
 //nothing to do
 resolve();
 }
 });
};

Use Webpack in Oracle JET App Development
You can use Webpack to manage your Oracle JET app, as well as the build and serve tasks.

If you decide to use Webpack, Oracle JET passes responsibility to Webpack to build and serve
the source files of your Oracle JET project. Before you decide to use Webpack, note that it is
not possible to use Webpack with Oracle JET apps that need to build, package or publish web
components, to test apps using Oracle JET's Component WebElements UI automation library
(TestAdapters), or to use the newer Core Pack components through their component class
names. That is, the following syntax won't work:

import { SelectMultiple } from "oj-c/select-multiple";

export function Content() {
 return (
 <SelectMultiple labelHint="Select Multiple" itemText="foo"/>

Chapter 2
Use Webpack in Oracle JET App Development

2-23

https://www.oracle.com/webfolder/technetwork/jet/wdtsdoc/index.html

);
};

Though you can use Core Pack components using their custom element names, as in the
following example:

import "oj-c/select-multiple";

export function Content() {
 return (
 <oj-c-select-multiple labelHint="Select Multiple" />
);
};

If you decide to use Webpack in your Oracle JET app, you can specify it as a command-line
argument when you scaffold the project, as demonstrated by the following example command:

ojet create <app-name> --template=basic --vdom --webpack
To build and serve the app with Webpack, simply run ojet build and ojet serve respectively.
You cannot use the ojet serve --release command. To run a release build from your local
development environment, use the ojet build --release command, and then use a static
server of your choice (for example, http-server) from the /web folder.

To add Webpack to an existing Oracle JET app, run the following command from the root
directory of your Oracle JET project:

ojet add webpack
The files and directories in an Oracle JET project that uses Webpack differ to a project an app
generated without specifying the --webpack argument. The following table describes the
differences that result from use of the --webpack argument.

Option Description

/types The types directory contains a /types/components/index.d.ts file with a stub to add custom
element tag names to the list of known JSX intrinsic elements. This is important if you plan to use custom
elements within JSX that do not have preact.JSX.IntrinsicElements type definitions. Note that /
types should only include type definitions which do not emit a JavaScript file after compilation. If you
wish to rename the folder, make sure to also update the reference to it in the tsconfig.json file under
the typeRoots option.

ojet.config.j
s

This file manages Oracle JET's default webpack configuration. For more detail about this file and how to
configure it, see Configure Oracle JET's Default Webpack Configuration.

tsconfig.json In constrast to the tsconfig.json generated for apps without Webpack, the esModuleInterop and
resolveJsonModule flags are set to true. The esModuleInterop flag allows apps to standardize on
default imports for all module types. Calls such as import * as <importName> from "path/to/
import" should be written as import <importName> from "path/to/import". The
resolveJsonModule flag allows apps to directly import JSON files. Paired with Webpack's automatic
support for resolving JSON file imports, you do not have to use the RequireJs text! plugin followed by
JSON.parse to consume JSON files in the Oracle JET app.

As mentioned at the start of this topic, it is not possible to use Webpack in Oracle JET projects
that build, package or publish web components, or projects that need use JET theming. In
other words, this means that you cannot use the following commands from the Oracle JET CLI:

• ojet build (component|pack)

Chapter 2
Use Webpack in Oracle JET App Development

2-24

https://www.npmjs.com/package/http-server

• ojet package (component|pack)
• ojet publish (component|pack)
One other thing to note is that when you serve your Oracle JET app in development mode (the
default), the Oracle JET app loads styles from memory and styles appear in the <styles> tag
in the HTML of your browser. In contrast, when you serve an Oracle JET app that you have
built in release mode (ojet build --release), styles come from the CSS file link that is
included in the HTML file. In the following image, with an Oracle JET app instance that runs in
development mode and release mode instance, you can see the different entries using the
browser’s developer tools.

Configure Oracle JET's Default Webpack Configuration
You can configure the default Webpack configuration generated by the Oracle JET CLI through
the webpack function in the ojet.config.js file.

The webpack function receives an object with the Oracle JET build context (context) and
Webpack configuration (config). Note the buildType property which indicates whether
Webpack executes in development or release mode. As for config, the default Webpack
configuration generated by Oracle JET, you can customize it to fit your needs.

Chapter 2
Configure Oracle JET's Default Webpack Configuration

2-25

To view the default options in the ojet.config.js file, add a console log statement to the
ojet.config.js file, as demonstrated by the following examples:

. . .
webpack: ({ context, config }) => {
 if (context.buildType === "release") {
 // update config with release / production options
 } else {
 // Print out the default webpack configuration options
 // as a JSON string
 console.log(JSON.stringify(config));
 // Or let your terminal console determine how to
 // present the configuration
 console.log(config);
 }
. . .

Then build your Oracle JET project using the following command to render the default
configuration in the terminal console:

ojet build

Tip:

Create a JSON-formatted file in Visual Studio Code to view the default configuration
in a more readable form to that returned by the terminal.

The default Webpack configuration for an Oracle JET app built in development mode includes
the following top-level nodes:

{
 "entry": { },
 "output": { },
 "module": {},
 "resolve": {},
 "resolveLoader": { },
 "plugins": [],
 "mode": "development",
 "devServer": { }
}

Once you have identified the configuration setting in Oracle JET's default Webpack
configuration that you want to change, you add the alternative value in the ojet.config.js file.
The following example illustrates how to change the port number when you serve your Oracle
JET app in development mode using Webpack.

module.exports = {

 webpack: ({ context, config }) => {
 if (context.buildType === 'release') {
 // update config with release / production options
 } else {

Chapter 2
Configure Oracle JET's Default Webpack Configuration

2-26

 // update config with development options. In the following example, we
specify
 // a different server port number to the default of 8000
 config.devServer.port = 3000;

 // Print out the default webpack configuration options as a JSON string
 console.log(JSON.stringify(config));
 // Or let your terminal console determine how to present the
configuration
 console.log(config);
 }
 return config;
 }
};

Chapter 2
Configure Oracle JET's Default Webpack Configuration

2-27

3
Understand VComponent-based Web
Components

Oracle JET provides you with a web component API, VComponent, to create web components
that use virtual DOM rendering.

The web components that you create using VComponent use virtual DOM rendering. For those
of you who previously used the Composite Component Architecture (CCA) to develop web
components, you’ll see many differences. Those of you who are familiar with the Preact library
that underpins the Oracle JET virtual DOM architecture will see some familiar concepts. This
chapter attempts to introduce you to the concepts that you'll need to know to develop
VComponent-based web components.

One difference to note is that unlike CCA-based web components, VComponent-based web
components do not use Knockout or its built-in expression evaluator to evaluate expressions.
Instead, VComponent-based web components use JET’s CspExpressionEvaluator to ensure
that expressions you use comply with Content Security Policy. CspExpressionEvaluator
supports a limited set of expressions to ensure compliance with Content Security Policy.
Familiarize yourself with the syntax that JET's CspExpressionEvaluator supports when using
expressions in your VComponent-based web component. See the CspExpressionEvaluator
API documentation.

The JET tooling assists you with creating, packaging, and publishing web components. Usage
of the JET tooling remains the same as for CCA-based web component development, but the
output differs. We'll go through the creation of a standalone VComponent-based web
component and a series of web components to include in a JET Pack in the next chapter.

For now, let’s look at usage of VComponent to create web components, assuming that you have
already acquired the Prerequisite Knowledge that we described in the introductory chapter of
this guide.

Note:

You can complement your reading of this chapter by also reading the VComponent
entry in the API Reference for Oracle® JavaScript Extension Toolkit (Oracle JET) and
the Oracle JET VComponent Tutorial.

Hello VComponent, an Introduction
You write a VComponent-based web component as a TypeScript module in a file with the .tsx
file extension.

The example that follows shows a VComponent class named HelloWorld with a custom
element name of hello-world in a file named hello-world.tsx. Note the following about the
entries in the hello-world.tsx file:

• JSX elements express the content of the virtual DOM tree (<p>{props.message}</p>).

3-1

https://docs.oracle.com/en/middleware/developer-tools/jet/17/reference-api/oj.CspExpressionEvaluator.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17/reference-api/ojvcomponent.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17/reference-api/ojvcomponent.html
https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-VComponent-Tutorial/public_html/index.html

• The h function, imported from the preact module, turns the JSX elements into virtual DOM
elements.

import { ExtendGlobalProps, registerCustomElement } from "ojs/ojvcomponent";
import { h, ComponentProps, ComponentType } from "preact";
import componentStrings = require("ojL10n!./resources/nls/hello-world-
strings");
import "css!./hello-world-styles.css";

type Props = Readonly<{
 message?: string;
}>;

/**
 *
 * @ojmetadata version "1.0.0"
 * @ojmetadata displayName "A user friendly, translatable name of the
component"
 * @ojmetadata description "A translatable high-level description for the
component"
 *
 */
function HelloWorldImpl({ message = "Hello from hello-world" }: Props) {
 return <p>{message}</p>;
}

export const HelloWorld:
ComponentType<ExtendGlobalProps<ComponentProps<typeof HelloWorldImpl>>>
 = registerCustomElement("hello-
world", HelloWorldImpl);

The Oracle JET tooling helps you create VComponent web components by generating a
template .tsx file plus additional files and folders with resources to support the component.
The example just shown with the custom element name of hello-world was created by the
following command:

ojet create component hello-world
If you want to create a VComponent-based web component in an app that does not use the
virtual DOM architecture, you need to include --vcomponent in the command to create the
component (ojet create component hello-world --vcomponent). The Oracle JET tooling
also supports the creation of class-based web components if you append the class option to
the --vcomponent parameter (ojet create component hello-world --vcomponent=class).
The default behavior is to create function-based VComponents.

Irrespective of the type of VComponent that you create (class or function), the tooling
generates these files in the directory referenced by the components property in the
appRootDir/oraclejetconfig.json file. By default, the value of the components property is
also components.

appRootDir/components/hello-world/
| loader.ts
| hello-world-styles.css
| hello-world.tsx
| README.md

Chapter 3
Hello VComponent, an Introduction

3-2

+---resources
+---themes

Readers who previously developed CCA-based web components will recognize the loader.ts
file that the Oracle JET tooling includes so that the component can be used by the Component
Exchange, Oracle Visual Builder, and the Oracle JET tooling itself. For a VComponent-based
web component, the loader.ts file includes an entry to export the VComponent module, as in
the following example:

export { HelloWorld } from "./hello-world";
Once you build a VComponent web component, you can import it into the app where it is to be
used. The following example demonstrates how you import our example component into the
content component of an app that was scaffolded using the virtual DOM architecture starter
template:

import { h } from "preact";
import { HelloWorld } from "hello-world/loader";

export function Content() {
 return (
 <div class="oj-web-applayout-max-width oj-web-applayout-content">
 <HelloWorld />
 </div>
);
}

Metadata for VComponents
JET metadata expresses information that may be useful to both tools and consumers of the
VComponent-based web components that you create.

You write metadata in the VComponent's module class. You’ll have seen examples of this
metadata in the HelloWorld VComponent that we introduced earlier. Specifically, the
HelloWorld VComponent included a TypeScript decorator, @customElement("hello-world"),
to add custom element behavior to the VComponent at runtime, and it is also used at build
time as a source of the component’s “name” metadata. The other example is the use of the

Chapter 3
Metadata for VComponents

3-3

@ojmetadata doc annotation where a series of entries provide version, display name, and
description information, as in the following example:

* @ojmetadata version "1.0.0"
* @ojmetadata displayName "A user friendly, translatable name of the
component"
* @ojmetadata description "A translatable high-level description for the
component"

You’ll notice that each @ojmetadata annotation specifies a single name/value pair. The values
must be valid JSON values. As shown above, string values should be double-quoted. Object,
array, and primitive values can be specified directly within the annotation (without quotes). You
can also extend the metadata to append extra information in an extension field, as shown by
the following example.

* @ojmetadata extension {
* vbdt: {
* someVisualBuilderDesignTimeField: true
* }
* }

For reference information about JET Metadata, see JET Metadata.

Nest VComponents
Custom element-based VComponents can be embedded directly into HTML.

This allows you to integrate VComponents into existing Oracle JET content, including into
composite components, oj-module content, or pages authored in Oracle Visual Builder. In
addition to being hosted within HTML, VComponents can be nested inside of other
VComponents. A parent VComponent can reference a child VComponent using the component
class name. In the following example, a VComponent class, HelloParent, nests a child
VComponent, Hello.

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent";
import { h, Component, ComponentChild } from "preact";
import { Hello } from "oj-greet/hello/loader";

type Props = {
 message?: string;
};

/**
 * @ojmetadata pack "oj-greet"
 * ...
 */
@customElement("oj-greet-hello-parent")
export class HelloParent extends Component<ExtendGlobalProps<Props>> {
 static defaultProps: Partial<Props> = {
 message: "Hello from oj-greet-hello-parent!",
 };

 render(props: Props): ComponentChild {
 return (

Chapter 3
Nest VComponents

3-4

https://docs.oracle.com/en/middleware/developer-tools/jet/17/reference-api/MetadataOverview.html

 <div>
 <p>{props.message}</p>
 <p>The HelloParent VComponent nests the Hello VComponent class in the
 next line:</p>
 <Hello />
 </div>
);
 }
}

The resulting content in the HTML is:

<div class="oj-web-applayout-max-width oj-web-applayout-content">
 <oj-greet-hello-parent class="oj-complete">
 <div>
 <p>Hello from oj-greet-hello-parent!</p>
 <p>The HelloParent VComponent nests the Hello VComponent class in the
next line:</p>
 <oj-greet-hello class="oj-complete"><p>Hello from oj-greet-hello!
</p></oj-greet-hello>
 </div>
 </oj-greet-hello-parent>
</div>

An <oj-greet-hello> custom element ends up in the live DOM.

VComponent Properties
Properties are read-only arguments of a VComponent class that you pass into an instance of
the VComponent.

Properties that you declare may also be passed to web components as HTML attributes.
Essentially, the properties of a VComponent API component module are like function
arguments in JSX and attributes in HTML usages.

Declare VComponent Properties
You declare a VComponent property through a type alias that is, by convention, named Props.

Each field in the type represents a single public component property. A field specifies the
property's name, type, and whether the value for the field is optional or required. Default values
are specified in the static defaultProps field on the component class.

In the following example, we declare a single property (preferredGreeting) of type string.
TypeScript’s optional indicator (?) identifies it as an optional property, and the default value of
Hello is specified in the static defaultProps field.

One subtle requirement that may be easy to miss: to associate the properties class with the
VComponent implementation, you need to specify the class as the value of the VComponent's
first type parameter (export class WithProps extends
Component<ExtendGlobalProps<Props>>).

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent";
import { h, Component, ComponentChild } from "preact";

Chapter 3
VComponent Properties

3-5

type Props = {
 preferredGreeting?: string;
};

/**
 * @ojmetadata pack "oj-greet"
 * ...
 */
@customElement("oj-greet-with-props")
export class WithProps extends Component<ExtendGlobalProps<Props>> {
 static defaultProps: Partial<Props> = {
 preferredGreeting: "Hello",
 };

 render(props: Props): ComponentChild {
 return <p>{props.preferredGreeting}, World!</p>;
 }
}

Reference Properties in JSX
To work with the properties, VComponent requires that you first associate the property class
with the VComponent instance implementation.

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent";
import { h, Component, ComponentChild } from "preact";

type Props = {
 preferredGreeting?: string;
};

/**
 * @ojmetadata pack "oj-greet"
 */
@customElement("oj-greet-with-props")
export class GreetWithProps extends Component<ExtendGlobalProps<Props>> {
 static defaultProps: Partial<Props> = {
 preferredGreeting: "Hello from oj-greet-with-props!"
 };

 render(props: Readonly<Props>): ComponentChild {
 return <p>{props.preferredGreeting}</p>;
 }
}

Access Properties

You can access declared properties in the VComponent API component implementation
through a special object: this.props. An example of this usage can be found at line 12, where
the this.props field extracts the value of the preferredGreeting property into the variable
greeting. This variable subsequently influences the state of the rendered virtual DOM tree,

Chapter 3
VComponent Properties

3-6

where the value of the preferredGreeting property gets embedded into the virtual DOM at
line 16.

One point to keep in mind is that the property values in this.props are always defined by the
consumer of the VComponent API component. In the HTML case, this.props is populated
based on attribute/property values specified on the custom element by the application. In the
case where the VComponent API component is used within a parent VComponent API
component, the property values are provided by the parent component. A VComponent API
component implementation can read these property values, but must never mutate the
this.props object.

Reference Properties of a Child Component in JSX
VComponent API custom elements can also be embedded inside of other parent VComponent
API custom elements.

As was described in Nest VComponents, a VComponent API component parent can refer to a
child using the VComponent API component’s implementation class name directly. Inside of
JSX, always specify component properties using their camelCase property names.

Here is an example of a VComponent, GreetWithPropsParent, that demonstrates this:

import { h, Component } from "preact";
import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent";
import { GreetWithProps } from "oj-greet/with-props/loader";

/**
 * @ojmetadata pack "oj-greet"
 * ...
 */
@customElement("oj-greet-with-props-parent")
export class GreetWithPropsParent extends Component<ExtendGlobalProps<Props>>
{
 render() {
 return (
 <div>
 <GreetWithProps preferredGreeting="Hola" />
 </div>
);
 }
}

Note how the sample uses the preferredGreeting property name, not the preferred-
greeting attribute name.

Type-Checking Support
Although the use of different naming conventions between HTML and JSX markup appears
confusing at first, it is important to use only property names within JSX to maintain type
checking.

When specifying a JSX element like this:

<oj-greet-with-props preferredGreeting="Hey there"/>

Chapter 3
VComponent Properties

3-7

Or this:

<GreetWithProps preferredGreeting="Hola"/>

The properties on each JSX element populate a props object that eventually ends up
populating the child component's this.props field. The type of this props object is based on
the child VComponent API component instance's props type parameter. So using the property
names as declared by the VComponent API component instance's property type, ensures type
checking (and catching errors) happens in the parent component's JSX.

Global HTML Attributes
The naming convention of camelCase supports referencing component properties from within
JSX. Ideally, this same convention can work for global HTML attributes, such as id or
tabIndex. However, not all global HTML attributes are exposed as properties. For example,
aria- and data- attributes do not have property equivalents.

This leads to the following rules for working with global HTML properties/attributes:

• If the global HTML attribute is available as a property, use the property name.

• If the global HTML attribute is not available as a property, use the attribute name.

In many cases, global HTML attribute names will be identical to the property name (such as id,
title, and style). However, there are some cases where the attribute and property name
differ, or where the property name requires a specific case-folding. For example, since
attributes are case insensitive, HTML allows any capitalization of the tabindex attribute.
However, JSX requires that you use the actual property name tabIndex:

protected render() {
 // While "tabindex" is a valid way to specify the tab index
 // in an HTML document, in JSX, the property name "tabIndex"
 // must be used.
 return <div tabIndex="0" />
 }

There is one exception to the rule that governs property name references. Although the
property name for specifying style classes is className, this name is not commonly known.
VComponent allows use of the more familiar attribute name class:

protected render() {
 // Use "class" instead of "className"
 return <div class="awesome-class" />
}

Children and Slot Content
In addition to exposing properties, components can also allow children to be passed in. With
VComponent API custom elements, children are specified in one of two ways:

1. As direct children, with no slot attribute. This is also known as the default slot.

2. As a named slot, with the name set through the slot attribute.

Chapter 3
Children and Slot Content

3-8

Components can leverage both of these approaches. For example, the following oj-c-
collapsible element is configured both with default slot content, as well as content in the
header named slot:

<oj-c-collapsible>
 <h3 slot='header'>This is named slot content</h3>
 This is default slot content
 </oj-c-collapsible>

The VComponent API supports authoring of custom elements that expose default slots, named
slots, or both.

Default Slots
VComponent API favors the use of code constructs over external metadata for defining a
component’s public API. There is no need to declare a VComponent API custom element
children/slot contract through JSON metadata; instead default slots are added by writing code.

The children/slot contract for the VComponent API custom element is defined by adding fields
to a Props class. In particular, you indicate that a component can accept default slot content by
declaring a children property of type ComponentChildren:

import { h, Component, ComponentChildren } from 'preact';
 type Props = {
 preferredGreeting?: string;
 children?: ComponentChildren;
 }

And, you can then associate the Props class with the VComponent through the Props type
parameter:

@customElement(‘oj-greet-with-children’)
 export class GreetWithChildren extends Component<ExtendGlobal<Props>> {
 }

Once this is done, any default slot children will be made available to the VComponent API
component implementation through props.children. This is true regardless of whether the
component implementation is used as a custom element within an HTML document, a custom
element within JSX, or through the VComponent component implementation class within JSX.

The VComponent component implementation is free to place the default slot children
anywhere within the component’s virtual DOM tree. For example, a VComponent API button
likely would place these children inside of an HTML <button> element:

protected render() {
 return <button> { props.children } </button>;
 }

Named Slots
Like the default slot, named slots are also declared as fields on the props class.

Named slot declarations must adhere to two conventions:

Chapter 3
Children and Slot Content

3-9

• The named slot field must use the Slot type.

• The name of the field must match the slot name.

The declaration for a slot named startIcon looks like this:

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent";
import { h, Component, ComponentChild } from "preact";
import "oj-c/avatar";
import { GreetWithChildren } from 'oj-greet/with-children/loader'

type Props = {
 startIcon?: Slot;
}

/**
 * @ojmetadata pack "oj-greet"
 * @ojmetadata dependencies {
 * "oj-greet-with-children": "^1.0.0"
 * }
 */
@customElement('oj-greet-with-children-parent')
export class GreetWithChildrenParent extends
Component<ExtendGlobalProps<Props>> {
 render() {
 return (
 <div>
 <p>This child is rendered as a VComponent class:</p>
 <GreetWithChildren startIcon={<oj-c-avatar initials="HW"
size="xs" />}>
 World
 </GreetWithChildren>
 </div>
);
 }

When the VComponent is referenced through its class, named slot content is provided by
specifying virtual DOM nodes directly as values for slot properties, as demonstrated in the
following parent VComponent.

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent";
import { h, Component, ComponentChild } from "preact";
import "oj-c/avatar";
import { GreetWithChildren } from "oj-greet/with-children/loader";

/**
 * @ojmetadata pack "oj-greet"
 * @ojmetadata dependencies {
 * "oj-greet-with-children": "^1.0.0"
 * }
 */
@customElement("oj-greet-with-children-parent")
export class GreetWithChildrenParent extends
Component<ExtendGlobalProps<Props>> {
 render() {
 return (

Chapter 3
Children and Slot Content

3-10

 <div>
 <p>This child is rendered as a VComponent class:</p>
 <GreetWithChildren startIcon={<oj-c-avatar initials="HW"
size="xs" />}>
 World
 </GreetWithChildren>
 </div>
);
 }
}

Refresh Custom Elements with Dynamic Children and Slot Content
Virtual DOM architecture provides a Remounter component to make sure that a custom
element re-renders correctly when its children or slot content changes dynamically.

A concrete example demonstrates when to use the Remounter component. In the following
example, the oj-c-button element’s display of a start icon depends on the value of the
showStartIcon property. We want to ensure that the oj-c-button renders the start icon in the
correct location when the showStartIcon property changes.

type Props = {
 showStartIcon?: boolean
}

function ButtonStartIconSometimes(props: Props) {
 return (
 <oj-c-button label="Click Me!">
 { props.showStartIcon && <span slot="startIcon" class="some-icon-
class" /> }
 </oj-c-button>
)
}

A more appropriate approach for the VDOM architecture is to assign a unique key that reflects
the oj-c-button showStartIcon property’s different states. In the above example, assigning a
unique key is straightforward, as there are only two possible states. However, in some cases
producing a unique key for all possible children states is more challenging. For these more
challenging cases, use the Remounter component to wrap a single custom element child and
generate a unique key based on the current set of children. The following revised example
demonstrates how you use the Remounter component to ensure that the oj-c-button re-
renders with the start icon in the correct location:

import { h } from 'preact';
import { Remounter } from 'ojs/ojvcomponent-remounter';
import "oj-c/button";

type Props = {
 showStartIcon?: boolean
}

function ButtonStartIconSometimes(props: Props) {
 return (
 <Remounter>

Chapter 3
Children and Slot Content

3-11

https://reactjs.org/docs/lists-and-keys.html#keys

 <oj-c-button label="Click Me!">
 { props.showStartIcon && Start Icon }
 </oj-c-button>
 </Remounter>
)
}

export { ButtonStartIconSometimes };

Note that you only need to use the Remounter component when configuring custom elements
where the number of types of children change across renders.

Template Slots
In addition to simple, non-contextual slots, JET components also support slots that can receive
context. These are called template slots.

Template slots are typically found in collection components that iterate over a data set,
stamping out content for each item or row. For example, <oj-list-view> exposes an
itemTemplate slot that controls how the content of each list item renders. Within HTML, a
template element with a slot attribute specifies a template slot, as in the following example:

<oj-list-view data="[[items]]">
 <template slot="itemTemplate" data-oj-as="item">
 <div>
 <oj-bind-text value="[[item.data.value]]"></oj-bind-text>
 </div>
 </template>
</oj-list-view>

VComponent API custom elements can also expose template slots. To understand how this
works, consider a greeting component that takes an array of names to greet and renders a
greeting for each name. The property declaration might look like this:

class Props {
 names: Array<string>
}

It is possible to just iterate over the names and render the content for each item:

protected render() {
 return (
 <div>
 { this.props.names.map(name => <div>Hello, {name}!</div>) }
 </div>
);
}

With the above approach, the decision about how to render each greeting would be hardcoded
into the component implementation. Instead, this can be made more flexible by exposing a
template slot that allows the app to customize how each greeting is rendered.

Chapter 3
Template Slots

3-12

Similar to simple, non-contextual slots, template slots are declared as properties with a well
known type: TemplateSlot. Let's take a look at this type alias:

export type TemplateSlot<Data> = (data: Data) => Slot;

The TemplateSlot is a generic function type that accepts a single argument: the data to use
when rendering a specific instance of the template. The type of this data is defined through the
Data type parameter, which must be specified when the TemplateSlot property is declared.

Here is a new version of the greeting component that delegates rendering to an optional
greetingTemplate slot:

oj-greet/hello-many.tsx:
1 import { h, Component } from 'preact';
2 import { customElement, ExtendGlobalProps, TemplateSlot } from 'ojs/
ojvcomponent';
3
4 export type GreetingContext = {
5 name: string;
6 }
7
8 type Props = {
9 names: Array<string>;
10 greetingTemplate?: TemplateSlot<GreetingContext>;
11 }
12
13 /**
14 * @ojmetadata pack "oj-greet"
15 */
16 @customElement('oj-greet-hello-many')
17 export class GreetHelloMany extends Component<ExtendGlobalProps<Props>>
{
18 render() {
19 return (
20 <div>
21 {
22 this.props.names.map((name) => {
23 return this.props.greetingTemplate?.({ name }) ||
24 <div>Hello, { name }!</div>
25 })
26 }
27 </div>
28);
29 }
30 }

This sample declares the greetingTemplate slot at line 10. Note that the Data type parameter
must be an object type. The sample uses the GreetingContext type as declared at line 4.

The template slot (if non-null) is invoked for each item in the names array at line 23. The
sample passes in an object of type GreetingContext with each invocation. Alternatively, if no
slot is provided, it returns the default content at line 24.

Chapter 3
Template Slots

3-13

Provide Template Slot Content within HTML
After you expose the template slot in the VComponent implementation, then within HTML, you
provide slot content the same as any JET custom element: by specifying a <template>
element with a slot attribute. Within the template element, you use JET binding expressions
and elements to render the desired greeting:

<oj-greet-hello-many names="[[['Joel', 'Mike', 'Jonah']]]">
 <template slot="greetingTemplate" data-oj-as="greeting">
 <div>
 Hi, <oj-bind-text value="[[greeting.name]]"></oj-bind-text>!
 </div>
 </template>
</oj-greet-hello-many>

Template Slots in JSX
When rendering a component in JSX through its VComponent API component class (such as
<GreetHelloMany>), template slots are passed in as functions that adhere to the TemplateSlot
contract. This means you must implement template slots as functions that take some data, and
return either a single virtual DOM node or an array of nodes.

This might look something like:

<GreetHelloMany names={names}
 greetingTemplate={ (data) => <div>Hello, { data.name}!</div> }

Of course, you can also reference the GreetHelloMany component by using its custom element
tag name.

As the previous HTML sample shows, custom element template slots are specified using JET
binding expressions (such as value="[[greeting.name]]") and elements (such as oj-
bind-text) inside a <template> element. While this approach fits in nicely within an HTML
document alongside other content that is configured using JET bindings, it doesn't fit well
inside of a JSX render function. Within JSX, rather than configuring template slot content using
JET binding syntax, JSX syntax is preferred.

To allow template slot content to be specified using JSX-based render functions, VComponent
API introduces a special, VComponent-specific property on the <template> element: the
render property. The type of this property is TemplateSlot.

This allows us to configure template slots on custom elements using JSX-based render
functions, for example:

<oj-greet-hello-many names={names}>
 <template slot="greetingTemplate"
 render={ (data) => <div>Hello, { data.name}!</div> }/>
 </oj-greet-hello-many>

Note that you still need to specify a <template> element with a slot attribute. Rather than
configuring the template slot with JET's binding syntax, instead specify a TemplateSlot
function that returns virtual DOM.

Chapter 3
Template Slots

3-14

A more complete parent component shows this:

oj-greet/hello-many-parent.tsx:

1 import { h, Component } from 'preact';
2 import { customElement, GlobalProps } from 'ojs/ojvcomponent';
3 import "oj-c/avatar";
4 import { GreetHelloMany, GreetingContext } from 'oj-greet/hello-many/
loader';
5
6 /**
7 * @ojmetadata pack "oj-greet"
8 */
9 @customElement('oj-greet-hello-many-parent')
10 export class GreetHelloManyParent extends
Component<ExtendGlobalProps<Props>> {
11 render() {
12
13 const names = ['Joel', 'Mike', 'Jonah'];
14
15 return (
16 <div>
17 <p>This child is rendered as a custom element:</p>
18 <oj-greet-hello-many names={names}>
19 <template slot="greetingTemplate"
render={ this.renderGreeting }/>
20 </oj-greet-hello-many>
21

22 <p>This child is rendered as a VComponent class:</p>
23 <GreetHelloMany names={names}
greetingTemplate={ this.renderGreeting }/>
24 </div>
25);
26 }
27
28 private renderGreeting(data: GreetingContext) {
29 const name = data.name;
30 const firstInitial = name.charAt(0);
31 const greeting = name.length < 5 ? 'Hey' : 'Hi';
32
33 return (
34 <p class="centerAlignVertical">
35 <oj-c-avatar size="xxs" initials={ firstInitial } />
36 {greeting}, { name }!
37 </p>
38);
39 }
40 }

In the above example, the render property provides JSX-based content for the <oj-greet-
hello-many> custom element, which happens to be implemented with VComponent API.
However, this property can also be used when configuring template slot content for any JET

Chapter 3
Template Slots

3-15

component. For example, you can configure the <oj-list-view> itemTemplate slot as
follows, even though this custom element is not implemented with the VComponent API:

protected render() {
 <oj-list-view data={ this.props.items }>
 <template slot="itemTemplate"
 render={ (item) => { return <div>{ item.data.value }</div> } } />
 </oj-list-view>

Understand Events and Actions
Two terms seem interchangeable at first, but in VComponent API, event and action have two
distinct meanings:

• event specifically refers to DOM Events that are dispatched by calling to dispatchEvent.

• action is a higher-level abstraction for event-like APIs, which may or may not actually
involve dispatching an Event at the DOM level.

This distinction arises due to the fact that VComponent API component instances can be used
in two ways:

• As a custom element, using the string tag name.

• As a VComponent API component, using the component implementation class.

When a VComponent API component is used as a custom element, invoking an action results
in the dispatch of a DOM event.

However, when referencing a VComponent API component through its implementation class,
no DOM event is created or dispatched. Instead, the action callback provided by the parent
component is invoked directly.

To support these different usage models, a higher level abstraction than DOM events is
required. VComponent API actions provide that abstraction.

For simplicity, usage of the term action refers to the general behavior by which VComponent
API component instances notify the outside world of activity. Whereas usage of the term event
is reserved specifically for DOM events that are dispatched by custom (or plain old HTML)
elements.

Listeners
Event listeners are functions that take a DOM event and have no return value. VComponents
can listen for and respond to standard HTML events plus custom events on custom elements.

The naming convention that you use for the event listener differs depending on whether you
listen for a standard HTML event or custom event.

For standard HTML events, such as click, change, mouseover, add a property name that uses
the naming convention: on<UpperCaseStandardEventName>. The following example shows you
how to register an event listener for a click event.

render() {
 return <div onClick={this._handleClick}>Click Me!</div>
}

Chapter 3
Understand Events and Actions

3-16

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/dispatchEvent

For custom events such as <oj-c-button>'s ojAction event, use the on<customEventName>
naming convention. The following example shows you how to register an event listener for an
ojAction event.

protected render() {
 return <oj-c-button label="Click Me!" onojAction={this._handleAction}>
 <oj-c-button>
 }

Note how the first character of the custom event name is not capitalized compared to the
standard event (onojAction versus onClick).

There are a number of ways to enable event listener access to a VComponent instance. You
can, for example, explicitly call bind(this) on the event listener function or, alternatively, use
one of the following approaches:

• Define and use an arrow function inline in the render() method.

• A class method can be bound and saved away in the constructor.

• An arrow function can be declared and stored in a class field.

The last two options avoid creating a new function on each call to the render() method and,
by using the same function instance across all render() methods, avoid virtual DOM diffs that
cause DOM addEventListener and removeEventListener calls on each call to the render()
method. The class field approach (private _handleEvent), demonstrated in the following
example, is slightly more concise.

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent";
import { Component } from "preact";
import "oj-c/button";

type Props = Readonly<{
 message?: string;
}>;

@customElement("oj-greet-with-listeners")
export class GreetWithListeners extends Component<ExtendGlobalProps<Props>> {

 render() {
 return (
 <div>
 <div onClick={this._handleEvent}>
 <p>Hello, World!</p>
 </div>
 <oj-c-button label="Click Me!" onojAction={this._handleEvent}></oj-c-
button>
 </div>
);
 }

 private _handleEvent = (event: Event) => {
 console.log(`Received ${event.type} event`);
 };
}

Chapter 3
Listeners

3-17

Actions
We need to make a distinction between event and action because of the different behavior
that occurs when you use a VComponent as a custom element or a component class.

In a VComponent, an event refers to DOM Events that are dispatched through a call to
dispatchEvent while an action is a higher-level abstraction for event-like APIs, which may or
may not actually involve dispatching an event at the DOM level. When you use a VComponent
as a custom element, invoking an action results in the dispatch of a DOM event while no DOM
event is created or dispatched when you use the component class. Instead, for the latter case,
the action callback provided by the parent VComponet is invoked directly. VComponent action
provides a higher-level abstraction than DOM events that is needed to support these two
usage models.

Declare Actions
You need to be able to define actions to dispatch in response to VComponents-defined events.

The following example demonstrates how you add a responseDetected event action to a
VComponent that is dispatched in response to a user action, such as a click. You add a field to
the Props class. The field that you add must follow the standard event listener property naming
convention (on<UpperCaseEventName>) and it must use the Action type defined by the ojs/
ojvcomponent module.

import { customElement, ExtendGlobalProps, Action } from 'ojs/ojvcomponent';
 type Props = {
 preferredGreeting?: string;
 // This is an action declaration:
 onResponseDetected?: Action;
 }

Dispatch Actions
VComponent’s Action type is a callback function.

export type Action<Detail extends object = {}> = (detail?: Detail) => void;

To dispatch an action, the VComponent invokes the Action-typed property as a function.
Actions are typically dispatched in response to some underlying event. In the following
example, the VComponent instance dispatches the responseDetected action in response to a
click:

private _handleClick = (event: MouseEvent) => {
 this.props.onResponseDetected?.();
 }

Note that the consumer of the component is not required to provide a value for
onResponseDetected. As a result, we need to guard against a null value for
this.props.onResponseDetected. To do this, we can take advantage of TypeScript's support
for the optional chaining operator (?.). This allows us to invoke the action callback if it is
provided but short-circuit if not, without the need for a more verbose null check.

Chapter 3
Actions

3-18

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/dispatchEvent

Respond to Actions
The response to an invoked action depends on usage.

If the VComponent is used as a custom element (either within an HTML document or within
JSX in a parent VComponent), the VComponent framework creates a DOM CustomEvent that
it dispatches through the custom element. The event type is derived from the name of the
Action property by removing the on prefix and lower casing the first letter. For example, the
onResponseDetected action results in the dispatch of a responseDetected DOM event type.

If the VComponent is being used by a parent VComponent and is referenced by its class name
rather than the custom element name, no DOM event is created. If the parent VComponent
provides a value for the Action property, this is invoked directly.

In JSX, action callbacks are always specified using the Action property name. This is true
regardless of whether the parent references the child VComponent by its custom element
name of class:

<p>This child is rendered as a custom element:</p>
<oj-greet-with-actions onresponseDetected={this.handleResponse}/>

<p>This child is rendered as a VComponent class:</p>
<GreetWithActions onResponseDetected={this.handleResponse}

However, if the custom element lives within an HTML document, event listeners are typically
registered with JET's event binding syntax. This might look something like:

<oj-greet-with-actions on-response-
detected="[[expressionPointingToEventHandler]]">…
 </oj-greet-with-actions>

Though it is also possible to call the DOM addEventListener API directly.

Action Payloads
You may have noticed that Action is a generic type with a Detail type parameter. The Detail
type parameter is useful when the action needs to deliver additional information beyond just
the action type.

For example, our Greeting component may want to include a flag along with the
responseDetected action to indicate urgency. This would be declared using the Detail type
parameter as follows:

type Props = {
 preferredGreeting?: string;
 onResponseDetected?: Action<{
 urgent: boolean;
 }>;
}

Chapter 3
Actions

3-19

https://developer.mozilla.org/en-US/docs/Web/API/Event/type
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener

When invoking the action, the detail payload is passed in as an argument to the action
callback, as in the following example:

private _handleClick = (event: MouseEvent) => {
 // Pass in a detail payload. Determine urgency based on
 // number of clicks.
 this.props.onResponseDetected?.({
 urgent: event.detail > 1
 });
}

The Detail type parameter can also be specified using a type alias, as in the following
example:

export type ResponseDetectedDetail = {
 urgent: boolean;
};

type Props = {
 preferredGreeting?: string;
 onResponseDetected?: Action<ResponseDetectedDetail>;
};

On the consuming side, there is one subtlely in how the detail payloads are accessed. In the
custom element case, the action callback is registered as a DOM EventListener. That is, when
using the following form:

<oj-greet-with-actions onresponseDetected={this.handleEventResponse}/>

The callback acts as a true DOM event listener, and, as such, receives a single event
argument of type CustomEvent<Detail>. However, when using the VComponent class form:

<GreetWithActions onResponseDetected={this.handleActionResponse}/>

The callback will again receive a single argument, but of type Detail rather than
CustomEvent<Detail>. The difference between custom element usage and VComponent class
usage is admittedly non-obvious. Our recommendation for you is to use the VComponent class
form when that is available.

Manage State Properties
Components may track internal state that is not reflected through their properties. VComponent
API provides a state mechanism to support this.

A VComponent API custom element can determine what content to render based exclusively
on properties that are passed into the component by the parent component. This is useful for
VComponent API components that are fully controlled by the parent component. However,
some components may benefit from their own internal state properties that are not passed in,
but rather exist locally in the component and render content based on state changes.
VComponent authors can leverage Preact's local state mechanism for these cases.

Chapter 3
Manage State Properties

3-20

Declare State
The process of declaring local state fields is very similar to the way that you define
VComponent API properties. In both cases, start by declaring a type.

This example updates our component to display a goodbye message in response to the user
clicking a Done button. The sample uses a boolean local state field done to track whether this
state is reached.

type State = {
 done: boolean;
 // Other state fields go here
};

As with the properties type, we associate the state type with the VComponent implementation
by leveraging generics. The VComponent API component class exposes two type parameters:

• Props: the first type parameter specifies the properties object type

• State: the second type parameter specifies the State object type

The new declaration with both type parameters looks like this:

export class GreetWithState extends Component<ExtendGlobalProps<Props>,
State> {
 }

Each VComponent API component has access to the local state through the this.state field.
This field must be initialized at construction time. Initialization can be done in one of two ways.

If your VComponent API component instance has a constructor, initialize local state there:

export class GreetWithState extends Component<ExtendGlobalProps<Props>,
State> {
 constructor() {
 this.state = {
 done: false
 };

 // Do other construction-time work here
 }

Alternatively, TypeScript supports inline initialization of class fields. This slightly more compact
form works well if you do not otherwise need a constructor:

export class GreetWithState extends Component<ExtendGlobalProps<Props>,
State> {
 state = {
 done: false
 };

 // Component implementation goes here
 }

Chapter 3
Manage State Properties

3-21

Once local state has been declared and initialized, it can be referenced from within the render
function to adjust how the virtual DOM content is rendered. For example, this sample shows
our greeting component rendering a different message when the conversation is "done":

render(props: Props, state: State) {
 // Derive greeting message off of the "done" state field
 const greeting = state.done ?
 'Goodbye' :
 props.preferredGreeting;

 return (
 <div onClick={this._handleClick}>
 <p>{greeting}, World!</p>
 </div>
);
 }

Update State
Updating local state has an important side effect: it triggers re-rendering of the component.

Note that this.state is declared as a Readonly type. Other than the initial assignment to
this.state in the constructor (or class field initialization), neither this.state nor fields on
this.state should be mutated directly.

Instead, state updates are performed by calling the Preact Component's setState method.
This method has two forms. The first form simply takes an object representing the new state.
For example, we can update our done state field by calling:

this.setState({ done: true });

This call queues the state update, which will trigger an (asynchronous) re-render of the
component with the new state.

Although our sample only has a single state field, components can have an arbitrary number of
fields. The setState() method accepts sparsely populated objects; you are not required to
provide values for all state fields. Any new values that are provided will be merged on top of
the current state.

The following version of our greeting component has been modified to use a numeric, enum-
based counter to track how engaged the end user is. After three clicks, the greeting component
ends the conversation.

oj-greet/with-state/with-state.tsx:

import { h, Component } from "preact";
import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent";

type Props = {
 preferredGreeting?: string;
};

enum EngagementLevel {
 Interested,
 Bored,

Chapter 3
Manage State Properties

3-22

 Impatient,
 Done,
}

type State = {
 engagement: EngagementLevel;
};

/**
 * @ojmetadata pack "oj-greet"
 */
@customElement("oj-greet-with-state")
export class GreetWithState extends Component<ExtendGlobalProps<Props>,
State> {
 state = {
 engagement: EngagementLevel.Interested,
 };

 render() {
 const greeting = this.getGreeting();

 return (
 <div onClick={this._handleClick}>
 <p>{greeting}, World!</p>
 </div>
);
 }

 private getGreeting() {
 let greeting;

 switch (this.state.engagement) {
 case EngagementLevel.Bored:
 greeting = "Okay";
 break;
 case EngagementLevel.Impatient:
 greeting = "Whatever";
 break;
 case EngagementLevel.Done:
 greeting = "Later";
 break;
 default:
 greeting = this.props.preferredGreeting;
 break;
 }

 return greeting;
 }

 private _handleClick = (event: MouseEvent) => {
 this.setState((state: Readonly<State>) => {
 // Once we have reached the Done state, we return null
 // to indicate that no state update is needed.
 return state.engagement === EngagementLevel.Done
 ? null
 : { engagement: state.engagement + 1 };

Chapter 3
Manage State Properties

3-23

 });
 };

 static defaultProps: Partial<Props> = {
 preferredGreeting: "Hello",
 };
}

Understand the State Mechanism
One potential problem with the object-based form of setState() arises when the new value for
a state field is derived from the previous value. Given the asynchronous nature of this method,
simply inspecting this.state may not be sufficient to determine what the next value should
be. If there is an outstanding call to setState() that has not yet been fully processed,
this.state might not reflect the pending update.

To better support cases where a state field's next value is dependent on the previous value,
setState() supports a callback form. Rather than passing in an object representing the new
state, callers pass in a function that takes two arguments: the current state and properties. This
callback function can inspect the state and props and return one of the following values:

• A sparsely populated object representing any state updates to apply
or:

• null, if no state updates are required.

When multiple calls to setState() are issued, the state updates are chained. That is, the
results of one call (whether object or callback form) are fed into the subsequent callback. This
ensures the callback always sees the most up to date values, and that it can use this
information to correctly produce the next value.

Reference Child VComponents by Value
You can reference a VComponent child component from within JSX in two ways:

// Use intrinsic element name
function Parent() {
 return <some-comp />;
}

// Use value-based element to reference
// the VComponent class or function value
function Parent() {
 return <SomeComp />
}

We recommend that, whenever possible, you use the value-based element because:

1. It is slightly more efficient as we are able to do more rendering in virtual DOM even before
the VComponent's DOM element is created.

2. It provides a more React/Preact-centric approach to use certain APIs, such as slots and
listeners. (More on this below.)

3. When working within a single project (that is, where both the VComponent and consuming
code is in the same project), you have access to the VComponent class type information

Chapter 3
Reference Child VComponents by Value

3-24

directly in your project source. You are not dependent on a build to produce a type
definition for the class.

Elaborating on point 2, when you reference a VComponent through its intrinsic element name,
you are limited to using this syntax for slots, as in the following example:

function Parent() {
 <some-comp>
 // This is a plain slot:

 // This is a template slot:
 <template slot="itemTemplate render={ renderItem } />
 </some-comp>
}

With a value-based element approach, you can achieve the same outcome more concisely,
and in a form that is more familiar to app developers with a React/Preact background:

function Parent() {
 <SomeComp startIcon={
}

References to event listeners when using the value-based element form also aligns better with
what a React/Preact developer would expect. For example, for intrinsic elements, we need to
follow Preact's custom event naming conventions. So, for an event name of
someCustomEvent, we end up with this listener prop:

function Parent() {
 <some-comp onsomeCustomEvent={ handleSomeCustomEvent }>
}

When referencing the value-based element, this is:

function Parent() {
 <SomeComp onSomeCustomEvent={ handleSomeCustomEvent }>
}

To conclude, use the value-based element whenever possible. For cases where you need to
interact directly with the DOM element, use the intrinsic element form and then obtain a
reference to it, as in this example:

function Parent() {
 const someRef = useRef(null);
 return <some-comp ref={ someRef } />;
}

Chapter 3
Reference Child VComponents by Value

3-25

4
Work with Oracle JET VComponent-based
Web Components

Oracle JET VComponent-based Web Components are reusable pieces of user interface code
that you can embed as custom HTML elements. Web Components can contain Oracle JET
components, other Web Components, HTML, JavaScript, and CSS. You can create your own
Web Component or add one to your page.

Create Web Components
Oracle JET supports a variety of custom Web Component component types. You can create
standalone Web Components or you can create sets of Web Components that you intend to be
used together and you can then assemble those in a JET Pack, or pack component type. You
can enhance JET Packs by creating resource components when you have re-usable libraries
of assets that are themselves not specifically UI components. And, if you need to reference
third-party code in a standalone component, you can create reference components to define
pointers to that code.

Create Standalone Web Components
Use the Oracle JET command-line interface (CLI) to create an Oracle JET Web Component
template that you can populate with content. If you’re not using the CLI, you can add the Web
Component files and folders manually to your Oracle JET application.

The procedure below lists the high-level steps to create a Web Component.

Before you begin:

• Familiarize yourself with the list of reserved names for a Web Component that are not
available for use, see valid custom element name

• Familiarize yourself with the list of existing Web Component properties, events, and
methods, see HTMLElement properties, event listeners, and methods

• Familiarize yourself with the list of global attributes and events, see Global attributes

To create a Web Component:

1. Determine a name for your Web Component.

The Web Component specification restricts custom element names as follows:

• Names must contain a hyphen.

• Names must start with a lowercase ASCII letter.

• Names must not contain any uppercase ASCII letters.

• Names should use a unique prefix to reduce the risk of a naming collision with other
components.

A good pattern is to use your organization’s name as the first segment of the
component name, for example, org-component-name. Names must not start with the
prefix oj- or ns-, which correspond to the root of the reserved oj and ns namespaces.

4-1

https://www.w3.org/TR/custom-elements/#valid-custom-element-name
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes

• Names must not be any of the reserved names. Oracle JET also reserves the oj and
the ns namespace and prefixes.

2. Determine where to place your Web Component, using one of the following options.

• Add the Web Component to an existing Oracle JET application that you created with
the Oracle JET CLI.

If you use this method, you’ll use the CLI to create a Web Component template that
contains the folders and files you’ll need to store the Web Component’s content.

• Manually add the Web Component to an existing Oracle JET application that doesn’t
use the Oracle JET CLI.

If you use this method, you’ll create the folders and files manually to store the Web
Component’s content.

3. Depending upon the choice you made in the previous step, perform one of the following
tasks to create the Web Component.

• If you used the Oracle JET CLI to create an application, then in the application’s top-
level directory, enter the following command at a terminal prompt to generate the Web
Component template:

ojet create component component-name

For example, enter ojet create component doc-hello-world to create a Web
Component named doc-hello-world. The command adds doc-hello-world to the
application’s src\components\ folder with files containing stub content for the Web
Component.

Chapter 4
Create Web Components

4-2

The value of the components property in the oracleconfig.json file determines the
folder location where the Oracle CLI generates the Web Component. The default value
is components, but you can change it to another value.

• If you’re not using the Oracle JET CLI, create a folder in your application’s src folder,
and add folders containing the name of each Web Component you will create.

4. If you’re not using the Oracle JET CLI, create a loader.js RequireJS module and place it
in the Web Component’s root folder.

The loader.js module defines the Web Component dependencies and registers the
component’s class name, DocHelloWorld in this example.

export { DocHelloWorld } from "./doc-hello-world";

5. Configure any custom styling that your Web Component will use.

• If you only have a few styles, add them to web—component-name-styles.css file in the
Web Component’s root folder, creating the file if needed.

For example, the DocHelloWorld Web Component defines styles for the component’s
display, width, and height.

/* This prevents the flash of unstyled content before the Web
 Component properties have been setup. */
doc-hello-world:not(.oj-complete) {
 visibility: hidden;
}

doc-hello-world {
 min-height: 50px;
 width: 50px;
}

• If you used the Oracle JET tooling to create your application and want to use Sass to
generate your CSS:

a. If needed, at a terminal prompt in your application’s top level directory, type the
following command to add node-sass to your application: ojet add sass.

b. Create web—component-name-styles.scss and place it in the Web Component’s
top level folder.

c. Edit web—component-name-styles.scss with any valid SCSS syntax and save the
file.

In this example, a variable defines the demo card size:

$doc-hello-world-size: 200px;

/* This prevents the flash of unstyled content before the
 Web Component properties have been setup. */
doc-hello-world:not(.oj-complete) {
 visibility: hidden;
}

doc-hello-world {
 width: $doc-hello-world-size;

Chapter 4
Create Web Components

4-3

 min-height: $doc-hello-world-size;
}

6. If you want to add documentation for your Web Component, add content to README.md in
your Web Component's root folder, creating the file if needed.

Your README.md file should include an overview of your component with well-formatted
examples. Include any additional information that you want to provide to your component’s
consumers. The recommended standard for README file format is markdown.

Create JET Packs
Create JET Packs to simplify project management for consumers who might pick up a
component that is related to one or more components. You may require specific versions of the
referenced components for individual JET Packs.

Fundamentally, the JET Pack is a library of related Web Components that does not directly
include those assets, but is as an index to a particular versioned stripe of components.

Note:

Note there is one exception to the pack as a reference mechanism for related
components. A pack might include one or more RequireJS bundle files which
package up optimized forms of the component set into a small number of physical
downloads. This, however, is always in addition to the actual components being
available as independent entities in Oracle Component Exchange.

The components referenced by the JET Pack are intended to be used together and their usage
is restricted by individual component version. Thus the JET Pack that you create will tie very
specific versions of each component into a relationship with very specific, fixed versions of the
other components in the same set. Thus a JET Pack itself has a "version stripe" which
determines the specific components that users import into their apps. Since the version
number of individual components may vary, the JET Pack guarantees the consumer associates
their app with the version of the pack as a whole, and not with the individual components
contained by the pack.

1. Create the JET Pack using the JET tooling from the root folder of your app.

ojet create pack my-pack

Consider the pack name carefully, as the name will determine the prefix to any
components within that pack.

The tooling adds the folder structure with the template files that you will need to modify:

/(working folder)
 /src
 /components
 /my-pack

Chapter 4
Create Web Components

4-4

2. Create the components that you want to bundle with the JET Pack by using the JET tooling
from the root folder of your app. The component name that you specify must be unique
within the pack.

ojet create component my-widget-1 --pack=my-pack

The tooling nests the component folder /my-widget-1 under the my-pack root folder and
the new component files resemble those created for a standalone Web Component.

/(working folder)
 /src
 /components
 /my-pack
 component.json
 /my-widget-1
 | loader.ts
 | my-widget-1-styles.css
 | my-widget-1.tsx
 | README.md
 |
 +---resources
 | /---nls
 | /---root
 | my-widget-1-strings.ts
 |
 /---themes

loader.ts includes a one-line entry that exports the VComponent module class of the new
component, as in the following example:

export { MyWidget1 } from "./my-widget-1";
3. Optionally, for any Resource components that you created, as described in Create

Resource Components for JET Packs, add the component's working folder with its own
component.json file to the pack file structure.

The tooling nests the component folder /my-widget-1 under the my-pack root folder and
the new component files resemble those created for a standalone Web Component.

/(working folder)
 /src
 /components
 /my-pack
 component.json
 /my-widget-1
 /resources
 /nls
 /root
 my-widget-1-strings.js
 component.json
 loader.ts
 README.md
 my-widget-1.tsx
 my-widget-1-styles.css

Chapter 4
Create Web Components

4-5

 /my-resource-component-1
 component.json
 /converters
 file1.js
 ...
 /resources
 /nls
 /root
 string-file1.js
 /validators
 file1.js
 ...

4. Optionally, generate any required bundled for desired components of the pack. Refer to
RequireJS documentation for details at the https://requirejs.org web site.

Tip:

You can use RequireJS to create optimized bundles of the pack components, so
that rather than each component being downloaded separately by the consuming
app at runtime, instead a single JavaScript file can be downloaded that contains
multiple components. It's a good idea to use this facility if you have sets of
components that are almost always used together. A pack can have any number
of bundles (or none at all) in order to group the available components as
required. Be aware that not every component in the pack has to be included in
one of the bundles and that each component can only be part of one bundle.

5. Use a text editor to modify the component.json file in the pack folder root similar to the
following sample, to identify pack dependencies and optional bundles. Added components
must be associated by their full name and a specific version.

{
 "name": "my-pack",
 "version": "1.0.0",
 "type": "pack",
 "displayName": "My JET Pack",
 "description": "An example JET Pack",
 "dependencies": {
 "my-pack-my-widget-1":"1.0.0",
 ...
 },
 "bundles":{
 "my-pack/my-bundle":[
 "my-pack/my-bundle-file1/loader",
 ...
]
 },
 "extension": {
 "catalog": {
 "coverImage": "coverimage.png"
 }
 }
}
}

Chapter 4
Create Web Components

4-6

https://requirejs.org

Your pack component's component.json file must contain the following unique definitions:

• name is the name of the JET Pack has to be unique, and should be defined with the
namespace relevant to your group. This name will be prepended to create the full
name of individual components of the pack.

• version defines the exact version number of the pack, not a SemVer range.

Note:

Changes in version number with a given release of a pack should reflect the
most significant change in the pack contents. For example, if the pack
contained two components and as part of a release one of these had a Patch
level change and the other a Major version change then the pack version
number change should also be a Major version change. There is no
requirement for the actual version number of the pack to match the version
number(s) of any of it's referenced components.

• type must be set to pack.

• displayName is the name of the pack component that you want displayed in in Oracle
Component Exchange. Set this to something readable but not too long.

• description is the description that you want displayed in Oracle Component
Exchange. For example, use this to explain how the pack is intended to be used.

• dependencies defines the set of components that make up the pack, specified by the
component full name (a concatenation of pack name and component name). Note that
exact version numbers are used here, not SemVer ranges. It's important that you
manage revisions of dependency version numbers to reflect changes to the referenced
component's version and also to specify part of the path to reach the components
within the pack.

If you want to include all components in the JET Pack directory, use a token,
"@dependencies@", as the value for dependencies rather than defining individual
entries for all the components in the pack. The following snippet illustrates how you
use this token in your component.json file:

{
 "name": "my-pack",
 "version": "1.0.0",
 "type": "pack",
 "displayName": "My JET Pack",
 "description": "An example JET Pack",
 "dependencies": "@dependencies@"
}

• bundles defines the available bundles (optional) and the contents of each. Note how
both the bundle name and the contents of that bundle are defined with the pack name
prefix as this is the RequireJS path that is needed to map those artifacts.

• catalog defines the working metadata for Oracle Component Exchange, including a
cover image in this case.

6. Optionally, create a readme file in the root of your working folder. This should be defined as
a plain text file called README.txt (or README.md when using markdown format).

Chapter 4
Create Web Components

4-7

7. Optionally, create a cover image in the root of your working folder to display the component
on Oracle Exchange. The file name can be the same as the name attribute in the
component.json file.

8. Use the JET tooling to create a zip archive of the JET Pack working folder when you want
to upload the component to Oracle Component Exchange, as described in Package Web
Components.

9. Support consuming the JET Pack in Oracle Visual Builder projects by uploading the
component to Oracle Component Exchange.

Create Resource Components for JET Packs
Create a resource component when you want to reuse assets across web components that
you assemble into JET Packs. The resource component can be reused by multiple JET Packs.

When dealing with complex sets of components you may find that it makes sense to share
certain assets between multiple components. In such cases, the components can all be
included into a single JET Pack and then a resource component can be added to the pack in
order to hold the shared assets. There is no constraint on what can be stored in a pack,
typically it may expose shared JavaScript, CSS, and JSON files and images. Note that third
party libraries should generally be referenced from a reference component and should not be
included into a resource component.

You don't need any tools to create the resource component. You will need to create a folder in
a convenient location. This folder will ultimately be zipped to create the distributable resource
component. Internally this folder can then hold any content in any structure that you desire.

To create a resource component:

1. If you have not already done so, create a JET Pack using the following command from the
root folder of your app to contain the resource component(s):

ojet create pack my-resource-pack
2. Still in the root folder of your app, create the resource component in the JET Pack:

ojet create component my-resource-comp --type=resource --pack=my-resource-pack
The tooling adds the folder structure with a single template component.json file and an
index file.

/root folder
 /src
 /components
 /my-resource-pack
 /my-resource-comp
 component.json

3. Populate the created folder (my-resource-comp, in our example) with the desired content.
You can add content in any structure desired, with the exception of NLS content for
translation bundles. In the case of NLS content, preserve the typical JET folder structure;
this is important if your resource component is going to include such bundles.

/(my-resource-folder)
 /converters
 phoneConverter.js
 phoneConverterFactory.js
 /resources

Chapter 4
Create Web Components

4-8

 /nls
 /root
 oj-ext-strings.js
 /phone
 countryCodes.json
 /validators
 emailValidator.js
 emailValidatorFactory.js
 phoneValidator.js
 phoneValidatorFactory.js
 urlValidator.js
 urlValidatorFactory.js

In this sample notice how the /resources/nls folder structure for translation bundles is
preserved according to the folder structured of the app generated by JET tooling.

4. Use a text editor to update the component.json file in the folder root similar to the following
sample, which defines the resource my-resource-comp for the JET Pack my-resource-
pack.

{
 "name": "my-resource-comp",
 "pack": "my-resource-pack",
 "displayName": "Oracle Jet Extended Utilities",
 "description": "A set of reusable utility classes used by the Oracle JET
extended component set and available for general use. Includes various
reusable validators",
 "license": "https://opensource.org/licenses/UPL",
 "type": "resource",
 "version": "2.0.2",
 "jetVersion": ">=8.0.0 <10.1.0",
 "publicModules": [
 "validators/emailValidatorFactory",
 "validators/urlValidatorFactory"
],
 "extension":{
 "catalog": {
 "category": "Resources",
 "coverImage": "cca-resource-folder.svg"
 }
 }
}

Your resource component's component.json file must contain the following unique
definitions:

• name is the name of the resource component has to be unique, and should be defined
with the namespace relevant to your group.

• pack is the name of the JET Pack containing the resource component.

• displayName is the name of the resource component as displayed in Oracle
Component Exchange. Set this to something readable but not too long.

• description is the description that you want displayed in Oracle Component
Exchange. For example, use this to explain the available assets provided by the
component.

Chapter 4
Create Web Components

4-9

• type must be set to resource.

• version defines the semantic version (SemVer) of the resource component as a
whole. It's important that you manage revisions of this version number to inform
consumers of the compatibility of a given change.

Note:

Changes to the resource component version should roll up all of the changes
within the resource component, which might not be restricted to changes only
in .js files. A change to a CSS selector defined in a shared .css file can
trigger a major version change when it forces consumers to make changes to
their downstream uses of that selector.

• jetVersion defines the supported Oracle JET version range using SemVer notation.
This is optional and depends on the nature of what you include into the resource
component. If the component contains JavaScript code and any of that code makes
reference to Oracle JET APIs, then you really should include a JET version range in
that case.

• publicModules lists entry points within the resource component that you consider as
being public and intend to be consumed by any component that depends on this
component. Any API not listed in the array is considered to be pack-private and
therefore can only be used by components within the same pack namespace, but may
not be used externally.

• catalog defines the working metadata for Oracle Component Exchange, including a
cover image in this case.

5. Optionally, create a readme file in the root of your working folder. A readme can be used to
document the assets of the resource. This should be defined as a plain text file called
README.txt (or README.md when using markdown format).

Tip:

Take care to explain the state of the assets. For example, you might choose to
include utility classes in the resource component that are deemed public and can
safely be used by external consumers (for example, code outside of the JET
Pack that the component belongs to). However, you may want to document other
assets as private to the pack itself.

6. Optionally, create a change log file in the root of your working folder. The change log can
detail significant changes to the pack over time and is strongly recommended. This should
be defined as a text file called CHANGELOG.txt (or CHANGELOG.md when using markdown
format).

7. Optionally, include a License file in the root of your working folder.

8. Optionally, create a cover image in the root of your working folder to display the component
on Oracle Exchange. Using the third party logo can be helpful here to identify the usage.
The file name can be the same as the name attribute in the component.json file.

9. Create a zip archive of the working folder when you want to upload the component to
Oracle Component Exchange. Oracle recommends using the format <fullName>-
<version>.zip for the archive file name. For example, my-resource-pack-my-resource-
comp-2.0.2.zip.

Chapter 4
Create Web Components

4-10

For information about using the resource component in a JET Pack, see Create JET Packs.

Create Reference Components for Web Components
Create a reference component when you need to obtain a pointer to third-party libraries for use
by Web Components.

Sometimes your JET Web Components need to use third party libraries to function and
although it is possible to embed such libraries within the component itself, or within a resource
component, it generally better to reference a shared copy of the library by defining a reference
component.
Create the Reference Component

You don't need any tools to create the reference component. You will need to create a folder in
a convenient location where you will define metadata for the reference component in the
component.json file. This folder will ultimately be zipped to create the distributable reference
component.

Reference components are generally standalone, so the component.json file you create must
not be contained within a JET Pack.

To create a reference component:

1. Create the working folder and use a text editor to create a component.json file in the folder
root similar to the following sample, which references the moment.js library.

{
 "name": "oj-ref-moment",
 "displayName": "Moment library",
 "description": "Supplies reference information for moment.js used to
parse, validate, manipulate, and display dates and times in JavaScript",
 "license": "https://opensource.org/licenses/MIT",
 "type": "reference",
 "package":"moment",
 "version": "2.24.0",
 "paths": {
 "npm": {
 "debug": "moment",
 "min": "min/moment.min"
 },
 "cdn": {
 "debug": "https://static.oracle.com/cdn/jet/packs/3rdparty/moment/
2.24.0/moment.min",
 "min": "https://static.oracle.com/cdn/jet/packs/3rdparty/moment/
2.24.0/moment.min"
 }
 },
 "extension": {
 "catalog": {
 "category": "Third Party",
 "tags": [
 "momentjs"
],
 "coverImage": "coverImage.png"
 }

Chapter 4
Create Web Components

4-11

 }
}

Your reference component's component.json file must contain the following unique
definitions:

• name is the name of the reference component has to be unique, and should be
defined with the namespace relevant to your group.

• displayName is the name of the resource component as displayed in Oracle
Component Exchange. Set this to something readable but not too long.

• description is the description that you want displayed in Oracle Component
Exchange. For example, use this to explain the function of the third party library.

• license comes from the third party library itself and must be specified.

• type must be set to reference.

• package defines the npm package name for the library. This will also be used as the
name of the associated RequireJS path that will point to the library and so will be used
by components that depend on this reference.

• version should reflect the version of the third party library that this reference
component defines. If you need to be able to reference multiple versions of a given
library then you will need multiple versions of the reference component in order to map
each one.

• paths defines the CDN locations for this library. See below for more information about
getting access to the Oracle CDN.

• min points to the optimal version of the library to consume. The debug path can point
to a debug version or just the min version as here.

• catalog defines the working metadata for Oracle Component Exchange including a
cover image in this case.

2. Optionally, create readme file in the root of your working folder. A readme can be used to
point at the third party component web site for reference. This should be defined as a plain
text file called README.txt (or README.md when using markdown format).

3. Optionally, create a cover image in the root of your working folder to display the component
on Oracle Exchange. Using the third party logo can be helpful here to identify the usage.
The file name can be the same as the name attribute in the component.json file.

4. Create a zip archive of the working folder when you want to upload the component to
Oracle Component Exchange. Oracle recommends using the format <fullName>-
<version>.zip for the archive file name. For example, oj-ref-moment-2.24.0.zip.

5. Support consuming the reference component in Oracle Visual Builder projects by
uploading the component to a CDN. See below for more details.

Consume the Reference Component

When your Web Components need access to the third party library defined in one of these
reference components, you use the dependency attribute metadata in the component.json to
point to either an explicit version of the reference component or you can specify a semantic
range. Here's a simple example of a component that consumes two such reference
components at specific versions:

{
 "name":"calendar",
 "pack":"oj-sample",

Chapter 4
Create Web Components

4-12

 "displayName": "JET Calendar",
 "description": "FullCalendar wrapper with Accessibility added.",
 "version": "1.0.2",
 "jetVersion": "^9.0.0",
 "dependencies": {
 "oj-ref-moment":"2.24.0",
 "oj-ref-fullcalendar":"3.9.0"
 },

 ...

When the above component is added to an Oracle JET or Oracle Visual Builder project this
dependency information will be used to create the correct RequireJS paths for the third party
libraries pointed to be the reference component.

Alternatively, when you install a Web Component that depends on a reference component and
you use Oracle JET CLI, the tooling will automatically do an npm install for you so that the
libraries are local. However, with the same component used in Oracle Visual Builder, a CDN
location must be used and therefore the reference component must exist on the CDN in order
to be used in Visual Builder.

Add Web Components to Your Page
To use a VComponent-based Web Component, you import the loader module that provides the
entry point to the Web Component in the TSX page where you will use the Web Component.

Those of you who previously built Web Components using the Composite Component
Architecture will be familiar with the use of the loader module to import the Web Component.
VComponent-based Web Components also use this convention of a loader module serving as
the main entry point to the Web Component. It allows the Oracle JET CLI, Visual Builder, and
the Component Exchange to work with VComponent-based Web Components.

If you import the Web Component into a VDOM app, you can choose between importing the
Web Compoent through the use of the component class name or the custom element name for
the Web Component. If you import the VComponent-based Web Component into an MVVM
JET app, you must use the custom element syntaxt. If importing a component from a JET
Pack, you’ll also need to identify the JET Pack in the import statement. The following
commented example illustrates the syntax to use for each option.

import { h } from "preact";
// Import standalone components.
// Import as a custom element.
import "doc-hello-world/loader";
// Import as a component class.
import { DocBonjourWorld } from "doc-bonjour-world/loader";

// Import components from a JET Pack
// Import as a custom element.
import "my-component-pack/my-widget-1/loader";
// Import as a component class.
import { MyWidget2 } from "my-component-pack/my-widget-2/loader";

export function Content() {
 return (
 <div class="oj-web-applayout-max-width oj-web-applayout-content">
 {/* Standalone component's custom element */}

Chapter 4
Add Web Components to Your Page

4-13

 <doc-hello-world></doc-hello-world>
 {/* Standalone component's component class */}
 <DocBonjourWorld />

 {/* JET Pack component's custom element */}
 <my-component-pack-my-widget-1></my-component-pack-my-widget-1>
 {/* JET Pack component's component class */}
 <MyWidget2 />
 </div>
);
}

The following image shows each example rendering in the content component of the starter
template.

Generate API Documentation for VComponent-based Web
Components

The Oracle JET CLI includes a command (ojet add docgen) that you can use to assist with
the generation of API documentation for the VComponent-based web components
(VComponent) that you develop.

When you run the command from the root of your project, the JSDoc NPM package is installed
and an apidoc_template directory is added to the src directory of your project. The
apidoc_template directory contains the following files that you can customize with appropriate
titles, subtitles, and footer information, such as copyright information, for the API reference
documentation that you'll subsequently generate for your VComponent(s).

footer.html
header.html
main.html

You write comments in the source file of your VComponent, as in the following example:

import { ExtendGlobalProps, registerCustomElement } from "ojs/ojvcomponent";
. . .

Chapter 4
Generate API Documentation for VComponent-based Web Components

4-14

type Props = Readonly<{
 message?: string;
 address?: string;
}>;

/**
 *
 * @ojmetadata version "1.0.0"
 * @ojmetadata displayName "A user friendly, translatable name of the
component"
 * @ojmetadata description "<p>Write a description here.</p>
 <p>Use HTML tags to put in new paragraphs</p>

 Bullet list item 1
 Bullet list item 2
 * <p>Everything before the closing quote is rendered</p>
 * "
 *
 */

function StandaloneVcompFuncImpl({ address = "Redwood shores",
 message = "Hello from standalone-vcomp-func" }:
Props) {
 return (
 <div>
 . . .
 </div>
);
}

Once you have completed documenting your VComponent’s API in the source file, you run the
build command for your component or the JET Pack, if the component is part of a JET pack
(ojet build component component-name or ojet build component jet-pack-name) to
generate API reference doc in the appRootDir/web/components/component-or-pack-name/
vcomponent-version/docs directory.

The following /docs directory listing shows the files that the Oracle JET CLI generates for a
standalone VComponent. You can’t generate the API documentation by building the Oracle
JET app that contains the component. You have to build the individual VComponent or the JET
Pack that contains VComponents. Note too that you can’t generate API doc for CCA-based
web components using the Oracle JET CLI ojet add docgen command.

appRootDir/web/components/standalone-vcomp-func/1.0.0/docs

| index.html
| jsDocMd.json
| standalone-vcomp-func.html
| standalone.StandaloneVcompFunc.html
|
+---scripts
| | deprecated.js
| |
| \---prettify

Chapter 4
Generate API Documentation for VComponent-based Web Components

4-15

| Apache-License-2.0.txt
| lang-css.js
| prettify.js
|
\---styles
 | jsdoc-default.css
 | prettify-jsdoc.css
 | prettify-tomorrow.css
 |
 \---images
 bookmark.png
 linesarrowup.png
 linesarrowup_blue.png
 linesarrowup_hov.png
 linesarrowup_white.png
 oracle_logo_sm.png

One final thing to note is that if you want to include an alternative logo and/or CSS styles to
change the appearance of the generated API doc, you update the content in the following
directory appRootDir/node_modules/@oracle/oraclejet/dist/jsdoc/static/styles/.

Build Web Components
You can build your Oracle JET Web Component to optimize the files and to generate a minified
folder of the component that can be shared with the consumers.

When your Web Component is configured and is ready to be used in different apps, you can
build the Web Components of the type: standalone Web Component, JET Pack, and Resource
component. Building these components using JET tooling generates a minified content with the
optimized component files. This minified version of the component can be easily shared with
the consumers for use. For example, you would build the component before publishing it to
Oracle Component Exchange. To build the Web Component, use the following command from
the root folder of the JET app containing the component:

ojet build component my-web-component-name

For example, if your Web Component name is hello-world, use the following command:

ojet build component hello-world

For a JET Pack, specify the pack name.

ojet build component my-pack-name

Note that the building individual components within the pack is not supported, and the whole
pack must be built at once.

This command creates a /min folder in the web/components/hello-world/x.x.x/ directory of
your Oracle JET web app, where x.x.x is the version number of the component. The /min
folder contains the minified (release) version of your Web Component files.

Reference component do not require minification or bundling and therefore do not need to be
built.

Chapter 4
Build Web Components

4-16

When you build Web Components:

• If your JET app contains more than one component, you can build the containing JET app
to build and optimize all components together. The build component command with the
component name provides the capability to build a single component.

• You can optionally use the --release flag with the build command, but it is not necessary
since the build command generates both the debug and minified version of the
component.

• You can optionally use the --optimize=none flags with the build command when you want
to generate compiled output that is more readable and suitable for debugging. The
component's loader.js file will contain the minified app source, but content readability is
improved, as line breaks and white space will be preserved from the original source.

Package Web Components
You can create a sharable zip file archive of the minified Oracle JET Web Component from the
Command-Line Interface.

When you want to share Web Components with other developers, you can create an archive
file of the generated output contained in the components subfolder of the app's /web. After you
build a standalone Web Component or a Resource component, you use the JET tooling to run
the package command and create a zip file that contains the Web Component compiled and
minified source.

ojet package component my-web-component-name

Similarly, in the case of JET packs, you cannot create a zip file directly from the file system. It
is necessary to use the JET tooling to package JET packs because the output under the /jet-
composites/<packName> subfolder contains nested component folders and the tooling ensures
that each component has its own zip file.

ojet package pack my-JET-Pack-name

The package command packages the component's minified source from the /web/components
directory and makes it available as a zip file in a /dist folder at the root of the containing app.
This zip file will contain both the specified component and a minified version of that component
in a /min subfolder.

Reference components do not require minification or bundling and therefore do not need to be
built. You can archive the Reference component by creating a simple zip archive of the
component's folder.

The zip archive of the packaged component is suitable to share, for example, on Oracle
Component Exchange, as described in Publish Web Components to Oracle Component
Exchange. To help organize components that you want to publish, the JET tooling appends the
value of the version property from the component.json file for the JET pack and the individual
components to the generated zip in the dist folder. Assume, for example, that you have a
component pack, my-component-pack, that has a version value of 1.0.0 and the indiviudal
components (my-widget-1, and so on) within the pack also have version values of 1.0.0, then
the zip file names for the generated files will be as follows:

appRootDir/dist/
my-web-component-name_1-0-0.zip

Chapter 4
Package Web Components

4-17

my-component-pack_1-0-0.zip
my-component-pack-my-widget-1_1-0-0.zip
my-component-pack-my-widget-2_1-0-0.zip
my-component-pack-my-widget-3_1-0-0.zip

You can also generate an archive file when you want to upload the component to a CDN. In the
CDN case, additional steps are required before you can share the component, as described in
Upload and Consume Web Components on a CDN.

Chapter 4
Package Web Components

4-18

5
Use Oracle JET Components and Data
Providers

Review the following recommendations to make effective use of Oracle JET components and
associated APIs, such as data providers, so that the app that you develop is performant and
provides an optimal user experience.

Access Subproperties of Oracle JET Component Properties
JSX does not support the dot notation that allows you to access a subproperty of a component
property. You cannot, for example, use the following syntax to access the max or count-by
subproperties of the Input Text element’s length property.

<oj-input-text
 length.max={3}
 length.count-by="codeUnit"
</oj-input-text>

To access these subproperties using JSX, first access the element’s top-level property and set
values for the subproperties you want to specify. For example, for the countBy and max
subproperties of the Oracle JET oj-input-text element’s length property, import the
component props that the Input Text element uses. Then define a length object, based on the
type InputTextProps["length"], and assign it values for the countBy and max subproperties.
Finally, pass the length object to the oj-input-text element as the value of its length
property.

import {ComponentProps } from "preact";

type InputTextProps = ComponentProps<"oj-input-text">;

const length: InputTextProps["length"] = {
 countBy: "codeUnit",
 max: 3
};

function Parent() {
 return (
 <oj-input-text length={ length } />
)
}

Mutate Properties on Oracle JET Custom Element Events
Unlike typical Preact components, mutating properties on Oracle JET custom elements
invokes property-changed callbacks. As a result, you can end up with unexpected behavior,
such as infinite loops, if you:

5-1

1. Have a property-changed callback

2. The property-changed callback triggers a state update

3. The state update creates a new property value (for example, copies values into a new
array)

4. The new property value is routed back into the same property

Typically, Preact (and React components) invoke callbacks in response to user interaction, and
not in response to a new property value being passed in by the parent component. You can
simulate the Preact componnent-type behavior when you use Oracle JET custom elements if
you check the value of the event.detail.updatedFrom field to determine if the property
change is due to user interaction (internal) instead of your app programmatically mutating the
property value (external). For example, the following event callback is only invoked in
response to user interaction:

. . .
const onSelection = (event) => {
 if (event.detail.updatedFrom === 'internal') {
 const selectedValues = event.detail.value;
 setSelectedOptions([selectedValues]);
 }
 };
. . .

Avoid Repeated Data Provider Creation
Do not re-create a data provider each time that a VComponent renders.

For example, do not do the following in a VComponent using an oj-list-view component, as
you re-create the MutableArrayDataProvider instance each time the VComponent renders:

<oj-list-view
 data={new MutableArrayDataProvider....}
 . . . >
</oj-list-view>

Instead, consider using Preact's useMemo hook to ensure that a data provider instance is re-
created only if the data in the data provider actually changes. The following example
demonstrates how you include the useMemo hook to ensure that the data provider providing
data to an oj-list-view component is not re-created, even if the VComponent that includes
this code re-renders.

import MutableArrayDataProvider = require("ojs/ojmutablearraydataprovider");
import { Task, renderTask } from "./data/task-data";
import { useMemo } from "preact/hooks";
import "ojs/ojlistview";
import { ojListView } from "ojs/ojlistview";

type Props = {
 tasks: Array<Task>;
}

export function ListViewMemo({ tasks }: Props) {
 const dataProvider = useMemo(() => {

Chapter 5
Avoid Repeated Data Provider Creation

5-2

 return new MutableArrayDataProvider(
 tasks, {
 keyAttributes: "taskId"
 }
);
 },
 [tasks]
);

 return (
 <oj-list-view data={dataProvider} class="demo-list-view">
 <template slot="itemTemplate" render={renderTask} />
 </oj-list-view>
)
}

The reason for this recommendation is that a VComponent can re-render for any number of
reasons, but as long as the data provided by the data provider does not change, there is no
need to incur the cost of re-creating the data provider instance. Re-creating a data provider
can affect your app's performance, due to unnecessary rendering, and usability as collection
components may flash and lose scroll position as they re-render.

Avoid Data Provider Re-creation When Data Changes
Previously, we described how the useMemo hook avoids re-creating a data provider unless
data changes. When data does change, we still end up re-creating the data provider instance,
and this can result in collection components, such as list view, re-rendering all data displayed
by the component and losing scroll position.

Here, we'll try to illustrate how you can opitimize the user experience by implementing fine-
grained updates and maintaining scroll position for collection components, even if the data
referenced by the data provider changes. To accomplish this, the data provider uses a
MutableArrayDataProvider instance. With a MutableArrayDataProvider instance, you can
mutate an existing instance by setting a new array value into the MutableArrayDataProvider's
data field. The collection component is notified of the specific change (create, update, or
delete) that occurs, which allows it to make a fine-grained update and maintain scroll position.

In the following example, an app displays a list of tasks in a list view component and a Done
button that allows a user to remove a completed task. These components render in the
Content component of a virtual DOM app created with the basic template (appRootDir/src/
components/content/index.tsx).

Chapter 5
Avoid Data Provider Re-creation When Data Changes

5-3

To implement fine-grained updates and maintain scroll position for the oj-list-view
component, we store the list view's MutableArrayDataProvider in local state using Preact’s
useState hook and never re-create it, and we also use Preact’s useEffect hook to update the
data field of the MutableArrayDataProvider when a change to the list of tasks is detected. The
user experience is that a click on Done for an item in the tasks list removes the item (with
removal animation). No refresh of the oj-list-view component or scroll position loss occurs.

import "ojs/ojlistview";
import { ojListView } from "ojs/ojlistview";
import MutableArrayDataProvider = require("ojs/ojmutablearraydataprovider");
import { Task, renderTask } from "./data/task-data";
import { useState, useEffect } from "preact/hooks";

type Props = {
 tasks: Array<Task>;
}

export function ListViewState({ tasks, onTaskCompleted }: Props) {
 const [dataProvider] = useState(() => {
 return new MutableArrayDataProvider(
 tasks, {
 keyAttributes: "taskId"
 }
);
 });

 useEffect(() => {
 dataProvider.data = tasks;
 }, [tasks]);

 return (
 <oj-list-view data={dataProvider} class="demo-list-view">
 <template slot="itemTemplate"
render={renderTaskWithCompletedCallback} />
 </oj-list-view>

)
}

Chapter 5
Avoid Data Provider Re-creation When Data Changes

5-4

Use Oracle JET Popup and Dialog Components
To use Oracle JET's popup or dialog components (popup content) in a VComponent or a virtual
DOM app, create a reference to the popup content. We recommend too that you place the
popup content in its own div element so that it works when used with Preact's reconciliation
logic.

Currently, to launch popup content from within JSX, you must create a reference to the custom
element and manually call open(), as in the following example for a VComponent class
component that uses Preact's createRef function:

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent";
import { h, Component, ComponentChild, createRef } from "preact";
import "ojs/ojdialog";
import "oj-c/button";
. . .
@customElement("popup-launching-component")
export class PopupLaunchingComponent extends
Component<ExtendGlobalProps<Props>> {

 private dialogRef = createRef();

 showDialog = () => {
 this.dialogRef.current?.open();
 console.log("open dialog");
 }

 render(): ComponentChild {
 return <div>
 <oj-c-button onojAction={this.showDialog} label="Show Dialog"></oj-c-
button>
 <div>
 <oj-dialog ref={this.dialogRef} cancelBehavior="icon"
 modality="modeless" dialogTitle="Dialog Title">
 <div>Hello, World!</div>
 </oj-dialog>
 </div>
 </div>
 }
}

As a side effect of the open() call, Oracle JET relocates the popup content DOM to an Oracle
JET-managed popup container, outside of the popup-launching component. This works and the
user can see and interact with the popup.

If, while the popup is open, the popup-launching component is re-rendered by, for example, a
state change, Preact's reconciliation logic detects that the popup content element is no longer
in its original location and will reparent the still-open popup content back to its original parent.
This interferes with Oracle JET's popup service, and unfortunately leads to non-functional
popup content. To avoid this issue, we recommend that you ensure that the popup content is
the only child of its parent element. In the following functional component example, we
illustrate one way to accomplish this by placing the oj-dialog component within its own div
element.

Chapter 5
Use Oracle JET Popup and Dialog Components

5-5

Note:

In the following example we use Preact's useRef hook to get the reference to the
DOM node inside the functional component. Use Preact's createRef function to get
the reference to the popup content DOM node in class-based components.

import { h } from "preact";
import { useRef } from "preact/hooks";
import "ojs/ojdialog";
import "oj-c/button";
import { CButtonElement } from "oj-c/button";
import { DialogElement } from "ojs/ojdialog";

export function Content() {

 const dialogRef = useRef<DialogElement>(null);

 const onSubmit = (event: CButtonElement.ojAction) => {
 event.preventDefault();
 dialogRef.current?.open();
 console.log("open dialog");
 };

 const close = () => {
 dialogRef.current?.close();
 console.log("close dialog");
 };

 return <div class="oj-web-applayout-max-width oj-web-applayout-content">

 <oj-c-button onojAction={onSubmit} disabled={false} label="Open dialog">
 </oj-c-button>

 <div>
 <oj-dialog ref={dialogRef} dialogTitle="Dialog Title"
cancelBehavior="icon">
 <div>Hello, World!</div>
 <div slot="footer">
 <oj-c-button id="okButton" onojAction={close} label="Close dialog">
 </oj-c-button>
 </div>
 </oj-dialog>
 </div>
 </div>;
}

Chapter 5
Use Oracle JET Popup and Dialog Components

5-6

6
Add Third-Party Tools or Libraries to Your
Oracle JET App

You can add third-party tools or libraries to your Oracle JET app. The steps to do this vary
depending on the method you used to create your app.

If you used the Oracle JET command-line tooling to scaffold your app, you install the library
and make modifications to appRootDir/path_mapping.json. If you created your app using any
other method and are using RequireJS, you add the library to your app and update the
RequireJS bootstrap file, typically main.js.

Note:

This process is provided as a convenience for Oracle JET developers. Oracle JET
does not support the additional tools or libraries and cannot guarantee that they will
work correctly with other Oracle JET components or toolkit features.

To add a third-party tool or library to your Oracle JET app, complete one of the following
procedures.

• If you created your app with command-line tooling, perform the following steps:

1. In your app's root directory, enter the following command in a terminal window to install
the library using NPM:

npm install library-name --save

2. Add the new library to the path mapping configuration file.

a. Open appRootDir/path_mapping.json for editing.

A portion of the file is shown below.

{

 "use": "local",
 "cdns": {
 "jet": "https://static.oracle.com/cdn/jet/17.0.0/default/js",
 "css": "https://static.oracle.com/cdn/jet/17.0.0/default/css",
 "config": "bundles-config.js"
 },
 "3rdparty": "https://static.oracle.com/cdn/jet/17.0.0/3rdparty"
},
"libs": {
 "knockout": {
 ...
 },
...

6-1

Oracle JET's CLI helps manage third-party libraries for your app by adding entries
to its local path_mapping.json file.

For each library listed in the libs map in the path_mapping.json file, the following
two actions happen at build time. First, one or more files are copied from
somewhere (usually appRootDir/node_modules) into the appRootDir/web output
folder. Second, a requireJS path value is created for you to represent the path to
the library; it is injected into the built main.js file or optimized bundle. If you use
TypeScript, then this should be the same path name that you use at design time
for imports from the library.

The following example is an existing path mapping entry for the persist library,
which we analyze below to describe what each attribute does and how it relates to
the two build-time actions defined above.

1 | "persist": {
2 | "cdn": "3rdparty",
3 | "cwd": "node_modules/@oracle/oraclejet/dist/js/libs/persist",
4 | "debug": {
5 | "cwd": "debug",
6 | "src": [
7 | "**"
8 |],
9 | "path": "libs/persist/debug",
10 | "cdnPath": "persist/debug"
11 | },
12 | "release": {
13 | "cwd": "min",
14 | "src": [
15 | "**"
16 |],
17 | "path": "libs/persist/min",
18 | "cdnPath": "persist/min"
19 | }
20 | },

– Line 1: This is the name of the libs map entry ("persist", in this case). This
name is used as the name of the requireJS path entry that is created;
therefore, it is also the import path. The same name is used for the folder that
gets created under the appRootDir/web/js/libs folder in the built application.

Note:

If your app uses TypeScript, then you'll also need a tsconfig.json
file paths entry with the same name.

– Line 2 (Optional): The cdn attribute sets the name of the CDN root for the
location of this library. In this case, it is set to the value 3rdparty, which maps
to a particular location in the Oracle CDN. Any third-party libraries that you add
yourself (that is, those that are not present on the Oracle CDN) should not
have a cdn or cdnPath value at all, unless you maintain your own CDN
infrastructure where you can place the library.

– Line 3: The first role of each path mapping entry at build time is to copy files.
The cwd attribute on this line tells the tooling where to start copying from, and

Chapter 6

6-2

subsequent paths are relative to this root. This is generally some folder under
appRootDir/node_modules/<library>.

– Lines 4 through 12: The debug and release sections here are the same, with
the exception that if you do a normal build, then the specifications in the debug
section are followed, and if you do a --release build, then the specifications in
the release section are followed. For example, the latter case can allow the
copying of only optimized assets for release.

– Line 5 (Optional): In the context of the debug or release build, this second cwd
attribute further refines the copy root for everything that follows. For example,
when running a normal (debug) build for the persist library, the copy root is
appRootDir/node_modules/@oracle/oraclejet/dist/js/libs/persist/
debug, where the debug cwd value is appended to the top-level cwd value.
Additionally, this folder name is used in the output; the copied files end up in
the appRootDir/web/js/libs/persist/debug directory. This attribute is
optional; if omitted, then all copies are copied from paths relative to the root
cwd location and placed in the root of the destination folder.

– Line 6: The src attribute holds an array of all the files that you want to copy
from your root location into the built app (that is, all the files that are actually
needed at runtime). The paths you add here can either be specific file names,
or you can use globs to match multiple files at once. In the example above, the
glob ** is used, which results in copying everything from the /debug folder,
including subfolders. Folder structure is preserved in the copied output under
the /web directory.

– Line 9: The path attribute is used for the second role performed by each path
mapping entry; it defines the value of the requireJS path that gets injected
into the main.js file. For the above example, the requireJS path mapping is
"persist":"libs/persist/min", which is relative to the requireJS load root,
typically appRootDir/web/js.

– Line 10 (Optional): The cdnPath attribute is optional and should only be used if
you have actually put a copy of the library onto a CDN. If that is the case, then
if the path_mapping.json file has the use attribute set to "cdn" rather than
"local", then the generated requireJS path statement uses this cdnPath
value rather than the path value (line 9). The path here is relative to the CDN
root defined by the alias allocated to the CDN and used in the cdn attribute for
that library. If “use” is set to “cdn” but a library does not include CDN
information, then the build falls back to using the local copy of the library and
set up the requireJS path accordingly.

b. Copy one of the existing library entries in the "libs" map and modify as needed
for your library.

The code sample below shows modifications for my-library, a library that
contains both minified and debug versions.

...
 "libs": {
 "my-library": {
 "cwd": "node_modules/my-library/dist",
 "debug": {
 "src": "my-library.debug.js",
 "path": "libs/my-library/my-library.debug.js"
 },
 "release": {

Chapter 6

6-3

 "src": "my-library.js",
 "path": "libs/my-library/my-library.js"
 }
 },
...

In this example, the cwd attribute points to the location where NPM installed the
library, the src attribute points to a path or array of paths containing the files that
are copied during a build, and the path attribute points to the destination that
contains the built version.

When defining your own library entry in the path_mapping.json file, you should
test it out by running the ojet build command and then confirm that all the
expected files have been copied into the appRootDir/web/js/libs directory and
that the requireJS path mapping has been injected in the built
appRootDir/web/js/main.js file.

Note:

If the existing library entry that you copy to modify includes "cdn":
"3rdparty", remove that line from the newly-created entry for your
library. This line references the Oracle JET third-party area on the
content distribution network (CDN) managed by Oracle. Your library
won't be hosted there, and keeping this line causes a release build to fail
at runtime by mapping your library's path to a non-existent URL.

If you use a CDN, add the URL to the CDN in the entry for the cdnPath
attribute.

3. If your project uses TypeScript, then you also need to define a paths entry in your
tsconfig.json file that allows you to import the library using the same path name at
design time as you'll use at runtime. If the library in question also provides some types
for you to use, then the path should point to these to allow your editor to provide
TypeScript support for your usage of that library. Here is an example of an existing
paths entry in an Oracle JET app created with the command-line tooling.

"paths": {
 "ojs/*": [
 "./node_modules/@oracle/oraclejet/dist/types/*"
],
...

• If you didn’t use command-line tooling to create your app, perform the following steps to
add the tool or library.

1. In the app’s /libs directory, create a new directory and add the new library and any
accompanying files to it.

For example, for a library named my-library, create the my-library directory and add
the my-library.js file and any needed files to it. Be sure to add the minified version if
available.

2. In your RequireJS bootstrap file, typically main.js, add a path for the library file in the
path mapping section of the requirejs.config() definition.

Chapter 6

6-4

For example, add the highlighted code below to your bootstrap file to use a library
named my-library.

requirejs.config({
 // Path mappings for the logical module names
 paths:
 {
 'knockout': 'libs/knockout/knockout-3.x.x',
 'jquery': 'libs/jquery/jquery-3.x.x.min',
 ...
 'text': 'libs/require/text',
 'my-library': 'libs/my-library/my-library
 },
 require(['knockout', 'my-library'],
 // this callback gets executed when all
 // required modules are loaded
 function(ko)
 {
 // Add any start-up code that you want here
 }
);

3. If your project uses TypeScript, then you also need to define a paths entry in your
tsconfig.json file that allows you to import the library using the same path name at
design time as you'll use at runtime. If the library in question also provides some types
for you to use, then the path should point to these to allow your editor to provide
TypeScript support for your usage of that library. Here is an example of an existing
paths entry in an Oracle JET app created with the command-line tooling.

"paths": {
 "ojs/*": [
 "./node_modules/@oracle/oraclejet/dist/types/*"
],
...

Chapter 6

6-5

7
Test and Debug Oracle JET Apps

Test and debug Oracle JET web apps using a recommended set of testing and debugging
tools for client-side apps.

Test Oracle JET Apps
Tests help you build complex Oracle JET apps quickly and reliably by preventing regressions
and encouraging you to create apps that are composed of testable functions, modules,
classes, and components.

We recommend that you write tests as early as possible in your app’s development cycle. The
longer that you delay testing, the more dependencies the app is likely to have, and the more
difficult it will be to begin testing.

Testing Types
There are three main testing types that you should consider when testing Oracle JET apps.

1. Unit Testing

• Unit testing checks that all inputs to a given function, class, or component are
producing the expected output or response.

• These tests are typically applied to self-contained business logic, components,
classes, modules, or functions that do not involve UI rendering, network requests, or
other environmental concerns.

Note that REST service APIs should be tested independently.

• Unit tests are aware of the implementation details and dependencies of a component
and focus on isolating the tested component.

2. Component Testing

• Component testing checks that individual components can be interacted with and
behave as expected. These tests import more code than unit tests, are more complex,
and require more time to execute.

• Component tests should catch issues related to your component's properties, events,
the slots that it provides, styles, classes, lifecycle hooks, and more.

• These tests are unaware of the implementation details of a component; they mock up
as little as possible in order to test the integration of your component and the entire
system.

You should not mock up child components in component tests but instead check the
interactions between your component and its children with a test that interacts with the
components as a user would (for example, by clicking on an element).

3. End-to-End Testing

• End-to-end testing, which often involves setting up a database or other backend
service, checks features that span multiple pages and make real network requests
against a production-built JET app.

7-1

End-to-end testing is meant to test the functionality of an entire app, not just its individual
components. Therefore, use unit tests and component tests when testing specific components
of your Oracle JET apps.

Unit Testing

Unit testing should be the first and most comprehensive form of testing that you perform.

The purpose of unit testing is to ensure that each unit of software code is coded correctly,
works as expected, and returns the expected outputs for all relevant inputs. A unit can be a
function, method, module, object, or other entity in an app’s source code.

Unit tests are small, efficient tests created to execute and verify the lowest-level of code and to
test those individual entities in isolation. By isolating functionality, we remove external
dependencies that aren't relevant to the unit being tested and increase the visibility into the
source of failures.

Unit tests should interact with the component's public application programming interface (API)
and pass the API as many different combinations of test data as necessary to exercise as
much of the component's code paths as possible. This includes testing the component's
properties, events, methods, and slots.

Unit tests that you create should adhere to the following principles:

• Easy to write: Unit testing should be your main testing focus; therefore, tests should
typically be easy to write because many will be written. The standard testing technology
stack combined with recommended development environments ensures that the tests are
easily and quickly written.

• Readable: The intent of each test should be clearly documented, not just in comments, but
the code should also allow for easy interpretation of what its purpose is. Keeping tests
readable is important should someone need to debug when a failure occurs.

• Reliable: Tests should consistently pass when no bugs are introduced into the component
code and only fail when there are true bugs or new, unimplemented behaviors. The tests
should also execute reliably regardless of the order in which they’re run.

• Fast: Tests should be able to execute quickly and report issues immediately to the
developer. If a test runs slowly, it could be a sign that it is dependent upon an external
system or interacting with an external system.

• Discrete: Tests should exercise the smallest unit of work possible, not only to ensure that
all units are properly verified but also to aid in the detection of bugs when failures occur. In
each unit test, individual test cases should independently target a single attribute of the
code to be verified.

• Independent: Above all else, unit tests should be independent of one another, free of
external dependencies, and be able to run consistently irrespective of the environment in
which they’re executed.

To shield unit tests from external changes that may affect their outcomes, unit tests focus
solely on verifying code that is wholly owned by the component and avoid verifying the
behaviors of anything external to that component. When external dependencies are needed,
consider using mocks to stand in their place.

Component Testing

The purpose of component testing is to establish that an individual component behaves and
can be interacted with according to its specifications. In addition to verifying that your
component accepts the correct inputs and produces the right outputs, component tests also

Chapter 7
Test Oracle JET Apps

7-2

include checking for issues related to your component's properties, events, slots, styles,
classes, lifecycle hooks, and so on.

A component is made up of many units of code, therefore component testing is more complex
and takes longer to conduct than unit testing. However, it is still very necessary; the individual
units within your component may work on their own, but issues can occur when you use them
together.

Component testing is a form of closed-box testing, meaning that the test evaluates the
behavior of the program without considering the details of the underlying code. You should
begin testing a component in its entirety immediately after development, though the tested
component may in part depend on other components that have not yet been developed.
Depending on the development lifecycle model, component testing can be done in isolation
from other components in the system, in order to prevent external influences.

If the components that your component depends on have not yet been developed, then use
dummy objects instead of the real components. These dummy objects are the stub (called
function) and the controller (called function).

Depending on the depth of the test level, there are two types of component tests: small
component tests and large component tests.

When component testing is done in isolation from other components, it is called "small
component testing." Small component tests do not consider the component's integration with
other components.

When component testing is performed without isolating the component from other components,
it is called "large component testing", or "component testing" in general. These tests are done
when there is a dependency on the flow of functionality of the components, and therefore we
cannot isolate them.

End-to-End Testing

End-to-end testing is a method of evaluating a software product by examining its behavior from
start to finish. This approach verifies that the app operates as intended and confirms that all
integrated components function correctly in relation to one another. Additionally, end-to-end
testing defines the system dependencies of the product to ensure optimal performance.

The primary goal of end-to-end testing is to replicate the end-user experience by simulating
real-world scenarios and evaluating the system and its components for proper integration and
data consistency. This approach allows for the validation of the system's performance from the
perspective of the user.

End-to-end testing is a widely adopted and reliable technique that provides the following
advantages.

• Comprehensive test coverage

• Assurance of app's accuracy

• Faster time to market

• Reduced costs

• Identification of bugs

Modern software systems are increasingly interconnected, with various subsystems that can
cause adverse effects throughout the entire system if they fail. End-to-end testing can help
prevent these risks by:

• Verifying the system's flow

• Increasing the coverage of testing areas

Chapter 7
Test Oracle JET Apps

7-3

• Identifying issues related to subsystems

End-to-end testing is beneficial for a variety of stakeholders:

• Developers appreciate end-to-end testing as it allows them to offload testing
responsibilities.

• Testers find it useful as it enables them to write tests that simulate real-world scenarios and
avoid potential problems.

• Managers benefit from end-to-end testing as it allows them to understand the impact of a
failing test on the end-user.

The end-to-end testing process comprises four stages:

1. Test Planning: Outlining key tasks, schedules, and resources required

2. Test Design: Creating test specifications, identifying test cases, assessing risks, analyzing
usage, and scheduling tests

3. Test Execution: Carrying out the test cases and documenting the results

4. Results Analysis: Reviewing the test results, evaluating the testing process, and
conducting further testing as required

There are two approaches to end-to-end testing:

• Horizontal Testing: This method involves testing across multiple apps and is often used in
a single ERP (Enterprise Resource Planning) system.

• Vertical Testing: This approach involves testing in layers, where tests are conducted in a
sequential, hierarchical order. This method is used to test critical components of a complex
computing system and does not typically involve users or interfaces.

End-to-end testing is typically performed on finished products and systems, with each review
serving as a test of the completed system. If the system does not produce the expected output
or if a problem is detected, a second test will be conducted. In this case, the team will need to
record and analyze the data to determine the source of the issue, fix it, and retest.

While testing your app end-to-end, consider the following metrics:

• Test Case Preparation Status: This metric is used to track the progress of test cases that
are currently being prepared in comparison to the planned test cases.

• Test Progress Tracking: Regular monitoring of test progress on a weekly basis to provide
updates on test completion percentage and the status of passed/failed, executed/
unexecuted, and valid/invalid test cases.

• Defects Status and Details: Provides a weekly percentage of open and closed defects
and a breakdown of defects by severity and priority.

• Environment Availability: Information on the number of operational hours and hours
scheduled for testing each day.

About the Oracle JET Testing Technology Stack
The recommended stack for testing Oracle JET apps includes Jest and the Preact Testing
Library.

Jest is a popular testing framework for JavaScript/Typescript that comes with its own test
runner and assertion functions. It supports code coverage and snapshot testing, is simple to
create mocks with, and runs tests in parallel, which ensures that they remain isolated.

Chapter 7
Test Oracle JET Apps

7-4

https://jestjs.io/
https://www.npmjs.com/package/@testing-library/preact
https://www.npmjs.com/package/@testing-library/preact

Jest runs in NodeJS using jsdom as a simulated browser environment. These tests run very
quickly because the environment doesn't need to render anything; it is a lightweight, in-memory
implementation of the DOM that runs headless. Jest tests are suitable for verifying almost
every aspect of your components, except for things that require CSS for styling. jsdom does
not process CSS, so avoid using these tests to validate any CSS.

The Preact Testing Library provides a set of utility functions that make it easy to write tests that
assert the behavior of Preact components without relying on their implementation details. It
promotes a UI-centric approach to testing: components are allowed to go through their full
rendering lifecycles, and the library provides query functions to locate elements within the
DOM and a user-event simulation library to interact with them.

The functions in the Preact Testing Library work with the actual DOM elements that are
rendered by Preact, rather than with the virtual DOM, so tests will resemble how a user
interacts with the app and finds elements on the page.

For UI automation testing, we recommend using Selenium WebDriver in conjunction with the
Oracle® JavaScript Extension Toolkit (Oracle JET) WebDriver.

Configure Oracle JET Apps for Testing
Use the ojet add testing CLI command to add testing capability to your Oracle JET app by
setting up the framework, dependencies, and libraries required for testing for JET components,
including Jest and the Preact Testing Library.

The ojet add testing Command

Run the command from a terminal window in your app's root directory. After it configures your
app's testing environment, you can proceed to create and run tests on your app using Jest and
the Preact Testing Library.

The configuration performed by the ojet add testing command creates some directories,
dependencies, and files within your app that are essential to testing.

For instance, the configuration adds the test-config folder to your app's root directory. It
contains two files that are required for testing: jest.config.js and testSetup.ts.

The file testSetup.ts imports runtime support for compiled and transpiled async functions,
while jest.config.js is Jest's configuration file.

Additionally, existing components are checked for test files. The extension for files containing
tests, known as "spec files," should be .spec.tsx so that tooling and your Jest testing
configuration recognize them. If spec files are missing from a component, then they are
injected. Spec files are located within a __tests__ folder inside the components folder, such as
src/components/<component-name>/__tests__. This folder holds the test files you write for
your component and, by default, is created with a spec file: <component-name>.spec.tsx.

Note:

If you create a new component or pack from the command line after running the add
testing command on your project, then the __tests__ folder and its spec file are
injected by default.

Chapter 7
Test Oracle JET Apps

7-5

https://www.npmjs.com/package/selenium-webdriver
https://www.oracle.com/webfolder/technetwork/jet/wdtsdoc/index.html

Testing Demo

Here we will demonstrate how to use the ojet add testing command to configure a testing
environment for an Oracle JET app. After testing is enabled, we will run a unit test and a
component test on the sample app.

1. First, create a new Oracle JET app using the basic template. Open a terminal window in
your working directory and run the command npx @oracle/ojet-cli create vdomTestApp
--template=basic --vdom.

2. Enter cd vdomTestApp to navigate to the app's root directory, then enter the command npx
ojet create component hello-world to create a new component.

3. Open the ./VDOMTestApp/src/components/content/index.tsx file to import and display
the newly-created HelloWorld component:

import { HelloWorld } from "hello-world/loader"

export function Content() {
 return (
 <div class="oj-web-applayout-max-width oj-web-applayout-content">
 <HelloWorld />
 </div>
);
};

4. Enter the npx ojet serve command to run the app in your browser and confirm that the
app runs and the new component renders. This is also a required step for testing, as
before the components can be tested, they must first be built by the Oracle JET CLI.

Note:

The text "Hello from hello world" visible in the running app is passed into your
app's content through the HelloWorld component's message property, confirming
that the component is working.

5. Run the npx ojet add testing command from a terminal window in your app's root
directory.

Chapter 7
Test Oracle JET Apps

7-6

In addition to configuring your testing environment, in your app's directory structure, you
can see that the test-config folder was added to the root directory and the __tests__
folder was added to the /src/components/hello-world directory.

Inside the __tests__ folder is the spec file hello-world.spec.tsx, created by default with
a component test for your HelloWorld component that verifies that it renders. Jest provides
the test case and assertions (describe(), test(), and
expect(true).not.toBeUndefined;), whereas the render() function from the Preact
Testing Library is used to render the component in the app.

If you look in the package.json file, you can see the testing dependencies that were
added, such as the Jest preset that allows Oracle JET Web Elements to be used in Jest
tests, and two convenience scripts, test and test:debug.

6. In addition to the component test, we will run a unit test. First, we must provide a function
to be tested.
Open the ./VDOMTestApp/src/components/hello-world/hello-world.tsx file in your
code editor and, at the bottom of the file, insert the following function that returns the sum
of two numbers. Save the file.

export const sum = (a: number, b: number) => {
 return a + b;
}

7. Open the hello-world.spec.tsx file and, at the top of the file, add an import statement
for the sum function: import { sum } from 'hello-world/hello-world'.

8. At the bottom of the hello-world.spec.tsx file, add the following unit test for the sum
function. Save the file.

it('The sum is 10', () => {
 expect(sum(6, 4)).toBe(10)
})

9. Build your app's project source by running the following command from the ./
VDOMTestApp/ directory in a terminal window

npx ojet build
10. Run the tests. Enter npm run test in the command line and observe the results in the

terminal window.

Chapter 7
Test Oracle JET Apps

7-7

Debug Oracle JET Apps
Since Oracle JET web apps are client-side HTML5 apps written in JavaScript or Typescript,
you can use your favorite browser's debugging facilities.

Debug Web Apps
Use your source code editor and browser's developer tools to debug your Oracle JET app.

Developer tools for widely used browsers like Chrome, Edge, and Firefox provide a range of
features that assist you in inspecting and debugging your Oracle JET app as it runs in the
browser. Read more about the usage of these developer tools in the documentation for your
browser.

By default, the ojet build and ojet serve commands use debug versions of the Oracle JET
libraries. If you build or serve your Oracle JET app in release mode (by appending the --
release parameter to the ojet build or ojet serve command), your app uses minified
versions of the Oracle JET libraries. If you choose to debug an Oracle JET app that you built in
release mode, you can use the --optimize=none parameter to make the minified output more
readable by preserving line breaks and white space:

ojet build --release --optimize=none
ojet serve --release --optimize=none

Note that browser developer tools offer the option to "pretty print" minified source files to make
them more readable, if you choose not to use the --optimize=none parameter.

You may also be able to install browser extensions that further assist you in debugging your
app.

Finally, if you use a source code editor, such as Visual Studio Code, familiarize yourself with
the debugging tools that it provides to assist you as develop and debug your Oracle JET app.

Use Preact Developer Tools
You can install a Preact browser extension to provide additional debugging tools in your
browser’s developer tools when you debug your virtual DOM app.

Preact provides download links for the various browser extensions at https://preactjs.github.io/
preact-devtools/.

Once you have installed the extension for your browser, you need to include an import
statement for preact/debug as the first line in your app's appRootDir/src/index.ts file:

import 'preact/debug';
import './components/app';

Chapter 7
Debug Oracle JET Apps

7-8

https://preactjs.github.io/preact-devtools/
https://preactjs.github.io/preact-devtools/

Oracle JET takes care of including this import when your virtual DOM app is built or served in
debug mode (the default option for ojet build and ojet serve) by including the following
injector token when you create the virtual DOM app:

// injector:preactDebugImport
// endinjector
import './components/app';

As a result, you do not need to include the import 'preact/debug' statement when you build
or serve your app in debug mode or remove it when you build or serve for release, as Oracle
JET’s injector token ensures that the import statement is only included in debug mode.

When you serve your virtual DOM app in debug mode (the default option for ojet serve),
you’ll see an extra tab, Preact, in your browser’s developer tools. In the following image, you
see the Preact tab in the Chrome browser’s DevTools.

You can view the hierarchy of the components, select and inspect components, and perform
other actions that assist you in debugging issues with your virtual DOM app.

When you build or serve the virtual DOM app in release mode, using the --release argument,
Oracle JET does not import the Preact DevTools. Remove the token if you do not want to use
the Preact DevTools in debug mode.

One other thing to note is that Oracle JET includes the following entries in your app's
appRootDir/src/path_mapping.json file when it creates your app. You need these entries to
be able to use the Preact extension discussed here.

. . .
"preact/debug": {
 "cdn": "3rdparty",
 "cwd": "node_modules/preact/debug/dist",
 "debug": {
 "src": [
 "debug.umd.js",
 "debug.umd.js.map"
],
 "path": "libs/preact/debug/dist/debug.umd.js",
 "cdnPath": "preact/debug/dist/debug.umd"

Chapter 7
Debug Oracle JET Apps

7-9

 },
 "release": {
 "src": [
 "debug.umd.js",
 "debug.umd.js.map"
],
 "path": "libs/preact/debug/dist/debug.umd.js",
 "cdnPath": "preact/debug/dist/debug.umd"
 }
 },
 "preact/devtools": {
 "cdn": "3rdparty",
 "cwd": "node_modules/preact/devtools/dist",
 "debug": {
 "src": [
 "devtools.umd.js",
 "devtools.umd.js.map"
],
 "path": "libs/preact/devtools/dist/devtools.umd.js",
 "cdnPath": "preact/devtools/dist/devtools.umd"
 },
 "release": {
 "src": [
 "devtools.umd.js",
 "devtools.umd.js.map"
],
 "path": "libs/preact/devtools/dist/devtools.umd.js",
 "cdnPath": "preact/devtools/dist/devtools.umd"
 }
 },

Chapter 7
Debug Oracle JET Apps

7-10

8
Package and Deploy Apps

If you used Oracle JET tooling to create your Oracle JET app, you can package web apps for
deployment to a web or app server.

Package Web Apps
If you created your app using the tooling, use the Oracle JET command-line interface (CLI) to
create a release version of your app containing your app scripts and applicable Oracle JET
code in minified format.

1. From a terminal prompt in your app’s root directory, enter the following command: ojet
build --release.

The command will take some time to complete. When it’s successful, you’ll see the
following message: Build finished!.

The command replaces the development version of the libraries and scripts in web/js/
with minified versions where available.

2. To verify that the app still works as you expect, run ojet serve with the release option.

The ojet serve --release command takes the same arguments that you used to serve
your web app in development mode.

ojet serve --release [--serverPort=server-port-number --serverOnly]

Tip:

For a complete list of options, type ojet help serve at the terminal prompt.

Deploy Web Apps
Oracle JET is a collection of HTML, JavaScript, and CSS files that you can deploy to any type
of web or app server. There are no unique requirements for deploying Oracle JET apps.

Deployment methods are quite varied and depend upon the type of server environment your
app is designed to run in. However, you should be able to use the same method for deploying
Oracle JET apps that you would for any other client interface in your specific environment.

For example, if you normally deploy apps as zip files, you can zip the web directory and use
your normal deployment process.

Remove and Restore Non-Source Files from Your JET App
The Oracle JET CLI provides commands (clean, strip, and restore) that manage the source
code of your JET app by removing extraneous files, such as the build output for the platforms
your JET app supports or npm modules installed into your project.

8-1

Consider using these commands when you want to package your source code for distribution
to colleagues or others who may work on the source code with you. Use of these commands
may not be appropriate in all circumstances. Use of the clean and strip commands will, for
example, remove the content in the web directory that is created when you run ojet build or
ojet serve.

ojet clean

Use the ojet clean command to clean the build output of your JET app. Specify the web
parameter with the ojet clean command (ojet clean web) to remove the contents of your
app’s root directory’s web directory.

ojet strip

Use ojet strip when you want to remove all non-source files from your JET app. In addition
to the build output removed by the ojet clean command, ojet strip removes additional
dependencies, such as npm modules installed into your project. A typical usage scenario for
the ojet strip command is when you want to distribute the source files of your JET app to a
colleague and you want to reduce the number of files to transmit to the minimum.

The ojet strip command relies on the presence of the .gitignore file in the root directory of
your app to determine what to remove. The file lists the directories that are installed by the
tooling and can therefore be restored by the tooling. Only those directories and files listed will
be removed when you run ojet clean on the app folder.

If you do not use Git and you want to run ojet strip to make a project easier to transmit, you
can create the .gitignore file and add it to your app's root folder with a list of the folders and
files to remove, like this:

#List of web app folders to remove
/node_modules
/bower_components
/themes
/web

As an alternative to the .gitignore file, you can include a stripList property that takes an
array of glob pattern values in your app's oraclejetconfig.json file. When you specify the
stripList parameter in the oraclejetconfig.json file, Oracle JET ignores the .gitignore
file and its entries. Specify the list of directories and file types that you want to remove when
you run ojet strip, as demonstrated by the following example.

{
. . .
 "generatorVersion": "17.0.0",
 "stripList": [
 "jet_components",
 "node_modules",
 "bower_components",
 "dist",
 "web",
 "staged-themes",
 "themes",
 "myfiles/*.txt"
]
}

Chapter 8
Remove and Restore Non-Source Files from Your JET App

8-2

ojet restore

Use the ojet restore command to restore the dependencies, plugins, libraries, and Web
Components that the ojet strip command removes. After the ojet restore command
completes, use the ojet build and/or ojet serve commands to build and serve your JET
app.

The ojet restore command supports a number of additional parameters, such as ojet
restore --ci that invokes the npm ci command instead of the default npm install command.
This option (ojet restore --ci) fetches the dependencies specified in the package-
lock.json file, and can be useful in CI/CD pipelines.

For additional help with CLI commands, enter ojet help at a terminal prompt.

Chapter 8
Remove and Restore Non-Source Files from Your JET App

8-3

A
Properties in the oraclejetconfig.json File

The oraclejetconfig.json file supports a range of properties that you can configure to
determine the behavior of your Oracle JET project.

Note:

Where Property is <prop>.<subprop> it indicates that <subprop> is a subproperty of
<prop>. For example, paths.components means "paths": { "components":
"value" }.

Table A-1 Properties in the oraclejetconfig.json File

Property Value
Type

Valid Values Default Notes

architecture String mvvm or vdom mvvm Type of app architecture.

components Object component
name/version
value pairs

Component name/version value pairs for components to
be restored from the component exchange upon ojet
restore. Similar format to a package.json. For
example:

"components": { "oj-doceg-double-picker":
"^2.0.0" }

bundleName String simple file
name with a .JS
extension

bundle.js Allows an override of the default name used for an
optimized app.

bundler String webpack |
<any>

In release 11.0.0, JET introduced bundler-only support
for Webpack. If webpack was specified as the value for
the bundler property, the before_webpack hook was
used to bundle the app. Otherwise, the
before_optimize hook managed the RequireJS-
based app bundling. Webpack-based bundler applied
only to the app bundling. Custom component
optimization continued to use RequireJS-based
bundling, and could be configured with the
before_component_optimize hook.

In release 12.0.0, JET introduced end-to-end Webpack
support. With the --webpack argument in an ojet
create command, Oracle JET creates an
ojet.config.js file where you configure Webpack
usage. No bundler property is configured in the
oraclejetconfig.json file.

defaultBrowser String browser name chrome Sent to Apache Cordova when serving hybrid mobile
apps as --target when the destination is browser.

defaultTheme String redwood,
redwood-notag,
stable

redwood Name of theme to use as the default in the app.

A-1

Table A-1 (Cont.) Properties in the oraclejetconfig.json File

Property Value
Type

Valid Values Default Notes

dependencies Object component
name/object or
version number
pairs

Names of potential component or pack dependencies
used to check whether certain pre-minified components
should be excluded from the ojet build --release
bundling process. For example:

"dependencies": { "oj-pack-comp":
{ "version": "2.0.0"} }
Or

"oj-comp": "2.0.0"
exchange-url String URL Component exchange instance for publishing

components. For example:

https://exchange.url.com/api/0.2.0

Note:

This setting can also be
inherited (if not present)
from a global value
defined through ojet
configure --
exchange-url=<addr>
--global which will be
stored centrally (for
example, .ojet/
exchange-url.json)

generatorVersion String Oracle JET CLI
version

Deprecated. Historical information about the version of
JET that was first used to create the project. Not used
by the CLI.

installer String yarn or npm npm If specified, an alternate installer to run instead of the
default npm for npm install type commands.

localComponents
Support

boolean true/false Indicates whether the component exchange backend
supports the local components extension. The value
will be recorded by the CLI in oraclejetconfig.json.
If a user wants to opt out of the local components
support, they can set this value to false deliberately.

Appendix A

A-2

Table A-1 (Cont.) Properties in the oraclejetconfig.json File

Property Value
Type

Valid Values Default Notes

paths.components String path jet-composites Path where locally-created components are stored
relative to a root that is dependent on the scaffolded
project type:

1. Project created with --vdom or --
template=basic-vdom template. Root will be
src/ .

2. Project created with --typescript. Root will be
src/ts/ .

3. Default project. Root will be src/js.

Note:

In a a project created with
the vdom basic template
or --vdom option, this
value will be pre-set to just
components rather than
the default jet-
composites.

paths.exchangeCo
mponents

String path exchange_compo
nents

Folder where components added from the exchange are
stored for new virtual DOM apps. Non-virtual DOM apps
(MVVM) use the older jet_components when this is
not set. This path must be a simple folder name which
will be created in the root of the project as a peer of the
src/ folder.

paths.source.com
mon

String path src Simple folder name relative to the project root. A folder
hierarchy cannot be used here. Other settings such as
paths.components will be relative to this location.

paths.source.hybri
d

String path src-hybrid Simple folder name relative to the project root. A folder
hierarchy cannot be used here.

paths.source.javas
cript

String path js Simple folder name relative to the defined src folder. A
folder hierarchy cannot be used here. Other settings
such as paths.components may be relative to this
location in the relevant project type.

paths.source.style
s

String path css Simple folder name relative to the defined src folder. A
folder hierarchy cannot be used here.

paths.source.them
es

String path themes Simple folder name relative to the defined src folder. A
folder hierarchy cannot be used here.

paths.source.tsco
nfig

String path If specified, this subproperty enables the relocation of
the tsconfig.json file from its default location at the
app root. Simple folder name relative to the defined src
folder. A folder hierarchy cannot be used here.

paths.source.type
script

String path ts Simple folder name relative to the defined src folder. A
folder hierarchy cannot be used here. Other settings
such as paths.components may be relative to this
location in the relevant project type.

Appendix A

A-3

Table A-1 (Cont.) Properties in the oraclejetconfig.json File

Property Value
Type

Valid Values Default Notes

paths.source.web String path src-web Simple folder name relative to the defined src folder. A
folder hierarchy cannot be used here.

paths.staging.hybr
id

String path hybrid Path where the hybrid build products are generated.

paths.staging.the
mes

String path staged-themes Path where themes are staged.

paths.staging.web String path web Path where the web build products are generated.

sassVer String semver-style
version number

5.0.0 node-sass npm package version that will be installed if
sass is added

stripList Array of
strings

path strings List of .gitignore-style paths to strip when ojet
strip is executed. This bypasses the list in
the .gitignore file.

unversioned boolean true/false false When true, Oracle JET generates components in a
directory path without the component version number
when you run ojet build or ojet serve. For
example:

appRootDir/web/components/my-component-
pack/my-widget-1/
Without the unversioned property or with
"unversioned": false (the default), the output path
is:

appRootDir/web/components/my-component-
pack/1.0.0/my-widget-1/
The unversioned entry in the
oraclejetconfig.json file takes precedence over
the Oracle JET command-line argument (--omit-
component-version). That is, if the
oraclejetconfig.json file includes
"unversioned": false (include component version
number in the directory path) and you build your Oracle
JET app using the following command, Oracle JET
includes the component version in the generated
directory path:

ojet build --omit-component-version
watchInterval String Number of

milliseconds
1000 Configure the interval at which the live reload feature

polls the Oracle JET project for updates by configuring a
value for this property. The default value is 1000
milliseconds.

Appendix A

A-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 Get Started with Virtual DOM Architecture in Oracle JET
	About Oracle JET Virtual DOM Architecture
	What Can You Do with the Oracle JET Virtual DOM Architecture?
	Prerequisite Knowledge
	Create a Development Environment for Virtual DOM Apps
	Install Oracle JET Tooling
	Install Node.js
	Use the npx Node.js Package Runner
	Install the Oracle JET Command-Line Interface
	Yarn Package Manager

	2 Understand the Web App Workflow
	Scaffold a Web App
	About the Virtual DOM App Layout
	About the Binding Provider for Virtual DOM Apps
	Add Progressive Web App Support to Web Apps

	Build a Web App
	Serve a Web App
	About ojet serve Command Options and Express Middleware Functions
	Serve a Web App to a HTTPS Server Using a Self-signed Certificate

	Customize the Web App Tooling Workflow
	About the Script Hook Points for Web Apps
	About the Process Flow of Script Hook Points
	Change the Hooks Subfolder Location
	Create a Hook Script for Web Apps
	Pass Arguments to a Hook Script for Web Apps

	Use Webpack in Oracle JET App Development
	Configure Oracle JET's Default Webpack Configuration

	3 Understand VComponent-based Web Components
	Hello VComponent, an Introduction
	Metadata for VComponents
	Nest VComponents
	VComponent Properties
	Declare VComponent Properties
	Reference Properties in JSX
	Access Properties
	Reference Properties of a Child Component in JSX
	Type-Checking Support
	Global HTML Attributes

	Children and Slot Content
	Default Slots
	Named Slots
	Refresh Custom Elements with Dynamic Children and Slot Content

	Template Slots
	Provide Template Slot Content within HTML
	Template Slots in JSX

	Understand Events and Actions
	Listeners
	Actions
	Declare Actions
	Dispatch Actions
	Respond to Actions
	Action Payloads

	Manage State Properties
	Declare State
	Update State
	Understand the State Mechanism

	Reference Child VComponents by Value

	4 Work with Oracle JET VComponent-based Web Components
	Create Web Components
	Create Standalone Web Components
	Create JET Packs
	Create Resource Components for JET Packs
	Create Reference Components for Web Components

	Add Web Components to Your Page
	Generate API Documentation for VComponent-based Web Components
	Build Web Components
	Package Web Components

	5 Use Oracle JET Components and Data Providers
	Access Subproperties of Oracle JET Component Properties
	Mutate Properties on Oracle JET Custom Element Events
	Avoid Repeated Data Provider Creation
	Avoid Data Provider Re-creation When Data Changes
	Use Oracle JET Popup and Dialog Components

	6 Add Third-Party Tools or Libraries to Your Oracle JET App
	7 Test and Debug Oracle JET Apps
	Test Oracle JET Apps
	Testing Types
	About the Oracle JET Testing Technology Stack
	Configure Oracle JET Apps for Testing

	Debug Oracle JET Apps
	Debug Web Apps
	Use Preact Developer Tools

	8 Package and Deploy Apps
	Package Web Apps
	Deploy Web Apps
	Remove and Restore Non-Source Files from Your JET App

	A Properties in the oraclejetconfig.json File

