Oracle® JavaScript Extension Toolkit

(Oracle JET)

Developing Oracle JET Apps Using Virtual
DOM Architecture

ORACLE"

Oracle JavaScript Extension Toolkit (Oracle JET) Developing Oracle JET Apps Using Virtual DOM Architecture, 19.0.0
G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Get Started with Virtual DOM Architecture in Oracle JET

About Oracle JET Virtual DOM Architecture 1
What Can You Do with the Oracle JET Virtual DOM Architecture? 1
Prerequisite Knowledge 2
Create a Development Environment for Virtual DOM Apps 3
Install Oracle JET Tooling 3
Install Node.js 4
Use the npx NPM CLI Command 4
Install the Oracle JET Command-Line Interface 5
Yarn Package Manager 5
2 Understand the Web App Workflow
Scaffold a Web App 1
About the Virtual DOM App Layout 3
About the Binding Provider for Virtual DOM Apps 6
Add Progressive Web App Support to Web Apps 7
Build a Web App 8
Serve a Web App 9
About ojet serve Command Options and Express Middleware Functions 10
Serve a Web App to a HTTPS Server Using a Self-signed Certificate 11
Customize the Web App Tooling Workflow 14
About the Script Hook Points for Web Apps 14
About the Process Flow of Script Hook Points 16
Change the Hooks Subfolder Location 18
Create a Hook Script for Web Apps 18
Pass Arguments to a Hook Script for Web Apps 21
Use Webpack in Oracle JET App Development 23
Configure Oracle JET's Default Webpack Configuration 25

3 Understand VComponent-based Web Components

Hello VComponent, an Introduction
Metadata for VComponents

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02
Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page i of iv

Nest VComponents 4
VComponent Properties 5
Declare VComponent Properties 5
Reference Properties in JSX 6
Access Properties 6
Reference Properties of a Child Component in JSX 7
Type-Checking Support 7
Global HTML Attributes 8
Children and Slot Content 8
Default Slots 9
Named Slots 10
Refresh Custom Elements with Dynamic Children and Slot Content 11
Template Slots 12
Provide Template Slot Content within HTML 14
Template Slots in JSX 14
Understand Events and Actions 16
Listeners 16
Actions 18
Declare Actions 18
Dispatch Actions 18
Respond to Actions 19
Action Payloads 19
Manage State Properties 21
Declare State 21
Update State 22
Understand the State Mechanism 24
Reference Child VComponents by Value 24
4 Work with Oracle JET VComponent-based Web Components
Create Web Components 1
Create Standalone Web Components 1
Create JET Packs 4
Create Resource Components for JET Packs 8
Create Reference Components for Web Components 11
Add Web Components to Your Page 13
Generate APl Documentation for VComponent-based Web Components 14
Build Web Components 16
Package Web Components 17

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page ii of iv

5 Use Oracle JET Components and Data Providers

Access Subproperties of Oracle JET Component Properties
Mutate Properties on Oracle JET Custom Element Events
Avoid Repeated Data Provider Creation

Avoid Data Provider Re-creation When Data Changes

A W DN PP PP

Use Oracle JET Popup and Dialog Components

6 Add Third-Party Tools or Libraries to Your Oracle JET App

7 Validate and Convert Input

About Oracle JET Validators and Converters
About Validators
About the Oracle JET Validators
About Oracle JET Component Validation Attributes
About Oracle JET Component Validation Methods
About Oracle JET Converters
Use Oracle JET Converters with Oracle JET Components
Understand Time Zone Support in Oracle JET
About Oracle JET Validators
Use Oracle JET Validators with Oracle JET Components

© O O OB~ W NDNPEFP PP

Use Custom Validators in Oracle JET

=
o

About Asynchronous Validators

8 Internationalize and Localize Oracle JET Apps

About Internationalizing and Localizing Oracle JET Apps
Internationalize and Localize Oracle JET Apps
Use Oracle JET's Internationalization and Localization Support
Enable Bidirectional (BiDi) Support in Oracle JET
Set the Locale and Direction Dynamically
Work with Currency, Dates, Time, and Numbers
Work with Oracle JET RequireJS Translation Bundles

© © © O U W W B~k

About Oracle JET Translation Bundles
Add RequireJS Translation Bundles to an Oracle JET App
Work with ICU Translation Bundles in an Oracle JET Virtual DOM App
Format Placeholders Tokens
Set Up an Oracle JET Virtual DOM App to Create ICU Translation Bundles
Add ICU Translation Bundles to an Oracle JET Virtual DOM App
Generate Runtime ICU Translation Bundles
Use an ICU Translation Bundle in an Oracle JET Virtual DOM App Component

N N NDN P P
N N P O © N W

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page iii of iv

Use an ICU Translation Bundle in an Oracle JET VComponent 25

o Test and Debug Oracle JET Apps

Test Oracle JET Apps 1
Testing Types 1
About the Oracle JET Testing Technology Stack 4
Configure Oracle JET Apps for Testing 5

Debug Oracle JET Apps 9
Debug Web Apps 9
Use Preact Developer Tools 9

A Migrate Oracle JET Legacy Components to Core Pack Components

Prepare Your Oracle JET App for Core Pack A-1

Migrate Legacy Components Using the Core Pack Migrator A-2

Customize the Core Pack Migrator’'s Behavior A-3

Migrate WebDriver Test Files to Core Pack A-5

Troubleshoot Core Pack Migration Issues A-6

B Properties in the oraclejetconfig.json File

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page iv of iv

Preface

Developing Oracle JET Apps Using Virtual DOM Architecture describes how to build
responsive web apps and web components using the Oracle JET virtual DOM architecture.

Topics:
e Audience

« Documentation Accessibility

 Related Resources

¢ Conventions

Audience

Developing Oracle JET Apps Using Virtual DOM Architecture is intended for intermediate to
advanced front-end developers who want to create client-side responsive web apps and web
components based on the virtual DOM architecture supported by Oracle JET.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources

For more information, see these Oracle resources:

e Oracle JET Web Site

e Oracle JET Function-Based VComponent Tutorial

Conventions

The following text conventions are used in this document:

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 2

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/webfolder/technetwork/jet/index.html
https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-VComponent-Tutorial-VDOM/public_html/index.html

ORACLE’

Conventions
Convention Meaning
boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.
italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
monospace Monospace type indicates commands within a paragraph, URLs, code in

examples, text that appears on the screen, or text that you enter.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 2

Get Started with Virtual DOM Architecture In
Oracle JET

Oracle JET provides the capability to build apps and web components using a virtual DOM
architecture that renders components using a virtual DOM engine.

About Oracle JET Virtual DOM Architecture

Virtual DOM architecture is a different way of building apps and web components from the
Model-View-ViewModel (MVVM) architecture that Oracle JET has offered to date. Both
architectures are supported. You choose the architecture that you want to use.

Virtual DOM architecture is a programming pattern where a virtual representation of the DOM
is kept in memory and synchronized with the live DOM by a JavaScript library. As a pattern, it
has gained popularity for its ability to efficiently update the browser’s DOM (the live DOM).
Preact is the JavaScript library that Oracle JET uses to synchronize changes in the virtual
DOM to the live DOM.

The following diagram illustrates how virtual DOM architecture apps use the virtual DOM to
compute the difference when a state change occurs so that only one action, a re-render of the
DOM node(s) affected, occurs in the live DOM.

DIFF
OLD VIRTUAL DOM

COMPONENT — Render —» — Update — LIVE DOM

NEW VIRTUAL DOM

Ul

React, as one of the JavaScript libraries, to popularize the use of the virtual DOM architecture
provides extensive documentation that describes many of the main concepts. To learn more
about these concepts, consider reading the React documentation. Preact is the JavaScript
library that Oracle JET uses to manage the virtual DOM and update the live DOM of apps and
Web Components that you develop using Oracle JET's virtual DOM architecture. For more
information, see https://preactjs.com/.

What Can You Do with the Oracle JET Virtual DOM Architecture?

You can build web apps and you can also build web components that you publish for inclusion
in other Oracle JET web apps.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 6

https://react.dev/learn
https://preactjs.com/

ORACLE’

Chapter 1
Prerequisite Knowledge

To accomplish either of these tasks, you must first install the Oracle JET tooling, as described
in Install Oracle JET Tooling. Once you have installed the Oracle JET Tooling, you create a
virtual DOM app using the following command:

ojet create your-First-JET- VDOM app --template=basic --vdom

Once Oracle JET tooling creates the virtual DOM app for you, you can start to develop the
functionality of the app. To do this, you write TypeScript and JavaScript XML (JSX). Use of
JavaScript is not supported by the virtual DOM architecture.

If you are using the virtual DOM app that you created as a location to develop VComponent-
based web components that you later publish to a component exchange, you'll be familiar with
the steps if you previously developed Composite Component Architecture-based web
components using the Oracle JET tooling. That is, you do the following:

1. Use the Oracle JET tooling to create the component by running the following command:
ojet create component oj - hel | o-world --vcomponent

Use of the --vcomponent parameter is optional, unless you want to create a class-based
VComponent, in which case you specify the class option with the --vcomponent
parameter:

ojet create component oj-hel |l o-world --vcomponent=class
By default, Oracle JET tooling creates function-based VComponents.

2. If creating multiple components, use JET Pack. The following commands illustrate how you
create a JET Pack, your JETPack, and add three components to it (two function
components and one class component).

ojet create pack your JETPack

ojet create component oj - cl ass-conponent -1 --pack=your JETPack

ojet create component oj -function-conponent --vcomponent=function --
pack=your JETPack

ojet create component oj - cl ass- conponent -2 --vcomponent=class --
pack=your JETPack

We'll go into more detail for these tasks later in this guide. This brief introduction is for those of
you who are already familiar with Oracle JET web app and web component development.

Prerequisite Knowledge

To develop virtual DOM apps and components, you need to understand the following topics:

e Preact: Understand how Preact and, by extension, React works. To get started, read the
Main Concepts section of the React documentation. If you are familiar with React
concepts, read the Differences to React section of the Preact documentation.

e TypeScript and JSX: You write all virtual DOM apps and web components using TypeScript
and JSX. If you previously developed Oracle JET apps using the MVVM architecture, you
need to know that the virtual DOM architecture uses JSX to implement binding and
conditional behavior that the MVVM architecture implemented in the View (HTML) layer. To
learn more about TypeScript, see https://www.typescriptlang.org/ and to learn more about
JSX, see JSX In Depth in React’'s documentation.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 6

https://reactjs.org/docs/hello-world.html
https://preactjs.com/guide/v10/differences-to-react/
https://www.typescriptlang.org/
https://reactjs.org/docs/jsx-in-depth.html

ORACLE Chapter 1
Create a Development Environment for Virtual DOM Apps

Create a Development Environment for Virtual DOM Apps

You can develop virtual DOM apps in any integrated development environment (IDE) that
supports TypeScript, HTML, and CSS. However, an IDE is not required, and you can use any
text editor to develop your app.

You can use an IDE in conjunction with the Oracle JET Tooling, where you create a virtual
DOM app by using the provided app template. You proceed to develop the app in the IDE of
your choice by opening the project that was created using the Oracle JET Tooling, in that IDE.
After saving changes to your app files in the IDE, you use the Oracle JET Tooling to build and
run the app, as demonstrated in the following example from Microsoft Visual Studio Code.

) File Edit Selection View Go Run Terminal Help app.tsx - myFirstyDOMapp

appisx X

@customElement (“app
App Component<ExtendGlobalProps<Props>> {
defaultProps: Props = {

render(props: ExtendGlobalProps<Props>

id="

}
componentDidMount() {

Context.getPageContext().getBusyContext().applicationBootstrapComplete();
1
I

TERMINAL

fc/zjet/temp-apps/myFirstVDOMapp
$ ojet serve]

Install Oracle JET Tooling

You must install Node.js to use Oracle JET tooling to develop Oracle JET apps. You'll also
need the Oracle JET CLI, ojet-cli. You can use the ojet-cli through the Node.js package
runner (npx), or you can install it on your development platform.

If you already have Oracle JET tooling installed on your development platform, check that you
are using the minimum versions supported by Oracle JET and upgrade as needed. For the list
of minimum supported versions, see Oracle JET Support.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 6

https://www.oracle.com/webfolder/technetwork/jet/index.html?_ojCoreRouter=help

ORACLE Chapter 1
Create a Development Environment for Virtual DOM Apps

Install Node.js

Install Node.js on your development machine.

From a web browser, download and install one of the installers appropriate for your OS from
the Node.js download page. Oracle JET recommends that you install the latest LTS version.
Node.js is pre-installed on macQOS, but is likely an old version, so upgrade to the latest LTS
version if necessary.

After you complete installation and setup, you can enter npm commands from a command
prompt to verify that your installation succeeded. For example, enter npm config list to show
config settings for Node.js.

If your computer is connected to a network, such as your company's, that requires you to use a
proxy server, run the following commands so that your npm installation can work successfully.
This task is only required if your network requires you to use a proxy server. If, for example,
you connect to the internet from your home, you may not need to perform this task.

npm config set proxy http-proxy-server-URL:proxy-port
npm config set https-proxy https-proxy-server-URL:proxy-port

Include the complete URL in the command. For example:

npm config set proxy http://my._proxyserver.com:80
npm config set https-proxy http://my._proxyserver.com:80

Use the npx NPM CLI Command

We recommend that you use the npx NPM CLI command to create and manage Oracle JET
apps. With the npx NPM CLI command, you won’t need to uninstall and reinstall the NPM
packages that deliver the ojet-cli if you frequently change releases of the ojet-cli.

To use npx, you must install Node.js and you must uninstall any globally installed instances of
the Oracle JET CLI from your computer. To list globally-installed packages, run the npm list

--depth=0 -g command in a terminal window. To uninstall a globally installed instance of the

Oracle JET CLI, run the npm -g un @oracle/ojet-cli command.

Once you have installed Node.js, you can use npx and the version of the Oracle JET CLI NPM
package that you want to use, plus the appropriate command. The following examples
demonstrate how you create Oracle JET apps using different releases of the CLI and then
serve them on your local development computer.

// Create and serve an Oracle JET 15.0.0 app

$ npx @oracle/ojet-cli@15.0.0 create myJET15app --template=basic --vdom
$ cd myJET15app

$ npx @oracle/ojet-cli@15.0.0 serve

// Create and serve an Oracle JET 19.0.0 app

$ npx @oracle/ojet-cli@19.0.0 create myJETapp --template=basic --vdom
$ cd myJETapp

$ npx @oracle/ojet-cli@19.0.0 serve

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 6

https://nodejs.org/en/download/

ORACLE’

Chapter 1
Create a Development Environment for Virtual DOM Apps

You can use all the Oracle JET CLI commands (create, build, serve, strip, restore, and so
on) by following the syntax shown in the previous examples (npx package conmmand).

The npx package runner fetches the necessary package (for example, @oracle/ojet-
cli@19.0.0) from the NPM registry and runs it. The package is installed in a temporary cache
directory, as in the following example for a Windows computer:

C:\Users\JDOE\AppData\Roaming\npm-cache_npx

No NPM packages for the releases of the Oracle JET CLI shown in the previous examples are
installed on your computer, as you will see if you run the command to list globally installed
NPM packages:

$ npm list --depth=0 -g
C:\Users\JDOE\AppData\Roaming\npm
+-- json-server@0.16.3

+-- node-gyp@9.0.0

+-- typescript@4.2.3

T-- yarn@1.22.18

Use the following command to clear the temporary cache directory:
npx clear-npx-cache

To learn more about the npx NPM CLI command, see the documentation for the npm CLI. For
more information about the commands that the Oracle JET CLI provides, see Understand the
Web App Workflow.

Install the Oracle JET Command-Line Interface

Use npm to install the Oracle JET command-line interface (ojet-cli).

* At the command prompt of your development machine, enter the following command as
Administrator on Windows or use sudo on Macintosh and Linux machines:

[sudo] npm install -g @oracle/ojet-cli

It may not be obvious that the installation succeeded. Enter ojet help to verify that the
installation succeeded. If you do not see the available Oracle JET commands, scroll
through the install command output to locate the source of the failure.

— If you receive an error related to a network failure, verify that you have set up your
proxy correctly if needed.

— If you receive an error that your version of npm is outdated, type the following to update
the version: [sudo] npm install -g npm.

You can also verify the Oracle JET version with ojet --version to display the current
version of the Oracle JET command-line interface. If the current version is not displayed,
please reinstall by using the npm install command for your platform.

Yarn Package Manager

Oracle JET CLI supports usage of the Yarn package manager.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 6

https://docs.npmjs.com/

ORACLE’

Chapter 1
Create a Development Environment for Virtual DOM Apps

You must install Node.js as Oracle JET uses the npm package manager by default. However, if
you install Yarn, you can use it instead of the default npm package manager by specifying the
--instal ler=yarn parameter option when you invoke an Oracle JET command.

The --instal ler=yarn parameter can be used with the following Oracle JET commands:
e ojet create --installer=yarn

e ojet build --installer=yarn

° ojet serve --installer=yarn

e ojet strip --installer=yarn

Enter ojet help at a terminal prompt to get additional help with the Oracle JET CLI.

As an alternative to specifying the --instal ler=yarn parameter option for each command,
add "installer™: "yarn" to your Oracle JET app's oraclejetconfig.json file, as follows:

{

"generatorVersion": "19.0.0",
"installer”: "yarn"

}

The Oracle JET CLI then uses Yarn as the default package manager for the Oracle JET app.

For more information about the Yarn package manager, including how to install it, see Yarn's
website.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 6

https://yarnpkg.com/
https://yarnpkg.com/

Understand the Web App Workflow

Developing virtual DOM apps with Oracle JET is designed to be simple and efficient using the
development environment of your choice and a starter template to ease the development
process.

Oracle JET supports creating web apps from a command-line interface:

« Before you can create your first Oracle JET web app using the CLI, you must install the
prerequisite packages if you haven't already done so. For details, see Install Oracle JET

Tooling.
e Then, use the Oracle JET command-line interface package (ojet-cli) to scaffold a web

app using a basic starter template that creates a pre-configured app that you can modify
as needed.

- After you have scaffolded the app, use the ojet-cli to build the app, serve it in a local
web browser, and create a package ready for deployment.

You must not use more than one version of Oracle JET to add components to the same HTML
document of your web app. Oracle JET does not support running multiple versions of Oracle
JET components in the same web page.

Scaffold a Web App

Scaffolding is the process you use in the Oracle JET command-line interface (CLI) to create an
app that is pre-configured with a content area, a header and a footer layout. After scaffolding,
you can modify the app as needed.

The following image shows an app generated by the starter template. It includes responsive
styling that adjusts the display when the screen size changes.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 27

ORACLE Chapter 2

Scaffold a Web App
Iﬁ Oracle JET VDOM Starter Template - Basic - U X I
< C @ localhost:8000 6 1= -
DRACLE' H|;|‘] Mame john.hancock@oracle.com ¥
LH]
|

About Oracle Contact Us Legal Notices Terms Of Use Your Privacy Rights

A I
P N

Copyright © 2014, 2021 Cracle and/or its affiliates All rights reserved. L

Before you can create your first Oracle JET web app using the CLI, you must also install the
prerequisite packages if you haven't already done so. For details, see Install Oracle JET

Tooling.
To scaffold an Oracle JET web app:

1. Atacommand prompt, enter ojet create with optional arguments to create the Oracle
JET app and scaffolding.

ojet create [directory]
[--template={t enpl at e- nane:[basic]|tenpl ate-url |tenpl at e-

file}]
[--vdom]
[--use-global-tooling]
[--help]
@ Tip

You can enter ojet help at a terminal prompt to get additional help with the
Oracle JET CLI.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 27

ORACLE Chapter 2
Scaffold a Web App

For example, the following command creates a web app in the my-First-JET-VDOM-app
directory using the basic template:

ojet create my-First-JET-VDOM-app --template=basic --vdom

To scaffold the web app that will use the globally-installed @oracle/oraclejet-tooling
rather than install it locally in the app directory, enter the following command:

ojet create my-web-app --use-global-tooling --vdom

2. Wait for confirmation.

The scaffolding will take some time to complete. When successful, the console displays:

Oracle JET: Your app is ready! Change to your new app directory my-First-
JET-VDOM-app and try ojet build and serve...

3. Inyour development environment, update the code for your app.

About the Virtual DOM App Layout

Oracle JET Tooling creates an app for you with the necessary source files and directory
structure.

The new application will have a directory structure similar to the one shown in the following
image.

~ OPEN EDITORS
~ TEMP-APPS
~ vdom-doc-updates
» node_modules
» scripts
s SIC

» components

J5 main.Js
.gitignore
{} oraclejetconfig.json

{} package-lockjson

{} packagejson

{} path_mapping.json

tsconfigjson

The application folders contain the application and configuration files that you will modify as
needed for your own application.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 27

ORACLE

Chapter 2
Scaffold a Web App

Directory or File

Description

node_modules

Contains the Node.js modules used by the tooling.

scripts

Contains template hook scripts that you can modify to define
new build and serve steps for your application. See
Customize the Web App Tooling Workflow

Src

Site root for your application. Contains the application files
that you can modify as needed for your own application and
should be committed to source control. The starter template
includes an app component that imports footer, header,
and content components to help you get started.

.gitignore

Defines rules for application folders to ignore when using a
GIT repository to check in application source. Users who do
not use a GIT repository can use ojet strip to avoid
checking in content that Oracle JET always regenerates.
Note this file must not be deleted since the ojet strip
command depends on it.

oraclejetconfig.json

Contains the default source and staging file paths that you
can modify if you need to change your application's file
structure.

package. json

Defines npm dependencies and project metadata.

Whether you are developing a virtual DOM app or a VComponent-based web component,
you'll write your code in the files under the src directory. The Oracle JET Tooling creates a
corresponding web and dist directory when you build and/or serve the app, or publish a JET

Pack with web components.

Il Contents of virtual DOM app directory prior to build or serve

|

| oraclejetconfig.json
| package-lock.json
| package.json

| path_mapping.json
| tsconfig.json
+---scripts

| +---config

| \---hooks

| index._html
| index.ts

| main.js
+---components
I | app.tsx

| | footer.tsx

| | header.tsx

| \---content

| index. tsx

\---styles
| app-css
+---fonts
\---images

oracle_logo.svg

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02
Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page 4 of 27

ORACLE’

Chapter 2
Scaffold a Web App

Oracle JET virtual DOM architecture uses modules to organize VComponents and the Oracle
JET Tooling manages the modules in a project.

Custom element-based VComponents must reside in a directory with a name that matches the
name of the component. That is, the oj-hello-world custom component must reside in a
directory named oj-hello-world. By default, the name of the directory where you store all
components in your virtual DOM app is components, but you can change it to a different value
by editing the value of components in the oraclejetconfig. json file in your virtual DOM app's
root directory.

{
"paths": {
"source": {

"components™: "changeToYourPreferredvalue”,

},.--

Each custom element-based VComponent requires an accompanying loader . ts module file,
as illustrated by the following example for a custom element-based VComponent named oj-
hello-world. Oracle JET Tooling includes this file as Oracle Visual Builder, the Oracle
Component Exchange, and the Oracle JET Tooling itself require it.

+---Src
| index.html

+---components
| | app.tsx

| | footer.tsx

| | header.tsx

(I

| +---content

| | index.tsx

(I

| \---oj-hello-world

| | loader.ts

| oj-hello-world-styles.css
| oj-hello-world.tsx

| README .md

|

|

|

|

|

\---nls

|

|

|
+---resources
|

| oj-hello-world-strings.ts
|

The Oracle JET Tooling can manage components individually but we recommend that you
manage components in a pack (also known as a JET Pack) if you intend to create more than
one component.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 27

ORACLE Chapter 2
Scaffold a Web App

About the Binding Provider for Virtual DOM Apps

Oracle JET's default binding provider is Knockout. The binding provider that you use affects
how Oracle JET custom elements render.

If the default binding provider (data-oj-binding-provider="knockout") is used, all Oracle
JET custom elements, such as oj-list-view, wait on the apply bindings traversal to complete
before rendering. When Oracle JET custom elements are used in a Preact environment (virtual
DOM app), you must use the preact binding provider (data-oj-binding-provider="preact").

VComponent-based web components implicitly set the binding provider to preact on behalf of
their child components. As a result, Oracle JET custom elements inside of a VComponent use
the preact binding provider. However, for virtual DOM apps, you, the app developer, must
configure the binding provider manually (data-oj-binding-provider="preact') somewhere in
the DOM above where you add Oracle JET custom elements. The following code snippet
shows three examples of how you can set the binding provider to preact.

// Update the entry in the appRootDir/src/index._html file of your virtual DOM

app
<body class="o0j-web-applayout-body" data-oj-binding-provider="preact">

// Set the data-oj-binding-provider="preact"” on a parent element to a
collection
// of JET custom elements

<body>
<div id="preact-content-goes-here" data-oj-binding-provider="preact'>
<oj-c-button . . >
<oj-list-view . . .>
</div>

// Set the data-oj-binding-provider="preact” on an individual JET custom
element
<oj-list-view data-oj-binding-provider="preact"...>

® Note

The index.html file that the Oracle JET Tooling generates when you create a virtual
DOM app is a regular HTML document with no active binding provider. For this
reason, its use of <body ... data-oj-binding-provider="none"> is appropriate.
Note too that the <app-root> element that the Oracle JET Tooling also generates in
the index.html file is a VComponent-based web component and it, like other
VComponent-based web components, sets the binding provider to preact on behalf of
any child components that it references.

For more information about the binding provider, see the Binding Providers section in the
Oracle® JavaScript Extension Toolkit (JET) API Reference for Oracle JET.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 27

https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/CustomElementOverview.html#ce-databind-bindingprovider-section

ORACLE Chapter 2
Scaffold a Web App

Add Progressive Web App Support to Web Apps

Add Progressive Web App (PWA) support to your JET web app if you want to give users a
native-like mobile app experience on the device where they access your JET web app.

Using the ojet add pwa command, you add both a service worker script and a web manifest to
your JET web app. You can customize these artifacts to determine how your JET web app
behaves when accessed as a PWA.

Using the ojet add pwa command, you add both a service worker script, an assets folder with
a series of image files for app launcher icons and splash screens, plus a web manifest file to
your JET web app. You can customize these artifacts to determine how your JET web app
behaves when accessed as a PWA.

To add PWA support to your web app:

® At aterminal prompt, in your app's top level directory, enter the following command to add
PWA support to your JET web app:

ojet add pwa

When you run the command, Oracle JET tooling makes the following changes to your JET web
app:

* Adds the following two files to the app’s src folder:
— assets folder

The assets folder contains an additional two sub-folders, icons and splashscreens,
that contain image files of various dimensions to use as app launcher icons and splash
screens on the devices where you install the JET web app.

— manifest.json
This file tells the browser about the PWA support in your JET web app, and how it
should behave when installed on a user's desktop or mobile device. Use this file to
specify the app name to appear on a user’s device, plus device-specific icons. For
information about the properties that you can specify in this file, see Add a web app
manifest.

— swinit_js
This is the initialization file for the service worker script (sw. js).
— SW.js

This is the service worker script that the browser runs in the background. Use this file
to specify any additional resources from your JET app that you want to cache on a
user’s device if the PWA service worker is installed. By default, JET specifies the
following resources to cache:

const resourcesToCache = [
"index.js",
"index.html",
"bundle.js*,
"manifest.json”®,
"components/*,
"libs/",
"styles/",
"assets/"

1

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 27

https://web.dev/add-manifest/
https://web.dev/add-manifest/

ORACLE’

Chapter 2
Build a Web App

* Registers the splash screen files, the manifest file, and the service worker script in the JET
web app's ./src/index.html file:

<html lang="en-us">
<head>

<meta name="apple-mobile-web-app-title" content="Oracle JET" />

<meta name=""theme-color" content="#000000">

<I-- Splash screens -->

<link rel="apple-touch-startup-image" href="assets/splashscreens/
splash-640x1136._jpg™ . . ."™>

<link rel="manifest" href="manifest.json">
</head>

<script src="swinit_js"></script>
</body>

With these changes, a user on a mobile device, such as an Android phone, can initially access
your JET web app through its URL using the Chrome browser, add it to the Home screen of the
device, and subsequently launch it like any other app on the phone. Note that browser and
platform support for PWA is not uniform. To ensure an optimal experience, test your PWA-
enabled JET web app on your users' target platforms (Android, iOS, and so on) and the
browsers (Chrome, Safari, and so on).

PWA-enabled JET web apps and service workers require HTTPS. The production environment
where you deploy your PWA-enabled JET web app will serve the app over HTTPS. If, during
development, you want to serve your JET web app to a HTTPS-enabled server, see Serve a
Web App to a HTTPS Server Using a Self-signed Certificate.

Build a Web App

Use the Oracle JET command-line interface (CLI) to build a development version of your web
app before serving it to a browser. This step is optional.

Change to the app’s root directory and use the ojet build command to build your app.

ojet build [--cssvars=enabled|disabled
-—theme=t hemrenane
-—themes=t henel,t heme2,...]

@ Tip

You can enter ojet help at a terminal prompt to get help for specific Oracle JET CLI
options.

The command will take some time to complete. If it's successful, you'll see the following
message:

Done.

The command will also create a web folder in your app’s root to contain the built content.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 27

ORACLE Chapter 2
Serve a Web App

@® Note

You can also use the ojet build command with the --release option to build a
release-ready version of your app. For information, see Package and Deploy Apps.

Serve a Web App

Use ojet serve to run your web app in a local web server for testing and debugging. By
default, the Oracle JET live reload option is enabled which lets you make changes to your app
code that are immediately reflected in the browser.

To run your web app from a terminal prompt:

1. Ataterminal prompt, change to the app’s root directory and use the ojet serve command
with optional arguments to launch the app.

ojet serve [--server-port=server-port-nunber --livereload-port=live-rel oad-
port - nunber

--livereload

--watch-files

--build

-—theme=t henenane --themes=t henel,thene2,..

--server-only

--server-url=server-url

]

For example, the following command launches your app in the default web browser with
live reload enabled.

ojet serve

2. Make any desired code change in the src folder, and the browser will update automatically
to reflect the change unless you set the --no-livereload flag.

While the app is running, the terminal window remains open, and the watch task waits for
any changes to the app. For example, if you change the content in src/components/oj-
hello-world/oj-hello-world-styles.css , the watch task will reflect the change in the
terminal as shown below on a Windows desktop.

Watcher: themes is ready.

Changed: C:\jetVDOMapp\src\components\content\index.tsx
Running before_watch hook.

Compile application typescript

Running before_app_typescript hook.

Compile application typescript finished

Running after_watch hook.

Page reloaded resume watching.

3. To terminate the process, close the app and press Ctrl+C at the terminal prompt. You may
need to enter Ctrl+C a few times before the process terminates.

To get additional help for the supported ojet serve options, enter ojet serve --help ata
terminal prompt.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 27

ORACLE’

Chapter 2
Serve a Web App

About ojet serve Command Options and Express Middleware Functions

Use ojet serve to run your web app in a local web server for testing and debugging.

The following table describes the available ojet serve options and provides examples for their
use.

Oracle JET tooling uses Express, a Node.js web app framework, to set up and host the web
app when you run ojet serve. If the ready-to-use ojet serve options do not meet your
requirements, you can add Express configuration options or write Express middleware
functions in Oracle JET's before_serve. js hook point. For an example that demonstrates how
to add Express configuration options, see Serve a Web App to a HTTPS Server Using a Self-
signed Cetrtificate.

The before_serve hook point provides options to determine whether to replace the existing
middleware or instead prepend and append a middleware function to the existing middleware.
Typically, you'll prepend a middleware function (preMiddleware) that you write if you want live
reload to continue to work after you serve your web app. Live reload is the first middleware that
Oracle JET tooling uses. You must use the next function as an argument to any middleware
function that you write if you want subsequent middleware functions, such as live reload, to be
invoked by the Express instance. In summary, use one of the following arguments to determine
when your Express middleware function executes:

e preMiddleware: Execute before the default Oracle JET tooling middleware. The default
Oracle JET tooling middleware consists of connect-livereload, serve-static, and
serve-index, and executes in that order.

e postMiddleware: Execute after the default Oracle JET tooling middleware.

« middleware: Replaces the default Oracle JET tooling middleware. Use if you need strict
control of the order in which middleware runs. Note that you will need to redefine all the
default middleware that was previously added by Oracle JET tooling.

Option

Description

server-port

Server port number. If not specified, defaults to 8000.

livereload-port Live reload port number. If not specified, defaults to 35729.

watch-files

Enable the watch files feature. Watch files is enabled by default (--watch-files=true).
Use --watch-files=false or --no-watch-files to disable the watch files feature.
Disabling watch files also disables the live reload feature.

Configure the interval at which the watch files feature polls the Oracle JET project for updates by
configuring a value for the watchlInterval property in the oraclejetconfig.json file. The
default value is 1000 milliseconds.

livereload

Enable the live reload feature. Live reload is enabled by default (--1ivereload=true).
Use --livereload=false or --no-livereload to disable the live reload feature.

Disabling live reload can be helpful if you're working in an IDE and want to use that IDE’s
mechanism for loading updated apps.

The interval at which the live reload feature polls the Oracle JET project depends on the watch-

files option.

build Build the app before you serve it. By default, an app is built before you serve it (--bui ld=true).
Use --bui ld=false or --no-bui Id to suppress the build if you've already built the app and just
want to serve it.

theme Theme to use for the app. The theme defaults to redwood.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 27

https://expressjs.com/

ORACLE Chapter 2
Serve a Web App

Option Description

themes Themes to use for the app, separated by commas.
If you don’t specify the —-theme flag as described above, Oracle JET will use the first element that
you specify in --themes as the default theme. Otherwise Oracle JET will serve the app with the
theme specified in --theme.

server-only Serves the app, as if to a browser, but does not launch a browser. Use this option in cloud-based
development environments so that you can attach your browser to the app served by the
development machine.

server-url Specify the server URL to serve from. For example, ojet serve --server-url=https://
www .example.com/jet. If not specified, defaults to localhost.

Serve a Web App to a HTTPS Server Using a Self-signed Certificate

You can customize the JET CLI tooling to serve your web app to a HTTPS server instead of
the default HTTP server that the Oracle JET ojet serve command uses.

Do this if, for example, you want to approximate your development environment more closely
to a production environment where your web app will eventually be deployed. Requests to your
web app when it is deployed to a production environment will be served from an SSL-enabled
HTTP server (HTTPS).

To implement this behavior, you'll need to install a certificate in your web app directory. You'll
also need to configure the before_serve. js hook to do the following:

e Create an instance of Express to host the served web app.

e Setup HTTPS on the Express instance that you've created. You specify the HTTPS
protocol, identify the location of the self-signed certificate that you placed in the app
directory, and specify a password.

« Pass the modified Express instance and the SSL-enabled server to the JET tooling so that
ojet serve uses your middleware configuration rather than the ready-to-use middleware
configuration provided by the Oracle JET tooling.

* To ensure that live reloads works when your web app is served to the HTTPS server, you'll
also create an instance of the live reload server and configure it to use SSL.

If you can’t use a certificate issued by a certificate authority, you can create your own certificate
(a self-signed certificate). Tools such as OpenSSL, Keychain Access on Mac, and the Java
Development Kit's keytool utility can be used to perform this task for you. For example, using
the Git Bash shell that comes with Git for Windows, you can run the following command to
create a self-signed certificate with the OpenSSL tool:

openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes

Once you've obtained the self-signed certificate that you want to use, install it in your app's
directory. For example, place the two files generated by the previous command in your app’s
root directory:

.gitignore
cert._pem
key.pem
node_modules

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 27

ORACLE

Chapter 2
Serve a Web App

Once you have installed the self-signed certificates in your app, you configure the script for the
before_serve hook point. To do this, open the AppRootDir/scripts/hooks/before_serve.js
with your editor and configure it as described by the comments in the following example
configuration.

"use strict”";

module.exports = function (configObj) {
return new Promise((resolve, reject) => {
console._log("'Running before_serve hook.");

// Create an instance of Express, the Node.js web app framework that
Oracle

// JET tooling uses to host the web apps that you serve using ojet serve

const express = require("'express');

// Set up HTTPS
const fs = require("'fs");
const https = require("https');

// Specify the self-signed certificates. In our example, these files
exist

// in the root directory of our project.

const key = fs.readFileSync("./key.pem™);

const cert = fs.readFileSync(*./cert.pem™);

// 1T the self-signed certificate that you created or use requires a

// password, specify it here:

const passphrase = "1234";

const app = express();

// Pass the modified Express instance and the SSL-enabled server to the
Oracle JET tooling
configObj["express®] = app;
configObj[“urlPrefix"] = "https*";
configObj["server®] = https.createServer({
key: key,
cert: cert,
passphrase: passphrase

}, app);

// Enable the Oracle JET live reload option using its default port number
so that

// any changes you make to app code are immediately reflected in the
browser after you

// serve it

const tinylr

const IrPort

require('tiny-1r");
"35729";

// Configure the live reload server to also use SSL
configObj["liveReloadServer'] = tinylr({ IrPort, key, cert, passphrase });

resolve(configObj);

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 12 of 27

ORACLE’

Chapter 2
Serve a Web App

B
}

Once you have completed these configuration steps, run the series of commands (ojet build
and ojet serve, for example) that you typically run to build and serve your web app. As the
certificate that you are using is a self-signed certificate rather than a certificate issued by a
certificate authority, the browser that you use to access the web app displays a warning the
first time that you access the web app. Acknowledge the warning and click the options that
allow you to access your web app. On Google Chrome, for example, you click Advanced and
Proceed to localhost (unsafe) if your web app is being served to https://localhost:8000/.

Once your web app opens in the browser, you'll see that the HTTPS protocol is used and an
indicator that the connection is not secure, because you are not using a certificate from a
certificate authority. You can also view the certificate information to confirm that it is the self-
signed certificate that you created. In Google Chrome, click Not secure and Certificate to
view the certificate information.

'i:i Dashboard X =+

C 1t A MNotsecure | hitps://localhost:8000

ORACLE App Name

X
Certificate Viewer -n

General Details

Issued To
Common Name (CN) W n
Organization () Irv ts
Crganizational Unit (OU) HR

Issued By

Common MName (CN}
Crganization (O)

Crganizational Unit (OU) HR

Walidity Period
Issued On Wednesday, September 21, 2022 at 6:50:09 PM

Expires On Thursday, September 21, 2023 at 6:50:09 PM

Fingerprints

4 SHA-256 Fingerpnint B3 2F 5D GFEE33 3095EDC D3 E7 06 F3 280D B2
| CED3CATRBCICBS 77 13 BA AA O3 A2 FF 5B 9A
{
SHA-1 Fingerprint CD E9 2A CC 31 4E A9 5F BO F1 B1 F2 90 AD 78 9F
1B AA 4A 24

The before_serve hook point is one of a series of script hook points that you can use to
customize the tooling workflow for Oracle JET apps. See Customize the Web App Tooling
Workflow.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page 13 of 27

ORACLE Chapter 2
Customize the Web App Tooling Workflow

Customize the Web App Tooling Workflow

Hook points that Oracle JET tooling defines let you customize the behavior of the JET build
and serve processes when you want to define new steps to execute during the tooling
workflow using script code that you write.

When you create an app, Oracle JET tooling generates script templates in the /scripts/hooks
app subfolder. To customize the Oracle JET tooling workflow, you can edit the generated
templates with the script code that you want the tooling to execute for specific hook points
during the build and serve processes. If you do not create a custom hook point script, Oracle
JET tooling ignores the script templates and follows the default workflow for the build and
serve processes.

To customize the workflow for the build or serve processes, you edit the generated script
template file named for a specific hook point. For example, to trigger a script at the start of the
tooling's build process, you would edit the before_build. js script named for the hook point
triggered before the build begins. That hook point is named before_build.

Therefore, customization of the build and serve processes that you enforce on Oracle JET
tooling workflow requires that you know the following details before you can write a
customization script.

e The Oracle JET build or serve mode that you want to customize:

— Debug — The default mode when you build or serve your app, which produces the
source code in the built app.

— Release — The mode when you build the app with the --release option, which
produces minified and bundled code in a release-ready app.

e The appropriate hook point to trigger the customization.

e The location of the default hook script template to customize.

About the Script Hook Points for Web Apps

The Oracle JET hooks system, also called hook points, allow you to customize various
worksflows across command-line interface processes.

Customization relies on script files and the script code that you want to trigger for a particular
hook point.

The following table identifies the hook points and the workflow customizations they support in
the Oracle JET tooling create, build, serve, and restore processes. Unless noted, hook points
for the build and serve processes support both debug and release mode.

Hook Point Supported Description
Tooling
Process
after_app_create create This hook point triggers the script with the default name

after_app_create. js immediately after the tooling concludes
the create app process.

after_app_restor restore This hook point triggers the script with the default name
e after_app_restore. js immediately after the tooling concludes
the restore app process.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 14 of 27

ORACLE’

Chapter 2
Customize the Web App Tooling Workflow

Hook Point Supported Description
Tooling
Process
before_build build This hook point triggers the script with the default name

before_release b build (release
uild mode only)

before_app_types build / serve
cript

after_app_typesc build / serve
ript

before_component build / serve
_typescript

after_component_ build / serve
typescript

before_injection build / serve

before_optimize build/ serve
(release mode

only)

before_component build / serve
_optimize

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02
Copyright © 2021, 2025, Oracle and/or its affiliates.

before_build. js immediately before the tooling initiates the
build process.

This hook point triggers the script with the default name
before_release_build.js before the minification step and the
requirejs bundling step occur.

This hook point triggers the script with the default name
before_app_typescript.js after the build process or serve
process steps occur and before the app is transpiled. Use the
hook to update, add or remove TypeScript compiler options
defined by your app's tsconfig. json compiler configuration file.
The hook system passes your reference to the modified
tsconfig object to the TypeScript compiler. A script for this hook
point can only be used with a TypeScript app.

This hook point triggers the script with the default name
after_app_typescript. js after the build process or serve
process steps occur and immediately after the
before_app_typescript hook point executes. This hook
provides an entry point for apps that require further processing,
such as compiling generated . JSX output using babel. A script for
this hook point can only be used with a TypeScript app.

This hook point triggers the script with the default name
before_component_typescript.js after the build process or
serve process steps occur and before the component is
transpiled. Use the hook to update, add or remove TypeScript
compiler options defined by your app's tsconfig. json compiler
configuration file. The hook system passes your reference to the
modified tsconfig object to the TypeScript compiler. A script for
this hook point can only be used with a TypeScript app.

This hook point triggers the script with the default name
after_component_typescript. js after the build process or
serve process steps occur and immediately after the
before_component_typescript hook point executes. This
hook provides an entry point for apps that require further
processing, such as compiling generated . jSX output using
babel. A script for this hook point can only be used with a
TypeScript app.

This hook point triggers the script with the default name
before_injection. js after the tooling concludes the before
build process and before Oracle JET injects the correct path
mappings into your application and performs the tasks to insert
the CSS theme into the app. In other words, this hook point
controls which files and which markers are patched by Oracle
JET itself.

This hook point triggers the script with the default name
before_optimize.js before the release mode build/serve
process minifies the content.

This hook point triggers the script with the default name
before_component_optimize. s before the build/serve
process minifies the content. A script for this hook point can be
used to modify the build process specifically for a project that
defines a Web Component.

August 11, 2025
Page 15 of 27

ORACLE’

Chapter 2
Customize the Web App Tooling Workflow

Hook Point

Supported
Tooling
Process

Description

after build

after_component_
create

after_component_
build

before_serve

after_serve

before_watch

after_watch

after_component_

package

before_component
_package

build

build

build (debug
mode only)

serve

serve

serve

serve

package

package

This hook point triggers the script with the default name
after_build. js immediately after the tooling concludes the
build process.

This hook point triggers the script with the default name
after_component_create. js immediately after the tooling
concludes the create Web Component process. A script for this
hook point can be used to modify the build process specifically for
a project that defines a Web Component.

This hook point triggers the script with the default name
after_component_build. js immediately after the tooling
concludes the Web Component build process. A script for this
hook point can be used to modify the build process specifically for
a project that defines a Web Component.

This hook point triggers the script with the default name
before_serve. s before the web serve process connects to
and watches the app.

This hook point triggers the script with the default name
after_serve. js after all build process steps complete and the
tooling serves the app.

This hook point triggers the script with the default name
before_watch. js after the tooling serves the app and before
the tooling starts watching for app changes.

This hook point triggers the script with the default name
after_watch. js after the tooling starts the watch and after the
tooling detects a change to the app.

This hook point triggers the script with the default name
after_component_package. js immediately after the tooling
concludes the component package process.

This hook point triggers the script with the default name
before_component_package. js immediately before the tooling
initiates the component package process.

About the Process Flow of Script Hook Points

The Oracle JET hooks system defines various script trigger points, also called hook points, that
allow you to customize the create, build, serve, and restore workflow across the various

command-line interface processes.

The following diagram shows the script hook point flow for the create process.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page 16 of 27

ORACLE Chapter 2
Customize the Web App Tooling Workflow

Create Process Hook Points

create <dirsctory-nams>

' '

create process

npx o

11}

create process

creates app creates
content in sre component
and zcripts content in
folders component folder

¥ \

after_app_create after_component_create

The following diagram shows the script hook point flow for the build process.

Build Process Hook Points

npx ojet build «<component-name>

npx cjet build npx cjet build --release
before_build before_build copies files to staging directory
build process copies content build process copies content before_component_typescript
into wel folder into welb folder

before_injection before_injection after_component_typescript

before_app_typescript before_app_typescript before_component_optimize

after_app_typescript after_app_typescript after_component_build

after_build before_release_build

before_optimize

build process minifies content
inwsk folder and invokes
requirejs fo bundle libraries

after_build

The following diagram shows the script hook point flow for the serve and restore processes.

Developing Oracle JET Apps Using Virtual DOM Architecture
August 11, 2025

G33835-02
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 17 of 27

ORACLE’

npx cjet serve
before_build

build process copies content
into web folder

¥

before_injection
before_app_typescript
after_app_typescript
after_build

before_serve

v

serve process connects to and
watches the app

v

before_watch

watch detects app changes

v

after_watch

v

after_serve

Chapter 2
Customize the Web App Tooling Workflow

Serve and Restore Process Hook Points

npx ojet serve —-release

before_build

build process copies content
into web folder

+

before_injection
before_app_typescript
after_app_typescript
before_optimize

after_build

'

before_serve

serve process connects to and
watches the app

before_watch

v

waich detects app changes

v

after_waich

v

after_serve

Change the Hooks Subfolder Location

npx ojet serve --no-build npx ojet restere

before_serve restore process restores app
¢ content
serve process connects to and ¥

watches the app
after_app_restore

before_watch

watch detects app changes

v

after_watch

after_serve

When you create an app, Oracle JET tooling generates script templates in the /scripts/hooks
app subfolder. Your development effort may require you to relocate hook scripts to a common

location, for example to support team development.

By default, the hooks system locates the scripts in the hooks subfolder using a generated
JSON file (hooks. json) that specifies the script paths. When the tooling reaches the hook
point, it executes the corresponding script which it locates using the hooks. json file. If you
relocate hook script(s) to a common location, you must edit the hooks. json file to specify the
new location for the hook scripts that you relocated, as illustrated by the following example.

{

"description": "0JET-CLI hooks configuration file",

"hooks": {

"after_app_create': "scripts/hooks/after_app_create.js",

"after_serve": "http://example.com/cdn/common/scripts/hooks/

after_serve.js

}
}

Create a Hook Script for Web Apps

You can create a hook point script to define a new command-line interface process step for
your web app. To create a hook script, you edit the hook script template associated with a
specific hook point in the tooling build and serve workflow.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page 18 of 27

ORACLE’

Chapter 2
Customize the Web App Tooling Workflow

The Oracle JET hooks system defines various script trigger points, also called hook points, that
allow you to customize the build and serve workflow across the various build and serve modes.
Customization relies on script files and the script code that you want to trigger for a particular
hook point. Note that the generated script templates that you modify with your script code are
named for their corresponding hook point.

To customize the workflow for the build or serve processes, you edit the generated script
template file named for a specific hook point. For example, to trigger a script at the start of the
tooling's build process, you would edit the before_build. js script named for the hook point
triggered before the build begins. That hook point is named before_bui ld.

A basic example illustrates a simple customization using the before_optimize hook, which
allows you to control the RequireJS properties shown in bold to modify the app's bundling
configuration.

requirejs.config(
{

baseUrl: "web/js",

name: “main-temp",

paths: {

// injector: minRel easePat hs
"knockout":""libs/knockout/knockout-3.x.x.debug",
"jquery":"libs/jquery/jquery-3.x.x",
"jqueryui-amd":"libs/jquery/jqueryui-amd-1.x.x",

¥

// endinj ector
out: "web/main_js"

}

A script for this hook point might add one line to the before_optimize script template, as
shown below. When you build the app with this customization script file in the default location,
the tooling triggers the script before calling requirejs.out() and changes the out property
setting to a custom directory path. The result is that the app-generated main. js is created in
the named directory instead of the default web/js/main. js location.

module.exports = function (configObj) {
return new Promise((resolve, reject) => {
console.log(""Running before_optimize hook.");
configObj.requirejs.out = "myweb/js/main.js";
resolve(configObj);
D;
}

You can retrieve more information about the definition of configObj that is passed into many
script hook points as a parameter by making the following modification in one of the build-
related hook points and then running ojet build. For example, the before_build. js hook
point can be modified as follows:

module.exports = function (configObj) {
return new Promise((resolve, reject) => {
console._log(""Running before_build hook.", configObj);
resolve(configObj);

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 19 of 27

ORACLE’

Chapter 2
Customize the Web App Tooling Workflow

D;
}

The console from where you run the ojet build command then displays the available options
that you can customize in configObj.

Cleaning staging path.
Running before build hook {
buildType: "dev”,
opts: {
stagingPath: "web",
injectPaths: {
startTag: "// injector:mainReleasePaths”,

Elsewhere, read examples that illustrate how to use the configObj to customize a hook point
to, for example, add Express configuration options or write Express middleware functions in
the before_serve.js hook point if the ready-to-use ojet serve options do not meet your
requirements. See Serve a Web App to a HTTPS Server Using a Self-signed Certificate.

@ Tip

If you want to change app path mappings, it is recommended to always edit the
path_mappings.json file. An exception might be when you want app runtime path
mappings to be different from the mappings used by the bundling process, then you
might use a before_optimize hook script to change the requirejs.config paths

property.

The following example illustrates a more complex build customization using the after_build
hook. This hook script adds a customize task after the build finishes.

"use strict’;

const fs = require("fs");
const archiver = require("archiver®);

module.exports = function (configObj) {
return new Promise((resolve, reject) => {
console.log("Running after_build hook.™);

//Set up the archive
const output = fs.createWriteStream("my-archive.war®);
const archive = archiver(“zip");

//Callbacks for the archiver

output.on("close”, () => {
console.log("Files were successfully archived.");
resolve();

1DF

archive.on("warning®, (error) => {
console.warn(error);

1DF

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 20 of 27

ORACLE’

Chapter 2
Customize the Web App Tooling Workflow

archive.on("error®, (error) => {
reject(error);

HE

//Archive the web folder and close the file
archive._pipe(output);
archive._directory("web", false);
archive.finalize();
H:
};

In this example, assume the script templates reside in the default folder generated when you
created the app. The goal is to package the app into a ZIP file. Because packaging occurs
after the app build process completes, this script is triggered for the after_bui ld hook point.
For this hook point, the modified script template after_build. js will contain the script code to
ZIP the app, and because the . js file resides in the default location, no hooks system
configuration changes are required.

@ Tip

Oracle JET tooling reports when hook points are executed in the message log for the
build and serve process. You can examine the log in the console to understand the
tooling workflow and determine exactly when the tooling triggers a hook point script.

Pass Arguments to a Hook Script for Web Apps

You can pass extra values to a hook script from the command-line interface when you build or
serve the web app. The hook script that you create can use these values to perform some
workflow action, such as creating an archive file from the contents of the web folder.

You can add the --user-options flag to the command-line interface for Oracle JET to define
user input for the hook system when you build or serve the web app. The --user-options flag
can be appended to the build or serve commands and takes as arguments one or more space-
separated, string values:

ojet build --user-options="some stringl" "some string2" "some stringx"

For example, you might write a hook script that archives a copy of the build output after the
build finishes. The developer might pass the user-defined parameter archive-file set to the
archive file name by using the --user-options flag on the Oracle JET command line.

ojet build web --user-options="archive-file=deploy.zip"

If the flag is appended and the appropriate input is passed, the hook script code may write a
ZIP file to the /deploy directory in the root of the project. The following example illustrates this
build customization using the after_build hook. The script code parses the user input for the
value of the user defined archive-file flag with a promise to archive the app after the build
finishes by calling the NodeJS function fs.createWriteStream(). This hook script is an

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 21 of 27

ORACLE’

Chapter 2
Customize the Web App Tooling Workflow

example of taking user input from the command-line interface and processing it to achieve a
build workflow customization.

"use strict";

const fs = require("fs");

const archiver = require("archiver®);
const path = require("path®);

module.exports = function (configObj) {
return new Promise((resolve, reject) => {
console.log("Running after_build hook.™);

//Check to see if the user set the flag
//1In this case we"re only expecting one possible user defined
//argument so the parsing can be simple
const options = configObj.userOptions;
if (options){
const userArgs = options.split("=");
if (userArgs.length > 1 && userArgs[0] === "archive-file"){

const deployRoot = "deploy”;
const outputArchive = path.join(deployRoot,userArgs[1]);

//Ensure the output folder exists

if (Ifs.existsSync(deployRoot)) {
fs.mkdirSync(deployRoot);

}

//Set up the archive
const output = fs.createWriteStream(outputArchive);
const archive = archiver("zip");

//callbacks for the archiver

output.on(“close”,) => {
console._log(Archive file ${outputArchive} successfully created.);
resolve();

DR

archive.on("error®, (error) => {
console.error(CError creating archive ${outputArchive}’);
reject(error);

H;

//Archive the web folder and close the file
archive.pipe(output);
archive.directory("web*", false);
archive.finalize();

else {

//Unexpected input - fail with information message
reject(CUnexpected flags in user-options: ${options}’);

else {
//nothing to do
resolve();

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 22 of 27

ORACLE Chapter 2
Use Webpack in Oracle JET App Development

B
}

Use Webpack in Oracle JET App Development

You can use Webpack to manage your Oracle JET app, as well as the build and serve tasks.

If you decide to use Webpack, Oracle JET passes responsibility to Webpack to build and serve
the source files of your Oracle JET project. Before you decide to use Webpack, note that it is
not possible to use Webpack with Oracle JET apps that need to build, package or publish web
components, to test apps using Oracle JET's Component WebElements Ul automation library
(TestAdapters), or to use the newer Core Pack components through their component class
names. That is, the following syntax won't work:

import { SelectMultiple } from "oj-c/select-multiple";

export function Content() {

return (
<SelectMultiple labelHint="Select Multiple" itemText="fo0"/>
);
};

Though you can use Core Pack components using their custom element names, as in the
following example:

import "oj-c/select-multiple";

export function Content() {

return (
<oj-c-select-multiple labelHint="Select Multiple" />
);
};

If you decide to use Webpack in your Oracle JET app, you can specify it as a command-line
argument when you scaffold the project, as demonstrated by the following example command:

ojet create <app-name> --template=basic --vdom --webpack

To build and serve the app with Webpack, simply run ojet build and ojet serve respectively.
You cannot use the ojet serve --release command. To run a release build from your local
development environment, use the ojet build --release command, and then use a static
server of your choice (for example, http-server) from the /web folder.

To add Webpack to an existing Oracle JET app, run the following command from the root
directory of your Oracle JET project:

ojet add webpack

The files and directories in an Oracle JET project that uses Webpack differ to a project an app
generated without specifying the --webpack argument. The following table describes the
differences that result from use of the --webpack argument.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 23 of 27

https://www.oracle.com/webfolder/technetwork/jet/wdtsdoc/index.html
https://www.npmjs.com/package/http-server

ORACLE’

Chapter 2
Use Webpack in Oracle JET App Development

Option

Description

/types

The types directory contains a /types/components/index.d.ts file with a stub to add custom
element tag names to the list of known JSX intrinsic elements. This is important if you plan to use custom
elements within JSX that do not have preact.JSX. IntrinsicElements type definitions. Note that /
types should only include type definitions which do not emit a JavaScript file after compilation. If you
wish to rename the folder, make sure to also update the reference to it in the tsconfig. json file under
the typeRoots option.

ojet.config.j
S

This file manages Oracle JET's default webpack configuration. For more detail about this file and how to
configure it, see Configure Oracle JET's Default Webpack Configuration.

tsconfig.-json

In constrast to the tsconfig. json generated for apps without Webpack, the esModule Interop and
resolveJsonModule flags are set to true. The esModulelnterop flag allows apps to standardize on
default imports for all module types. Calls such as import * as <importName> from "path/to/
import" should be written as import <importName> from "path/to/import". The
resolveJsonModule flag allows apps to directly import JSON files. Paired with Webpack's automatic
support for resolving JSON file imports, you do not have to use the RequireJs text! plugin followed by
JSON. parse to consume JSON files in the Oracle JET app.

As mentioned at the start of this topic, it is not possible to use Webpack in Oracle JET projects
that build, package or publish web components, or projects that need to use Oracle JET
theming. In other words, this means that you cannot use the following commands from the
Oracle JET CLI:

e ojet build (component]pack)
e ojet package (component|pack)
e ojet publish (component]pack)

One other thing to note is that when you serve your Oracle JET app in development mode (the
default), the Oracle JET app loads styles from memory and styles appear in the <styles> tag
in the HTML of your browser. In contrast, when you serve an Oracle JET app that you have
built in release mode (ojet build --release), styles come from the CSS file link that is
included in the HTML file. In the following image, with an Oracle JET app instance that runs in
development mode and release mode instance, you can see the different entries using the
browser’s developer tools.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 24 of 27

ORACLE Chapter 2

Configure Oracle JET's Default Webpack Configuration

on Security Lighthouse » [@1 | B1 o @ X

App Name
* | Styles Computed Layout Eventlisteners »
Filter thov .cls +, & [
element.style {
¥
.oj-agent-os-windows *, html.oj-agent-os- <styles
windows {
serettbar—widbh—thing
| e clortrreret Development Mode
style { user agent stylesheet
gisplay: none; To change the content of this section, you will make edits to the
1
Inherited from html.oj-agent-os-windows.o..
rroot { <style
--0j-c-PRIVATE-DO-NOT-USE-user-assistance-
1 Security Lighthouse » B1 o] .
App Name
Styles Computed Layout Event Listeners 2
Filter thov .cls +, § [
element.style { y N
T
.cj-hybrid-padding { redwoodlmin.css:1
pad;-lﬁ; ‘)»'EI'(--Q_-—:'l'-,-a-_e-aL ~layout- webpacky//mwih StylaCheck)S/web/css/redwood/14.0.5/web/redwood.min.css:1 |
adding);
¥ +
.cj-agent-os-windows *, html.oj redwood.min.css:1 I
agent-os-windows R
el elease mode
sepeiibar I_;-_h ":.'i,_:. h.hL o
7 To change the content of this section, you will make edits to the
div { user agent stylesheet

display: block;

Configure Oracle JET's Default Webpack Configuration

You can configure the default Webpack configuration generated by the Oracle JET CLI through
the webpack function in the ojet.config.js file.

The webpack function receives an object with the Oracle JET build context (context) and
Webpack configuration (config). Note the buildType property which indicates whether
Webpack executes in development or release mode. As for config, the default Webpack
configuration generated by Oracle JET, you can customize it to fit your needs.

To view the default options in the ojet.config.js file, add a console log statement to the
ojet.config.js file, as demonstrated by the following examples:

webpack: ({ context, config }) => {

if (context.buildType === "release™) {
// update config with release / production options
} else {

// Print out the default webpack configuration options
// as a JSON string

console. log(JSON.stringify(config));

// Or let your terminal console determine how to

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 25 of 27

ORACLE Chapter 2
Configure Oracle JET's Default Webpack Configuration

// present the configuration
console._log(config);

}

Then build your Oracle JET project using the following command to render the default
configuration in the terminal console:

ojet build

@ Tip

Create a JSON-formatted file in Visual Studio Code to view the default configuration in
a more readable form to that returned by the terminal.

The default Webpack configuration for an Oracle JET app built in development mode includes
the following top-level nodes:

{
"entry": { },
"output”: { },
"module”: {},
"resolve": {3},
"resolveLoader”: { },
"plugins™: [],
"mode': "development™,
"devServer": { }

Once you have identified the configuration setting in Oracle JET's default Webpack
configuration that you want to change, you add the alternative value in the ojet.config.js file.
The following example illustrates how to change the port number when you serve your Oracle
JET app in development mode using Webpack.

module.exports = {

webpack: ({ context, config }) => {

it (context.buildType === “release”) {
// update config with release / production options
} else {

// update config with development options. In the following example, we
specify

// a different server port number to the default of 8000

config.devServer.port = 3000;

// Print out the default webpack configuration options as a JSON string

console.log(JSON.stringify(config));

// Or let your terminal console determine how to present the
configuration

console.log(config);

}

return config;

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 26 of 27

ORACLE Chapter 2
Configure Oracle JET's Default Webpack Configuration

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 27 of 27

Understand VComponent-based Web
Components

Oracle JET provides you with a web component API, VComponent, to create web components
that use virtual DOM rendering.

The web components that you create using VComponent use virtual DOM rendering. For those
of you who previously used the Composite Component Architecture (CCA) to develop web
components, you'll see many differences. Those of you who are familiar with the Preact library
that underpins the Oracle JET virtual DOM architecture will see some familiar concepts. This
chapter attempts to introduce you to the concepts that you'll need to know to develop
VComponent-based web components.

One difference to note is that unlike CCA-based web components, VComponent-based web
components do not use Knockout or its built-in expression evaluator to evaluate expressions.
Instead, VComponent-based web components use JET’s CspExpressionEvaluator to ensure
that expressions you use comply with Content Security Policy. CspExpressionEvaluator
supports a limited set of expressions to ensure compliance with Content Security Policy.
Familiarize yourself with the syntax that JET's CspExpressionEvaluator supports when using
expressions in your VComponent-based web component. See the CspExpressionEvaluator
API documentation.

The JET tooling assists you with creating, packaging, and publishing web components. Usage
of the JET tooling remains the same as for CCA-based web component development, but the
output differs. We'll go through the creation of a standalone VComponent-based web
component and a series of web components to include in a JET Pack in the next chapter.

For now, let's look at usage of VComponent to create web components, assuming that you have
already acquired the Prerequisite Knowledge that we described in the introductory chapter of
this guide.

@® Note

You can complement your reading of this chapter by also reading the VComponent
entry in the APl Reference for Oracle® JavaScript Extension Toolkit (Oracle JET) and
the Oracle JET VComponent Tutorial.

Hello VComponent, an Introduction

You write a VComponent-based web component as a TypeScript module in a file with the .tsx
file extension.

The example that follows shows a VComponent named Hel loWorld with a custom element
name of hello-world in a file named hello-world.tsx.

import { ExtendGlobalProps, registerCustomElement } from “"ojs/ojvcomponent”;
import { ComponentProps, ComponentType } from "preact”;
import componentStrings = require("ojL10n!._/resources/nls/hello-world-

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 26

https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/oj.CspExpressionEvaluator.html
https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/ojvcomponent.html
https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/ojvcomponent.html
https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-VComponent-Tutorial/public_html/index.html

ORACLE Chapter 3
Hello VComponent, an Introduction

strings®);
import "css!./hello-world-styles.css”;

type Props = Readonly<{
message?: string;

o
/**

*

* @ojmetadata version "1.0.0"

* @ojmetadata displayName "A user friendly, translatable name of the
component"

* @ojmetadata description "A translatable high-level description for the
component"

*

*/
function HelloWorldImpl({ message = “"Hello from hello-world®™ }: Props) {
return <p>{message}</p>;

}

export const HelloWorld: ComponentType<
ExtendGlobalProps<ComponentProps<typeof HelloWorldImpl>>
> = registerCustomElement("hello-world®, HelloWorldImpl);

The Oracle JET tooling helps you create VComponent web components by generating a
template .tsx file plus additional files and folders with resources to support the component.
The example just shown with the custom element name of hello-world was created by the
following command:

ojet create component hello-world

If you want to create a VComponent-based web component in an app that does not use the
virtual DOM architecture, you need to include --vcomponent in the command to create the
component (ojet create component hello-world --vcomponent). The Oracle JET tooling
also supports the creation of class-based web components if you append the class option to
the --vcomponent parameter (ojet create component hello-world --vcomponent=class).
The default behavior is to create function-based VComponents.

Irrespective of the type of VComponent that you create (class or function), the tooling
generates these files in the directory referenced by the components property in the
appRootDir/oraclejetconfig. json file. By default, the value of the components property is
also components.

appRootDir/components/hello-world/
| loader.ts

| hello-world-styles.css

| hello-world.tsx

| README.md
+---resources
+---themes

Readers who previously developed CCA-based web components will recognize the loader.ts
file that the Oracle JET tooling includes so that the component can be used by the Component
Exchange, Oracle Visual Builder, and the Oracle JET tooling itself. For a VComponent-based
web component, the loader . ts file includes an entry to export the VComponent module, as in
the following example:

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 26

ORACLE Chapter 3
Metadata for VComponents

export { HelloWorld } from "./hello-world";

Once you build a VComponent web component, you can import it into the app where it is to be
used. The following example demonstrates how you import our example component into the
content component of an app that was scaffolded using the virtual DOM architecture starter
template:

import { h } from "preact";
import { HelloWorld } from "hello-world/loader™;

export function Content() {
return (
<div class="o0j-web-applayout-max-width oj-web-applayout-content'>
<HelloWorld />
</div>

);

Metadata for VComponents

JET metadata expresses information that may be useful to both tools and consumers of the
VComponent-based web components that you create.

You write metadata in the VComponent's module class. You'll have seen examples of this
metadata in the HelloWorld VComponent that we introduced earlier. Specifically, the
HelloWorld VComponent included a TypeScript decorator, @customelement(**hello-world™),
to add custom element behavior to the VComponent at runtime, and it is also used at build
time as a source of the component’s “name” metadata. The other example is the use of the
@ojmetadata doc annotation where a series of entries provide version, display hame, and
description information, as in the following example:

* @ojmetadata version "1.0.0"

* @ojmetadata displayName "A user friendly, translatable name of the
component"

* @ojmetadata description "A translatable high-level description for the
component"

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 26

ORACLE Chapter 3
Nest VComponents

You'll notice that each @ojmetadata annotation specifies a single name/value pair. The values
must be valid JSON values. As shown above, string values should be double-quoted. Object,
array, and primitive values can be specified directly within the annotation (without quotes). You
can also extend the metadata to append extra information in an extension field, as shown by
the following example.
* @ojmetadata extension {
* vbdt: {
* someVisualBuilderDesignTimeField: true
*)
*}
For reference information about JET Metadata, see JET Metadata.

Nest VComponents

Custom element-based VComponents can be embedded directly into HTML.

This allows you to integrate VComponents into existing Oracle JET content, including into
composite components, oj-module content, or pages authored in Oracle Visual Builder. In
addition to being hosted within HTML, VComponents can be nested inside of other
VComponents. A parent VComponent can reference a child VComponent using the component
class name. In the following example, a VComponent class, HelloParent, nests a child
VComponent, Hello.

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent™;
import { h, Component, ComponentChild } from "preact";
import { Hello } from "oj-greet/hello/loader";

type Props = {
message?: string;

}:

/**
* @ojmetadata pack "oj-greet"
*
*/“)
@customElement(*'oj-greet-hello-parent')
export class HelloParent extends Component<ExtendGlobalProps<Props>> {
static defaultProps: Partial<Props> = {
message: "Hello from oj-greet-hello-parent!",

}

render(props: Props): ComponentChild {
return (
<div>
<p>{props.message}</p>
<p>The HelloParent VComponent nests the Hello VComponent class in the
next line:</p>
<Hello />
</div>
):
}
}

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 26

https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/MetadataOverview.html

ORACLE’

Chapter 3
VComponent Properties

The resulting content in the HTML is:

<div class="0j-web-applayout-max-width oj-web-applayout-content'>
<oj-greet-hello-parent class="oj-complete">

<div>

<p>Hello from oj-greet-hello-parent!</p>
<p>The HelloParent VComponent nests the Hello VComponent class in the
next line:</p>
<oj-greet-hello class="o0j-complete'><p>Hello from oj-greet-hello!

</p></oj-greet-hello>

</div>
</oj-greet-hello-parent>
</div>

An <oj-greet-hello> custom element ends up in the live DOM.

VComponent Properties

Properties are read-only arguments of a VComponent class that you pass into an instance of
the VComponent.

Properties that you declare may also be passed to web components as HTML attributes.
Essentially, the properties of a VComponent API component module are like function
arguments in JSX and attributes in HTML usages.

Declare VComponent Properties

You declare a VComponent property through a type alias that is, by convention, named Props.

Each field in the type represents a single public component property. A field specifies the
property's name, type, and whether the value for the field is optional or required. Default values
are specified in the static defaultProps field on the component class.

In the following example, we declare a single property (preferredGreeting) of type string.
TypeScript's optional indicator (?) identifies it as an optional property, and the default value of
Hello is specified in the static defaultProps field.

One subtle requirement that may be easy to miss: to associate the properties class with the
VComponent implementation, you need to specify the class as the value of the VComponent's
first type parameter (export class WithProps extends
Component<ExtendGlobalProps<Props>>).

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent™;
import { h, Component, ComponentChild } from “preact";

type Props = {
preferredGreeting?: string;

}:

/**

* @ojmetadata pack "oj-greet"

*

*/--)

@customElement(*'oj-greet-with-props™)

export class WithProps extends Component<ExtendGlobalProps<Props>> {

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 26

ORACLE’

Chapter 3
VComponent Properties

static defaultProps: Partial<Props> = {
preferredGreeting: "Hello",

}:

render(props: Props): ComponentChild {
return <p>{props.preferredGreeting}, World!</p>;
}
}

Reference Properties in JSX

To work with the properties, VComponent requires that you first associate the property class
with the VComponent instance implementation.

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent™;
import { h, Component, ComponentChild } from “preact";

type Props = {
preferredGreeting?: string;

}:

/**

* @ojmetadata pack "oj-greet"

*/

@customElement('oj-greet-with-props™)

export class GreetWithProps extends Component<ExtendGlobalProps<Props>> {
static defaultProps: Partial<Props> = {

preferredGreeting: "Hello from oj-greet-with-props!”

}:

render(props: Readonly<Props>): ComponentChild {
return <p>{props.preferredGreeting}</p>;
}
}

Access Properties

You can access declared properties in the VComponent APl component implementation
through a special object: this.props. An example of this usage can be found at line 12, where
the this._props field extracts the value of the preferredGreeting property into the variable
greeting. This variable subsequently influences the state of the rendered virtual DOM tree,
where the value of the preferredGreeting property gets embedded into the virtual DOM at
line 16.

One point to keep in mind is that the property values in this._props are always defined by the
consumer of the VComponent API component. In the HTML case, this.props is populated
based on attribute/property values specified on the custom element by the application. In the
case where the VComponent APl component is used within a parent VComponent API
component, the property values are provided by the parent component. A VComponent API
component implementation can read these property values, but must never mutate the
this._props object.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 26

ORACLE Chapter 3
VComponent Properties

Reference Properties of a Child Component in JSX

VComponent API custom elements can also be embedded inside of other parent VComponent
API custom elements.

As was described in Nest VComponents, a VComponent APl component parent can refer to a
child using the VComponent APl component’s implementation class name directly. Inside of
JSX, always specify component properties using their camelCase property hames.

Here is an example of a VComponent, GreetWithPropsParent, that demonstrates this:

import { h, Component } from "preact";
import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent™;
import { GreetWithProps } from "oj-greet/with-props/loader™;

/**
* @ojmetadata pack "oj-greet”
*
*/--)
@customElement(*'oj-greet-with-props-parent’)
export class GreetWithPropsParent extends Component<ExtendGlobalProps<Props>>
{
render() {
return (
<div>
<GreetWithProps preferredGreeting="Hola" />
</div>
);
}
}

Note how the sample uses the preferredGreeting property name, not the preferred-
greeting attribute name.

Type-Checking Support

Although the use of different naming conventions between HTML and JSX markup appears
confusing at first, it is important to use only property names within JSX to maintain type
checking.

When specifying a JSX element like this:

<oj-greet-with-props preferredGreeting="Hey there"/>

Or this:

<GreetWithProps preferredGreeting="Hola"/>

The properties on each JSX element populate a props object that eventually ends up
populating the child component's this.props field. The type of this props object is based on
the child VComponent APl component instance's props type parameter. So using the property
names as declared by the VComponent APl component instance's property type, ensures type
checking (and catching errors) happens in the parent component's JSX.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 26

ORACLE Chapter 3
Children and Slot Content

Global HTML Attributes

The naming convention of camelCase supports referencing component properties from within
JSX. Ideally, this same convention can work for global HTML attributes, such as id or
tablndex. However, not all global HTML attributes are exposed as properties. For example,
aria- and data- attributes do not have property equivalents.

This leads to the following rules for working with global HTML properties/attributes:

e If the global HTML attribute is available as a property, use the property name.
- If the global HTML attribute is not available as a property, use the attribute name.

In many cases, global HTML attribute names will be identical to the property name (such as id,
title, and style). However, there are some cases where the attribute and property name
differ, or where the property name requires a specific case-folding. For example, since
attributes are case insensitive, HTML allows any capitalization of the tabindex attribute.
However, JSX requires that you use the actual property name tablndex:

protected render() {
// While "tabindex" is a valid way to specify the tab index
// in an HTML document, in JSX, the property name "tablndex"
// must be used.
return <div tablndex="0" />

}

There is one exception to the rule that governs property name references. Although the
property name for specifying style classes is className, this name is not commonly known.
VComponent allows use of the more familiar attribute name class:

protected render() {
// Use "class" instead of "className"
return <div class="awesome-class" />

}

Children and Slot Content

In addition to exposing properties, components can also allow children to be passed in. With
VComponent API custom elements, children are specified in one of two ways:

1. As direct children, with no slot attribute. This is also known as the default slot.

2. As anamed slot, with the name set through the slot attribute.

Components can leverage both of these approaches. For example, the following oj-c-
collapsible element is configured both with default slot content, as well as content in the
header named slot:

<oj-c-collapsible>
<h3 slot="header">This is named slot content</h3>
This is default slot content
</oj-c-collapsible>

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 26

ORACLE’

Chapter 3
Children and Slot Content

The VComponent API supports authoring of custom elements that expose default slots, named
slots, or both.

One thing to note is that conditional rendering of slots can have unexpected consequences.
When possible, conditionally render content inside of the slot rather than conditionally render
the slot itself. That is, rather than:

condition && <div slot="actionButtons'>

Write:

<div slot="actionButtons"> {
condition && <> buttons go here </>

}

</div>

We also provider a Remounter component, described in Refresh Custom Elements with
Dynamic Children and Slot Content, that you can use to ensure that a custom element re-
renders correctly when its children or slot content changes dynamically.

Default Slots

VComponent API favors the use of code constructs over external metadata for defining a
component’s public API. There is no need to declare a VComponent API custom element
children/slot contract through JSON metadata; instead default slots are added by writing code.

The children/slot contract for the VComponent API custom element is defined by adding fields
to a Props class. In particular, you indicate that a component can accept default slot content by
declaring a children property of type ComponentChildren:

import { h, Component, ComponentChildren } from "preact”;
type Props = {
preferredGreeting?: string;
children?: ComponentChildren;

}

And, you can then associate the Props class with the VComponent through the Props type
parameter:

@customElement(“oj-greet-with-children”)
export class GreetWithChildren extends Component<ExtendGlobal<Props>> {

}

Once this is done, any default slot children will be made available to the VComponent API
component implementation through props.children. This is true regardless of whether the
component implementation is used as a custom element within an HTML document, a custom
element within JSX, or through the VComponent component implementation class within JSX.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 26

ORACLE Chapter 3
Children and Slot Content
The VComponent component implementation is free to place the default slot children
anywhere within the component’s virtual DOM tree. For example, a VComponent API button
likely would place these children inside of an HTML <button> element:
protected render() {
return <button> { props.children } </button>;
}
Named Slots

Like the default slot, named slots are also declared as fields on the props class.
Named slot declarations must adhere to two conventions:

e The named slot field must use the Slot type.
e The name of the field must match the slot name.

The declaration for a slot named startlcon looks like this:

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent™;
import { h, Component, ComponentChild } from "preact";

import "oj-c/avatar";

import { GreetWithChildren } from "oj-greet/with-children/loader”

type Props = {
startlcon?: Slot;
}

/**
* @ojmetadata pack "oj-greet"
* @ojmetadata dependencies {
* "oj-greet-with-children™: "~1.0.0"
*}
*/
@customElement("oj-greet-with-children-parent®)
export class GreetWithChildrenParent extends
Component<ExtendGlobalProps<Props>> {
render() {
return (
<div>
<p>This child is rendered as a VComponent class:</p>
<GreetWithChildren startlcon={<oj-c-avatar initials="HW"
size="xs" />}>
World
</GreetWithChildren>
</div>
):
}

When the VComponent is referenced through its class, named slot content is provided by
specifying virtual DOM nodes directly as values for slot properties, as demonstrated in the
following parent VComponent.

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent™;
import { h, Component, ComponentChild } from "preact";

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 26

ORACLE’

Chapter 3
Children and Slot Content

import "oj-c/avatar";
import { GreetWithChildren } from "oj-greet/with-children/loader";

/**
* @ojmetadata pack "oj-greet"
* @ojmetadata dependencies {
* "oj-greet-with-children™: "~1.0.0"
*}
*/
@customElement(*'oj-greet-with-children-parent')
export class GreetWithChildrenParent extends
Component<ExtendGlobalProps<Props>> {

render() {

return (
<div>
<p>This child is rendered as a VComponent class:</p>
<GreetWithChildren startlcon={<oj-c-avatar initials="HW"
size="xs" />}>
World

</GreetWithChildren>
</div>
):

}
}

Refresh Custom Elements with Dynamic Children and Slot Content

Virtual DOM architecture provides a Remounter component to make sure that a custom
element re-renders correctly when its children or slot content changes dynamically.

A concrete example demonstrates when to use the Remounter component. In the following
example, the oj-c-button element’s display of a start icon depends on the value of the
showStartlcon property. We want to ensure that the oj-c-button renders the start icon in the
correct location when the showStartlcon property changes.

type Props = {
showStartlcon?: boolean

}

function ButtonStartlconSometimes(props: Props) {
return (
<oj-c-button label="Click Me!'>
{ props.showStartlcon && <span slot="startlcon” class="some-icon-
class™ /> }
</o0j-c-button>
)
}

A more appropriate approach for the virtual DOM architecture is to assign a unique key that
reflects the oj-c-button showStartlcon property’s different states. In the above example,
assigning a unique key is straightforward, as there are only two possible states. However, in
some cases producing a unique key for all possible children states is more challenging. For
these more challenging cases, use the Remounter component to wrap a single custom
element child and generate a unique key based on the current set of children. The following

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 26

https://react.dev/learn/rendering-lists

ORACLE’

Chapter 3
Template Slots

revised example demonstrates how you use the Remounter component to ensure that the oj -
c-button re-renders with the start icon in the correct location:

import { h } from "preact”;
import { Remounter } from "ojs/ojvcomponent-remounter”®;
import "oj-c/button”;

type Props = {
showStartlcon?: boolean

}
function ButtonStartlconSometimes(props: Props) {
return (
<Remounter>
<oj-c-button label="Click Mel">
{ props.showStartlcon && Start lcon }
</0j-c-button>
</Remounter>
)
}

export { ButtonStartlconSometimes };

Note that you only need to use the Remounter component when configuring custom elements
where the number of types of children change across renders.

Template Slots

In addition to simple, non-contextual slots, JET components also support slots that can receive
context. These are called template slots.

Template slots are typically found in collection components that iterate over a data set,
stamping out content for each item or row. For example, <oj-list-view> exposes an
itemTemplate slot that controls how the content of each list item renders. Within HTML, a
template element with a slot attribute specifies a template slot, as in the following example:

<oj-list-view data="[[items]]'">
<template slot="itemTemplate" data-oj-as="item'>
<div>
<0j-bind-text value="[[item.data.value]]"></0oj-bind-text>
</div>
</template>
</oj-list-view>

VComponent API custom elements can also expose template slots. To understand how this
works, consider a greeting component that takes an array of names to greet and renders a
greeting for each name. The property declaration might look like this:

class Props {
names: Array<string>

}

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 12 of 26

ORACLE’

Chapter 3
Template Slots

It is possible to just iterate over the names and render the content for each item:

protected render() {
return (
<div>
{ this.props.names.map(name => <div>Hello, {name}!</div>) }
</div>
);
}

With the above approach, the decision about how to render each greeting would be hardcoded
into the component implementation. Instead, this can be made more flexible by exposing a
template slot that allows the app to customize how each greeting is rendered.

Similar to simple, non-contextual slots, template slots are declared as properties with a well
known type: TemplateSlot. Let's take a look at this type alias:

export type TemplateSlot<Data> = (data: Data) => Slot;

The TemplateSlot is a generic function type that accepts a single argument: the data to use
when rendering a specific instance of the template. The type of this data is defined through the
Data type parameter, which must be specified when the TemplateSlot property is declared.

Here is a new version of the greeting component that delegates rendering to an optional
greetingTemplate slot:

oj-greet/hello-many.tsx:

1 import { h, Component } from "preact”;

2 import { customElement, ExtendGlobalProps, TemplateSlot } from "ojs/
ojvcomponent”;

3

4 export type GreetingContext = {
5 name: string;

6 }

7

8 type Props = {

9 names: Array<string>;

10 greetingTemplate?: TemplateSlot<GreetingContext>;
11 }

12

13 /**

14 * @ojmetadata pack "oj-greet"
15 */

16 @customElement("oj-greet-hello-many*®)
17 export class GreetHelloMany extends Component<ExtendGlobalProps<Props>>

{

18 render() {

19 return (

20 <div>

21 {

22 this.props.names.map((name) => {

23 return this._props.greetingTemplate?.({ name }) ||
24 <div>Hello, { name }!</div>

25 1))

26 }

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 13 of 26

ORACLE’

Chapter 3
Template Slots

27 </div>
28);

29 }

30 }

This sample declares the greetingTemplate slot at line 10. Note that the Data type parameter
must be an object type. The sample uses the GreetingContext type as declared at line 4.

The template slot (if non-null) is invoked for each item in the names array at line 23. The
sample passes in an object of type GreetingContext with each invocation. Alternatively, if no
slot is provided, it returns the default content at line 24.

Provide Template Slot Content within HTML

After you expose the template slot in the VComponent implementation, then within HTML, you
provide slot content the same as any JET custom element: by specifying a <template>
element with a slot attribute. Within the template element, you use JET binding expressions
and elements to render the desired greeting:

<oj-greet-hello-many names="[[["Joel®, “Mike", “Jonah®]]]">
<template slot="greetingTemplate™ data-oj-as="greeting'>
<div>
Hi, <oj-bind-text value="[[greeting.name]]"></0j-bind-text>!
</div>
</template>
</oj-greet-hello-many>

Template Slots in JSX

When rendering a component in JSX through its VComponent APl component class (such as
<GreetHelloMany>), template slots are passed in as functions that adhere to the TemplateSlot
contract. This means you must implement template slots as functions that take some data, and
return either a single virtual DOM node or an array of nodes.

This might look something like:

<GreetHelloMany names={names}
greetingTemplate={ (data) => <div>Hello, { data.name}!</div> }

Of course, you can also reference the GreetHelloMany component by using its custom element
tag name.

As the previous HTML sample shows, custom element template slots are specified using JET
binding expressions (such as value="[[greeting.name]]") and elements (such as oj-
bind-text) inside a <template> element. While this approach fits in nicely within an HTML
document alongside other content that is configured using JET bindings, it doesn't fit well
inside of a JSX render function. Within JSX, rather than configuring template slot content using
JET binding syntax, JSX syntax is preferred.

To allow template slot content to be specified using JSX-based render functions, VComponent
API introduces a special, VComponent-specific property on the <template> element: the
render property. The type of this property is TemplateSlot.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 14 of 26

ORACLE

Chapter 3
Template Slots

This allows us to configure template slots on custom elements using JSX-based render
functions, for example:

<oj-greet-hello-many names={names}>
<template slot="‘greetingTemplate"
render={ (data) => <div>Hello, { data.name}!</div> }/>
</oj-greet-hello-many>

Note that you still need to specify a <template> element with a slot attribute. Rather than
configuring the template slot with JET's binding syntax, instead specify a TemplateSlot
function that returns virtual DOM.

A more complete parent component shows this:

oj-greet/hello-many-parent.tsx:

1 import { h, Component } from “"preact”;

2 import { customElement, GlobalProps } from "ojs/ojvcomponent”;

3 import "oj-c/avatar";

4 import { GreetHelloMany, GreetingContext } from "oj-greet/hello-many/
loader”;

5

6 /**

7 * @ojmetadata pack "oj-greet"

8 */

9

@customElement("oj-greet-hello-many-parent®)
10 export class GreetHelloManyParent extends
Component<ExtendGlobalProps<Props>> {

11 render() {

12

13 const names = ["Joel®, "Mike", "Jonah"];

14

15 return (

16 <div>

17 <p>This child is rendered as a custom element:</p>
18 <oj-greet-hello-many names={names}>

19 <template slot="greetingTemplate"

render={ this.renderGreeting }/>

20 </oj-greet-hello-many>

21

22 <p>This child is rendered as a VComponent class:</p>
23 <GreetHelloMany names={names}

greetingTemplate={ this.renderGreeting }/>

24 </div>

25);

26 }

27

28 private renderGreeting(data: GreetingContext) {

29 const name = data.name;

30 const firstinitial = name.charAt(0);

31 const greeting = name.length < 5 ? "Hey" : "Hi";

32

33 return (

34 <p class="centerAlignVertical'>

35 <oj-c-avatar size="xxs" initials={ firstlnitial } />

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 15 of 26

ORACLE’

Chapter 3
Understand Events and Actions

36 {greeting}, { name }!
37 </p>

38);

39 }

40 }

In the above example, the render property provides JSX-based content for the <oj-greet-
hello-many> custom element, which happens to be implemented with VComponent API.
However, this property can also be used when configuring template slot content for any JET
component. For example, you can configure the <oj-list-view> itemTemplate slot as
follows, even though this custom element is not implemented with the VComponent API:

protected render() {
<oj-list-view data={ this.props.items }>
<template slot="itemTemplate"
render={ (item) => { return <div>{ item.data.value }</div> } } />
</oj-list-view>

Understand Events and Actions

Listeners

Two terms seem interchangeable at first, but in VComponent API, event and action have two
distinct meanings:

« event specifically refers to DOM Events that are dispatched by calling to dispatchEvent.

e action is a higher-level abstraction for event-like APIs, which may or may not actually
involve dispatching an Event at the DOM level.

This distinction arises due to the fact that VComponent APl component instances can be used
in two ways:

e As acustom element, using the string tag name.
* As aVComponent APl component, using the component implementation class.

When a VComponent APl component is used as a custom element, invoking an action results
in the dispatch of a DOM event.

However, when referencing a VComponent API component through its implementation class,
no DOM event is created or dispatched. Instead, the action callback provided by the parent
component is invoked directly.

To support these different usage models, a higher level abstraction than DOM events is
required. VComponent API actions provide that abstraction.

For simplicity, usage of the term action refers to the general behavior by which VComponent
API component instances notify the outside world of activity. Whereas usage of the term event
is reserved specifically for DOM events that are dispatched by custom (or plain old HTML)
elements.

Event listeners are functions that take a DOM event and have no return value. VComponents
can listen for and respond to standard HTML events plus custom events on custom elements.

The naming convention that you use for the event listener differs depending on whether you
listen for a standard HTML event or custom event.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 16 of 26

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/dispatchEvent

ORACLE’

Chapter 3
Listeners

For standard HTML events, such as click, change, mouseover, add a property name that uses
the naming convention: on<UpperCaseStandardEventName>. The following example shows you
how to register an event listener for a click event.

render() {
return <div onClick={this._handleClick}>Click Me!</div>

}

For custom events such as <oj-c-button>'s ojAction event, use the on<customEventName>
naming convention. The following example shows you how to register an event listener for an
ojAction event.

protected render() {
return <oj-c-button label="Click Me!"™ onojAction={this._handleAction}>
<0j-c-button>

}

Note how the first character of the custom event name is not capitalized compared to the
standard event (onojAction versus onClick).

There are a number of ways to enable event listener access to a VComponent instance. You
can, for example, explicitly call bind(this) on the event listener function or, alternatively, use
one of the following approaches:

e Define and use an arrow function inline in the render() method.
e A class method can be bound and saved away in the constructor.
e An arrow function can be declared and stored in a class field.

The last two options avoid creating a new function on each call to the render() method and,
by using the same function instance across all render() methods, avoid virtual DOM diffs that
cause DOM addEventListener and removeEventListener calls on each call to the render()
method. The class field approach (private _handleEvent), demonstrated in the following
example, is slightly more concise.

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent™;
import { Component } from "preact”;
import "oj-c/button”;

type Props = Readonly<{
message?: string;

>

@customElement('oj-greet-with-listeners™)
export class GreetWithListeners extends Component<ExtendGlobalProps<Props>> {

render() {
return (
<div>
<div onClick={this._handleEvent}>
<p>Hello, World!</p>
</div>
<oj-c-button label="Click Me!" onojAction={this._handleEvent}></0j-c-
button>
</div>

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 17 of 26

ORACLE Chapter 3
Actions

);
}

private _handleEvent = (event: Event) => {
console.log(CReceived ${event.type} event’);
}:
}

Actions

We need to make a distinction between event and action because of the different behavior
that occurs when you use a VComponent as a custom element or a component class.

In a VComponent, an event refers to DOM Events that are dispatched through a call to
dispatchEvent while an action is a higher-level abstraction for event-like APIs, which may or
may not actually involve dispatching an event at the DOM level. When you use a VComponent
as a custom element, invoking an action results in the dispatch of a DOM event while no DOM
event is created or dispatched when you use the component class. Instead, for the latter case,
the action callback provided by the parent VComponet is invoked directly. VComponent action
provides a higher-level abstraction than DOM events that is needed to support these two
usage models.

Declare Actions

You need to be able to define actions to dispatch in response to VComponents-defined events.

The following example demonstrates how you add a responseDetected event action to a
VComponent that is dispatched in response to a user action, such as a click. You add a field to
the Props class. The field that you add must follow the standard event listener property naming
convention (on<UpperCaseEventName>) and it must use the Action type defined by the ojs/
ojvcomponent module.

import { customElement, ExtendGlobalProps, Action } from "ojs/ojvcomponent”;
type Props = {
preferredGreeting?: string;
// This is an action declaration:
onResponseDetected?: Action;

}

Dispatch Actions

VComponent's Action type is a callback function.

export type Action<Detail extends object = {}> = (detail?: Detail) => void;

To dispatch an action, the VComponent invokes the Action-typed property as a function.
Actions are typically dispatched in response to some underlying event. In the following

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 18 of 26

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/dispatchEvent

ORACLE’

Chapter 3
Actions

example, the VComponent instance dispatches the responseDetected action in response to a
click:

private _handleClick = (event: MouseEvent) => {
this.props.onResponseDetected?.();

}

Note that the consumer of the component is not required to provide a value for
onResponseDetected. As a result, we need to guard against a null value for
this.props.onResponseDetected. To do this, we can take advantage of TypeScript's support
for the optional chaining operator (?.). This allows us to invoke the action callback if it is
provided but short-circuit if not, without the need for a more verbose null check.

Respond to Actions

The response to an invoked action depends on usage.

If the VComponent is used as a custom element (either within an HTML document or within
JSX in a parent VComponent), the VComponent framework creates a DOM CustomEvent that
it dispatches through the custom element. The event type is derived from the name of the
Action property by removing the on prefix and lower casing the first letter. For example, the
onResponseDetected action results in the dispatch of a responseDetected DOM event type.

If the VComponent is being used by a parent VComponent and is referenced by its class name
rather than the custom element name, no DOM event is created. If the parent VComponent
provides a value for the Action property, this is invoked directly.

In JSX, action callbacks are always specified using the Action property name. This is true
regardless of whether the parent references the child VComponent by its custom element
name of class:

<p>This child is rendered as a custom element:</p>
<oj-greet-with-actions onresponseDetected={this.handleResponse}/>

<p>This child is rendered as a VComponent class:</p>
<GreetWithActions onResponseDetected={this.handleResponse}

However, if the custom element lives within an HTML document, event listeners are typically
registered with JET's event binding syntax. This might look something like:

<oj-greet-with-actions on-response-

detected=""[[expressionPointingToEventHandler]]">..
</oj-greet-with-actions>

Though it is also possible to call the DOM addEventListener API directly.

Action Payloads

You may have noticed that Action is a generic type with a Detail type parameter. The Detail
type parameter is useful when the action needs to deliver additional information beyond just
the action type.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 19 of 26

https://developer.mozilla.org/en-US/docs/Web/API/Event/type
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener

ORACLE’

Chapter 3
Actions

For example, our Greeting component may want to include a flag along with the
responseDetected action to indicate urgency. This would be declared using the Detail type
parameter as follows:

type Props = {
preferredGreeting?: string;
onResponseDetected?: Action<{
urgent: boolean;

o

}

When invoking the action, the detail payload is passed in as an argument to the action
callback, as in the following example:

private _handleClick = (event: MouseEvent) => {
// Pass in a detail payload. Determine urgency based on
// number of clicks.
this.props.onResponseDetected?. ({
urgent: event.detail > 1
D:
}

The Detail type parameter can also be specified using a type alias, as in the following
example:

export type ResponseDetectedDetail = {
urgent: boolean;

}:

type Props = {
preferredGreeting?: string;
onResponseDetected?: Action<ResponseDetectedDetail>;

}:

On the consuming side, there is one subtlely in how the detail payloads are accessed. In the
custom element case, the action callback is registered as a DOM EventListener. That is, when
using the following form:

<oj-greet-with-actions onresponseDetected={this.handleEventResponse}/>

The callback acts as a true DOM event listener, and, as such, receives a single event
argument of type CustomEvent<Detai I>. However, when using the VComponent class form:

<GreetWithActions onResponseDetected={this.handleActionResponse}/>

The callback will again receive a single argument, but of type Detail rather than
CustomEvent<Detail>. The difference between custom element usage and VComponent class
usage is admittedly non-obvious. Our recommendation for you is to use the VComponent class
form when that is available.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 20 of 26

ORACLE Chapter 3
Manage State Properties

Manage State Properties

Components may track internal state that is not reflected through their properties. VComponent
API provides a state mechanism to support this.

A VComponent API custom element can determine what content to render based exclusively
on properties that are passed into the component by the parent component. This is useful for
VComponent API components that are fully controlled by the parent component. However,
some components may benefit from their own internal state properties that are not passed in,
but rather exist locally in the component and render content based on state changes.
VComponent authors can leverage Preact's local state mechanism for these cases.

Declare State

The process of declaring local state fields is very similar to the way that you define
VComponent API properties. In both cases, start by declaring a type.

This example updates our component to display a goodbye message in response to the user
clicking a Done button. The sample uses a boolean local state field done to track whether this
state is reached.

type State = {
done: boolean;
// Other state fields go here

};

As with the properties type, we associate the state type with the VComponent implementation
by leveraging generics. The VComponent APl component class exposes two type parameters:

e Props: the first type parameter specifies the properties object type
- State: the second type parameter specifies the State object type

The new declaration with both type parameters looks like this:

export class GreetWithState extends Component<ExtendGlobalProps<Props>,
State> {

}

Each VComponent APl component has access to the local state through the this.state field.
This field must be initialized at construction time. Initialization can be done in one of two ways.

If your VComponent APl component instance has a constructor, initialize local state there:

export class GreetWithState extends Component<ExtendGlobalProps<Props>,
State> {
constructor() {
this.state = {
done: false

}

// Do other construction-time work here

}

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 21 of 26

ORACLE’

Chapter 3
Manage State Properties

Alternatively, TypeScript supports inline initialization of class fields. This slightly more compact
form works well if you do not otherwise need a constructor:

export class GreetWithState extends Component<ExtendGlobalProps<Props>,
State> {
state = {
done: false

};

// Component implementation goes here

}

Once local state has been declared and initialized, it can be referenced from within the render
function to adjust how the virtual DOM content is rendered. For example, this sample shows
our greeting component rendering a different message when the conversation is "done™:

render(props: Props, state: State) {
// Derive greeting message off of the "done" state field
const greeting = state.done ?
"Goodbye" :
props.preferredGreeting;

return (
<div onClick={this._handleClick}>
<p>{greeting}, World!</p>
</div>
):
}

Update State

Updating local state has an important side effect: it triggers re-rendering of the component.

Note that this.state is declared as a Readonly type. Other than the initial assignment to
this.state in the constructor (or class field initialization), neither this.state nor fields on
this.state should be mutated directly.

Instead, state updates are performed by calling the Preact Component's setState method.
This method has two forms. The first form simply takes an object representing the new state.
For example, we can update our done state field by calling:

this_setState({ done: true });

This call queues the state update, which will trigger an (asynchronous) re-render of the
component with the new state.

Although our sample only has a single state field, components can have an arbitrary number of
fields. The setState() method accepts sparsely populated objects; you are not required to
provide values for all state fields. Any new values that are provided will be merged on top of
the current state.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 22 of 26

ORACLE Chapter 3
Manage State Properties

The following version of our greeting component has been modified to use a numeric, enum-
based counter to track how engaged the end user is. After three clicks, the greeting component
ends the conversation.

oj-greet/with-state/with-state.tsx:

import { h, Component } from "preact";
import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent™;

type Props = {
preferredGreeting?: string;

}:

enum EngagementlLevel {
Interested,
Bored,
Impatient,
Done,

}

type State = {
engagement: EngagementlLevel;

}:

/**
* @ojmetadata pack "oj-greet"
*/
@customElement(*oj-greet-with-state')
export class GreetWithState extends Component<ExtendGlobalProps<Props>,
State> {
state = {
engagement: EngagementLevel.Interested,

}:

render() {
const greeting = this.getGreeting();

return (
<div onClick={this._handleClick}>
<p>{greeting}, World!</p>
</div>
):
}

private getGreeting() {
let greeting;

switch (this.state.engagement) {

case EngagementLevel .Bored:
greeting = "Okay";
break;

case EngagementLevel.Impatient:
greeting = "Whatever";
break;

case EngagementlLevel .Done:
greeting = "Later";

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 23 of 26

ORACLE Chapter 3
Reference Child VComponents by Value

break;

default:
greeting = this.props.preferredGreeting;
break;

}

return greeting;

}

private _handleClick = (event: MouseEvent) => {
this.setState((state: Readonly<State>) => {
// Once we have reached the Done state, we return null
// to indicate that no state update is needed.
return state.engagement === EngagementLevel .Done
? null
: { engagement: state.engagement + 1 };
D
};

static defaultProps: Partial<Props> = {
preferredGreeting: "Hello",

}:
}

Understand the State Mechanism

One potential problem with the object-based form of setState() arises when the new value for
a state field is derived from the previous value. Given the asynchronous nature of this method,
simply inspecting this.state may not be sufficient to determine what the next value should
be. If there is an outstanding call to setState() that has not yet been fully processed,
this.state might not reflect the pending update.

To better support cases where a state field's next value is dependent on the previous value,
setState() supports a callback form. Rather than passing in an object representing the new
state, callers pass in a function that takes two arguments: the current state and properties. This
callback function can inspect the state and props and return one of the following values:

* A sparsely populated object representing any state updates to apply
or:

< null, if no state updates are required.

When multiple calls to setState() are issued, the state updates are chained. That is, the
results of one call (whether object or callback form) are fed into the subsequent callback. This
ensures the callback always sees the most up to date values, and that it can use this
information to correctly produce the next value.

Reference Child VComponents by Value

You can reference a VComponent child component from within JSX in two ways:

// Use intrinsic element name
function Parent() {

return <some-comp />;
}

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 24 of 26

ORACLE’

Chapter 3
Reference Child VComponents by Value

// Use value-based element to reference
// the VComponent class or function value
function Parent() {

return <SomeComp />

}

We recommend that, whenever possible, you use the value-based element because:

1. ltis slightly more efficient as we are able to do more rendering in virtual DOM even before
the VComponent's DOM element is created.

2. It provides a more React/Preact-centric approach to use certain APIs, such as slots and
listeners. (More on this below.)

3. When working within a single project (that is, where both the VComponent and consuming
code is in the same project), you have access to the VComponent class type information
directly in your project source. You are not dependent on a build to produce a type
definition for the class.

Elaborating on point 2, when you reference a VComponent through its intrinsic element name,
you are limited to using this syntax for slots, as in the following example:

function Parent() {
<some-comp>
// This is a plain slot:

// This is a template slot:
<template slot="itemTemplate render={ renderltem } />
</some-comp>

}

With a value-based element approach, you can achieve the same outcome more concisely,
and in a form that is more familiar to app developers with a React/Preact background:

function Parent() {
<SomeComp startlcon={

}

References to event listeners when using the value-based element form also aligns better with
what a React/Preact developer would expect. For example, for intrinsic elements, we need to
follow Preact's custom event naming conventions. So, for an event name of
someCustomEvent, we end up with this listener prop:

function Parent() {
<some-comp onsomeCustomEvent={ handleSomeCustomEvent }>

}

When referencing the value-based element, this is:

function Parent() {
<SomeComp onSomeCustomEvent={ handleSomeCustomEvent }>

}

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 25 of 26

ORACLE Chapter 3
Reference Child VComponents by Value

To conclude, use the value-based element whenever possible. For cases where you need to
interact directly with the DOM element, use the intrinsic element form and then obtain a
reference to it, as in this example

function Parent() {
const someRef = useRef(null);
return <some-comp ref={ someRef } />;

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 26 of 26

Work with Oracle JET VComponent-based
Web Components

Oracle JET VComponent-based Web Components are reusable pieces of user interface code
that you can embed as custom HTML elements. Web Components can contain Oracle JET
components, other Web Components, HTML, JavaScript, and CSS. You can create your own
Web Component or add one to your page.

Create Web Components

Oracle JET supports a variety of custom Web Component component types. You can create
standalone Web Components or you can create sets of Web Components that you intend to be
used together and you can then assemble those in a JET Pack, or pack component type. You
can enhance JET Packs by creating resource components when you have re-usable libraries
of assets that are themselves not specifically Ul components. And, if you need to reference
third-party code in a standalone component, you can create reference components to define
pointers to that code.

Create Standalone Web Components

Use the Oracle JET command-line interface (CLI) to create an Oracle JET Web Component
template that you can populate with content. If you're not using the CLI, you can add the Web
Component files and folders manually to your Oracle JET application.

The procedure below lists the high-level steps to create a Web Component.
Before you begin:

e Familiarize yourself with the list of reserved names for a Web Component that are not
available for use, see valid custom element name

» Familiarize yourself with the list of existing Web Component properties, events, and
methods, see HTMLElement properties, event listeners, and methods

- Familiarize yourself with the list of global attributes and events, see Global attributes

To create a Web Component:

1. Determine a name for your Web Component.
The Web Component specification restricts custom element names as follows:
e Names must contain a hyphen.
e Names must start with a lowercase ASCII letter.
¢ Names must not contain any uppercase ASCII letters.

« Names should use a unique prefix to reduce the risk of a naming collision with other
components.

A good pattern is to use your organization’s name as the first segment of the
component name, for example, org-component-name. Names must not start with the
prefix oJ- or ns-, which correspond to the root of the reserved oj and ns namespaces.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 17

https://www.w3.org/TR/custom-elements/#valid-custom-element-name
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes

ORACLE Chapter 4
Create Web Components

* Names must not be any of the reserved names. Oracle JET also reserves the oj and
the ns namespace and prefixes.

2. Determine where to place your Web Component, using one of the following options.

* Add the Web Component to an existing Oracle JET application that you created with
the Oracle JET CLI.

If you use this method, you'll use the CLI to create a Web Component template that
contains the folders and files you’ll need to store the Web Component’s content.

e Manually add the Web Component to an existing Oracle JET application that doesn'’t
use the Oracle JET CLI.

If you use this method, you'll create the folders and files manually to store the Web
Component’s content.

3. Depending upon the choice you made in the previous step, perform one of the following
tasks to create the Web Component.

« If you used the Oracle JET CLI to create an application, then in the application’s top-
level directory, enter the following command at a terminal prompt to generate the Web
Component template:

ojet create component conponent - nane

For example, enter ojet create component doc-hello-world to create a Web
Component named doc-hello-world. The command adds doc-hello-world to the
application’s src\components\ folder with files containing stub content for the Web
Component.

~ WDOM-DOC-UPDATES

» node modules

= SIC
~ componemnts

» content

~ doc-hello-world

?» resources
» themes
doc-hello-world-styles.css
doc-hello-world.tsx
loader.ts
README.md
app.tsx
footer.tsx

header.tsx

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 17

ORACLE Chapter 4
Create Web Components

The value of the components property in the oracleconfig. json file determines the
folder location where the Oracle CLI generates the Web Component. The default value
is components, but you can change it to another value.

« If you're not using the Oracle JET CLlI, create a folder in your application’s src folder,
and add folders containing the name of each Web Component you will create.

4. If you're not using the Oracle JET CLI, create a loader.js RequireJS module and place it
in the Web Component’s root folder.

The loader. js module defines the Web Component dependencies and registers the
component’s class name, DocHelloWorld in this example.

export { DocHelloWorld } from "./doc-hello-world";

5. Configure any custom styling that your Web Component will use.

* If you only have a few styles, add them to web—onponent - name-styles.css file in the
Web Component’s root folder, creating the file if needed.

For example, the DocHel loWorld Web Component defines styles for the component’s
display, width, and height.

/* This prevents the flash of unstyled content before the Web
Component properties have been setup. */
doc-hello-world:not(.oj-complete) {
visibility: hidden;
}

doc-hello-world {
min-height: 50px;
width: 50px;

}

e If you used the Oracle JET tooling to create your application and want to use Sass to
generate your CSS:

a. If needed, at a terminal prompt in your application’s top level directory, type the
following command to add node-sass to your application: ojet add sass.

b. Create web—eonponent - nanme-styles.scss and place it in the Web Component’s
top level folder.

c. Edit web—€onponent - nane-styles.scss with any valid SCSS syntax and save the
file.

In this example, a variable defines the demo card size:

$doc-hello-world-size: 200px;

/* This prevents the flash of unstyled content before the
Web Component properties have been setup. */
doc-hello-world:not(.oj-complete) {
visibility: hidden;
}

doc-hello-world {
width: $doc-hello-world-size;

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 17

ORACLE’

Chapter 4
Create Web Components

min-height: $doc-hello-world-size;

}

6. If you want to add documentation for your Web Component, add content to README.md in
your Web Component's root folder, creating the file if needed.

Your README . md file should include an overview of your component with well-formatted
examples. Include any additional information that you want to provide to your component’s
consumers. The recommended standard for README file format is markdown.

Create JET Packs

Create JET Packs to simplify project management for consumers who might pick up a
component that is related to one or more components. You may require specific versions of the
referenced components for individual JET Packs.

Fundamentally, the JET Pack is a library of related Web Components that does not directly
include those assets, but is as an index to a particular versioned stripe of components.

@® Note

Note there is one exception to the pack as a reference mechanism for related
components. A pack might include one or more RequireJS bundle files which package
up optimized forms of the component set into a small number of physical downloads.
This, however, is always in addition to the actual components being available as
independent entities in Oracle Component Exchange.

The components referenced by the JET Pack are intended to be used together and their usage
is restricted by individual component version. Thus, the JET Pack that you create will tie very
specific versions of each component into a relationship with very specific, fixed versions of the
other components in the same set. Thus, a JET Pack itself has a "version stripe" which
determines the specific components that users import into their apps. Since the version
number of individual components may vary, the JET Pack guarantees the consumer associates
their app with the version of the pack as a whole, and not with the individual components
contained by the pack.

1. Create the JET Pack using the JET tooling from the root folder of your app.

ojet create pack ny-pack

Consider the pack name carefully, as the name will determine the prefix to any
components within that pack.

The tooling adds the folder structure with the template files that you will need to modify:

/(working folder)
/src
/components
/my-pack

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 17

ORACLE Chapter 4
Create Web Components

2. Create the components that you want to bundle with the JET Pack by using the JET tooling
from the root folder of your app. The component name that you specify must be unique
within the pack.

ojet create component ny-wi dget-1 --pack=ny- pack

The tooling nests the component folder /my-widget-1 under the my-pack root folder and
the new component files resemble those created for a standalone Web Component.

/(working folder)
/src
/components
/my-pack
component. json
/my-widget-1
| loader.ts
| my-widget-1-styles.css
| my-widget-1.tsx
| README.md
+---resources
| 7/---nls
| /---root
| my-widget-1-strings.ts
/---themes

loader.ts includes a one-line entry that exports the VComponent module class of the new
component, as in the following example:
export { MyWidgetl } from "._./my-widget-1";

3. Optionally, for any Resource components that you created, as described in Create
Resource Components for JET Packs, add the component's working folder with its own
component. json file to the pack file structure.

The tooling nests the component folder /my-widget-1 under the my-pack root folder and
the new component files resemble those created for a standalone Web Component.

/(working folder)
/src
/components
/my-pack
component.json
/my-widget-1
/resources
/nls
/root
my-widget-1-strings.js
component.json
loader.ts
README .md
my-widget-1.tsx
my-widget-1-styles.css
/my-resource-component-1
component.json
/converters

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02
Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page 5 of 17

ORACLE Chapter 4
Create Web Components

filel.js

/resources
/nls
/root
string-filel.js
/validators
filel.js

4. Optionally, generate any required bundled for desired components of the pack. Refer to
RequireJS documentation for details at the https://requirejs.org web site.

@ Tip

You can use RequireJS to create optimized bundles of the pack components, so
that rather than each component being downloaded separately by the consuming
app at runtime, instead a single JavaScript file can be downloaded that contains
multiple components. It's a good idea to use this facility if you have sets of
components that are almost always used together. A pack can have any number
of bundles (or none at all) in order to group the available components as required.
Be aware that not every component in the pack has to be included in one of the
bundles and that each component can only be part of one bundle.

5. Use a text editor to modify the component. json file in the pack folder root similar to the
following sample, to identify pack dependencies and optional bundles. Added components
must be associated by their full name and a specific version.

{
"name": "my-pack",
"version": "1.0.0",
"type': "pack",
"displayName": "My JET Pack",
"description": "An example JET Pack",
"dependencies'": {
"my-pack-my-widget-1":"1.0.0",
1.
"bundles':{
"my- pack/ny-bundl e": [
"ny- pack/ny-bundl e-fil el/loader",
1
}s
"extension": {
"catalog": {
"coverlmage": "coverimage.png"
}
}
}
}

Your pack component's component. json file must contain the following unique definitions:

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 17

https://requirejs.org

ORACLE’

Chapter 4
Create Web Components

name is the name of the JET Pack has to be unique, and should be defined with the
namespace relevant to your group. This name will be prepended to create the full
name of individual components of the pack.

version defines the exact version number of the pack, not a SemVer range.

® Note

Changes in version number with a given release of a pack should reflect the
most significant change in the pack contents. For example, if the pack
contained two components and as part of a release one of these had a Patch
level change and the other a Major version change then the pack version
number change should also be a Major version change. There is no
requirement for the actual version number of the pack to match the version
number(s) of any of it's referenced components.

type must be set to pack.

displayName is the name of the pack component that you want displayed in in Oracle
Component Exchange. Set this to something readable but not too long.

description is the description that you want displayed in Oracle Component
Exchange. For example, use this to explain how the pack is intended to be used.

dependencies defines the set of components that make up the pack, specified by the
component full name (a concatenation of pack name and component name). Note that
exact version numbers are used here, not SemVer ranges. It's important that you
manage revisions of dependency version numbers to reflect changes to the referenced
component's version and also to specify part of the path to reach the components
within the pack.

If you want to include all components in the JET Pack directory, use a token,
"@dependencies@", as the value for dependencies rather than defining individual
entries for all the components in the pack. The following snippet illustrates how you
use this token in your component. json file:

{
"name": "my-pack",
"version": "1.0.0",
"type": "pack",
"displayName™: "My JET Pack",
"description”: "An example JET Pack",
"dependencies': "@dependencies@"

}

bundles defines the available bundles (optional) and the contents of each. Note how
both the bundle name and the contents of that bundle are defined with the pack name
prefix as this is the RequireJS path that is needed to map those artifacts.

catalog defines the working metadata for Oracle Component Exchange, including a
cover image in this case.

Optionally, create a readme file in the root of your working folder. This should be defined as
a plain text file called README. txt (or README .md when using markdown format).

Optionally, create a cover image in the root of your working folder to display the component
on Oracle Exchange. The file name can be the same as the name attribute in the
component. json file.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 17

ORACLE’

Chapter 4
Create Web Components

8. Use the JET tooling to create a zip archive of the JET Pack working folder when you want
to upload the component to Oracle Component Exchange, as described in Package Web

Components.

9. Support consuming the JET Pack in Oracle Visual Builder projects by uploading the
component to Oracle Component Exchange.

Create Resource Components for JET Packs

Create a resource component when you want to reuse assets across web components that
you assemble into JET Packs. The resource component can be reused by multiple JET Packs.

When dealing with complex sets of components you may find that it makes sense to share
certain assets between multiple components. In such cases, the components can all be
included into a single JET Pack and then a resource component can be added to the pack in
order to hold the shared assets. There is no constraint on what can be stored in a pack,
typically it may expose shared JavaScript, CSS, and JSON files and images. Note that third
party libraries should generally be referenced from a reference component and should not be
included into a resource component.

You don't need any tools to create the resource component. You will need to create a folder in
a convenient location. This folder will ultimately be zipped to create the distributable resource
component. Internally this folder can then hold any content in any structure that you desire.

To create a resource component:

1. If you have not already done so, create a JET Pack using the following command from the
root folder of your app to contain the resource component(s):

ojet create pack ny-resource- pack
2. stillin the root folder of your app, create the resource component in the JET Pack:
ojet create component ny-resource-conp --type=resource --pack=ny-resource-pack

The tooling adds the folder structure with a single template component. json file and an
index file.

/root folder
/src
/components
/my-resource-pack
/my-resource-comp
component. json

3. Populate the created folder (my-resource-comp, in our example) with the desired content.
You can add content in any structure desired, with the exception of NLS content for
translation bundles. In the case of NLS content, preserve the typical JET folder structure;
this is important if your resource component is going to include such bundles.

/(my-resource-folder)
/converters
phoneConverter.js
phoneConverterFactory.js
/resources
/nls
/root
oj-ext-strings.js
/phone

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 17

ORACLE Chapter 4
Create Web Components

countryCodes. json
/validators
emailValidator.js
emailValidatorFactory.js
phoneValidator.js
phoneValidatorFactory.js
urlvalidator.js
urlvValidatorFactory.js

In this sample notice how the /resources/nls folder structure for translation bundles is
preserved according to the folder structured of the app generated by JET tooling.

4. Use a text editor to update the component. json file in the folder root similar to the following
sample, which defines the resource my-resource-comp for the JET Pack my-resource-
pack.

{

"name': "my-resource-comp",
"pack: "my-resource-pack",
"displayName™: "Oracle Jet Extended Utilities",
"description”: "A set of reusable utility classes used by the Oracle JET
extended
component set and available for general use. Includes
various
reusable validators",
"license'": "https://opensource.org/licenses/UPL",
"type": "resource”,
"version": "2.0.2",
"jetVersion": ">=8.0.0 <10.1.0",
"publicModules™: [
"validators/emailValidatorFactory",
"validators/urlvalidatorFactory"

1.
"extension:{
"catalog": {
"category": "Resources",
"coverlmage™: "cca-resource-folder.svg"
}
}

Your resource component's component. json file must contain the following unique
definitions:

e name is the name of the resource component has to be unique, and should be defined
with the namespace relevant to your group.

« pack is the name of the JET Pack containing the resource component.

- displayName is the name of the resource component as displayed in Oracle
Component Exchange. Set this to something readable but not too long.

« description is the description that you want displayed in Oracle Component
Exchange. For example, use this to explain the available assets provided by the
component.

+ type must be set to resource.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 17

ORACLE Chapter 4
Create Web Components

« version defines the semantic version (SemVer) of the resource component as a
whole. It's important that you manage revisions of this version number to inform
consumers of the compatibility of a given change.

® Note

Changes to the resource component version should roll up all of the changes
within the resource component, which might not be restricted to changes only
in . js files. A change to a CSS selector defined in a shared .css file can
trigger a major version change when it forces consumers to make changes to
their downstream uses of that selector.

- jetVersion defines the supported Oracle JET version range using SemVer notation.
This is optional and depends on the nature of what you include into the resource
component. If the component contains JavaScript code and any of that code makes
reference to Oracle JET APIs, then you really should include a JET version range in
that case.

e publicModules lists entry points within the resource component that you consider as
being public and intend to be consumed by any component that depends on this
component. Any API not listed in the array is considered to be pack-private and
therefore can only be used by components within the same pack namespace, but may
not be used externally.

- catalog defines the working metadata for Oracle Component Exchange, including a
cover image in this case.

5. Optionally, create a readme file in the root of your working folder. A readme can be used to
document the assets of the resource. This should be defined as a plain text file called
README . txt (or README.md when using markdown format).

@ Tip

Take care to explain the state of the assets. For example, you might choose to
include utility classes in the resource component that are deemed public and can
safely be used by external consumers (for example, code outside of the JET Pack
that the component belongs to). However, you may want to document other assets
as private to the pack itself.

6. Optionally, create a change log file in the root of your working folder. The change log can
detail significant changes to the pack over time and is strongly recommended. This should
be defined as a text file called CHANGELOG. txt (or CHANGELOG.md when using markdown
format).

7. Optionally, include a License file in the root of your working folder.

8. Optionally, create a cover image in the root of your working folder to display the component
on Oracle Exchange. Using the third party logo can be helpful here to identify the usage.
The file name can be the same as the name attribute in the component. json file.

9. Create a zip archive of the working folder when you want to upload the component to
Oracle Component Exchange. Oracle recommends using the format <f ul | Name>-
<ver si on>.zip for the archive file name. For example, my-resource-pack-my-resource-
comp-2.0.2.zip.

For information about using the resource component in a JET Pack, see Create JET Packs.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 17

ORACLE Chapter 4
Create Web Components

Create Reference Components for Web Components

Create a reference component when you need to obtain a pointer to third-party libraries for use
by Web Components.

Sometimes your JET Web Components need to use third party libraries to function and
although it is possible to embed such libraries within the component itself, or within a resource
component, it generally better to reference a shared copy of the library by defining a reference
component.

Create the Reference Component

You don't need any tools to create the reference component. You will need to create a folder in
a convenient location where you will define metadata for the reference component in the
component. json file. This folder will ultimately be zipped to create the distributable reference
component.

Reference components are generally standalone, so the component. json file you create must
not be contained within a JET Pack.

To create a reference component:

1. Create the working folder and use a text editor to create a component. json file in the folder
root similar to the following sample, which references the moment.js library.

{

"name": "oj-ref-moment™,

"displayName™: "Moment library",

"description”: "Supplies reference information for moment.js used to
parse,

validate, manipulate, and display dates and times in
JavaScript”,
"license'": "https://opensource.org/licenses/MIT",
"type": "reference",
"package':""moment™,
"version": "2.24.0",
"paths™: {
"npm™: {
"debug: "moment",
"min™: “"min/moment.min"
3
"edn: {
"debug": "https://static.oracle.com/cdn/jet/packs/3rdparty/moment/
2.24.0/moment.min",
"min": "https://static.oracle.com/cdn/jet/packs/3rdparty/moment/
2.24.0/moment.min"

}
}’
"extension": {
"catalog": {
"category": "Third Party”,
"tags": [
"momentjs"”
1.

"coverlmage': "coverlmage.png"

}

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 17

ORACLE Chapter 4
Create Web Components

Your reference component's component. json file must contain the following unique
definitions:

* name is the name of the reference component has to be unique, and should be
defined with the namespace relevant to your group.

« displayName is the name of the resource component as displayed in Oracle
Component Exchange. Set this to something readable but not too long.

* description is the description that you want displayed in Oracle Component
Exchange. For example, use this to explain the function of the third party library.

* license comes from the third party library itself and must be specified.
* type must be set to reference.

- package defines the npm package name for the library. This will also be used as the
name of the associated RequireJS path that will point to the library and so will be used
by components that depend on this reference.

e version should reflect the version of the third party library that this reference
component defines. If you need to be able to reference multiple versions of a given
library then you will need multiple versions of the reference component in order to map
each one.

« paths defines the CDN locations for this library. See below for more information about
getting access to the Oracle CDN.

e min points to the optimal version of the library to consume. The debug path can point
to a debug version or just the min version as here.

» catalog defines the working metadata for Oracle Component Exchange including a
cover image in this case.

2. Optionally, create readme file in the root of your working folder. A readme can be used to
point at the third party component web site for reference. This should be defined as a plain
text file called README . txt (or README . md when using markdown format).

3. Optionally, create a cover image in the root of your working folder to display the component
on Oracle Exchange. Using the third party logo can be helpful here to identify the usage.
The file name can be the same as the name attribute in the component. json file.

4. Create a zip archive of the working folder when you want to upload the component to
Oracle Component Exchange. Oracle recommends using the format <f ul | Name>-
<ver si on>.zip for the archive file name. For example, oj-ref-moment-2.24_0.zip.

5. Support consuming the reference component in Oracle Visual Builder projects by
uploading the component to a CDN. See below for more details.

Consume the Reference Component

When your Web Components need access to the third party library defined in one of these
reference components, you use the dependency attribute metadata in the component.json to
point to either an explicit version of the reference component or you can specify a semantic
range. Here's a simple example of a component that consumes two such reference
components at specific versions:

{

"name" :"calendar",

"pack':"oj-sample”,

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 12 of 17

ORACLE’

Chapter 4
Add Web Components to Your Page

"displayName': "JET Calendar",
"description: "FullCalendar wrapper with Accessibility added.",
"version": "1.0.2",
"jetVersion": "79.0.0",
"dependencies': {
"oj-ref-moment":"2.24.0",
"oj-ref-fullcalendar":"3.9.0"

}

When the above component is added to an Oracle JET or Oracle Visual Builder project this
dependency information will be used to create the correct RequireJS paths for the third party
libraries pointed to be the reference component.

Alternatively, when you install a Web Component that depends on a reference component and
you use Oracle JET CLI, the tooling will automatically do an npm install for you so that the
libraries are local. However, with the same component used in Oracle Visual Builder, a CDN
location must be used and therefore the reference component must exist on the CDN in order
to be used in Visual Builder.

Add Web Components to Your Page

To use a VComponent-based Web Component, you import the loader module that provides the
entry point to the component in the TSX page where you will use the component, unless you
import the component from a mono-pack JET Pack.

Those of you who previously built Web Components using the Composite Component
Architecture will be familiar with the use of the loader module to import the Web Component.
VComponent-based Web Components also use this convention of a loader module serving as
the main entry point to the Web Component. It allows the Oracle JET CLI, Visual Builder, and
the Component Exchange to work with VComponent-based Web Components.

If you import the Web Component into a VDOM app, you can choose between importing the
Web Component through the use of the component class name or the custom element name
for the Web Component. If you import the VComponent-based Web Component into an MVVM
JET app, you must use the custom element syntax. If importing a component from a JET Pack,
you’ll also need to identify the JET Pack in the import statement, but the import statement
differs slightly depending on whether you import from a conventional JET Pack or a mono-pack
JET Pack. In the case of an import of a component from a mono-pack, you don’t need to
include the loader module in the import statement as components created within this type of
pack are automatically loaderless.

The following commented example illustrates the syntax to use for each option.

import { h } from "preact";

//// Import standalone components.

// Import as a custom element.

import "doc-hello-world/loader"

// Import as a component class.

import { DocHelloWorld } from "doc-hello-world/loader"

//// 1mport components from a conventional JET Pack using loader module
// Import as a custom element.

import "my-component-pack/my-widget-1/loader";

// Import as a component class.

import { MyWidget2 } from "my-component-pack/my-widget-2/loader";

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 13 of 17

ORACLE

Chapter 4
Generate APl Documentation for VComponent-based Web Components

// Import components from a Mono-Pack JET Pack (Note: No reference to
loader.ts)

// Import as a custom element.

import "my-mono-pack/my-widget-3";

// Import as a component class.

import { MyWidget4 } from "my-mono-pack/my-widget-4";

export function Content() {
return (
<div class="o0j-web-applayout-max-width oj-web-applayout-content'>
{/* Standalone component®s custom element */}
<doc-hello-world></doc-hello-world>
{/* Standalone component®s component class */}
<DocHelloWorld />
{/* JET Pack component®s custom element */}
<my-component-pack-my-widget-1></my-component-pack-my-widget-1>
{/* JET Pack component®s component class */}
<MyWidget2 />
{/* JET Mono-Pack component®s custom element */}
<my-mono-pack-my-widget-3></my-mono-pack-my-widget-3>
{/* JET Mono-Pack component®s component class */}
<MyWidget4 />
</div>
);
}:

Generate APl Documentation for VComponent-based Web
Components

The Oracle JET CLI includes a command (ojet add docgen) that you can use to assist with
the generation of APl documentation for the VComponent-based web components
(VComponent) that you develop

When you run the command from the root of your project, the JISDoc NPM package is installed
and an apidoc_template directory is added to the src directory of your project. The
apidoc_template directory contains HTML files (footer, header, and main) that you can
customize with appropriate titles, subtitles, and footer information, such as copyright
information, for the API reference documentation that you'll subsequently generate for your
VComponent(s). The command also adds an "enableDocGen™: true entry to the
oraclejetconfig. json file of the Oracle JET app. When true, API doc is generated. When
false, no API doc is generated for the VComponents.

You write comments in the source file of your VComponent, as in the following example:

import { ExtendGlobalProps, registerCustomElement } from “ojs/ojvcomponent™;

type Props = Readonly<{
message?: string;
address?: string;

>3

/**

*

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 14 of 17

ORACLE Chapter 4
Generate API Documentation for VComponent-based Web Components

* @ojmetadata version "1.0.0"
* @ojmetadata displayName "A user friendly, translatable name of the
component"
* @ojmetadata description "<p>Write a description here.</p>
<p>Use HTML tags to put in new paragraphs</p>

Bullet list item 1
Bullet list item 2
* <p>Everything before the closing quote is rendered</p>

*x "

*

*/

function StandaloneVcompFunclmpl({ address = "Redwood shores",
message = "Hello from standalone-vcomp-func" }:
Props) {
return (
<div>

</div>
):
}

Once you have completed documenting your VComponent's APl in the source file, you run the
build command for your component or the JET Pack, if the component is part of a JET pack
(ojet build component conponent-nane or ojet build component j et - pack-nane) to
generate API reference doc in the appRootDir/web/components/conponent - or - pack- name/
vconponent - ver si on/docs directory.

The following /docs directory listing shows the files that the Oracle JET CLI generates for a
standalone VComponent. You can’t generate the APl documentation by building the Oracle
JET app that contains the component. You have to build the individual VComponent or the JET
Pack that contains VComponents. Note too that you can’t generate API doc for CCA-based
web components using the Oracle JET CLI ojet add docgen command.

appRootDir/web/components/standalone-vcomp-func/1.0.0/docs

index.html

JsDocMd. json
standalone-vcomp-func.html
standalone.StandaloneVcompFunc.html

---scripts
| deprecated.js

|
|
|
|
|
+
|
I
|
|
|
|
|
\

\---prettify
Apache-License-2.0.txt
lang-css.js
prettify.js

---styles

| Jjsdoc-default.css

| prettify-jsdoc.css

| prettify-tomorrow.css
[

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 15 of 17

ORACLE Chapter 4
Build Web Components

\---images
bookmark.png
linesarrowup.png
linesarrowup_blue.png
linesarrowup_hov.png
linesarrowup_white.png
oracle_logo_sm.png

One final thing to note is that if you want to include an alternative logo and/or CSS styles to
change the appearance of the generated API doc, you update the content in the following
directory appRootDir/node_modules/@oracle/oraclejet/dist/jsdoc/static/styles/.

Build Web Components

You can build your Oracle JET Web Component to optimize the files and to generate a minified
folder of the component that can be shared with the consumers.

When your Web Component is configured and is ready to be used in different apps, you can
build the Web Components of the type: standalone Web Component, JET Pack, and Resource
component. Building these components using JET tooling generates a minified content with the
optimized component files. This minified version of the component can be easily shared with
the consumers for use. For example, you would build the component before publishing it to
Oracle Component Exchange. To build the Web Component, use the following command from
the root folder of the JET app containing the component:

ojet build component ny-web- conponent - nane

For example, if your Web Component name is hel lo-world, use the following command:

ojet build component hello-world

For a JET Pack, specify the pack name.

ojet build component ny- pack-nane

Note that the building individual components within the pack is not supported, and the whole
pack must be built at once.

This command creates a /min folder in the web/components/hel lo-world/x.x.x/ directory of
your Oracle JET web app, where x.x.x is the version number of the component. The /min
folder contains the minified (release) version of your Web Component files.

Reference component do not require minification or bundling and therefore do not need to be
built.

When you build Web Components:

* If your JET app contains more than one component, you can build the containing JET app
to build and optimize all components together. The build component command with the
component name provides the capability to build a single component.

e You can optionally use the --release flag with the build command, but it is not necessary
since the build command generates both the debug and minified version of the
component.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 16 of 17

ORACLE’

Chapter 4
Package Web Components

* You can optionally use the --optimize=none flags with the build command when you want
to generate compiled output that is more readable and suitable for debugging. The
component's loader . js file will contain the minified app source, but content readability is
improved, as line breaks and white space will be preserved from the original source.

Package Web Components

You can create a sharable zip file archive of the minified Oracle JET Web Component from the
Command-Line Interface.

When you want to share Web Components with other developers, you can create an archive
file of the generated output contained in the components subfolder of the app's /web. After you
build a standalone Web Component or a Resource component, you use the JET tooling to run
the package command and create a zip file that contains the Web Component compiled and
minified source.

ojet package component mny-web- conponent - name

Similarly, in the case of JET packs, you cannot create a zip file directly from the file system. It
is necessary to use the JET tooling to package JET packs because the output under the /jet-
composites/<packName> subfolder contains nested component folders and the tooling ensures
that each component has its own zip file.

ojet package pack ny- JET- Pack- name

The package command packages the component's minified source from the /web/components

directory and makes it available as a zip file in a /dist folder at the root of the containing app.
This zip file will contain both the specified component and a minified version of that component
in a /min subfolder.

Reference components do not require minification or bundling and therefore do not need to be
built. You can archive the Reference component by creating a simple zip archive of the
component's folder.

The zip archive of the packaged component is suitable to share, for example, on Oracle
Component Exchange, as described in Publish Web Components to Oracle Component
Exchange. To help organize components that you want to publish, the JET tooling appends the
value of the version property from the component. json file for the JET pack and the individual
components to the generated zip in the dist folder. Assume, for example, that you have a
component pack, my-component-pack, that has a version value of 1.0.0 and the indiviudal
components (my-widget-1, and so on) within the pack also have version values of 1.0.0, then
the zip file names for the generated files will be as follows:

appRootDir/dist/
my-web-component-name_1-0-0.zip
my-component-pack _1-0-0.zip
my-component-pack-my-widget-1 1-0-0.zip
my-component-pack-my-widget-2_1-0-0. zip
my-component-pack-my-widget-3_1-0-0.zip

You can also generate an archive file when you want to upload the component to a CDN. In the
CDN case, additional steps are required before you can share the component, as described in
Upload and Consume Web Components on a CDN.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 17 of 17

Use Oracle JET Components and Data
Providers

Review the following recommendations to make effective use of Oracle JET components and
associated APIs, such as data providers, so that the app that you develop is performant and
provides an optimal user experience.

Access Subproperties of Oracle JET Component Properties

JSX does not support the dot notation that allows you to access a subproperty of a component
property. You cannot, for example, use the following syntax to access the max or count-by
subproperties of the Input Text element’s Iength property.

<oj-input-text
length_max={3}
length.count-by="codeUnit"

</oj-input-text>

To access these subproperties using JSX, first access the element’s top-level property and set
values for the subproperties you want to specify. For example, for the countBy and max
subproperties of the Oracle JET oj-input-text element’s length property, import the
component props that the Input Text element uses. Then define a length object, based on the
type InputTextProps["length"], and assign it values for the countBy and max subproperties.
Finally, pass the length object to the oj-input-text element as the value of its length

property.
import {ComponentProps } from "preact";
type InputTextProps = ComponentProps<"oj-input-text'>;

const length: InputTextProps["length"] = {
countBy: "codeUnit",
max: 3

}

function Parent() {
return (
<oj-input-text length={ length } />
)
}

Mutate Properties on Oracle JET Custom Element Events

Unlike typical Preact components, mutating properties on Oracle JET custom elements
invokes property-changed callbacks. As a result, you can end up with unexpected behavior,
such as infinite loops, if you:

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE’

Chapter 5
Avoid Repeated Data Provider Creation

1. Have a property-changed callback
2. The property-changed callback triggers a state update

3. The state update creates a new property value (for example, copies values into a new
array)

4. The new property value is routed back into the same property

Typically, Preact (and React components) invoke callbacks in response to user interaction, and
not in response to a new property value being passed in by the parent component. You can
simulate the Preact component-type behavior when you use Oracle JET custom elements if
you check the value of the event._detail .updatedFrom field to determine if the property
change is due to user interaction (internal) instead of your app programmatically mutating the
property value (external). For example, the following event callback is only invoked in
response to user interaction:

const onSelection = (event) => {
if (event.detail._updatedFrom === "internal®) {
const selectedvalues = event.detail.value;
setSelectedOptions([selectedvValues]);
}
}:

Avoid Repeated Data Provider Creation

Avoid creating a new data provider each time a VComponent renders.

For instance, avoid doing this in a VComponent with an oj-list-view component, as it
recreates the MutableArrayDataProvider instance every time the VComponent renders:

<oj-list-view
data={new MutableArrayDataProvider....}
>

</oj-list-view>

Instead, consider using Preact's useMemo hook to ensure the data provider instance is only
recreated when the data in the provider changes. The following example shows how to include
the useMemo hook to prevent the data provider for an oj-list-view component from being
recreated, even if the VComponent with this code re-renders.

import MutableArrayDataProvider = require(‘'ojs/ojmutablearraydataprovider™);
import { Task, renderTask } from "./data/task-data";

import { useMemo } from "preact/hooks";

import "ojs/ojlistview";

import { ojListView } from "ojs/ojlistview";

type Props = {
tasks: Array<Task>;

}

export function ListViewMemo({ tasks }: Props) {
const dataProvider = useMemo(() => {
return new MutableArrayDataProvider(

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE’

Chapter 5
Avoid Data Provider Re-creation When Data Changes

tasks, {
keyAttributes: "taskld"

}
);
}

[,tasks]
);

return (
<oj-list-view data={dataProvider} class="demo-list-view'>
<template slot="itemTemplate" render={renderTask} />
</oj-list-view>
)
}

This recommendation is because a VComponent can re-render for various reasons, but as
long as the data provider's data remains unchanged, there's no need to recreate the instance,
which can impact app performance and usability due to unnecessary rendering and collection
component flashes and scroll position loss.

Avoid Data Provider Re-creation When Data Changes

Previously, we described how the useMemo hook avoids re-creating a data provider unless
data changes. When data does change, we still end up re-creating the data provider instance,
and this can result in collection components, such as list view, re-rendering all data displayed
by the component and losing scroll position.

Here, we'll try to illustrate how you can opitimize the user experience by implementing fine-
grained updates and maintaining scroll position for collection components, even if the data
referenced by the data provider changes. To accomplish this, the data provider uses a
MutableArrayDataProvider instance. With a MutableArrayDataProvider instance, you can
mutate an existing instance by setting a new array value into the MutableArrayDataProvider's
data field. The collection component is notified of the specific change (create, update, or
delete) that occurs, which allows it to make a fine-grained update and maintain scroll position.

In the following example, an app displays a list of tasks in a list view component and a Done
button that allows a user to remove a completed task. These components render in the
Content component of a virtual DOM app created with the basic template (appRootDir/src/
components/content/index. tsx).

DRACLE' ﬁ'xpp MName johnhancock@oracle.com ¥
Send latest files to Christine

Completed Done
Veniam ut esse ut non ex qui est officia anim dolore laboris

Ping Kevin

Mot Started Done

e & e ramreblean

m
)
3
1
!

il
]

[

3

o

3,

o
3

m

3

0
3

[s]

[l

ot

it
=

(=]

m

Send latest files to Adam
Work in Progress Done

Cfficia ipsum quis aute non. Ea eiusmod mollit ullamco sunt dolor

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE Chapter 5
Use Oracle JET Popup and Dialog Components

To implement fine-grained updates and maintain scroll position for the oj-list-view
component, we store the list view's MutableArrayDataProvider in local state using Preact’s
useState hook and never re-create it, and we also use Preact’s useEffect hook to update the
data field of the MutableArrayDataProvider when a change to the list of tasks is detected. The
user experience is that a click on Done for an item in the tasks list removes the item (with
removal animation). No refresh of the oj-list-view component or scroll position loss occurs.

import "ojs/ojlistview”;

import { ojListView } from "ojs/ojlistview";

import MutableArrayDataProvider = require("ojs/ojmutablearraydataprovider'™);
import { Task, renderTask } from "./data/task-data";

import { useState, useEffect } from "preact/hooks";

type Props = {
tasks: Array<Task>;
}

export function ListViewState({ tasks, onTaskCompleted }: Props) {
const [dataProvider] = useState(() => {
return new MutableArrayDataProvider(
tasks, {
keyAttributes: "taskld”
}
):
D;

useEffect(() => {
dataProvider.data = tasks;

}. [tasks 1);

return (
<oj-list-view data={dataProvider} class="demo-list-view">
<template slot="itemTemplate"
render={renderTaskWithCompletedCal lback} />
</oj-list-view>

Use Oracle JET Popup and Dialog Components

To use Oracle JET's popup or dialog components (popup content) in a VComponent or a virtual
DOM app, create a reference to the popup content. We recommend too that you place the
popup content in its own div element so that it works when used with Preact's reconciliation
logic.

Currently, to launch popup content from within JSX, you must create a reference to the custom
element and manually call open(), as in the following example for a VComponent class
component that uses Preact's createRef function:

import { customElement, ExtendGlobalProps } from "ojs/ojvcomponent™;
import { h, Component, ComponentChild, createRef } from "preact”;
import "ojs/ojdialog";

import "oj-c/button”;

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE Chapter 5
Use Oracle JET Popup and Dialog Components

@customElement(*'popup-launching-component')
export class PopuplLaunchingComponent extends
Component<ExtendGlobalProps<Props>> {

private dialogRef = createRef();

showDialog = () => {
this.dialogRef.current?.open();
console.log("open dialog™);

}

render(): ComponentChild {
return <div>
<0j-c-button onojAction={this.showDialog} label="Show Dialog"></0j-c-
button>
<div>
<oj-dialog ref={this.dialogRef} cancelBehavior="icon"
modality="modeless" dialogTitle="Dialog Title">
<div>Hello, World!</div>
</oj-dialog>
</div>
</div>
}
}

As a side effect of the open() call, Oracle JET relocates the popup content DOM to an Oracle
JET-managed popup container, outside of the popup-launching component. This works and the
user can see and interact with the popup.

If, while the popup is open, the popup-launching component is re-rendered by, for example, a
state change, Preact's reconciliation logic detects that the popup content element is no longer
in its original location and will reparent the still-open popup content back to its original parent.
This interferes with Oracle JET's popup service, and unfortunately leads to non-functional
popup content. To avoid this issue, we recommend that you ensure that the popup content is
the only child of its parent element. In the following functional component example, we
illustrate one way to accomplish this by placing the oj-dialog component within its own div
element.

@® Note

In the following example we use Preact's useRef hook to get the reference to the DOM
node inside the functional component. Use Preact's createRef function to get the
reference to the popup content DOM node in class-based components.

import { h } from "preact";

import { useRef } from "preact/hooks";

import "ojs/ojdialog";

import "oj-c/button”;

import { CButtonElement } from "oj-c/button”;
import { DialogElement } from "ojs/ojdialog";

export function Content() {

const dialogRef = useRef<DialogElement>(null);

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE’

Chapter 5
Use Oracle JET Popup and Dialog Components

const onSubmit = (event: CButtonElement.ojAction) => {
event.preventDefault();

dialogRef.current?.open();

console.log("open dialog™);

}:

const close = () => {
dialogRef.current?.close();
console._log(*'close dialog™);

}1
return <div class="0j-web-applayout-max-width oj-web-applayout-content'>

<0j-c-button onojAction={onSubmit} disabled={false} label="0pen dialog'>
</o0j-c-button>

<div>
<oj-dialog ref={dialogRef} dialogTitle="Dialog Title"
cancelBehavior="icon">
<div>Hello, World!</div>
<div slot="footer">
<oj-c-button id="okButton" onojAction={close} label="Close dialog'>
</0j-c-button>
</div>
</oj-dialog>
</div>
</div>;

}

One further recommendation is to also use a div element for any wrapper component that
conditionally renders popup content. Take, for example, the following statement:

shouldPopupContentDisplay ? <div>renderPopupContent(inputValue)</div> : null

Where renderPopupContent(inputValue) renders a wrapper component named
PopupContent if the condition is true:

renderPopupContent(inputvalue. . .)

return {
<PopupContent
. </PopupContent>

To avoid confusing Preact's reconciliation logic and to ensure that the wrapper component and
the Oracle JET popup or dialog component render inside its own div element, revise the
return method as follows:

renderPopupContent(inputvalue. . .)

return {

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 5
Use Oracle JET Popup and Dialog Components

<div><PopupContent
. . </PopupContent>
</div>

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 7

Add Third-Party Tools or Libraries to Your
Oracle JET App

You can add third-party tools or libraries to your Oracle JET app. The steps to do this vary
depending on the method you used to create your app.

If you used the Oracle JET command-line tooling to scaffold your app, you install the library
and make modifications to appRootDir/path_mapping. json. If you created your app using any
other method and are using RequireJS, you add the library to your app and update the
RequireJS bootstrap file, typically main. js.

@® Note

This process is provided as a convenience for Oracle JET developers. Oracle JET
does not support the additional tools or libraries and cannot guarantee that they will
work correctly with other Oracle JET components or toolkit features.

To add a third-party tool or library to your Oracle JET app, complete one of the following
procedures.

e If you created your app with command-line tooling, perform the following steps:
1. Inyour app's root directory, enter the following command in a terminal window to install
the library using NPM:

npm install |ibrary-name --save
2. Add the new library to the path mapping configuration file.
a. Open appRootDir/path_mapping.json for editing.

A portion of the file is shown below.

{
"use": "local",
"cdns: {
"jet": "https://static.oracle.com/cdn/jet/19.0.0/default/js",
"css™: "https://static.oracle.com/cdn/jet/19.0.0/default/css",
"config": "bundles-config.js"
s
"3rdparty”: "https://static.oracle.com/cdn/jet/19.0.0/3rdparty"
.
"libs": {
"knockout™: {

}

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE’

Chapter 6

Oracle JET's CLI helps manage third-party libraries for your app by adding entries
to its local path_mapping.json file.

For each library listed in the libs map in the path_mapping. json file, the following
two actions happen at build time. First, one or more files are copied from
somewhere (usually appRootDir/node_modules) into the appRootDir/web output
folder. Second, a requireJS path value is created for you to represent the path to
the library; it is injected into the built main. js file or optimized bundle. If you use
TypeScript, then this should be the same path name that you use at design time
for imports from the library.

The following example is an existing path mapping entry for the persist library,
which we analyze below to describe what each attribute does and how it relates to
the two build-time actions defined above.

1 | "persist’: {

2 | "cdn": "3rdparty”,

3 | “ewd": "node_modules/@oracle/oraclejet/dist/js/libs/persist”,
4 | “debug": {

5 1 "cwd": "debug”,

6 | "src': [

7 I R

8 | 1.

9 | "path": "libs/persist/debug"”,
10 | "cdnPath': "persist/debug"
1] 3},

12 1 “release": {

13 | "cwd": "min",

14 | "src': [

15 | ek

16 | ,

17 | "path": "libs/persist/min",
18 | "cdnPath™: "persist/min"

91 }

20 | },

— Line 1: This is the name of the libs map entry ("persist", in this case). This

name is used as the name of the requireJS path entry that is created;
therefore, it is also the import path. The same name is used for the folder that
gets created under the appRootDir/web/js/libs folder in the built application.

@® Note

If your app uses TypeScript, then you'll also need a tsconfig. json
file paths entry with the same name.

— Line 2 (Optional): The cdn attribute sets the name of the CDN root for the

location of this library. In this case, it is set to the value 3rdparty, which maps
to a particular location in the Oracle CDN. Any third-party libraries that you add
yourself (that is, those that are not present on the Oracle CDN) should not
have a cdn or cdnPath value at all, unless you maintain your own CDN
infrastructure where you can place the library.

— Line 3: The first role of each path mapping entry at build time is to copy files.

The cwd attribute on this line tells the tooling where to start copying from, and

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE’

Chapter 6

subsequent paths are relative to this root. This is generally some folder under
appRootDir/node_modules/<library>.

Lines 4 through 12: The debug and release sections here are the same, with
the exception that if you do a normal build, then the specifications in the debug
section are followed, and if you do a --release build, then the specifications in
the release section are followed. For example, the latter case can allow the
copying of only optimized assets for release.

Line 5 (Optional): In the context of the debug or release build, this second cwd
attribute further refines the copy root for everything that follows. For example,
when running a normal (debug) build for the persist library, the copy root is
appRootDir/node_modules/@oracle/oraclejet/dist/js/libs/persist/
debug, where the debug cwd value is appended to the top-level cwd value.
Additionally, this folder name is used in the output; the copied files end up in
the appRootDir/web/js/libs/persist/debug directory. This attribute is
optional; if omitted, then all copies are copied from paths relative to the root
cwd location and placed in the root of the destination folder.

Line 6: The src attribute holds an array of all the files that you want to copy
from your root location into the built app (that is, all the files that are actually
needed at runtime). The paths you add here can either be specific file names,
or you can use globs to match multiple files at once. In the example above, the
glob ** is used, which results in copying everything from the /debug folder,
including subfolders. Folder structure is preserved in the copied output under
the /web directory.

Line 9: The path attribute is used for the second role performed by each path
mapping entry; it defines the value of the requireJS path that gets injected
into the main. js file. For the above example, the requireJS path mapping is
"persist”:"libs/persist/min", which is relative to the requireJsS load root,
typically appRootDir/web/js.

Line 10 (Optional): The cdnPath attribute is optional and should only be used if
you have actually put a copy of the library onto a CDN. If that is the case, then
if the path_mapping. json file has the use attribute set to ""cdn" rather than
"local", then the generated requireJS path statement uses this cdnPath
value rather than the path value (line 9). The path here is relative to the CDN
root defined by the alias allocated to the CDN and used in the cdn attribute for
that library. If “use” is set to “cdn” but a library does not include CDN
information, then the build falls back to using the local copy of the library and
set up the requireJS path accordingly.

b. Copy one of the existing library entries in the "libs" map and modify as needed
for your library.

The code sample below shows modifications for my-library, a library that
contains both minified and debug versions.

.'.'iibs": {

"my-library”: {
"cwd": "node_modules/my-library/dist”,
"debug": {

"src": "my-library.debug.js",
"path": "libs/my-library/my-library.debug.js"
}1

"release": {

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE’

3.

Chapter 6

"src": "my-library_js",
"path": "libs/my-library/my-library_js"
}
}

In this example, the cwd attribute points to the location where NPM installed the
library, the src attribute points to a path or array of paths containing the files that
are copied during a build, and the path attribute points to the destination that
contains the built version.

When defining your own library entry in the path_mapping. json file, you should
test it out by running the ojet build command and then confirm that all the
expected files have been copied into the appRootDir/web/js/libs directory and
that the requireJS path mapping has been injected in the built
appRootDir/web/js/main_js file.

@ Note

If the existing library entry that you copy to modify includes “cdn™:
"3rdparty", remove that line from the newly-created entry for your library.
This line references the Oracle JET third-party area on the content
distribution network (CDN) managed by Oracle. Your library won't be
hosted there, and keeping this line causes a release build to fail at runtime
by mapping your library's path to a non-existent URL.

If you use a CDN, add the URL to the CDN in the entry for the cdnPath
attribute.

If your project uses TypeScript, then you also need to define a paths entry in your
tsconfig-json file that allows you to import the library using the same path name at
design time as you'll use at runtime. If the library in question also provides some types
for you to use, then the path should point to these to allow your editor to provide
TypeScript support for your usage of that library. Here is an example of an existing
paths entry in an Oracle JET app created with the command-line tooling.

"paths": {
"ojs/*": [
"./node_modules/@oracle/oraclejet/dist/types/*"
]1

e If you didn’t use command-line tooling to create your app, perform the following steps to
add the tool or library.

1.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

In the app’s /libs directory, create a new directory and add the new library and any
accompanying files to it.

For example, for a library named my-library, create the my-library directory and add
the my-library.js file and any needed files to it. Be sure to add the minified version if
available.

In your RequireJS bootstrap file, typically main. js, add a path for the library file in the
path mapping section of the requirejs.config() definition.

August 11, 2025
Page 4 of 5

ORACLE
Chapter 6

For example, add the highlighted code below to your bootstrap file to use a library
named my-library.

requirejs.config({
// Path mappings for the logical module names
paths:
{
"knockout®: "libs/knockout/knockout-3.x.x",
"jquery®: "libs/jquery/jquery-3.x.x.min",

"text": "libs/require/text",
"my-library®: "libs/my-library/my-library
}1
require(["knockout®, "my-library"],
// this callback gets executed when all
// required modules are loaded

function(ko)
{
// Add any start-up code that you want here
}
);

3. If your project uses TypeScript, then you also need to define a paths entry in your
tsconfig. json file that allows you to import the library using the same path name at
design time as you'll use at runtime. If the library in question also provides some types
for you to use, then the path should point to these to allow your editor to provide
TypeScript support for your usage of that library. Here is an example of an existing
paths entry in an Oracle JET app created with the command-line tooling.

"paths": {
"ojs/*": [
"./node_modules/@oracle/oraclejet/dist/types/*"
]1

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 5

Validate and Convert Input

Oracle JET includes validators and converters on a number of Oracle JET editable elements,
including oj-combobox, oj-input*, and oj-text-area. You can use them as is or customize
them for validating and converting input in your Oracle JET app.

Some editable elements such as oj-checkboxset, oj-radioset, and oj-select have a simple
attribute for required values that implicitly creates a built-in validator.

@® Note

The oj-input* mentioned above refers to the family of input components such as oj-
input-date-time, oj-input-text, and oj-input-password, among others.

About Oracle JET Validators and Converters

Oracle JET provides converter classes that convert user input strings into the data type
expected by the app and validator classes that enforce a validation rule on those input strings.

For example, you can use Oracle JET's IntlDateTimeConverter to convert a user-entered
date to a date-only ISO string and then use DateTimeRangeVal idator to validate that input
against a specified date range. If the converters or validators included in Oracle JET are not
sufficient for your app, you can create custom converters or validators.

About Validators

All Oracle JET editable elements support a value attribute and provide Ul elements that allow
the user to enter or choose a value. These elements also support other attributes that you can
set to instruct the element how to validate its value.

An editable element may implicitly create a built-in converter and/or built-in validators for its
normal functioning when certain attributes are set. For example, editable elements that support
a required property create the required validator implicitly when the property is set to true.
Other elements like oj-input-date, oj-input-date-time, and oj-input-time create a
datetime converter to implement its basic functionality.

About the Oracle JET Validators

The following table describes the Oracle JET validators and provides links to the API
documentation:

Validator Description Link to API Module
DateTimeRangeValida Validates that the input date is pateTimeRangeValidator ojvalidation-
tor between two dates, between datetimerange
two times, or within two date
and time ranges
DateRestrictionVali Validates that the input date is pateRestrictionValidator ojvalidation-
dator not a restricted date daterestriction

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 12

https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/oj.DateTimeRangeValidator.html
https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/oj.DateRestrictionValidator.html

ORACLE Chapter 7
About Oracle JET Validators and Converters
Validator Description Link to API Module
Lengthvalidator Validates that an input string is | engthvalidator ojvalidation-length

NumberRangeValidato
r

RegExpValidator

Requiredvalidator

within a specified length

Validates that an input number NymberRangeValidator ojvalidation-numberrange
is within a specified range

Validates that the regular RegExpValidator ojvalidation-regexp
expression matches a

specified pattern

Validates that a required entry - RequiredVvalidator ojvalidation-required
exists

About Oracle JET Component Validation Attributes

The attributes that a component supports are part of its API, and the following validation
specific attributes apply to most editable elements.

Element Attribute

Description

converter

countBy

max
min

required
validators

When specified, the converter instance is used over any internal converter the element might
create. On elements such as 0j-input-text, you may need to specify this attribute if the
value must be processed to and from a number or a date value.

When specified on LengthVal idator, countBy enables you to change the validator’s default
counting behavior. By default, this property is set to codeUnit, which uses JavaScript's String
length property to count a UTF-16 surrogate pair as length === 2. Set this to codePoint to
count surrogate pairs as length ===1.

When specified on an Oracle JET element like 0j-input-date or 0j-input-number, the
element creates an implicit range validator.

When specified on an Oracle JET element like 0j-input-date or 0j-input-number, the
component creates an implicit range validator.

When specified on an Oracle JET element, the element creates an implicit required validator.

When specified, the element uses these validators along with the implicit validators to validate
the Ul value. Can be implemented with Val idators or AsyncVal idators to validate the user
input on the server asynchronously.

Some editable elements do not support specific validation attributes as they might be irrelevant
to its intrinsic functioning. For example, oj-radioset and oj-checkboxset do not support a
converter attribute since there is nothing for the converter to convert. For an exact list of
attributes and how to use them, refer to the Attributes section in the element’s API
documentation. For Oracle JET API documentation, see AP| Reference for Oracle® JavaScript
Extension Toolkit (Oracle JET). Select the component you're interested in viewing from the API

list.

About Oracle JET Component Validation Methods

Oracle JET editable elements support the following methods for validation purposes. For
details on how to call this method, its parameters and return values, refer to the component’s
API documentation.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page 2 of 12

https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/oj.LengthValidator.html
https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/oj.NumberRangeValidator.html
https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/oj.RegExpValidator.html
https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/oj.RequiredValidator.html
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

ORACLE’

Chapter 7
About Oracle JET Converters

Element Method

Description

reset()

validate()

Use this method to reset the element by clearing all messages and messages attributes -
messagesCustom - and update the element’s display value using the attribute value. User entered
values will be erased when this method is called.

Use this method to validate the component using the current display value.

For details on calling an element's method, parameters, and return values, see the Methods
section of the element's API documentation in API Reference for Oracle® JavaScript Extension
Toolkit (Oracle JET). You can also find detail on how to register a callback for or bind to the
event and for information about what triggers the events. Select the component you're
interested in viewing from the API list.

About Oracle JET Converters

Oracle JET provides converters to convert date, date-time, number, color, and string.

These converters extend the Converter object which defines a basic contract for converter
implementations. The converter APl is based on the ECMAScript Internationalization API
specification (ECMA-402 Edition 1.0) and uses the Unicode Common Locale Data Repository
(CLDR) for its locale data. Both converters are initialized through their constructors, which
accept options defined by the API specification. For additional information about the
ECMA-402 API specification, see https://www.ecma-international.org/publications-and-
standards/standards/ecma-402/. For information about the Unicode CLDR, see http://

cldr.unicode.org.

The Oracle JET implementation extends the ECMA-402 specification by introducing additional
options. You can use the converters with an Oracle JET component or instantiate and use
them directly on the page. Each converter has a ConverterOptions type definition that
specifies the conversion options it supports. The following table describes the available
converters and provides a link to the APl documentation for each converter, including detailed
descriptions of the properties supported by each converter’s ConverterOptions type definition.

Converter Description Link to API
ColorConverter Converts Color object formats ColorConverter
IntlDateTimeConverter Parses a string into an ISO string format IntiDateTimeConverter
(yyyy-mm-dd) or converts an I1SO string
into a standard string format. For example:
- 10/12/2020 ---> 2020-10-12
- 2020-10-12 --->10/12/2020
NumberConverter Converts a string into a number and NumberConverter
formats a number into a locale-specific
string
BigDecimalStringConverter Converts a big-decimal string into a BigDecimalStringConverter

locale-specific string. Use for very large
numbers (greater than

Number .MAX_SAFE_INTEGER) and
numbers with large scale (more than 17
fractional digits). Can only be used with
components that expect a string value,
such as 0j-c-input-text.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 12

https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.ecma-international.org/publications-and-standards/standards/ecma-402/
https://www.ecma-international.org/publications-and-standards/standards/ecma-402/
http://cldr.unicode.org
http://cldr.unicode.org
https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/Color.html
https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/oj.ColorConverter.html
https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/oj.IntlDateTimeConverter.html
https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/NumberConverter.html
https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/BigDecimalStringConverter.html

ORACLE Chapter 7
About Oracle JET Converters
Converter Description Link to API
LocalDateConverter Converts a date-only ISO string to a LocalDateConverter

formatted string or a string to a date-only
ISO string

The Oracle JET converters support lenient number and date parsing when the user input does
not exactly match the expected pattern. The parser does the lenient parsing based on the
leniency rules for the specific converter. For example, both NumberConverter and
BigDecimalStringConverter remove unexpected characters. The ConverterOptions type
definition typically includes a lenientParse property that you can set to none so that user input
matches the expected input or an exception is thrown. For specific details, see the API
documentation for the converter that you are using.

The resource bundles that hold the locale symbols and data used by the Oracle JET
converters are downloaded automatically based on the locale set on the page when using
RequireJS and the ojs/ojvalidation-datetime or ojs/ojval idation-number module. If your
app does not use RequireJS, the locale data will not be downloaded automatically.

You can use the converters with an Oracle JET component or instantiate and use them directly
on the page.

Use Oracle JET Converters with Oracle JET Components

Oracle JET components that accept user input, such as oj-c-input-date-text, already
include an implicit converter that parses user input. However, you can also specify an explicit
converter on the component that will be used instead when converting data.

In the following example, the oj-c-input-date-text component displays an error message if
you enter "abc" while it renders input of "12/25/24" as "12/25/2024" using its implicit converter.

The error that the converter throws when there are errors during parsing or formatting
operations is represented by the ConverterError object, and the error message is represented
by an object of type Message. The messages that Oracle JET converters use are resources
that are defined in the translation bundle included with Oracle JET.

Enabled no value
abc

ﬂ Try again using a format like this: 11,/29/2024.

Enabled no value

12/25/2024

IS

You can also specify the converter directly on the component's converter attribute, if it exists.
For example, the oj-c-input-date-text component uses the converter attribute to change
the date style that the component renders to one of the converter options supported by
LocalDateConverter.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 12

https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/LocalDateConverter.html

ORACLE Chapter 7
About Oracle JET Converters

Current component value is: 2024-12-25

Date

December 25, 2024

Converter dateStyle options

dateStyle: 'long' M
Date

12/25/2024

Converter dateStyle options -

dateStEIe: 'short’

Understand Time Zone Support in Oracle JET

Oracle JET input components, such as oj-input-date-time, support local time zone input.
You can enable time zone support by using Oracle JET's IntlDateTimeConverter, which relies
on JavaScript's Intl.DateTimeFormat API.

In the following image, the Input Date Time component’s converter attribute references code
that renders the input time of 2013-12-02T04:00:00Z appropriately depending on whether the
time zone is America/Los_Angeles or Asia/Hong_Kong.

timeZone timeZone

® America/Los_Angeles O America/Los_Angeles

QO America/New_York O America/New_York
QO Europe/London O Europe/London
O Asia/Hong Kong @ Asia/Hong_Kong
o emner 113055 o 55500 PM ST | B 5553 50500 G
harsed valueis: Parsed- vaiue is:
2013-12-02T04:00:00Z 2013-12-02T04:00:00Z

For more information about Oracle JET's IntlDateTimeConverter, see IntiDateTimeConverter.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 12

https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/oj.IntlDateTimeConverter.html

ORACLE’

Chapter 7
About Oracle JET Validators

About Oracle JET Validators

Oracle JET validators provide properties that allow callers to customize the validator instance.
The properties are documented as part of the validators’ API. Unlike converters where only
one instance of a converter can be set on an element, you can associate one or more
validators with an element.

When a user interacts with the element to change its value, the validators associated with the
element run in order. When the value violates a validation rule, the value attribute is not
populated, and the validator highlights the element with an error.

You can use the validators with an Oracle JET element or instantiate and use them directly on
the page.

Use Oracle JET Validators with Oracle JET Components

Oracle JET editable elements, such as oj-input-text and oj-input-date, set up validators
both implicitly, based on certain attributes they support such as required, min, max, and so on,
and explicitly by providing a means to set up one or more validators using the component's
validators attribute.

For example, the following code shows an oj-input-date element that uses the default
validator supplied by the component implicitly. When the oj-input-date component reads the
min and max attributes, it creates the implicit DateTimeRangeValidator.

import { h } from "preact";

import * as ConverterUtilsl18n from "ojs/ojconverterutils-il8n";
import "ojs/ojformlayout™;

import "ojs/ojdatetimepicker™;

export function Content() {

let todaylsoDate: string =
ConverterUtilsl18n. IntlConverterUtils.dateToLocal Iso(
new Date()

);

let milleniumStartlsoDate: string =
ConverterUtilsl18n. IntlConverterUtils.dateToLocal Iso(
new Date(2000, 0, 1)

);

return (
<div class="o0j-web-applayout-max-width oj-web-applayout-content'>
<oj-form-layout id="formLayoutl"™ columns={1}>
<oj-input-date
id="dateTimeRangel"
min={milleniumStartlsoDate}
max={todaylsoDate}
labelHint=""min" attribute and "max" option"
></oj-input-date>
</oj-form-layout>
</div>

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 12

ORACLE"

Chapter 7

About Oracle JET Validators

When the user runs the page, the oj-input-date element displays an input field with a
calendar icon. If you input data that is not within the expected range, the built-in validator

displays an error message with the expected range.

‘min’ attribute and "‘max’ option

‘min’ attribute and ‘'max’ option

k2
Enter a date between 17172000 and 1/7/2023.
‘min’ attribute and 'max" option

< January 2025 >

‘min’ attribute and ‘'max’ option

1/8/2025

ﬁ Enter a date that's on or before 1/7/2025

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page 7 of 12

ORACLE Chapter 7
About Oracle JET Validators

The error thrown by the Oracle JET validator when validation fails is represented by the
ValidatorError object, and the error message is represented by an object of type Message.
The messages and hints that Oracle JET validators use when they throw an error are
resources that are defined in the translation bundle included with Oracle JET.

You can also specify the validator on the element's validators attribute, if it exists. The code
sample below shows another oj-input-date element that calls a function which specifies the
DateTimeRangeValidator validator (dateTimeRange) in the validators attribute.

import { h } from "preact";

import { useMemo } from “preact/hooks";

import * as ConverterUtilsl18n from "ojs/ojconverterutils-il8n";
import "ojs/ojformlayout™;

import "ojs/ojdatetimepicker";

import AsyncDateTimeRangeValidator = require('ojs/ojasyncvalidator-
datetimerange');

import * as DateTimeConverter from "ojs/ojconverter-datetime”;

export function Content() {

let todaylsoDate: string =
ConverterUtilsl18n.IntlConverterUtils.dateToLocallso(
new Date()

);

let milleniumStartlsoDate: string =
ConverterUtilsl18n.IntlConverterUtils.dateToLocallso(
new Date(2000, 0, 1)

);

const dateRange = useMemo(() => {
return [
new AsyncDateTimeRangeValidator({
max: todaylsoDate,
min: milleniumStartlsoDate,
hint: {
inRange:
"Enter a date that falls in the current millennium and "
+ "is not greater than today"s date.",
1.
converter: new DateTimeConverter. IntlDateTimeConverter({
day: "2-digit",
month: "2-digit",
year: "2-digit",
.
D,
I;
}. [todaylsoDate, milleniumStartlsoDate]);

return (
<div class="0j-web-applayout-max-width oj-web-applayout-content'>
<oj-form-layout id="formLayoutl"™ columns={1}>

<oj-input-date
id="dateTimeRange2"
labelHint=""dateTimeRange" type in "validators"™ option"
validators={dateRange}

></oj-input-date>

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 12

ORACLE’

Chapter 7
About Oracle JET Validators

</oj-form-layout>
</div>
);
}

When the user runs the page for the en-US locale, the oj-input-date element displays an
input field that expects the user's input date to be between 01/01/2000 and the current date.
When entering a date value into the field, the date converter accepts alternate input as long as
it can parse it unambiguously. This offers end users a great deal of leniency when entering
date values. For example, typing 1-2-3 converts to a Date that falls on the 2nd day of January,
2003. If the Date value also happens to fall in the expected Date range set in the validator, then
the value is accepted. If validation fails, the component displays an error.

Oracle JET elements can also use a regExp validator. If the regular expression pattern requires
a backslash, while specifying the expression within an Oracle JET element, you need to use
double backslashes. The options that each validator accepts are specified in API Reference for
Oracle® JavaScript Extension Toolkit (Oracle JET).

Use Custom Validators in Oracle JET

You can create custom validators in Oracle JET that you can reference like built-in validators
from the validators attribute.

The following image shows a custom validator that displays an error message if the user’s
password doesn’t match.

To create and use a custom validator:

1. Reference the custom validator from the validators attribute of your Oracle JET
component.

In the following example, the component that renders the Confirm Password input field
references a confirmPasswordVal idator variable from its val idators attribute.

<0j-c-input-password
id="cpassword"
value={passwordRepeat}
onvalueChanged={handlePasswordRepeat}
validators={confirmPasswordval idator}
label-hint="Confirm Password"

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 12

https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

ORACLE’

Chapter 7
About Oracle JET Validators

mask-icon="visible">
</oj-c-input-password>

2. Write your custom validator.

In the following example, the validateEqualToPassword function validates that the value
entered in the Confirm Password field matches the value previously entered in the
Password field. The confirmPasswordVal idator variable uses a useMemo hook to ensure
that confirmPasswordVal idator only recomputes when val idateEqual ToPassword
changes.

const validateEqualToPassword = useCal lback(
(value: string) => {
if (value && value == password) {
throw new Error(
"The passwords must match!™
):
}
setError(null);
return Promise.resolve();
1.
[password]

);

const confirmPasswordValidator = useMemo(
(O => [{ validate: validateEqualToPassword }],
[validateEqual ToPassword]

);

About Asynchronous Validators

Oracle JET input components support asynchronous server-side validation via the val idators
attribute. That means you can check input values against server data without the need to
submit a form or refresh a page.

Two example scenarios illustrate where you can use asynchronous server-side validation:

e In aform that collects new user data, you validate input in an email field to check if the
input value has been registered previously.

e Set number range validators that check against volatile data. For example, on an e-
commerce website, you can check the user’s cart against the available inventory and
inform the user if the goods are unavailable without them submitting the cart for checkout.

The following code shows an oj-c-input-text element with the val idators attribute set to an
array of functions (validators and asyncValidator). The synchronous validator, validators,
checks if the input value is 500. If it is, an error is thrown. The asynchronous validator,
asyncVal idator, returns a Promise. A Promise represents a value that may not be available
yet but will be resolved at some point in the future. The Promise evaluates to true if validation
passes and if validation fails, it returns an error. AsyncNumberRangeVal idator checks if the
input value falls within a specified range (100 to 1000). It simulates a server-side delay using

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 12

ORACLE Chapter 7
About Oracle JET Validators

setTimeout before performing the validation. The validators attribute must be of type
AsyncVal idator to fulfill the API contract required to create the asynchronous validator.

import { h } from "preact";

import "ojs/ojformlayout™;

import { useState } from "preact/hooks";

import AsyncNumberRangeValidator = require("ojs/ojasyncvalidator-
numberrange™);

import { ClnputTextElement } from "oj-c/input-text";

import "oj-c/input-text";

export function Content() {
const [quantityLimit, setQuantityLimit] = useState("");

const onValueChanged = (event: ClnputTextElement.valueChanged<string>) => {
setQuantityLimit(event.detail.value);

}’
const minQuantity = 100;
const maxQuantity = 1000;

// synchronous validator.
const validators = {
validate: (value: string | number) => {

if (value === 500 || value === "500") {
throw new Error(*'500 is invalid™);

} else {
return;

}

s
getHint: () => {
return "To see an immediate error from the synchronous validator
(validators), enter 500.";
}s
};

// asynchronous validator.
const asyncValidator = {
validate: (value: string | number) => {
const numberRangeValidator = new AsyncNumberRangeValidator({
min: minQuantity,
max: maxQuantity,

1K

return new Promise<void>((resolve, reject) => {
// Simulate server-side delay
setTimeout(() => {
numberRangeVal idator.validate(value).then(
0 =>A
resolve();
s
(e) =>{
// Handle validation error
reject(
new Error(
“${value} is not in the accepted range of ${minQuantity} - $

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 12

ORACLE Chapter 7
About Oracle JET Validators

{maxQuantity}"

)
);
}
);

}, 1000);
D:

s

hint: new Promise<string>((resolve) => {
// Simulate server-side delay
setTimeout(() => {
resolve(
“To see an error from the asynchronous validator (asyncValidator)
that appears after 1 second,
enter a number outside the range of ${minQuantity} - ${maxQuantity}"
);
}, 100);
¥
}:

return (
<div class="o0j-web-applayout-max-width oj-web-applayout-content'>
<oj-form-layout columns={1} class="0j-md-margin-4x-horizontal>
<oj-c-input-text
id="input-text"
labelHint="Quantity Limit"
onvalueChanged={onValueChanged}
validators={[validators, asyncValidator]}
value={quantityLimit}
></0j-c-input-text>
</oj-form-layout>
</div>
):
}

For more information, see the validators attribute section of Input Text or see Promise

(MDN)

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 12 of 12

https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/oj-c.InputText.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Internationalize and Localize Oracle JET Apps

Oracle JET includes support for internationalization (I18N), localization (L10N), and use of
Oracle National Language Support (NLS) translation bundles in Oracle JET apps. Configure
your Oracle JET app so that the app can be used in a variety of locales and international user
environments.

About Internationalizing and Localizing Oracle JET Apps

Internationalization (I18N) is the process of designing software so that it can be adapted to
various languages and regions easily, cost effectively, and, in particular, without engineering
changes to the software. Localization (L10N) is the use of locale-specific language and
constructs at runtime.

Oracle has adopted the industry standards for 118N and L10N, such as World Wide Web
Consortium (W3C) recommendations, Unicode technologies, and Internet Engineering Task
Force (IETF) specifications to enable support for the various languages, writing systems, and
regional conventions of the world. Languages and locales are identified with a standard
language tag and processed as defined in BCP 47. Oracle JET includes Oracle National
Language Support (NLS) translation support for the languages listed in the following table.

Language Language Tag
Arabic ar

Brazilian Portuguese pt

Bulgarian bg-BG
Canadian French fr-CA
Chinese (Simplified) zh-Hans (or zh-CN)
Chinese (Traditional) zh-Hant (or zh-TW)
Croatian hr

Czech cs

Danish da

Dutch nl

Estonian et

Finnish fi

French fr

German de

Greek el

Hebrew he

Hungarian hu

Icelandic is

Italian it

Japanese ja

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 26

https://tools.ietf.org/html/bcp47

ORACLE’

Chapter 8
About Internationalizing and Localizing Oracle JET Apps

Language Language Tag
Korean ko
Latin_Serbian sr-Latn
Latvian v
Lithuanian It
Malay ms-MY
Norwegian no

Polish pl
Portuguese pt-PT
Romania ro
Russian ru
Serbian sr
Slovak sk
Slovenian sl
Spanish es
Swedish SV

Thai th
Turkish tr
Ukrainian uk-UA
Vietnamese Vi

Oracle JET translations are stored in a resource bundle. You can add your own translations to
the bundles. For additional information, see Add RequireJS Translation Bundles to an Oracle

JET App.

Oracle JET also includes formatting support for over 196 locales. Oracle JET locale elements
are based upon the Unicode Common Locale Data Repository (CLDR) and are stored in locale
bundles. For additional information about Unicode CLDR, see http://cldr.unicode.org. You can
find the supported locale bundles in the Oracle JET distribution:

Js/1ibs/0j/19.0.0/resources/nls

It is the app's responsibility to determine the locale used on the page. Typically, the app
determines the locale by calculating it on the server side from the browser locale setting or by
using the user locale preference stored in an identity store and the supported translation
languages of the app.

Once the locale is determined, your app must communicate this locale to Oracle JET for its
locale-sensitive operations, such as loading resource bundles and formatting date-time data.
Oracle JET determines the locale for locale-sensitive operations in the following order:

1. Locale specification in the ojL10n plugin of the RequireJS configuration.
2. lang attribute of the html tag.
3. navigator.language browser property.

If your app will not provide an option for users to change the locale dynamically, then setting
the lang attribute on the html tag is the recommended practice because, in addition to setting
the locale for Oracle JET, it sets the locale for all HTML elements as well. Oracle JET
automatically loads the translations bundle for the current language and the locale bundle for

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 26

http://cldr.unicode.org

ORACLE’

Chapter 8
Internationalize and Localize Oracle JET Apps

the locale that was set. If you don't set a locale, Oracle JET will default to the browser property.
If, however, your app provides an option to change the locale dynamically, we recommend that
you set the locale specification in the ojL10n plugin if your app uses RequireJS. Oracle JET
loads the locale and resource bundles automatically when your app initializes.

If you use Webpack rather than RequireJS as the module bundler for your Oracle JET app, we
recommend that you generate one code bundle for each locale that you want to support and
deploy each bundle to a different URL for the locale that you want to support. If, for example,
your app URL is https://www.oracle.com/index.html and you want to support the French and
Spanish locales, deploy the bundles for these locales to https://www.oracle.com/fr/index.html
and https://www.oracle.com/es/index.html respectively.

Finally, Oracle JET includes validators and converters that use the locale bundles. When you
change the locale on the page, an Oracle JET component has built-in support for displaying
content in the new locale. For additional information about Oracle JET's validators and
converters, see Validate and Convert Input.

Internationalize and Localize Oracle JET Apps

Configure your app to use Oracle JET's built-in support for internationalization and localization.

Use Oracle JET's Internationalization and Localization Support

To use Oracle JET's built-in internationalization and localization support, you can specify one of
the supported languages or locales on the lang attribute of the html element on your page. For
example, the following setting will set the language to the French (France) locale.

<html lang="fr-FR">

If you want to specify the French (Canada) locale, you would specify the following instead:

<html lang="fr-CA">

@ Tip

The locale specification isn’t case sensitive. Oracle JET will accept FR-FR, fr-fr, and
so on, and map it to the correct resource bundle directory.

When you specify the locale in this manner, any Oracle JET component on your page will
display in the specified language and use locale constructs appropriate for the locale.

If the locale doesn’t have an associated resource bundle, Oracle JET will load the lesser
significant language bundle. If Oracle JET doesn’t have a bundle for the lesser significant
language, it will use the default root bundle. For example, if Oracle JET doesn’t have a
translation bundle for fr-CA, it will look for the fr resource bundle. If the fr bundle doesn’t
exist, Oracle JET will use the default root bundle and display the strings in English.

In the image below, the page is configured with the oj-input-date-time component. The
image shows the effect of changing the lang attribute to fr-FR.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 26

https://www.oracle.com/index.html
https://www.oracle.com/fr/index.html
https://www.oracle.com/es/index.html

ORACLE"

Chapter 8

Internationalize and Localize Oracle JET Apps

03/059/2022, 10:00 AM

< March 2022 >
5 M T W T F 5
1 2 3 4 5
& @ a ﬂ 10 1 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 a0 31
@ 10:00 AM Done Cancel
09/03/2022, 10:00 E'ﬂ
< mars 2022 >
L M M J v 5 D
1 2 3 4 5 [
@ 8 ﬂ 10 11 12 13
14 15 16 17 12 19 20
21 22 23 24 25 26 27
28 29 a0 31
Terming Annuler

(O 10:00

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02
Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page 4 of 26

ORACLE’

Chapter 8
Internationalize and Localize Oracle JET Apps

If you type an incorrect value in the oj-input-date-time field, the error text displays in the
specified language. In this example, the error displays in French.

49

o Entrez une valeur au

L8]

=)
in

I
LN

format suivant : '29/11,/1998

Enable Bidirectional (BiDi) Support in Oracle JET

If the language you specify uses a right-to-left (RTL) direction instead of the default left-to-right
(LTR) direction, such as Arabic and Hebrew, you must specify the dir attribute on the html tag.

<html dir="rtl">

The image below shows the oj-input-date-time field that displays if you specify the Arabic
(Egypt) language code and change the dir attribute to rtl.

il sl
Lo 12:00,2022/04/12

"

—
(93]

22

29

L]

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

m

=]

14

21

28

2022, pi >

m
!

24 23

[y]

27 26 2

30

uo 1200 (©

August 11, 2025
Page 5 of 26

ORACLE Chapter 8
Internationalize and Localize Oracle JET Apps

Once you have enabled BiDi support in your Oracle JET app, you must still ensure that your
app displays properly in the desired layout and renders strings as expected.

® Note

Oracle JET does not support the setting of the dir attribute on individual HTML
elements which would cause a page to show mixed directions. Also, if you
programmatically change the dir attribute after the page has been initialized, you
must reload the page or refresh each JET component.

Set the Locale and Direction Dynamically

You can configure your app to change its locale and direction dynamically by setting a key-
value pair in the app’s local storage that your app’s RequireJS ojL10n plugin reads when you
reload the app URL.

The image below shows an Oracle JET app configured to display a menu that displays a
department list when clicked and a date picker. By default, the app is set to the en-US locale.
Both the menu and date picker display in English.

Select a flag to see the language and locale changes below

ZE english | | B Francais [Cestina — E

Select a department ™~

Select a date %‘
5

£ April 2022 »
M

1 2
3 4 5 B 7 8 y
10 11 2 13 4 5 B
1 18 ° 20 1 22 23
24 25 26 27 28 29 30

@ 12:00 AM Done Cancel

The app also includes a button set that shows the United States of America, France, Czech
Republic, and Egypt flags. When the user clicks one of the flags, the app locale is set to the
locale represented by the flag: en-US, fr-FR, cs-CZ, or ar-EG.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 26

ORACLE’

Chapter 8

Internationalize and Localize Oracle JET Apps

@® Note

The flags used in this example are for illustrative use only. Using national flags to
select a Ul language is strongly discouraged because multiple languages are spoken
in one country, and a language may be spoken in multiple countries as well. In a real
app, you can use clickable text instead that indicates the preferred language to

replace the flag icons.

The image below shows the updated page after the user clicks the Egyptian flag.

Select a flag to see the language and locale changes below

Wi | Ceitina D

29

28

Frangais l I

g

W

2022 Jy

English E=

24 23

20

ua 1200 (V)

Implementing this behavior requires you to make changes in the JSX of your app's component
and the appRootDir/src/main. js file of your app. In the JSX, the onvalueChanged property
change listener attribute specifies a setLang function that is called when a user changes the

selected button.

<oj-buttonset-one . . . onvalueChanged={setLang}>

In the JSX code of the app, this setlLang function determines what locale the user selected and
sets entries in window.localStorage so that a user’s selection persists across browser

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02
Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page 7 of 26

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

ORACLE Chapter 8
Internationalize and Localize Oracle JET Apps

sessions. The final step in the function is to reload the current URL using the location.reload()
method.

setlang = (evt) => {
let newLocale = "";
let lang = evt.detail.value;
switch (lang) {
case "Cestina":
newLocale = "cs-CZ";
break;
case "Francais":
newLocale = "fr-FR";
break;
case ""':
newLocale = "ar-gG";
break;
default:
newLocale = "en-US";
}

window. localStorage.setltem("mylocale” ,newLocale);
window. localStorage.setltem("mylang®,lang);
location.reload();

}

To set the newly-selected locale in the ojL10n plugin of our app’s appRootDir/src/main.js file,
we write the following entries that read the updated locale value from local storage, and set it
on the locale specification in the 0jL10n plugin. We also include a check that sets the direction
to rtl if the specified locale is Egyptian Arabic (ar-EG).

(function O {

const localeOverride = window. localStorage.getltem("mylocale™);
if (localeOverride) {
// Set dir attribute on <html> element.
// Note that other Arabic locales and Hebrew also use the rtl direction.
// Include a check here for other locales that your app must support.

if(localeOverride === "ar-EG™){
document.getElementsByTagName("html*)[0].setAttribute("dir","rtl");
} else {
document.getElementsByTagName("html*)[0].setAttribute("dir","1tr");
}
requirejs.config({
config: {
ojL10On: {
locale: localeOverride,
}
}s
;s
}

PO;

For information about defining your own translation strings and adding them to the Oracle JET
translation bundle, see Add RequireJS Translation Bundles to an Oracle JET App or Add ICU

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 26

https://developer.mozilla.org/en-US/docs/Web/API/Location/reload

ORACLE’

Chapter 8
Work with Oracle JET RequireJS Translation Bundles

Translation Bundles to an Oracle JET Virtual DOM App, depending on the type of translation
bundle that you use.

When you use this approach to internationalize and localize your app, you must consider every
component and element on your page and provide translation strings where needed. If your
page includes a large number of translation strings, the page can take a performance hit.

Also, if SEO (Search Engine Optimization) is important for your app, be aware that search
engines normally do not run JavaScript and access static text only.

@ Tip

To work around issues with performance or SEO, you can add pages to your app that
are already translated in the desired language. When you use pages that are already
translated, the Knockout bindings are executed only for truly dynamic pieces.

Work with Currency, Dates, Time, and Numbers

When you use the converters included with Oracle JET, dates, times, numbers, and currency
are automatically converted based on the locale settings. You can also provide custom
converters if the Oracle JET converters are not sufficient for your app. For additional
information about Oracle JET converters, see About Oracle JET Converters.

Work with Oracle JET RequireJS Translation Bundles

Oracle JET includes a RequireJS translation bundle that translates strings generated by Oracle
JET components into all supported languages. Add your own RequireJS translation bundle by
merging it with the Oracle JET RequireJS translation bundle.

@ Note

If you are creating a translation bundle for the first time in your Oracle JET app, we
recommend that you use the other type of translation bundle (ICU translation bundle)
that Oracle JET supports. For more information, see Work with ICU Translation
Bundles in an Oracle JET Virtual DOM App.

About Oracle JET Translation Bundles

Oracle JET includes a translation bundle that translates strings generated by Oracle JET
components into all supported languages. You can add your own translation bundle following
the same format used in Oracle JET.

The Oracle JET translation bundle follows a specified format for the content and directory
layout but also allows some leniency regarding case and certain characters.

Translation Bundle Location

The location of the Oracle JET translation bundle, which is named ojtranslations.js, is in
the following directory:

libs/0j/v19.0.0/resources/nls/ojtranslations

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 26

ORACLE’

Chapter 8
Work with Oracle JET RequireJS Translation Bundles

Each supported language is contained in a directory under the nls directory. The directory
names use the following convention:

* lowercase for the language sub-tag (zh, sr, and so on.)
« title case for the script sub-tag (Hant, Latn, and so on.)
e uppercase for the region sub-tag (HK, BA, and so on.)

The language, script, and region sub-tags are separated by hyphens (-). The following image
shows a portion of the directory structure.

£143 resources
[:I internal-deps
E}a nls
[:I ar
B-C] ar-AE
[:I ar-BH
&7 arDZ
[:I ar-EG

. CONbents omithed

=

-] zh
-3 zh-Hans
>|§] localeElements.js
@ ojtranslations.js
-1 zh-Hans-CN
B[] zh-Hans-56
B3 zh-Hant
@ localeElements.js
@] ojtranslations.js
B[] zh-HantHK
f-C] zh-Hant-MO
M- zh-HantTwW
----- @ localeElements. js
----- @ ojtranslations. js
----- @ timezoneData. js

i

Top-Level Module

The ojtranslations. js file contains the strings that Oracle JET translates and lists the
languages that have translations. This is the top-level module or root bundle. In the root
bundle, the strings are in English and are the runtime default values when a translation isn’t
available for the user’s preferred language.

Translation Bundle Format

Oracle JET expects the top-level root bundle and translations to follow a specified format. The
root bundle contains the Oracle JET strings with default translations and the list of locales that
have translations.

define({
// root bundle
root: {
"oj-message':{
fatal:"Fatal”,
error:"Error",
warning:“Warning”,
info:"Info",
confirmation:"Confirmation”,
"compact-type-summary’:"{0}: {1}"
s

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page 10 of 26

ORACLE’

Chapter 8
Work with Oracle JET RequireJS Translation Bundles

// ... contents omitted

}s

// supported locales.
"fr-CA":1,
ar:1,
ro:1l,
"'zh-Hant":1,
nl:1,
it:1,
fr:1,
// ... contents onmtted
tr:1,fi:1
D;

The strings are defined in nested JSON objects so that each string is referenced by a name
with a prefix: oj-message.fatal, oj-message.error, and so on.

The language translation resource bundles contain the Oracle JET string definitions with the
translated strings. For example, the following code sample shows a portion of the French
(Canada) translation resource bundle, contained in nls/fr-CA/ojtranslations.js.

define({
"oj-message":{

fatal:"Fatale",
error:"Erreur",
warning:"Avertissement",
info:"Infos",
confirmation:"Confirmation",
"compact-type-summary':"{0}: {1}"
s

// ... contents omtted

D:

When there is no translation available for the user's dialect, the strings in the base language
bundle will be displayed. If there are no translations for the user's preferred language, the root
language bundle, English, will be displayed.

Named Message Tokens

Some messages may contain values that aren't known until runtime. For example, in the
message "User foo was not found in group bar", the foo user and bar group is
determined at runtime. In this case, you can define {username} and {groupname} as named
message tokens as shown in the following code.

"MyUserKey":"User {username} was not found in group {groupname}."

At runtime, the actual values are replaced into the message at the position of the tokens by
calling the Translations.applyParameters() method with the key of the message as the first
argument and the parameters to be inserted into the translated pattern as the second
argument.

const parMyUserKey = { username: "Foo", groupname: "Test" };
const tmpString = Translations.applyParameters(MenuBundle.MyUserKey,

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 26

ORACLE’

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

Chapter 8
Work with Oracle JET RequireJS Translation Bundles

parMyUserKey);
const transNamedMessageToken = Translations.getTranslatedString(tmpString);

Numeric Message Tokens

Alternatively, you can define numeric tokens instead of named tokens. For example, in the
message "This item will be available in 5 days", the number 5 is determined at
runtime. In this case, you can define the message with a message token of {0} as shown in
the following code.

"MyKey": "This item will be available in {0} days."

A message can have up to 10 numeric tokens. For example, the message "Sales order {0}
has {1} items" contains two numeric tokens. When translated, the tokens can be reordered
so that message token {1} appears before message token {0} in the translated string, if
required by the target language grammar. The code that calls the applyParameters() and
getTranslatedString() methods remains the same no matter how the tokens are reordered

in the translated string.

@ Tip
Use named tokens instead of numeric tokens to improve readability and reuse.

Escape Characters in Resource Bundle Strings

The dollar sign, curly braces and square brackets require escaping if you want them to show
up in the output. Add a dollar sign ($) before the characters as shown in the following table.

Escaped Form Output

$$ $
H {
}
[
]

$}
&l
3]

For example, if you want your output to display [Date: {01/02/2020}, Time: {01:02 PM},
Cost: $38.99, Book Name: JET developer®s guide], enter the following in your resource
bundle string:

"productDetail™: "$[Date: ${01/02/2020%$}, Time: ${01:02 PM$}, Cost: $$38.99,
Book Name: {bookName}$]"

You then use the Translations.applyParameters() method to return the string with the
escaped characters and substituted tokens, if any, to display in the Ul, as shown in the
following example:

let parEscapeCharToken = { bookName: "Oracle JET Developer®s Guide" };

let EscapeCharToken =
Translations.applyParameters(MenuBundle.EscapeCharToken, parEscapeCharToken)

August 11, 2025
Page 12 of 26

ORACLE’

Chapter 8
Work with Oracle JET RequireJS Translation Bundles

Format Translated Strings

In some situations, you may want to apply formatting to strings in the resource bundle to
appear in the Ul. Take, for example, a book title to which we may want to apply the <i> tag so
that the book title renders using italics in the HTML output. In this scenario, you might define
the following entry in the resource bundle(s):

// root bundle
"FormatTranslatedString": "The <i>{booktitle}</i> describes how to develop
Oracle JET apps"

One approach to render this Ul string with italics in your app is to make use of the
dangerouslySetInnerHTML prop, as in the following example:

// Format translated strings. Resource bundle entry for a book title includes
italics
const FormatTranslatedStringComponent = () => {

let parBookTitle = { "booktitle": "Oracle JET Developer Guide® };

const formattedString = Translations.applyParameters

(MenuBundle.FormatTranslatedString,
parBookTitle);
return (

);
};

const formattedString = FormatTranslatedStringComponent();

/\ Caution

The dangerouslySetinnerHTML prop does not validate HTML input provided by an app for
integrity or security violations. It is the app's responsibility to sanitize the input to
prevent unsafe content from being added to the page.

Add RequireJS Translation Bundles to an Oracle JET App

You can add a translation bundle to your Oracle JET app with the custom strings that your app
Ul needs and the translations that you want your app to support.

To add translation bundles to Oracle JET:

1. Define the translations.

For example, the following code defines a translation set for a menu containing a button
label and three menu items. The default language is set to English, and the default label
and menu items will be displayed in English. The root object in the file is the default
resource bundle. The other properties list the supported locales, fr, cs, and ar.

define({
"root": {
"label": "Select a department”,
"menul™: "Sales",
"menu2": "Human Resources",
"menu3": "Transportation”

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 13 of 26

https://react.dev/reference/react-dom/components/common#dangerously-setting-the-inner-html

ORACLE’

Chapter 8
Work with Oracle JET RequireJS Translation Bundles

}1
"fr'': true,
"cs": true,
"ar': true

B

To add a prefix to the resource names (for example, department. label,
department.menul, and so on), add it to your bundles as shown below.

define({
"root": {
"department': {
"label™: "Select a department”,
"menul": "Sales",
"menu2": "Human Resources",
"menu3": "Transportation”

}
}
}s
"fr': true,
"'cs": true,
"ar': true
D;

When the locale is set to a French locale, the French translation bundle is loaded. The
code below shows the definition for the label and menu items in French.

define({
"label": "Sélectionnez un département”,
"menul": "Ventes",
"menu2': "Ressources humaines",
"menu3": "Transports"

D

You can also provide regional dialects for your base language bundle by just defining what
you need for that dialect.

define({
"label': "Canadi an French message here"

B

When there is no translation available for the user's dialect, the strings in the base
language bundle will be displayed. In this example, the menu items will be displayed using
the French translations. If there are no translations for the user's preferred language, the
root language bundle, whatever language it is, will be displayed.

Include each definition in a file located in a directory named nls.

For example, the default translation in the previous step is placed in a file named menu. js
in the appRootDir/src/resources/nls directory. The supported translations are located in
a file named menu.js in child sub-directories that use the name of the locale:

appRootDir/src/resources/nls
| menu._js

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page 14 of 26

ORACLE

Chapter 8
Work with Oracle JET RequireJS Translation Bundles

+---ar

| menu.js

|

+---CS

| menu.js

|

+-——fr
menu.js

You first import the translation bundles where you defined the default and translated
strings:

import * as MenuBundle from "ojL10n!./resources/nls/menu";

You need to configure changes in your app code to make sure that it retrieves the
appropriate translation.

If, for example, you want to implement the following Ul where the menu labels change to
English or French depending on the locale, you need to reference btnLocalelLabel and
menuNames variables, as follows:

<oj-menu-button id="menuButtonl">{btnLocaleLabel}
<oj-menu id="myMenul"™ slot="menu" onojMenuAction={changelLabel}>
{menuNames.map((menu) => (
<oj-option value={menu.itemName}>
{menu. itemName}
</oj-option>
)}
</oj-menu>
</o0j-menu-button>

‘ % English ‘ ‘ ll Francais

‘ Select a department ¥ ‘ ‘ Sélectionnez un département ¥ ‘
Sales @ E&:') ‘ Ventes @ E&:') ‘
Human Resources Ressources humaines
Transportation Transports

You then declare the variables that reference the imported translation bundle (MenuBundle)
for the appropriate value to use, as demonstrated in the following code:

<oj-menu-button id="menuButtonl">{btnLocalelLabel}
<oj-menu id="myMenul™ slot="menu"
onojMenuAction={changelLabel}>
{menuNames.map((menu) => (
<oj-option value={menu.itemName}>
{menu. itemName}
</oj-option>

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 15 of 26

ORACLE’

Chapter 8
Work with Oracle JET RequireJS Translation Bundles

)}
</oj-menu>
</0j-menu-button>

// Select a department: Menu button (Sales, Human Resources, and
Transportation)
const menuNames = [
{ itemName: MenuBundle.menul, id: “"menul® },
{ itemName: MenuBundle.menu2, id: “"menu2® },
{ itemName: MenuBundle.menu3, id: “"menu3® },

1;

If the strings from your resource bundle include message tokens or reserved characters ($,
{, }. []) that need to be escaped, you must use Oracle JET's
Translation.applyParameters API.

The following code demonstrates how to render characters that must be escaped and a
string that requires a parameter value (also referred to as a token value).

/ // App Ul is going to render the following strings:

${}IL1
[The Oracle JET Developer®s Guide costs $38.99]

// To accomplish this, we enter the following entries in the app"s
resource bundle(s):
(appRootDir/src/resources/nls/menu. js)

“EscapeChar™: "$$ ${ $} $[$1",
"EscapeCharToken": "$[The {bookName} costs $$38.99%]"
s

// appRootDir/src/components/content/index.tsx
// lImport the Translations module that includes the applyParameters() API
import * as Translations from "ojs/ojtranslation;

// Escape characters in resource bundle strings

let parEscapeChar = {};

let EscapeChar = Translations.applyParameters(MenuBundle.EscapeChar,
parEscapeChar)

// Substitute a token and escape a character

let parEscapeCharToken = { bookName: "Oracle JET Developer®s Guide" };
let EscapeCharToken =
Translations.applyParameters(MenuBundle.EscapeCharToken,
parEscapeCharToken)

return (
<div class="0j-web-applayout-max-width oj-web-applayout-content'>

<p>Escape characters in resource bundle strings</p>
<p>

{EscapeChar}

</p>

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 16 of 26

ORACLE Chapter 8
Work with ICU Translation Bundles in an Oracle JET Virtual DOM App

<p>Substitute a token and escape a character</p>
<p>

{EscapeCharToken}

</p>

</div>

);

Work with ICU Translation Bundles in an Oracle JET Virtual DOM
App

Oracle JET supports ICU message format translation bundles that enable Oracle JET apps to
provide localized Ul strings and support runtime substitution using placeholders.

International Components for Unicode (ICU) is a set of libraries that provides support for the
internationalization of text, numbers, dates, times, currencies, and other locale-sensitive data
in formatting user-visible strings (messages). To read more about how ICU formats messages,
see its documentation.

To use Oracle JET’s support for ICU message format translation bundles, run the Oracle JET

CLI's add translation command in the root directory of your Oracle JET project. This installs
the NPM package (@oracle/oraclejet-icu-110n) that you need to generate the runtime ICU
translation bundles. It also creates a resources directory with ICU translation bundles in your

project’s src directory with the following files to help you get started:

appRootDir\src\resources
\---nls
| translationBundle.json
I
\---de
translationBundle.json

Finally, it updates your project’s oraclejetconfig. json file with the following properties to
facilitate generation of the runtime ICU translation bundles when you run the Oracle JET CLI’s
build or serve commands:

"translationlculLibraries”: "@oracle/oraclejet-icu-110n",

"puildICUTranslationsBundle": true,
"translation": {
"type": "icu",
"options: {
"rootDir": "./src/resources/nls",

"supportedLocales™: "de"

}
}

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 17 of 26

https://unicode-org.github.io/icu/userguide/format_parse/messages/

ORACLE’

Chapter 8
Work with ICU Translation Bundles in an Oracle JET Virtual DOM App

When you build your Oracle JET project, @oracle/oraclejet-icu-110n parses the ICU
translation bundles (for example, translationBundle. json) and converts them to
TypeScript modules (translationBundle. ts using our example). These TypeScript
modules are the runtime ICU translation bundles. They return an object with functions to get
the localized string for a message key. The function takes parameters to format the message.
For plurals, the parameter is always a number. Note that the same message can have multiple
parameters (for example, a number for the plural rule and a string for a text placeholder). The
parameter types will be described by TypeScript.

As you'll notice from the example ICU translation bundle that the add translation command
creates, translation bundle files must have a .JSON file extension and follow the JSON format.
Keys for translation bundle resources should always appear at the top level. Creating sub-
objects for translated resources is not supported. Component authors may use some
convention-based character like ' "' in the key name (for example, "input_messages_error")
to indicate the intended usage of the resource.

"input_message error': "Error",
"input_message_warning": "Warning"

The value is a string that may contain placeholders.

@® Note

The examples that follow are formatted as multi-line strings for readability. Actual
values in an ICU translation bundle must be single-line strings, as required by the
JSON specification. Enable word wrapping in your editor to view them conveniently.

Keys starting with the @ character specify metadata. If a metadata key starts with @@, the
metadata is considered global. Otherwise, the metadata is associated with the key whose
name follows the @ character:

"input_message _error': "Error: {MESSAGE}",
"@input_message_error':
"placeholders™: {
"MESSAGE™:
"type': "text",
"description”: "translated error message"
}
s
"description”: "Error with an embedded message"

}

Metadata is optional. Supply it in the following cases:

1. The usage of the text placeholder is going to be unclear to the translator, and supplying an
extra description in the metadata is going to help with translating the rest of the message.

2. A particular placeholder is not being used in the message included in the root/development
bundle, but the corresponding parameter should be settable for some other locales.

ICU translation bundle's build process derives parameter type information from the
message in the root/development bundle. Type information for any parameters used only
in other locales will have to come from metadata.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 18 of 26

ORACLE’

Chapter 8
Work with ICU Translation Bundles in an Oracle JET Virtual DOM App

The reserved special characters within the translated resource are pound # and curly braces
({, }). Use the ASCII apostrophe (", U+0027) around these characters so that they appear in
the message. Use double ASCII apostrophe if a single ASCII apostrophe should appear in the
message, but only when it is immediately followed by a pound character or a curly brace. We
recommend that you use the real apostrophe (single quote) character > (U+2019) for human-
readable text, and use the ASCII apostrophe * (U+0027) only as an escape character. This
avoids having to use the double ASCII apostrophe.

If a particular part of a message should not be translated, provide it as a parameter for a text
placeholder.

Format Placeholders Tokens

Placeholder tokens enable dynamic content generation by substituting values into translated
messages.

Text

Use text placeholders to perform simple token substitution. Avoid the use of numeric
placeholder names (0, 1, and so on).

"input_message _error: "Error: {MESSAGE}"

In the previous example, MESSAGE identifies a named parameter to insert into the translated
string.

Plural

Plural placeholders define translated messages intended for either certain groups of numbers
or for exact numbers. You can think of them as switch statements.

"shopping_card_items™: "You have {item count, plural, offset:0
=0 {no items}
one {# item}
other {# items}

} in your cart”

To understand the previous example, consider the following:

e item_count is the name of the parameter whose numeric value is used to for matching the
message.

e plural is the type of the placeholder.
e =0 will match exactly O.

* one is one of the language-specific categories that are matched against the category of the
parameter's value. For example, 1, 21 and 31 will all be in the category one for Ukrainian.
Other categories are zero, two, few, many. Note that the match for an exact number (=1)
has a higher precedence than a category-based match.

« offset is the number that will be subtracted from the parameter's value before a category-
based rule is applied. The default is 0. Note that offset is not used in exact matches (=1,
and so on).

e other is just like a default label in a switch statement. That is, it is a catch all category.
Note that other is required in every plural placeholder.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 19 of 26

https://cldr.unicode.org/index/cldr-spec/plural-rules

ORACLE’

Chapter 8
Work with ICU Translation Bundles in an Oracle JET Virtual DOM App

« # will be substituted with the actual numeric value after the offset is subtracted.

Select

Select placeholders specify translated messages that will be chosen based on the value of a
string parameter. Just like with the plural selector, you can think of them as a switch statement.

"response_message': "{gender, select,
male {He}
female {She}
other {They}
} will respond shortly."”

In the example above, gender is the name of the parameter whose string value is used to
match the translated message. Possible parameter values are male and female. Similar to the
plural placeholder, other is a special category acting like a default label in a switch
statement. Note that other is required in every select placeholder.

Nesting Select and Plural Placeholders

"invite _message': "{gender_of host, select,
female {
{num_guests, plural, offset:1
=0 {{host} does not give a party.}
=1 {{host} invites {guest} to her party.}
=2 {{host} invites {guest} and one other person to her party.}
other {{host} invites {guest} and # other people to her party.}}}
male {
{num_guests, plural, offset:1
=0 {{host} does not give a party.}
=1 {{host} invites {guest} to his party.}
=2 {{host} invites {guest} and one other person to his party.}
other {{host} invites {guest} and # other people to his party.}}}
other {
{num_guests, plural, offset:1
=0 {{host} does not give a party.}
=1 {{host} invites {guest} to their party.}
=2 {{host} invites {guest} and one other person to their party.}
other {{host} invites {guest} and # other people to their party.}}}}"

In the example above, plural placeholders are nested in a select placeholder. The result is that
plural rules are applied for each gender-specific group of messages. Note that the value of the
offset in plural rules is used only for printing the number of guests, not counting the main guest
identified by the guest parameter (substituting #).

Set Up an Oracle JET Virtual DOM App to Create ICU Translation Bundles

To set up an Oracle JET virtual DOM app to create and use ICU translation bundles, you run
the add translation command and edit the properties that this command inserts in your app's
oraclejetconfig.json file.

To set up your Oracle JET app to support ICU translation bundles:

1. Change to your app's top-level directory, open a terminal window, and enter the following
command:

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 20 of 26

ORACLE Chapter 8
Work with ICU Translation Bundles in an Oracle JET Virtual DOM App

npx ojet add translation

2. In an editor, open the oraclejetconfig.json file to review and edit the properties that the
add translation command inserted.

Leave the value of the type property in the translation section unchanged at icu. This is
the only supported value at present. Similarly, leave the buildICUTranslationsBundle
property unchanged at true, unless you do not want to generate runtime ICU translation
bundles. In that case, set it to false.

The following table describes the child properties of options:

Property Description

rootDir The root directory for ICU translation bundles. The value that the add
translation command inserts is "' ./src/resources/nls".

bundleName The bundle name from which to generate runtime ICU translation bundles when

you run the ojet build or serve commands. The value that the add
translation command inserts is ""translationBundle. json".

locale The locale of the ICU translation bundle in the root directory. The value that the
add translation command inserts is "en-US".

outDir The output directory for runtime ICU translation bundles. The value that the add
translation command inserts is './src/resources/nls™. Change this to
a value of your choice. For example, "'./src/resources-dist".

supportedLocal A comma-separated list of additional locales to build. If you specify a locale that

es does not have a corresponding entry in the nls directory under the rootDir
directory, then the runtime ICU translation bundle is built from the ICU
translation bundle in the rootDir directory. The value that the add
translation command inserts is "'de"".

componentBundl Specifies the naming pattern for the ICU translation bundle associated with a
eName component.
The add translation command inserts the value ""${componentName}-
strings. json" where {componentName} references the name of the
component.

If you create a component named my-component, then the file name for the
ICU translation bundle must be my-component-strings.json.

Add ICU Translation Bundles to an Oracle JET Virtual DOM App

Add ICU translation bundles to your Oracle JET virtual DOM app with the custom strings that
your app Ul needs and the translations that you want your app to support.

To add ICU translation bundles to your Oracle JET app:
1. Define the Ul strings and translations in .JSON files with a flat key-value structure.

Each key must be at the top level. Do not nest objects for grouping.

For example, the following entry, generated by default when you run the add translation
command, defines a greeting message.

{
}

"greeting"”: "Hello! How are you doing?"

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 21 of 26

ORACLE’

Chapter 8
Work with ICU Translation Bundles in an Oracle JET Virtual DOM App

Keys prefixed with @ provide optional metadata, such as descriptions and parameter types.
This metadata helps when placeholders are not self-explanatory or when required only for
certain locales.

2. Include each definition in a .JSON file located in a directory named nls.

For example, the translation in the previous step is placed in a file named
translationBundle. json in the appRootDir/src/resources/nls directory. The supported
translations are in files named translationBundle.json in child sub-directories that use
the name of the locale:

appRootDir/src/resources/nls

| translationBundle.json

|

/---de
translationBundle.json

Generate Runtime ICU Translation Bundles

Once you have created the .JSON files with the Ul strings for the locales that your Oracle JET
virtual DOM app supports, you need to build the runtime ICU translation bundles to a location
from where your app retrieves the Ul strings at runtime.

Change to your app's top-level directory, open a terminal window, and enter the following
command:

npx ojet build

This creates the runtime ICU translation bundles (- TS files) and the supportedLocales.ts
file in the directory specified by the outDir property in the oraclejetconfig. json file. By
default, itis ./src/resources/nls.

appRootDir/src/resources
\---nls
| supportedLocales.ts
| translationBundle.json
| translationBundle.ts
I
+---de
| translationBundle.json
| translationBundle.ts

Now that you have generated the runtime ICU translation bundles, you can use the Ul strings
that they contain in your Oracle JET virtual DOM app and in your VComponents.

Use an ICU Translation Bundle in an Oracle JET Virtual DOM App

Component

Once you generate the runtime ICU translation bundles, you use the Ul strings from the
generated bundles.

A runtime ICU translation bundle defines an object with function(s) to get the Ul string value for
the specified message key. The function can take parameters to format the message. For
plurals, the parameter is always a number.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 22 of 26

ORACLE’

Chapter 8
Work with ICU Translation Bundles in an Oracle JET Virtual DOM App

@® Note

The same message can have multiple parameters. For example, a number for the
plural rule and a string for a text placeholder. TypeScript describes the parameter
types.

Your app dynamically loads the translation bundles like any other Typescript module. You first
determine what locale your app uses. Once you know the desired locale, you find the best
match out of the supported locales that the ./appRootDir/src/resources-dist/
supportedLocales.ts file lists. For example, the add translation command adds support for
de by default:

export default ["de"];

The following code sample demonstrates how to load the Ul string for the label-hint attribute
value of the oj-input-text element in the appRootDir/src/components/content/index.tsx
file of a virtual DOM app. It first imports the runtime ICU translation bundle and the supported
locales. A Preact useEffect hook loads the imported ICU translation bundles and if one is
found to match the preferred locale, it is used. If not, the ICU translation bundle for the German
locale is used (de).

import { h } from "preact";

import { BundleType as ICUBundleType } from "../../resources/nls/
translationBundle™;

import supportedLocales from *"../../resources/nls/supportedLocales™;
import { useState, usekEffect } from "preact/hooks";

import "ojs/ojlabel™;

import "ojs/ojinputtext”;

import "ojs/ojformlayout™;

export function Content() {
const [ICUBundle, setlCUBundle] = useState<ICUBundleType>();
// Load runtime ICU translation bundle in Preact"s useEffect hook.
useEffect(() => {
_loadTranslationBundle().then((bundle) => setlCUBundle(bundle));
3 ID;

return (
<div class="0j-web-applayout-max-width oj-web-applayout-content'>
<div id="icu-app">
<p>
Render Ul string from the <code>./src/resources/nls/de</code> runtime
ICU translation bundle.{" "}
</p>
{I1CUBundle && (
<oj-form-layout id="ofl1" max-columns="1" direction="column'>
<0j-input-text
id="input”
value=" "
labelHint={ICUBundle.greeting()}
labelEdge="inside"
></oj-input-text>
</oj-form-layout>

)}

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 23 of 26

ORACLE Chapter 8
Work with ICU Translation Bundles in an Oracle JET Virtual DOM App

</div>
</div>
);
}

async function _loadTranslationBundle(): Promise<ICUBundleType> {
const preferredLocale = navigator.languages[0];
const localeToLoad = _matchTranslationBundle(

preferredLocale,

supportedLocales

);

// The ICU translation bundle name (translationBundle in this example)
derives
// its name from the value that you specify for the bundleName property
// in the oraclejetconfig.json file.

const module = await import(

~../../resources/nls/${localeToLoad}/translationBundle”
):
return module.default;

}

function _matchTranslationBundle(
preferredLocale: string,
supportedLocales: string[]
) {
let match = null;
const supportedLocaleSet = new Set(supportedLocales);

if (supportedLocaleSet.has(preferredLocale)) {

match = preferredLocale;
} else {

match = _findPartialMatch(preferredLocale, supportedLocaleSet);
}

// Normally, the fallback locale would be “en-US®, but for
// this example, we"re using "de”.
return match || "de";

}

function _findPartialMatch(locale: string, supportedLocales: Set<string>) {
let match = null;
const sep = "-";
const parts = locale.split(sep);

while (match === null && parts.length > 1) {
parts.pop();
const partial = parts._join(sep);
if (supportedLocales._has(partial)) {
match = partial;
}
}

return match;

}

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 24 of 26

ORACLE Chapter 8
Work with ICU Translation Bundles in an Oracle JET Virtual DOM App

Use an ICU Translation Bundle in an Oracle JET VComponent

The steps to create and use ICU translation bundles in a VComponent are the same as those
for a virtual DOM app. That is, you create ICU translation bundle source files (.JSON) in a
directory location that matches the pattern specified by the rootDir property in the
oraclejetconfig. json file. By default, this is " ./src/resources/nls". When you build the
Oracle JET project that contains the VComponent, the runtime ICU translation bundles are
generated to the location specified by the outDir property. Again, the default is "'./src/
resources/nls". One additional property in the oraclejetconfig.json file to be aware of is
componentBundleName. This specifies the naming pattern for the VComponent's ICU translation
bundle so that Oracle JET can generate the runtime ICU translation bundle. Its default value is
"${componentName}-strings.json".

So, assume for example, that you create a VComponent named translation-icu in your
Oracle JET virtual DOM app:

npx ojet create component translation-icu --vcomponent

This leads to the creation of a translation-icu directory within your virtual DOM app’s project
file and this directory includes resources and nls sub-directories as follows:

appRootDir/src/components/translation-icu/resources/nls

Within the nl's sub-directory, you create the ICU translation bundles as needed for the locales
that you are going to support:

appRootDir/src/components/translation-icu/resources/nls
| translation-icu-strings.json

+---de

| translation-icu-strings.json

Once you have generated the runtime ICU translation bundles by building the Oracle JET
virtual DOM app that contains the VComponent, you can use Ul strings from the runtime ICU
translation bundle in your VComponent. The following code snippets demonstrate how you
import and reference a Ul string from the ICU translation bundle. For brevity, the full
VComponent code and helper functions that are unchanged from the code sample in the
previous section for the virtual DOM app have been omitted.

import "css!./translation-icu-styles.css";

import { useState, usetEffect } from "preact/hooks";
import "ojs/ojinputtext";

import "ojs/ojformlayout™;

import { BundleType as ICUBundleType } from
strings";

import supportedLocales from

./resources/nls/translation-icu-

./resources/nls/supportedLocales";

function Translationlculmpl() {

const [ICUBundle, setlCUBundle] = useState<ICUBundleType>();

// Load ICU translation bundle in Preact®s useEffect hook.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 25 of 26

ORACLE Chapter 8
Work with ICU Translation Bundles in an Oracle JET Virtual DOM App

useEffect(() => {
_loadTranslationBundle() .then((bundle) => setlCUBundle(bundle));

} [D:

return (
<div>
<p>Render the string from the ICU translation bundle</p>
{I1CUBundle ? (
<oj-form-layout id="ofl1" max-columns="1" direction="column'>
<oj-input-text
id="input"
value=" "
labelHint={I1CUBundle.greeting()}
labelEdge="inside"
></oj-input-text>
</oj-form-layout>
) = (
<p>ICU translation bundle did not load</p>
)}

</div>
);
}

// Helper functions for ICU translation bundle

async function _loadTranslationBundle(): Promise<ICUBundleType> {
const preferredLocale = navigator.languages[0];
const localeToLoad = _matchTranslationBundle(

preferredLocale,

supportedLocales

);

// The component ICU translation bundle name

// (translation-icu-strings in this example) derives

// its name from the VComponent name and other values

// that you specify for the componentBundleName property

// in the oraclejetconfig.json file.
const module = await import(

~./resources/nls/${localeToLoad}/translation-icu-strings”

);
return module.default;

}

function _matchTranslationBundle(

// Omitted for brevity. See previous section that includes full code
// for this function

function _findPartialMatch(locale: string, supportedLocales: Set<string>) {

// Omitted for brevity. See previous section that includes full code
// for this function

export const Translationlcu: ComponentType<ExtendGlobalProps<
ComponentProps<typeof Translationlculmpl>
>> = registerCustomElement("translation-icu”, Translationlculmpl);

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 26 of 26

Test and Debug Oracle JET Apps

Testing Types

Test and debug Oracle JET web apps using a recommended set of testing and debugging
tools for client-side apps.

Test Oracle JET Apps

Tests help you build complex Oracle JET apps quickly and reliably by preventing regressions
and encouraging you to create apps that are composed of testable functions, modules,
classes, and components.

We recommend that you write tests as early as possible in your app’s development cycle. The
longer that you delay testing, the more dependencies the app is likely to have, and the more
difficult it will be to begin testing.

There are three main testing types that you should consider when testing Oracle JET apps.

1.

Unit Testing

Unit testing checks that all inputs to a given function or class produce the expected
output or response.

These tests typically apply to self-contained business logic, classes, modules, or
functions that do not involve Ul rendering, network requests, or other environmental
concerns.

Note that REST service APIs should be tested independently.

Unit tests are aware of the implementation details and dependencies of a given
function or class and focus on isolating the tested function or class.

Component Testing

Component testing checks that individual components can be interacted with and
behave as expected. These tests import more code than unit tests, are more complex,
and require more time to execute.

Component tests should catch issues related to your component's properties, events,
the slots that it provides, styles, classes, lifecycle hooks, and more.

These tests are unaware of the implementation details of a component; they mock up
as little as possible in order to test the integration of your component and the entire
system.

You should not mock up child components in component tests but instead check the
interactions between your component and its children with a test that interacts with the
components as a user would (for example, by clicking on an element).

End-to-End Testing

End-to-end testing, which often involves setting up a database or other backend
service, checks features that span multiple pages and make real network requests
against a production-built JET app.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 11

ORACLE’

Chapter 9
Test Oracle JET Apps

End-to-end testing is meant to test the functionality of an entire app, not just its individual
components. Therefore, use component tests when testing specific components of your Oracle
JET apps.

Unit Testing
Unit testing should be the first and most comprehensive form of testing that you perform.

The purpose of unit testing is to ensure that each unit of software code is coded correctly,
works as expected, and returns the expected outputs for all relevant inputs. A unit can be a
function, method, module, object, or other entity in an app’s source code.

Unit tests are small, efficient tests created to execute and verify the lowest-level of code and to
test those individual entities in isolation. By isolating functionality, we remove external
dependencies that aren't relevant to the unit being tested and increase the visibility into the
source of failures.

Unit tests that you create should adhere to the following principles:

- Easy to write: Unit testing should be your main testing focus; therefore, tests should
typically be easy to write because many will be written. The standard testing technology
stack combined with recommended development environments ensures that the tests are
easily and quickly written.

- Readable: The intent of each test should be clearly documented, not just in comments, but
the code should also allow for easy interpretation of what its purpose is. Keeping tests
readable is important should someone need to debug when a failure occurs.

« Reliable: Tests should consistently pass when no bugs are introduced into the component
code and only fail when there are true bugs or new, unimplemented behaviors. The tests
should also execute reliably regardless of the order in which they’re run.

e Fast: Tests should be able to execute quickly and report issues immediately to the
developer. If a test runs slowly, it could be a sign that it is dependent upon an external
system or interacting with an external system.

- Discrete: Tests should exercise the smallest unit of work possible, not only to ensure that
all units are properly verified but also to aid in the detection of bugs when failures occur. In
each unit test, individual test cases should independently target a single attribute of the
code to be verified.

« Independent: Above all else, unit tests should be independent of one another, free of
external dependencies, and be able to run consistently irrespective of the environment in
which they’re executed.

To shield unit tests from external changes that may affect their outcomes, unit tests focus
solely on verifying code that is wholly owned by the component and avoid verifying the
behaviors of anything external to that component. When external dependencies are needed,
consider using mocks to stand in their place.

Component Testing

The purpose of component testing is to establish that an individual component behaves and
can be interacted with according to its specifications. In addition to verifying that your
component accepts the correct inputs and produces the right outputs, component tests also
include checking for issues related to your component's properties, events, slots, styles,
classes, lifecycle hooks, and so on.

A component is made up of many units of code, therefore component testing is more complex
and takes longer to conduct than unit testing. However, it is still very necessary; the individual

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 11

ORACLE’

Chapter 9
Test Oracle JET Apps

units within your component may work on their own, but issues can occur when you use them
together.

Component testing is a form of closed-box testing, meaning that the test evaluates the
behavior of the program without considering the details of the underlying code. You should
begin testing a component in its entirety immediately after development, though the tested
component may in part depend on other components that have not yet been developed.
Depending on the development lifecycle model, component testing can be done in isolation
from other components in the system, in order to prevent external influences.

If the components that your component depends on have not yet been developed, then use
dummy objects instead of the real components. These dummy objects are the stub (called
function) and the controller (called function).

Depending on the depth of the test level, there are two types of component tests: small
component tests and large component tests.

When component testing is done in isolation from other components, it is called "small
component testing." Small component tests do not consider the component's integration with
other components.

When component testing is performed without isolating the component from other components,
it is called "large component testing”, or "component testing" in general. These tests are done
when there is a dependency on the flow of functionality of the components, and therefore we
cannot isolate them.

End-to-End Testing

End-to-end testing is a method of evaluating a software product by examining its behavior from
start to finish. This approach verifies that the app operates as intended and confirms that all
integrated components function correctly in relation to one another. Additionally, end-to-end
testing defines the system dependencies of the product to ensure optimal performance.

The primary goal of end-to-end testing is to replicate the end-user experience by simulating
real-world scenarios and evaluating the system and its components for proper integration and
data consistency. This approach allows for the validation of the system's performance from the
perspective of the user.

End-to-end testing is a widely adopted and reliable technique that provides the following
advantages.

e Comprehensive test coverage
e Assurance of app's accuracy
e Faster time to market

* Reduced costs

e ldentification of bugs

Modern software systems are increasingly interconnected, with various subsystems that can
cause adverse effects throughout the entire system if they fail. End-to-end testing can help
prevent these risks by:

e Verifying the system's flow
e Increasing the coverage of testing areas

e ldentifying issues related to subsystems

End-to-end testing is beneficial for a variety of stakeholders:

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 11

ORACLE’

Chapter 9
Test Oracle JET Apps

» Developers appreciate end-to-end testing as it allows them to offload testing
responsibilities.

o Testers find it useful as it enables them to write tests that simulate real-world scenarios and
avoid potential problems.

* Managers benefit from end-to-end testing as it allows them to understand the impact of a
failing test on the end-user.

The end-to-end testing process comprises four stages:
1. Test Planning: Outlining key tasks, schedules, and resources required

2. Test Design: Creating test specifications, identifying test cases, assessing risks, analyzing
usage, and scheduling tests

3. Test Execution: Carrying out the test cases and documenting the results

4. Results Analysis: Reviewing the test results, evaluating the testing process, and
conducting further testing as required

There are two approaches to end-to-end testing:

* Horizontal Testing: This method involves testing across multiple apps and is often used in
a single ERP (Enterprise Resource Planning) system.

* Vertical Testing: This approach involves testing in layers, where tests are conducted in a
sequential, hierarchical order. This method is used to test critical components of a complex
computing system and does not typically involve users or interfaces.

End-to-end testing is typically performed on finished products and systems, with each review
serving as a test of the completed system. If the system does not produce the expected output
or if a problem is detected, a second test will be conducted. In this case, the team will need to
record and analyze the data to determine the source of the issue, fix it, and retest.

While testing your app end-to-end, consider the following metrics:

e Test Case Preparation Status: This metric is used to track the progress of test cases that
are currently being prepared in comparison to the planned test cases.

* Test Progress Tracking: Regular monitoring of test progress on a weekly basis to provide
updates on test completion percentage and the status of passed/failed, executed/
unexecuted, and valid/invalid test cases.

- Defects Status and Details: Provides a weekly percentage of open and closed defects
and a breakdown of defects by severity and priority.

* Environment Availability: Information on the number of operational hours and hours
scheduled for testing each day.

About the Oracle JET Testing Technology Stack

The recommended stack for testing Oracle JET apps includes Jest and the Preact Testing
Library.

Jest is a popular testing framework for JavaScript/Typescript that comes with its own test
runner and assertion functions. It supports code coverage and snapshot testing, is simple to
create mocks with, and runs tests in parallel, which ensures that they remain isolated.

Jest runs in NodeJS using jsdom as a simulated browser environment. These tests run very
quickly because the environment doesn't need to render anything; it is a lightweight, in-memory
implementation of the DOM that runs headless. Jest tests are suitable for verifying almost
every aspect of your component class, except for things that require CSS for styling. jsdom
does not process CSS, so avoid using these tests to validate any CSS. It is also not suitable

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 11

https://jestjs.io/
https://www.npmjs.com/package/@testing-library/preact
https://www.npmjs.com/package/@testing-library/preact

ORACLE’

Chapter 9
Test Oracle JET Apps

for testing the custom element rendering of a component in your app, as the browser
environment from jsdom is a simulation rather than a real browser.

The Preact Testing Library provides a set of utility functions that make it easy to write tests that
assert the behavior of Preact component classes without relying on their implementation
details. It promotes a Ul-centric approach to testing: component classes are allowed to go
through their full rendering lifecycles, and the library provides query functions to locate
elements within the DOM and a user-event simulation library to interact with them.

The functions in the Preact Testing Library work with the actual DOM elements that are
rendered by Preact, rather than with the virtual DOM, so tests will resemble how a user
interacts with the app and finds elements on the page.

For Ul automation testing, we recommend using Selenium WebDriver in conjunction with the
Oracle® JavaScript Extension Toolkit (Oracle JET) WebDriver.

Configure Oracle JET Apps for Testing

Use the Oracle JET CLI's add testing command to add and configure the dependencies and
libraries, including Jest and the Preact Testing Library, to test Oracle JET virtual DOM apps
and VComponent components.

After you run this command in your app, you can create and run tests for your app using Jest
and the Preact Testing Library. The add testing command adds the test-config directory to
your app's root directory. This directory contains two files that are required to set up testing:
jest.config.js and testSetup.ts. The testSetup.ts file imports runtime support for
compiled and transpiled async functions, while jest.config.js is Jest's configuration file.

The extension for files containing tests, known as "spec files," should be .spec.tsx so that
Oracle JET tooling and your Jest testing configuration recognize them. If spec files are missing
from a component, the add testing command creates them. Spec files are located within a
__tests__ directory inside the components directory, such as ./src/components/<component-
name>/__tests . This directory holds the test files you write for your component and, by
default, the add testing command creates a spec file with the following file name pattern:
<component-name>.spec. tsx.

@® Note

If you create a new component or JET pack from the command line after running the
add testing command on your project, then the _ tests directory and are spec file
are created default when you create the component.

In the following steps, we demonstrate how to set up an Oracle JET app for testing, and how to
run a unit test and a component test.

1. Open a terminal window in a directory of your choice to create a new Oracle JET app using
the basic template:

npx @oracle/ojet-cli create vdomTestApp --template=basic --vdom

2. Navigate to the newly created app's root directory and create a new VComponent
component:

cd vdomTestApp
npx ojet create component hello-world

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 11

https://www.npmjs.com/package/selenium-webdriver
https://www.oracle.com/webfolder/technetwork/jet/wdtsdoc/index.html

ORACLE Chapter 9
Test Oracle JET Apps

3. Open the ./vdomTestApp/src/components/content/index.tsx file to import and display
the newly-created Hel loWorld component:

import { HelloWorld } from "hello-world/loader"”

export function Content() {
return (
<div class="o0j-web-applayout-max-width oj-web-applayout-content'>
<HelloWorld />
</div>
);
};

@® Note

We render the HelloWorld component using the Preact component class syntax
(import {HelloWorld} . . . and <HelloWorld />) because Jest cannot test the
custom element alternative (import "hello-world/loader” . . . and <hello-
world></hello-world>).

4. To run the app in your browser and confirm that the app renders the newly-created
HelloWorld component, enter the following command in the terminal window for the app’s
root directory:

npx ojet serve

This is also a required step for testing. Before you can test components, you must build the
component using the Oracle JET CLI.

ORACLE) App Name john.hancock@oracle.com

Hello from hello-world

About Oracle ContactUs Legal Notices Terms Of Use Your Privacy Rights

Copyright ©@ 2014, 2023 Oracle and/or its affiliates All rights reserved.

@® Note

The HelloWorld component passes "Hello from hello world" to the app through its
message property. This confirms that the app and component function as expected.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 11

ORACLE

5.

Chapter 9
Test Oracle JET Apps

In the terminal window of your app's root directory, add the testing libraries:

npx ojet add testing

This adds the test-config directory to the root directory of your app and the __ tests
directory to the component directory (./src/components/hello-world). The _ tests
directory contains a spec file (hello-world.spec.tsx) with a component test for your
HelloWor Id component that verifies that it renders. Jest provides the test case and
assertions (describe(), test(), and expect(true) .not.toBeUndefined;), whereas the
render () function from the Preact Testing Library tests that the component renders in the

app.

./vdomTest/test-config
jest.config.js
testSetup.ts

The add testing command also updates the package. json file with the testing
dependencies, such as the Jest preset that allows Oracle JET Web Elements to be used in
Jest tests, and two convenience scripts, test and test:debug.

To provide a function for a unit test to test, open the ./VDOMTestApp/src/components/
hello-world/hello-world.tsx file for the Hel loWorld component that we created
previously and add the sum function at the end of the file:

>> = registerCustomElement('hello-world", HelloWorldimpl);

// function for doc example
export const sum = (a: number, b: number) => {
return a + b;

1

To write a unit test for this function, open the ./src/components/hello-world/__tests /
hello-world.spec.tsx file and add the following entries:

import { render } from "@testing-library/preact";
import { HelloWorld } from "hello-world/hello-world";
import { sum } from "hello-world/hello-world";

describe("Test description”, () => {
test("Your test title”, async () => {
const content = render(
<div data-oj-binding-provider="preact'>
<HelloWorld />
</div>
):
expect(true).not.toBeUndefined;
D:

it("The sum is 10", () => {
expect(sum(6, 4)).toBe(10);
D:
D:

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 11

ORACLE Chapter 9
Test Oracle JET Apps

8. In the terminal window of your app’s root directory, enter the following commands to build
the Oracle JET app and execute the tests:

npx ojet build
npm run test

The terminal window displays the test results:

vdomTest
$ npm run test

> vdomTestJET15@1.0.0 test

> jest -c test-config/jest.config.js
vdomTest

$ npm run test

> vdomTestJET15@1.0.0 test
> jest -c test-config/jest.config.js

PASS src/components/hello-world/__tests_/hello-world.spec.tsx
Test description
¥ Your test title (5
ms)

¥ The sum is 10 (1
ms)

Test Suites: 1 passed, 1
total

Tests: 2 passed, 2
total

Shapshots: 0 total
Time: 1.966 s, estimated 3 s
Ran all test suites.

PASS src/components/hello-world/__tests_/hello-world.spec.tsx
Test description
¥ Your test title (5
ms)

¥ The sum is 10 (1
ms)

Test Suites: 1 passed, 1
total

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 11

ORACLE’

Chapter 9
Debug Oracle JET Apps

Tests: 2 passed, 2
total

Shapshots: 0 total
Time: 1.966 s, estimated 3 s
Ran all test suites.

Debug Oracle JET Apps

Since Oracle JET web apps are client-side HTML5 apps written in JavaScript or Typescript,
you can use your favorite browser's debugging facilities.

Debug Web Apps

Use your source code editor and browser's developer tools to debug your Oracle JET app.

Developer tools for widely used browsers like Chrome, Edge, and Firefox provide a range of
features that assist you in inspecting and debugging your Oracle JET app as it runs in the
browser. Read more about the usage of these developer tools in the documentation for your
browser.

By default, the ojet build and ojet serve commands use debug versions of the Oracle JET
libraries. If you build or serve your Oracle JET app in release mode (by appending the --
release parameter to the ojet build or ojet serve command), your app uses minified
versions of the Oracle JET libraries. If you choose to debug an Oracle JET app that you built in
release mode, you can use the --optimize=none parameter to make the minified output more
readable by preserving line breaks and white space:

ojet build --release --optimize=none
ojet serve --release --optimize=none

Note that browser developer tools offer the option to "pretty print" minified source files to make
them more readable, if you choose not to use the --optimize=none parameter.

One other way to improve the debugging experience is to set the generateSourceMaps in the
oraclejetconfig.json file to true from its default value of false. When true, the Oracle JET
CLI configures Terser and RequireJS packages to generate source map files when you build
your Oracle JET app.

You may also be able to install browser extensions that further assist you in debugging your
app.

Finally, if you use a source code editor, such as Visual Studio Code, familiarize yourself with
the debugging tools that it provides to assist you as develop and debug your Oracle JET app.

Use Preact Developer Tools

You can install a Preact browser extension to provide additional debugging tools in your
browser’s developer tools when you debug your virtual DOM app.

Preact provides download links for the various browser extensions at https://preactjs.github.io/
preact-devtools/.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 11

https://preactjs.github.io/preact-devtools/
https://preactjs.github.io/preact-devtools/

ORACLE’

Chapter 9
Debug Oracle JET Apps

Once you have installed the extension for your browser, you need to include an import
statement for preact/debug as the first line in your app's appRootDir/src/index. ts file:

import "preact/debug”;
import *./components/app”;

Oracle JET takes care of including this import when your virtual DOM app is built or served in
debug mode (the default option for ojet build and ojet serve) by including the following
injector token when you create the virtual DOM app:

// injector:preactDebuglmport
// endinjector
import "./components/app”;

As a result, you do not need to include the import "preact/debug” statement when you build
or serve your app in debug mode or remove it when you build or serve for release, as Oracle
JET’s injector token ensures that the import statement is only included in debug mode.

When you serve your virtual DOM app in debug mode (the default option for ojet serve),
you'll see an extra tab, Preact, in your browser’s developer tools. In the following image, you
see the Preact tab in the Chrome browser’s DevTools.

You can view the hierarchy of the components, select and inspect components, and perform
other actions that assist you in debugging issues with your virtual DOM app.

B a * 0
. Y Element: Consol Recorder & Sources Preact » a1 E - BT
&° Bindings 82 Modules 8% Examples ® dl e o T S e
Elements Profiler Statistics Settings Report bug
(w | @ Search (text or iregexs) = «<List > ® # O
Props [
. . Hooks &
ListView e
M
Id — i Chris Black = -
- Engineering & =
70
M Christine Cooper =!
(] SRt [HERI =
70
-
M Chris Benalamore =
~ e B & g
60 L.
-) Christopher Johnson ™ =,
ListView | 563.5px x 3@@px
Chart

When you build or serve the virtual DOM app in release mode, using the --release argument,
Oracle JET does not import the Preact DevTools. Remove the token if you do not want to use
the Preact DevTools in debug mode.

One other thing to note is that Oracle JET includes the following entries in your app's
appRootDir/src/path_mapping.json file when it creates your app. You need these entries to
be able to use the Preact extension discussed here.

"preact/debug": {
"cdn': "3rdparty",
"cwd": "node_modules/preact/debug/dist",
"debug": {

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Page 10 of 11

ORACLE Chapter 9
Debug Oracle JET Apps

"src": [
"debug.umd. js",
"debug.umd. js.map"

]1

"path": "libs/preact/debug/dist/debug.umd.js",
"cdnPath': "preact/debug/dist/debug.umd”

}1

"release": {

IISrC": [
"debug.umd. js",
"debug.umd. js.map"
]1
"path": "libs/preact/debug/dist/debug.umd.js",
"cdnPath': "preact/debug/dist/debug.umd”

}
¥

react/devtools”: {
"cdn': "3rdparty",
"cwd": "node_modules/preact/devtools/dist”,
"debug": {
"src": [
"devtools.umd.js",
"devtools.umd. js.map"

]

ath": "libs/preact/devtools/dist/devtools.umd.js",
"cdnPath': "preact/devtools/dist/devtools.umd"

s

"release": {
"src": [

"devtools.umd.js",

"devtools.umd. js.map"

]

ath": "libs/preact/devtools/dist/devtools.umd.js",
"cdnPath': "preact/devtools/dist/devtools.umd"

¥
}

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 11

Migrate Oracle JET Legacy Components to
Core Pack Components

You can use the Oracle JET Core Pack migrator to migrate Oracle JET legacy components
(oj-*) to their equivalent Core Pack components (0j-c-*) without breaking your app’s
functionality. It also migrates Selenium WebDriver test files written for legacy components to
work with the migrated Core Pack components.

The Core Pack migrator is packaged with the Oracle JET Audit Framework (Oracle JAF). To
begin the Core Pack migration workflow, first download Oracle JAF and run audits on your app.
Then use the information in the audit report to prepare your app’s code for migration; there are
specific issues that must be manually addressed in your app because they will either cause the
migration to fail or be ignored by the migrator.

Once you've assessed your code and prepared it for migration, you can perform a dry-run
migration that generates a migrator. log file where you can review the migrator’s intended
changes to your code.

You also have the option to create a migration configuration file that will tailor the behavior of
the Core Pack migrator. You can run the migrator using its default settings, but you can use the
migrationConfig.json file to modify its operations so that, for example, it migrates only test
files or excludes certain components from migration.

When you are satisfied with your pre-migration code and the results of the dry run, you can
perform the full migration.

® Note

Not all migration can be automated, and some components may need manual
correction after migration in order to function. For a list of known migration issues and
help resolving them, see Troubleshoot Core Pack Migration Issues.

After you successfully migrate your app’s legacy components to Core Pack, you can migrate
the components in its Selenium WebDriver test files. See Migrate WebDriver Test Files to Core
Pack.

For information on installing and using Oracle JAF, see Install the Oracle JET Audit
Framework. You can verify what versions of Oracle JAF and the Core Pack migrator are
installed by running the commands ojaf -v and ojaf -mig -v in a terminal window.

Prepare Your Oracle JET App for Core Pack

Before you use the Oracle JET Core Pack migrator on your app’s code or test files, run an
Oracle JAF audit to inspect for issues that might impact migration. For example, deprecated
APlIs are not available in Core Pack components and will cause your migration to fail if they are
present in your code.

Oracle JAF’s built-in audit rules assist you in identifying and fixing invalid functionality.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix A-1 of A-8

ORACLE’

Appendix A
Migrate Legacy Components Using the Core Pack Migrator

Additionally, in the Oracle JET APl documentation, there is a section labeled “Migration” for
each legacy component that has a Core Pack equivalent to which you can migrate. This
section facilitates the migration of a given legacy component to Core Pack by providing specific
guidance and information on the differences between the two component versions. See, for
example, the oj-button component’s migration section. Only legacy components with an
equivalent Core Pack component are eligible for migration.

® Note

If you don't see the API documentation for superseded components on the API page,
you can select the “Show Maintenance Mode” checkbox in the sidebar to reveal it.

To prepare your app for migration, install the latest version of Oracle JAF and run an audit on
your code:

1. Open aterminal window and enter the following command to install Oracle JAF globally:
npm install -g @oracle/oraclejet-audit

2. After you install Oracle JAF, navigate in your terminal window to your app’s root directory,
then initialize a default JAF configuration:
ojaf --init
Oracle JAF tooling scaffolds a default JAF configuration file named oraclejafconfig.json
in your app’s root directory.

3. Inyour terminal window, navigate to your app’s ./src directory and enter the command to
run an audit:

ojaf

The audit generates a report in your terminal window. Using the report, resolve any issues
flagged in your code. For example, you should fix issues raised that include the word
“deprecated.” Deprecated APIs are not available in Core Pack components, and your migration
will fail if your components use a deprecated API.

@® Note

Oracle JET Core Pack components do not support the Alta theme. If your app uses
Alta, then you must migrate to Redwood before you can use these components in your
app. See Oracle JET App Migration to Current Release.

After auditing your code and verifying that all issues have been resolved, you can proceed with
your migration.

Migrate Legacy Components Using the Core Pack Migrator

After preparing your app for migration, perform a dry-run migration to understand the migrator’s
intended changes to your code and find any issues that should be addressed before or after
migration. If there are aspects of the migrator’s behavior that you would like to modify, you can
create a migration configuration file that you can use to customize its operations.

Follow the steps in the migration procedure below as a guide.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix A-2 of A-8

https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/oj.ojButton.html

ORACLE’

Appendix A
Customize the Core Pack Migrator's Behavior

Perform a dry-run migration. The dry-run migration does not update or migrate code but
generates a detailed log of all code that would get migrated.

Open a terminal window in your app’s ./src directory and enter the command ojaf -mig
-dr.

A message will appear once the dry run finishes, which provides information on how long
the migration took and how many files and components were updated. It also points you to
the migrator. log file, which was created in the app’s ./src directory and contains details
on the files and components that would be affected by migration.

Review the results of the dry run in the migrator. log file and decide whether to use the
migrator’s default settings or to modify its behavior using a migration configuration file.

To learn more about the migration configuration file, see Customize the Core Pack
Migrator’s Behavior.

If you create or modify a migration configuration file, then you can test out the changes to
the migrator in a dry run by executing the following command in a terminal window,
replacing the path with the location of your own configuration file: ojaf -mig -dr -c ./
migrationConfig.json

When you're satisfied with your code and migration configuration, run the migration
command from a terminal window in your app’s ./src directory.

« If you have modified the configuration file, run the following command with the
configuration option pointing to the location of your configuration file:

ojaf -mig -c ./migrationConfig.json
« To run the migrator with its default configuration, execute the following command:

ojaf -mig

Customize the Core Pack Migrator’s Behavior

You can fine-tune how the Core Pack migrator operates by using a migration configuration file.
The migrationConfig.json file supports a range of properties that allow you to configure how
the Core Pack migrator behaves. For example, you can specify that the migration only affects
certain components or subsets of components, rather than your entire app.

The migration configuration file contains properties that you can use to specify:

If your migration is for only WebDriver test files and what extension they use.

What folders, files, and components should be skipped during migration or, conversely,
should be the only targets of migration.

Whether to force the migration of specific legacy components to Core Pack.

Whether to exclude from migration any components with tags that contain attributes with
an expression as a value.

The base folder where the migration will execute.

The name and location of the migrator log file.

Any name can be provided to the migrationConfig. json file. Therefore, a user can have
different sets of migration rules defined by multiple configuration files.

To begin, create the migrationConfig.json file in your chosen directory, typically in the
directory from which you will run the migrator, such as your app’s ./src directory.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix A-3 of A-8

ORACLE

Appendix A

Customize the Core Pack Migrator's Behavior

The following sample migrationConfig.json file displays the available configuration options
that you can include.

{
"testFiles": ",
"testFilesExtension": ",
"excludeFolders": [],
"excludeFiles": [],
"excludeComponents™: ["legacyTagl", "legacyTag2'],
"includeFiles": [1,
"includeFolders": [],
"includeComponents™: ["legacyTagl", "legacyTag2'],
"forceMigration: ["legacyTagl"”, "legacyTag2'],
"excludeAttributeExpressions™: {
"legacyTagl": ["attributes'],
"legacyTag2'": ["attributes"]
1.
"baseMigrationDir': ",
"logFileName": ",
"logFilePath™: "
}

Note that all configuration settings are optional; you can choose to include only those needed

for your migration.

The following table describes the available migration configuration options and how to use

them.

Table A-1 Properties in the migrationConfig.json File

Property Name Value Type Description

testFiles Boolean Set this value to true if you intend to migrate only WebDriver
test files and the directory you will migrate contains only test
files.

testFilesExtension String Tells the migrator the specific extension it can use to locate
test files.

excludeFolders Array Contains folder names that the migrator will skip. Provide the
full path for each folder name.

excludeFiles Array Contains file names that the migrator will skip. Provide the
full path for each file name.

excludeComponents Array Contains legacy component tags that the migrator will skip.

includeFiles Array Contains the names of the only files that the migrator will
process for migration. Provide the full path for each file name.

includeFolders Array Contains the names of the only folders that the migrator will
process for migration. Provide the full path for each folder
name.

includeComponents Array Contains the only legacy component tags that the migrator
will process for migration.

forceMigration Array Contains legacy component tags for which the

IgnoreRuleSet will be ignored and the tags will be migrated
to Core Pack.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02
Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Appendix A-4 of A-8

ORACLE Appendix A
Migrate WebDriver Test Files to Core Pack

Table A-1 (Cont.) Properties in the migrationConfig.json File

Property Name Value Type Description

excludeAttributeExpress Object Contains component-specific attributes that should not be
ions migrated if they contain an expression as a value.
baseMigrationDir String Determines the root directory that the migrator will run from.

By default, the migrator runs from the calling directory if not
specified. You can use a relative or absolute path.

logFileName String Determines the name of the log file generated during
migration. If not specified, the name migrator . log will be
used by default.

logFilePath String Determines the output location for the migration log file. If not
specified, the calling directory will be used by default.

Migrate WebDriver Test Files to Core Pack

The Oracle JET Core Pack migrator helps you migrate your WebDriver test files written for
apps with legacy components so that they work with Core Pack components.

To migrate your test files, first follow the pre-migration steps found in Prepare Your Oracle JET
App for Core Pack, which include initializing an Oracle JAF configuration in your app, running
audits on your test files, and resolving any issues you find.

@® Note

Before running audits, make sure that your oraclejafconfig.json file is configured
so that Oracle JAF can locate your test files. Include any paths to your test files within
the Files property as string values, such as "./src/**/*.spec.ts".

"Files": [
vo/src/**/* _html",
vo/src/**/*_js",
to/src/*Fr/*ots",
"_/src/**/component. json",
./src/css/**/*.css",
./src/**/* _spec.ts"

1.

Once you have audited your test files and prepared them for migration, open or create your
migrationConfig. json in your chosen directory, typically your app’s ./src directory, and
configure it as follows.

1. Setthe testFiles property in the migrationConfig. json file to true.

2. If your test files have a unigue extension, such as .spec.ts or .test.ts, then add it to the
migration configuration file as a string value to the testFilesExtension property.

If you do not add an extension for test files to the testFilesExtension property, then all
files in a directory that will be migrated must be test files.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix A-5 of A-8

ORACLE’

Appendix A
Troubleshoot Core Pack Migration Issues

3. Review the rest of your configuration to ensure that it meets your requirements for
migration. For instance, verify that the baseMigrationDir property, which affects the
directory that the migrator runs from, is correct.

At a minimum, your migrationConfig.json file should resemble the following example.

{

"testFiles": "true",
"testFilesExtension": ".spec.ts"

}

4. Open a terminal window in the same directory as your migration configuration file. Execute
the dry-run migration command while pointing to the configuration file:

ojaf -mig -dr -c ./migrationConfig.json

5. Review the results of the dry run in the migrator. log file. Once you have made any
necessary changes and are satisfied with your code and configuration, run the actual
migration:

ojaf -mig -c ./migrationConfig.json

When the migration is complete, try running your test files against the app that uses the Core
Pack components they are meant to test. You may need to make manual corrections to get
your tests to pass.

For instance, a property that is called using a function in a test file may not have been properly
migrated, or perhaps your test files were properly migrated and a legacy component in your
app’s code contains an attribute that is not supported in Core Pack.

Use the migration report in the migrator . log file to troubleshoot issues. To assist you, the
migrator. log file has links to migration sections in the API documentation for each legacy
component that has a Core Pack equivalent.

Troubleshoot Core Pack Migration Issues

Some components may need manual correction after migration. For guidance on migrating
specific legacy components to their Core Pack equivalents, read their migration sections in the
Oracle JET API docs, which are accessible at the end of the migrator. log file. You can also
refer to the Core Pack section of the JET API docs for more information.

Here is a list of instances that require manual migration:

e Formatting changes

Users will see formatting changes in files as a result of migrating. Run formatters post-
migration in order to ensure files remain in the correct formats.

e Deprecated APIs

Deprecated APIs are not available in Core Pack components and must be removed before
migration. If a deprecated API is present in your code, then your migration will fail.

e Components that switched to a data-driven approach

There are some legacy components that took children that are instead data-driven in their
Core Pack equivalents. These will be ignored by the migrator and must be migrated
manually. See the section on data-driven components in the Core Pack API
documentation, as well as the component-specific migration section.

« CSS

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix A-6 of A-8

https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/CorePackOverview.html
https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/CorePackOverview.html

ORACLE’

Appendix A
Troubleshoot Core Pack Migration Issues

CSS will no longer work as expected with some components. See the section on CSS in
the Core Pack API documentation, as well as the component-specific migration section.

Components where a property type has changed

If a component’s property is set, but the property type has changed, then the legacy
instance can’'t be migrated.

For example, on form controls, such as oj-input-text and oj-input-number, the Core
Pack converter type and the legacy converter type don’t match. Therefore, if the
converter property is set, then the instance won’t be migrated. When this is the case, the

migrator.log file will have a variation of the following message: Rule to ignore: "oj-
input-text" filtered out due to attribute "converter".

Class attributes with an expression as a value

Class migration will only happen if the value is a string, otherwise migration will not modify
anything in the expression.

Properties with an expression
If a property has an expression as a value, then the instance can’t be migrated.
References to strongly typed properties

In TypeScript code, there may be cases where you want to type variables or properties
based on the existing types declared by the JET components you are consuming.

An example of this is when you define a custom component and want to define a chroming
property on that component that can be passed directly down to a legacy oj-button
component that you use as part of that component implementation. This type of
dependency must be migrated as well if you are migrating the legacy component to its
Core Pack equivalent

When using the JET legacy components, you would typically use the IntrinsicProps of
the component that is exported:

import { ButtonIntrinsicProps} from "ojs/ojbutton”;

const localChroming:ButtonIntrinsicProps[“chroming®]

In Core Pack components, the props type is not re-exported from the Core Pack class
because there is a more generic way to access the same information using the Preact
ComponentProps convenience type. Instead, the code would be migrated as follows:

import { ComponentProps } from “preact”;
import "oj-c/button”;

type ButtonProps = ComponentProps<®oj-c-button®>
const localChroming:ButtonProps[“chroming®] = ...

References to strongly typed event payloads
When coding in TypeScript, you can strongly type events emitted from JET legacy
components by referencing the event map for the component:

import "ojs/ojbutton”;
import { ojButtonEventMap } from "ojs/ojbutton®;

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix A-7 of A-8

https://docs.oracle.com/en/middleware/developer-tools/jet/19/reference-api/CorePackOverview.html

ORACLE Appendix A
Troubleshoot Core Pack Migration Issues

private async onChatActionClick(event: ojButtonEventMap[“ojAction"]){...}

With Core Pack components, rather than import the eventMap, you can directly reference
the type from the component interface:

import "oj-c/button”;
import { CButtonElement } from "oj-c/button”;

private async onChatActionClick(event: CButtonElement.ojAction){...}

* References to template context

In TypeScript code, when you define a render function for a template slot for JET legacy
components, you can use the relevant Context type:

import "ojs/ojtagcloud”;
import { ojTagCloud } from "ojs/ojtagcloud”;

const itemRenderer = useCallback((context:
ojTagCloud. ItemTemplateContext<string>)) => {...}

With Core Pack components, these context definitions are not provided. You should
instead use the type of the template slot property:

import { ComponentProps } from “preact”;
import "oj-c/tag-cloud”;

type tagCloudProps = ComponentProps<®oj-c-tag-cloud™>

const itemRenderer

= {.-.}

useCallback((context: tagCloudProps[itemRenderer®])

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix A-8 of A-8

Properties in the oraclejetconfig.json File

The oraclejetconfig.json file supports a range of properties that you can configure to
determine the behavior of your Oracle JET project.

@® Note

Where Property is <prop>.<subprop> it indicates that <subprop> is a subproperty of
<prop>. For example, paths.components means "paths™: { "components':

"value" }.

Table B-1 Properties in the oraclejetconfig.json File

Property Value Valid Values Default Notes
Type
architecture String mvvm or vdom mvvm Type of app architecture.
components Object component Component name/version value pairs for components to
name/version be restored from the component exchange upon ojet
value pairs restore. Similar format to a package. json. For
example:
"components™: { "oj-doceg-double-picker:
ll/\2 -O-Oll }
bundleName String simple file bundle.js Allows an override of the default name used for an
name with a .JS optimized app.
extension
bundler String webpack | In release 11.0.0, JET introduced bundler-only support
<any> for Webpack. If webpack was specified as the value for

the bundler property, the before_webpack hook was
used to bundle the app. Otherwise, the
before_optimize hook managed the RequireJS-
based app bundling. Webpack-based bundler applied
only to the app bundling. Custom component
optimization continued to use RequireJS-based
bundling, and could be configured with the
before_component_optimize hook.

In release 12.0.0, JET introduced end-to-end Webpack
support. With the --webpack argument in an ojet
create command, Oracle JET creates an
ojet.config.js file where you configure Webpack
usage. No bundler property is configured in the
oraclejetconfig. json file.

defaultBrowser String browser name chrome

Sent to Apache Cordova when serving hybrid mobile
apps as --target when the destination is browser.

defaultTheme String redwood, redwood
redwood-notag,
stable

Name of theme to use as the default in the app.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02
Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Appendix B-1 of B-6

ORACLE
Appendix B

Table B-1 (Cont.) Properties in the oraclejetconfig.json File
|

Property Value Valid Values Default Notes
Type
dependencies Object component Names of potential component or pack dependencies
name/object or used to check whether certain pre-minified components
version number should be excluded from the ojet build --release
pairs bundling process. For example:

"dependencies™: { "oj-pack-comp":
{ "version": "2.0.0"} }
Or

"oj-comp™: "2.0.0"

enableDocGen Boolean trueffalse When true, Oracle JET generates API doc for
VComponent-based web components in
the .appRootDir/web/components/conponent -
name/docs directory after you build the component
using the ojet build component command if you
have previously run the ojet add docgen command
that installs the packages and templates to generate
API doc. If you have not installed the packages and
templates for API doc, the ojet build component
command fails.

When false, Oracle JET does not generate API doc for
VComponent-based web components.

enableLegacyPeer Boolean True/False False When true, the Oracle JET CLI modifies any invoked

Deps existing NPM install commands, such as the Oracle JET
CLI's add docgen command, to include NPM's --
legacy-peer-deps flag. You need to add the
enablelLegacyPeerDeps property to the
oraclejetconfig. json file if you want to use this
optional capability. The default value of false means
that NPM installations proceed without the --legacy-
peer-deps flag.

exchange-url String URL Component exchange instance for publishing
components. For example:

https://exchange.url.com/api/0.2.0

@ Note

This setting can also be
inherited (if not present)
from a global value defined
through ojet configure
--exchange-url=<addr>
--global which will be
stored centrally (for
example, .ojet/
exchange-url . json)

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix B-2 of B-6

ORACLE’

Appendix B

Table B-1 (Cont.) Properties in the oraclejetconfig.json File

Property Value Valid Values Default Notes
Type

fontUrl String URL Link so that an Oracle JET CLI bui ld command can
insert icon fonts into Oracle JET templates. This
property is associated with the injector : font token
in the appRootDir/src/index.html file of your app.

generateSourceM Boolean true/false False When true, the Oracle JET CLI configures Terser and

aps RequireJS packages to generate source map files when

you build the Oracle JET app using the ojet build or
ojet serve commands.

generatorVersion String Oracle JET CLI

Deprecated. Historical information about the version of

version JET that was first used to create the project. Not used
by the CLI.
installer String yarn or npm npm If specified, an alternate installer to run instead of the

default npm for npm install type commands.

localComponents Boolean trueffalse
Support

Indicates whether the component exchange backend
supports the local components extension. The value
will be recorded by the CLI in oraclejetconfig. json.
If a user wants to opt out of the local components
support, they can set this value to false deliberately.

paths.components String path jet-composites

Path where locally-created components are stored
relative to a root that is dependent on the scaffolded
project type:

1. Project created with --vdom or --
template=basic-vdom template. Root will be
src/ .

2. Project created with --typescript. Root will be
src/ts/ .

3. Default project. Root will be src/js.

@® Note

In a a project created with
the vdom basic template
or —-vdom option, this value
will be pre-set to just
components rather than
the default jet-
composites.

paths.exchangeCo String path exchange_compo
mponents nents

Folder where components added from the exchange are
stored for new virtual DOM apps. Non-virtual DOM apps
(MVVM) use the older jet _components when this is
not set. This path must be a simple folder name which
will be created in the root of the project as a peer of the
src/ folder.

paths.source.com String path src
mon

Simple folder name relative to the project root. A folder
hierarchy cannot be used here. Other settings such as
paths.components will be relative to this location.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02
Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Appendix B-3 of B-6

ORACLE’

Appendix B

Table B-1 (Cont.) Properties in the oraclejetconfig.json File

Property Value Valid Values Default Notes
Type

paths.source.hybri String path src-hybrid Simple folder name relative to the project root. A folder

d hierarchy cannot be used here.

paths.source.javas String path is Simple folder name relative to the defined src folder. A

cript folder hierarchy cannot be used here. Other settings
such as paths.components may be relative to this
location in the relevant project type.

paths.source.style String path Ccss Simple folder name relative to the defined src folder. A

s folder hierarchy cannot be used here.

paths.source.them String path themes Simple folder name relative to the defined src folder. A

es folder hierarchy cannot be used here.

paths.source.tsco String path If specified, this subproperty enables the relocation of

nfig the tsconfig. json file from its default location at the
app root. Simple folder name relative to the defined src
folder. A folder hierarchy cannot be used here.

paths.source.type String path ts Simple folder name relative to the defined src folder. A

script folder hierarchy cannot be used here. Other settings
such as paths.components may be relative to this
location in the relevant project type.

paths.source.web String path src-web Simple folder name relative to the defined src folder. A
folder hierarchy cannot be used here.

paths.staging.hybr String path hybrid Path where the hybrid build products are generated.

id

paths.staging.the String path staged-themes Path where themes are staged.

mes

paths.staging.web String path web Path where the web build products are generated.

sass\Ver String semver-style 1.80.5 Dart Sass (sass) NPM package version that will be

version number installed if sass is added
stripList Array of path strings List of .gitignore-style paths to strip when ojet
strings strip is executed. This bypasses the list in

the .gitignore file.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Appendix B-4 of B-6

ORACLE
Appendix B

Table B-1 (Cont.) Properties in the oraclejetconfig.json File

Property Value Valid Values Default Notes
Type
unversioned Boolean true/false false When true, Oracle JET generates components in a

directory path without the component version number
when you run ojet build or ojet serve. For
example:

appRootDir/web/components/my-component-
pack/my-widget-1/

Without the unversioned property or with
"unversioned": false (the default), the output path
is:

appRootDir/web/components/my-component-
pack/1.0.0/my-widget-1/

The unversioned entry in the
oraclejetconfig.json file takes precedence over
the Oracle JET command-line argument (--omit-
component-version). That is, if the
oraclejetconfig.json file includes
"unversioned": false (include component version
number in the directory path) and you build your Oracle
JET app using the following command, Oracle JET
includes the component version in the generated
directory path:

ojet build --omit-component-version

watchlinterval String Number of 1000 Configure the interval at which the live reload feature
milliseconds polls the Oracle JET project for updates by configuring a
value for this property. The default value is 1000
milliseconds.

The remaining
entries in this
table describe the
properties that you
use to manage
ICU translation
bundles, as
described in Work
with ICU
Translation
Bundles in an
Oracle JET Virtual

DOM App.
translationlcuLibra String @oracle/ @oracle/oraclejet- The NPM package that the Oracle JET CLI's add
ries oraclejet-icu- icu-110n translation command installs. You need this NPM

110N package to generate ICU translation bundles.
buildiICUTranslatio Boolean true/false false When true, the Oracle JET CLI bui ld command
nsBundle generates runtime ICU translations bundles from the

ICU translation bundles in your project.

translation.type String icu icu The only supported value at present for this property is

icu.

Developing Oracle JET Apps Using Virtual DOM Architecture
G33835-02 August 11, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix B-5 of B-6

ORACLE’

Appendix B

Table B-1 (Cont.) Properties in the oraclejetconfig.json File

Property Value Valid Values Default Notes
Type
translation.options String Root directory ./src/resources/nls The root directory for ICU translation bundles. The value
.rootDir for the runtime that the add translation command inserts is
ICU translation "_/src/resources/nls".
bundles.
translation.options String Name of the translationBundle.j The bundle name from which to generate runtime ICU
.bundleName ICU translation son translation bundles when you run the ojet build or
bundle serve commands. The value that the add
translation command inserts is
"translationBundle. json".
translation.options String Language tag en-US The locale of the ICU translation bundle in the root
Jocale (For example, directory. The value that the add translation
"en-Us") command inserts is "'en-US".
translation.options String Path to output ./src/resources/nls The output directory for runtime ICU translation bundles.
.outDir directory The value that the add translation command
inserts is "' ./src/resources/nls". Change this to a
value of your choice. For example, "*./src/
resources-dist".
translation.options String Array of A comma-separated list of additional locales to build. If
.supportedLocales supported you specify a locale that does not have a corresponding
locales entry in the nls directory under the rootDir directory,
then the runtime ICU translation bundle is built from the
ICU translation bundle in the rootDir directory. The
value that the add translation command inserts is
"de".
translation.options String Name of $ Specifies the naming pattern for the ICU translation
.componentBundl| component- {componentName} bundle associated with a component.
eName specific ICU -strings.json The add translation command inserts the value "'$
gﬁ‘g;:g"on {componentName}-strings. json" where

{componentName} references the name of the
component.
If you create a component named my-component, then

the file name for the ICU translation bundle must be my-
component-strings.json.

Developing Oracle JET Apps Using Virtual DOM Architecture

G33835-02

Copyright © 2021, 2025, Oracle and/or its affiliates.

August 11, 2025
Appendix B-6 of B-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 Get Started with Virtual DOM Architecture in Oracle JET
	About Oracle JET Virtual DOM Architecture
	What Can You Do with the Oracle JET Virtual DOM Architecture?
	Prerequisite Knowledge
	Create a Development Environment for Virtual DOM Apps
	Install Oracle JET Tooling
	Install Node.js
	Use the npx NPM CLI Command
	Install the Oracle JET Command-Line Interface
	Yarn Package Manager

	2 Understand the Web App Workflow
	Scaffold a Web App
	About the Virtual DOM App Layout
	About the Binding Provider for Virtual DOM Apps
	Add Progressive Web App Support to Web Apps

	Build a Web App
	Serve a Web App
	About ojet serve Command Options and Express Middleware Functions
	Serve a Web App to a HTTPS Server Using a Self-signed Certificate

	Customize the Web App Tooling Workflow
	About the Script Hook Points for Web Apps
	About the Process Flow of Script Hook Points
	Change the Hooks Subfolder Location
	Create a Hook Script for Web Apps
	Pass Arguments to a Hook Script for Web Apps

	Use Webpack in Oracle JET App Development
	Configure Oracle JET's Default Webpack Configuration

	3 Understand VComponent-based Web Components
	Hello VComponent, an Introduction
	Metadata for VComponents
	Nest VComponents
	VComponent Properties
	Declare VComponent Properties
	Reference Properties in JSX
	Access Properties
	Reference Properties of a Child Component in JSX
	Type-Checking Support
	Global HTML Attributes

	Children and Slot Content
	Default Slots
	Named Slots
	Refresh Custom Elements with Dynamic Children and Slot Content

	Template Slots
	Provide Template Slot Content within HTML
	Template Slots in JSX

	Understand Events and Actions
	Listeners
	Actions
	Declare Actions
	Dispatch Actions
	Respond to Actions
	Action Payloads

	Manage State Properties
	Declare State
	Update State
	Understand the State Mechanism

	Reference Child VComponents by Value

	4 Work with Oracle JET VComponent-based Web Components
	Create Web Components
	Create Standalone Web Components
	Create JET Packs
	Create Resource Components for JET Packs
	Create Reference Components for Web Components

	Add Web Components to Your Page
	Generate API Documentation for VComponent-based Web Components
	Build Web Components
	Package Web Components

	5 Use Oracle JET Components and Data Providers
	Access Subproperties of Oracle JET Component Properties
	Mutate Properties on Oracle JET Custom Element Events
	Avoid Repeated Data Provider Creation
	Avoid Data Provider Re-creation When Data Changes
	Use Oracle JET Popup and Dialog Components

	6 Add Third-Party Tools or Libraries to Your Oracle JET App
	7 Validate and Convert Input
	About Oracle JET Validators and Converters
	About Validators
	About the Oracle JET Validators
	About Oracle JET Component Validation Attributes
	About Oracle JET Component Validation Methods

	About Oracle JET Converters
	Use Oracle JET Converters with Oracle JET Components
	Understand Time Zone Support in Oracle JET

	About Oracle JET Validators
	Use Oracle JET Validators with Oracle JET Components
	Use Custom Validators in Oracle JET
	About Asynchronous Validators

	8 Internationalize and Localize Oracle JET Apps
	About Internationalizing and Localizing Oracle JET Apps
	Internationalize and Localize Oracle JET Apps
	Use Oracle JET's Internationalization and Localization Support
	Enable Bidirectional (BiDi) Support in Oracle JET
	Set the Locale and Direction Dynamically
	Work with Currency, Dates, Time, and Numbers

	Work with Oracle JET RequireJS Translation Bundles
	About Oracle JET Translation Bundles
	Add RequireJS Translation Bundles to an Oracle JET App

	Work with ICU Translation Bundles in an Oracle JET Virtual DOM App
	Format Placeholders Tokens
	Set Up an Oracle JET Virtual DOM App to Create ICU Translation Bundles
	Add ICU Translation Bundles to an Oracle JET Virtual DOM App
	Generate Runtime ICU Translation Bundles
	Use an ICU Translation Bundle in an Oracle JET Virtual DOM App Component
	Use an ICU Translation Bundle in an Oracle JET VComponent

	9 Test and Debug Oracle JET Apps
	Test Oracle JET Apps
	Testing Types
	About the Oracle JET Testing Technology Stack
	Configure Oracle JET Apps for Testing

	Debug Oracle JET Apps
	Debug Web Apps
	Use Preact Developer Tools

	A Migrate Oracle JET Legacy Components to Core Pack Components
	Prepare Your Oracle JET App for Core Pack
	Migrate Legacy Components Using the Core Pack Migrator
	Customize the Core Pack Migrator’s Behavior
	Migrate WebDriver Test Files to Core Pack
	Troubleshoot Core Pack Migration Issues

	B Properties in the oraclejetconfig.json File

