
Oracle® Fusion Middleware
Securing Oracle Enterprise Data Quality

12c (12.2.1.4.0)
E95107-08
May 2024

Oracle Fusion Middleware Securing Oracle Enterprise Data Quality, 12c (12.2.1.4.0)

E95107-08

Copyright © 2016, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Diversity and Inclusion ix

Related Documents ix

Conventions x

1 About EDQ Security

Introducing EDQ Security 1-1

Authentication 1-1

Authorization 1-1

Encryption 1-2

Auditing 1-2

EDQ User Groups 1-2

EDQ Permissions 1-2

Application Permissions 1-2

Functional Permissions 1-2

Dynamic Permissions (in Case Management) 1-2

Project Permissions 1-3

Default EDQ Groups and Permissions 1-3

Default Administrator User Accounts 1-4

Mapping External Groups to EDQ Groups 1-4

Terms Used in this Guide 1-5

2 Applying Recommended Security Settings

Configuring SSL with WebLogic 2-1

Configuring SSL with Tomcat 2-1

Processor Security 2-2

Default Permissions 2-3

Giving Scripts More Permissions 2-4

Encrypting LDAP Connections 2-5

Encrypting Database Connections 2-5

iii

Limit Concurrent Logins 2-5

Disable FTP/SFTP Access 2-5

Exclude Configuration Area from FTP/SFTP 2-6

Account with Minimal Permissions for Service Integration 2-6

Protect JNDI Data Sources 2-6

Blocking the Upload of Malicious Files 2-7

3 User Authentication

The EDQ login.properties File 3-1

Static Groups Mapping in login.properties 3-2

WebLogic Installations 3-2

Creating Users and Groups in Weblogic Installation 3-3

Enabling the internal realm 3-4

Tomcat Installations 3-4

Creating Users and Groups in Tomcat Installation 3-4

4 Auditing User Activity

Enabling Audit Logging Using Oracle Fusion Middleware Framework 4-1

Configuring the EDQ Audit Events in Fusion Middleware Framework 4-1

Enabling Audit Logging to Files 4-3

Configuring the EDQ Audit Events on Disk 4-4

5 Integrating EDQ with a Fusion Middleware Credential Store

Overview of the Credential Store 5-1

Configuring the Credential Store for EDQ 5-1

Specifying the EDQ Credential Key in Properties Files 5-2

Examples of Specifying a Key Name 5-3

6 Integrating External User Management (LDAP) using WebLogic and
OPSS

Understanding Security Realms, Providers and Control Flags 6-1

Configuring WebLogic to use LDAP 6-1

Prerequisites 6-2

Integrating with Active Directory 6-2

WebLogic Configuration 6-3

EDQ Configuration 6-4

User Group 6-4

Permissions 6-4

iv

Filtering Groups 6-5

Using SSL to connect to LDAP 6-5

7 Configuring External User Management (LDAP) directly with EDQ

Integrate EDQ with LDAP 7-1

Prerequisites 7-1

Integrating with Active Directory 7-2

8 Integrating EDQ with Azure Active Directory

Registering the EDQ Application in Azure AD 8-1

Enabling OpenID Connect SSO in the Application 8-2

Enabling Multiple URI Redirects for OpenID Authentication 8-3

Editing the EDQ login.properties File 8-3

Enabling OAuth2 Bearer Authentication for Web Services 8-5

Configuring the Azure Application to Support Bearer Authentication with EDQ 8-5

Creating Client Applications in Azure AD 8-6

Editing the EDQ login.properties File to Map Roles 8-6

Configuring Application Display in EDQ 8-7

9 Integrating EDQ with Oracle Identity Cloud Service

Creating an IDCS Application 9-1

Configuring the EDQ login.properties File 9-2

Additional Configuration 9-2

Enabling SSO using OpenID Connect 9-3

Configure the EDQ Application in IDCS 9-3

Configuring EDQ for OpenID Connect SSO 9-4

Enabling OAuth2 Bearer Authentication for Web Services 9-4

Configuring Application Scopes 9-4

Configuring EDQ 9-5

10

Integrating EDQ with Cognito User Pools

Creating the User Pool 10-1

Creating an IAM User for REST API Calls 10-2

Editing the EDQ login.properties File 10-2

User Attribute Selection 10-3

Enabling OAuth2 Bearer Authentication for Web Services 10-4

Configuring Custom Scopes in the User Pool 10-5

Configuring Client Credentials Application 10-5

v

Configuring EDQ 10-5

Configuring Application Display in EDQ 10-6

11

Configuring EDQ Encryption

EDQ Enhanced Encryption Overview 11-1

Configuring Pluggable Credentials Stores 11-11

Creating Custom Java Encryption and Credentials Store Modules 11-15

A Configuring EDQ to support Windows Integrated Authentication
(Kerberos)

EDQ running as Windows service using local system account A-1

EDQ running on Unix A-2

What is in the keytab? A-2

Creating keytabs using existing tools A-3

Creating keytabs using winktab A-4

Check the Unix Kerberos configuration A-5

Java Encryption A-5

Changes to login.properties A-6

Kerberos Shared Libraries A-7

B Configuring Single Sign On with Oracle Access Manager (OAM)

Prerequisites B-1

OAM configuration B-1

WebLogic plugin configuration B-2

WebLogic Configuration B-2

vi

List of Figures

3-1 MyRealm Settings 3-3

6-1 Account Details 6-3

vii

List of Tables

1-1 Permissions for various user groups 1-3

4-1 EDQ Event Category and Types 4-2

4-2 Event Attributes and Custom Attribute Slot 4-2

4-3 Attributes Logged by User Management Event 4-2

4-4 Attributes Logged by Group Permission Management Event 4-3

4-5 Attributes Logged by Object Management Event 4-3

11-1 Ocivault Security Module Properties 11-2

11-2 Script Security Module Functions 11-4

11-3 Ocivault Credentials Store 11-12

11-4 Script Credentials Store 11-13

B-1 Creating HTTPS resources in the Webgate B-1

viii

Preface

This guide explains the Oracle Enterprise Data Quality security features and administration.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
The intended audience of this guide are experienced administrators, Java developers,
deployers, and application managers who want to ensure that EDQ meets Oracle security
standards.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
For more information, see the following documents in the Enterprise Data Quality
documentation set.

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

EDQ Documentation Library

The following publications are provided to help you install and use EDQ:

• Release Notes for Enterprise Data Quality

• Installing and Configuring Enterprise Data Quality

• Administering Enterprise Data Quality

• Understanding Enterprise Data Quality

• Integrating Enterprise Data Quality With External Systems

• Securing Oracle Enterprise Data Quality

• Installation and Upgrade Guide

• Release Notes

Find the latest version of these guides and all of the Oracle product documentation at

https://docs.oracle.com

Online Help

Online help is provided for all Enterprise Data Quality user applications. It is accessed in each
application by pressing the F1 key or by clicking the Help icons. The main nodes in the Director
project browser have integrated links to help pages. To access them, either select a node and
then press F1, or right-click on an object in the Project Browser and then select Help. The
EDQ processors in the Director Tool Palette have integrated help topics, as well. To access
them, right-click on a processor on the canvas and then select Processor Help, or left-click on
a processor on the canvas or tool palette and then press F1.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

x

1
About EDQ Security

This chapter explains the key security concepts used in Enterprise Data Quality (EDQ). It
includes the following sections:

• Introducing EDQ Security

• EDQ User Groups

• EDQ Permissions

• Default EDQ Groups and Permissions

• Default Administrator User Accounts

• Mapping External Groups to EDQ Groups

• Terms Used in this Guide

Introducing EDQ Security
Security within EDQ applies to accessing the application (ensuring that only authorized users
can access it, and that data within the application is secured), and auditing of user actions to
identify anomalies. This guide covers the following:

• Providing secure access control

• Securing data at rest and in transport.

• Providing appropriate security auditing capabilities to ensure user activity can be securely
logged and traced.

For more information, see About Oracle Enterprise Data Quality in Understanding Oracle
Enterprise Data Quality.

• Authentication

• Authorization

• Encryption

• Auditing

Authentication
Details of users and groups in EDQ can be stored within its own internal directory or taken
from an external LDAP server, such as Microsoft Active Directory. Using external
authentication sources enables EDQ to share user credentials with other systems, reducing
the number of passwords that users need to remember and maintain, while eliminating
overhead in management of users and groups.

Authorization
Authorization controls what users can do once they have authenticated successfully.
Authorization of users is based on a model of users, and permissions associated with groups.
A user is a member of one or more groups (either directly or by mapping an external group to

1-1

an internal group), and is authorized according to the permissions that are associated with that
group.

Encryption
Both the WebLogic and Tomcat servers support HTTPS and require that traffic between the
client and EDQ is encrypted so that it cannot be read or modified in transit. For environments
where HTTPS is not an option, EDQ encrypts passwords sent between the client and server.

Auditing
EDQ supports auditing of user actions using the Oracle Fusion Middleware Audit Framework.
In addition, EDQ can be configured to write audit information to files.

EDQ User Groups
All rights to EDQ are granted using a set of permissions that are granted to a user group (or
'internal' group). Where users are managed externally, for example in WebLogic, or in Active
Directory, or in an alternative LDAP provider, permissions are granted by mapping External
Groups from that directory to these internal groups. Users in the external group then have the
permissions from whichever group or groups the external group is mapped to. Where users are
managed in EDQ (in the 'internal' realm), these users are made direct members of one or more
of the internal groups, and therefore have the associated permissions.

EDQ Permissions
EDQ has four types of permission, as listed below. Permissions are granted to users by means
of EDQ User Groups, which are in turn mapped to external user groups.

• Application Permissions

• Functional Permissions

• Dynamic Permissions (in Case Management)

• Project Permissions

Application Permissions
These are simple permissions that grant (or deny) groups of users access to log in to EDQ
user applications, such as Director, Server Console, and Case Management.

Functional Permissions
These are permissions to access certain functions of the system, for example, the ability to
modify a Reference Data set in Director, or the ability to change the state of a case, or alert in
Case Management.

Dynamic Permissions (in Case Management)
These permissions are dynamically created within a Case Management workflow as
configured in Case Management Administration. Dynamic permissions are used to restrict
access to specific cases or alerts or to case comments or attachments.

Chapter 1
EDQ User Groups

1-2

Project Permissions
By default, a project created in Director is accessible to all user groups. However, projects may
be restricted to a smaller set of groups. Where this is the case, any user that is not in a group
that has access to the project, will not be able to see or use the project in any way.

Note:

Any user that has the ability to add projects in Director automatically has access to all
projects.

Default EDQ Groups and Permissions
The default groups and a summary of their permissions are listed below. To see full details on
the precise set of permissions granted to each group, select a group from the Administration -
Groups option on the EDQ Launchpad (after logging in as an administrator), and click on the
Edit button.

Table 1-1 Permissions for various user groups

Group Summary Functional
Permissions

Application
Permissions

Administrators Power users with all
functional and
administrative privileges

All

Dynamic Case
Management
permissions are not
automatically granted to
Administrators

All

Data Stewards Users with review
access to Director and
Dashboard, with
permission to review all
results, resolve issues,
and make manual match
and merged output
decisions, but without
permission to create or
change any processing
logic

Read-only permissions
to Director

Full permissions to
Match Review

Dashboard

Director

Match Review

Issue Manager

Case Management

Server Console

Executives Users with access to
Dashboard results only

Dashboard: View
Dashboard

Dashboard

Match Reviewers Users with access to the
Match Review
application, the Case
Management application
and Dashboard only

Basic Case
Management
permissions (no bulk
updates and cannot view
cases assigned to
others)

Dashboard: View
Dashboard

Match Review

Issue Manager

Case Management

Dashboard

Chapter 1
Default EDQ Groups and Permissions

1-3

Table 1-1 (Cont.) Permissions for various user groups

Group Summary Functional
Permissions

Application
Permissions

Review Managers Users with access to the
Case Management
application, with
permission to configure
case management and
perform bulk edits on
cases and alerts.

Full Case Management
permissions except
deletion and editing of
audit trail activities

Case Management

Dashboard

Data Analysts Users with permission to
create and modify
processing logic in
Director, but with no
administration privileges

Full access to Director
except the ability to
modify System-level
(cross-project)
configuration and access
the Users data store.

Director

Server Console

Match Review

Case Management

Issue Manager

Default Administrator User Accounts
On an installation of EDQ on WebLogic server, the weblogic administrator user account
(normally 'weblogic', with a password selected when the domain was created), is a member of
the 'Administrators' group in WebLogic, which is mapped to the 'Administrators' group in EDQ
by means of a default login.properties file in the EDQ Home configuration directory. This
therefore grants the weblogic user, and any other users in the WebLogic Administrators group,
administrative access to EDQ.

Note:

Ensure this mapping is fixed and intended only to grant initial access so that the
actual required permissions can be set by mapping external groups to internal
groups, see Mapping External Groups to EDQ Groups

On an installation of EDQ on Tomcat, a default internal administrator user account called
'dnadmin' is created. The initial password for this user is also 'dnadmin', but it must be changed
to a more secure password after initial login. In such an installation, by default this is the only
user account with administration rights, and it is important not to delete the user or forget the
password, as otherwise it may not be possible to access the system.

Mapping External Groups to EDQ Groups
External groups are mapped to internal EDQ Groups from the Administration pages of the
EDQ Launchpad. An external group is granted all permissions from all EDQ groups that it is
mapped to.

To map external groups to internal EDQ groups, follow the steps below:

1. Log in to the EDQ Launchpad as an Administrator.

2. Click on the Administration dropdown link, and click on External Groups.

Chapter 1
Default Administrator User Accounts

1-4

3. Expand the name of the external realm (this is 'ORACLE' on a default system) and click on
a group to edit its mappings.

4. Select the EDQ Groups you want to grant to the external group, and click on Save to save
the changes.

It is useful and desirable to create some external groups on the domain that can be mapped
precisely to internal EDQ groups, to ensure optimal permission assignment.

Note:

For installations with a large number of external user groups, an optional filter can be
specified in a local login.properties file to narrow down the list of groups that is
available in this screen. See Filtering Groups

for more information.

Terms Used in this Guide
The following terms are used in this guide:

• AD – Active Directory

• Certificate – Generally refers to an X.509 certificate

• Kerberos – Network authentication protocol

• LDAP – Lightweight Directory Access Protocol

• OID – Oracle Internet Directory

• OPSS - Oracle Platform Security Services

• SSL – Security Sockets Layer, a protocol for encrypted connections over which application
traffic can be transported. Replaced by TLS, although SSL is still used as a generic term.

• TLS – Transport Layer Security, a successor to SSL.

• WLS – WebLogic Server

• X.509 Certificate – A certificate issued by a trusted authority (certificate authority) to certify
that a specified entity (individual, organization, server, or other entity) holds the matching
private key for a public key.

Chapter 1
Terms Used in this Guide

1-5

2
Applying Recommended Security Settings

This chapter provides tips for securing the EDQ environment.
The chapter includes the following sections:

• Configuring SSL with WebLogic

• Configuring SSL with Tomcat

• Processor Security

• Encrypting LDAP Connections

• Encrypting Database Connections

• Limit Concurrent Logins

• Disable FTP/SFTP Access

• Exclude Configuration Area from FTP/SFTP

• Account with Minimal Permissions for Service Integration

• Protect JNDI Data Sources

• Blocking the Upload of Malicious Files

Configuring SSL with WebLogic
For instructions on configuring SSL with WebLogic Server, see the WebLogic documentation:

Overview of Configuring SSL in WebLogic Server

Configuring SSL with Tomcat
To enable encrypted connections with Tomcat, the HTTPS connector must be configured using
the following procedure:

1. Locate the server.xml file for the Tomcat installation (generally this would be conf/
server.xml within the Tomcat directory). By default it contains a section such as the
following:

<!-- Define a SSL/TLS HTTP/1.1 Connector on port 8443
This connector uses the NIO implementation that requires the JSSE
style configuration. When using the APR/native implementation, the
OpenSSL style configuration is required as described in the APR/native
documentation -->
<!--
<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioProtocol"
maxThreads="150" SSLEnabled="true" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS" />
-->

2. Enable the Connector element by removing the XML comment characters around it.

3. Set the port value for HTTPS if needed. The default is 8443, so if a different value is used
also change the redirectPort value in the HTTP connector to match.

2-1

Remember that if using a port below 1024, the server may require special permissions
depending on the OS.

4. Generate the server key and certificate, and have the certificate signed by a recognized
certificate authority. Self-signed certificates can be used, however they will need to be
installed on the client machines in order for them to be recognized.

Note:

The certificate is stored either in a Java keystore (JKS format) or as a PKCS#12
file. The latter may be preferred in certain instances, as there are many tools
available for working with PKCS#12 files.

5. Update the connector element as follows, replacing pathtokeystorefile,
keystorepassword and keystoretype with the referenced information:

<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioProtocol"
SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="pathtokeystorefile"
keystorePass="keystorepassword"
keystoreType="keystoretype"
/>

6. Set the keystoreType value to JKS or PKCS12 as required. If the key store contains multiple
certificates, use the keyAlias attribute to set the alias.

7. Some Tomcat distributions include the Apache Portable Runtime (APR) native library. If
this is the case, the certificate must be configured using Apache HTTPD mod_ssl style
attributes. For example:

<Connector port="8443" protocol="org.apache.coyote.http11.Http11AprProtocol"
SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
clientAuth="false"
SSLCertificateFile="pathtocrtfile"
SSLCertificateKeyFile="pathtokeyfile" />

For additional Tomcat information, see Apache Tomcat Configuration Reference at

http://tomcat.apache.org/tomcat-8.0-doc/config/http.html

For additional mod_ssl information, see Apache Module mod_ssl at

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html

Processor Security
EDQ, now allows optional use of security controls which can be used to increase the security
level of EDQ processors, for example to block insecure uses of the Script processor. For
backward compatibility reasons processor security is off by default, but it can be enabled by
adding the following line to [EDQ Local Home]/director.properties:

processor.securitymode = off/low/medium/high

The processor security option acts in conjunction with the use of a Java Security Manager. The
use of a Java Security Manager is controlled by a Java option specified on the server (-

Chapter 2
Processor Security

2-2

Djava.security.manager). If required, you should specify the Java option manually in the
setStartupEnv.sh script for installing EDQ on WebLogic Server.

The security level of each of the different processor.security settings is summarized below:

• Off:

No security restrictions are applied.

• Low

The following restrictions are applied:

– The use of the Script processor from the tool palette, for direct use in processes, is
disabled if the system is not running with a Java Security Manager.

– If the system is running with a Java Security Manager, the Script processor is available
but is only granted a very small set of default permissions, limited to data processing.
Scripts will not be able to make network connections or issue commands outside of the
application.

Note:

Java processors and scripts that are packaged in jars will run without any
restrictions; if a jar contains a permissions element the processor will be granted
only those permissions.

• Medium:

The same restrictions as Low apply, except that Java processors and scripts that are
packaged in jars will be granted a very limited set of permissions. Any additional
permissions required by the processor must be listed in permissions elements.

To clarify the difference, in 'low' level, all permissions are granted and permissions
elements restrict permissions; in 'medium' level, permissions are limited and permissions
elements extend permissions. In both levels a processor with a permissions element will
run with exactly the same set of permissions.

• High:

The same restrictions as 'medium' apply, except that only processors that are signed by
the Oracle EDQ certificate, or by certificates granted to approved partners, will be allowed
to include permissions elements that grant additional permissions to processors.

If a permissions element is found in an unsigned jar the processors in the jar will be
rejected and will not appear in the processor palette.

• Default Permissions

• Giving Scripts More Permissions

Default Permissions
When running with processor security set to medium or high, the permissions granted to
processors allow the reading of these system properties:

• java.version

• java.vendor

• java.vendor.url

Chapter 2
Processor Security

2-3

• java.class.version

• os.name

• os.version

• os.arch

• file.separator

• path.separator

• line.separator

• java.specification.version

• java.specification.vendor

• java.specification.name

• java.vm.specification.version

• java.vm.specification.vendor

• java.vm.specification.name

• java.vm.version

• java.vm.vendor

• java.vm.name

No other permissions will be granted.

Giving Scripts More Permissions
An installation may wish to run with secure scripts but still allow users to perform some
additional operations in ad-hoc scripts. A typical example will be to make web service calls. To
allow this additional functionality, the system supports a configuration file listing additional
permissions for ad-hoc scripts.

Additional permissions files are located in the security/permissions folder in the local
configuration directory. For script processors, the file is named scriptprocessor.xml and for
script match gadgets the file is named scriptgadget.xml. The file XML format is:

<permissions>
 <permission type="permissionclass" [name="targetname" [action="action"]]/>
 …
</permissions>

The permission class is the full name of any Java permissions class. The name attribute is
present if the permission has a target name - the class has a two- or three-argument
constructor. The action is present if the permission has an action - the class has a three-
argument constructor.

For example, to grant the permission to read the file /etc/hosts:

<permission type="java.io.FilePermssion" name="file:/etc/hosts" action="read"/>

System properties can be included in the name using ${…} substitution. Alongside the
standard system properties, these additional properties are available:

• rootdir: The location of the web application root.

• webinfdir: The location of the web application WEB-INF directory.

Chapter 2
Processor Security

2-4

• config.path: The configuration directory path. A permissions entry using ${config.path} in
its name will be replaced by an entry for each location in the path.

Encrypting LDAP Connections
Connections from EDQ to an LDAP directory can be encrypted using either an SSL/TLS
connection layer or by negotiating encryption after a connection has been established
(StartTLS).

Encrypting Database Connections
JDBC URL syntax for connections over TLS is dependent on the database driver being used.
Connections to an Oracle database can be encrypted by adding the following property to the
datasource connection pool configuration.:

oracle.net.encryption_client = REQUIRED

Limit Concurrent Logins
A limit can be specified in login.properties for the number of concurrent logins by an individual
user. The limit is concurrent logins per application. So if the sessionlimit is 1 a user can login to
director, server console, case management at the same time but cannot login twice to any.

This can be configured either globally or on a per realm basis. To set this globally for all
realms, use the following line:

sessionlimit = 1

To use different settings for different realms, specify the realm name before the parameter - for
example:

internal.sessionlimit = 1

Note:

Using the line given above, you can also limit the concurrent logins in an `internal'
realm, meaning the users set up and administered in EDQ itself.

<external realm name>.sessionlimit = 1

Disable FTP/SFTP Access
Where it is not needed, FTP/SFTP access to EDQ should be disabled for optimum security.
Standard FTP can be disabled by adding the following line in director.properties within the
local configuration folder:

launch.ftpserver = 0

SFTP/SCP can be disabled using the following line within the same file:

launch.sshd = 0

Chapter 2
Encrypting LDAP Connections

2-5

Exclude Configuration Area from FTP/SFTP
If non-admin users are allowed access to FTP/SFTP, it is advisable to remove access to the
configuration folder from the SFTP server, as follows:

1. Create the folders extras/ftpserver/conf and extras/sshd/conf within
oedq.local.home, if they do not already exist.

2. Copy the files extras/ftpserver/conf/ftpserver.xml and extras/sshd/conf/sshd.xml
from the oedq.home configuration directory to the corresponding subfolders of
oedq.local.home.

3. In each of the two files from the previous stage, comment out the following lines:

<!-- Configuration area -->
<ref bean="configspaces"/>
<!-- Command areas -->
<ref bean="commandspaces"/>

The first reference is to the configuration directories; the second is to the command areas
used for external tasks.

4. Restart the application server. The only location visible to the FTP and SFTP servers is
now the landing area.

Account with Minimal Permissions for Service Integration
An EDQ account used by a remote system such as Siebel or Oracle Data Integrator should
have the minimum set of permissions on an EDQ system. Specifically, the account should be in
a custom group with the following permissions only, and no access to log into any user
applications or perform any other functions:

• System / Connect to Messaging System - so that it is authorized to communicate with EDQ
web services and JMS.

• System/ System Administration - so that it is authorized to connect to the EDQ
Management (JMX) Port and can initiate jobs.

• Permissions to any projects containing any service interfaces (e.g. web services or jobs)
that it needs to be able to call.

Protect JNDI Data Sources
Unless specific steps are taken, a user in EDQ can set up a data store with a reference to the
JNDI name of any existing data source and then access data in these schemas, which can
contain very sensitive information. To protect JNDI data sources in EDQ, specify the names (or
regular expressions matching the names) in director.properties:

protected.jndi.datasources = <space separated list of JNDI names>

For example:

protected.jndi.datasources = jdbc/edqconfig jdbc/edqresults

The property is a space-separated list of regexes so you could also use:

protected.jndi.datasources = jdbc/edq.*

Chapter 2
Exclude Configuration Area from FTP/SFTP

2-6

Note:

When setting this value in the local director.properties, always include the default
setting from the base properties file. This setting prevents access to the WebLogic
internal data sources as well as the EDQ data sources.

Blocking the Upload of Malicious Files
To configure the server to block the upload of files according to the names or type of files, set
the following parameters in director.properties.

Parameter Name Type Default Value

upload.check.names Boolean True.

If the value is set to false, no
checks are done for the
parameter name.

upload.valid.names Text A comma or separated list of
valid file names.

Chapter 2
Blocking the Upload of Malicious Files

2-7

Parameter Name Type Default Value

upload.valid.types Text A comma or separated list of
Java-recognised MIME file types,
such as text/csv, image/bmp, text/
plain etc

For a list of MIME file types, see
MIME types.

No

te:

To
disa
ble
the
che
ck
(to
allo
w
files
of
any
type
),
set
an
emp
ty
valu
e to
the
par
ame
ter,
upl
oad
.va
lid
.ty
pes
=

upload.invalid.names Text A comma or separated list of
invalid file names.

Chapter 2
Blocking the Upload of Malicious Files

2-8

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types

Note:

The following properties are applicable for upload.valid.names and
upload.invalid.names parameters.

1. Each name in this list is either a suffix (such as .pdf) or a regex prefixed with ~. If
a regex is used it is matched against the full name of the file.

2. A file name is rejected if:

• upload.valid.names is specified and the file name does not match any of
the items in the list.

• upload.invalid.names is specified and the name matches any of the items
in the list.

3. All checks are not case sensitive.

Chapter 2
Blocking the Upload of Malicious Files

2-9

3
User Authentication

This chapter explains how users are authenticated in EDQ.
This chapter includes the following sections:

• The EDQ login.properties File

• WebLogic Installations

• Enabling the internal realm

• Tomcat Installations

The EDQ login.properties File
User authentication in EDQ is configured using a file named security/login.properties in the
EDQ configuration area. The file may exist in either the 'home' configuration directory or the
'local' configuration directory, or both. If present in both, the settings are merged with the
values in the 'local' directory taking precedence. If you need to make changes to the file,
always edit a version in the 'local' directory.

The EDQ 'home' configuration area contains a file security/login.properties.template which
contains example settings for several types of LDAP integration.

The login.properties file defines a number of 'realms'. Each realm is an independent store of
users. The file will start with global settings, followed by settings for each realm. Standard
global settings are:

realms = realm1, realm2, …
gss = false

The realms property defines the list of realms configured in this installation. The names are
arbitrary, except that the special realm name 'internal' specifies the EDQ internal user store
(user dnadmin etc).

The 'gss' setting turns off advanced Kerberos style authentication.

The global settings are followed by blocks of realm specific properties, each prefixed with the
realm name from the global list. For example, a configuration which uses the internal realm
and an LDAP realm could be:

realms = internal, corpldap
gss = false
corpldap.realm = EXAMPLE.COM
corpldap.ldap.server = dc1.example.com
…

These settings are covered in more detail below.

If more than one realm is defined in login.properties, the EDQ login screens - web console and
UIs - will contain a dropdown selector for the realm associated with the username and
password.

• Static Groups Mapping in login.properties

3-1

Static Groups Mapping in login.properties
If you are using an external LDAP user store, and do not wish to use the EDQ internal user
store, then you will face a bootstrapping problem when attempting to setup mappings from
LDAP groups to EDQ groups. This is done using the EDQ web console and requires an EDQ
administrator login. However a LDAP group mapping to the EDQ Administrators group is
required before an LDAP user can login to EDQ.

To overcome this problem you can define static group mappings in login.properties. The syntax
is:

realm.xgmap = exgroup1 -> edqgroup1, exgroup2 -> edqgroup2 …

'realm' is the realm name as listed in the global realms list. Each 'exgroup' is the name of an
external LDAP group; each 'edqgroup' is the name of an EDQ group.

Static mappings should be used only to set the initial Administration mapping; other mappings
should be configured in the EDQ web console External Groups page.

For example, to map an LDAP group named 'EDQ-ADMINS' to the EDQ Administrators group,
add:

corpldap.xgmap = EDQ-ADMINS -> Administrators

WebLogic Installations
A standard installation of EDQ on WebLogic will use the domain's internal user store for
authentication. This contains the domain administration user (usually 'weblogic') and a small
set of other users.

The EDQ default security configuration maps any user in the WebLogic Administrators group to
the EDQ Administrators group. No other group mapping are defined initially.

To add more users, login to the WebLogic administration console, and navigate to the Users
and Groups tab in the default security realm.

Chapter 3
WebLogic Installations

3-2

Figure 3-1 MyRealm Settings

As an alternative to managing users in WebLogic you can integrate with an external source of
users, normally an LDAP server, such as Active Directory. Integration can be configured in the
WebLogic administration console or directly from EDQ by editing the security configuration file.
The former approach is covered in Integrating External User Management (LDAP) using
WebLogic and OPSS and the latter in Configuring External User Management (LDAP) directly
with EDQ .

The default login.properties in the 'home' configuration directory contains:

realms = opss
opss.realm = ORACLE
opss.label = Weblogic
opss.type = opss
opss.xgmap = Administrators -> Administrators

This configuration indicates that the OPSS library supplied by WebLogic is used for
authentication and that the WebLogic Administrators group is mapped to the EDQ
Administrators group.

• Creating Users and Groups in Weblogic Installation

Creating Users and Groups in Weblogic Installation
You can create external users and groups in Weblogic Administration console and map the
users in EDQ Launchpad.

To add users and groups, follow the steps below:

1. Login to the WebLogic Administration console.

2. In the default security realm, click the Users and Groups tab.

3. In the Groups tab, add groups.

4. In the Users tab, add users and configure group membership for the user.

Chapter 3
WebLogic Installations

3-3

5. In the EDQ Launchpad, click the Administration panel.

6. In the External Groups tab, search for the WLS group that you added, and click Edit.

7. Assign the relationship to the EDQ group.

Enabling the internal realm
To manage users internally, the internal realm needs to be enabled. Follow the procedure
below to enable the internal realm for users:

1. Create a subdirectory called security in the local configuration directory (oedq_local_home/
security).

2. Copy the login.properties file from the security directory of the base configuration directory
(oedq_home/security) to oedq_local_home/security.

3. Add 'internal' to the comma-separated list of realms.

Note that 'opss' enables the realm of WebLogic users. To only manage users internally,
you can remove opss from the list of realms.

4. Restart the server.

This enables the internal realm of users, and allow internal user accounts to be managed in the
Administration pages on the Launchpad. A single default Administrator user 'dnadmin' will
exist, with an initial password of 'dnadmin' that will need to be changed on first login.

If more than one realm is defined, users will need to select which realm they want to use when
they log in.

Tomcat Installations
An installation of EDQ on Tomcat will use the EDQ internal authentication mechanism. This
contains the single user 'dnadmin' with full administration rights. Additional users can be added
through the EDQ administration web pages.

You can integrate with an external LDAP server such as Active Directory by editing the EDQ
security configuration file. This is covered in Configuring External User Management (LDAP)
directly with EDQ .

No login.properties file is used by default in Tomcat installations because the default setting is
to use internal authentication. If additional setting are required, or LDAP integration is required,
create a new security/login.properties file in the 'local' configuration directory and make
changes there.

• Creating Users and Groups in Tomcat Installation

Creating Users and Groups in Tomcat Installation
You can create internal users and groups in EDQ Launchpad.

To add users, follow the steps below:

1. In the EDQ Launchpad, click the Administration panel.

2. On the Users tab, click the add icon.

3. In the Create User window, do the following:

a. Under Account Details, add the user details.

Chapter 3
Enabling the internal realm

3-4

b. Under Group Selection, assign the user to a group.

The user is added and assigned to the selected group.

Similarly, you can use the Groups tab in the Administration panel, to add a group and the
group details.

Chapter 3
Tomcat Installations

3-5

4
Auditing User Activity

This chapter auditing in EDQ.
The chapter includes the following sections:

• Enabling Audit Logging Using Oracle Fusion Middleware Framework

• Enabling Audit Logging to Files

Enabling Audit Logging Using Oracle Fusion Middleware
Framework

You can configure EDQ to log audit events using the Oracle Fusion Middleware Audit
Framework when EDQ is installed with an Oracle WebLogic Server domain. For detailed
information on the framework see Introduction to Oracle Fusion Middleware Audit Framework
in Oracle Fusion Middleware Securing Applications with Oracle Platform Security Services.

To enable audit event logging, follow the steps below:

1. Open the Oracle Enterprise Manager Fusion Middleware Control12c application using the
path:

http://[servername]:[weblogic server admin port, e.g. 7001]/em
2. Navigate to the EDQ domain in the Target Navigation Tree on the left of the window.

3. Right-click the domain and select Security > Audit Policy.

4. Select EDQ in the Audit Component Name field.

5. Select Custom in the Audit Level field.

6. Select the categories to log, and the events within those categories.

7. Click Apply.

To abandon the changes, you must click Revert.

• Configuring the EDQ Audit Events in Fusion Middleware Framework

Configuring the EDQ Audit Events in Fusion Middleware Framework
Set the directory property in the audit.properties file in any directory (that exists), relative to
your local config home.

For example, add the following line to your new file:

directory = myAudits

where myAudits is a folder that exists at the same level as your new audit.properties file.

4-1

Table 4-1 EDQ Event Category and Types

Event Category Event Types

Asset Transfer Import Package

Case Management Bulk Delete, Bulk Update, Bulk Assignment, Display Data edited, Export, Edit, Assignment updated,
State changed, Comment added, Comment deleted, Comment edited, Attachment added, Attachment
deleted

Case Management
Admin

Case Source Added, Case Source Imported, Case Source Deleted, Permission Added, Permission
Modified, Permission Deleted, Workflow Added, Workflow Imported, Workflow Deleted, Parameter
Added, Parameter Modified, Parameter Deleted, Reception Action Added, Reception Action Modified,
Reception Action Deleted, Reception Transition Added, Reception Transition Modified, Reception
Transition Deleted, State Transition Added, State Transition Modified, State Transition Deleted,
Workflow State Added, Workflow State Modified, Workflow State Deleted

Group Permission
Management

Join group, Leave group, Leave all groups, Create group, Delete group, Change permissions.

Launchpad
Management

Extension Add, Extension Delete, Front Page Update

Object Management Create, Update, Delete.

User Management Login, Logout, Password Change, Password Expire, User Blocked, User Blocked Temporarily, User
Unblocked, User Created, User Updated, User Deleted, Security Configuration Updated.

Table 4-2 Event Attributes and Custom Attribute Slot

Event Attribute Description Custom Attribute Slot

Affected user The name of the user for the logged event. IAU_STRING_001

Login application The name of the application that has been logged into. IAU_STRING_002

Project Name The name of the project containing the affected object. This attribute is
left blank for system-level objects.

IAU_STRING_003

Item Type The type of object created, modified or deleted. IAU_STRING_004

Item Name The name of the object created, modified or deleted. IAU_STRING_005

Affected user The name of the user affected by changes made by an administrator. IAU_STRING_006

Affected group The name of the group affected by changes made by an administrator. IAU_STRING_007

Added Permissions List of permissions added to a group. IAU_LONGSTRING_001

Removed
Permissions

List of permissions removed from a group. IAU_LONGSTRING_002

The events that can be logged and their corresponding file-based auditing name are listed in
the following table. Please note that this is not a complete list.

Table 4-3 Attributes Logged by User Management Event

Weblogic Display Name File-Based Event Name

Login login

Logout logout

Password Change pwchange

Password Expire pwexpire

User Blocked userblock

Chapter 4
Enabling Audit Logging Using Oracle Fusion Middleware Framework

4-2

Table 4-3 (Cont.) Attributes Logged by User Management Event

Weblogic Display Name File-Based Event Name

User Temporarily Blocked usertempblock

User Unblocked userunblock

User Created usercreate

User Updated userupdate

User Deleted userdelete

Security Configuration Updated secconfig

Table 4-4 Attributes Logged by Group Permission Management Event

Weblogic Display Name File-Based Event Name

Join group joingroup

Leave group leavegroup

Leave all groups leaveallgroups

Create group creategroup

Delete group deletegroup

Change permissions changepermissions

Table 4-5 Attributes Logged by Object Management Event

Weblogic Display Name File-Based Event Name

Create create

Update update

Delete delete

Custom attributes are stored in the iau_custom table. For more information, see "Audit
Reporting with the Dynamic Metadata Model" in Oracle Fusion Middleware Securing
Applications with Oracle Platform Security Services. The generic attributes for the event are
stored in the iau_common table. Both of these are in the IAU schema ([RCUPREFIX]_IAU).

After the audit logs are enabled, EDQ audits events by calling the central Oracle Fusion
Middleware Audit Framework APIs. The audit events can then be stored either as files or in a
database for compliance reporting purposes. For more information on how to store and report
on the results of auditing, see Oracle Fusion Middleware Securing Applications with Oracle
Platform Security Services.

Enabling Audit Logging to Files
You can enable audit logs to be written to files on disk when EDQ is installed in Apache
Tomcat, or if you do not want to use the Oracle Fusion Middleware Audit Framework.

To enable audit logging, create a file named audit.properties in the local configuration
directory and add the following line:

enabled = true

Chapter 4
Enabling Audit Logging to Files

4-3

You can then either create a directory named audit in your local configuration directory, or
specify a path to an existing directory using the directory property in audit.properties. This path
is specified relative to the local configuration directory.

• Configuring the EDQ Audit Events on Disk

Configuring the EDQ Audit Events on Disk
For fine-grained control over specific categories and events that are audited, you can turn
certain categories off by adding the following line to audit.properties:

category.<category name>. enabled = false
You can turn the individual events back on, for that category, or turn them off if the category
has not been disabled, using the following command:

category.<category name>.<event name>.enabled = <true/false>
After the audit events are generated, they are placed in per-category files within the configured
audit directory. These files contain entries as comma-separated values; the first line contains
column headers.

Chapter 4
Enabling Audit Logging to Files

4-4

5
Integrating EDQ with a Fusion Middleware
Credential Store

This chapter describes how to use an Oracle Fusion Middleware credential store with EDQ
running on WebLogic.

This chapter includes the following sections:

• Overview of the Credential Store

• Configuring the Credential Store for EDQ

• Specifying the EDQ Credential Key in Properties Files

• Examples of Specifying a Key Name

Overview of the Credential Store
EDQ supports the use of the Oracle Fusion Middleware credential store to hide user names
and passwords that are used by EDQ to connect to protected resources, such as a JMS broker
or LDAP server. These credentials otherwise would be exposed as clear-text in the EDQ
properties files. When a credential store is used, a user name and password are replaced by a
key name that serves as an alias for the credential whenever a login is required.

Using a credential store with EDQ comprises the following steps:

• Configuring the Credential Store for EDQ

• Specifying the EDQ Credential Key in Properties Files

Configuring the Credential Store for EDQ
To configure a credential store, use Oracle Enterprise Manager Fusion Middleware Control.
For more information about using this browser-based console, see Administering Oracle
Fusion Middleware.

In a credential store, a credential is identified by a credential map. The credential map consists
of a map and one or more keys. In EDQ, the default map name is edq. The key name is
specified by the person who is creating the credential map and serves as the ”alias” for the
credential in the properties files. The person who creates the credential map must be an
Oracle Fusion Middleware administrator.

To Configure a Credential Store for EDQ

1. Log in to Oracle Enterprise Manager Fusion Middleware Control as an administrator.

2. Navigate to Domain > Security > Credentials to display the Credentials page.

3. Click Create Map to display the Create Map dialog. Once you create a map, you can
create multiple keys for it at the same time, or you can add more keys at a later date.

4. Create a map named edq, and then click OK. The edq map name is displayed in the table.

5-1

5. Click Create Key to display the Create Key dialog.

6. Select the following in this dialog:

• Select the edq map from the Select Map menu.

• Enter a name for the key in the Key text box. This is the key name that will be entered
in the properties files to replace the credential.

• Select Password from the Type menu.

• Enter the user name for the EDQ user in the User Name field and enter the password
for that user in the Password field. Confirm the password in the Confirm Password
field.

• Optionally, you can add a description of this credential.

7. Click OK to return to the Credentials page. The new key is displayed under the edq map
icon.

Specifying the EDQ Credential Key in Properties Files
Once you have configured an EDQ credential map in Fusion Middleware Control, use
the .cred.key property to specify the key name in place of the credential in properties files.

The syntax is this:

prefix.cred.key = keyname

It replaces the standard, non-secured username and password entries:

prefix.username = username
prefix.password = password

The following shows an entry for a credential for user ”myuser”, followed by an entry for the
same credential as represented by its key name.

Non-secured Credential in director.properties

This example shows the regular way of using the username and password properties to specify
the actual user name and password.

sccs.vcs.username = myuser
sccs.vcs.password = mypassword1234

Secured Credential in director.properties

This example uses the cred.key property to specify a key name from the credential store in
place of the login credential.

sccs.vcs.cred.key = mykey1

Chapter 5
Specifying the EDQ Credential Key in Properties Files

5-2

Secured Password-Only Entry

In cases where only a password is required, for example if creating a keystore for JMX over
SSL, append the .cred.key property to the property name. The following is an example:

management.ssl.km.storepw.cred.key = mykey1

Examples of Specifying a Key Name
These examples show additional ways to specify credentials by means of a key name.

Connection to a JMS Broker

This example shows a realtime bucket definition in which a credential is required to connect to
a JMS broker.

The following is the unsecured way of specifying the credential:

<messengerconfig>
 …
 username = myuser
 password = mypassword1234
 …
</messengerconfig>
…

The following is the secure specification using the key name:

…
<messengerconfig>
 …
 cred.key = mykey1
 …
</messengerconfig>
…

Connection to a JNDI Store

This example uses a credential to connect to a JNDI store.

The following is the unsecured way of specifying the credential:

…
<messengerconfig>
 …
 java.naming.security.principal = myuser
 java.naming.security.credentials = mypassword1234
 …
</messengerconfig>
…

Chapter 5
Examples of Specifying a Key Name

5-3

The following is the secure specification using the key name. In this case, the jndi prefix is
required, so the .cred.key is appended to it.

…
<messengerconfig>
 …
 jndi.cred.key = mykey1
 …
</messengerconfig>
…

Connecting to an LDAP Server

This example shows the correct syntax for specifying a connection to an LDAP server in the
login.properties file.

Non-secured entry:

myrealm.ldap.user = myuser
myrealm.ldap.pw = mypassword

Secured entry with credential store key:

myrealm.ldap.cred.key = mykey1

Chapter 5
Examples of Specifying a Key Name

5-4

6
Integrating External User Management (LDAP)
using WebLogic and OPSS

This chapter provides information on integration to LDAP using Weblogic and OPSS. It
includes the following sections:

• Understanding Security Realms, Providers and Control Flags

• Configuring WebLogic to use LDAP

Understanding Security Realms, Providers and Control Flags
A WebLogic domain can contain one or more Security Realms. Each realm defines a security
configuration, users and groups. Only one realm can be active at any one time, and generally
there is no benefit in creating additional realms. The default realm in a WebLogic domain is
named 'myrealm':

Each realm contains a number of security 'providers'. Providers are 'authenticators', which
handle user authentication and user stores, or 'identity asserters', which can determine user
identity from data embedded in a request, such as X.509 certificates or SAML tokens. The
Oracle Access Manager Identity Asserter, used for OAM integration, is explained in WebLogic
Configuration .

The default security realm has one authenticator and two identity asserters:

The DefaultAuthenticator handles users in the internal WebLogic store.

Each Authenticator provider has a control flag setting. The flag determines the part that the
provider plays in authenticating a user. There are four possible flag values, but the two of
importance here are:

REQUIRED: authentication in this provider must succeed for the overall process to complete.

SUFFICIENT: if authentication in this provider succeeds, the overall process is successful, as
long as no other authenticator has the REQUIRED control flag.

The DefaultAuthenticator is pre-configured with the control flag set to REQUIRED so that it is
required to succeed even if an LDAP authentication provider is configured. Part of the process
of configuring LDAP support is to change this value to SUFFICIENT.

The order of providers is also important. When more than one authenticator is enabled and
configured with the correct control flags, a user supported by any of the authenticators is able
to login to the WebLogic Administration Console. However EDQ has access to the first
authenticator in the list only; users from authenticators lower in the list will not be recognized.
Therefore it is important that when an LDAP authenticator is added, it is moved to the top of
the list. This is also covered below.

Configuring WebLogic to use LDAP
This section consists of pre-requisites and procedure to configure WebLogic.

• Prerequisites

6-1

• Integrating with Active Directory

• WebLogic Configuration

• EDQ Configuration

• Filtering Groups

• Using SSL to connect to LDAP

Prerequisites
Before beginning the configuration process, the following information must be gathered:

• The type of LDAP server in use. WebLogic provides authenticators for several types of
LDAP server, including Microsoft Active Directory, OpenLDAP and Oracle Internet
Directory. There is also a generic LDAP authenticator which can be used with servers not
supported directly (such as AD-LDS).

• The host name and port of the LDAP server. If your environment contains multiple servers
for high availability, you can use more than one host in the configuration. The default LDAP
port is 389.

• The identity and password of an LDAP user which can connect and perform searches. The
user identity is normally a full Distinguished Name (DN) but Active Directory also allows
shorter forms.

• The locations in the LDAP tree (base DNs) where users and groups can be found.

• The LDAP attribute on a user record which identifies the user on login. Whilst most LDAP
user schemas have standard user name attributes, organizations can choose to use
others.

• The LDAP attribute on a group record that identifies the group. In most installations, this
can be the group 'Common Name' (cn).

• The name of an LDAP group containing all the users that will be working with EDQ. The
group is used to filter the list of users presented for EDQ issue assignment, etc. Without
this filter, every user in the LDAP server would be presented, and this is generally not
recommended.

Integrating with Active Directory
The rest of this section will cover the detailed steps for an integration with Active Directory. The
steps are broadly similar for other types of LDAP server. Initial configuration will not use SSL.

In the walkthrough, these settings are used:

• Active Directory Domain: EXAMPLE.COM

• Domain Controller (LDAP server): dc1.example.com. The default, non-SSL, port 389 will
be used.

• LDAP user: cn=netuser,cn=users,dc=example,dc=com. Assuming that the AD username
for this user is 'netuser' then you can also use netuser@example.com or example\netuser.

• User base DN: dc=example,dc=com. Here the base is the root of the full LDAP tree. If all
the users are contained in a subtree, you could use something like:
cn=users,dc=example,dc=com.

• Group base DN: dc=example,dc=com. Again a subtree could be used if suitable.

Chapter 6
Configuring WebLogic to use LDAP

6-2

• User name attribute: sAMAccountName. This is the standard AD attribute which stores
the short login name. In the Active Directory Users and Computers application this is
displayed as the pre-Windows 2000 login name:

Figure 6-1 Account Details

• Group name attribute: cn

• All EDQ users group: edqusers

WebLogic Configuration

Note:

Ensure that the WebLogic Administration server is running. It is recommended that
the EDQ managed server(s) be stopped before beginning the configuration.

To configure the WebLogic, follow the steps below:

1. Login to the Administration Console and navigate to Security Realms/myrealm and click
the providers tab. Click New to add a new provider. Enter a name, for example, AD and
select the ActiveDirectoryAuthenticator.

2. Click OK. The new, unconfigured provider is added to the bottom of the list. An alert will
indicate that the Administration Server must be restarted for the changes to take effect.
This is not necessary at this stage; restart the server when the configuration is complete.

Click on the new provider and on the Configuration screen change the control flag to
SUFFICIENT.

3. Click Save and then select the Provider Specific tab. This is where the LDAP server
information is entered. In the Connection area, enter the LDAP server, port, user (Principal)
and password (Credential). Leave the SSLEnabled check box deselected.

4. In the Users area, enter the User Base DN and replace 'cn' with the user name attribute in
the User From Name Filter and User Name Attribute fields.

5. In the Groups area, enter the Group Base DN, and replace 'cn' in the Group From Name
Filter if you are not using 'cn' as the group name attribute.

6. No changes are needed in the remaining sections. Click Save to save the configuration.

Return to the list of providers (Security Realms/myrealm, Providers tab) and click on the
DefaultAuthenticator. Change the Control Flag to SUFFICIENT and click Save.

Chapter 6
Configuring WebLogic to use LDAP

6-3

7. Return to the providers list and click Reorder. Select AD and use the arrow to move it to
the top of the list.

8. Click OK to confirm the reordering.

The providers list will now show the AD provider first. This will enable EDQ to authenticate
against Active Directory.

Restart the Administration Server and login again. Navigate to Security Realms/myrealm and
click on the Users and Groups tab. You should see users and groups loaded from Active
Directory. If these are not present, check the Administration Server logs for errors and recheck
the configuration.

If there is an excessive delay displaying the Users and Group tab and a size limit error is
present in the logs:

<Administration Console encountered the following error: java.lang.RuntimeException:
netscape.ldap.LDAPException: error result (4); Sizelimit exceeded

Then there are too many users in Active Directory to be displayed in the Administration
Console. This will not cause problems with EDQ but you can reduce the number by entering an
LDAP search filter in the All Users Filter field on the AD Provider Specific tab.

EDQ Configuration
This section provides the procedure to configure EDQ.

• User Group

• Permissions

User Group
To define the group containing EDQ users, follow the steps below:

1. Logon to the server hosting the EDQ domain and navigate to the EDQ 'local' configuration
directory.

This is located at: DOMAIN_HOME/config/fmwconfig/edq/oedq.local.home.

2. Create a local security directory and copy the default login configuration to this directory:

$ mkdir security
$ cp ../oedq.home/security/login.properties security/

3. Edit the new local configuration at security/login.properties and add the line:

opss.prof.defaultusergroup = edqusers

Permissions
The pre-defined group mapping in login.properties maps the external 'Administrators' group to
the EDQ 'Administrators' group. This is a valid mapping when using the internal WebLogic user
store because the internal Administrators group contains the standard 'weblogic' administration
console user.

However the Administrators group in Active Directory contains domain level administrators and
it is unlikely that users in this group will use or administer EDQ. To add additional group
mappings from external EDQ relevant groups using the EDQ web console, it is necessary to
log in to EDQ as an administrator. This will be possible with the default pre-defined group
mapping only an Active Directory administrator is available. To allow other users to become
EDQ administrators, there are two approaches:

Chapter 6
Configuring WebLogic to use LDAP

6-4

• Edit the pre-defined mapping:

Edit the local login.properties and change the xgmap line to map a different LDAP group to
the EDQ Administrators group. For example if a group named 'edqadmins' has been
created in Active Directory to contain EDQ administration users, edit the line to read:

opss.xgmap = edqadmins -> Administrators
• Enable the 'internal' realm:

Edit the local login.properties and change the realms line to read:

realms = internal, opss

This will enable the EDQ internal user store and you can log in as user 'dnadmin' and
setup the necessary external group mappings using the web console. Once the mappings
are complete you can disable the internal realm again.

Once these changes are complete you can start the EDQ managed server and login in as
an Active Directory user. Note that external group mappings must be complete to grant the
necessary permissions before application logins can succeed.

Filtering Groups
LDAP stores in large organizations may include thousands of distinct groups and with no
additional filtering, all of these will appear in the external group mapping list on the EDQ web
console. To filter the group list to a manageable size, you can add an LDAP group filter to
login.properties.

Ensure to make a copy of this in the local configuration area before adding the filter. To add the
filter, edit and add the line:

opss.prof.groupfilter = LDAPGROUPFILTER

where LDAPGROUPFILTER is an LDAP-style filter to select groups. The filter uses generic
OPSS attribute names instead of LDAP-specific attributes. Use 'name' to refer to the name of
the group. The filter must return any groups used in pre-defined mappings.

In the EXAMPLE.COM setup all the groups used with EDQ start with the prefix 'edq' so the
filter would be:

opss.prof.groupfilter = (name=edq*)

Using SSL to connect to LDAP
If you wish to secure connections to the LDAP server by using SSL, tick the SSL Enabled
check box on the Provider Specific tab for the LDAP provider, and enter the SSL port (normally
636).

Note:

In current versions of WebLogic, if you make changes to the Provider Specific page
after initial configuration, you will need to enter the LDAP password again. The
original password is obfuscated but unfortunately this version is then saved.

Then to enable successful connections from WebLogic to the LDAP server, so that the list of
users and groups can be displayed, and you can login to WebLogic as an LDAP user, you will

Chapter 6
Configuring WebLogic to use LDAP

6-5

need to add the LDAP server certificate or root CA to the trust store of the JRE used to run
WebLogic. Use the Java keytool command to update the JRE's cacerts file. Documentation for
keytool can be found at:

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

Unfortunately the OPSS library used by EDQ for WebLogic authentication does not use the
cacerts store. Instead a new keystore must be created. Stop the EDQ managed server but
leave the Administration server running. Login to the server running WebLogic and set these
environment variables:

JAVA_HOME=java install location
WL_HOME=WLSHOME/wlserver
ORACLE_HOME=WLSHOME

and then execute:

$ WLSHOME/oracle_common/bin/libovdconfig.sh -host HOST -port PORT -userName weblogic -
domainPath DOMAIN_HOME -createKeystore

Here WLSHOME is the WebLogic installation directory; HOST is the name of the host running
the Administration Server, PORT is the Administration port (typically 7001) and
DOMAIN_HOME is the location of the WebLogic domain.

The command will prompt for the password for the weblogic user and then for a password for
the new keystore. This can by anything.

On successful completion, a new keystore is created at:

DOMAIN_HOME/config/fmwconfig/ovd/default/keystores/adapters.jks

Use the Java keytool to add the server or CA certificate to the newly created keystore:

$ keytool -import -keystore DOMAIN_HOME/config/fmwconfig/ovd/default/keystores/
adapters.jks -alias ALIAS -file CERTFILE

Replace ALIAS with the keystore identifying the certificate and replace CERTFILE with the
location of the certificate file.

The command will prompt for the keystore password; enter the password you specified when
the keystore was created.

Restart the EDQ managed server and LDAP users should be able to login. Traffic between
WebLogic and LDAP will be protected by SSL.

Chapter 6
Configuring WebLogic to use LDAP

6-6

7
Configuring External User Management
(LDAP) directly with EDQ

This chapter provides information on integration to LDAP with EDQ. It includes the following
sections:

• Integrate EDQ with LDAP

Integrate EDQ with LDAP
This section consists of pre-requisites and procedure to integrate EDQ with LDAP.

If you are not using WebLogic, or wish to use more than one LDAP store, you can integrate
EDQ directly with LDAP using settings in login.properties. This may also be convenient if
WebLogic does not provide a pre-defined Authenticator for your type of LDAP server. For
example, AD-LDS, the lightweight LDAP server provided on Windows, is not compatible with
Active Directory and you cannot use the WebLogic ActiveDirectoryAuthenticator.

This section covers the settings required in login.properties for simple LDAP integration.
Kerberos support, used for Windows integrated authentication, is covered in Configuring EDQ
to support Windows Integrated Authentication (Kerberos) .

• Prerequisites

• Integrating with Active Directory

Prerequisites
Before beginning the configuration process, the following information must be gathered:

• The type of LDAP server in use. EDQ has built-in profiles for Active Directory, Oracle
Internet Directory, OpenLDAP (using the inetOrgPerson user schema) and servers using
the RFC 2307 (Posix) style user schema.

• The host name and port of the LDAP server. If your environment contains multiple servers
for high availability, you can use more than one host in the configuration. The default LDAP
port is 389.

• The identity and password of an LDAP user which can connect and perform searches. The
user identity is normally a full Distinguished Name (DN) but Active Directory also allows
shorter forms.

• The base DN of the LDAP tree. Where possible this is determined automatically from the
LDAP RootDSE defaultNamingContext attribute, but if this is not available, it must be
provided in login.properties.

• The name of an LDAP group containing all the users that will be working with EDQ. The
group is used to filter the list of users presented for EDQ issue assignment, etc. Without
this filter, every user in the LDAP server would be presented, and this is generally not
recommended.

7-1

Integrating with Active Directory
The rest of this section will cover the detailed steps for an integration with Active Directory. The
steps are broadly similar for other types of LDAP server. Initial configuration will not use SSL.

In the walkthrough, these settings are used:

• Active Directory Domain: EXAMPLE.COM

• Domain Controller (LDAP server): dc1.example.com. The default, non-SSL, port 389 will
be used.

• LDAP user: cn=netuser,cn=users,dc=example,dc=com. Assuming that the AD username
for this user is 'netuser' then you can also use netuser@example.com or example\netuser.

• Base DN: dc=example,dc=com. When using Active Directory this is determined
automatically from the RootDSE.

• All EDQ users group: edqusers

Note:

Ensure that you have a login.properties in the security directory in the EDQ 'local'
configuration area. Tomcat installs do not have a default login.properties so just
create a new empty file.

• Global Settings:

In this example the Active Directory realm will be named 'ad'.

realms = internal, ad
gss = false
ldap.prof.useprimarygroup = false

Define the realm list. The EDQ internal realm is used so that the built-in administrator user
'dnadmin' can be used to set up external group mappings in the EDQ web console. The
final setting indicates that the 'primary group' of the user should not be considered in
determining group membership. For Active Directory this is always the 'Domain Users'
group, containing every user and would not be used for EDQ.

• Realm name:

ad.realm = EXAMPLE.COM

Set the name of the Active Directory domain. If more than one realm is defined in
login.properties, a dropdown selector for the realm is present on the EDQ login screens. If
you wish this to contain more explanatory text, add a 'label' property:

ad.label = Example, Inc. Active directory
• LDAP server settings:

ad.ldap.server = dc1.example.com
ad.ldap.auth = simple
ad.ldap.user = cn=netuser,cn=users,dc=example,dc=com
ad.ldap.pw = <password for the user>

Set the server name and user information. If the server is omitted EDQ attempts to
determine it automatically by a DNS lookup for ldap service records. If the server running
EDQ is configured to use the Active Directory domain controllers for DNS, then these

Chapter 7
Integrate EDQ with LDAP

7-2

records should be setup automatically. Otherwise specify the server in login.properties.
Multiple servers can be specified using a comma or space separated list:

ad.ldap.server = dc1.example.com, dc2.example.com:2342

To configure encryption for connections between EDQ and LDAP, add:

ad.ldap.security = ssl or tls

If you specify ssl as the value then a connection is made to the SSL port of the LDAP
server (normally 636). In this case the certificate used by the LDAP server must be trusted
by the JRE running EDQ. If the certificate was not created by a recognized provider, add
the server or Root CA certificate to the JRE cacerts trust store using the keytool command.
See: https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

If you specify tls as the property value then a connection is made to the normal non-SSL
LDAP port and a StartTLS command is then issued to switch the connection to use TLS
encryption. All sensitive information such as passwords is sent after the switch to TLS. In
this case, EDQ applies relaxed checks to the server certificate - it need not be trusted by
the JRE. If you are concerned about spoofing on the internal network, use SSL for extra
checks; otherwise using TLS simplifies the configuration.

• Configure User Authentication:

This set of properties defines how a username and password presented to EDQ are
verified in LDAP. This is a two-stage process. First a search is done to locate the user
record identified by the username. For Active Directory this is done by searching for a user
with the sAMAccountName matching the username or the userPrincipalName matching
username@DOMAIN. These Active Directory attributes represent the 'short' and 'long'
Windows login names.

If the user record is not found, authentication does not succeed. Then there are three
different methods in which the password can be verified:

– bind: Attempt to connect to LDAP using the discovered user identity and the
password. If this does not succeed, authentication fails.

– password: read the hashed password from the user record and compare it with the
supplied password. Most LDAP servers do not allow user password values to be read
and this method is rarely applicable. It is sometimes used with Posix style user
schemas.

– compare: Use an LDAP compare operation to check the password. This method can
be used with Oracle Internet Directory and can be preferable to 'bind' because it does
not involve creating a new session on the LDAP server.

The default method is 'bind' and this is always used with Active Directory.

ad.auth = ldap
ad.auth.bindmethod = simple
ad.auth.binddn = search: dn

The 'auth' property sets LDAP-based authentication; other settings are possible if using
advanced methods such as Kerberos. The 'bindmethod' property sets the connection
method - 'simple' sends the user name and password in clear. The 'binddn' property sets
the identity used in the connection attempt; here the DN (Distinguished Name) found from
the initial user search is used.

An alternative bind method is digest-md5 which sends the password in hashed form rather
than clear. To use this method, replace the bind properties with:

ad.auth.bindmethod = digest-md5
ad.auth.binddn = search: sAMAccountName

Chapter 7
Integrate EDQ with LDAP

7-3

The Windows user name is used for the connection instead of the Distinguished Name -
this is required for digest-md5 connections.

To use LDAP compare for password verification, with Oracle Internet Directory, use these
settings:

oid.auth = ldap
oid.auth.method = compare

• LDAP profile:

These settings define the LDAP schema in use and customise user lookup:

ad.ldap.profile = adsldap
ad.ldap.prof.defaultusergroup = edqusers

The 'adsldap' profile is used with Active Directory. Other pre-defined profiles are:

– inetorgoidldap: Oracle Internet Directory, with inetOrgPerson users

– inetorgopenldap: OpenLDAP, with inetOrgPerson users

– rfc2307ldap: RFC 2307 (Posix) style user records

The 'defaultusergroup' property defines the group containing all EDQ users.

LDAP stores in large organizations may include thousands of distinct groups and with no
additional filtering, all of these will appear in the external group mapping list on the EDQ
web console. To filter the group list to a manageable size, you can add an LDAP group
filter:

ad.ldap.prof.groupsearchfilter = LDAPGROUPFILTER

where LDAPGROUPFILTER is an LDAP-style filter to select groups. The filter must return
any groups used in pre-defined mappings.

In the EXAMPLE.COM setup all the groups used with EDQ start with the prefix ‘edq' so the
filter would be:

ad.ldap.prof.groupsearchfilter = (cn=edq*)
• Putting it all together:

This is the complete login.properties used for the Active Directory integration example:

EXAMPLE.COM LDAP integration

realms = internal, ad
gss = false
ldap.prof.useprimarygroup = false

ad.realm = EXAMPLE.COM
ad.ldap.server = dc1.example.com
ad.ldap.auth = simple
ad.ldap.user = cn=netuser,cn=users,dc=example,dc=com
ad.ldap.pw = <password for the user>
ad.auth = ldap
ad.auth.bindmethod = simple
ad.auth.binddn = search: dn

ad.ldap.profile = adsldap
ad.ldap.prof.defaultusergroup = edqusers

• Integrating with more than one LDAP store:

Chapter 7
Integrate EDQ with LDAP

7-4

To integrate with multiple LDAP stores, simply define multiple realms and include a block of
settings for each:

realms = internal, ad1, ad2, oid
ad1.realm = …
…
ad2.realm = …
…
oid.realm = …
…

If you are using an Active Directory Forest with multiple domains, each domain must be
defined as a separate realm in login.properties - EDQ cannot make cross-domain
references. For example:

realms = internal, aduk, asus
aduk.realm = UK.EXAMPLE.COM
aduk.ldap.server = DC1.UK.EXAMPLE.COM
…
adus.realm = US.EXAMPLE.COM
asus.ldap.server = DC1.US.EXAMPLE.COM
…

Chapter 7
Integrate EDQ with LDAP

7-5

8
Integrating EDQ with Azure Active Directory

This chapter describes how to integrate Azure Active Directory (AD) with Oracle Enterprise
Data Quality (EDQ).

Note:

This feature is applicable for EDQ 12.2.1.4.2 and later releases.

This chapter includes the following sections:

• Registering the EDQ Application in Azure AD

• Enabling OpenID Connect SSO in the Application

• Enabling Multiple URI Redirects for OpenID Authentication
The OpenID integration framework is enhanced in EDQ 12.2.1.4.3 to allow configuration of
multiple redirect URIs based on the incoming host name. This allows login through the load
balancer or to a specific host behind the load balancer.

• Editing the EDQ login.properties File

• Enabling OAuth2 Bearer Authentication for Web Services

Registering the EDQ Application in Azure AD
EDQ can integrate with Azure AD as an identity store. You need to register the EDQ app in
Azure AD so that user and group queries can use the Microsoft Graph v1.0 REST APIs to
access data in Azure AD.

To register the EDQ app in Azure AD,

1. In the Azure Portal, navigate to the Azure AD instance (named Default Directory by
default).

2. In the Manage menu on the left, click App Registrations.

3. Click New Registration and do the following:

• Enter a name. For example, edqgraph.

• Select Accounts in this organizational directory only (Default Directory only -
Single tenant)

4. Click Register to create the new app registration.

The Overview screen is displayed.

5. Copy and save the Application (client) ID. This ID is used as the Client ID for OAuth2 client
credentials authentication.

6. Click Client credentials on the top left of the screen.

7. Click New client secret and do the following:

8-1

• Enter a description.

• Select the expiry date for the client secret.

• Click Add.

• Copy and save the new secret value.

Note:

Ensure that you update the EDQ configuration before the secret expires.

8. Click API permissions and then click Add a permission.

9. Under Microsoft APIs, select Microsoft Graph.

10. The application runs as a background service and not as a real signed-in user. Do the
following to set the permissions:

• Select Application Permissions.

• Expand Application and select Application.Read.All.

• Expand Group and select Group.Read.All.

• Expand User and select User.Read.All.

Note:

The single permission Directory.Read.All covers user, group, and application
access.

11. On the API Permissions page, click Grant admin consent for Default Directory.

This allows the application to use the permissions without further consent prompts.

You can now now use the application to request OAuth2 client credentials for use with
Microsoft Graph REST API calls.

Enabling OpenID Connect SSO in the Application
You need to configure the redirect URIs to the EDQ servers to enable SSO using OpenID
Connect. You can add the redirect URIs of any additional EDQ servers so that the single app
registration can support multiple servers.
To enable SSO using OpenID Connect, follow the steps below:

1. In the Azure Portal, navigate to the Azure AD instance (named Default Directory by
default).

2. In the Manage menu on the left, click App Registrations and select the app you newly
registered in Registering the EDQ Application in Azure AD.

3. On the Overview screen, click Add an Application URI in the top right of the screen.

4. On the next screen click Add a platform.

5. Select Web as the platform type.

6. Enter the call back URI for the EDQ instance in the following format:

https://server/edq/oidc/callback

Chapter 8
Enabling OpenID Connect SSO in the Application

8-2

where server is the host name of your EDQ installation. This URI is used to support the
login flow. If a web server such as Apache HTTPD or Nginx is being used as a front end or
load balancer for EDQ, enter the name of that server.

7. Click Configure to save the URI. You can leave the other settings as is.

8. Click Add URI.

9. Enter the following URI for the EDQ instance logout flow:

https://server/edq/oidc/loggedout
10. Click Save at the top to save the changes.

The app registration is now ready for SSO using OpenID connect.

Enabling Multiple URI Redirects for OpenID Authentication
The OpenID integration framework is enhanced in EDQ 12.2.1.4.3 to allow configuration of
multiple redirect URIs based on the incoming host name. This allows login through the load
balancer or to a specific host behind the load balancer.

You can set up logins to EDQ instances in the following ways:

• Using automatic URI: Set the redirect URL in login.properties to auto. In this case, the
URL is derived from the HTTP request as https://HOST/edq/oidc/callback.
For example, if the user refers to https://lb.example.com/edq/ the redirect URI is
constructed as https://lb.example.com/edq/oidc/callback. If the user refers to
https://instance1.example.com/edq/ the redirect URI is constructed as https://
instance1.example.com/edq/oidc/callback. The host name is derived from reading the
X-Forwarded-Host HTTP header. If X-Forwarded-Host is not present, then the Host
header is used.

• Using host to URI mappings: Define a map from host name to URI in login.properties. In
this case, the host name is compared against each mapping and the first match is used. In
addition to the special value auto, you can use none to indicate that no redirection should
take place. This allows normal internal logins to the EDQ Launchpad and other
applications. For more control, the host name can be a regex, prefixed with ~. If there is no
match, the default redirect URI is used.
For example,

azure.extra.oidc.redirect_map = localhost -> none, \
 testhost -> none, \
 myalias -> https://
lb.example.com/edq/oidc/callback,
 ~host\\d+\.example\.com -> auto

In this example:

– References to https://localhost/edq/ or https://testhost/edq/ do not redirect
and give direct login access.

– References to https://myalias/edq/ use the load balancer redirect.

– References to https://host23.example.com/edq/ redirect to https://
host23.example.com/edq/oidc/callback.

Editing the EDQ login.properties File

Chapter 8
Enabling Multiple URI Redirects for OpenID Authentication

8-3

User authentication in EDQ is configured using a file named security/login.properties in the
EDQ configuration area. The file should be created in the "local" configuration. If the directory
"security" does not exist in this location you must create it manually. You need to edit
login.properties and define a realm for Azure AD.

Before you edit login.properties, note the following:

• Ensure that EDQ supports HTTPS connections.

• The Marketplace images implement SSL in the Apache HTTPD front end, so no further
actions are necessary.

• If you are connecting to EDQ without a web front end, HTTPS must be configured in the
application server.

Refer to the WebLogic or Tomcat documentation for more details.

Set login.properties as follows:

Realms
realms = azure
yourdomain.com users and groups at Azure AD
azure.realm = yourdomain.com
azure.label = Azure AD
azure.type = azure
azure.clientid = clientid
azure.clientsecret = clientsecret
azure.tenant = tenant ID
azure.proxy = <proxy server>:port
azure.prof.groupfilter = startsWith(displayName, 'edq-')
azure.prof.userdisplayname = userName
azure.prof.defaultusergroup = edq-users
azure.extra.oidc = true
azure.extra.oidc.redirect_uri = https://server/edq/oidc/callback
azure.xgmap = edq-admins -> Administrators

Where,

• – realm is the custom domain for your Azure AD instance.

– tenant is your Azure tenant ID.

– clientid and clientsecret are the values for your Azure AD application.

– proxy is the host and port of the proxy server required to access the internet from your
EDQ server. If a proxy is not required, omit this setting.

– groupfilter is a Microsoft Graph $filter expression to select the groups used with EDQ.
The value shown in the example returns all groups whose name starts with edq-.
Refer to the Microsoft documentation for details about filtering. Omit this setting if you
want all groups to be visible.

– defaultusergroup is the name of the group containing the users who work with EDQ.
Here the group edq-users has been used as an example.

– extra.oidc.redirect_uri is the redirect URI entered in the Azure AD application. The
URIs must match exactly.

– xgmap is the bootstrap group mapping required for admin login. Here as an example,
the Azure group edq-admins is mapped to the EDQ Administrators group. You can
set other group mappings in the EDQ console.

Chapter 8
Editing the EDQ login.properties File

8-4

After the server is restarted, references to the EDQ launchpad will redirect to the Microsoft
login page.

Enabling OAuth2 Bearer Authentication for Web Services
Authentication in Azure AD is based on SSO mechanisms such as OpenID Connect and
SAML. There is no support for programmatic authentication with a username and password.

If Azure AD is configured as the sole identity store for EDQ, the following features are not
available:

• Basic authentication for calls to EDQ web services.

• Authentication for JMX connections.

• Explicit login to the EDQ launchpad or Java applications.

• Connections to the built-in SSH (SFTP/SCP) server

To continue to use JMX (JConsole, JMXTools) connections to EDQ, the recommended
approach is to enable the "internal" realm in login.properties:

realms = internal, azure
and use internal users such as "dnadmin" for JMX authentication.

For web service authentication with Azure AD, EDQ supports authentication using OAuth2
Bearer access tokens. A caller will use the client credentials or authorization code flows to
acquire an access token and then pass this to EDQ in an Authorization header. For example,

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Im5PbzNa
User credentials obtained from the authorization code flow are mapped using the user identity
in the same way as normal logins.

See the Azure documentation for more information about access tokens and token validation.

Client credentials are mapped using application roles, as described in the following sections:

• Configuring the Azure Application to Support Bearer Authentication with EDQ

• Creating Client Applications in Azure AD

• Editing the EDQ login.properties File to Map Roles

• Configuring Application Display in EDQ

Configuring the Azure Application to Support Bearer Authentication with
EDQ

To configure the Azure application to support Bearer authentication with EDQ, follow the steps
below:

1. In the Azure Portal, navigate to the Azure AD instance (named Default Directory by
default).

2. In the Manage menu on the left, click App Registrations.

3. On the Overview screen, click Add an Application URI in the top right of the screen and
click Set.

Chapter 8
Enabling OAuth2 Bearer Authentication for Web Services

8-5

https://docs.microsoft.com/en-us/azure/active-directory/develop/access-tokens

A default value such as api://1b843028-71bd-47e7-b62e-7859c0a96627 is provided, but
you can use any value after api:// as long as it is unique in the Azure Directory instance.

Note:

For ease of reference, we will assume the value as api://edq for the rest of this
topic.

4. Click Save to store the URI. You can leave the other settings as is.

OAuth2 calls to request client credentials tokens must use the scope api://edq/.default

5. Applications that call EDQ web services are authorized using application roles or group
membership. To define roles for the existing Azure application, click App Roles and then
click Create app role.

6. Enter a display name that is used in the portal, a value which is used for configuration, and
a description.

7. Select Applications as the Allowed member types. For example, roles might be defined
for simple web service calls and for system administration.

Creating Client Applications in Azure AD

Calls to EDQ using OAuth2 client credentials are made on behalf of Azure Applications.
To create an application, follow these steps:

1. Create an app registration as described in Registering the EDQ Application in Azure AD.

2. Copy and save the Application (client) ID and client secret.

3. If you are using App Roles for authorization in EDQ, click API permissions and then click
Add a permission.

4. Select My APIs and click the graph+SSO application.

5. Select the required roles and then Grant admin consent.

The new client application is now associated with the selected roles in the graph+SSO
application.

6. If you are using Group membership for application authorization in EDQ, select the
required Azure group and add the new application as a member.

Editing the EDQ login.properties File to Map Roles

Add settings in login.properties to verify the audience and issuer claims in access tokens, and
to add rolemap settings to map application roles to EDQ groups. Add the following to
login.properties:

azure.extra.oauth2.token.aud = api://edq
azure.extra.oauth2.token.iss = https://sts.windows.net/TENANTID/
azure.extra.oauth2.rolemap = administration -> Administrators, callers ->
Data Stewards

Chapter 8
Enabling OAuth2 Bearer Authentication for Web Services

8-6

The rolemap example setting maps the administration role to the EDQ Administrators group
and the callers role to the EDQ Data Stewards group. If you are using groups for application
authorization in EDQ, the rolemap setting is not required.

Configuring Application Display in EDQ

A client application that makes a call to EDQ services using OAuth2 is allocated an internal
"user" ID in the same way as for standard users. In applications, such as Case Management,
that display historical information regarding user updates, an application is displayed as App:
NAME where NAME is the display name of the application in Azure AD. The display format
may be configured using the appusername profile property in login.properties:

azure.prof.appusername = OAuth2 application: {0}

In the property value {0} is replaced by the application name.

To enable application name display, the list of users retrieved from Azure AD is augmented
with a query for applications, which uses the list servicePrincipals API. By default, applications
that have never made a client call to EDQ are not included. When an application makes an
initial call to EDQ, the name is not immediately available for display in Case Management. If
this is a problem, the profile showallapps property can be set such that all applications are
retrieved:

azure.prof.showallapps = true

The appfilter profile property can used to filter applications by name:

azure.prof.appfilter = startsWith(displayName, 'Studio')

If OAuth2 client calls are not used for an installation, application listing can be disabled by
setting the appfilter property to the special value 'none':

azure.prof.appfilter = none

In this case, the Graph Application.Read.All permission is not required.

Chapter 8
Enabling OAuth2 Bearer Authentication for Web Services

8-7

9
Integrating EDQ with Oracle Identity Cloud
Service

This chapter describes how to integrate Oracle Identity Cloud Service (IDCS) with Oracle
Enterprise Data Quality (EDQ).

Note:

This feature is applicable for EDQ 12.2.1.4.2 and later releases.

This chapter includes the following sections:

• Creating an IDCS Application

• Configuring the EDQ login.properties File

• Enabling SSO using OpenID Connect

• Enabling OAuth2 Bearer Authentication for Web Services

Creating an IDCS Application
EDQ uses the IDCS REST APIs to authenticate credentials and retrieve lists of users and
groups. These APIs are authenticated with the OAuth2 client credentials flow using tokens
obtained from an IDCS application.
To create an application to use with EDQ, follow these steps.

1. Login to the IDCS console as an administrator.

For logins from the main OCI console, you can find the link to the IDCS console by
navigating to Identity > Federation > OracleIdentityCloudService. The console link will
be similar to the following:
https://idcs-xxxxxxxxxxxxxxxxxxxxxx.identity.oraclecloud.com/ui/v1/
adminconsole
The portion of the URL before .identity.oraclecloud.com is the IDCS instance
identifier and is required when configuring EDQ. In this example it is idcs-
xxxxxxxxxxxxxxxxxxxxxx

2. On the Applications and Services page click + Add to create a new Application.

3. Select Confidential Application.

4. Enter a name and, optionally, a description. No other information is required on the first
page.

5. Click Next .

6. Select Configure this application as a client now.

7. In the Authorization section, select Client Credentials from the Allowed Grant Types.

9-1

8. Under Grant the client access to Identity Cloud Service Admin APIs click Add.

9. Select Application Administrator and Authenticator Client.

10. Click Next through the remaining steps, and then click Finish.

11. Copy and save the Client ID and Client Secret values that are displayed. You can also
retrieve these values from the Application Configuration in the General Information section.

12. Click Activate to enable the application for use.

Configuring the EDQ login.properties File
You need to edit login.properties and define a realm for IDCS. Set login.properties as follows:

Realms
realms = internal, idcs

idcs.realm = IDCS
idcs.label = IDCS
idcs.type = idcs

idcs.clientid = 61a155a32c39486c95a18ed1de7cc934
idcs.clientsecret = 53d09389-3645-4963-b0aa-152dd7505e7f
idcs.instance = idcs-xxxxxxxxxxxxxxxxxxxxxxxxxxxx
Add this if a proxy is required to reach https://idcs-
xxxxxxxxxxxxxxxxxxxxxxxxxxxx.identity.oraclecloud.com
#idcs.proxy = host:port

Enter the Client ID and Client Secret that was generated when the application was created,
and the IDCS instance identifier portion of the URL.

Restart the EDQ server. To verify the integration check the External Groups page on the EDQ
Launchpad.

• Additional Configuration

Additional Configuration

Many IDCS instances are configured to use the user's email address as the user name. By
default external users in EDQ are identified by username@REALM. If IDCS is configured with
email addresses as user names, for a user named John Sheridan who works with Interstellar
Alliance, for example, this would appear as
john.sheridan@interstellaralliance.org@IDCS.

To remove the @IDCS portion from the user name, add the following to login.properties:

idcs.prof.userdisplayname = userName

To setup some bootstrap group mappings, use the xgmap property:

idcs.xgmap = EDQ admins -> Adminstrators

Chapter 9
Configuring the EDQ login.properties File

9-2

Members of the IDCS group EDQ admins will login to EDQ as members of the Administrators
group. You can define more group mappings using the EDQ console.

To limit the set of users displayed in EDQ, add a default group assignment, for example:

 idcs.prof.defaultusergroup = EDQ users

Enabling SSO using OpenID Connect
You can configure EDQ for SSO with IDCS using OpenID Connect with OAuth2. When a user
visits the EDQ Launchpad they are redirected to the IDCS login page. After successful login
the user is redirected back to EDQ. Applications are also logged in automatically using the
IDCS identity.

To enable SSO using OpenID Connect, see the following sections:

• Configure the EDQ Application in IDCS

• Configuring EDQ for OpenID Connect SSO

Configure the EDQ Application in IDCS

You need to configure the redirect URIs to the EDQ servers to enable SSO using OpenID
Connect.

Note:

IDCS supports multiple values for the redirect URLs. You can use the same
application to support several EDQ instances. However, this section describes setting
the redirect URIs using the IDCS console, which does not support the configuration
of multiple values. You need to use the IDCS REST API to set the URLs for such
cases.

1. Login to the IDCS console and navigate to the application you created in Creating an IDCS
Application.

2. On the Configuration tab, open the Client Configuration section and select Authorization
Code as an allowed grant type.

3. If your server does not have HTTPS enabled, select the Allow non-HTTPS URLs
checkbox.

4. Set the Redirect URL to https://yourserver/edq/oidc/callback where
yourserver is the full host name of your EDQ server. Include the port, if required.

5. Set the Post Logout Redirect URL to https://yourserver/edq/oidc/loggedout.

6. Save the changes made to the application.

7. Select the Users or Groups tabs to add users to the application.

If you have a defaultusergroup defined in login.properties, the simplest approach
would be to add the group so that all EDQ users can use the application.

Chapter 9
Enabling SSO using OpenID Connect

9-3

Configuring EDQ for OpenID Connect SSO

Add these settings to login.properties:

idcs.extra.oidc = true
idcs.extra.oidc.redirect_uri = https://yourserver/edq/oidc/callback

The redirect_url value must match the Redirect URL entered for the application in Configure
the EDQ Application in IDCS.

Restart EDQ. When you browse to the Launchpad you will be redirected to the IDCS login
page.

EDQ 12.2.1.4.3 onwards you can configure login.properties to map the host name to multiple
redirect URIs. See Enabling Multiple URI Redirects for OpenID Authentication for more
information.

Enabling OAuth2 Bearer Authentication for Web Services
If OpenID connect SSO is configured, EDQ supports web service authentication using OAuth2
Bearer access tokens. A caller will use the client credentials or authorization code flows to
acquire an access token and then pass this to EDQ in an Authorization header. For example,

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Im5PbzNa
User credentials obtained from the authorization code flow are mapped using the user identity
in the same way as normal logins.

See the IDCS documentation for more information about access tokens and token validation.

Client credentials are mapped using request scopes, as described in the following sections:

• Configuring Application Scopes

• Configuring EDQ

Configuring Application Scopes

To configure the IDCS application to support Bearer authentication with EDQ, define a
protected resource and associated scopes. The scopes can be mapped to EDQ groups,
allowing different client applications to request different permissions.
To define a resource, follow these steps:

1. Navigate to the IDCS application.

2. Click the Configuration tab and open the resources area.

3. Select Register Resources.

4. Enter a value in the Primary Audience field. The value can be any string ending in a
colon. For example, urn:edq:

5. In the Scopes section, click Add to add scopes corresponding to the required EDQ access.
For example, admininstration and callers.

Chapter 9
Enabling OAuth2 Bearer Authentication for Web Services

9-4

https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/AccessToken.html

6. Configure the client application to request access tokens using the configured scope. For
example, urn:edq:administration or urn:edq:callers.

Configuring EDQ

In login.properties add settings to verify the Audience and map scopes to groups:

idcs.extra.oauth2.token.aud = urn:edq:
idcs.extra.oauth2.scopemap = administration -> Administrators, callers ->
Data Stewards

Where,

• token.aud enables verification of the aud claim in access tokens.

• scopemap maps the administration scope to the EDQ Administrators group and the
callers scope to the EDQ Data Stewards group.

Chapter 9
Enabling OAuth2 Bearer Authentication for Web Services

9-5

10
Integrating EDQ with Cognito User Pools

This chapter describes how to integrate Cognito user pools with Oracle Enterprise Data Quality
(EDQ).

Note:

This feature is applicable for EDQ 12.2.1.4.3 and later releases.

This chapter includes the following sections:

• Creating the User Pool

• Creating an IAM User for REST API Calls

• Editing the EDQ login.properties File

• Enabling OAuth2 Bearer Authentication for Web Services

Creating the User Pool
EDQ can integrate with Amazon Cognito user pool as an identity store. User and group logins
happen using Amazon Cognito REST APIs. To use EDQ with Amazon Cognito, you need to
first create a user pool using the Amazon Cognito console.

To create an Amazon Incognito user pool, follow these steps.

1. Login to the Amazon Cognito console. If prompted, enter your AWS credentials.

2. Choose User Pools.

3. In the top-right corner of the page, choose Create a user pool to open the wizard. You can
also use an existing user pool.

4. Choose your password policy, multi-factor authentication (MFA) requirements, and user
account recovery options.

5. Configure user sign-up experience to determine how new users will verify their identities
when signing up. Ensure that email and name are selected as required attributes. Cognito
does not provide a default "Organization" attribute. If this is required for EDQ, create a
custom attribute.

6. Configure user message delivery as required to send email and SMS messages to your
users for sign-up, account confirmation, MFA, and account recovery. There is no need to
configure message delivery if users will be created by administrators with preset initial
passwords.

7. In Integrate your app, name your user pool, configure the hosted UI, and create an app
client. For more information, see Add an App to Enable the Hosted Web UI

8. In Integrate your app, select Confidential client as the type, and ensure that Generate a
client secret is selected.

10-1

9. In Allowed callback URLs enter https://server/edq/oidc/callback
If you wish to use an existing user pool, you can add a new App client supporting the
Authorization code grant flow and configure the callback URLs. You can add additional
callback URLs after the pool is created to allow multiple EDQ instances to be supported.

10. In Advanced app client settings, add https://server/edq/oidc/loggedout as an
allowed sign-out URL.

If you are using WebLogic, it may be necessary to include the port number in the sign-out
URL. Add https://server:443/edq/oidc/loggedout as an additional sign-out URL.

11. Review your choices in the summary screen and click Create user pool to proceed.

Creating an IAM User for REST API Calls
Calls to the Cognito REST APIs are authenticated with standard AWS request signatures. We
recommend that you create an IAM user with only the permissions needed by EDQ. First
create an IAM policy with the required permissions. Create an IAM user and attach the new
policy, either directly or via a group. Create credentials for the user and note the key and
associated secret.

Editing the EDQ login.properties File
User authentication in EDQ is configured using a file named security/login.properties in the
EDQ configuration area. The file should be created in the "local" configuration. If the directory
"security" does not exist in this location you must create it manually. You need to edit
login.properties and define a realm for Cognito.

Before you edit login.properties, click App client information in the user pool summary and
copy the Client ID and Client secret.

Note the following:

• Ensure that EDQ supports HTTPS connections.

• The Marketplace images implement SSL in the Apache HTTPD front end, so no further
actions are necessary.

• If you are connecting to EDQ without a web front end, HTTPS must be configured in the
application server.

Refer to the WebLogic or Tomcat documentation for more details.

Set login.properties as follows:

Realms

realms = cognito

cognito.realm = yourdomain.com
cognito.label = Cognito user pool
cognito.type = cognito

cognito.region = eu-west-1
cognito.pool = eu-west-1_z9wkvtsPx
cognito.proxy = proxyserver:port
cognito.access_key = AKIAVWUKAYEFKZM7GFVU

Chapter 10
Creating an IAM User for REST API Calls

10-2

cognito.access_secret = lapirJ3l8n4+lD43TCDReFXexS....
cognito.prof.defaultusergroup = edq-users
cognito.xgmap = edq-admins -> Administrators

cognito.extra.oidc = true
cognito.extra.oidc.clientid = 2p4st7jlu6ne49rchiump9ulqc
cognito.extra.oidc.clientsecret = ...
cognito.extra.oidc.redirect_uri = https://server/edq/oidc/callback

Where,

• realm is the domain you wish to use with your Amazon Cognito user pool.

• region is the user pool region.

• pool is the user pool ID.

• proxy is the host and port of the proxy server required to access the internet from your
EDQ server. If a proxy is not required, omit this setting.

• access_key and access_secret to the access key and secret for the IAM user.

• defaultusergroup is the name of the group containing the users who work with EDQ. Here
the group edq-users has been used as an example.

• extra.oidc.clientid and extra.oidc.clientsecret are the values for your user pool app
client.

• extra.oidc.redirect_uri is the redirect URI entered in the Cognito application. The URIs
must match exactly.

• xgmap is the bootstrap group mapping required for admin login. Here as an example, the
Cognito group edq-admins is mapped to the EDQ Administrators group. You can set
other group mappings in the EDQ console.

After the server is restarted, references to the EDQ launchpad will redirect to the Cognito login
page. You can provide your own login page or customize the standard page using CSS.

• User Attribute Selection

User Attribute Selection

Internal and external users in EDQ are represented by a username, email address, full name
(such as John Smith), telephone number, and organization name. Full name, telephone, and
organization are stored as "vcard" attributes, to allow for future expansion. When integrating
with Cognito user pools these values are derived by reading attributes from user objects:

Value Cognito user attribute Overriding property in
login.properties

username Username cognito.prof.usernameattr

email address email cognito.prof.vcard.email.pref

full name name cognito.prof.vcard.fn

telephone number phone_number cognito.prof.vcard.tel.work

organization cognito.prof.vcard.org

Chapter 10
Editing the EDQ login.properties File

10-3

Cognito does not have a standard Organization attribute. If you defined a custom attribute for
this when the user pool was created, you can refer to it in login.properties. For example:

cognito.prof.vcard.org = custom:organization

vcard. properties can specify multiple attributes. The first attribute with a non-empty value is
used as the result. For example, if there are custom organization and department attributes,
you can set the following:

cognito.prof.vcard.org = custom:department custom:organization

You can also configure a cognito.prof.userdisplayname property. The value is an expression
constructed from user attributes. The resulting value is used whenever a user is displayed in
EDQ. If not set, username@realm is used. For example john.smith@yourdomain.com. If the
user name is an email address, or you have only a single realm, you can override
cognito.prof.userdisplayname to use a different attribute. For example, set the following to
use the user name as the display name:

cognito.prof.userdisplayname = Username

The value is an expression so that you can specify more exotic values. For example, set the
following to create values such as john.smith (John Smith):

cognito.prof.userdisplayname = Username || ' (' || name || ')'

Enabling OAuth2 Bearer Authentication for Web Services
EDQ integration with Cognito user pools is based on SSO mechanisms such as OpenID
Connect SSO authentication. There is no support for programmatic authentication with a
username and password.

If Cognito is configured as the sole identity store for EDQ, the following features are not
available:

• Basic authentication for calls to EDQ web services.

• Authentication for JMX connections.

• Explicit login to the EDQ launchpad or Java applications.

• Connections to the built-in SSH server

To continue to use JMX (JConsole, JMXTools) or SSH connections to EDQ, the recommended
approach is to enable the "internal" realm in login.properties:

realms = internal, cognito
and use internal users such as "dnadmin" for authentication.

For web service authentication with Cognito, EDQ supports authentication using OAuth2
Bearer access tokens. A caller will use the client credentials or authorization code flows to
acquire an access token and then pass this to EDQ in an Authorization header. For example,

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Im5PbzNaRHJPRFhFSzFqS1doWHNs......

Chapter 10
Enabling OAuth2 Bearer Authentication for Web Services

10-4

User credentials obtained from the authorization code flow are mapped using the user identity
in the same way as normal logins.

See the Cognito documentation for more information about access tokens and token
validation.

Client credentials are mapped using custom roles, as described in the following sections:

• Configuring Custom Scopes in the User Pool

• Configuring Client Credentials Application

• Configuring EDQ

• Configuring Application Display in EDQ

Configuring Custom Scopes in the User Pool

Authorization for client credentials calls is done by mapping custom OAuth2 scopes to EDQ
groups. The first step is to create the required custom scopes in the user pool.

To configure custom scopes in the user pool:

1. In the Resource servers section of the user pool properties click Create resource server.

2. Enter a Resource server name and Resource server identifier. The URI does not refer to a
real server instance so you can use a simple URI such as urn:edq.

3. Click Add custom scope.

4. Enter a Scope name and description.

5. Click Create.

Configuring Client Credentials Application

After you have added the custom scopes in the user pool, you need to map them in the user
pool properties.

To configure client credentials:

1. In the user pool properties, create a new client.

2. Select Confidential client and ensure that Generate a client secret is enabled.

3. Remove the callback URL and select Client credentials as the OAuth 2.0 grant type.

4. In the Custom scopes section, select the scope you defined with the resource server in
Configuring Custom Scopes in the User Pool.

Configuring EDQ

In login.properties add scopemap settings to map scopes to EDQ groups:

cognito.extra.oauth2.scopemap = urn:edq/callws -> Data Stewards

Here scopemap maps the urn:edq/callws custom scope to the EDQ Data Stewards group.

Chapter 10
Enabling OAuth2 Bearer Authentication for Web Services

10-5

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-the-access-token.html

Configuring Application Display in EDQ

A client application that makes a call to EDQ services using OAuth2 is allocated an internal
"user" ID in the same way as for standard users. In applications, such as Case Management,
which display historical information regarding user updates, an application is displayed as App:
NAME where NAME is the display name of the application client. The display format may be
configured using the appusername profile property in login.properties:

cognito.prof.appusername = OAuth2 application: {0}

Here the property value {0} is replaced by the application name.

To enable application name display, the list of users retrieved from Cognito is augmented with
a query for application clients, which uses the ListUserPoolClients API. By default,
application clients that have never made a client call to EDQ are not included. When an
application makes an initial call to EDQ, the name is not immediately available for display in
Case Management. If this is a problem, the profile showapps property can be set to "all" so
that all applications are retrieved.

cognito.prof.showapps = all

To disable application listing, set showapps to "none". In this case, the IAM user does not
need to have the ListUserPoolClients permission.

cognito.prof.showapps = none

Chapter 10
Enabling OAuth2 Bearer Authentication for Web Services

10-6

11
Configuring EDQ Encryption

The encryption framework for EDQ now supports a pluggable module with implementations for
OCI vaults and scripts as described in this chapter.

• EDQ Enhanced Encryption Overview

• Configuring Pluggable Credentials Stores

• Creating Custom Java Encryption and Credentials Store Modules

EDQ Enhanced Encryption Overview
To provide additional security, certain information stored in the EDQ configuration is encrypted.

• Database passwords in director.properties (optional, Tomcat only)

• Data store passwords

• Stored credentials

• Web push notification Vapid private keys

In EDQ versions up to 12.2.1.4.3, encryption is performed using the AES cipher in ECB mode
with PKCS5Padding. At the first startup, a new random key is generated and stored. In
Tomcat, the key is stored in the file localhome/kfile and in WebLogic the key is stored in
the FMW key store.

The following limitations are seen in this implementation:

• The default AES keysize (128 bits) is used. For additional security, 256 bits should be
used.

• The ECB cipher mode does not use an initialization vector (IV) so encrypting the same
string always produces the same result. This can make it easier for attackers to guess
passwords if they can see the encrypted values.

• In Tomcat, the key file can be read by any user of the system.

• If a new install is created using the existing schemas, a new key file is generated and
existing encrypted data in the database cannot be recovered (this problem is common with
the OCI marketplace images).

In EDQ 12.2.2.1.4.4 and later versions, encryption and decryption is handled by a pluggable
security module. The module is configured by the new properties file localhome/security/
module.properties. This must contain a type property defining the module type. The
following types are supported:

• legacy - The current mechanism used by default if module.properties does not exist.

• default - A refactoring of the legacy module with improved security.

• ocivault - Uses a key stored in an OCI vault. Encryption and decryption is performed by
calls to the vault cryptographic endpoint. The key never leaves the vault so HSM or
software protection modes can be used. Keys can be rotated for additional security -
decrypt operations using the key version when the data was encrypted. It can be
configured to act as a credentials store using vault secrets.

11-1

• script - A JavaScript script can be configured to perform the encryption and decryption
operations. This can be used to support additional key frameworks such as AWS Key
Management Service (KMS) or GCP Cloud Key Management Service. The module can
also be configured to act a as a credentials store using external services such as AWS and
GCP Secrets Managers.

• custom - Custom Java code. For more information, see Creating Custom Java Encryption
and Credentials Store Modules.

The default module is used by new installations. The installations that are migrated from earlier
versions continue to use the legacy module.

Default Security Module

The new default security module is similar to the legacy implementation but with these
enhancements:

• AES is used in GCM mode with a random initialization vector so encrypting the same data
returns different results each time.

• A 256-bit key is used if possible.

• In Tomcat, the key is stored in the file localhome/masterkey which is set to mode 600
(-rw-------).

Ocivault Security Module

The ocivault security module type uses a key stored in an OCI vault. Authentication for calls to
the OCI APIs uses either platform credentials or credentials configured with external
properties. Stored credentials cannot be used here because the module can be used to
decrypt passwords for the EDQ database schemas at startup time.

The following additional properties are used with the type in module.properties:

Table 11-1 Ocivault Security Module Properties

Property Description

vault Vault name or OCID (required).

key Key name or OCID (required).

region OCI region name. If omitted, the region of the EDQ
instance is used.

compartmentid OCID of vault compartment. Used if vault or key
are not specified by OCID. If omitted the
compartment of the EDQ instance is used.

secrets.vault Vault name or OCID for secrets queries. If omitted
the key vault is used.

secrets.encrypt Set to true if secret values are encrypted using the
vault key. Secret values can be seen in the OCI
console so they must be encrypted to hide them
from the console.

secrets Set to true to support credentials retrieval using
vault secrets.

auth.X Additional properties passed to the authenticator
for OCI API calls. For example, set auth.profile
to name a profile from ~/.oci/config.

Chapter 11
EDQ Enhanced Encryption Overview

11-2

The primary use case for the OCI module is with compute instances which can use platform
credentials for authentication for OCI API calls. If the OCI dynamic groups imply the required
permissions, no additional configuration is required.

Secrets Storage

If the module is enabled for secrets use, credentials for external integrations can be stored in a
vault rather than in the EDQ configuration files. The examples include JMS broker connections,
SMTP authentication, and LDAP credentials.

To specify credentials using a secret, replace the username and password properties with the
following:

cred.secret = secretname
The secret vault in the value should be a JSON string containing username and password
attributes, as shown below:

{ "username": "user1", "password": "mysecret2" }
To override the default secret encryption setting for the module, use the following:

cred.secret.encrypt = true | false
To specify the username in plain and retrieve the password from the vault, use the following:

cred.secret.username = username
The secret value in the vault is then just the password.

If no username is required, add the following:

cred.secret.passwordonly = true
The secret value in the vault is then just the password.

Sample OCI Vault module.properties Configurations

Using platform credentials with local compartment and region:

type = ocivault
vault = edqvault
key = key1
secrets = true
secrets.encrypt = true

Using a remote vault with credentials from ~/.oci/config:

type = ocivault
auth.profile = default
region = us-phoenix-1
compartmentid = compartmentid
vault = edqvault
key = key1
secrets = true

Chapter 11
EDQ Enhanced Encryption Overview

11-3

Script Security Module

The module definition for the script security module must include a script property which is the
name of the script file. If the file is not absolute it is found relative to the EDQ local
configuration directory. The script defines functions as described in the following table:

Table 11-2 Script Security Module Functions

Function Required Description

init(props) No Initialize the module. The
argument is an object containing
properties from
module.properties.

encrypt(plain) Yes Encrypt some plain text. The
argument and result are
ArrayBuffers.

decrypt(plain) Yes Decrypt some ciphertext. The
argument and result are
ArrayBuffers.

getCredentials(props) No Retrieve credentials from a
secrets store. The properties
argument contains the cred.*
settings from the EDQ
configuration.

The properties passed to the init function include a type value set to "encryption". This allows
the same script to be used as the security module and a credentials store.

base64 stuff

External encryption APIs require base64 encoding for plain and cipher text. EDQ scripts can
use these base64 support functions:

var encoder = BASE64.getEncoder()
var enc = encoder.encode(bytes) // Encode an ArrayBuffer
to base64 string
var enc2 = encoder.encodeFromString(str) // Encode a string to
base 64 string

var urlenc = BASE64.getUrlEncoder() // Encoder using URL-safe
alphabet
var mimeenc = BASE64.getMimeEncoder() // Encoder with MIME line
splitting
vat nopad = BASE64.getEncoder().withoutPadding() // Encoder which does not
use = padding

var decoder = BASE64.getDecoder()
var dec = decoder.decode(string) // Decode a base64 string
to ArrayBuffer
var dec2 = encoder.decodeToString(str) // Decode a base 64
string to a string

var urldec = BASE64.getUrlEncoder() // Decoder using URL-safe

Chapter 11
EDQ Enhanced Encryption Overview

11-4

alphabet
var mimdec = BASE64.getMimeEncoder() // Decoder with MIME line
splitting

Sample Scripts

Using the AWS Key and Secrets Management Frameworks

module.properties

type = script
keyid = alias/rde1
region = eu-west-1
script = awsenc.js
secrets = true
auth.profile = myprofile

awsenc.js

// Script security module sample for AWS KMS and secrets manager
// ===
//
// Required properties:
//
// region AWS region
// keyid KMS keyid or alias/name
//
// Optional:
//
// secrets Set to true for secrets support
//
// Configure proxy server with https.proxyHost and https.proxyPort properties

addLibrary("http")
addLibrary("logging")

var client
var secclient
var encoder = BASE64.getEncoder()
var decoder = BASE64.getDecoder()
var kmsurl
var keyid
var secrets = false
var secretenc = false

function init(props) {

 // Authentication properties

 var aprops = Object.keys(props).filter(k =>
k.startsWith("auth.")).reduce((o, k) => (o[k.substring(5)] = props[k], o), {})

 // Client for KMS

Chapter 11
EDQ Enhanced Encryption Overview

11-5

 client = HTTP.builder().withAWSAuthentication(aprops).build();

 // Properties

 var region = props.region

 keyid = props.keyid

 if (!region || !keyid) {
 throw "awsenc: region or key not specified"
 }

 kmsurl = "https://kms." + region + ".amazonaws.com"

 // Secrets handling

 secrets = props.secrets == "true"

 if (secrets) {

 // URL and client for secret queries

 securl = "https://secretsmanager." + region + ".amazonaws.com"
 secclient = HTTP.builder().withAWSAuthentication(aprops).build();
 }
}

function encrypt(plain) {
 var req = client.requestbuilder().header("X-Amz-Target",
"TrentService.Encrypt").build();
 var res = req.post(kmsurl, JSON.stringify({KeyId: keyid, Plaintext:
encoder.encode(plain)}), "application/x-amz-json-1.1")

 return decoder.decode(JSON.parse(res.data).CiphertextBlob)
}

function decrypt(ctext) {
 var req = client.requestbuilder().header("X-Amz-Target",
"TrentService.Decrypt").build();
 var res = req.post(kmsurl, JSON.stringify({keyId: keyid, CiphertextBlob:
encoder.encode(ctext)}), "application/x-amz-json-1.1")

 return decoder.decode(JSON.parse(res.data).Plaintext)
}

function getCredentials(props) {
 if (secrets) {
 var s = props.secret

 if (s) {
 var req = secclient.requestbuilder().failonerror(false).header("X-Amz-
Target", "secretsmanager.GetSecretValue").build()
 var res = req.post(securl, JSON.stringify({SecretId: s}),
"application/x-amz-json-1.1")

Chapter 11
EDQ Enhanced Encryption Overview

11-6

 if (res.code != 200) {
 logger.log(Level.WARNING, "AWS secrets manager call failed with code
{0}", res.code)
 } else {
 var obj = JSON.parse(res.data)
 var str = obj.SecretString || decoder.decodeToString(obj.SecretBinary)

 if (props["secret.passwordonly"] == "true") {
 return {username: "", password: str}
 } else {
 var val = JSON.parse(str)
 return {username: val.username, password: val.password}
 }
 }
 }
 }

 return null
}

Using GCP Key and Secrets Frameworks

module.properties

type = script
script = gcpenc.js
project = green-wombat-4252311
keyfile = /opt/edq/gcp-encrypt.json
location = europe-west2
keyring = rde
key = rde1
secrets = true
seckeyfile = /opt/edq/gcp-secrets.json

gcpenc.js

// Script security module sample for GCP KMS and secrets manager
// ===
//
// Required properties:
//
// project GCP project name
// location Key location (such as europe-west2)
// keyring Keyring name
// key Key name
// keyfile Service account key file location
//
// Optional:
//
// version Key version name
//
// Configure proxy server with https.proxyHost and https.proxyPort properties

Chapter 11
EDQ Enhanced Encryption Overview

11-7

addLibrary("http")
addLibrary("logging")

var client
var encoder = BASE64.getEncoder()
var decoder = BASE64.getDecoder()
var decurl
var encurl
var secrets = false

function init(props) {

 // Need:
 //
 // project
 // location
 // keyring
 // key
 // keyfile
 //
 // Optional:
 //
 // version

 if (!props.project || !props.location || !props.keyring || !props.key || !
props.keyfile) {
 throw "gcpenc: missing properties"
 }

 var project = props.project
 var location = props.location

 var base = "https://cloudkms.googleapis.com/v1"
 + "/projects/" + props.project
 + "/locations/" + props.location
 + "/keyRings/" + props.keyring
 + "/cryptoKeys/" + props.key

 decurl = base + ":decrypt"
 encurl = base

 if (props.version) {
 encurl += "/cryptoKeyVersions/" + props.version
 }

 encurl += ":encrypt"

 // Client for KMS

 client = HTTP.builder().withAuthentication("GCP", {keyfile: props.keyfile,
claim_scope: "https://www.googleapis.com/auth/cloud-platform"}).build();

 secrets = props.secrets == "true"

 if (secrets) {

Chapter 11
EDQ Enhanced Encryption Overview

11-8

 // URL and client for secret queries

 securl = "https://secretmanager.googleapis.com/v1/projects/" +
props.project + "/secrets/"
 }
}

function encrypt(plain) {
 var req = client.requestbuilder().build();
 var res = req.post(encurl, JSON.stringify({"plaintext":
encoder.encode(plain)}))

 return decoder.decode(JSON.parse(res.data).ciphertext)
}

function decrypt(ctext) {
 var req = client.requestbuilder().build();
 var res = req.post(decurl, JSON.stringify({ciphertext:
encoder.encode(ctext)}))

 return decoder.decode(JSON.parse(res.data).plaintext)
}

function getCredentials(props) {
 if (secrets) {
 var s = props.secret

 if (s) {
 var url = securl + s + "/versions/latest:access"
 var req = client.requestbuilder().failonerror(false).build()
 var res = req.get(url)

 if (res.code != 200) {
 logger.log(Level.WARNING, "GCP secrets manager call failed with code
{0}", res.code)
 } else {
 var obj = JSON.parse(res.data)
 var str = decoder.decodeToString(obj.payload.data)

 if (props["secret.passwordonly"] == "true") {
 return {username: "", password: str}
 } else {
 var val = JSON.parse(str)
 return {username: val.username, password: val.password}
 }
 }
 }
 }

 return null
}

Encryption Migration

If the security module is replaced or reconfigured in an existing system, then encrypted data is
no longer usable. If the system is a new install and encryption is not used in the

Chapter 11
EDQ Enhanced Encryption Overview

11-9

director.properties, then this is not an issue. If there is an existing encrypted data, the
new security module can be defined using a migration REST API.

There are two new system administration REST endpoints.

POST to /edq/admin/security/migrateencryption

The payload is a JSON object with the following structure:

{ "type" : "moduletype",
 "properties": {
 ... other settings for the module ...
 }
}

The migration process includes the following steps:

1. A new security is created and initialized using the definition in the payload.

2. Existing encrypted data is decrypted using the current module and encrypted using the
new module.

3. If the previous steps succeed, the new module replaces the current module and
module.properties is written with the new definition.

The result of the migration call is a report summarizing the items which were updated. Any
items which could not be decrypted are listed.

If the URL contains the query parameter?dryrun=true then the new module is created and
decryption of existing data tested, but no updates are made.

Example Payload for Migration to a Remote OCI Vault

{ "type" : "ocivault",
 "properties": {
 "auth.profile" : "default",
 "vault" : "rde",
 "key" : "rtest",
 "compartmentid" : "compartmentid",
 "region" : "us-phoenix-1",
 "secrets" : true,
 "secrets.encrypt" : true
 }
}

POST to /etc/admin/security/rotateencryption

The payload is an empty JSON object. Existing encrypted data is decrypted using the current
security module and then encrypted using the same module. This call can be used with a vault
key after a new version is created so that the old version can be deleted.

The result of the call is a summary for the migrate call.

If the URL contains the query parameter ?dryrun=true, then decryption of existing data is
tested but no updates are made.

Chapter 11
EDQ Enhanced Encryption Overview

11-10

Using Existing Schemas for New OCI Instance Without Losing Encrypted Data

If you create a new OCI instance but select the Use Existing Schemas option, the new
instance starts with the legacy (or default) security module and creates a new secret key,
rendering the existing encrypted data inaccessible. These are the steps to retain the data:

1. Before shutting down the old system, ensure it is using some external encryption
mechanism (OCI vaults or AWS).

2. Create and setup the new system.

3. Run encryption migration to setup the external module on the new system. Decryption fails
for existing data because the current module is different but after migration is complete.
The encrypted data is usable again.

Configuring Pluggable Credentials Stores
The user name and password credentials used in EDQ configuration are normally defined in
properties files, examples include:

• Database schema passwords in director.properties
• JMS broker authentication in "bucket" files

• SMTP authentication in mail.properties
• LDAP authentication in login.properties
When running an instance in WebLogic the credentials are stored in the FMW credentials store
framework. The encryption module mechanism in EDQ 12.2.1.4.4 and later versions allows the
security module to function as a credentials store but this does not support the definition of
additional stores. For example, it is not possible to use a local encryption mechanism and
retrieve credentials from external stores such as OCI Vaults or AWS Secrets Manager.

Configuring Additional Credential Stores

EDQ 12.2.1.4.4 and later versions extend the encryption module to allow additional credentials
stores to be defined. The stores are configured by adding properties files to the localhome/
security/credstores directory. Each properties file must contain a type property defining
the store type along with additional settings which are specific to the store type. The following
types are supported:

• ocivault - The credentials are stored as secrets in an OCI vault and can be encrypted using
a value key.

• script - A JavaScript script can be configured to call out to external services such as AWS
and GCP Secrets Managers.

• custom - A custom Java class.

Credentials stored are queried in the alphabetical order of the associated file names.

Ocivault Credentials Store

The ocivault security module type queries secrets stored in an OCI vault. Authentication for
calls to the OCI APIs uses either platform credentials or credentials configured with external
properties. Stored credentials cannot be used here because the module can be used to query
passwords for the EDQ database schemas at startup time.

The following additional properties are used with the type.

Chapter 11
Configuring Pluggable Credentials Stores

11-11

Table 11-3 Ocivault Credentials Store

Property Description

vault Vault name or OCID (required).

secrets.encrypt Set to true if secret values are encrypted using a
key from the vault. The secret values can be seen
in the OCI console so they must be encrypted to
hide them from the console.

key Key name or OCID (required if secrets.encrypt is
true).

region OCI region name. If omitted the region of the EDQ
instance is used.

compartmentid OCID of vault compartment. It is used if vault or key
are not specified by OCID. If omitted the
compartment of the EDQ instance is used.

auth.X Additional properties passed to the authenticator
for OCI API calls. For example, set auth.profile
to name a profile from ~/.oci/config.

The primary use case for the OCI store is with compute instances which can use platform
credentials for authentication for OCI API calls. As long as the OCI dynamic groups imply the
require permissions no additional configuration is required.

Using Secrets

To specify credentials using a vault secret, replace the username and password properties with
the following:

cred.secret = secretname
The secret vault in the value should be a JSON string containing username and
passwordattributes as shown below:

{ "username": "user1", "password": "mysecret2" }
To override the default secret encryption setting for the module, use the following:

cred.secret.encrypt = true | false
To specify the username in plain and retrieve the password from the vault, use the following:

cred.secret.username = username
The secret value in the vault is then just the password.

If no username is required, add the following:

cred.secret.passwordonly = true
The secret value in the vault is then just the password.

Example

oci.properties

type = ocivault
secrets.encrypt = true
vault = vault1

Chapter 11
Configuring Pluggable Credentials Stores

11-12

key = rtest
compartmentid = ocid1.compartment.oc1..aaaaaaaaeq2s...
region = us-phoenix-1

Script Credentials Store

The properties for a script credentials store must include a script property which is the name
of the script file. If the file is not absolute, it is found relative to the EDQ local configuration
directory. The script defines the following functions:

Table 11-4 Script Credentials Store

Function Required Description

init(props) No Initialize the module. The
argument is an object containing
properties from the properties file.

getCredentials(props) Yes Retrieve credentials from a
secrets store. The properties
argument contains the cred.*
settings from the EDQ
configuration.

The properties passed to the init function include a type value set to "credentials". This allows
the same script to be used as the security module and a credentials store.

Example Using the AWS Secrets Management Framework

For more information about base64 support functions, see EDQ Enhanced Encryption
Overview.

aws.properties

type = script
region = eu-west-1
script = awscreds.js
auth.profile = myprofile

awscreds.js

// Script credentials module sample for AWS secrets manager
// ===
//
// Required properties:
//
// region AWS region
//
// Configure proxy server with https.proxyHost and https.proxyPort properties

addLibrary("http")
addLibrary("logging")

var secclient
var encoder = BASE64.getEncoder()

Chapter 11
Configuring Pluggable Credentials Stores

11-13

var decoder = BASE64.getDecoder()

function init(props) {

 // Authentication properties

 var aprops = Object.keys(props).filter(k =>
k.startsWith("auth.")).reduce((o, k) => (o[k.substring(5)] = props[k], o), {})

 // Properties

 var region = props.region

 if (!region) {
 throw "awscreds: region not specified"
 }

 // URL and client for secret queries

 securl = "https://secretsmanager." + region + ".amazonaws.com"
 secclient = HTTP.builder().withAWSAuthentication(aprops).build();
}

function getCredentials(props) {
 var s = props.secret

 if (s) {
 var req = secclient.requestbuilder().failonerror(false).header("X-Amz-
Target", "secretsmanager.GetSecretValue").build()
 var res = req.post(securl, JSON.stringify({SecretId: s}), "application/x-
amz-json-1.1")

 // Error 400 can mean secret not found, so don't report it

 if (res.code != 200) {
 if (res.code != 400) {
 logger.log(Level.WARNING, "AWS secrets manager call failed with code
{0}", res.code)
 }
 } else {
 var obj = JSON.parse(res.data)
 var str = obj.SecretString || decoder.decodeToString(obj.SecretBinary)

 if (props["secret.passwordonly"] == "true" || props["secret.username"])
{
 return {username: props["secret.username"] || "", password: str}
 } else {
 var val = JSON.parse(str)
 return {username: val.username, password: val.password}
 }
 }
 }

 return null
}

Chapter 11
Configuring Pluggable Credentials Stores

11-14

Creating Custom Java Encryption and Credentials Store Modules
The 12.2.1.4.4 and 14.1.2.0.0 versions of EDQ supports pluggable modules for encryption and
credentials lookup. The following section describes how to implement modules using custom
Java classes which is necessary if it is not possible to write a script to interact with some
security store because native code is required.

Custom modules are defined as shown below:

type = custom
class = java class name

Perform the following steps to create a custom module:

1. Create a Java class which implements the required interface.

2. Compile the class using installdir/buildjars/customsecuritymodules.jar in
the classpath.

3. Package the classes into a jar file in localhome/security/jars.

Brief javadocs for the interfaces that are included in the docs subfolder in installdir/
buildjars/customsecuritymodules.jar.

Custom Encryption Module

A custom encryption module must implement the interface
oracle.edq.security.module.custom.interfaces.CustomEncryptionModule as shown
below:

CustomEncryptionModule

/*
 * Copyright (C) 2023, Oracle and/or its affiliates. All rights reserved.
 */
package oracle.edq.security.module.custom.interfaces;

import java.nio.file.Path;
import java.util.Properties;

/**
 * Interface implemented by custom encryption modules.
 */

public interface CustomEncryptionModule {

 /**
 * Initialize the encryption module.
 *
 * @param localconfig The local configuration area. This can be used to
locate or store extra files
 * required by the module.
 * @param props The module properties
 * @param persist If <code>true</code> the module data can be persisted for

Chapter 11
Creating Custom Java Encryption and Credentials Store Modules

11-15

future use.
 * This flag will be <code>false</code> if the module is being initalized
for a "dryrun" encryption migration.
 * In this case no permanent changes should be made in the file system.
 *
 * @throws Exception If initialization failed.
 */

 void initEncryption(Path localconfig, Properties props, boolean persist)
throws Exception;

 /**
 * Encrypt some data.
 *
 * @param in The plain text
 *
 * @return The cipher text
 *
 * @throws Exception If encryption failed
 */

 byte [] encrypt(byte [] in) throws Exception;

 /**
 * Decrypt some data.
 *
 * @param in The cipher text
 *
 * @return The plain text
 *
 * @throws Exception If decryption failed
 */

 byte [] decrypt(byte [] in) throws Exception;
}

If the encryption module implements
oracle.edq.security.module.custom.interfaces.CustomCredentialsModule also then it acts
as a credentials store. In this case the initCredentials method is not called.

Custom Credentials Store

A custom encryption module must implement the interface
oracle.edq.security.module.custom.interfaces.CustomCredentialsModule as shown
below:

CustomCredentialsModule

/*
 * Copyright (C) 2023, Oracle and/or its affiliates. All rights reserved.
 */
package oracle.edq.security.module.custom.interfaces;

import java.nio.file.Path;
import java.util.Properties;

Chapter 11
Creating Custom Java Encryption and Credentials Store Modules

11-16

/**
 * Interface implemented by custom credentials modules.
 */

public interface CustomCredentialsModule {

 /**
 * Get the prefix used to extract properties recognized by the module. The
default value is "cred".
 *
 * @return The prefix
 */

 default String credsPrefix() {
 return "cred";
 }

 /**
 * Initialize the credentials provider for credentials-only use.
 *
 * @param localconfig The local configuration area
 * @param props The module properties
 *
 * @throws Exception If initialization failed.
 */

 void initCredentials(Path localconfig, Properties props) throws Exception;

 /**
 * Attempt to get credentials.
 *
 * @param props The filtered property set.
 *
 * @return The credentials, or <code>null</code> if not found
 *
 * @throws Exception If an error ocurred
 */

 Credentials getCredentials(Properties props) throws Exception;

 /**
 * Credentials result class.
 */

 final class Credentials {

 private String username;
 private String password;

 /**
 * Constructor.
 *
 * @param username The user name
 * @param password The password
 */

Chapter 11
Creating Custom Java Encryption and Credentials Store Modules

11-17

 public Credentials(String username, String password) {
 this.username = username;
 this.password = password;
 }

 /**
 * Get the user name.
 *
 * @return The user name
 */

 public String getUsername() {
 return username;
 }

 /**
 * Get the password.
 *
 * @return The password
 */

 public String getPassword() {
 return password;
 }
 }
}

Chapter 11
Creating Custom Java Encryption and Credentials Store Modules

11-18

A
Configuring EDQ to support Windows
Integrated Authentication (Kerberos)

The appendix contains information on configuring EDQ to work with Kerberos and Active
Directory.

An integration of EDQ with Active Directory using login.properties (see Configuring External
User Management (LDAP) directly with EDQ) can be configured to support single sign on -
SSO - in which the user logs into Windows and then does not need to log again into EDQ. This
is supported on both WebLogic and Tomcat.

To enable SSO, the EDQ server must be set up to enable Kerberos authentication from the
client PC. This authentication is achieved using the standard GSSAPI token exchange
mechanism (RFC 4121). The client contacts the domain controller (DC) to request access to a
service provided by the server application. The response from the DC is encoded into a token
sent to the server by the client. The server validates this token and generates another token to
send to the client. The token exchange can continue until client and server have established a
secure context. In practice this exchange never requires more than one token in either
direction.

At start up time the server application sets up 'accept' credentials which it uses to initialize its
half of the security context.

• EDQ running as Windows service using local system account

• EDQ running on Unix

• Kerberos Shared Libraries

EDQ running as Windows service using local system account
If the EDQ application server is running on a Windows server in the domain, using the local
system account, then the configuration is very simple. EDQ will use the system account for the
accept credentials and also to contact AD for user lookups.

The EXAMPLE.COM login.properties for this configuration would be:

EXAMPLE.COM LDAP integration

realms = internal, ad
ldap.prof.useprimarygroup = false
clientcreds = true

ad.realm = EXAMPLE.COM
ad.auth = ldap
ad.auth.bindmethod = simple
ad.auth.binddn = search: dn

ad.ldap.profile = adsldap
ad.ldap.prof.defaultusergroup = edqusers
ad.ldap.prof.groupsearchfilter = (cn=edq*)

A-1

The 'clientcreds' setting indicates that Kerberos credentials should be obtained from the
current user's cache (in this case the local system account). These credentials are used to
connect to Active Directory and to set up the 'accept' GSSAPI context.

A server which is a member of the Active Directory domain will generally use the domain
controller for DNS lookups. If this is the case, EDQ can determine the LDAP server addresses
automatically. If you wish to fix the address, perhaps because some of the domain controllers
are at a remote location, use the ldap.server property:

ad.ldap.server = dc1.example.com

EDQ running on Unix
If the server is running on Unix, it must use an account in AD to set up the accept credentials.
It validates the request using the encrypted account password read from a Kerberos key table
(keytab). Setting up a valid key table is an essential step in configuring SSO on Unix.

• What is in the keytab?

• Creating keytabs using existing tools

• Creating keytabs using winktab

• Check the Unix Kerberos configuration

• Java Encryption

• Changes to login.properties

What is in the keytab?
A Kerberos key table contains encrypted passwords for one or more Kerberos principals. The
DC normally supports a number of different encryption algorithms (DES3, AES, RC4 etc) and
the entry for a principal will include keys for each of these algorithms. The client will pick the
best algorithm available for communication with the DC.

The service requested using GSSAPI is identified by a service principal name (SPN).Normally
this will be a reference to a particular service type at a machine hostname. Examples of
service types are HOST (for general access such as ssh), HTTP (for SSO from browsers) and
LDAP (for LDAP servers such as AD domain controllers). An SPN is usually displayed as:

service/hostname

For example:

HOST/testserver.example.com

Each entry in a keytab also includes a 'key version number' (KVNO). This is a version number
which is incremented whenever the password for the principal is changed in the DC. The
keytab must contain the correct KVNO for authentication to succeed.

On most Unix systems, the default location of the system Kerberos keytab is:

/etc/krb5.keytab

The Java Kerberos implementation does not have a default keytab location and this must be
set in loign.properties:

keytab = path to keytab

If the path is not absolute, it is relative to the security folder containing login.properties.

Appendix A
EDQ running on Unix

A-2

The klist command can be used to list the contents of a keytab:

 klist –k [file]
 klist –ke [file]
 klist –keK [file]

A file name can be provided if the keytab is not in the default location. The first form just lists
the principals; the second also includes the encryption algorithms and the third also includes
the key values in hexadecimal.

Here's some example output from klist -ke:

Keytab name: FILE:/etc/krb5.keytab
KVNO Principal
---- --
 5 ALTAIR$@EXAMPLE.COM (des-cbc-crc)
 5 ALTAIR$@EXAMPLE.COM (des-cbc-md5)
 5 ALTAIR$@EXAMPLE.COM (des3-cbc-sha1)
 5 ALTAIR$@EXAMPLE.COM (aes128-cts-hmac-sha1-96)
 5 ALTAIR$@EXAMPLE.COM (aes256-cts-hmac-sha1-96)
 5 ALTAIR$@EXAMPLE.COM (arcfour-hmac)
 5 HOST/altair@EXAMPLE.COM (des-cbc-crc)
 5 HOST/altair@EXAMPLE.COM (des-cbc-md5)
 5 HOST/altair@EXAMPLE.COM (des3-cbc-sha1)
 5 HOST/altair@EXAMPLE.COM (aes128-cts-hmac-sha1-96)
 5 HOST/altair@EXAMPLE.COM (aes256-cts-hmac-sha1-96)
 5 HOST/altair@EXAMPLE.COM (arcfour-hmac)
 5 HOST/altair.EXAMPLE.COM@EXAMPLE.COM (des-cbc-crc)
 5 HOST/altair.EXAMPLE.COM@EXAMPLE.COM (des-cbc-md5)
 5 HOST/altair.EXAMPLE.COM@EXAMPLE.COM (des3-cbc-sha1)
 5 HOST/altair.EXAMPLE.COM@EXAMPLE.COM (aes128-cts-hmac-sha1-96)
 5 HOST/altair.EXAMPLE.COM@EXAMPLE.COM (aes256-cts-hmac-sha1-96)
 5 HOST/altair.EXAMPLE.COM@EXAMPLE.COM (arcfour-hmac)

In a normal Kerberos system using a standard Kerberos Domain Controller (KDC) each SPN is
a separate principal with a different password. In Active Directory, SPNs are essentially
'aliases' of a single account, stored as values of the AD servicePrincipalName LDAP
attribute. When a computer account is created in AD, SPNs for the HOST service are created
automatically. If additional services such as IIS or SQLserver are installed on the server,
additional SPNs will be added to the account.

The Windows setspn command can be run on an AD server to manage the SPNs for an
account. For example:

setspn -A HTTP/altair.example.com altair$

The first command adds an HTTP SPN to the machine account for altair. (The Windows
account name for a computer always ends with $).

Creating keytabs using existing tools
In a normal Kerberos system, keytab entries are created using the ktadd subcommand of the
Kerberos administration tool kadmin. AD does not provide a Kerberos administration server so
other approaches are required.

The keytab contains the encrypted password for the account so for each method either the
password for the account must be known in advance, or it must be run with privileges to
change the account password.

The method to use depends on the system configuration. Some existing options are:

Appendix A
EDQ running on Unix

A-3

• Samba: If the system has been registered with AD using the Samba suite, the net ads
keytab command can be used to create and update the keytab. This works because
Samba has set the password for the account and stored it in a secret location.

• ktpass: The Windows ktpass command can run by an AD administrator to generate keytab
entries. Unless there is no other alternative, do not use this command. It is complex and
very difficult to use reliably. It will update the password of the account, thus rendering any
previous keytab useless.

• msktutil: This is an open source application for Unix which can be used to manage
keytabs.

Creating keytabs using winktab
winktab is a Java application which can be used to create a keytab for an account in AD. It
contacts AD to determine the KVNO for the account and to determine the SPNs associated
with the account. If run with an administrator account, it can reset the account password to a
random value; alternatively the account password can be supplied to the command.

winktab can be run on any system which can connect to the AD server.

Note:

You must type all commands manually as copying and pasting the command can
result in issues with the type of dash used in the command.

To create a keytab for a machine account and reset the password to a random value:

java -jar dbstuff.jar winktab -o ktfile -domain DOMAIN -server adserver
 -user aduser -pw adpw -tls machinename
To create a keytab for a machine account using a known password:
java -jar dbstuff.jar winktab -o ktfile -accpw accpw -domain DOMAIN -server adserver
 -user aduser -pw adpw [-tls] machinename

The parameters are:

• ktfile: the keytab is written to this file

• accpw: the password for the machine or user account; if a single dash (-) is used the
command will prompt for the password without echo

• DOMAIN: the AD domain name

• adserver: the host name or IP address of an AD server for the domain

• aduser, adpw: the user name and password of an AD account which is used to connect to
the server for queries. The user name must be:

user@DOMAIN

or SHORTDOMAIN\user

If a single dash (-) is given as the password the command will prompt for it without echo.

If the account password is set to a fixed (-setpw used) or random (-setpw and -accpw
omitted), the user must have administrator privileges.

• machinename: the name of a computer account. The internal AD account name will be
machinename$. The internal AD account name is stored in the sAMAccountName LDAP
attribute.

Appendix A
EDQ running on Unix

A-4

Use the -tls switch if the AD server requires authenticated connections. Windows requires
an encrypted connection if an account password is being reset so -tls must be used if the
password is being reset to a random or known value.

Example for the domain EXAMPLE.COM, split over several lines for clarity:

java -cp dbstuff.jar rde.security.tools.win.winktab -o altair.keytab -setpw altair \
 -domain EXAMPLE.COM -server dc1.example.com \
 -user "example\Admin" -tls altair

Create a keytab for a machine account, setting the password to a known value and
prompting for the administrator password.

Check the Unix Kerberos configuration
The Kerberos configuration used by commands such as kinit and the Java runtime is read from
a global configuration file, normally stored at /etc/krb5.conf. This contains references to the
domain controllers and mappings between DNS and Kerberos domains. Here's an example for
the domain EXAMPLE.COM:

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = yes

[realms]
 EXAMPLE.COM = {
 kdc = dc1.example.com:88
}

 [domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

The [realms] section lists the KDCs by host or IP for each domain; the [domain_realm] section
maps DNS host names to Kerberos domains.

krb5.conf must be checked and adjusted for the configuration of the target domain. If it is not
possible to update a file in /etc, store the file elsewhere and inform the Java runtime of the
location via a system property. To do this, edit or create the file jvm.properties in the EDQ local
configuration directory and add the line:

java.security.krb5.conf = absolute path to modified krb5.conf

Java Encryption
Java runtime environments do not ship with support for high-strength ciphers by default. For
example AES with 256-bit keys is not supported. Active Directory and Kerberos support a full
set of ciphers and it may be that your key table contains entries not supported by Java. In this
case you should install the JCE Unlimited Strength Jurisdiction Policy Files, if permitted in your
location.

Appendix A
EDQ running on Unix

A-5

Changes to login.properties
In this example, the server running EDQ is assumed to be altair.example.com.

• Global Settings:

realms = internal, ad
spn = HOST/altair.example.com@EXAMPLE.COM
keytab = /etc/krb5.keytab
ldap.prof.useprimarygroup = false

The 'spn' property sets the Service Principal to use for the GSSAPI accept context. The
value shown here is the default and can be omitted if the Unix server's DNS domain the
same as the AD domain. Sometimes Unix servers are in a separate DNS domain and the
'spn' property is then required.

The 'keytab' property sets the location of the Kerberos key table. Java does not default this
to the standard location and this property is always required.

• LDAP server settings:

ad.ldap.server = dc1.example.com
ad.ldap.spn = "ALTAIR$@EXAMPLE.COM"

Set the server name and Kerberos principal used to connect to Active Directory. The
principal should be the key table entry containing the actual machine account name. As
before the server can be omitted if it can be determined from DNS.

• Putting it all together:

This is the complete login.properties used for the Active Directory + Kerberos integration
example:

EXAMPLE.COM LDAP integration with
Kerberos

realms = internal,
ad

spn = HOST/
altair.example.com@EXAMPLE.COM

ldap.prof.useprimarygroup =
false

keytab = /etc/
krb5.keytab

ad.realm =
EXAMPLE.COM

ad.label = Example, Inc. Active
directory

Appendix A
EDQ running on Unix

A-6

ad.ldap.server =
dc1.example.com

ad.ldap.spn =
"ALTAIR$@EXAMPLE.COM"

ad.ldap.security =
tls

ad.auth =
ldap

ad.auth.bindmethod =
simple

ad.auth.binddn = search:
dn

ad.ldap.profile =
adsldap

ad.ldap.prof.defaultusergroup =
edqusers

ad.ldap.prof.groupsearchfilter = (cn=edq*)

With this login.properties in place, a Windows user in the EXAMPLE.COM domain should
be able to login to an EDQ application without supplying additional credentials. The user
must of course have the permission in EDQ to use the application.

Kerberos Shared Libraries
The shared libraries (wingss.dll and libunuxgss.so) required for Kerberos integration are
shipped inside the edq.war file. For most installations this is sufficient since EDQ can
determine the location of the shared libraries and load the right version automatically.

However, this automatic loading does not work with all Java Runtime Environments (JREs),
and notably it does not work with the IBM JRE. For these installations the libraries need to be
extracted from the provided kerberos-gss.zip file and copied to a known location on disk. The
location must then be added to the following environment variables such that the JRE can find
it:

• LD_LIBRARY_PATH (Linux, Solaris)
• LIBPATH (AIX)
• PATH (Windows)

Appendix A
Kerberos Shared Libraries

A-7

Examine the native/Kerberos-gss.zip archived provided with the EDQ install and verify it
contains the following files:

• aix/ppc/libunixgss.a
• aix/ppc64/libunixgss.a
• linux/amd64/libunixgss.so
• linux/i386/libunixgss.so
• win32/amd64/wingss.dll
• win32/x86/wingss.dll

Extract the relevant library for the OS the EDQ server runs on, and copy it to a location on a
disk accessible by the user EDQ runs as. This location needs to be added to the environment
variables mentioned above, so the JRE can find the library.

Appendix A
Kerberos Shared Libraries

A-8

B
Configuring Single Sign On with Oracle
Access Manager (OAM)

When EDQ is integrated with Oracle Access Manager, a user can login on a common access
page and have automatic access to EDQ applications and the web console without additional
Logins (assuming or course that the user has the required EDQ permissions). If there are
multiple EDQ installations using the same OAM configuration, the login will work for each.

This section covers the configuration steps to integrate EDQ with OAM. It does not cover
installation and basic configuration or OAM or installation of the Web Tier front end (OHS). This
appendix contains the following sections:

• Prerequisites

• OAM configuration

• WebLogic plugin configuration

• WebLogic Configuration

Prerequisites
The following are the prerequisites for installing OAM:

• OAM must be configured with an Authentication Scheme using an identity store supported
by WebLogic (typically LDAP - Active Directory or Oracle Internet Directory).

• WebLogic must be configured to authenticate EDQ using the same identity store. See
Integrating External User Management (LDAP) using WebLogic and OPSS . This should
be configured and tested with EDQ before proceeding with the OAM integration steps.

• A web server front end (OHS or Apache) must be installed and configured with Webgate
software and the WebLogic plugin (mod_wl_ohs). These are bundled with OHS 12
releases.

OAM configuration
To configure OAM, follow the steps below:

1. Create a Webgate in OAM using the authentication schema which refers to the identity
store configured in WebLogic.

Create these HTTP resources in the Webgate:

Table B-1 Creating HTTPS resources in the Webgate

RESOURCE POLICY

/edq/faces/** Protected Resource Policy

/edq/blueprints/*/jnlp Protected Resource Policy

/edq/** Public Resource Policy (or Excluded)

B-1

2. Copy the Webgate artefacts to your OHS installation and place in the webgate/config
directory.

WebLogic plugin configuration
Ensure that the WebLogic plugin (mod_wl_ohs) is configured in the web server front end. Add
this entry to the plugin configuration file (normally mod_wl_ohs.conf):

<Location /edq>
 SetHandler weblogic-handler
 WebLogicPort managed server port
 WebLogicHost hostname
</Location>

If you are using a WebLogic cluster, replace the host and port settings with a cluster definition:

WebLogicCluster host1:port1, host2:port2, ...

Ensure that the WebLogic Plug-In enabled option is set for the EDQ servers. This can be done
at the domain, cluster, server template or server level. For the domain the option is present in
the Configuration/Web Applications tab. For the other items the option is present in the
Advanced area of the General Configuration tab.

WebLogic Configuration
To configure WebLogic, follow the steps below:

1. Login to the Administration Console and navigate to Security Realms/myrealm.

2. Click the Providers tab.

3. Click New to add a new provider.

4. Enter a name, for example, OAM and select the OAMIdentityAsserter.

5. Click OK.

The new, unconfigured provider is added to the bottom of the list.

Note:

There is no need to restart the Administration Server at this point.

6. Click on the new provider. On the Configuration screen change the control flag to
REQUIRED.

7. Click Save and then select the Provider Specific tab.

Enter configuration information for OAM. Also, where OAM is configured without Webgate
security, just enter the Access Gate Name and Primary Access Server.

This information for this tab will be provided by the OAM administrator.

8. Click Save and return to the Providers list.

Use the Reorder button to move the OAM provider to the top of the list.

9. Restart the Administration Server and EDQ managed servers. OAM integration is now
complete.

Appendix B
WebLogic plugin configuration

B-2

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 About EDQ Security
	Introducing EDQ Security
	Authentication
	Authorization
	Encryption
	Auditing

	EDQ User Groups
	EDQ Permissions
	Application Permissions
	Functional Permissions
	Dynamic Permissions (in Case Management)
	Project Permissions

	Default EDQ Groups and Permissions
	Default Administrator User Accounts
	Mapping External Groups to EDQ Groups
	Terms Used in this Guide

	2 Applying Recommended Security Settings
	Configuring SSL with WebLogic
	Configuring SSL with Tomcat
	Processor Security
	Default Permissions
	Giving Scripts More Permissions

	Encrypting LDAP Connections
	Encrypting Database Connections
	Limit Concurrent Logins
	Disable FTP/SFTP Access
	Exclude Configuration Area from FTP/SFTP
	Account with Minimal Permissions for Service Integration
	Protect JNDI Data Sources
	Blocking the Upload of Malicious Files

	3 User Authentication
	The EDQ login.properties File
	Static Groups Mapping in login.properties

	WebLogic Installations
	Creating Users and Groups in Weblogic Installation

	Enabling the internal realm
	Tomcat Installations
	Creating Users and Groups in Tomcat Installation

	4 Auditing User Activity
	Enabling Audit Logging Using Oracle Fusion Middleware Framework
	Configuring the EDQ Audit Events in Fusion Middleware Framework

	Enabling Audit Logging to Files
	Configuring the EDQ Audit Events on Disk

	5 Integrating EDQ with a Fusion Middleware Credential Store
	Overview of the Credential Store
	Configuring the Credential Store for EDQ
	Specifying the EDQ Credential Key in Properties Files
	Examples of Specifying a Key Name

	6 Integrating External User Management (LDAP) using WebLogic and OPSS
	Understanding Security Realms, Providers and Control Flags
	Configuring WebLogic to use LDAP
	Prerequisites
	Integrating with Active Directory
	WebLogic Configuration
	EDQ Configuration
	User Group
	Permissions

	Filtering Groups
	Using SSL to connect to LDAP

	7 Configuring External User Management (LDAP) directly with EDQ
	Integrate EDQ with LDAP
	Prerequisites
	Integrating with Active Directory

	8 Integrating EDQ with Azure Active Directory
	Registering the EDQ Application in Azure AD
	Enabling OpenID Connect SSO in the Application
	Enabling Multiple URI Redirects for OpenID Authentication
	Editing the EDQ login.properties File
	Enabling OAuth2 Bearer Authentication for Web Services
	Configuring the Azure Application to Support Bearer Authentication with EDQ
	Creating Client Applications in Azure AD
	Editing the EDQ login.properties File to Map Roles
	Configuring Application Display in EDQ

	9 Integrating EDQ with Oracle Identity Cloud Service
	Creating an IDCS Application
	Configuring the EDQ login.properties File
	Additional Configuration

	Enabling SSO using OpenID Connect
	Configure the EDQ Application in IDCS
	Configuring EDQ for OpenID Connect SSO

	Enabling OAuth2 Bearer Authentication for Web Services
	Configuring Application Scopes
	Configuring EDQ

	10 Integrating EDQ with Cognito User Pools
	Creating the User Pool
	Creating an IAM User for REST API Calls
	Editing the EDQ login.properties File
	User Attribute Selection

	Enabling OAuth2 Bearer Authentication for Web Services
	Configuring Custom Scopes in the User Pool
	Configuring Client Credentials Application
	Configuring EDQ
	Configuring Application Display in EDQ

	11 Configuring EDQ Encryption
	EDQ Enhanced Encryption Overview
	Configuring Pluggable Credentials Stores
	Creating Custom Java Encryption and Credentials Store Modules

	A Configuring EDQ to support Windows Integrated Authentication (Kerberos)
	EDQ running as Windows service using local system account
	EDQ running on Unix
	What is in the keytab?
	Creating keytabs using existing tools
	Creating keytabs using winktab
	Check the Unix Kerberos configuration
	Java Encryption
	Changes to login.properties

	Kerberos Shared Libraries

	B Configuring Single Sign On with Oracle Access Manager (OAM)
	Prerequisites
	OAM configuration
	WebLogic plugin configuration
	WebLogic Configuration

