
Oracle Fusion Cloud Applications
Common Features Reference

F30652-04
November 2022

Oracle Fusion Cloud Applications Common Features Reference,

F30652-04

Copyright © 2021, 2022, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Diversity and Inclusion vii

Conventions vii

Documentation Accessibility vii

1 Reference Topics

Auditing Web Services 1-1

Configuring Audit Policies 1-2

Managing Audit Data Collection and Storage 1-3

Viewing Audit Reports 1-3

Introduction to Oracle Fusion Middleware Audit Framework 1-3

What Are the Audit Objectives? 1-4

Audit Terminology 1-4

About Auditing with Oracle Fusion Middleware Audit Framework 1-6

Overview of Oracle Fusion Middleware Audit Framework 1-6

About Components and Applications 1-7

Understanding Audit 1-7

The Audit Model 1-7

About the Audit Store 1-8

How Audit Data Is Stored 1-8

About the Oracle Fusion Middleware Audit Framework 1-9

Audit Setup: Main Steps 1-9

Understanding the Runtime Audit Event Flow 1-9

About Audit Attributes, Events, and Event Categories 1-10

Audit Attribute Groups 1-10

Audit Events and Event Categories 1-12

Audit Artifact Naming Requirements 1-14

About Audit Definition Files 1-14

About the component_events.xml File 1-14

Translation Files 1-16

About Mapping and Version Rules 1-16

iii

What Are Version Numbers? 1-16

About Custom Attribute to Database Column Mappings 1-17

Managing Audit 1-18

Audit Administration Tasks 1-18

About Audit Data Sources 1-19

Managing Bus-Stop Files 1-19

Configuring Standalone Audit Loader 1-20

Configuring the Environment 1-20

Running Standalone Audit Loader 1-20

Keyboard Shortcuts 1-21

About Keyboard Shortcuts 1-21

Tab Traversal 1-21

Tab Traversal Sequence on a Page 1-22

Tab Traversal Sequence in a Table 1-22

Shortcut Keys 1-25

Accelerator Keys 1-25

Access Keys 1-27

Shortcut Keys for Common Components 1-29

Shortcut Keys for Widgets 1-30

Shortcut Keys for Rich Text Editor Component 1-31

Shortcut Keys for Table, Tree, and Tree Table Components 1-32

Shortcut Keys for ADF Data Visualization Components 1-34

Shortcut Keys for Calendar Component 1-41

Default Cursor or Focus Placement 1-43

The Enter Key 1-44

Configuring WebCenter Content Web Services for Integration 1-45

About Configuring WebCenter Content Web Services for Integration 1-45

Technologies for Web Services 1-45

WebCenter Content Web Services 1-47

Configuring Web Service Security Through Web Service Policies 1-48

Configuring SAML Support 1-49

Using Approval Management 1-49

Introduction to Approval Management 1-49

AMX Components 1-50

Understanding Approval Management Concepts 1-51

Task 1-52

Service Data Objects 1-53

Stages 1-54

List Builders 1-55

Task Operations 1-56

Business Rules for Approval 1-56

iv

Designing Approval Management Tasks in Oracle JDeveloper 1-58

Introduction to the Modeling Process 1-58

Before You Begin 1-59

Specifying General Information 1-59

Specifying Task Parameters 1-62

Specifying Mapped Attributes 1-64

Specifying Routing and Approval Policies 1-66

Defining Escalation and Renewal Policies 1-93

Specifying Notification Settings 1-94

Using Advanced Settings 1-94

Using the End-to-End Approval Management Samples 1-97

Using the User Metadata Migration Utility 1-97

GET_SEARCH_RESULTS 1-97

How to Use Advanced Mode Action Forms 1-99

Advanced Mode Action Options in Rule Designer 1-100

Working with Decision Tables 1-100

Introduction to Working with Decision Tables 1-101

What is a Decision Table? 1-101

Understanding Condition Cell Values 1-105

Understanding Action Cell Values 1-106

What You Need to Know About Decision Table Loops 1-106

Creating Decision Tables 1-107

How to Create a Decision Table 1-107

How to Add Condition Rows to a Decision Table 1-107

How to Use or Specify the Value Set for a Decision Table Condition 1-108

How to Add Actions to a Decision Table 1-109

How to Add a Rule to a Decision Table 1-111

How to Define Tests in a Decision Table 1-112

Creating and Running an Oracle Business Rules Decision Table Application 1-113

Introduction to Decision Table Operations 1-133

Understanding Decision Table Split and Compact Operations 1-133

How to Compact or Split a Decision Table 1-140

How to Merge or Split Conditions in a Decision Table 1-140

How to Use the Condition Cell Operations 1-140

How to Perform Decision Table Gap Checking 1-141

How to Perform Decision Table Manual Conflict Resolution 1-141

How to Set the Decision Table Auto Override Conflict Resolution Policy 1-142

How to Set the Decision Table Ignore Conflicts Policy 1-142

Creating and Running an Oracle Business Rules Decision Table Application 1-142

How to Obtain the Source Files for the Order Approval Application 1-143

How to Create an Application for Order Approval 1-144

v

How to Create a Business Rule Service Component for Order Approval 1-146

How to View Data Model Elements for Order Approval 1-149

How to Add Value Sets to the Data Model for Order Approval 1-149

How to Associate Value Sets with Order and CreditScore Properties 1-151

How to Add a Decision Table for Order Approval 1-152

How to Check the Business Rule Validation Log for Order Approval 1-159

How to Deploy the Order Approval Application 1-160

How to Test the Order Approval Application 1-160

Editing Decision Tables in Microsoft Excel 1-162

Understanding What is Exported 1-164

How to Export Decision Tables 1-164

How to Import Edited Decision Tables Back to the Dictionary 1-164

How to Edit Decision Tables in Excel 1-165

Modifying MDS Configuration Using MBeans 1-174

ADF Business Components 1-175

About ADF Business Components 1-175

Core Benefits of ADF Business Components 1-176

Key Concepts of ADF Business Components 1-177

Implementation of Business Services 1-177

Based on Standard Java and XML 1-178

Application Server and Database Independence 1-180

Declarative Metadata for Implementation Classes 1-180

Optional Custom Java Code 1-180

Ability to Expose Services to SOA Applications 1-181

Application State Management 1-181

Key Components of ADF Business Components 1-181

Entity Objects 1-181

Entity Associations 1-182

View Objects 1-183

View Links 1-185

Application Modules 1-185

Overview of the ADF Business Components Process Flow 1-188

vi

Preface

This document lists some of the common feature topics that other Oracle Fusion Cloud
Applications guides link or refer to.

Audience
This document is intended for the users of Oracle Fusion Middleware and Oracle Fusion
Applications who are looking for sections that link or refer to Middleware or Fusion
applications documentation.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/us/corporate/

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info

accessibility/support/index.html#info or visit http://www.oracle.com/us/
corporate/accessibility/support/index.html#trs if you are hearing impaired.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Reference Topics

This chapter provides content from Oracle Fusion Middleware that supplements Oracle
Fusion Cloud Applications guides. This collection of diverse topics is just for reference and
not meant to be read in any particular order.

Auditing Web Services
Auditing describes the process of collecting and storing information about security events and
the outcome of those events. An audit provides an electronic trail of selected system activity.

An audit policy defines the type and scope of events to be captured at run time. Although a
very large array of system and user events can occur during an operation, the events that are
actually audited depend on the audit policies in effect at run time. You can define component-
or application-specific policies, or audit individual users.

You configure auditing for system components, including web services, and applications at
the domain level using the Audit Policy page. You can audit SOA and ADF services.

The following table summarizes the events that you can audit for web services and the
relevant component.

Table 1-1 Auditing Events for Web Services

Enable auditing for the following web service
events. . .

Using this system component. . .

• User authentication.
• User authorization.
• Policy enforcement, including message

confidentiality, message integrity, and
security policy.

OWSM—Agent

• Web service requests sent and responses
received.

• SOAP faults incurred.
Note: In this case, events are logged for both
security and non-security web service
invocations.

Oracle web services

• OWSM assertion template creation, deletion,
or modification.

• OWSM policy intent creation, deletion, or
modification.

• OWSM policy creation, deletion, or
modification.

• OWSM policy set authoring creation,
deletion, or modification.

OWSM—Policy Manager

Note: The Policy Manager audits both local policy
attachments and global policy attachments for
policy sets.

• OWSM policy attachment. OWSM—Policy Attachment

Note: The Policy Attachment audits only local
policy attachments.

1-1

You can also audit the events for a specific user, for example, you can audit all events
by an administrator.

For more information about configuring audit policies, see Managing Audit.

The following sections describe how to define audit policies and view audit data:

Configuring Audit Policies
Follow the steps in this section to configure audit policies. For more information, see
Manage Audit Policies for Java Components with Fusion Middleware Control in
Securing Applications with Oracle Platform Security Services.

1. From the WebLogic Domain menu, select Security > Audit Policy.

The Audit Policy Settings page is displayed.

The audit policies table, at the center of the page, displays the audits that are
currently in effect.

2. Select the component that you want to audit from the Audit Component Name
menu.

3. Select an audit level from the Audit Level menu.

Valid audit levels include:

• None—Disables auditing.

• Low, Medium, High—Audits subsets of event categories representing pre-
defined levels of auditing.

• Custom—Enables you to provide a custom auditing policy.

You can view the components and applications that are selected for audit at each
level in the audit policies list. For all audit levels other than Custom, the
information in the audit policies list is greyed out, as you cannot customize other
audit level settings.

4. To customize the audit policy, select the Custom option and perform one of the
following steps:

• Select the information that you want to audit by clicking the associated
checkbox in the Select for Audit column.

You can audit at the following levels of granularity: All events for a component,
all events within a component event category, an individual event, or a specific
outcome of an individual event (such as, success or failure).

Click Select All to select all categories, None to deselect all categories, or
Audit All Events to audit all events, including specific outcome of individual
events (such as, successes and failures).

At the event outcome level, you can specify an edit filter. Filters are rules-
based expressions that you can define to control the events that are returned.
For example, you might specify an Initiator as a filter for policy management
operations to track when policies were created, modified, or deleted by a
specific user. To define a filter for an outcome level, click the Edit Filter icon in
the appropriate column, specify the filter attributes, and click OK. The filter
definition appears in the Filter column.

Chapter 1
Auditing Web Services

1-2

Deselect the checkbox for a component at a higher level to customize auditing for its
subcomponents. You can select all components and applications by checking the
checkbox adjacent to the column name.

• At the event outcome level, you can specify an edit filter. Filters are rules-based
expressions that you can define to control the events that are returned. For example,
you might specify an Initiator as a filter for policy management operations to track
when policies were created, modified, or deleted by a specific user. To define a filter
for an outcome level, click the Edit Filter icon in the appropriate column, specify the
filter attributes, and click OK. The filter definition appears in the Filter column.

• To audit only success or failures for all system components and applications, select
Select Successes Only or Select Failures Only from the Select menu, respectively.
To clear all selections, select None.

5. If required, enter a comma-separated list of users in the Users to Always Audit text box.

Specified users will always be audited, regardless of whether auditing is enabled or
disabled, and at what level auditing is set.

6. Click Apply.

To revert all changes made during the current session, click Revert.

Managing Audit Data Collection and Storage
To manage the data collection and storage of audit information, you need to perform the
following tasks:

• Set up and manage an audit data repository.

You can store records using one of two repository modes: file and database. It is
recommended that you use the database repository mode. The Oracle Business
Intelligence Publisher-based audit reports only work in the database repository mode.

• Set up audit event collection.

For more information, see Managing the Audit Data Store in Securing Applications with
Oracle Platform Security Services.

Viewing Audit Reports
For database repositories, data is exposed through pre-defined reports in Oracle Business
Intelligence Publisher.

A number of predefined reports are available, such as: authentication and authorization
history, OWSM policy enforcement and management, and so on. For details about generating
and viewing audit reports using Oracle Business Intelligence Publisher, see Using Audit
Analysis and Reporting in Securing Applications with Oracle Platform Security Services.

For file-based repositories, you can view the bus-stop files using a text editor and create your
own custom queries.

Introduction to Oracle Fusion Middleware Audit Framework
The Oracle Fusion Middleware Audit Framework allows you to audit application events. Using
this framework, you create events specific to your application, register the application at
deployment, and generate audit reports.

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-3

What Are the Audit Objectives?
The objectives of audit are to comply with regulations, to monitor business activity, and
to obtain data for risk analysis.

Compliance

To comply with regulations required in the enterprise and to allow the review of
compliance policies, customers must audit identity information and user access events
on applications and devices across the enterprise, including the following:

• User profile change

• Access rights change

• User access

• Operational activities, such as like application start and stop, upgrade, and backup

Monitoring

Audit data allows you to monitor activity, to create dashboards, and to build key
performance indicators to observe the health of the various systems in the enterprise.

Analytics

Audit data analysis can be used to assess the efficacy of controls and risks. Based on
historical data, a risk score is calculated and assigned to a user. Then, any runtime
evaluation of a user access to systems can include risk scores as additional criteria to
determine access permission.

Audit support across enterprises is not uniform. For example, there are no standards
to generate audit records, format records, or define audit policies. As a result, audit
solutions have a number of drawbacks:

• There is no centralized audit framework.

• Audit support is inconsistent from application to application.

• Audit data, audit policies, and configuration are scattered across the enterprise.

• Cross-component analysis of audit is complex and time-consuming.

• Scattered data, lack of consistency, and decentralization make the audit solutions
fragile with idiosyncrasies.

Audit Terminology
This section introduces several audit terms used in this document.

Component

A component refers to an Oracle Fusion Middleware component.

Audit-Aware Components

An audit-aware component is a component that is integrated with Audit Framework,
whose audit policies can be configured and whose events can be audited.

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-4

Audit Store

The audit store is a database that has a predefined audit schema and that stores audit
events. After you configure the audit store, the audit loader periodically uploads data to this
database. Audit data is cumulative and grows in size over time. Ideally, the audit store should
be a database not used by other applications but used exclusively by audit. The audit store
stores audit events generated by components as well as user applications integrated with
Audit Framework.

Audit Definition File

An audit definition file is a file where an applications specify its specific audit rules (such as
events and filters) that control audit.

Audit Events

An audit event is an event that is recorded by Audit Framework. This framework provides a
set of generic events that you map to application audit common events, such as
authentication or policy change. It also allows you to define specific application events and to
update audit configuration with Fusion Middleware Control or with WebLogic Scripting Tool
(WLST) commands.

Audit Loader

The audit loader is a module of Oracle WebLogic Server that supports audit activity in the
server. After you configured the audit store, the audit loader collects audit records of all
running components and loads them to the audit store. For Java components, the audit
loader starts when the container starts up. To upload events with the audit loader, register the
system component with audit (with the registerAudit WLST command) or use the
standalone audit loader.

Audit Policy

An audit policy specifies the events that Audit Framework captures for a particular
component. You define policies at the component level (so that it applies to a particular
component), or at the domain level (so that it applies to all components in the domain).

Bus-Stop Files

A bus-stop file is a local file that contains audit data records. Bus-stop files are simple text
files that can be queried easily to look up specific audit events. If audit is configured in the
domain, then the data in these files is periodically uploaded to the audit store after a
configurable time interval. If audit is not configured in the domain, then the data is kept in
bus-stop files.

You correlate and combine audit data from multiple components in a report, for example,
when you want to identify authentication failures in all middleware components and
instances.

By default, the bus-stop files are located the following directory:

Weblogic Domain Home/servers/server_name/logs/auditlogs

with sub-directories for each component bus-stop files. For example, OPSS bus-stop files are
kept in the following directory:

Weblogic Domain Home/servers/server_name/logs/auditlogs/JPS

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-5

Event Filters

An event filter is a filter that controls whether the event is logged. For example, a
successful login event to a component is logged only for a certain subset of users.

Audit Configuration MBeans

Audit configuration MBeans are the MBeans that manage audit configuration. For Java
components and applications, these MBeans are present in WebLogic Administration
Server and the audit configuration is centrally managed. For system components,
each component has its separate MBeans.

About Auditing with Oracle Fusion Middleware Audit Framework
This sections describes the Audit Framework support to audit components.

Overview of Oracle Fusion Middleware Audit Framework
The Audit Framework includes the following features:

• A uniform way to administer audits across Java components, system components,
and applications.

• A Java component audit, including:

– Support audit for applications that are not audit-aware.

– The ability to search for audit data at any application level.

• Capturing authentication history and failures, authorization history, user
management, and other common transaction data.

• Flexible policies including:

– Previously seeded audit policies, which capture most common audit events,
available for ease of configuration.

– A tree-like policy structure.

• The ability to write your own reports based on the published audit schema.

• Keeping audit data and files in a common location (the audit store), which
simplifies record maintenance.

• A common audit record format including:

– Baseline attributes such as outcome (status), event date-time, and user.

– Event-specific attributes such as the authentication method, source IP
address, target user, and resource.

– Contextual attributes such as the execution context ID (ECID), and session ID.

• A common and unified way to configure audit policies for the entire domain.

• Oracle Fusion Middleware support, so that audit:

– Can be used across Oracle Fusion Middleware components and services.

– Integrates with Oracle Enterprise Manager Fusion Middleware Control (Fusion
Middleware Control).

– Integrates with WLST.

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-6

• A dynamic metadata model that integrates with the Audit Framework and that allows
applications to:

– Register at any time.

– Define and log specific audit events.

– Upgrade definitions independent of release cycles by providing event definitions
versions.

About Components and Applications
Oracle Fusion Middleware Audit Framework provides a centralized framework for all Oracle
Fusion Middleware products. Specifically, it provides audit for the following applications and
components:

• Middleware Platform - This includes Java components such as OPSS and Oracle Web
Services Manager. All the deployed applications leveraging Java components benefit
from audit, which happens at the platform level.

• Java EE applications - The framework provides audit for Java EE applications, including
Oracle Java EE-based components, and applications and components can specify their
own specific audit events.

• System Components - For system components, such as Oracle HTTP Server, the
framework provides an end-to-end solution similar to that of Java components, including
APIs for C and C++ applications.

See also:

Oracle Fusion Middleware Components in Administering Oracle Fusion Middleware.

Understanding Audit
This section explains fundamental audit concepts.

The Audit Model
The audit model provides a standards-based, integrated framework for Java EE and SE
applications and components across Oracle Fusion Middleware.

Dynamic Model

The Oracle Fusion Middleware Audit Framework features a dynamic audit model that lets
applications manage audit event definitions and make version changes independent of
release cycles. Audit event definitions can be dynamically updated at redeployment.

Application Life Cycle Support

The model supports all aspects of the application life cycle from design to development to
deployment.

Application Registration

A versatile registration lets you register applications with audit in different ways:

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-7

• Declaratively, by packaging the configuration in the META-INF directory of the
application Enterprise ARchive (EAR) file.

• Programmatically, by calling the audit registration methods.

• At the command line, by calling WLST audit commands.

• When you create a domain, by specifying security artifacts in a product template.

Distributed Environments

Oracle Fusion Middleware Audit Framework supports distributed environments with
multiple servers. It monitors the audit store so changes in audit policies introduced in
one server are synchronized with all other servers in the domain.

Consider, for example, a distributed environment consisting of an Administration
Server and three Managed Servers. A single security store (that includes audit data)
supports all the servers in the domain. When you change an audit policy in the
Administration Server with Fusion Middleware Control, then those changes are
automatically propagated and synchronized with all other servers in the domain.

About the Audit Store
The audit store contains component event definitions, attribute table mappings, and
audit policies.

The audit store includes:

• Audit registration that allows you:

– Create, modify, and delete event definition entries.

– Create attribute database mappings to store audit data.

• The service that retrieves event definitions and runtime policies.

• Audit MBean commands that allow you to look up and modify component audit
definitions and runtime policies.

The Audit Framework requires a database to store audit data, and this database can
be any of the supported ones.

When a new application registers with audit, the following artifacts are stored in the
audit store:

• Audit event definitions including custom attribute group, categories, events, and
filter preset definitions

• Localized translation entries

• Custom attribute-database column mapping tables

• Runtime audit policies

How Audit Data Is Stored
Audit data resides in intermediate or permanent storages.

• Intermediate storage, in bus-stop files. Each component instance writes to its own
separate bus-stop file. Bus-stop files are text-based and easy to query.

• Permanent storage, in the audit store (if configured in the environment). Audit
records generated by all components in the domain are written to the same store.

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-8

Advantages to Using a Database Store

Having the audit records stored in bus-stop files has some limitations:

• You cannot view domain-level audit data.

• You cannot obtain reports easily.

And there are advantages to using the audit store:

• It allows you to generate audit reports.

• The database store contains records from all components in the domain, whereas the
bus-stop contains audit records for one component only.

• It improves performance.

About the Oracle Fusion Middleware Audit Framework
The Audit Framework provides a set of interfaces for any audit-aware components integrating
with it. During runtime, applications may call these APIs to manage audit policies and to audit
the necessary information about a particular event happening in the application code. These
interfaces allow applications to specify event details and attributes needed to provide the
context of the event they want to audit.

Audit Setup: Main Steps
The following list includes the major tasks that you carry out to you set up and maintain audit
in your environment:

• Understanding the audit architecture, the essential elements of the framework, the flow of
actions, and the Audit Framework. For information about these tasks, see Audit
Administration Tasks.

• Integrating applications with the framework. For information about integration, see
Integrating Applications with the Oracle Fusion Middleware Audit Framework in Securing
Applications with Oracle Platform Security Services.

• Creating the audit definition file that specifies the application's audit events and how they
map to the audit schema. For information about audit definition files, see Creating Audit
Definition Files in Securing Applications with Oracle Platform Security Services.

• Registering the application with audit. For information about audit registration, see
Registering the Application with the Audit Service in Securing Applications with Oracle
Platform Security Services

• Migrating audit information. For information about audit data migration, see Migrating
Audit Data in Securing Applications with Oracle Platform Security Services.

• Generating audit reports. For information about audit reporting, see Using Audit Analysis
and Reporting in Securing Applications with Oracle Platform Security Services.

Understanding the Runtime Audit Event Flow
If the audit store is not configured in your environment, then the audit records are kept in bus-
stop files. An application does not stop execution if it is unable to record an audit event.

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-9

The audit event flow is best understood by looking at the following sequence that takes
place when an audit event occurs within an application running in an environment
where you have configured audit:

1. During application deployment or service start-up, a client Java EE application
registers with audit.

2. The service reads the application audit definition file and updates definitions in the
audit store.

3. When a user accesses the component or application, an audit function is called to
audit the event.

4. The Audit Framework checks whether to audit events with this type, status, and
attributes. If they must be audited, then the audit function is called to create the
event and collect information such as the status, initiator, resource, and ECID.

5. The event is stored in a bus-stop file. Each application or component has its own
bus-stop file.

6. The audit loader pulls the events from bus-stop files, formats the data using the
application's metadata, and moves it to the audit store.

About Audit Attributes, Events, and Event Categories
The Audit Framework supports a model that allows you to specify and define
dynamically application audit attribute groups, categories, and events.

Audit Attribute Groups
Attribute groups provide broad classification of audit attributes and consist of three
types: common, generic, and custom.

• The common attribute group contains system attributes common to all
applications, such as the component type, system IP address, and host name. The
IAU_COMMON database table contains attributes in this group.

• Generic attribute groups contain attributes for audit authentication and user
provisioning.

• Custom attribute groups are those defined by an application to meet specific
needs. The scope of attributes in a custom group is limited to a component. These
attribute groups and attributes are stored in the IAU_CUSTOMn table, where n
denotes an integer (1,2, and so on).

About Generic Attribute Groups
A generic attribute group refers to a namespace and a version number, and contains
one or more attributes. The following example illustrates an attribute group with the
authorization namespace and version 1.0:

<AuditConfig xmlns="http://xmlns.oracle.com/ias/audit/audit-2.0.xsd" >
 <Attributes ns="authorization" version="1.0">
 <Attribute displayName="CodeSource" maxLength="2048" name="CodeSource"
type="string"/>
 <Attribute displayName="Principals" maxLength="1024" name="Principals"
type="string"/>
 <Attribute displayName="InitiatorGUID" maxLength="1024"
name="InitiatorGUID" type="string"/>

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-10

 <Attribute displayName="Subject" maxLength="1024" name="Subject" type="string">
 <HelpText>Used for subject in authorization</HelpText>
 </Attribute>
 </Attributes>
 ……

You refer to the CodeSource attribute like this:

<Attribute name="CodeSource" ns="authorization" version="1.0" />

Each generic attribute group is stored in a dedicated database table. The naming
conventions are:

• IAU_GENERIC_ATTRIBUTE_GROUP_NAME for table names

• IAU_ATTRIBUTE_NAME for table columns

For example, the authorization attribute group is stored in the IAU_AUTHORIZATION table
with these columns:

• IAU_CODESOURCE as string

• IAU_PRINCIPALS as string

• IAU_INITIATORGUID as string

About Custom Attribute Groups
A custom attribute group refers to a namespace, a version number, and one or more
attributes. Each custom attribute incudes:

• Attribute name

• Data type

• Attribute-database column mapping order - This property specifies the order in which an
attribute is mapped to a database column of a specific data type in the custom attribute
table.

• Help text (optional)

• Maximum length

• Display name

• Size - This property denotes how many values of the same data type the attribute can
have. The default size value is 1. A size greater than 1 denotes an attribute that can have
two or more values of the same data type. These attributes support all data types except
for binary types.

The following example illustrates the definition of the Accounting attribute group with the
accounting namespace and version 1.0:

<Attributes ns="accounting" version="1.0">
 <Attribute name="TransactionType" displayName="Transaction Type" type="string"
order="1"/>
 <Attribute name="AccountNumber" displayName="Account Number" type="int" order="2">
 <HelpText>Account number.</HelpText>
 </Attribute>
 ……
 </Attributes>

The following example defines the AccountBalance attribute with multiple values:

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-11

<Attribute order="3" displayName="AccountBalance" type="double" name="Balance"
size="2" sinceVersion="1.1">
 <MultiValues>
 <MultiValueName displayName="Previous Balance" index="0">
 <HelpText>the previous account balance</HelpText>
 </MultiValueName>
 <MultiValueName displayName="Current Balance" index="1"/>
 </MultiValues>
</Attribute>

About Audit Attribute Data Types
Table 1-2 shows the attribute data types supported and the corresponding Java object
types:

Table 1-2 Audit Attribute Data Types

Attribute Data Type Java Object Type Notes

Integer Integer NA

Long Long NA

Float Float NA

Double Double NA

Boolean Boolean NA

DateTime java.util.Date NA

String String Maximum length 2048 bytes

LongString String Unlimited length

Binary byte[] NA

Audit Events and Event Categories
An event category contains audit events in a functional area. For example, a session
category may contain login and logout events significant to the life cycle of a user
session. An event category does not itself define attributes. Instead, it references
attributes in component and system attribute groups.

There are two types of event categories:

About System Categories and Events
A system category references common and generic attribute groups and includes
audit events. System categories are the base set of component event categories and
events. Applications can refer to system categories and use the events in them to log
audit events and set filter preset definitions.

The following example illustrates the definition of attributes, events, and the
UserSession system category with an attribute referencing the common
AuthenticationMethod attribute:

<SystemComponent major="1" minor="0">
 <Attributes ns="common" version ="1.0"></Attributes>
 <Attributes ns="identity" version ="1.0"></Attributes>
 <Attributes ns="authorization" version ="1.0"></Attributes>
 <Events>

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-12

 <Category name="UserSession" displayName="User Sessions">
 <Attributes>
 <Attribute name="AuthenticationMethod" ns="common" version ="1.0" />
 </Attributes>
 <HelpText></HelpText>
 <Event name="UserLogin" displayName="User Logins" shortName="uLogin"></Event>
 <Event name="UserLogout" displayName="User Logouts" shortName="uLogout"
 xdasName="terminateSession"></Event>
 <Event name="Authentication" displayName="Authentication"></Event>
 <Event name="InternalLogin" displayName="Internal Login" shortName="iLogin"
 xdasName="CreateSession"></Event>
 <Event name="InternalLogout" displayName="Internal Logout" shortName="iLogout"
 xdasName="terminateSession"></Event>
 <Event name="QuerySession" displayName="Query Session" shortName="qSession"></
Event>
 <Event name="ModifySession" displayName="Modify Session" shortName="mSession"></
Event>
 </Category>
 <Category displayName="Authorization" name="Authorization"></Category>
 <Category displayName="ServiceManagement" name="ServiceManagement"></Category>
 </Events>
</SystemComponent>

About Component and Application Categories
A component or application can extend system categories or define new component event
categories.

The following example illustrates the definition of a category with the AccountNumber, Date,
and Amount attributes from the accounting attribute group, and it includes the purchase and
deposit events:

 <Category displayName="Transaction" name="Transaction">
 <Attributes>
 <Attribute name="AccountNumber" ns="accounting" version="1.0"/>
 <Attribute name="Date" ns="accounting" version="1.0" />
 <Attribute name="Amount" ns="accounting" version="1.0" />
 </Attributes>
 <Event displayName="purchase" name="purchase"/>
 <Event displayName="deposit" name="deposit">
 <HelpText>depositing funds.</HelpText>
 </Event>
……
 </Category>

Extend system categories by creating category references in your application audit
definitions, listing the system events that the category includes, and adding attribute
references and events to the category reference.

The following example illustrates the definition of the ServiceManagement system category
reference with the ServiceTime attribute, and the restartService event:

<CategoryRef name="ServiceManagement" componentType="SystemComponent">
 <Attributes>
 <Attribute name="ServiceTime" ns="accounting" version="1.0" />
 </Attributes>
 <EventRef name="startService"/>
 <EventRef name="stopService"/>
 <Event displayName="restartService" name="restartService">
 <HelpText>restart service</HelpText>

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-13

 </Event>
</CategoryRef>

Audit Artifact Naming Requirements
The name of a category, an event, or an attribute must:

• Be an English word

• Be less than 26 characters

• Contain characters a-z, A-Z, and numbers 0-9 only

• Start with a letter

About Audit Definition Files
An audit definition file specifies the application's specific audit rules (such as events
and filters). Audit definition files provide a way to translate event definitions to foreign
languages.

There are two types of audit definition files:

About the component_events.xml File
The component_events.xml file specifies the properties audit uses to log audit events,
including the following:

• Basic properties

– The component type, which applications use to register with audit and obtain a
runtime auditor instance

– Major and minor version of the application

• A custom attribute group

• Event categories with attribute references and events

• Component level filter definitions

• Runtime policies

The following example illustrates the definition of this file:

<?xml version="1.0"?>
<AuditConfig xmlns="http://xmlns.oracle.com/ias/audit/audit-2.0.xsd">
 <AuditComponent componentType="ApplicationAudit" major="1" minor="0">
 <Attributes ns="accounting" version="1.0">
 <Attribute name="TransactionType" displayName="Transaction Type"
type="string" order="1">
 <HelpText>Transaction type.</HelpText>
 </Attribute>
 <Attribute name="AccountNumber" displayName="Account Number"
type="int" order="2">
 <HelpText>Account number.</HelpText>
 </Attribute>
 <Attribute name="Date" displayName="Date" type="dateTime" order="3"/>
 <Attribute name="Amount" displayName="Amount" type="float" order="4">
 <HelpText>Transaction amount.</HelpText>
 </Attribute>
 <Attribute name="Status" displayName="Account Status" type="string"

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-14

order="5">
 <HelpText>Account status.</HelpText>
 </Attribute>
 </Attributes>
 <Events>
 <Category displayName="Transaction" name="Transaction">
 <Attributes>
 <Attribute name="AccountNumber" ns="accounting" version="1.0" />
 <Attribute name="Date" ns="accounting" version="1.0" />
 <Attribute name="Amount" ns="accounting" version="1.0" />
 </Attributes>
 <Event displayName="purchase" name="purchase">
 <HelpText>direct purchase.</HelpText>
 </Event>
 <Event displayName="deposit" name="deposit">
 <HelpText>depositing funds.</HelpText>
 </Event>
 <Event displayName="withdrawing" name="withdrawing">
 <HelpText>withdrawing funds.</HelpText>
 </Event>
 <Event displayName="payment" name="payment">
 <HelpText>paying bills.</HelpText>
 </Event>
 </Category>
 <Category displayName="Account" name="Account">
 <Attributes>
 <Attribute name="AccountNumber" ns="accounting" version="1.0" />
 <Attribute name="Status" ns="accounting" version="1.0" />
 </Attributes>
 <Event displayName="open" name="open">
 <HelpText>Open a new account.</HelpText>
 </Event>
 <Event displayName="close" name="close">
 <HelpText>Close an account.</HelpText>
 </Event>
 <Event displayName="suspend" name="suspend">
 <HelpText>Suspend an account.</HelpText>
 </Event>
 </Category>
 </Events>
 <FilterPresetDefinitions>
 <FilterPresetDefinition displayName="Low" helpText="" name="Low">
 <FilterCategory enabled="partial" name="Transaction">
deposit.SUCCESSESONLY(HostId -eq "NorthEast"),withdrawing </FilterCategory>
 <FilterCategory enabled="partial"
name="Account">open.SUCCESSESONLY,close.FAILURESONLY</FilterCategory>
 </FilterPresetDefinition>
 <FilterPresetDefinition displayName="Medium" helpText="" name="Medium">
 <FilterCategory enabled="partial"
name="Transaction">deposit,withdrawing</FilterCategory>
 <FilterCategory enabled="partial" name="Account">open,close</
FilterCategory>
 </FilterPresetDefinition>
 <FilterPresetDefinition displayName="High" helpText="" name="High">
 <FilterCategory enabled="partial"
name="Transaction">deposit,withdrawing,payment</FilterCategory>
 <FilterCategory enabled="true" name="Account"/>
 </FilterPresetDefinition>
 </FilterPresetDefinitions>

 <Policy filterPreset="Low">

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-15

 <CustomFilters>
 <FilterCategory enabled="partial" name="Transaction"> purchase </
FilterCategory>
 </CustomFilters>
 </Policy>
 </AuditComponent>
</AuditConfig>

About Runtime Properties

In addition, there are runtime properties you create with Fusion Middleware Control,
WLST commands, or during registration. They include the following properties:

• filterPreset, to specify the audit filter level

• specialUsers, to specify the users to audit always

• maxBusstopFileSize, to specify the size of a bus-stop file

Translation Files
The following procedure explains how to generate the XLIFF (XML Localization
Interchange File Format) translations files and pack them in the
component_events_xlf.jar file. At deployment and during registration, this
information is stored in the audit store along with the component event definition.

1. Run a command like the following to generate XLIFF files:

java -cp $MW_HOME/oracle_common/modules/oracle.jps_12.2.1/
jpsaudit.jar:
 $MW_HOME/oracle_common/modules/oracle.jps_12.2.1/jps-api.jar
oracle.security.audit.tools.NewXlfGenerator
-s
/tmp/comp_events.xml
 -t /tmp/comp_events.xlf

2. Translate the generated xlf file for the supported languages. This xlf file
contains translation units as well as help texts for all categories, events, and
attributes. The prefixes for these are Category_, Event_ and Attribute_.

3. Package the translated files in a JAR file.

About Mapping and Version Rules
Audit registration applies certain rules to create the audit data for the application, and
this data is used to maintain different versions of the audit definition and to generate
reports.

The following sections explain how the registration works:

What Are Version Numbers?
An audit definition file has a major and a minor version number. Any change
introduced to an audit event definition requires updating the version number. These
numbers are used by audit registration to determine the compatibility of event
definitions and attribute mappings between versions. These version numbers have no
relation to Oracle Fusion Middleware version numbers.

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-16

Component Version

When you register a component, audit registration checks if this is a first-time registration or
an upgrade.

In case of a new registration, the service:

1. Retrieves the component audit and translation information.

2. Parses and validates the definition, and stores it in the audit store.

3. Generates the attribute-column mapping table and saves it in the audit store.

In case of an upgrade, the current version number for the component in the audit store is
compared with the new version number to determine whether to proceed with the upgrade.

Java EE Application Version

To reset the version number after you modified an application audit definition, Oracle
recommends that you:

• Increase the minor version number only when making changes in an audit definition that
will work with the audit data created by the previous attribute database mapping table.

For example, suppose the current definition version 2.1. When adding a new event that
does not affect the attribute database mapping table, you change the version to 2.2, and
leave the major version unchanged (major=2). Similarly, increase the minor version after
adding a new attribute.

• Increase major version number when making changes where the new mapping table is
incompatible with the previous table.

Changes becomes effective after you restart the server.

About Custom Attribute to Database Column Mappings
When you register a new component or application, audit registration creates an attribute-to-
database column mapping table from the custom attributes, and then saves this table to the
audit store.

If the number of custom attributes is greater than 100, then you must create additional tables
manually. OPSS ships with the tables IAU_CUSTOM and IAU_CUSTOM_01 only.

Attribute-database mapping tables are required to ensure unique mappings between your
application's attribute definitions and database columns. The audit loader uses mapping
tables to load data into the audit store. These tables are also used to generate audit reports
from custom IAU_CUSTOM database table.

Use the createAuditDBView WLST command to generate a SQL file that creates a database
view of the audit definitions for your component.

Understanding the Mapping Table for your Component

A custom attribute-database column mapping has the following properties: name, database
column name, and data type.

Each custom attribute must have a mapping order number in its definition. Attributes with the
same data type are mapped to the database column in the sequence of attribute mapping
order.

Chapter 1
Introduction to Oracle Fusion Middleware Audit Framework

1-17

For example, the following definition file:

<Attributes ns="accounting" version="1.1">
 <Attribute name="TransactionType" type="string" maxLength="0"
 displayName="Transaction Type" order="1"/>
 <Attribute name="AccountNumber" type="int" displayName="Account Number"
 order="2">
 <Attribute name="Date" type="dateTime" displayName="Date" order="3"/>
 <Attribute name="Amount" type="float" displayName="Amount" order="4"/>
 <Attribute name="Status" type="string" maxLength="0" displayName="Account
 Status" order="5"/>
 <Attribute name="Balance" type="float" displayName="Account Balance"
 order="6"/>
</Attributes>

maps to:

<AttributesMapping ns="accounting" tableName="IAU_CUSTOM" version="1.1">
 <AttributeColumn attribute="TransactionType" column="IAU_STRING_001"
 datatype="string"/>
 <AttributeColumn attribute="AccountNumber" column="IAU_INT_001"
 datatype="int"/>
 <AttributeColumn attribute="Date" column="IAU_DATETIME_001"
 datatype="dateTime"/>
 <AttributeColumn attribute="Amount" column="IAU_FLOAT_001" datatype="float"/>
 <AttributeColumn attribute="Status" column="IAU_STRING_002"
datatype="string"/>
 <AttributeColumn attribute="Balance" column="IAU_FLOAT_002" datatype="float"/>
</AttributesMapping>

The version number of the attribute-database column mapping table matches the
version number of the custom attribute group. This allows your application to maintain
a backward compatibility of attribute mappings across audit definition versions.

Managing Audit
This section explains the main administration tasks and tools you use to manage the
audit store, audit policies, and bus-stop files.
This section includes the following topics:

Audit Administration Tasks
Setting up audit in your environment involves the following major tasks:

• Planning the type of store to use for audit records and the store configuration
details. For information about audit store management, see Managing the Audit
Store in Fusion Middleware Securing Applications with Oracle Platform Security
Services .

• Configuring and maintaining audit policies so that audit events are generated. For
information about audit policies, see Managing Audit Policies in Fusion
Middleware Securing Applications with Oracle Platform Security Services .

• Configuring audit reports and queries. For information about reporting, see Using
Audit Analysis and Reporting in Fusion Middleware Securing Applications with
Oracle Platform Security Services.

Chapter 1
Managing Audit

1-18

• Registering applications. For information about application registration, see Registering
the Application with the Service in Fusion Middleware Securing Applications with Oracle
Platform Security Services.

• Migrating audit information. For information about audit data migration, see Migrating
Audit Data in in Fusion Middleware Securing Applications with Oracle Platform Security
Services.

• Administering the audit database, including increasing the database size that stores the
generated audit data, and backing up and purging that data. For information about audit
administration, see Audit Database Administration in Fusion Middleware Securing
Applications with Oracle Platform Security Services.

About Audit Data Sources
When you create a domain, the process generates the audit schema, a data structure
required to store audit records in the database. It also sets up an audit data source in the
server that uses the audit schema. If your environment is not set up with a database to store
records, then audit records are kept in bus-stop files.

For more information, see Bus-Stop Files.

Managing Bus-Stop Files
After the bus-stop file reaches a certain size and all the data was uploaded to the database,
the audit loader deletes the file from the file system. Specify the location and maximum size
of bus-stop files, so that bus-stop files are automatically deleted. Deleting audit files manually
is not recommended.

Bus-Stop File Locations

Bus-stop files for Java components are located in the following directory:

$DOMAIN_HOME/servers/$SERVER_NAME/logs/auditlogs/Component_Type

Bus-stop files for system components are located in the following directory:

$ORACLE_INSTANCE/auditlogs/Component_Type/Component_Name

Bus-Stop File Size

In Java components, the maximum size of a bus-stop file is set with the audit.maxFileSize
property.

In system components, the maximum size of a bus-stop file is set in the auditconfig.xml
file:

<serviceInstance name="audit" provider="audit.provider">
 <property name="audit.maxFileSize" value="10240" />
 <property name=" audit.loader.repositoryType " value="Db" />
</serviceInstance>

When you switch from a file to a database store for audit data, all the events collected in the
files are moved to the database tables and the audit files are deleted.

Chapter 1
Managing Audit

1-19

Configuring Standalone Audit Loader
The standalone audit loader moves records from bus-stop files to the audit store
periodically. The mechanism driving the audit loader depends on the application
environment:

• Java EE components and applications use the audit loader functionality provided
by OPSS runtime. The standalone audit loader is not needed in these
environments.

• System components and non-Java applications use the audit loader functionality
provided by the StandAloneAuditLoader command.

• Java SE applications also use the standalone audit loader depending on where
the bus-stop files are written. For information about audit for Java SE applications,
see Common Audit Scenarios in Java SE Applications in Oracle Fusion
Middleware Securing Applications with Oracle Platform Security Services .

The following sections explain how to set up and run the standalone audit loader:

Configuring the Environment
The following settings apply only to non-Java applications and system components.

Before you run the standalone audit loader, set the following audit loader parameters:

• ORACLE_HOME, the full path to the home directory

• COMMON_COMPONENTS_HOME, the full path to the Java Required Files (JRF) directory

• ORACLE_INSTANCE, the full path of an Oracle instance directory

• auditloader.jdbcString, the Java Database Connectivity (JDBC) connection
string for the database where the audit data is stored

• auditloader.username, the name of the user who runs the audit loader

In addition, make sure that the password for the database schema user is available
and stored. This password is specified once.

To specify the database schema user password, use the java StandAloneAuditLoader
command with the -Dstore.password=true property:

$JDK_HOME/bin/java
 -classpath $COMMON_COMPONENTS_HOME/modules/oracle.jps_12.2.1/jps-manifest.jar
 -Doracle.home=$ORACLE_INSTANCE -Doracle.instance=$ORACLE_INSTANCE
 -Dauditloader.jdbcString=jdbc:oracle:thin:@host:port:sid
 -Dauditloader.username=username
 -Dstore.password=true
 oracle.security.audit.ajl.loader.StandaloneAuditLoader

which will prompt you to enter a password. The command generates the cwallet.sso
file containing the password you entered.

Running Standalone Audit Loader
To run the loader, use the StandAloneAuditLoader command:

Chapter 1
Managing Audit

1-20

$JDK_HOME/bin/java
 -classpath $COMMON_COMPONENTS_HOME/modules/oracle.jps_12.2.1/jps-manifest.jar
 -Doracle.home=$ORACLE_INSTANCE -Doracle.instance=$ORACLE_INSTANCE
 -Dauditloader.jdbcString=jdbc:oracle:thin:@host:port:sid
 -Dauditloader.username=username
 oracle.security.audit.ajl.loader.StandaloneAuditLoader

This command is typically scheduled to run automatically so that audit records are
periodically uploaded to the audit store.

Keyboard Shortcuts
This section describes the keyboard shortcuts that can be used instead of pointing devices.
Following are the topics covered in this section:

About Keyboard Shortcuts
Keyboard shortcuts are helpful to users as they act as an alternative to mouse. Using
keyboard shortcuts for ADF Faces applications can greatly increase your productivity, reduce
repetitive strain, and help keep you focused.

Keyboard shortcuts provide an alternative to pointing devices for navigating the page. There
are five types of keyboard shortcuts that can be provided in ADF Faces applications:

• Tab traversal, using Tab and Shift+Tab keys: Moves the focus through UI elements on a
screen.

• Accelerator keys (hot keys): bypasses menu and page navigation, and performs an
action directly, for example, Ctrl+C for Copy.

• Access keys: Moves the focus to a specific UI element, for example, Alt+F for the File
menu.

• Default cursor/focus placement: Puts the initial focus on a component so that keyboard
users can start interacting with the page without excessive navigation.

• Enter key: Triggers an action when the cursor is in certain fields or when the focus is on a
link or button.

Keyboard shortcuts are not required for accessibility. Users should be able to navigate to all
parts and functions of the application using the Tab and arrow keys, without using any
keyboard shortcuts. Keyboard shortcuts merely provide an additional way to access a
function quickly.

It is the application developer’s responsibility to provide user assistance that identifies the
application’s available keyboard shortcuts. If the application includes an ADF component that
provides keyboard shortcuts, the developer should also provide a popup or other help that
details the keyboard shortcuts available for the ADF component.

Tab Traversal
Tab Traversal can be defined as an order in which the elements of the ADF Faces user
interface receive keyboard focus on successive passes of the Tab key.

Tab traversal allows the user to move the focus through different UI elements on a page.

Chapter 1
Keyboard Shortcuts

1-21

All active elements of the page are accessible by Tab traversal, that is, by using the
Tab key to move to the next control and Shift+Tab to move to the previous control. In
most cases, when a control has focus, the action can then be initiated by pressing
Enter.

Some complex components use arrow keys to navigate after the component receives
focus using the Tab key.

Tab Traversal Sequence on a Page
Default Tab traversal order for a page is from left to right and from top to bottom, as
shown in Figure 1-1. Tab traversal in a two-column form layout does not follow this
pattern, but rather follows a columnar pattern. On reaching the bottom, the tab
sequence repeats again from the top.

Figure 1-1 Tab Traversal Sequence on a Page

Avoid using custom code to control the tab traversal sequence within a page, as the
resulting pages would be too difficult to manage and would create an inconsistent user
experience across pages in an application and across applications.

To improve keyboard navigation efficiency for users, you should set the
initialFocusId attribute on the document. For accessibility purposes, you should
also define a skipLinkTarget and include a skip navigation link at the top of the
page, which should navigate directly to the first content-related tab stop.

Tab Traversal Sequence in a Table
The Tab traversals in a table establishes a unique row-wise navigation pattern when
the user presses the Tab key to navigate sequentially from one cell to another. One of
the following actions can occur when user presses the Enter key in a table cell:

• Clicks on an editable cell and presses Enter key—the focus moves to the editable
cell below in the same column in the next row

Chapter 1
Keyboard Shortcuts

1-22

• Clicks on an editable cell, edits the contents of the cell, and presses Enter key—the focus
completes the action in the current cell and moves to the editable cell below in the same
column in the next row

• Clicks on an editable cell and presses Tab key without editing the cell, once or more than
once, and then presses Enter key— the focus moves to the editable cell below in the next
row, in the same column where the user started pressing the tab key.

• Clicks on an editable cell, edits the contents of the cell, and presses Tab key, once or
more than once, then presses Enter key—the focus completes the action in the current
cell where the user started pressing the Tab key. Focus traverses through the cells
sequentially per the number of times the Tab key is pressed. Then, the focus moves to
the editable cell below in the next row, in the same column where the user started
pressing the tab key

• Clicks on a non-editable cell and presses Enter key—the focus moves to the first editable
cell in the next row.

• Clicks on a non-editable cell and presses Tab key, once or more than once, then presses
Enter key—the focus traverses through the cells sequentially per the number of times the
Tab key is pressed and moves to the first editable cell in the next row.

• Clicks on a cell that contains any command, such as menu, link, or a dialog box, then
presses Enter key—the default action for that command is executed

Note:

When user uses the Tab key to traverse through the cells sequentially and presses
Enter key to move to the next row , a navigation pattern is formed based on the first
set of Tab keys, which is followed in subsequent rows. The navigational pattern is
not recognized if arrow keys are used to navigate from one cell to another.

Figure 1-2 shows an example of a Tab and Enter keys traversal sequence in a table.

Chapter 1
Keyboard Shortcuts

1-23

Figure 1-2 Tab and Enter Keys Traversal Sequence in a Table

In Figure 1-2, the user has navigated the rows without editing any cell in the following
way:

1. The user clicks a cell in the inputText column, giving it focus and making it
editable.

Because the Tab key is used to navigate, the inputText column is recognized as
the starting column for the navigation pattern.

2. The user presses the Tab key and moves the focus in the same row to the cell of
the * Required field column.

3. The user presses the Tab key and moves the focus in the same row to the cell of
the inputComboListOf column.

4. The user presses the Enter key and the focus shifts to the inputText column in the
next row.

Chapter 1
Keyboard Shortcuts

1-24

Shortcut Keys
While it is possible to use the tab key to move from one control to the next in an ADF Faces
application, keyboard shortcuts like the accelerator and access keys are more convenient
and efficient. They help users to navigate around the web application easily and access a
menu or function quickly.

There are various keyboard shortcuts provided by ADF Faces itself, as well as component
attributes that enable you to create specific keyboard shortcuts for your specific applications.
ADF Faces categorizes shortcut keys for components into two types, accelerator keys and
access keys.

Note:

It is the application developer’s responsibility to provide user assistance to identify
the application’s available keyboard shortcuts. Because an ADF component’s
terminology can conflict with an application’s terminology, the application should
also provide a popup or other help that details the keyboard shortcuts available for
that component.

Accelerator Keys
Accelerator keys bypass menu and page navigation and perform actions directly. Accelerator
keys are sometimes also called hot keys. Common accelerator keys in a Windows
application, such as Internet Explorer, are Ctrl+O for Open and Ctrl+P for Print.

Accelerator keys are single key presses (for example, Enter and Esc) or key combinations
(for example, Ctrl+A) that initiate actions immediately when activated. A key combination
consists of a meta key and an execution key. The meta key may be Ctrl (Command on a
Macintosh keyboard), Alt (Option on a Macintosh keyboard), or Shift. The execution key is
the key that is pressed in conjunction with the meta key.

Some ADF Faces components have their own built-in accelerator keys. For example,
Ctrl+Alt+M is the accelerator key to open the context menu. For more information about ADF
Faces components with their own built-in accelerator keys, see the component tag
documentation.

ADF Faces also enable you to provide custom accelerator keys to specific menu items, as
shown in Figure 1-3. All assigned menu accelerator keys are visible when you open the
menu.

Figure 1-3 Accelerator Keys in a Menu

Chapter 1
Keyboard Shortcuts

1-25

When defining accelerator keys, you must follow these guidelines:

• Because accelerator keys perform actions directly, if a user presses an accelerator
key unintentionally, data may be lost or incorrect data may be entered. To reduce
the likelihood of user error, accelerator keys should be used sparingly, and only for
frequently and repetitively used functions across applications. As a general rule,
less than 25% of available functions should have accelerator keys.

• Custom accelerator keys must not override accelerator keys that are used in the
menus of ADF Faces-supported browsers (see the browser and system
requirements for supported operating systems and browsers in ADF Faces), and
must not override accelerator keys that are used in assistive technologies such as
screen readers.

• Custom menu accelerator keys must always be key combinations. The meta key
may be Ctrl, Ctrl+Shift, or Ctrl+Alt. Ctrl+Alt is the most used metakey because Ctrl
and Ctrl+Shift are commonly used by browsers. The execution key must be a
printable character (ASCII code range 33-126).

• Custom menu accelerator keys must be unique. If a page were to have different
components that used the same accelerator, it would be difficult for the browser to
predict which actions would be executed by the accelerator at any given time.

Note:

In Windows, users have the ability to assign a Ctrl+Alt+character key
sequence to an application desktop shortcut. In this case, the key
assignment overrides browser-level key assignments. However, this feature
is rarely used, so it can generally be ignored.

Certain ADF Faces components have built-in accelerator keys that apply when the
component has focus. Of these, some are reserved for page-level components,
whereas others may be assigned to menus when the component is not used on a
page. Table 1-3 lists the accelerator keys that are already built into page-level ADF
Faces components. You must not use these accelerator keys at all.

Table 1-3 Accelerator Keys Reserved for Page-Level Components

Accelerator Key Used In Function

Ctrl+Alt+W

Ctrl+Shift+W

Pop-up

Messaging

Secondary Windows

Toggle focus between open
popups.

Ctrl+Alt+P Splitter Give focus to splitter bar.

The menu commands take precedence if they are on the same page as page-level
components, and have the same accelerator keys. For this reason, you must not use
the accelerator keys listed in Table 1-5 and Table 1-9 in menus when the related
component also appears on the same page.

Chapter 1
Keyboard Shortcuts

1-26

Access Keys
Access keys move the focus to a specific UI element, and is defined by the accessKey
property of the ADF Faces component.

Access keys relocate cursor or selection focus to specific interface components. Every
component on the page with definable focus is accessible by tab traversal (using Tab and
Shift+Tab); however, access keys provide quick focus to frequently used components. Access
keys must be unique within a page.

The result of triggering an access key depends on the associated element and the browser:

• Buttons: In both Firefox and Internet Explorer, access keys give focus to the component
and directly execute the action. Note that in Internet Explorer 7 access key gives focus to
the component, but does not execute the action.

• Links: In Firefox, access keys give focus to the component and directly navigate the link;
in Internet Explorer, access keys give focus only to the link.

• Other Elements: In both browsers, access keys give focus only to the element. For
checkbox components, the access key toggles the checkbox selection. For option
buttons, the access key performs selection of the option button.

Note that the access key could be different for different browsers on different operating
systems. You must refer to your browser's documentation for information about access keys
and their behavior. Table 1-4 lists access key combinations for button and anchor
components in some common browsers.

Table 1-4 Access Key For Various Browsers

Browser Operating System Key Combination Action

Google Chrome Linux Alt + mnemonic Click

Google Chrome Mac OS X Control + Option +
mnemonic

Click

Google Chrome Windows Alt +mnemonic Click

Mozilla Firefox Linux Alt + Shift + mnemonic Click

Mozilla Firefox Mac OS X Control + mnemonic Click

Mozilla Firefox Windows Alt + Shift + mnemonic Click

Microsoft Internet
Explorer 7

Windows Alt + mnemonic Set focus

Microsoft Internet
Explorer 8

Windows Alt + mnemonic Click or set focus

Apple Safari Windows Alt + mnemonic Click

Apple Safari Mac OS X Control + Option +
mnemonic

Click

Chapter 1
Keyboard Shortcuts

1-27

Note:

• Different versions of a browser might behave differently for the same
access key. For example, using Alt + mnemonic for a button component
in Internet Explorer 7 sets focus on the component, but it triggers the
click action in Internet Explorer 8.

• In Firefox, to change the default behavior of the component when access
key combination is used, change the configuration setting for the
accessibility.accesskeycausesactivation user preference.

• Some ADF Faces components that are named as Button do not use
HTML button elements. For example, af:button uses an anchor HTML
element.

If the mnemonic is present in the text of the component label or prompt (for example, a
menu name, button label, or text box prompt), it is visible in the interface as an
underlined character, as shown in Figure 1-4. If the character is not part of the text of
the label or prompt, it is not displayed in the interface.

Figure 1-4 Access Key

When defining access keys, you must follow these guidelines:

• Access keys may be provided for buttons and other components with a high
frequency of use. You may provide standard cross-application key assignments for
common actions, such as Save and Cancel. Each of these buttons is assigned a
standard mnemonic letter in each language, such as S for Save or C for Cancel.

• A single letter or symbol can be assigned only to a single instance of an action on
a page. If a page had more than one instance of a button with the same
mnemonic, users would have no way of knowing which button the access key
would invoke.

• Focus change initiated through access keys must have alternative interactions,
such as direct manipulation with the mouse (for example, clicking a button).

• The mnemonic must be an alphanumeric character — not a punctuation mark or
symbol — and it must always be case-insensitive. Letters are preferred over
numbers for mnemonics.

• In Internet Explorer, application access keys override any browser-specific menu
access keys (such as Alt+F for the File menu), and this can be a usability issue for
users who habitually use browser access keys. Thus, you must not use access
keys that conflict with the top-level menu access keys in ADF Faces-supported
browsers (for example, Alt+F, E, V, A, T, or H in the English version of Internet
Explorer for Windows XP).

• You are responsible for assigning access keys to specific components. When
choosing a letter for the access key, there are a few important considerations:

Chapter 1
Keyboard Shortcuts

1-28

– Ease of learning: Although the underlined letter in the label clearly indicates to the
user which letter is the access key, you should still pick a letter that is easy for users
to remember even without scanning the label. For example, the first letter of the label,
like Y in Yes, or a letter that has a strong sound when the label is read aloud, such as
x in Next.

– Consistency: It is good practice to use the same access key for the same command
on multiple pages. However, this may not always be possible if the same command
label appears multiple times on a page, or if another, more frequently used command
on the page uses the same access key.

– Translation: When a label is translated, the same letter that is used for the access
key in English might not be present in the translation. Developers should work with
their localization department to ensure that alternative access keys are present in
component labels after translation. For example, in English, the button Next may be
assigned the mnemonic letter x, but that letter does not appear when the label is
translated to Suivantes in French. Depending on the pool of available letters, an
alternative letter, such as S or v (or any other unassigned letter in the term
Suivantes), should be assigned to the translated term.

Note:

For translation reasons, you should specify access keys as part of the label. For
example, to render the label Cancel with the C access key, you should use &Cancel
in the textAndAccessKey property (where the ampersand denotes the mnemonic)
rather than C in the accessKey property. Product suites must ensure that access
keys are not duplicated within each supported language and do not override access
keys within each supported browser unless explicitly intended.

Shortcut Keys for Common Components
Table 1-5 lists the shortcut keys assigned to common components such as Menu, Menu bar,
Multi-Select Choice List, Multi-Select List Box, and so on.

Table 1-5 Shortcut Keys Assigned to Common Components

Shortcut Key Components Function

Enter

Spacebar

All components Activate the component, or the
component element that has the
focus.

Tab

Shift+Tab

All components

Flash components like
ThematicMap, Graph, and
Gauge

Move focus to next or previous
editable component.

Ctrl+A All components Select all.

Alt+Arrow Down Multi-Select Choice List

Multi-Select List Box

Open the list.

Use arrow keys to navigate, and
press Enter or Spacebar to select.

Ctrl+Shift+Home

Ctrl+Shift+End

Multi-Select Choice List

Multi-Select List Box

Select all items from top to current
selection, or select all items from
current selection to bottom.

Chapter 1
Keyboard Shortcuts

1-29

Table 1-5 (Cont.) Shortcut Keys Assigned to Common Components

Shortcut Key Components Function

Arrow Left

Arrow Right

Menu Bar

Splitter

Input Number Slider

Input Range Slider

Input Number Spinbox

Move focus to different menu on a
menu bar.

Move splitter left or right when it is in
focus.

Move slider left or right when input
number slider or input range slider is
in focus.

Increment or decrement the value
when input number spinbox is in
focus.

Arrow Up

Arrow Down

Menu

Splitter

Input Number Slider

Input Range Slider

Move focus to different menu items in
a menu.

Move splitter up or down when it is in
focus.

Move slider up or down when input
number slider or input range slider is
in focus.

Shortcut Keys for Widgets
Table 1-6 lists the shortcut keys assigned to common widgets such as Disclosure
control, Hierarchy control, and Dropdown lists.

Table 1-6 Shortcut Keys Assigned to Common Widgets

Shortcut Key Components Function

Enter

Arrow Down/Arrow Up

Disclosure Control Open a closed Disclosure control,
or close a open Disclosure control.

A disclosure control is an icon that
indicates that more content is
available to either be shown or
hidden.

Ctrl+Alt+R Active Data Applicable only if the page
contains active data.

Ctrl+Shift+^ Hierarchy Control If in hierarchy viewer, open the
hierarchy popup.

Alt+Down Arrow Dropdown list Open the dropdown list.

Enter Dropdown list Select the focussed option of
dropdown list.

Ctrl+A Multi-Select List Box Select all options.

Ctrl+Shift+Home Multi-Select List Box Select all options from the first
option to the current option.

Ctrl+Shift+End Multi-Select List Box Select all options from the current
option to the last option.

Ctrl+Alt+M Various components Opens the context menu in
components that support it, such
as Calendar and Table.

Chapter 1
Keyboard Shortcuts

1-30

Table 1-6 (Cont.) Shortcut Keys Assigned to Common Widgets

Shortcut Key Components Function

Ctrl+Shift+W

Ctrl+Alt+W

Various components Toggle between open detachable
menus.

Ctrl+Alt+P Splitter Move focus to next Splitter
component.

Enter Splitter If the Splitter is in focus, toggles
the split section from closed to
open state.

Ctrl+Alt+F4 Tab Remove the tab, if it is removable.

Shortcut Keys for Rich Text Editor Component
Table 1-7 lists shortcut keys assigned to the Rich Text Editor component. In regular mode, all
toolbar controls appear on top of the Rich Text Editor area.

Table 1-7 Shortcut Keys Assigned to Rich Text Editor Component

Shortcut Key Components Function

Ctrl+B Rich Text Editor Boldface

Ctrl+I Rich Text Editor Italics

Ctrl+U Rich Text Editor Underline

Ctrl+5 Rich Text Editor Strikethrough

Ctrl+E Rich Text Editor Center alignment

Ctrl+J Rich Text Editor Full-justified alignment

Ctrl+L Rich Text Editor Left alignment

Ctrl+R Rich Text Editor Right alignment

Ctrl+H Rich Text Editor Create hyperlink

Ctrl+M Rich Text Editor Increase indentation

Ctrl+Shift+M Rich Text Editor Decrease indentation

Ctrl+Shift+H Rich Text Editor Remove hyperlink

Ctrl+Shift+L Rich Text Editor Bulleted list

Ctrl+Alt+L Rich Text Editor Numbered list

Ctrl+Shift+S Rich Text Editor Clear text styles

Ctrl+Alt+- Rich Text Editor Subscript

Ctrl+Alt++ Rich Text Editor Superscript

Ctrl+Alt+R Rich Text Editor Enable rich text editing mode

Ctrl+Alt+C Rich Text Editor Enable source code editing mode

Ctrl+Y Rich Text Editor Redo

Ctrl+Z Rich Text Editor Undo

Chapter 1
Keyboard Shortcuts

1-31

Shortcut Keys for Table, Tree, and Tree Table Components
Table 1-8 lists shortcut keys assigned to Table, Tree, and Tree Table.

Table 1-8 Shortcut Keys Assigned to Table, Tree, and Tree Table components

Shortcut Key Components Function

Tab

Shift+Tab

Table

Tree Table

Move focus to next or previous cell or
editable component.

In a table, navigate to the next or
previous editable content in cells in
left-to-right direction. If the focus is
on the last cell of a row in the table,
the Tab key moves focus to the first
editable cell in the next row. Similarly,
Shift + Tab moves focus to the
previous row.

Ctrl+A Table

Tree Table

Select all components, including
column headers, row headers, and
data area.

Ctrl+Alt+M Table

Tree

Tree Table

Launch context menu.

You can also launch context menu by
pressing Ctrl+Alt+B.

Ctrl+Shift+^ Tree

Tree Table

Go up one level.

Ctrl+Arrow Right Table

Tree

Tree Table

In a table, expand row.

In a tree or tree table, expand nodes
or detailStamp facets.

Ctrl+Arrow Left Table

Tree

Tree Table

In a table, collapse row.

In a tree or tree table, collapse nodes
or detailStamp facets.

Enter

Shift+Enter

Table

Tree

Tree Table

Navigate to the next editable cell or
previous editable cell of the column.

In a table, navigate to the next or
previous editable content in cells in
top-to-bottom direction.

If focus is on the column header, sort
table data in ascending order.
Pressing Enter again sorts the
column in descending order.

If the focus is on the filter cell,
perform table filtering.

In a table, if the user presses Tab key
to navigate from one cell to another
and presses Enter, move focus to the
next row to follow same navigational
pattern. See Tab Traversal
Sequence in a Table.

Chapter 1
Keyboard Shortcuts

1-32

Table 1-8 (Cont.) Shortcut Keys Assigned to Table, Tree, and Tree Table
components

Shortcut Key Components Function

Arrow Left

Arrow Right

Table

Tree Table

Move focus.

In a table, when the focus is on an
editable component, move the text
cursor.

Arrow Up

Arrow Down

Table

Tree Table

Move focus.

If a row is selected, move focus to
the previous row or next row. If no
row is selected, scroll the table one
row up or down.

In a table, when the focus is on an
editable component that supports
multiple options (such as
selectOneChoice and
inputNumberSpinBox), scroll the
selected option.

If the first row is selected, move
focus to the column header.

In an editable table, if the user clicks
a cell with an editable component
(such as a text box, or a checkbox), a
button or a link component, focus is
set to the component in the cell. To
use Up and Down arrow keys for
navigation, focus should be moved
from the editable component to the
cell. The user would need to click on
the background of the same cell (or
any cell of the same row) again to
move the focus.

Note: If selectionEventDelay is
enabled, row selection during
keyboard navigation is delayed by
300ms to allow table keyboard
navigation without causing unwanted
row selection.

Ctrl+Arrow Up

Ctrl+Arrow Down

Table Move focus.

If in edit mode, submit the changes
made in the current row and navigate
to the previous row or next row.

In the click-to-edit table, when the
focus is on an editable component
that supports multiple options (such
as selectOneChoice and
inputNumberSpinBox), scroll the
selected option.

Ctrl+Arrow Left

Ctrl+Arrow Right

Table Move focus.

If in edit mode, when the focus is on
an editable component, move the
text cursor.

Chapter 1
Keyboard Shortcuts

1-33

Table 1-8 (Cont.) Shortcut Keys Assigned to Table, Tree, and Tree Table
components

Shortcut Key Components Function

Shift+Arrow Left

Shift+Arrow Right

Table

Tree Table

Move focus and add to selection.

Ctrl+Shift+Arrow Left

Ctrl+Shift+Arrow Right

Table

Tree Table

Move the selected column to the left
or right.

Shift+Arrow Up

Shift+Arrow Down

Table

Tree Table

Tree

Select multiple rows.

Page Up

Page Down

Table

Tree Table

If a row is selected, scroll and select
the same row of the next or previous
page.

If no row is selected, scroll by one
page.

Alt+Page Up

Alt+Page Down

Table

Tree Table

Horizontally scroll the table to the
right or left.

Space Bar

Ctrl+Space Bar

Table

Tree

Tree Table

Select the node.

To select or remove multiple nodes,
press Ctrl+Space Bar.

Shift+Space Bar Table

Tree Table

Select multiple rows.

Esc Table

Tree Table

Remove selection.

If the focus is on the cell, exit click-to-
edit mode, revert the cell value to
original value, and return focus to the
cell. Press Esc key again to move
focus to the row header.

F2 Table

Tree Table

Activate click-to-edit mode for the
row. Press F2 again to disable cell
navigation mode.

Shortcut Keys for ADF Data Visualization Components
Table 1-9 lists shortcut keys assigned to ADF Data Visualization Components including
charts, diagram, Gantt chart, hierarchy viewer components, geographic and thematic
maps, NBox, pivot table, and pivot filter bar.

Chapter 1
Keyboard Shortcuts

1-34

Table 1-9 Shortcut Keys Assigned to ADF Data Visualization Components

Shortcut Key Components Function

Arrow Left

Arrow Right

Charts: Area, Bar, Bubble,
Combination, Funnel, Line,
Pie, Scatter, Spark

Chart legend with horizontal
orientation

List region of all Gantt chart
types

Project Gantt chart region

Scheduling Gantt chart
region

Resource Utilization Gantt
chart region

Geographic and Thematic
Map

Hierarchy Viewer - nodes

Pivot table

Pivot filter bar

NBox

Diagram

Move focus.

If the focus is on the bars in bar charts,
move focus and selection to bar on left
or bar on right.

If the focus is on a pie slice in a pie
chart, move focus and selection to
previous series in a counterclockwise
direction or next series in a clockwise
direction.

If the focus is on a dot, bubble, or bar in
an area, bubble, combination, funnel,
line, scatter, or spark chart, move focus
and selection to the nearest bar, dot, or
bubble on left or right.

If the focus is on a series in a chart
legend, move focus to series on left or
series on right.

If the focus is on the chart region of
scheduling Gantt, the arrow key
navigation selects the previous or next
taskbar of the current row.

If the focus is on the time bucket of
resource utilization Gantt, the arrow key
navigation selects the previous or next
time bucket in the current row.

If the focus is on the ADF geographic
map, the arrow key navigation pans left
or right by a small increment. Press
Home or End key to pan by a large
increment.

If the focus is on the node component of
ADF hierarchy viewer, press Ctrl+Arrow
to move the focus left or right without
selecting the component.

If you are using arrow keys to navigate
cells of an editable pivot table, each
focused cell is activated for editing
before allowing you to navigate to the
next cell, making the navigation slower.
Press the Esc key to deactivate the edit
mode of the focused cell, and navigate
faster. To edit a cell, press the F2 or
Enter key.

If the focus is on the pivot table data cell,
press Ctrl+Arrow Left to jump to the
corresponding row header cell. If the
locale is bidirectional (such as Arabic),
press Ctrl+Arrow Right to jump to the
corresponding row header cell.

If the focus is on an NBox cell or node,
move focus and selection to the next or
previous cell, parent node (sorted by
size in descending order) or individual

Chapter 1
Keyboard Shortcuts

1-35

Table 1-9 (Cont.) Shortcut Keys Assigned to ADF Data Visualization Components

Shortcut Key Components Function

node. Node navigation is based on list
navigation; down or right moves to the
next element and up or left moves to the
previous element.

Chapter 1
Keyboard Shortcuts

1-36

Table 1-9 (Cont.) Shortcut Keys Assigned to ADF Data Visualization Components

Shortcut Key Components Function

Arrow Up

Arrow Down

Charts: Area, Bar (Stacked),
Bubble, Combination, Funnel,
Horizontal Bar, Line, Scatter,
Spark

Chart legend with vertical
orientation

List region of all Gantt chart
types

Project Gantt chart region

Scheduling Gantt chart
region

Resource Utilization Gantt
chart region

Geographic and Thematic
Map

Hierarchy Viewer - nodes

Pivot table

Pivot filter bar

NBox

Move focus.

If the focus is on the bars in horizontal
bar charts, move focus and selection up
or down to next or previous bar.

If the focus is on a stacked bar chart,
move focus and selection up or down to
next or previous series on the same bar.

If the focus is on a dot, bubble, or bar in
an area, bubble, combination, funnel,
line, scatter, or spark chart, move focus
and selection up or down to the nearest
bar, dot, or bubble.

If the focus is on a series in a chart
legend, move focus up or down to next
or previous series.

If the focus is on the chart region of
project Gantt, the arrow key navigation
selects previous or next row.

If the focus is on the chart region
taskbar of scheduling Gantt, the arrow
key navigation selects the first taskbar of
the previous row or the next row.

If the focus is on the time bucket of
resource utilization Gantt, the arrow key
navigation selects the time bucket of the
previous row or next row.

If the focus is on the ADF geographic
map component, the arrow key
navigation pans up or down by a small
increment.

If the focus is on the node component of
ADF hierarchy viewer, press Ctrl+Arrow
keys to move the focus up or down
without selecting the component.

If you are using arrow keys to navigate
cells of an editable pivot table, each
focused cell is activated for editing
before allowing you to navigate to the
next cell, making the navigation slower.
Press the Esc key to deactivate the edit
mode of the focused cell, and navigate
faster. To edit a cell, press the F2 or
Enter key.

If the focus is on the pivot table data cell,
press Ctrl+Arrow Up to jump to the
corresponding column header cell.

If the focus is on an NBox cell or node,
move focus and selection up or down to
the nearest cell, parent node (sorted by
size in descending order) or individual
node. Node navigation is based on list
navigation; down or right moves to the

Chapter 1
Keyboard Shortcuts

1-37

Table 1-9 (Cont.) Shortcut Keys Assigned to ADF Data Visualization Components

Shortcut Key Components Function

next element and up or left moves to the
previous element.

Page Up

Page Down

Chart legend with vertical
orientation

Chart plot area

Geographic and Thematic
Map

Hierarchy Viewer - diagram

If the focus is on a chart legend, scroll
up or down.

If the focus is on a chart plot area, pan
up or down.

If the focus is on the geographic map
component, the page key navigation
pans up or down by a large increment.

If the focus is on the diagram of a
hierarchy viewer, press and hold to Page
Up or Page Down keys to pan up or
down. Press Shift+Page Up or
Shift+Page Down to pan left or right.
Press and hold Shift+Page Down to pan
continuously.

+ Geographic and Thematic
Map

Hierarchy Viewer - diagram

Increase zoom level.

If the focus is on the diagram of a
hierarchy viewer, press number keys 1
through 5 to zoom from 10% through
100%. Press 0 to zoom the diagram to
fit within available space. Press and hold
to continuously increase zoom.

- Geographic and Thematic
Map

Hierarchy Viewer - diagram

Decrease zoom level.

If the focus is on the diagram of a
hierarchy viewer, press number keys 1
through 5 to zoom from 10% through
100%. Press 0 to zoom the diagram to
fit within available space. Press and hold
to continuously decrease zoom.

Ctrl+Alt+M All Gantt chart types

Pivot table

Pivot filer bar

Launch context menu.

Ctrl+Left Arrow

Ctrl+Right Arrow

Charts: Area, Bar, Bar
(Stacked), Bubble, Funnel,
Horizontal Bar, Line, Pie,
Scatter, Spark

NBox

Move focus to nearest bar, dot, or
bubble to the left or right of the current
selection, but do not select.

If the focus is on a pie slice in a pie
chart, move focus to previous series in a
counterclockwise direction or next series
in a clockwise direction, but do not
select.

If the focus is on a series in a stacked
bar chart, move focus to nearest series
to the left or right of the selected series,
but do not select.

If the focus is on an NBox node, move
focus without selection.

Chapter 1
Keyboard Shortcuts

1-38

Table 1-9 (Cont.) Shortcut Keys Assigned to ADF Data Visualization Components

Shortcut Key Components Function

Ctrl+Up Arrow

Ctrl+Down Arrow

Charts: Area, Bar, Bar
(Stacked), Bubble,
Combination, Funnel,
Horizontal Bar, Line, Scatter,
Spark

NBox

Move focus and to nearest bar, dot, or
bubble above or below the current
selection, but do not select.

If the focus is on a series in a stacked
bar chart, move focus to nearest series
above or below the selected series, but
do not select.

If the focus is on an NBox node, move
focus without selection.

Ctrl+Spacebar Charts: Area, Bar, Bar
(Stacked), Bubble,
Combination, Funnel,
Horizontal Bar, Line, Pie,
Scatter, Spark

NBox

Move focus and to nearest bar, dot, or
bubble above or below the current
selection, but do not select.

If the focus is on a series in a stacked
bar chart, move focus to nearest series
above or below the selected series, but
do not select.

If the focus is on an NBox node, select
or multi-select.

Shift+Left Arrow

Shift+Right Arrow

Charts: Area, Bar, Bubble,
Combination, Funnel,
Horizontal Bar, Line, Pie,
Scatter, Spark

NBox

Move focus and multi-select nearest bar,
dot, or bubble to the left or right of the
current selection.

If the focus is on a pie slice in a pie
chart, move focus and multi-select
previous series in a counterclockwise
direction or next series in a clockwise
direction.

If the focus is on a series in a stacked
bar chart, move focus and multi-select
the nearest series to the left or right of
the selected series.

Move focus and multi-select nearest
NBox node left or right.

Shift+Up Arrow

Shift+Down Arrow

Charts: Area, Bar (Stacked),
Bubble, Combination, Funnel,
Horizontal Bar, Line, Scatter,
Spark

NBox

Move focus and multi-select nearest bar,
dot, or bubble above or below the
current selection.

Move focus and multi-select the nearest
NBox node up or down.

Home Hierarchy Viewer - nodes Move focus to first node in the current
level.

End Hierarchy Viewer - nodes Move focus to last node in the current
level.

Ctrl + Home Hierarchy Viewer - nodes Move focus and select the root node.

< Hierarchy Viewer - nodes Switches to the active node's previous
panel.

> Hierarchy Viewer - nodes Switches to the active node's next panel.

Ctrl + Enter Hierarchy Viewer - nodes Toggle the display of the children of the
active node.

Chapter 1
Keyboard Shortcuts

1-39

Table 1-9 (Cont.) Shortcut Keys Assigned to ADF Data Visualization Components

Shortcut Key Components Function

Ctrl + / Hierarchy Viewer - nodes Synchronize all nodes to display the
active node's panel.

Ctrl+Shift+^ Hierarchy Viewer - nodes Go up one level.

Ctrl+/ Hierarchy Viewer - nodes Switch content panel.

Ctrl+Alt+0 Hierarchy Viewer - diagrams Center the active node and zoom the
diagram to 100%.

Tab Hierarchy Viewer - nodes

Pivot table

Pivot filter bar

NBox

Move focus through elements.

From a component outside an NBox,
move focus from NBox, to legend, and
then to next component. Use Shift+Tab
to move focus to legend, to NBox, and
then to previous component.

Esc Hierarchy Viewer - nodes

NBox

Return focus to the containing node.

If the focus is on search panel, close the
panel.

Close the Detail window, if it appears
while hovering over a node.

Drill up NBox cell or category node.

Spacebar Hierarchy Viewer - nodes

Pivot table

Pivot filter bar

Select the active node. Press
Ctrl+Spacebar to toggle selection of the
active node, and for selecting multiple
nodes.

Enter Hierarchy Viewer - nodes

Pivot table

Pivot filter bar

NBox

Isolate and select active node. Press
Shift+Enter to toggle the state of the
node.

Drill down NBox category node.

/ Hierarchy Viewer - nodes Toggle control panel state.

[NBox Move focus and selection to the first
node in the cell or container.

] NBox Move focus and selection from the node
to the parent container.

Ctrl+F Hierarchy Viewer - nodes If the ADF hierarchy viewer component
is configured to support search
functionality, open the search panel.

Ctrl+Alt+1 through Ctrl+Alt+5 Hierarchy Viewer - nodes Switch diagram layout.

Chapter 1
Keyboard Shortcuts

1-40

Table 1-9 (Cont.) Shortcut Keys Assigned to ADF Data Visualization Components

Shortcut Key Components Function

Shift+Alt+Arrow keys Pivot table

Pivot filter bar

Change the layout by pivoting a row,
column, or filter layer to a new location.
Use Shift+Alt+Arrow keys to perform the
following:

• Provide visual feedback, showing
potential destination of the pivot
operation, if the header layer is
selected

• Select different destination
locations.

• Moving or swapping the selected
header layer to the specified
destination.

Some ADF Data Visualization Components provide some common functions to the end user
through menu bar, toolbar, context menu, or a built-in Task Properties dialog box. You may
choose to show, hide, or replace these functionality. If you hide or replace any functionality,
you must provide alternate keyboard accessibility to those functions.

Shortcut Keys for Calendar Component
The Calendar component has several views: Day view, Week view, Moth view, and List view.

Table 1-10 lists shortcut keys assigned to the Calendar component.

Table 1-10 Shortcut Keys Assigned to Calendar Component

Shortcut Key Components Function

Tab

Shift+Tab

Calendar Move focus.

If the focus is on the calendar toolbar, move focus
through Day, Week, Month, List, Forward button,
Backward button, and Today button.

In the day view, move focus through activities of the
day.

In the week view and month view, move focus
through the Month Day header labels only. Use
Arrow keys to navigate through activities, "+n more
links", and Month Day header labels.

In the month view, if the focus is on a Month Day
header label at the end of the week, move focus to
the Month Day header label of the following week.

In the list view, move focus to the day, and then
through the activities of the day.

Chapter 1
Keyboard Shortcuts

1-41

Table 1-10 (Cont.) Shortcut Keys Assigned to Calendar Component

Shortcut Key Components Function

Arrow Left

Arrow Right

Calendar Move focus.

In the day view, Right and Left arrows do not move
focus.

In the week view, if the focus is on an activity, move
focus to the first activity of the previous or next day.
If the previous or next days contain no activities,
move focus to the day header.

In the month view, the following interaction occurs:

• If the focus is on a Month Day header label,
move focus to the previous or next day label.

If the focus is on the label of the last day of the
week in the first week of the month, Right
Arrow moves focus to the label of the first day
of the week in the second week of the month. If
the focus is on the label of the last day of the
month, the Right Arrow does nothing.

• If the focus is on an activity, move focus to the
next activity of the previous or next day.

If the previous or next day does not contain any
activities, move focus to the Month Day label. If
focus is on an activity in the last day of a week,
the Right Arrow does nothing.

• If the focus is on a "+n more" link, move focus
to the next "+n more" links, if they exist.

If adjacent "+n more" links do not exist, move
focus to the last activity of the day. If the "+n
more" link resides in a day at the beginning or
end of the week, the Left or Right Arrow do
nothing.

Chapter 1
Keyboard Shortcuts

1-42

Table 1-10 (Cont.) Shortcut Keys Assigned to Calendar Component

Shortcut Key Components Function

Arrow Up

Arrow Down

Calendar Move focus.

In the day view, move focus through activities.
When activities conflict and appear within the same
time slot, the Down Arrow moves focus right and
the Up Arrow moves focus left.

In the week view, move focus through activities of
the day. If the focus is on the first activity of a day,
the Up Arrow moves focus to the day header. If the
focus is on the day header, the Down Arrow moves
focus to the first activity of that day. If the day has
no activities, the Down Arrow does nothing.

In the month view, move focus through activities in
a day.

• If the focus is on the first activity in a day, the
Up Arrow moves focus to the Month day
header label.

• If the focus is on the Month Day header label,
the Up Arrow moves focus to the last activity of
the day above it.

• If the focus is on the last activity on a day in the
last week of the month, the Down Arrow does
nothing.

• If the focus is on the month header day label in
the first week of the month, the Up Arrow does
nothing.

Ctrl+Alt+M Calendar Launch context menu.

You can also launch context menu by pressing
Ctrl+Alt+B.

Note:

When using arrows to navigate through activities of a month or week, all-day
activities get focus only when the user is navigating within a day, which an all-day
activity starts on. Otherwise, all-day activities are skipped.

Default Cursor or Focus Placement
When a user opens an input form (built with ADF Faces) to enter some data, the default
cursor is placed on the most suitable component so that the user can proceed with the help
of a keyboard instead of using a mouse first. After the initial focus is set, the user can take
control on cursor position.

The default cursor puts the initial focus on a component so that keyboard users can start
interacting with the page without excessive navigation.

Focus refers to a type of selection outline that moves through the page when users press the
tab key or access keys. When the focus moves to a field where data can be entered, a cursor
appears in the field. If the field already contains data, the data is highlighted. In addition, after

Chapter 1
Keyboard Shortcuts

1-43

using certain controls (such as a list of values (LOV) or date-time picker), the cursor or
focus placement moves to specific locations predefined by the component.

During the loading of a standard ADF Faces page, focus appears on the first focusable
component on the page — either an editable widget or a navigation component. If
there is no focusable element on the page, focus appears on the browser address
field.

When defining default cursor and focus placement, you should follow these guidelines:

• ADF Faces applications should provide default cursor or focus placement on most
pages so that keyboard users have direct access to content areas, rather than
having to tab through UI elements at the top of the page.

• You can set focus on a different component than the default when the page is
loaded. If your page has a common starting point for data entry, you may change
default focus or cursor location so that users can start entering data without
excessive keyboard or mouse navigation. Otherwise, do not do this because it
makes it more difficult for keyboard users (particularly screen reader users) to
orient themselves after the page is loaded.

The Enter Key
The Enter key in an ADF Faces application causes a command line, form, or dialog
box to operate its default function. It is typically used to finish an input form and begin
the desired process.

The Enter key triggers an action when the cursor is in certain fields or when focus is
on a link or button. You should use the Enter key to activate a common commit button,
such as in a Login form or in a dialog.

Many components have built-in actions for the Enter key. Some examples include:

• When focus is on a link or button, the Enter key navigates the link or triggers the
action.

• When the cursor is in a query search region, quick query search, or Query-By-
Example (QBE) field, the Enter key triggers the search.

• When in a table, pressing the Enter key triggers one of the following actions:

– Clicks on an editable cell and presses Enter key—the focus moves to the
editable cell below in the same column in the next row

– Clicks on an editable cell, edits the contents of the cell, and presses Enter key
—the focus completes the action in the current cell and moves to the editable
cell below in the same column in the next row

– Clicks on an editable cell and presses Tab key without editing the cell, once or
more than once, and then presses Enter key— the focus moves to the editable
cell below in the next row, in the same column where the user started pressing
the tab key.

– Clicks on an editable cell, edits the contents of the cell, and presses Tab key,
once or more than once, then presses Enter key—the focus completes the
action in the current cell where the user started pressing the Tab key. Focus
traverses through the cells sequentially per the number of times the Tab key is
pressed. Then, the focus moves to the editable cell below in the next row, in
the same column where the user started pressing the tab key

Chapter 1
Keyboard Shortcuts

1-44

– Clicks on a non-editable cell and presses Enter key—the focus moves to the first
editable cell in the next row.

– Clicks on a non-editable cell and presses Tab key, once or more than once, then
presses Enter key—the focus traverses through the cells sequentially per the number
of times the Tab key is pressed and moves to the first editable cell in the next row.

– Clicks on a cell that contains any command, such as menu, link, or a dialog box, then
presses Enter key—the default action for that command is executed

Note:

When user uses the Tab key to traverse through the cells sequentially and
presses Enter key to move to the next row , a navigation pattern is formed
based on the first set of Tab keys, which is followed in subsequent rows. The
navigational pattern is not recognized if arrow keys are used to navigate from
one cell to another.

Configuring WebCenter Content Web Services for Integration
This chapter describes how to use Oracle WebCenter Content web services and Oracle
WebLogic Server web services to integrate a client application with Content Server.

This section includes the following sections:

• About Configuring WebCenter Content Web Services for Integration

• Configuring Web Service Security Through Web Service Policies

• Configuring SAML Support

For general information about web services that you can use with Content Server, see
Overview of Web Services in Developing with Oracle WebCenter Content.

The way to use web services described in this chapter was introduced in Oracle Universal
Content Management 11g. If you want to use the way introduced in Oracle Universal Content
Management 10g, with Web Services Definition Language (WSDL) and SOAP (Simple Object
Access Protocol) files and the WSDL generator, see Configuring Web Services with WSDL,
SOAP, and the WSDL Generator in Developing with Oracle WebCenter Content.

About Configuring WebCenter Content Web Services for Integration
WebCenter Content web services work with Oracle WebLogic Server web services to perform
management functions for Content Server. Oracle WebLogic Server web services provide
SOAP capabilities, and WebCenter Content web services include several built-in SOAP
requests. WebCenter Content web services are automatically installed with Content Server,
but they require additional configuration to set up security.

Technologies for Web Services
The core enabling technologies for WebCenter Content web services follow:

• SOAP (Simple Object Access Protocol) is a lightweight XML-based messaging protocol
used to encode the information in request and response messages before sending them
over a network. SOAP requests are sent from WebCenter Content web services to

Chapter 1
Configuring WebCenter Content Web Services for Integration

1-45

Oracle WebLogic Server web services for implementation. For more information
about SOAP, see Simple Object Access Protocol (SOAP) at http://
www.w3.org/TR/soap12.

• Web Services Security (WS-Security) is a standard set of SOAP extensions for
securing web services for confidentiality, integrity, and authentication. For
WebCenter Content web services, WS-Security is used for authentication, either
for a client to connect to the server as a particular user or for one server to talk to
another as a user. For more information, see the OASIS Web Service Security
page at http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.

• Web Service Policy (WS-Policy) is a standard for attaching policies to web
services. For WebCenter Content web services, policies are used for applying
WS-Security to web services. The two supported policies are username-token
security and SAML security.

Historically, Oracle used Oracle Web Services Manager (Oracle WSM) to secure
its web services, and Oracle WebLogic Server used Web Services Security Policy
(WS-SecurityPolicy) to secure its web services. Because web services security is
partially standardized, some Oracle WSM and WS-SecurityPolicy policies can
work with each other.

Note:

Use Oracle WSM policies over Oracle WebLogic Server web services
whenever possible. You cannot mix your use of Oracle WSM and Oracle
WebLogic Server web services policies in the same web service.

WebCenter Content web services (idcws/ as context root) are SOAP based, while
WebCenter Content native web services (idcnativews/ as context root) are
JAX_WS based. Both kinds of web services can be assigned Oracle WSM policies
through the Oracle WebLogic Server Administration Console.

The generic WebCenter Content web services are JAX-WS based and can be
assigned Oracle WSM policies and managed by Oracle WSM. The native
WebCenter Content web Services are SOAP based and can only support WS-
Policy policies managed through the Oracle WebLogic Server Administration
Console.

For more information about Oracle WSM, see the Overview of Web Services
Administration in Administering Web Services.

A subset of Oracle WebLogic Server web services policies interoperate with
Oracle WSM policies. See Overview of OWSM Interoperability in Interoperability
Solutions Guide for Oracle Web Services Manager.

Web Services Security Policy (WS-SecurityPolicy) is a set of security policy
assertions for use with the WS-Policy framework. For more information, see the
Web Services Security Policy specification at http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html.

• SAML is an XML standard for exchanging authentication and authorization
between different security domains. For more information, see the Security
Assertion Markup Language (SAML) specification at http://docs.oasis-
open.org/security/saml/v2.0/.

Chapter 1
Configuring WebCenter Content Web Services for Integration

1-46

http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap12
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/v2.0/

• WebLogic Scripting Tool (WLST) is a command-line tool for managing Oracle WebLogic
Server. For more information, see WebCenter Portal Custom WLST Commands in
WebCenter WLST Command Reference.

WebCenter Content Web Services
WebCenter Content provides two types of web services: a general (generic) JAX-WS based
web service, and a native SOAP based web service. The two types of web services reside in
two different context roots. The context root is the primary identifier in the URL for accessing
the web services.

The context roots follow:

• idcws
Use this context root for general access to Content Server through any regular web
services client.

• idcnativews
The Remote Intradoc Client (RIDC) uses the native web services. Oracle recommends
that you do not develop a custom client against these services. For more information
about RIDC, see Using RIDC to Access Content Server in Developing with Oracle
WebCenter Content.

The following table describes the WebCenter Content web service in the idcws context root.

WebCenter Content Web
Service

Descriptions

GenericSoapService This service uses a generic format similar to HDA for its SOAP format. It
is almost identical to the generic SOAP calls that you can make to
Content Server when you set IsSoap=1. For details of the format, see
the published WSDL at idcws/GenericSoapPort?WSDL.

You can apply WS-Security to GenericSoapService through WS-
Policy. Content Server supports Oracle WSM policies for SAML and
username-token.

As a result of allowing WS-Security policies to be applied to this service,
streaming Message Transmission Optimization Mechanism (MTOM) is
not available for use with this service. Very large files (greater than the
memory of the client or the server) cannot be uploaded or downloaded.

GenericSoapService automatically has oracle/wsmtom_policy
applied to it. Content Server cannot accept SOAP requests that have
this policy applied. For GenericSoapService to work, the following
policy must be applied to it:

oracle/no_mtom_policy

The following table describes the WebCenter Content web services in the idcnativews
context root.

Chapter 1
Configuring WebCenter Content Web Services for Integration

1-47

WebCenter Content Web
Services

Descriptions

IdcWebRequestService This is the general WebCenter Content service. Essentially, it is a
normal socket request to Content Server, wrapped in a SOAP
request. Requests are sent to Content Server using streaming
Message Transmission Optimization Mechanism (MTOM) in order
to support large files.

Streaming MTOM and WS-Security do not mix. As a result, do not
apply WS-Security to this service because it will break the
streaming file support. In order to achieve security, you must first
log in using the IdcWebLoginService, then use the same
JSESSIONID received from that service in the next call to
IdcWebRequestService as a cookie.

IdcWebLoginService This service is solely for adding security to
IdcWebRequestService calls. There are no parameters for this
service; it simply creates a session. The important field to retrieve
is the JSESSIONID value for future calls to
IdcWebRequestService. If you want to use WS-Security with
IdcWebRequestService, then apply it here. Content Server
supports Oracle WSM policies for SAML and username-token.

Configuring Web Service Security Through Web Service Policies
The WebCenter Content web services are installed and ready to use by default with
the WebCenter Content EAR. However, unless you configure web service security
(WS-Security) on any of the WebCenter Content web services, all connections to
Content Server will use the anonymous user. To configure security for WebCenter
Content web services, you configure WS-Security through WS-Policy. Additional
configuration is required to enable authentication.

WS-Security is set through the use of web service policies (WS-Policy). Security
policies can be set for web services to define their security protocol. In particular, the
WebCenter Content web services support Oracle WSM policies.

Note:

GenericSoapService automatically has oracle/wsmtom_policy applied to it.
Content Server cannot accept SOAP requests that have this policy applied.
For GenericSoapService to work, the following policy must be applied to it:

oracle/no_mtom_policy

WebCenter Content supports the following Oracle WSM policies:

• oracle/wss11_saml_token_with_message_protection_service_policy
• oracle/wss11_username_token_with_message_protection_service_policy
• oracle/wss_username_token_service_policy

Chapter 1
Configuring WebCenter Content Web Services for Integration

1-48

The 12c 12.2.1.3.0 uses Weblogic Server to apply Oracle WSM policies to web services. For
more information, see Oracle Fusion Middleware Security and Administrator's Guide for Web
Services.

Configuring SAML Support
You can also provide SAML support for client-side certificate authentication.

See:

• Securing Inbound SOAP Requests Using SAML Message Protection in Use Cases for
Securing Web Services Using Oracle Web Services Manager.

• Configuring Message Protection for Web Services in Web Services and Managing
Policies with Oracle Web Services Manager

Using Approval Management
Get an overview of the approval management extensions that are available for the human
workflow services of Oracle SOA Suite. The human workflow service handles all interactions
with users or groups who participate in the business process by creating and tracking tasks
for the appropriate users in the organization.

Users typically access tasks through a variety of clients, including Oracle BPM Worklist,
email, portals, or custom applications. Approval management extensions enable you to
define complex task routing slips for human workflow by taking into account business
documents and associated rules to determine the approval hierarchy for a work item.
Additionally, approval management extensions let you define multi-stage approvals with
associated list builders based on supervisor or position hierarchies. You define the approval
task in the Human Task Editor of Oracle JDeveloper, and associate the task with a BPEL
process.

For more information about human tasks, see the chapters in Using the Human Workflow
Service Component in Developing SOA Applications with Oracle SOA Suite.

Introduction to Approval Management
Approval Management extensions (AMX) extend human workflow services with complex
approval patterns. It serves as a sophisticated “Assignment Manager" for human workflow.

Some of the key workflow features include:

• Declarative modeling of approval management processes.

• The ability to define complex multi-stage approval with static and dynamic approval list.

• A Workflow Editor to define task parameters, assignment and routing policies, escalation
and expiration settings, and notification settings.

• Policy-based task assignment, which allows users to define approval rules based on
business documents.

• The ability to design a task form to render contents of the approval task and associated
task operations.

• The ability to define email and instant messaging (IM) notifications for various participants
in the workflow.

• A web-based worklist application for task assignees, process owners, and administrators.

Chapter 1
Using Approval Management

1-49

• The ability to look up users and roles in various user directories, including Oracle
Internet Directory, LDAP, and third-party directories.

AMX provides the following additional features:

• Attributes derived from ADF view object in transactional applications.

• The ability to retrieve various job, position, and supervisory hierarchies from HR
systems using hierarchy provider plug-ins.

• The ability to define rules for controlling approval lists and hierarchy
configurations.

AMX Components
The following figure shows the key AMX and human task integration components.
These components are described in subsequent sections of this chapter.

Figure 1-5 Overall Architecture

The human workflow service enables users to model human interactions as part of a
business process. The human workflow service handles requests based on task and
rules metadata. It consists of the following set of core services:

• Task service

• Task query service

• User metadata service

• Task metadata service

• Identity service

Chapter 1
Using Approval Management

1-50

• Notification service

• Assignment manager

These services are described in detail in Introduction to Human Workflow Services in
Developing SOA Applications with Oracle SOA Suite. AMX serves as a sophisticated
assignment manager within human workflow allowing you to model complex approval
patterns based on business rules.

The core components required for approval management include the following:

• Human Task Editor in JDeveloper

This task editor is used to define the metadata for a human task and the routing slip. The
task editor lets you define such things as task parameters, outcomes, expiration and
escalation, and notification settings. Some of the components added by AMX include the
ability to do the following:

– Define multi-stage approvals and associated approval list builders in JDeveloper.

– Determine the approval hierarchy based on business documents (ADF objects) and
business rules. This is done through Rules Designer in JDeveloper

• Human workflow services

Some of the key services that are required for handling complex approvals include the
following:

– Task Service - Responsible for creating and managing tasks in the dehydration store

– Identity Service - Responsible for authentication and authorization of users and
groups. The service can look up various user directories for authorization and contact
information for users.

– Task Query Service - Responsible for retrieving tasks for the web-based worklist
application

– Decision Service - Responsible for executing business rules related to approvals

• Oracle BPM Worklist

Oracle BPM Worklist is a web-based application that lets users access tasks assigned to
them and perform actions based on their roles in the approval process. Oracle BPM
Worklist supports the following profiles:

– Work assignee - An end user who is assigned a task. These users can view tasks
assigned to them and perform actions, and also can define custom views and define
routing rules for their tasks.

– Process owner - Typically a business analyst responsible for managing certain types
of approvals. These users can manage tasks for the processes they own, define
approval groups, and change approval policies

– Workflow administrator - Typically a system administrator responsible for managing
errored tasks, and administering and monitoring work queues. This user also may
use Oracle Enterprise Manager to monitor the health of the workflow services.

Understanding Approval Management Concepts
AMX extends human workflow services with additional functionality to handle complex
approval patterns.

Some human workflow concepts with which you must be familiar are the following:

Chapter 1
Using Approval Management

1-51

• Human Task Editor in JDeveloper

• Task metadata (task parameters, allowed operations, and patterns) and routing
slip

• ADF task flow based on task forms

• Oracle BPM Worklist

These concepts are described in the chapters in Using the Human Workflow Service
Component in Developing SOA Applications with Oracle SOA Suite.

Task
A task handles approvals. A different task is created for each approval requirement
based on the business served by it. For example, an approve new expense report task
or an approve new purchase order task.

Some of the standard metadata for a task include the following:

• Task attributes such as title, outcomes (approve, reject, and so on) priority,
expiration and others

• Task parameters that may be based on simple primitive types, XML elements, or
external entities such as ADF view objects

• A complex approval task that may include one or more stages to identify the key
milestones within the approval sequence. For more information see Stages.

• Expiration and escalation policy

• Notification settings for notifying various participants

• List builders within stages, which are based on names and expression,
management chain, supervisory, position, job-level hierarchy, or approval groups.
For more information, see List Builders.

• Approval task configurations, including policies for substitution and modification of
approvers, configuration of self-approval, and repeated approvers. For more
information, see Task.

The following figure shows the various stages in a sample approval pattern.

Figure 1-6 Approval List Structure

The approval pattern consists of four stages:

Chapter 1
Using Approval Management

1-52

• Header approval

• Line approval

• Receipt verification

• Payment

Header approval runs in parallel with line approval and receipt verification. After these stages
run, the payment stage runs.

Each of the four stages has list builders. Multiple list builders in a stage can run in serial or
parallel to one another. One or more approvers can exist within each list builder. The
following figure illustrates these concepts.

Figure 1-7 Stages and Their List Builders

These concepts are described in the sections that follow.

Service Data Objects
ADF Business Components objects can be exposed easily as Service Data Objects (SDOs)
through the service interface. This provides a flexible way to accept business entities.
Subsequently, supporting SDOs natively enables accepting multiple business entities. This
also lays the foundation for future Flexfield SDO support. Since an SDO is a structured XML,
you can pass it in as static XML through the task payload.

Chapter 1
Using Approval Management

1-53

A collection is defined in an entity parameter for the task. It enables access to a
portion of the business entity as an XML fragment retrieved by an XPATH expression.
Keys allow us to identify the primary keys in this fragment.

An entity parameter is the definition that tells us how to access an SDO or a static
XML. An entity parameter captures the following information for an SDO:

• Identity of a reference in the overall SCA process, including the Web service
definition language (WSDL) for the SDO web service

• Method to invoke

• Input message to the web service

• Output message to the web service

• Collections

An entity parameter captures the following information for a static XML:

• XSD for the static XML

• Collections

For example, an expense voucher can have hierarchical groupings of header, lines,
and cost centers. For approval policy purposes, you may only define a collection on
header and lines if these are the only components required for determining the set
approvers. It is not necessary to map as collections those parts of the business
document that are not necessary to define rules.

For more information, see Implementing Business Services with Application Modules
and Creating SOAP Web Services with Application Modules in Developing Fusion
Web Applications with Oracle Application Development Framework.

Stages
A stage is a set of approvals related to a collection. The same collection can be
associated with multiple approval stages.

The following figure illustrates the mapping of stages and collections.

Figure 1-8 Mapping of Stages and Collections

Chapter 1
Using Approval Management

1-54

Each approval stage is associated with a collection. In the figure, there are four stages in the
approval.

• Header Approval is associated with the Expense Header collection.

• Receipt Verification is associated with the Expense Header collection.

• Payment is associated with the Expense Header collection.

• Line Approval is associated with the Expense Lines collection.

A compound approval may consist of multiple stages and then can be modeled in serial or
parallel with each other. Each stage consists of list builders to determine the list of approvers.

Optionally, each list builder can be associated with an approval policy, that is, a set of rules.
At runtime, the appropriate set of approvals are returned based on the list builders used
within the stage and on the associated policies.

List Builders
As described in Stages, each approval stage consists of list builders to determine the actual
list of approvers. The following list builders are supported.

• Names and Expressions

Enables you to construct a list using static names, or names coming from XPath
expressions.

• Approval Groups

Includes predefined approver groups in the approver list. Approval groups can be static
or dynamic.

• Job Level

Ascends the supervisory hierarchy, starting at a given approver and continuing until an
approver with a sufficient job level is found.

• Position

Ascends the position hierarchy, starting at a given approver's position and continuing until
a position with a sufficient job level is found.

• Supervisory

Ascends the primary supervisory hierarchy, starting at the requester or at a given
approver, and generates a chain that has a fixed number of approvers in it.

• Management Chain

Enables you to construct a list based on management relationships in the corresponding
user directory.

The management chain participant type only supports parallel routing when the first
assignee in the management chain is a single user. You cannot specify parallel
participants such as a set of users or a group, as the initial assignees in the management
chain.

• Rule-based

Enables you to model rules that return different list-builder types based on different
conditions. For example, if you model a supervisory list builder with rules, the rule can
return only the supervisory list builder. If you model a rule-based list builder, the rule can
return different list builder types.

Chapter 1
Using Approval Management

1-55

Note:

The Approval Groups, Job Level, Position, and Supervisory list builders are
specific to AMX, and are described in detail in How to Model and Configure
List Builders.

For information about the Names and expressions, Management Chain, and
Rule-based list builders, see Creating a Single Task Participant List in
Developing SOA Applications with Oracle SOA Suite.

Task Operations
Most of the standard human task operations also are available on AMX-based tasks.
Some of the common operations include the following:

• User-defined outcomes - Business outcomes, such as "Approve" and Reject,"
that are associated with a task. When a user performs these types of actions, the
task is removed from the user's "Inbox" and is marked as completed or moved to
the next approver.

• Delegate - Allows a user to assign a task to another person or role to act on his or
her behalf.

• Escalate - Allows a user or an administrator to escalate a task to the user's
supervisor.

• Reassign - Allows users to transfer a task to another user. From that point on, the
new user's hierarchy is used for supervisor or other organization-based approvals.

• Withdraw - Allows the task initiator or administrator to cancel or withdraw the task
after the approval has started.

• Request for Information - Allows a task approver to request information from any
prior participant or the task initiator.

• Pushback - Allows the task approver to push back the task to the previous
approver to review it again.

• Adhoc Insertions - Allows any task assignee to insert approvers in the generated
approval list.

Note:

The position list builder does not allow the approver to reassign, delegate,
escalate or perform adhoc insertions.

For a complete list of actions, see Acting on Tasks: The Task Details Page in
Developing SOA Applications with Oracle SOA Suite.

Business Rules for Approval
Approvers of a task can be defined either inline in a task definition or by using
business rules to specify the list builders that identify the actual approvers of a task. In
addition, you can use business rules to specify approver substitution and list

Chapter 1
Using Approval Management

1-56

modifications. These rules are defined with the help of Oracle Business Rules and can vary
between organizations. Typically, however, they are defined by the customer.

Business rules are a combination of conditions and actions. Optionally, priority and validity
periods can be defined for these rules. In Human Workflow rules, rule conditions are defined
using fact types that correspond to the task, and to the task message and entity attributes
(which are XML representations of SDO objects). Rule actions consist of approver list
builders and their parameters. Approver list builders move up a particular hierarchy and
construct or modify the approver list according to the parameters defined. Approver list
builders are implemented as XML (JAXB) fact types.

For more information about these concepts, see Using the Business Rules Service
Component in Developing SOA Applications with Oracle SOA Suite.

List Creation
A list creation policy includes rule conditions and actions that create the list builders.

The following example rules illustrate the configuration of the Supervisory list-builder
parameters that create an approver list based on an SDO-based fact type.

For more information, see How to Create Lists.

Example 1-1 Rule 1

IF
ExpenseItems.ReceiptAmount < 200
THEN
call CreateSupervisoryList(levels:1,
startingPoint:HierarchyBuilder.getPrinicipal("jstein",-1,"",""),
uptoApprover:HierarchyBuilder.getPrinicipal("wfaulk",-1,"",""),
autoActionEnabled:false,autoAction:null,
responseType:ResponseType.REQUIRED,ruleName:"Rule_1",lists:Lists)

Example 1-2 Rule 2

IF
xpenseItems.ReceiptAmount >= 200
THEN
call CreateSupervisoryList(levels:1,
startingPoint:HierarchyBuilder.getPrinicipal("wfaulk",-1,"",""),
uptoApprover:HierarchyBuilder.getPrinicipal("cdickens",-1,"",""),
autoActionEnabled:false,autoAction:null,
responseType:ResponseType.REQUIRED,ruleName:"Rule_2",lists:Lists)

Approver Substitution
Users, groups, and application roles appearing in a list can be substituted using list
substitution. List substitution is available from Rules Designer and does not require any
configuration in JDeveloper.

The following example rule illustrates approver-substitution usage.

This rule implies that if the expense item amount is less than 4000, then substitute approver
"jcooper," if present in the approver list, with approver "jstein."

For more information, see How to Make Approver Substitutions.

Chapter 1
Using Approval Management

1-57

Example 1-3 Approver-Substitution Usage

IF
ExpenseItems.ReceiptAmount < new BigDecimal(4000)
THEN
call Substitute(fromId:"jcooper", toId:"jstein", ruleName:"Substituted",
substitutionRules: SubstitutionRules)

List Modification
Job Level and Position lists can be extended or truncated from rules. List modification
is applied after list creation.

The following example rule illustrates list-modification usage.

This rule implies that if the expense item amount is greater than 3000, and if the final
approver in the approver list is of Job Level 3, then extend the approver list by at least
two relative levels.

For more information, see How to Make List Modifications.

Example 1-4 List-Modification Usage

IF
ExpenseItems.ReceiptAmount > new BigDecimal(3000)
THEN
Call Extend(ifFinalApproverLevel:3, extendBy:2,ruleName:"Modified",lists:Lists)

Designing Approval Management Tasks in Oracle JDeveloper
You design approval management tasks by defining a human task that provides the
ability to model multi-stage approvals and determine the appropriate approvers based
on approval policies for a business object and the associated HR hierarchy provider.

This section describes the overall modeling process and the specifics of the process
you use to model approval management tasks in JDeveloper.

Introduction to the Modeling Process
The modeling process for designing approval management tasks includes the
following:

• Creating a human task definition

• Creating a task display form using the Human Task Editor

Creating a human task definition includes the following tasks:

• Specifying general information, such as task title and task-title globalization,
outcomes, priority, owner, and category

• Specifying task parameters, including those with service data object (SDO)
references

• Specifying mapped attributes

• Modeling task routing by specifying stages and list builders, and modeling any
business rules that define the list builders

• Defining escalation and renewal policies

• Specifying notification settings

Chapter 1
Using Approval Management

1-58

• Modeling any advanced settings like callbacks, security access rules, and restricted
assignment

For more information, see the chapters in Using the Human Workflow Service Component in
Developing SOA Applications with Oracle SOA Suite.

Before You Begin
Before designing approval management tasks, you must satisfy the following prerequisites:

• You must have deployed SDO services.

• You must have created a human task service component in which to design the approval
task.

Specifying General Information
Some general information, including task title, outcomes, priority, owner, and category, is not
specific to AMX.

For more information, see How to Define the Human Task Activity Title, Initiator, Priority, and
Parameter Variables in Developing SOA Applications with Oracle SOA Suite.

Task-Title Globalization
The title attribute of the task object contains a user-friendly value that mainly is descriptive in
nature. In AMX, the task title can be globalized so that it renders in the user's preferred
language.

Title is defined in the *.task file for design time and in the WorkflowTask.xsd file for runtime.
Currently, the definition of these elements in both of these files are simple xsd:string types.
For globalization, the structure and usage of these elements change to accommodate a
mechanism that provides translatable, formatted strings.

The design-time metadata for these elements is enhanced to contain a value element and an
optional set of parameters. Messages defined as an XPath expression or static have their
information stored in the value element and require no parameters. Messages defined that
rely on information in a resource bundle have a key stored in the value element with some
parameters also defined.

The Human Task Editor provides a mechanism in the Expression Builder to enable the user
to specify the resource key and parameters and, at the same time, generate the appropriate
design time XML in the taskDefinition.

The following figure shows the globalization icon in the Human Task Editor.

Figure 1-9 Title Globalization Icon

The following procedure explains how to add translatable strings. It assumes that a resource
bundle has been specified.

1. Select Translation from the drop-down list.

The Global icon displays.

Chapter 1
Using Approval Management

1-59

2. Click the icon to display the Edit Translatable Strings dialog box.

3. Select a key from the drop-down list or click the plus sign (+) to create one.

The following Create a New Key dialog box, displays when you click the plus sign
(+) on the Edit Translatable Strings dialog box.

Figure 1-10 Create a New Key Dialog

4. Enter a name, the translatable text, and click OK.

The New Key added dialog box shows the Edit Translatable Strings dialog box
after a new key has been added.

Chapter 1
Using Approval Management

1-60

Figure 1-11 New Key Added

5. Use the Expression Builder to add values.

The Translatable Text and Values dialog box shows the completed Edit Translatable
Strings dialog box.

Figure 1-12 Translatable Text and Values

Chapter 1
Using Approval Management

1-61

Note:

The title value, or a definition of the title value can be set in two places:
in the TaskDefinition XML (.task) file, or in the bpel file. When set in the
bpel file, this value takes precedence over the definition in the
TaskDefinition. However, the value in the bpel file is not translatable.

6. Click OK to close the dialog box.

Specifying Task Parameters
Specifying task parameters includes the following tasks:

How to Create Service Data Object (SDO) References
An SDO service can be invoked from workflow services to retrieve the SDO as XML.
This invocation is in the form of a SOA web service call. When the SDO service WSDL
URL is available, a web service reference should be added using the Create Web
Service dialog box.

To create a reference, enter the WSDL URL and select the port type from the available
port types, as shown in the following figure.

Figure 1-13 Web Service Reference

For information about creating SDOs, see topics in Designing an SDO-Based
Enterprise JavaBeans Application in Developing SOA Applications with Oracle SOA
Suite.

How to Define Entity Parameters
The following procedure enables you to accept a service data object (SDO).

1. Create a Service reference in the composite.

This allows Fabric to create all the necessary wiring to a specific URL that points
to a WSDL.

Chapter 1
Using Approval Management

1-62

2. Define the task payload as external and specify which workflow retrieves the SDO object.

This creates task parameters representing the input and output to the SDO web service.

3. Choose Entity.

4. Select a reference.

5. Set the collection for the stage.

6. Click OK.

The following procedure enables you to accept static XML.

1. Provide the XSD where the schema is defined.

2. Define the task payload parameter as static XML.

3. Define the collection, its XPATH expression, and its keys.

4. Set the collection for the stage.

5. Click OK.

How to Define Collections
Collections are references to specific parts of a task message attribute, both static-XML
based and entity attributes. After defined, collections can then be associated with stages to
identify a stage as acting on a collection.

Defining a collection involves defining the name of the collection and the XPath to the
collection element. If the collection is defined for an entity attribute, the keys for the collection
element have to be specified as well. Each key has to be a direct child of the collection
element. The following figure shows how collections are defined.

Figure 1-14 Defining Collections

When you define a collection, JDeveloper automatically determines if it should be repeating
element or not. This information is used when collections are associated with a stage. A non-
repeating collection can be associated with a singular stage. A repeating collection, when
associated with a stage, repeats the stage in parallel for each element in the collection at

Chapter 1
Using Approval Management

1-63

runtime. For information about how the collection information is used in a stage, see
How to Model and Configure Stages.

Specifying Mapped Attributes
Human workflow provides task-message attributes that you can use for storing use-
case-specific data, such as data extracted from a task's payload. These attributes are
also known as flexfield attributes or mapped flexfield attributes.

Mapped flexfield attributes allow payload values to be displayed as columns in the task
listing, rather than being hidden in the task details. These values are stored in the
human workflow database schema, and you can use them in queries, view definitions,
and assignment rule definitions.

There are two types of message attributes:

• public - attributes mapped to specific task components at runtime. These
mappings can be changed at any time, and must be re-created when a task
component is redeployed. For more information see Using Mapped Attributes
(Flex Fields) in Developing SOA Applications with Oracle SOA Suite.

• protected - AMX-specific mappings between a task component and protected
flexfield attributes defined at design time. They cannot be changed at runtime, and
are deployed along with the task component.

Table 1-11 summarizes the 60 available protected flexfield attributes.

Table 1-11 Protected Flexfield Attributes

Name Description

ProtectedTextAttribute1 -
ProtectedTextAttribute20

Stores text data, up to 2000 characters. The content
in these fields is checked during keyword searches in
the Oracle BPM Worklist and through the task-query
service.

ProtectedFormAttribute1 -
ProtectedFormAttribute10

Stores text data, up to 2000 characters. The content
in these fields is not checked during keyword
searches in the Oracle BPM Worklist.

ProtectedURLAttribute1 -
ProtectedURLAttribute10

Stores text data, up to 200 characters. The content in
these fields is not checked during keyword searches
in the Oracle BPM Worklist.

ProtectedDateAttribute1 -
ProtectedDateAttribute10

Stores date information.

ProtectedNumberAttribute1 -
ProtectedNumberAttribute10

Stores number information.

About Attribute Labels and Attribute-Label Mappings
Attribute labels are user-defined properties that allow a meaningful string to be applied
to a particular flexfield attribute. The label should reflect the data to store in the
attribute. For example, “CustomerName" for “ProtectedTextAttribute1," “OrderNumber"
for “ProtectedNumberAttribute2," or “OrderDate" for “ProtectedDateAttribute1."

A flexfield attribute can have multiple attribute labels defined for it. For example, the
attribute “ProtectedTextAttribute1" could have the labels “CusomerName," “PartId" and
“EmployeeDepartment".

Chapter 1
Using Approval Management

1-64

Attribute-label mappings for protected attributes are defined at design time in the Human
Task Editor. They define a mapping between a particular task component and an attribute
label, and also specify how the value of the attribute should be populated. The same attribute
label can be re-used in multiple mappings. This allows task components to map data having
the same semantic meaning into a common attribute identified by a common label.

For example, PurchaseOrder, LoanRequest and ServiceRequest tasks all could define
mappings to the “CustomerName" label. By sharing the same attribute labels across multiple
task components, it is possible to construct worklist queries that query multiple task types and
display or filter values from the common attribute labels. For example, it would be possible to
construct a query that selected PurchaseOrder, LoanRequest, and ServiceRequest tasks,
and then displayed the “CustomerName" as a column in the worklist task listing.

How to Define Attribute-Label Mappings
You define attribute-label mappings in the Mapped Attributes section of the Human Task
Editor, as shown in the following figure.

Figure 1-15 Mapped Attributes Section

Use the following procedure to define attribute-label mappings:

1. Click the Add icon to display the Add Mapped Attribute dialog box.

Figure 1-16 Add Mapped Attribute Dialog

2. Perform one of these options:

• From the drop-down list, select the application server that contains the protected-
attribute labels.

• Click the Add icon to create a connection.

Chapter 1
Using Approval Management

1-65

• Click the Edit icon to edit an existing connection.

The Attribute drop-down list populates with the available attribute labels from the
specified server.

3. From the drop-down list, select an attribute.

Note:

The list does not include any labels for flexfield attributes to which this
task component is being mapped.

4. At the Value field, specify a value using one of these options:

• Enter an XPath expression that determines the value to be stored in the
attribute.

• Click the icon to create a value in the Expression Builder.

• Leave the field blank to allow the value to be determined at runtime.

Usually, this XPath expression selects a value from the tasks's payload, but you
can specify any valid expression that evaluates to a simple type, such as a string,
a date, or a number.

Be aware that specifying an XPath expression is not mandatory. You may prefer to
set the value of the underlying flexfield-attribute value yourself. For example, you
can add a custom assign activity to the BPEL process that initiates the task, or
manipulate the Task object through the workflow service APIs.

5. Enter a description. This is optional.

6. Click OK.

Specifying Routing and Approval Policies
Specifying routing and approval policies includes the following tasks:

How to Model and Configure Stages
Based on functional needs, you can add and arrange multiple stages in a structure
that can be a combination of sequential and parallel stages. This section describes
how to create sequential and parallel stages.

Use the following procedure to create a stage:

1. In the Assignment and Routing section of the Human Task Editor, select a stage.

2. Drag the stage from the palette on the right side to a specific location on the
canvass.

Chapter 1
Using Approval Management

1-66

Figure 1-17 Create Stage

If you chose to create a sequential stage, the Assignment and Routing section looks
like the following figure.

Figure 1-18 Add Sequential Stage

If you chose to create a parallel stage, the Assignment and Routing section looks like
the following figure.

Chapter 1
Using Approval Management

1-67

Figure 1-19 Add Parallel Stage

3. Double-click the stage you just created.

The Edit dialog box displays, as shown in the following figure.

Figure 1-20 Edit Stage Dialog

4. Enter a name for the stage.

5. Choose one of these options:

• Non Repeating - specifies that there is only one stage in parallel for each
element in a collection

• Repeat Stage in parallel for each item in a collection - specifies that the
stage to repeat in parallel for each element in a collection. For example, if a
purchase order contain 10 lines, the stage is repeated 10 times in parallel.

6. From the drop-down list, select a collection.

7. According to your selection, use one of these options:

• If you selected Non Repeating, click OK to close the Edit dialog box.

• If you selected Repeat Stage in parallel for each item in a collection,
additional options display, as shown in the following figure.

Chapter 1
Using Approval Management

1-68

Figure 1-21 Edit Stage Dialog: Repeat Stage

Do the following:

– Select a default outcome.

– Select a consensus percentage.

– Choose either to trigger the outcome immediately or wait until all the votes are in
before triggering the outcome.

– Check the Share attachments and comments check box.

– Click OK to close the Edit dialog box.

How to Model Task Participants
Inside each stage you either can edit the default task participant or add new task participants.
Task participants are assigned based on routing patterns, which can be any of the following:

• Single

• Parallel

• Serial

• FYI

After selecting a routing pattern, you also must select and model a list builder. This process is
discussed in more detail in How to Model and Configure List Builders.

How to Model and Configure List Builders
Stages use a combination of list builders to generate the approver list. For more information,
see Stages and List Builders. You can use each type of list builder only one time per stage.
You can arrange these approver list builders in either sequential or parallel order. The order

Chapter 1
Using Approval Management

1-69

you select governs the order in which those approvers included in approver lists that
are generated by list builders are assigned an approval task.

The following list builders are specific to Approval Management extensions (AMX):

• Approval Groups (see How to Model an Approval Groups List Builder)

• Job Level (see How to Model a Job Level List Builder)

• Position (see How to Model a Position List Builder)

• Supervisory (see How to Model a Supervisory List Builder)

In the List Builder dialog, you can select to specify attributes in two ways: value-based
(using the List Builder dialog) or rule-based (using the Rule Editor):

• Value-based: Specifies constraints to build the list of participants based on
provided values in the List Builder dialog. Does not apply to a Position list builder.

• Rule-based: Specifies constraints to build the list of participants based on rules
that are defined in the Rule Editor. Applies to all list builders.

Table 1-12 List Builder Options

Option Name Description List Builder

Name The name of the approval group to use. Approval Groups

Allow Empty Groups When selected, allows the use of approval groups with
no members.

• Not selected: When an approval group has no
members or is empty, the rules engine generates an
error notification that the approval group is empty.

• Selected: When an approval group has no members
or is empty, the rules engine does not generate an
error and continues to evaluate other rules and
participants.

Approval Groups

Starting Participant The first participant in a list, usually a manager. Job Level

Position (rule-based only)

Supervisory

Top Participant The last participant in the approval. Approval does not
go beyond this participant in a hierarchy.

Job Level

Position (rule-based only)

Supervisory

Chapter 1
Using Approval Management

1-70

Table 1-12 (Cont.) List Builder Options

Option Name Description List Builder

Number of Levels A positive number specifying the lowest and highest job
level (for Job Level), or the number of levels to traverse
(for Supervisory). This number can be an absolute
value, or a value relative to the starting point or creator.

Settings for Job Level:

• At least: Referred to as x1 here.
– This assigns approvers as long as the job level

‘<’ x1. As soon as x1 is ‘=’ or ‘>’ approver-job-
level, it will stop assigning approvers. It checks
the job level of the current user and then
assigns if the condition matches.

– The At least action is more stringent than the
At most action. Therefore, the At least
condition must be fulfilled first and then At
most will continue from where At least ended.

• At most: Referred to as x2 here.
– This assigns approvers as long as the

approver’s manager's job level is ‘<’ or ‘=’ x2. It
will not assign any approvers ‘>’ x2. It checks
the job level of the user to be assigned and if
the condition matches the request, it goes to
approver’s manager.

See Example Job Level Settings for Number of Levels
Option following this table.

Settings for Supervisory:

In the context of the Supervisory list builder, the Number
of Levels parameter is a way to limit the hierarchy
traversal. The other parameter that governs the
hierarchy traversal is Top Participant. If either of the
conditions set by Number of Levels or Top Participant is
reached or met, the hierarchy traversal is stopped.

• XPath: An expression that evaluates to a positive
integer. For example, Task.payload.noOfLevels.

• By Number: A positive number specifying the
number of levels to traverse for Supervisory.

Job Level

Position (rule-based only)

Supervisory

Relative to A positive number specifying the number of levels to
traverse for Supervisory, or the number of job level for
Job Level and Position. Possible values are: starting
point, creator and absolute.

Job Level

Position (rule-based only)

Include all managers
at last level

If the job level equals that of the previously calculated
last participant in the list then it includes the next
manager in the list.

Job Level

Utilized Participants Utilizes only the participants specified in this option from
the calculated list of participants. Available options are:
Everyone, First and Last manager, Last manager.

Job Level

Position (rule-based only)

Auto Action Enabled Specifies if the list builder automatically acts on task
based on the next option.

Job Level

Supervisory (rule-based only)

Position (rule-based only)

Chapter 1
Using Approval Management

1-71

Table 1-12 (Cont.) List Builder Options

Option Name Description List Builder

Auto Action Specifies the outcome to be set. It can be null if auto
action is not enabled.

Job Level

Supervisory (rule-based only)

Position (rule-based only)

Example Job Level Settings for Number of Levels Option

Example 1: At least < At most

Settings:

• At least = 3 (absolute)

• At most = 5 (absolute)

• Creator = JL1 (level = 1)

• Starting Participant = manager

• Include all managers at last level = no

• Top Participant = JL9 (level=9)

Results:

• Starting point is always considered in the approval flow: JL2

• Evaluation of At least begins first and per At least = 3 condition: JL2 and JL3 are
eligible, but JL2 has already been evaluated as part of the starting point condition,
therefore the only At least condition match is JL3.

• At most evaluation begins and per At most = 5 condition: JL2, JL3, JL4, and JL5
are eligible, but JL2 and JL3 are already evaluated as part of the starting point and
At least condition, therefore the only At most condition match are JL4 and JL5.

• All Approvers: Starting point (JL2) + At least (JL3) + At most (JL4, JL5) = JL2,
JL3, JL4, JL5

Example 2: At least = At most

Settings:

• At least = 4 (absolute)

• At most = 4 (absolute)

• Creator = JL1 (level = 1)

• Starting Participant = manager

• Include all managers at last level = no

• Top Participant = JL9 (level=9)

Results:

• Starting point is always considered in the approval flow: JL2

• Evaluation of At least begins first and per At least = 4 condition: JL2, JL3, and
JL4 are eligible, but JL2 has already been evaluated as part of the starting point
condition, therefore the only At least condition match is JL3 and JL4.

Chapter 1
Using Approval Management

1-72

• At most evaluation begins and per At most = 4 condition: JL2, JL3, and JL4 are eligible,
but JL2, JL3, and JL4 are already evaluated as part of the starting point and At least
condition, therefore there is no match for the At most condition.

• All Approvers: Starting point (JL2) + At least (JL3, JL4) + At most (no match) = JL2,
JL3, JL4

Configuring the Hierarchy Provider Plug-In

If you do not configure the hierarchy provider plug-in, then the Position list builder does not
work.

When you define a hierarchy extension, if you do not define the property
mustUseSpecifiedProvider, then its default value is true.

You can configure the Supervisory and Job Level list builders to not throw an exception when
there is a problem with the hierarchy plug in. To configure the list builders, you must add the
mustUseSpecifiedProvider property to the workflow-identity-config.xml configuration
file, and set the value attribute to false.

By default, the workflow-identity-config.xml file does not include the
mustUseSpecifiedProvider property. If this property is present and its value is false, then
the Supervisory and Job Level list builders use the LDAP management chain when there is a
problem with the hierarchy plugin.

The following example shows a workflow-identity-config.xml file that specifies the
mustUseSpecifiedProvider property. The value of this property is set to true so that the
Supervisory and Job Level builders fail when the hierarchy plug in is not available.

<ISConfiguration xmlns="http://www.oracle.com/pcbpel/identityservice/isconfig">
 <configurations>
 <configuration realmName="jazn.com">
 <provider providerType="JPS" name="JpsProvider" service="Identity">
 <property name="jpsContextName" value="default"/>
 <property name="IdentityServiceExtension"
 value="HCMIdentityServiceExtension"/>
 </provider>
 </configuration>
 </configurations>
 <property name="caseSensitive" value="false"/>
 <property name="mustUseSpecifiedProvider" value="true"/> <!-- Fail when the
hierarchy plug ins are not available-->
 <serviceExtensions>
...
</ISConfiguration>

How to Model an Approval Groups List Builder

Approval groups are a statically defined or a dynamically generated list of approvers.
Approval groups usually are configured by the process owner using the worklist application.
Typically, they are used to model subject matter experts outside the transaction's managerial
chain of authority, such as human resources or legal counsel, that must act on a task before
or after management approval.

Static approval groups are predetermined lists of approvers, while dynamic approval groups
generate approver lists at runtime. Dynamic approval groups require:

• Delivery of an implementation according to the dynamic approver list interface by the
developer

Chapter 1
Using Approval Management

1-73

• Registration of the above implementation as a dynamic approval group using the
Oracle BPM Worklist's UI by the IT department

• Availability of the class file in a globally well-known directory that is part of the
SOA class path

Use dynamic approval groups when you need to calculate the approval group
dynamically based on the task payload. Specially in line level approval where each line
may require different approval group. For example, each cost center may require the
approval of a different cost center owner. Each line may have different cost centers
that require the approval of different cost center owners. When the number of cost
centers is greater than one hundred, this may become difficult to manage with
business rules.

Two views of the Approval Groups list builder are shown in the following figures.

Figure 1-22 Value-Based Approval Groups List Builder Dialog

Chapter 1
Using Approval Management

1-74

Figure 1-23 Rule-Based Approval Groups List Builder Dialog

To model an Approval Groups list builder, first specify if the list builder's attributes are to be
value-based or rule-based, and then select the options on the corresponding dialog box. For
information about the options, see Table 1-12.

Note:

If you configure the resource list with a group, then it behaves as a single type
participant regardless of the serial or parallel type configuration.

How to Model a Job Level List Builder

The Job Level list builder ascends the supervisory hierarchy, starting at a given approver and
continuing until an approver with a sufficient job level is found.

Two views of the Job Level list builder are shown in the following figures.

Chapter 1
Using Approval Management

1-75

Figure 1-24 Value-Based Job Level List Builder Dialog

Figure 1-25 Rule-Based Job Level List Builder Dialog

To model a Job Level list builder, first specify if the list builder's attributes are to be
value-based or rule-based, and then select the options on the corresponding dialog
box. For information about the options, see Table 1-12.

How to Model a Position List Builder

The Position list builder ascends the position hierarchy, starting at the requester's or at
a given approver's position, and goes up a specified number of levels or to a specific
position.

The following figure shows a view of the Position list builder.

Chapter 1
Using Approval Management

1-76

Figure 1-26 Rule-Based Position List Builder Dialog

To model a Position list builder, first specify if the list builder's attributes are to be value-based
or rule-based, and then select the options on the corresponding dialog box. For information
about the options, see Table 1-12.

How to Model a Supervisory List Builder

The Supervisory list builder ascends the primary supervisory hierarchy, starting at the
requester or at a given approver, and generates a chain that has a fixed number of approvers
in it.

Two views of the Position list builder are shown in the following figures.

Figure 1-27 Value-Based Supervisory List Builder Dialog

Chapter 1
Using Approval Management

1-77

Figure 1-28 Rule-Based Supervisory List Builder Dialog

To model a Supervisory list builder, first specify if the list builder's attributes are to be
value-based or rule-based, and then select the options on the corresponding dialog
box. For information about the options, see Table 1-12.

How to Use Business Rules to Specify List Builders
Approvers of a task can be defined either inline in a task definition or by using
business rules to specify the list builders that identify the actual approvers of a task. In
addition, you can use business rules to specify approver substitution and list
modifications. These rules are defined with the help of Oracle Business Rules and can
vary between organizations. Typically, however, they are defined by the customer.

Business rules are a combination of conditions and actions. Optionally, priority and
validity periods can be defined for these rules. In Human Workflow rules, rule
conditions are defined using fact types that correspond to the task, and to the task
message and entity attributes (which are XML representation of SDO objects). Rule
actions consist of approver list builders and their parameters. Approver list builders
move up a particular hierarchy and construct or modify the approver list according to
the parameters defined. Approver list builders are implemented as XML (JAXB) fact
types.

For more information about these concepts, see the chapters in Using the Business
Rules Service Component in Developing SOA Applications with Oracle SOA Suite.

The sections that follow explain list creation, approver substitution, list modification,
and repeating node attributes using Oracle Business Rules.

How to Create Lists

You can use business rules to define the list builders you want to use. There are two
types of business rules:

• Rules that define the parameters of a specific list builder. In this case, the task
routing pattern dialog box is modeled to use a specific list builder. The parameters
in the list builder come from rules. With this option, rules should return a list builder
of the same type as the one modeled in JDeveloper. The following figure shows a
sample configuration.

Chapter 1
Using Approval Management

1-78

Figure 1-29 Specific List Builder Configuration

• Rules that define the list builder and the list builder parameters. In this case, the list itself
is built using rules. The following figure shows a sample configuration.

Chapter 1
Using Approval Management

1-79

Figure 1-30 List Builder and Parameters Configuration

In the rule dictionary, rule functions are seeded to facilitate the creation of list builders.
The list builder functions are:

• CreateResourceList
• CreateSupervisoryList
• CreateManagementChainList
• CreateApprovalGroupList
• CreateJobLevelList
• CreatePositionList
In Rules Designer, model your conditions and, in the action part, call one of the
functions above to complete building your lists, as shown in the following figure.

Chapter 1
Using Approval Management

1-80

Figure 1-31 Modeling Conditions in Rules Designer

The parameters for the rule functions are similar to those in JDeveloper modeling. In addition
to the configurations in JDeveloper, some additional options are available in Rules Designer:

Chapter 1
Using Approval Management

1-81

Parameter Description

startingPoint
topApprover

In JDeveloper, starting point and top approver are specified as users. In
Rules Designer, you can build a hierarchy principal as the starting point and
top approver using the HierarchyBuilder function, as shown in the
following figure.

Note: If you want to leave the job level attribute undefined when using the
HierarchyBuilder function, then you must set its value to a negative
integer.

HierarchyBuilder has a number of functions including getManager,
getPrincipal, and getManagerOfHierarchyPrincipal.

• HierarchyBuilder.getManager builds an approval list using the
following parameters:
– ListbuilderType (string). Valid values: "supervisory",

"joblevel", "position"
– ReferenceUser (string). For example, Task.creator
– AssignmentID (long). The default value is -1, otherwise it is set

to the user.
– EffectiveDate (string). For example, "2021–06–15"
– HierarchyType (string). The type of manager to look for when

the list is built. Example values are: "LINE_MANAGER",
"RESOURCE_MANAGER", "CORPORATE_MANAGER",
"PROJECT_MANAGER"

Example:
HierarchyBuilder.getManager("supervisory",Task.creator,
-1,"2021–06–15","LINE_MANAGER")

• HierarchyBuilder.getPrincipal locates an approval list member
and can be used, for example, to identify the top approver in an
approval list. It takes the following parameters:
– PrincipalName (string). Valid values: "supervisory",

"joblevel", "position"
– AssignmentID (long). The default value is -1, otherwise it is set

to the user.
– EffectiveDate (string). For example, "2021–06–15"

Chapter 1
Using Approval Management

1-82

Parameter Description

– HierarchyType (string). The type of manager to look for when
the list is built. Default: "LINE_MANAGER". Other possible values
are: "RESOURCE_MANAGER", "CORPORATE_MANAGER",
"PROJECT_MANAGER"

allowEmptyApp
rovalGroup

In Rules Designer, you can specify whether or not to allow the use of
approval groups with no members using the CreateApprovalGroupList
function, as shown in the following figure.

Valid values:

• false: When an approval group has no members or is empty, the rules
engine generates an error notification that the approval group is empty.

• true: When an approval group has no members or is empty, the rules
engine does not generate an error and continues to evaluate other
rules and participants.

autoActionEna
bled
autoAction

In Rules Designer, you can configure that the users resulting from a
particular list builder can act automatically on the task.

Valid values for autoAction: null | Approve | Reject
responseType If the response type is REQUIRED, the assignee has to act on the task;

otherwise, the assignment is converted to an FYI assignment.
Valid values: REQUIRED | NOT_REQUIRED

ruleName Rule name is used to create an assignment reason. The
rule_set_name_rule_name is used as a key to look up the resource
bundle for a translatable reason for assignment. This resource is looked up
first in the project resource bundle, then in the custom resource bundle, and
last in the system resource bundle.

Valid values: any valid string

lists This is an object that is a holder for all the lists that are built. Clicking this
option shows a pre-asserted fact that a Lists object is used as the
parameter.

The following figures show examples of rules.

Figure 1-32 Example Rules (1)

Chapter 1
Using Approval Management

1-83

Figure 1-33 Example Rules (2)

Note:

If multiple rules fire, the list builder created by the rule with the highest
priority is selected.

If the rules have the same priority, they are fired in random order, the first
one fired is selected.

WARNING:

An improper or incomplete rules definition in a list-creation rule set can cause
runtime errors. Errors can be caused by the following:

• No rule was defined in the rule set.

• None of the conditions defined in the rule was met.

Ensure that rules are properly defined to handle all conditions.

How to Make Approver Substitutions

List substitution enables you to substitute users, groups, and application roles that
appear in a list. List substitution is available from Rules Designer and does not require
any configuration in JDeveloper. In each rule dictionary there is a pre-seeded rule set
named "SubstitutionRules." Also in the rule dictionary, a "Substitute" rule function is
seeded to configure list substitutions. Table 1-13 lists the "Substitute" functions and
their parameters.

Table 1-13 "Substitute" Function Parameters

Parameter Description

fromId The ID of the user/group/application role from which to substitute.

toId The ID of the user/group/application role which to substitute to.

ruleName Used to create an assignment reason. Rule set name + "_" + rule
name is used as a key to look up the resource bundle for a translatable
reason for assignment. This resource is looked up first in the project
resource bundle, then in the custom resource bundle, and last in the
system resource bundle.

Chapter 1
Using Approval Management

1-84

Table 1-13 (Cont.) "Substitute" Function Parameters

Parameter Description

substitutionRules An object that is a holder for all the substitutions. Clicking this option
shows a pre-asserted fact 'SubstitutionRules' object to be used as the
parameter.

Note:

In a Human Task with a substitution rule, the resulting approval list might have a
duplicate participant. It is not possible to edit the duplicate approvers in the Future
Participants list.

The following figure shows a sample approver-substitution action.

Figure 1-34 Sample Approver-Substitution Action

How to Make List Modifications

List modification enables you to extend or truncate the Job Level and Position list builders
from rules. List modification is applied after the list is created. This feature does not require
any configuration from JDeveloper. In each rule dictionary there is a pre-seeded rule set
named "ModificationRules." This rule set is called only when the Job Level and Position list
builders are asserted in the list that created the rule sets. Only the highest priority applicable
rule is applied.

In Rules Designer, rule functions are seeded to facilitate list modifications. These functions
are the following:

• Extend

• Truncate

These rule functions are shown in the following figure.

Chapter 1
Using Approval Management

1-85

Figure 1-35 Rule Functions

Extend and truncate parameters are listed in Table 1-14 and Table 1-15.

Table 1-14 "Extend" Function Parameters

Parameter Description

ifFinalApproverLevel The level at which final approver is at or below.

extendBy The number of levels to add to the final job level.

ruleName Used to create an assignment reason. Rule set name + "_" + rule
name is used as a key to look up the resource bundle for a
translatable reason for assignment. This resource is looked up
first in the project resource bundle, then in the custom resource
bundle, and last in the system resource bundle.

lists An object that is a holder for all the lists that are built. Clicking this
option shows a pre-asserted fact 'Lists' object to be used as the
parameter.

Table 1-15 "Truncate" Function Parameters

Parameter Description

afterLevel The level after which to truncate.

ruleName Used to create an assignment reason. Rule set name + "_" + rule
name is used as a key to look up the resource bundle for a
translatable reason for assignment. This resource is looked up
first in the project resource bundle, then in the custom resource
bundle, and last in the system resource bundle.

Chapter 1
Using Approval Management

1-86

Table 1-15 (Cont.) "Truncate" Function Parameters

Parameter Description

lists An object that is a holder for all the lists that are built. Clicking this
option shows a pre-asserted fact 'Lists' object to be used as the
parameter.

The following figure shows a sample list-modification action.

Figure 1-36 Sample List-Modification Action

How to Define Repeating-Node Attributes of a Business Rule Condition

When defining a business rule, you can base a rule condition on an attribute that comes from
a repeating node. For example, there can be multiple line items for each purchase-order
header in a purchase-order scenario. In this case, PurchaseOrderHeader is a non-repeating
node, and PurchaseOrderLines is a repeating node.

When defining a rule like the following:

IF line item's amount is <50000, THEN create supervisory list containing jcooper up to two
levels

the amount is an attribute of line, that is, it is an attribute of a repeating node.

Use the following procedure to define repeating-node attributes:

1. In Base Dictionary, select Facts.

In the Humantask1RulesBase rules tab, a list of facts displays as follows.

Chapter 1
Using Approval Management

1-87

Figure 1-37 Facts List

2. Edit each appropriate fact to ensure that it is visible, as shown in the following
figure.

Chapter 1
Using Approval Management

1-88

Figure 1-38 Edit XML Fact Dialog

3. Decide whether you want to add a generic rule, a decision table, or a verbal rule. Once
you decide, click the Add (+) button. In Rules Designer, select a rule and click Add icon
(+).

The following rule-definition section displays.

Chapter 1
Using Approval Management

1-89

Figure 1-39 Rule-Definition Section

4. Click the double down arrows to the left of the rule name to show advanced
settings, as shown in the following figure.

Figure 1-40 Advanced Settings

5. Select Tree Mode, then click <fact type> to display a list of options from which to
choose a ROOT, as shown in the following figure.

Figure 1-41 ROOT Options

6. Define the rule conditions.

Chapter 1
Using Approval Management

1-90

How to Use Assignment Context
Assignment context is information that is present in the task. During a task's life cycle, it
progresses through various assignees. As the context of the task assignees changes, the
assignment-context value also changes.

When browsing through the history of a task, you can see the various assignment contexts
that the task contained during its life cycle. The Oracle BPM Worklist uses assignment
context when it displays task history.

Configuring Assignment Context

You configure assignment context in the Add (or Edit) Participant Type dialog box in
JDeveloper in the following ways:

• Select the Rule-based option in the Participant Type section.

In this case, the assignment context is configured implicitly, behind the scenes. The
Rules layer resolves the list of assignees based on the rule. As the task progresses
through the various assignees, the assignment context value is computed based on the
rule.

Assignment context can also be assigned in value-based context. For more information,
see Assigning Task Participants in Developing Business Processes with Oracle Business
Process Management Studio.

• Select the Advanced finger tab to configure any number of assignment contexts.

In this case, you can customize assignment contexts by entering your own information
into the Assignment Context fields. the following figure shows the fields.

Figure 1-42 Assignment Context Section

The following table contains field descriptions:

Chapter 1
Using Approval Management

1-91

Table 1-16 Assignment-Context Field Descriptions

Field Description

Name Assignment-context name, which can be whatever you choose. This is a
string field.

Value Assignment-context value, which can be whatever you choose. This is a
string field.

Type Associated with the Value field.

Possible values are:

– By name - A user-provided Value parameter.
– By Expression - A Value parameter created by the Expression

Builder.

How to Aggregate Task Approvals
A task can be assigned multiple times to one user during the task life cycle. The
Human Task Editor enables you to configure how often a user sees the task.

Note:

In Oracle BPM Worklist, the Request Information action allows a task
approver to request information from any prior participant or the task initiator.
In the case of an aggregated task, the Request Information return option of
Route directly back to me behaves the same way as Require subsequent
participants to retake action. When the information is submitted, the task is
assigned to the requester.

The following procedure explains how to configure task-approval aggregation.

1. In JDeveloper, click Configure at the top.

The Task Properties window is displayed.

Chapter 1
Using Approval Management

1-92

2. Select a task-aggregation option from the drop-down list:

• None - Indicates there is no approval aggregation, which means the user sees the
task as many times as it is assigned to him or her.

• Stage - A user sees the task only one time in a stage.

• Task - A user sees the task only one time in the task life cycle.

3. Click OK.

When the task is aggregated and assigned to a user, the task has a collection table in the
Oracle BPM Worklist that displays all the collections in the task the user is approving. After
the user performs an action, the action is recorded and then replayed to all the user's
assignments, either in the stage or task.

An aggregated task is a proxy task for all the regular assignments.

Aggregated tasks are business tasks and show the actions approve and reject. If you can
aggregate FYI tasks, then they show the approve and reject actions. In this case the approve
and reject actions are treated as an acknowledgement.

Note:

Aggregation is available only when the assignees are from the same set. For
example, if you assign a task to user A and another to both user A and user B; then
user A sees two separate tasks. The two assignments are not aggregated because
the assignees are not exactly the same.

Defining Escalation and Renewal Policies
This feature is not specific to AMX. For more information, see Escalating, Renewing, or
Ending the Task in Developing SOA Applications with Oracle SOA Suite.

Note:

Escalation is only applicable to management chain.

Chapter 1
Using Approval Management

1-93

Specifying Notification Settings
This feature is not specific to AMX. For more information, see Specifying Participant
Notification Preferences in Developing SOA Applications with Oracle SOA Suite.

Using Advanced Settings
Using advanced settings includes the following tasks:

How to Add Callbacks for Notes, Attachments, and Validation
Callbacks are mechanisms that allow you to do the following:

• Access notes and attachments associated with business objects from external
content-management systems or custom schemas

• Perform custom validation of workflow tasks at various points in a task life cycle by
defining validation logic for each task action

Use the following procedure to add callbacks:

1. From the Task Editor, select the 4 finger tab to configure the callbacks.

The Callback Details dialog box opens as follows.

Figure 1-43 Callback Details Dialog

2. Use one of these options:

• In the Comments Callback field, enter the appropriate Java class for the notes
callback.

Chapter 1
Using Approval Management

1-94

• In the Attachments Callback field, enter the appropriate Java class for the
attachments callback.

• In the Validation Callback field, enter the appropriate Java classes, separated by
commas, for the validation callback.

3. Click OK.

How to Define Security Access Rules
Access rules restrict the actions that a user can perform by overriding default actions and
permissions. At runtime, the system checks every operation in a task against any defined
access rules to see if a user is permitted to make changes, such as approve, add, delete, and
so on If the user is not permitted to make changes, the operation errors out with an
appropriate error message.

In AMX, access rules can be defined for Groups and Application Roles. For example, if an
access rule is defined to restrict the "Withdraw" action for a group called Operators, then any
user belonging to that group is not allowed to withdraw the task. Similarly, if an access rule is
defined to restrict the "Withdraw" action for an application role called SOAAuditViewer, then
any user who has been granted the SOAAuditViewer application role is not allowed to
withdraw the task.

To define a security access rule:

1. Select the Access finger tab to display security access rules.

2. Click Configure Visibility.

The Configure Task Content Access dialog box displays, as shown in the following figure.

Chapter 1
Using Approval Management

1-95

Figure 1-44 Configure Task Content Access Dialog (1)

3. Click the Task Content or Task Actions tab. (This procedure assumes the Task
Content tab has been selected.)

4. Look up the appropriate content and role in the grid.

5. From the drop-down list, select the appropriate privilege or action.

6. Click OK to close the dialog box.

Use the same procedure to define access rules for Application Groups, with the
following exceptions:

• Click the Task Actions tab to select it.

• Select Application from the drop-down list.

• Select application roles to include in the access rule from the Select an Application
Role dialog box, as shown in the following figure.

For more information, see Specifying Access Policies and Task Actions on Task
Content in Developing SOA Applications with Oracle SOA Suite.

Chapter 1
Using Approval Management

1-96

Using the End-to-End Approval Management Samples
You can use samples of end-to-end approval management.

Table 1-17 shows the end-to-end workflow examples included in the
ORACLE_HOME\samples\soa-infra\workflow\amx directory.

In addition to the demonstration features listed in the table, all samples show the use of
worklist applications and workflow notifications.

Table 1-17 End-to-End Samples

Sample Description Location

Expense Line
Approval

Illustrates line-level approval with
approval policy defined.

ORACLE_HOME\samples\soa-infra\workflow\amx
\amx-101-expense-line

Employee Hiring Illustrates ad-hoc insertion
capabilities for an approval
having two stages - Approval
Group List Builder in "Order"
voting regime and a Supervisory
list builder.

ORACLE_HOME\samples\soa-infra\workflow\amx
\amx-102-hiring-approval-group

Purchase Order
Approval

Illustrates the Purchase Order
approval scenario with header
and line-level approvals.

ORACLE_HOME\samples\soa-infra\workflow\amx
\amx-103-purchaseOrder-2dimensions

Employee Transfer Illustrates the Employee Transfer
scenario from one team to
another through parallel job level
participants.

ORACLE_HOME\samples\soa-
infra\workflow\amx\amx-104-employee-
transfer

Self Approval Illustrates how to implement self-
approval through auto-action
rules.

ORACLE_HOME\samples\soa-
infra\workflow\amx\amx-105-self-approval

Position List Builder Illustrates the use of the Position
list builder.

ORACLE_HOME\samples\soa-infra\workflow\amx\
amx-108-position-list

Using the User Metadata Migration Utility
The user metadata migration utility, hwfMigrator, automates the process of migrating
Workflow user-configurable data from one SOA server to another by executing a shell script.

For more information about the user metadata migration utility, see Moving Human Workflow
Data from a Test to a Production Environmen in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

GET_SEARCH_RESULTS
Service that returns a list of content items that match specific search criteria.

Access Level: Read (1)

Calls SubService: SUB

Location: IdcHomeDir/resources/core/tables/std_services.htm

Chapter 1
GET_SEARCH_RESULTS

1-97

Additional Required Service Parameters

• QueryText: The search expression.

You can append values for Title, Content ID, and so forth, on the QueryText parameter
to refine this service.

Optional Service Parameters

• ResultCount: The number of results to return. Defaults to 25.

• SearchEngineName: The name of the search engine to be used. The default is the
value specified in the config/config.cfg file.

Values can be databasefulltext or database. If set to database or
databasefulltext, you must pass SQL in the QueryText parameter, as in this
example:

dDocTitle like 'test'

This is equivalent to the Verity query:

dDocTitle <substring> 'test'

– SortField: The name of the metadata field to sort on.

* Examples: dInDate, dDocTitle, Score.

* Defaults to dInDate.

– SortOrder: The sort order. Allowed values are ASC (ascending) and DESC
(descending).

– SortSpec: Enables sorting on more than one field. Set this parameter to the
following sequence:

<sort field> <sort order> <sort field> <sort order>...
For example, SortSpec=dDocTitle ASC dInDate DESC.

– StartRow: The row to begin the search results display. For example, if
ResultCount=25, setting StartRow=26 displays the second page of results.

– EndRow: The row to end the search results display.

• vcrContentType: The name of a searchable content type. The server modifies the
query text of the search to limit the results to documents of that type. For example,
if the content type specified is one describing a profile, then the query text is
modified to limit the documents returned to those whose profile trigger value
matches that of the profile.

• vcrAppendObjectClassInfo: When set to true, the server adds an additional
column to the SearchResults ResultSet called vcrObjectClass. This column lists
the content type associated with each document in the results. The default is true.

Example

IdcService=GET_SEARCH_RESULTS
QueryText=benefits

Chapter 1
GET_SEARCH_RESULTS

1-98

How to Use Advanced Mode Action Forms
This section explains how to use Advanced Mode Action forms.

When you create a rule with Advanced Mode, Rules Designer presents a list with the
available actions shown in Advanced Mode Action Options in Rule Designer. For each form
shown in Advanced Mode Action Options, the options that Rules Designer presents are
context sensitive. Thus, the lists and the number of items you see when you work with the
action types are context sensitive, depending on which action you add and the choices you
make while you enter the action.

To use advanced mode action forms:

1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. Select or add a rule or a Decision Table.

3. In the rule or Decision Table click the Show Advanced Settings button next to the rule
or Decision Table name.

4. Select Advanced Mode.

5. With the insertion areas showing, in a rule in the THEN area select <insert action>. This
displays the action list.

Figure 1-45 Adding an Action to a Rule in Advanced Mode

6. In the list, select the action you want to add.

For example, select assign new.

7. In the THEN area, select the context sensitive parameters for the action and enter
appropriate values.

Chapter 1
How to Use Advanced Mode Action Forms

1-99

Advanced Mode Action Options in Rule Designer

Table 1-18 Advanced Mode Action Options

Action Form Description

Assert Assert a fact

Assert Tree Asserts a tree of facts given the root.

Assert New Assert a new fact.

Assign Assign a value to a variable.

Assign New Assign a value to a new variable.

Expression Perform expression.

Call Call a function.

For Oracle RL, like Java, has a for loop. A for loop includes a type with a
variable and a collection. The type and variable defines the loop variable
that holds the collection value used within the loop. Collection is an
expression that evaluates to a collection of the correct type for the loop
variable. You can use a for loop to iterate through any collection.

A return, throw, or halt may exit the action block.

If Using the if else action, if the test is true, execute the first action block, and
if the test is false, execute the optional else part, which may be another if
action or an action block. Oracle RL, unlike Java, requires action blocks and
does not allow a single semicolon terminated action.

Modify Modify a data value associated with a matched fact.

Retract Retract a fact.

Return The return action returns from the action block of a function or a rule. A
return action in a rule pops the ruleset stack, so that execution continues
with the activations on the agenda that are from the ruleset that is currently
at the top of the ruleset stack.

rl Use an Oracle RL expression that you supply.

synchronized As in Java, the synchronized action is useful for synchronizing the actions of
multiple threads. The synchronized action block lets you acquire the
specified object's lock, then execute the action-block, then release the lock.

throw Throw an exception, which must be a Java object that implements
java.lang.Throwable. A thrown exception may be caught by a catch in a try
action block.

try The try, catch, and finally in Oracle RL is like Java both in syntax and in
semantics. There must be at least one catch or finally clause.

while While the test is true, execute the action block. A return, throw, or halt may
exit the action block.

Working with Decision Tables
Use Decision Tables to create and use business rules in an easy to understand format.
Decision Tables provide an alternative to the IF/THEN rule format. Get an overview of
the various components of a Decision Table such as conditions, conflicts, actions, and
the various operations that you can perform on a Decision Table.

Chapter 1
Working with Decision Tables

1-100

Introduction to Working with Decision Tables
Businesses invest in software to automate their business processes. Historically, this
automation focused on the collection, presentation, and manipulation of data to facilitate
human decision-making about that data. Increasingly, however, software designers and
developers are called upon to automate the decision making process by putting detailed rules
about business processes into software architectures. In addition, many enterprises are
experiencing increasing pressure to make software systems more responsive to business
changes.

In some cases, the role of writing and testing business rules is no longer assigned to software
engineers, but is passed to trained business users. Alternatively, some organizations attempt
to separate changes in the business behavior of software from the traditional software
development cycles, and tie changes to business driven imperatives like product or sales
cycles.

A Decision Table provides a mechanism for describing data processing tasks, especially
when that description is done by business analysts rather than computer programmers.

The Decision Table format is intuitive for business analysts who are familiar with
spreadsheets. The formal structure that a Decision Table provides makes it easier to author,
understand, and change multiple similar rules and lets software check for rule completeness
and consistency.

Oracle Business Rules Decision Tables provide the following features:

• Powerful Visualization: Compact and structured presentation. This visualization matches
the way real world business policies are expressed: with many tables, declarative, and
organized into simple steps.

• Error Prevention: Avoids incompleteness and inconsistency. Because a Decision Table is
well structured, automated tools can check for conflicts, redundancy, and incompleteness
to speed development of valid, consistent business rules.

• Modular Knowledge Organization: Group rules into a single table. A spreadsheet
metaphor puts groups of rules that work together onto a single viewable pane. For
example, if there are six rules that check an applicant's eligibility, it is more convenient to
see all the rules than to view the rules as individual but related rules.

• Optimization of Rules and Performance Benefits: Oracle Business Rules Decision Tables
provide automated features that can reduce the number of required rules, as compared
to the IF/THEN rules (this is called rule coalescing).

• Rule Validation and Verification: Provides capabilities for ensuring the logical consistency
of rules before deployment. Automated tools for checking conflicts or incompleteness
help speed development of valid, consistent business rules.

Ease of verification and visualization are the major reasons for using Decision Tables.

For information, see Working with Rulesets and Rules in Designing Business Rules with
Oracle Business Process Management.

What is a Decision Table?
A Decision Table displays multiple related rules in a single spreadsheet-style view. In Rules
Designer a Decision Table presents a collection of related business rules with condition rows,
rules, and actions presented in a tabular form that is easy to understand. Business users can
compare cells and their values at a glance and can use Decision Table rule analysis features

Chapter 1
Working with Decision Tables

1-101

by clicking buttons and selecting values in Rules Designer to help identify and correct
conflicting or missing rules.

To help understand Decision Table concepts, consider a set of IF/THEN rules that
determines if a driver is eligible for a license, and an equivalent Decision Table. Note if
a driver has taken a driver training class then the driver has training certification.

The IF/THEN rules follow:

if driver.age < 20 and driver.has_training then training = true
if driver.age < 20 and driver.has_training = false then driver.eligible = false
if driver.age >= 20 then driver.eligible = true (do not care about training for this case)

Figure 1-46 shows a Decision Table representation of these rules that includes areas
for Decision Table Conditions and Actions.

Figure 1-46 Sample Decision Table with Conditions and Actions

What You Need to Know About Decision Table Conditions
The Conditions area in a Decision Table includes one or more condition rows. Each
condition row has a condition expression and, for each rule, a condition cell. A
condition expression is an expression that you build in Rules Designer. The
condition expression is often a fact property or a function result, but it can be any
expression that has a type that can be associated with a value set. Test expressions
are often used, such as Driver.age<16. These expressions are associated with the
built-in boolean value set, with values true and false. The value or the range for a
given condition cell takes its value or its range from one or more values or ranges in
the associated LOV or Ranges value set.

For example, Figure 1-46 shows the condition expression for a Driver fact with the
Driver.age property. The corresponding row in the Decision Table shows condition
cells including values for the ranges <20, and >=20. The values in the cells come from
the global value set named driver_ages.

Figure 1-46 also shows a condition row for the Driver fact with the
Driver.has_training property. This condition row shows condition cells with the
values, true, false, and -. The hyphen (-) means "do not care" (that is,
Driver.has_training could be true or false in this case). The values for these

Chapter 1
Working with Decision Tables

1-102

condition cells come from the default value set associated with boolean types (this consists of
default values for the values true and false).

The '-' (don't care) value is useful to ensure that a decision table will not have gaps when new
values are added to a value set. For example, if a valueset initially contains 1, 2, and
otherwise, a rule matching otherwise will fire if the input is 3. But after 3 is explicitly added to
the valueset, then otherwise no longer matches an input value of 3. If no rule contains a '-' for
this input, then no rule will fire when the input value is 3 and the decision table is said to have
a gap.

Use 'otherwise' when you explicitly want to match the 'otherwise' value in the valueset, and
not any other value. 'Otherwise' is useful to avoid conflicts in a decision table. '-' is used to
match any value, and will often cause conflicts. These conflicts can be automatically resolved
using the 'auto override' conflict policy.

Decision Tables show rules in bucket order, and to change the order of rules you need to
change the order of buckets in the value set. Thus, the order of the buckets in the value set
associated with a condition row determines the order of the condition cells, and thus the order
of the rules. You can control rule ordering in a Decision Table by changing the relative
position of the buckets in an LOV value set associated with a condition row; however, you
cannot reorder range buckets (values).

What You Need to Know About Decision Table Actions
Actions are associated with rules in a Decision Table. At runtime, when facts match for
condition cells, the Rules Engine prepares to run the actions associated with the rule.

Table 1-19 shows the types of actions you can choose in the Actions area. Thus, in an action
you can call a function, assert a new fact, retract a fact, or modify a fact, and so on. In the
Actions area the cells corresponding to an individual action for a rule are called action cells.

Table 1-19 Decision Table Actions for Action Cells

Action Description

assert new Assert a new fact.

assign Assign a value to a variable.

call Call a function.

modify Modify a data value associated with a matched fact.

retract Retract a fact.

assert Assert a fact.

assert tree Asserts a tree of facts given the root.

assign new Assign a value to a new variable.

expression Perform expression.

return The return action returns from the action block of a function or a rule.
A return action in a rule pops the ruleset stack, so that execution
continues with the activations on the agenda that are from the ruleset
that is currently at the top of the ruleset stack.

throw Throw an exception, which must be a Java object that implements
java.lang.Throwable. A thrown exception may be caught by a catch in
a try action block.

Chapter 1
Working with Decision Tables

1-103

When you add multiple actions the actions that you add in the Actions area are
ordered; actions appearing in the higher rows run before actions in the following rows.

The Decision Table actions such as modify can refer to facts matched in the condition
cells. For example, given a Decision Table with condition rows on the Driver fact that
includes condition rows for Driver.age and Driver.has_training, actions can modify
the property Driver.eligible and you can specify a value for Driver.eligible for
each action cell.

Certain types of actions in the Actions area include a Parameterized check box. This
check box specifies that a property from the action can have its value set in the action
cell associated with a rule in the Decision Table. When the parameterized check box is
selected, the value you supply for the expression value in the action, in the Actions
area, becomes the default value for the property if a value is not supplied in the action
cell. For example, see Figure 1-47 where the value false is assigned as the default
value for the action property eligible.

Figure 1-47 Action Editor Showing Parameterized Action with Default Value

What You Need to Know About Decision Table Rules
A ruleset contains a Decision Table; this provides a way to group the Decision Table
along with IF/THEN rules. When rules and Decision Tables are grouped in a ruleset,
the IF/THEN rules and the Decision Table rules all execute as a set of interrelated
rules.

A rule in a Decision Table is not named. Although Rules Designer shows rules in a
Decision Table with labels, for example, R1, R2, and R3, these rule labels are not
names for individual rules but are labels derived from the current ordering of the rules
in the Decision Table. Thus, a rule with the label R1 could be moved to position 3 and
then Rules Designer relabels this rule R3.

Rules in a Decision Table are organized as a table that contains a tree of condition
cells. The condition cells in the first row span the cells of later condition rows. A parent
cell in row i spans its children in row i+1.

Chapter 1
Working with Decision Tables

1-104

Figure 1-48 shows rules in a Decision Table where each rule consists of one cell from each
row in the Conditions area, and an associated action cell in the same column in the Actions
area. Figure 1-48 shows the rule with the label R3 defined by the first cell from condition 1
(the Driver.age < 20 value), the second cell from condition 2 (the Driver.eye_test equals
fail value), and the third cell from condition 3 (the Driver.has_training equals true value).
Likewise for each of the other rules, R1 to R12, there is a unique path through the Decision
Table.

Figure 1-48 Rules in a Decision Table

As shown in Figure 1-48, it is significant for a cell to be a parent of another cell and a parent
cell spans lower cells. In the Conditions area, when condition cells have the same parent
condition cell the cells are called siblings. Certain operations only apply for condition cells
that are siblings. For example, Figure 1-49 shows two sibling cells that are selected; with
these cells selected the Merge Selected Cells operation is valid. For these cells, the
corresponding value set with the value fail for Driver.eye_test is also a sibling (as shown
in the R3 and R4 columns in Figure 1-49). For more information, see How to Merge or Split
Conditions in a Decision Table.

Figure 1-49 Sibling Condition Cells in a Decision Table

Rules Designer lets you easily reorder rows by selecting the row and clicking a Move button.
By reordering rows in the Conditions area you can perform operations on condition cells at
the desired granularity. Thus, the move operations can assist you when you want to split,
merge, or assign certain values that might only be appropriate at a particular level in the tree,
depending on the location of a condition cell or depending on the location of the parent,
children, or siblings of a condition cell.

Understanding Condition Cell Values
By default, when you create a condition row, Rules Designer creates a single condition cell
and assigns the "?" value to the cell. A condition cell with the value "?" indicates that the

Chapter 1
Working with Decision Tables

1-105

value of the cell is undefined in the value set. For example, Figure 1-50 shows a "?"
value for StrategyContext. Note that contiguous value ranges in a condition cell are
combined. For example, if you select <20 and [20..40] it will display as <=40.

Figure 1-50 Sample Decision Table Showing Undefined in Condition Cell

Understanding Action Cell Values
In the Decision Table Actions area you can specify that an action cell "do nothing." In
this case, clear the action cell. When the action cell check box is cleared, this means
do not perform this action when the pattern matches for the specified condition values
in the Decision Table. Thus, for each action cell you can specify whether the rule
associated with the action cell should activate the action, or does not perform the
action.

In a Decision Table, when a condition cell represents a value that has been removed
from the value set, Rules Designer provides a validation warning such as the following:

RUL-05831: Decision table value reference not found

To fix this type of validation warning you can do one of the following:

• Define a value by double-clicking the condition cell and selecting one or more
values from the list.

• Add the missing value to the value set or associate the condition with another
value set that contains the missing value.

What You Need to Know About Decision Table Loops
A Decision Table loop occurs when the value for a condition row is changed by an
action. Loops can occur across the rules in a single Decision Table or spread over
several Decision Tables, or spread over rules and Decision Tables in the same ruleset.
Try not to create Decision Table actions that modify fact properties that are used in
Decision Table conditions. This could cause an infinite loop.

Note:

You can prevent infinite loops by using the rule firing limit on the containing
decision function.

Chapter 1
Working with Decision Tables

1-106

Creating Decision Tables
You add a Decision Table by performing several steps.

These steps include creating a Decision Table, creating value sets, and then adding
conditions and actions to Decision Table, and using the Decision Table to operate to validate,
correct, and modify the Decision Table.

How to Create a Decision Table
To work with a Decision Table, start by creating a Decision Table in a ruleset.

To create a decision table:

1. From Rules Designer select an existing ruleset from the rulesets tab or create a ruleset
by clicking Create Rule Set....

2. Click Create from the Decision Tables area on the Overview tab, as shown in
Figure 1-51. This creates a Decision Table.

Figure 1-51 Adding a Decision Table

Note:

When you add a Decision Table the rules validation log displays validation
warnings. The Decision Table is not complete and does not validate without
warnings until you add conditions and actions to the Decision Table.

How to Add Condition Rows to a Decision Table
A Decision Table includes a Conditions area where you specify Decision Table condition
rows. The condition rows determine the facts that the Oracle Rules Engine matches at
runtime. To create a Decision Table you need to add one or more condition rows to the
Decision Table.

Chapter 1
Working with Decision Tables

1-107

To add condition rows to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add conditions.

2. In the Decision Table area, from the list next to the Add button select Condition.

3. In the Conditions area, double-click <edit-condition> to display the navigator to
select or enter an expression as shown in Figure 1-52.

Figure 1-52 Adding a Condition to a Decision Table

4. Enter an expression by clicking in the navigator to select a variable or click the
Expression Builder button to display the Expression Builder window. The
Expression Builder lets you build expressions.

5. Each condition row requires a value set from which to draw the values for each
cell. When the value you select has an associated global value set, then by default
the value set is associated with the condition row.

6. Repeat Step 2 through Step 5, as required to add additional condition rows in the
Decision Table.

How to Use or Specify the Value Set for a Decision Table Condition
1. Each condition row requires a value set from which to draw the values for each

cell. When the value you select has an associated global value set, then by default
the value set is associated with the condition row.

2. If there is no global value set associated with the value, then after you add a
condition row to a Decision Table you need to specify either a Local List of Values
or a Local List of Ranges value set to associate with the condition row, or specify
an existing global value set. To add a value set for the condition, in the Conditions
area select the condition and then select from the value set list to associate a
value set, as shown in Figure 1-53. The value set list includes available global
value sets of the appropriate type.

Chapter 1
Working with Decision Tables

1-108

Figure 1-53 Specifying a Value Set For a Condition Row in a Decision Table

3. If you do not specify a global value set, then you can create and use a local value set by
selecting either Local Value Set or Local Range Value Set to create and use the
specified type of value set.

4. Repeat Step 2 through Step 3, as required to define additional condition rows in the
Decision Table.

How to Add Actions to a Decision Table
A Decision Table includes an Actions area where you specify Decision Table actions. The
actions determine actions for rules in a Decision Table. To create a valid Decision Table, add
actions to a Decision Table. For each action cell, where specific values apply, set the values
for the action cells. For each action cell, when the action does not apply to the rule, deselect
the action cell. By default when you add an action to a Decision Table, actions for all the rules
are unselected

To add actions to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select the
Decision Table where you want to add actions.

2. From the list next to the Add button, select Action and select an available action from
the list. Table 1-19 lists the available actions. For example, select Modify. Rules
Designer displays the Action Editor dialog as shown in Figure 1-54.

Chapter 1
Working with Decision Tables

1-109

Figure 1-54 Adding an Action to a Decision Table

3. In the Action Editor dialog select the action target in the Target area. This
specifies the data model object the action applies to.

4. For the specified target, as needed to make the action do what is required, modify
the fields in the Arguments table. In the Action Editor dialog the Arguments table
includes the fields shown in Table 1-20.

Table 1-20 Action Editor Dialog Arguments Fields

Field Description

Property Displays the property names for the
specified target.

Type Displays the type for the property.

Value Select the default value for the action from
the list of available actions. The specified
value applies to either the entire action, as
the default value, or when a particular action
cell is selected, the value specified applies
for that particular action cell.

Parameterized This specifies a parameterized value. A
parameterized value displays in a Decision
Table action cell. When you select
parameterized value for a property, this
generally means that each rule supplies a
different parameter value.

Constant Select to specify a constant value.

5. In the Action Editor dialog, to select action cells for all the rules, select the Always
Selected check box.

6. Repeat Step 2 through Step 5, as required to define additional actions for the
Decision Table.

Chapter 1
Working with Decision Tables

1-110

How to Set Values for Action Cells in a Decision Table

To set values for action cells:

1. From Rules Designer, select a ruleset from the Rulesets navigation tab and select the
Decision Table where you want to specify action cell values.

2. In the Actions area, check that the appropriate action cells are selected. If the Always
Selected check box is specified in the Action Editor dialog, then all action cells should be
selected. If Always Selected is not selected, then select the appropriate action cells
using the action cell check box.

3. In the Actions area, enter the appropriate value for parameterized properties for each
selected action cell. To do this select the action cell property cell, and either enter a
value, select a value from the list, or click the Expression Builder button to use the
Expression Builder dialog.

How to Deselect an Action Cell in a Decision Table

To deselect an action cell:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select the
Decision Table where you want deselect an action cell.

2. In the Actions area, select the action cell and deselect the check box in the action cell.
You are not allowed to deselect action cell values when Always Selected is selected for
the action.

When you add actions, you may need to change the order of the actions. In Rules Designer
you can use the Move Down button or Move Up button to change the order of actions.

How to Add a Rule to a Decision Table
You can add a rule to a Decision Table. Rules Designer adds a column for the rule to the left
of the existing rules and each condition cell is initialized to "?", which actually means a
validation error prompting you to populate the cell with relevant values.

To add a rule to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select the
Decision Table where you want to add the rule.

2. From the list next to the Add button, select Rule.

3. Enter values for the condition cells. Notice that the new rule is added as the first rule of
the Decision Table on the left and the other rules have moved as required to keep the
values in their defined order.

4. Enter values for the action cells.

The Order Rules By Bucket check box under the Advanced Settings of a Decision Table is
selected by default. In this case, the Decision Table layout changes automatically on adding
new rules.

When you add a new rule to a Decision Table, the new rule is added as the first rule of the
Decision Table and the other rules move as required to keep the values in their defined order.
This is because Order Rules By Bucket is enabled, which means rule ordering in a Decision
Table is set according to the relative position of values associated with a condition

Chapter 1
Working with Decision Tables

1-111

expression. If Order Rules By Bucket is not enabled when you add a rule, the new
rule is added as the last rule of the Decision Table. In either case, the cells in the new
rule column have "?" symbols, indicating the cells do not have values yet.

Note:

When Order Rules By Bucket is selected, the rules are ordered and
duplicate rules (rules with exactly the same values) are combined. So, you
cannot add two rules without any values to a Decision Table, because in that
case, the rules are duplicates and would immediately be combined. When
Order Rules By Bucket is cleared, then duplicate rules are allowed.

In addition, the Move buttons pertaining to a rule column are also enabled. You can
use them to reposition rules. Use the Flip the Table Rows and Columns button to
change the view of the Decision Table. This also affects the Move buttons: the move
direction may be Up or Down, Left or Right. The Merge, Compact and Span options
are also enabled. You can also cut, copy, or paste rules.

For more information, see Introduction to Decision Table Operations.

How to Define Tests in a Decision Table
You can define tests in a Decision Table. The tests must evaluate to true for any rule in
the decision table to fire. For more information about defining tests and working with
rule conditions, see Working with Rules in Designing Business Rules with Oracle
Business Process Management.

You can use the Data Explorer tab to find fact types and value sets in the data model.

To add tests to a Decision Table:

1. From Rules Designer, select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add the rule.

2. Click the Show Patterns/Tests button (magnifying glass) left of the Decision Table
name. If Advanced Mode is selected, clear the check box.

3. Select any of the options according to your requirements, as shown in the
following image:

Note:

Variables without any tests are often used so that the variables can be
used in the decision table conditions and actions.

Chapter 1
Working with Decision Tables

1-112

Figure 1-55 Options List

4. Click the left and the right <operand> to enter the operand values, and the operator list
to select an operator, as in the following image:

Figure 1-56 Value Options List

For more information about writing tests, see Testing and Validating Business Rules in
Designing Business Rules with Oracle Business Process Management.

Creating and Running an Oracle Business Rules Decision Table Application
The Order Approval application demonstrates the integration of a SOA composite application
with Oracle Business Rules and the use of a Decision Table.

In this application a process is modeled that uses the decision component to:

• Process rules from XML inputs including: a credit score and the annual spending of a
customer, and the total cost of the incoming order.

• Provide output that determines if an order is approved, rejected, or requires manual
processing.

To complete this procedure, you need to:

Chapter 1
Working with Decision Tables

1-113

• Obtain the Source Files for the Order Approval Application

• Create an Application for Order Approval

• Create a Business Rule Service Component for Order Approval

• View Data Model Elements for Order Approval

• Add Value Sets to the Data Model for Order Approval

• Associate Value Sets with Order and CreditScore Properties

• Add a Decision Table for Order Approval

– Split the Cells in the Decision Table and Add Actions

– Compact the Decision Table

– Replace Several Specific Rules with One General Rule

– Add a General Rule

• Check Dictionary Business Rule Validation Log for Order Approval

• Deploy the Order Approval Application

• Test the Order Approval Application

How to Obtain the Source Files for the Order Approval Application
The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite Samples and Tutorials page.

To work with the Order Approval application, you first need to obtain the order.xsd
schema file either from the sample project that you obtain online or you can create the
schema file and create all the application, project, and other files in Oracle JDeveloper.
You can save the schema file provided in the following example locally to make it
available to Oracle JDeveloper.

The following example shows the order.xsd schema file.

<?xml version="1.0" ?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://example.com/ns/customerorder"
 xmlns:tns="http://example.com/ns/customerorder"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="CustomerOrder">
 <complexType>
 <sequence>
 <element name="name" type="string" />
 <element name="creditScore" type="int" />
 <element name="annualSpending" type="double" />
 <element name="value" type="string" />
 <element name="order" type="double" />
 </sequence>
 </complexType>
 </element>
 <element name="OrderApproval">
 <complexType>
 <sequence>
 <element name="status" type="tns:Status"/>
 </sequence>
 </complexType>
 </element>
 <simpleType name="Status">
 <restriction base="string">
 <enumeration value="manual"/>
 <enumeration value="approved"/>

Chapter 1
Working with Decision Tables

1-114

https://www.oracle.com/middleware/technologies/soasuite-learmore.html

 <enumeration value="rejected"/>
 </restriction>
 </simpleType>
 </schema>

How to Create an Application for Order Approval
To work with Oracle Business Rules, you first create an application in Oracle JDeveloper.

To create an application for order approval:

1. In the Application Navigator, click New Application.

2. In the Name your application dialog, enter the name and location for the new application.

a. In the Application Name field, enter an application name. For example, enter
OrderApprovalApp.

b. In the Directory field, specify a directory name or accept the default.

c. In the Application Package Prefix field, enter an application package prefix, for
example com.example.order.

The prefix, followed by a period, applies to objects created in the initial project of an
application.

d. For a SOA composite with Oracle Business Rules, in the Application Template area
select SOA Application for the application template. For example, see Figure 1-57.

e. Click Next.

Figure 1-57 Adding the Order Approval Application

3. In the Name your project page enter the name and location for the project.

a. In the Project Name field, enter a name. For example, enter OrderApproval.

b. Enter or browse for a directory name, or accept the default.

c. For an Oracle Business Rules project, in the Project Technologies area ensure that
SOA, ADF Business Components, Java, and XML are in the Selected area on the

Chapter 1
Working with Decision Tables

1-115

Project Technologies tab, as shown in Figure 1-58. If an item is missing, select
it in the Available pane and add it to the Selected pane using the Add button.

Figure 1-58 Adding a Project to an Application

4. Click Finish.

How to Create a Business Rule Service Component for Order Approval
After creating a project in Oracle JDeveloper you need to create a Business Rule
Service component within the project. When you add a business rule you can create
input and output variables to provide input to the service component and to obtain
results from the service component.

To use business rules with Oracle JDeveloper, you do the following:

• Add a business rules service component

• Create input and output variables for the service component

• Create an Oracle Business Rules dictionary in the project

To create a business rule service component:

1. In the Application Navigator, in the OrderApproval project expand SOA Content
and double-click composite.xml to launch the SOA composite editor (this may
already be open after you create the project).

2. From the Component Palette, drag-and-drop a Business Rule from the Service
Components area of the SOA menu to the Components lane of the
composite.xml editor.

Oracle JDeveloper displays a Create Business Rules page, as shown in
Figure 1-59.

Chapter 1
Working with Decision Tables

1-116

Figure 1-59 Adding a Business Rule Dictionary with the Create Business Rules
Dialog

3. To add an input, from the list next to the Add button select Input to enter input for the
business rule.

4. In the Type Chooser dialog, click the Import Schema File... button. This displays the
Import Schema File dialog.

5. In the Import Schema dialog click Browse Resources to choose the XML schema
elements for the input variable of the process. This displays the SOA Resource Lookup
dialog.

6. In the SOA Resource Lookup dialog, navigate to find the order.xsd schema file and click
OK.

7. In the Import Schema File dialog, make sure Copy to Project is selected, as shown in
Figure 1-60. Click OK.

Figure 1-60 Importing the Order.xsd Schema File

8. If the Localize Files dialog displays, click OK to copy the schema to the composite
process directory.

9. In the Type Chooser, navigate to the Project Schemas Files folder to select the input
variable.

For this example, select CustomerOrder as the input variable.

On the Type Chooser window, click OK. This displays the Create Business Rules dialog,
as shown in Figure 1-61.

Chapter 1
Working with Decision Tables

1-117

Figure 1-61 Create Business Rules Dialog with CustomerOrder Input

10. In a similar manner, add the output fact type OrderApproval from the imported
order.xsd.

11. In the Create Business Rules dialog, select Expose as Composite Service, as
shown in Figure 1-62.

Figure 1-62 Create Business Rules Dialog with Input and OrderApproval
Output

Click OK. This creates the Business Rule component and Oracle JDeveloper
shows the Business Rule in the canvas workspace, as shown in Figure 1-63.

Chapter 1
Working with Decision Tables

1-118

Figure 1-63 Business Rules Component in OrderApproval Composite

The business rule service component enables you to integrate your SOA composite
application with a business rule. This creates a business rule dictionary and enables you to
execute business rules and make business decisions based on the rules.

How to View Data Model Elements for Order Approval
Before adding rules you need to create the Oracle Business Rules data model. The data
model contains the business data definitions (types) and definitions for facts that you use to
create rules. For example, for this sample the data model includes the XML schema elements
from order.xsd that you specify when you define inputs and outputs for the business rule
activity.

At times when you work with Rules Designer to create a rule or a Decision Table, you may
need to create or modify elements in the data model.

To view data model elements for Oracle business rules:

1. Select the composite tab with the value composite.xml, and in the Components lane
select the business rule (this surrounds the component, OracleRules1 with a dashed
selection box).

2. Double-click the selection box to launch Rules Designer.

3. In Rules Designer select the Facts navigation tab.

4. Select XML Facts tab in the Facts navigation tab as shown in Figure 1-64.

Chapter 1
Working with Decision Tables

1-119

Figure 1-64 Opening a Business Rules Dictionary with Rules Designer

How to Add Value Sets to the Data Model for Order Approval
To use a Decision Table you need to define value sets that specify how to draw values
for each cell for the conditions that constitute the Decision Table. For this example the
value sets are defined with a list of ranges that you define in Rules Designer.

To add OrderAmount value set to the data model:

1. In Rules Designer, select the Value Sets navigation tab.

2. From the drop down next to the Create Value Set... button, select Range Value
Set.

3. In the Name field, enter OrderAmount. Press Enter to accept the name.

4. Double-click the OrderAmount value set icon to display the Edit Range Value
Set dialog.

5. Click Add Value to add a value.

6. Click Add Value again to add another value.

7. In the Range Values area, in the top Endpoint field enter 1000 for the endpoint
value.

8. In the Range Values area, for the middle bucket in the Endpoint field enter 500
for the endpoint value.

9. In the Included Endpoint field for each value set ensure the check box is
selected, as shown in Figure 1-65.

Chapter 1
Working with Decision Tables

1-120

Figure 1-65 Adding the OrderAmount Value Set

10. Modify the Alias field for each value to High, Medium, and Low. Click OK.

How to Add CreditScore Value Set to the Data Model

To add CreditScore value set:

1. In Rules Designer select the Value Sets navigation tab.

2. From the drop down next to the Create Valueset... button, select List of Ranges.

3. In the Name field, enter CreditScore.

4. Double-click the CreditScore valueset icon to display the Edit Valueset dialog.

5. Click Add Value to add a value.

6. Click Add Value again to add another value.

7. In the top valueset, in the Endpoint field enter 750.

8. For the middle valueset, in the Endpoint field enter 400.

9. In the Included Endpoint field for each valueset, ensure the check box is selected.

10. Modify the Alias field for each endpoint value to solid for 750, avg for 400, and risky for
-Infinity. Click OK.

How to Associate Value Sets with Order and CreditScore Properties
To prepare for creating Decision Tables you can associate a value set with fact properties in
the data model. In this way condition cells in a Decision Table Conditions area can use the
valuesets when you create a Decision Table.

Note that the OrderApproval.status property is associated with the Status value set when
the OrderApproval fact type is imported from the XML schema. In the schema, Status is a
restricted String type and is therefore represented as an enum valueset. Rules Designer
creates the status value set.

Chapter 1
Working with Decision Tables

1-121

To associate value sets with Order and CreditScore properties:

1. In Rules Designer select the Facts navigation tab.

2. Select the XML Facts tab in the Facts navigation tab as shown in Figure 1-66.

Figure 1-66 Opening a Business Rules Dictionary with Rules Designer

3. Select the type you want to modify. For example in the XML Facts table double-
click the icon next to the CustomerOrder entry. This displays the Edit XML Fact
dialog.

4. In the Edit XML Fact dialog, in the Properties table in the Value Set column select
the cell for the appropriate property and from the list select the valueset you want
to use. For example, for the property order select the OrderAmount valueset, as
shown in Figure 1-67.

Figure 1-67 Associating the OrderAmount Valueset with
CustomerOrder.order

Chapter 1
Working with Decision Tables

1-122

5. In a similar manner, for the property creditScore select the CreditScore valueset.

6. Click OK.

How to Add a Decision Table for Order Approval
You create a Decision Table to process input facts and to produce output facts, or to produce
intermediate conclusions that Oracle Business Rules can further process using additional
rules or in another Decision Table.

While you work with rules you can use the rule validation features in Rules Designer to assist
you. Rules Designer performs dictionary validation when you make any change to the
dictionary. To show the validation log window, click the Validate button or select View>Log
and select the Business Rule Validation tab. If you view the rules validation log you should
see warning messages. You remove these warning messages as you create the Decision
Table.

To use a Decision Table for rules in this sample application you work with facts representing a
customer spending level and a customer credit risk for a particular customer and a particular
order. Then, you use a Decision Table to create rules based on customer spending, the order
amount, and the credit risk of the customer.

To add a Decision Table for order approval:

1. In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.

2. Click the Add button and from the list and select Create Decision Table.

3. In the Decision Table, click the Add button and from the list select Condition.

4. In the Decision Table, double-click <edit condition>. Then, in the navigator expand
CustomerOrder and select creditScore. This enters the expression
CustomerOrder.creditScore in the Conditions column.

5. Again, in the Decision Table, click the Add button and from the list select Condition.

6. In the Decision Table, in the Conditions area double-click the <edit condition>. Then, in
the navigator expand CustomerOrder and select order. This enters the expression
CustomerOrder.order.

7. Again, in the Decision Table, click the Add button and from the list select Condition.

8. In the Decision Table, double-click <edit condition>.

9. In the navigator expand CustomerOrder and select annualSpending. In the text entry
area, add >2000.

Chapter 1
Working with Decision Tables

1-123

Figure 1-68 Adding the Annual Spending Entry to a Decision Table

10. Type Enter to accept the value. If you view the rules validation log you should see
the warning messages. You remove these warning messages as you modify the
Decision Table in later steps.

Figure 1-69 Adding Conditions to the CustomerOrder Decision Table

How to Create an action in a Decision Table

To create an action in a Decision Table:

1. In the Decision Table click the Add button and from the list select Action > Assert
New.

2. In the Actions area, double-click assert new(. This displays the Action Editor
dialog.

3. In the Action Editor dialog, in the Facts area select OrderApproval.

4. In the Action Editor dialog, in the Properties table for the property status select
the Parameterized check box and the Constant check box. This specifies that
each rule independently sets the status.

5. In the Action Editor dialog, select the Always Selected check box as shown in
Figure 1-70.

Chapter 1
Working with Decision Tables

1-124

Figure 1-70 Adding an Action to a Decision Table with the Action Editor Dialog

6. In the Action Editor dialog, click OK.

Next you need to add rules to the Decision Table and specify an action for each rule.

Split the Cells in the Decision Table and Add Actions

You can use the Decision Table split operation to create rules for the valuesets associated
with the condition rows in the Decision Table. This creates one rule for every combination of
condition valuesets. There are three order amount valuesets, three credit score valuesets,
and two boolean valuesets for the annual spending amount for a total of eighteen rules (3 x 3
x 2 = 18).

To split cells in a decision table:

1. Select the Decision Table.

2. In the Decision Table, click the Split Table button and from the list select Split Table. The
split table operation eliminates the "do not care" cells from the table. The table now
shows eighteen rules that cover all ranges as shown in Figure 1-71.

These steps produce validation warnings for action cells with missing expressions. You fix
these in later steps.

Chapter 1
Working with Decision Tables

1-125

Figure 1-71 Splitting a Decision Table Using Split Table Operation

How to Add Actions for Each Rule in the Decision Table

In the Decision Table you specify a value for the status property associated with
OrderApproval for each action cell in the Actions area. The possible choices are:
Status.MANUAL, Status.REJECTED, or Status.ACCEPTED. In this step you fill in a value
for status for each of the 18 rules. The values you enter correspond to the conditions
that form each rule in the Decision Table.

To add actions for each rule in the decision table:

1. In the Actions area, double-click the action cell for the rule you want to work with,
as shown in Figure 1-72.

Figure 1-72 Adding Action Cell Values to a Decision Table

2. In the list, select and enter a value for the action cell. For example, enter
Status.MANUAL.

3. For each action cell, enter the appropriate value as determined by the logic of your
application. For this sample application use the values for the Decision Table
actions as shown in Table 1-21.

4. Select Save All from the File main menu to save your work.

Chapter 1
Working with Decision Tables

1-126

Table 1-21 Values for Decision Table Actions

Rule C1 creditScore C2 order C3 annualSpending > 2000 A1 OrderApproval status

R1 risky Low true Status.MANUAL
R2 risky Low false Status.MANUAL
R3 risky Medium true Status.MANUAL
R4 risky Medium false Status.REJECTED
R5 risky High true Status.MANUAL
R6 risky High false Status.REJECTED
R7 avg Low true Status.APPROVED
R8 avg Low false Status.MANUAL
R9 avg Medium true Status.APPROVED
R10 avg Medium false Status.MANUAL
R11 avg High true Status.MANUAL
R12 avg High false Status.MANUAL
R13 solid Low true Status.APPROVED
R14 solid Low false Status.APPROVED
R15 solid Medium true Status.APPROVED
R16 solid Medium false Status.APPROVED
R17 solid High true Status.APPROVED
R18 solid High false Status.MANUAL

Compact the Decision Table

In this step you compact the rules to merge from eighteen rules to nine rules. This
automatically eliminates the rules that are not needed and preserves the no gap, no conflict
properties for the Decision Table.

To compact the decision table:

1. Select the Decision Table.

2. Click the Resize All Columns to Same Width button.

3. Click the Compact Table button and from the list select Compact Table. The compact
table operation eliminates rules from the Decision Table. The Decision Table now shows
nine rules, as shown in Figure 1-73.

Chapter 1
Working with Decision Tables

1-127

Figure 1-73 Compacting a Decision Table Using Compact Table

Replace Several Specific Rules with One General Rule

Notice that five of the nine remaining rules result in a manual order approval status.
You can reduce the number of rules by deleting these five rules. Note it is often best
practice to not do this (that is not replace several specific rules with one general rule).
You need to compare the benefits of having fewer rules with the added complexity of
managing the conflicts introduced when you reduce the number of rules.

To replace several specific rules with one general rule:

1. Select the Decision Table.

2. In the Decision Table, select a rule with OrderApproval status action set to
Status.MANUAL. To select a rule, click the column heading. For example, click rule
R2 as shown in Figure 1-74.

3. Click Delete to remove a rule in the Decision Table. Be careful to click the delete
button in the Decision Table area to delete a rule in the decision table (there is also
a delete button shown in the Ruleset area that deletes the complete Decision
Table).

Figure 1-74 Deleting Rules from a Decision Table

4. Repeat these steps to delete all the rules with action set to Status.MANUAL. This
should leave the Decision Table with four rules as shown in Figure 1-75.

Chapter 1
Working with Decision Tables

1-128

Figure 1-75 Decision Table After Manual Actions Removed

Add a General Rule

Now you can add a single rule to handle the manual case. After adding this rule you set the
conflict policy with the option Conflict Policy auto override for conflict resolution.

To add a general rule:

1. In the Decision Table, click the Add button and from the list select Rule.

2. In the Conditions area, for the three conditions leave the "-" do not care value for each
cell in the rule.

3. In the Actions area, enter Status.MANUAL, as shown in Figure 1-76. Notice that the
Business Rule Validation log includes the warning RUL-05851 for unresolved conflicts.

Figure 1-76 Decision Table with Conflicting Rules

4. Show the conflicting rules by clicking the Toggle Display of Conflict Resolution button,
as shown in Figure 1-77.

Chapter 1
Working with Decision Tables

1-129

Figure 1-77 Adding a Rule to Handle Status Manual

How to Enable the Auto Override Conflict Resolution Policy

To enable the auto override conflict resolution policy:

1. In the Decision Table click Show Advanced Settings (next to the Decision Table
name).

2. In the Conflict Policy list, select auto override. After adding the manual case rule
and selecting auto override, notice that the conflicts are resolved and special
cases override the general case, as shown in Figure 1-78.

Figure 1-78 Adding a Rule to Handle Status Manual with Auto Override
Conflict Policy

How to Check the Business Rule Validation Log for Order Approval
Before you can deploy the application you need to make sure the dictionary validates
without warnings. If there are any validation warnings, you need to fix any associated
problems. To validate the dictionary, in the Business Rule Validation Log, check for any

Chapter 1
Working with Decision Tables

1-130

validation warnings. If there are warnings, perform appropriate actions to correct the
problems.

How to Deploy the Order Approval Application
Business rules created in a SOA application are deployed as part of the SOA composite
when you create a deployment profile in Oracle JDeveloper. You deploy a SOA composite
application to Oracle WebLogic Server.

To deploy and run the order approval application:

1. If you have not started your application server instance, then start the Oracle WebLogic
Server.

2. In the Application Navigator, right-click the OrderApproval project and select Deploy >
OrderApproval > to the appropriate server name.

Then the SOA Deployment Configuration dialog displays. Select your Application
connection which you either have created already or you can create it now. The
connection contains the authorization and other connection information (server name,
port, etc).

3. Click Next.

4. In Select Server select or create and then select your application connection.

5. Click Next, Next and Finish.

How to Test the Order Approval Application
After deploying the application you can test the Decision Table in the SOA composite
application with the Oracle Enterprise Manager Fusion Middleware Control Console.

To test the application:

1. Open the composite application in Oracle Enterprise Manager Fusion Middleware Control
Console, as shown in Figure 1-79.

Chapter 1
Working with Decision Tables

1-131

Figure 1-79 Testing the Order Approval Application

2. Click Test.

3. In the Input Arguments area, select XML View. Replace the XML with the
contents of the sample input for testing Order Approval application example as
shown below.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/OracleRules1/
OracleRules1_DecisionService_1">
 <ns1:callFunctionStateless name="OracleRules1_DecisionService_1">
 <ns1:parameterList xmlns:ns3="http://example.com/ns/
customerorder">
 <ns3:CustomerOrder>
 <ns3:name>Gary</ns3:name>
 <ns3:creditScore>600</ns3:creditScore>
 <ns3:annualSpending>2001.0</
ns3:annualSpending>
 <ns3:value>High</ns3:value>
 <ns3:order>100.0</ns3:order>
 </ns3:CustomerOrder>
 </ns1:parameterList>
 </ns1:callFunctionStateless>
 </soap:Body>
</soap:Envelope>

4. Replace the values in the input shown in step 3 as desired for your test.

5. Click Test Web Service.

6. In the Response tab, view the results. For example, for this input:

/OracleRules1_DecisionService_1" xmlns:ns2="http://xmlns.oracle.com/bpel">
 <resultList>
 <OrderApproval:OrderApproval xmlns:OrderApproval="http://

Chapter 1
Working with Decision Tables

1-132

example.com/ns/customerorder"
xmlns="http://example.com/ns/customerorder">
 <status>approved</status>
 </OrderApproval:OrderApproval>
 </resultList>
 </callFunctionStatefulDecision>

Introduction to Decision Table Operations
After you create a Decision Table you may want to modify the contents of the Decision Table
to produce a Decision Table that includes a complete set of rules for all cases, or to produce
a Decision Table that provides the least number of rules for the cases.

After you create a Decision Table there are operations that you may want to perform on the
Decision Table, including the following:

• Compact or split cells in a Decision Table.

• Merge a condition or split a condition in a Decision Table.

• Finding and resolving conflicts between rules in a Decision Table.

• Find and fix gaps (missing rules) in a Decision Table.

Understanding Decision Table Split and Compact Operations
The split and compact operations enable you to manipulate the contents of the condition cells
in a Decision Table.

The split table operation creates a rule for every combination of values across the conditions.
For example, in a Decision Table with 3 boolean conditions, 2 x 2 x 2 = 8 rules are created. In
a Decision Table with 32 boolean conditions, 2**32 ~ 2 billion rules are created. Thus, you
only use split table when the number of rules created is small enough that filling in the action
cells is feasible.

When you want to apply match conditions for the "do not care" values in a Decision Table and
create a match case for each cell, you use the split table operation.

Split can be applied to an entire Decision Table or to a single condition row. Additionally, split
may be performed on an individual condition cell.

Depending on what is selected in the Decision Table, the split operation can create condition
cells. Thus, using the split operation you can create rules in a Decision Table. Table 1-22
summarizes the split operation for a selected condition cell, condition row, or for a complete
Decision Table.

Table 1-22 Summary of Split Operation

Operator Description

Condition Cell Creates one sibling condition cell for each value represented by the cell.

If the condition cell value is "do not care", then the cell is split into one sibling
cell for each value in the valueset that is not represented by a sibling condition
cell, and "do not care" is no longer represented.

Condition Row For each condition cell in the proceeding condition expression, create a sibling
group which contains a cell for each value in the value set. The effect of this
operation is the same as adding a "do not care" to each sibling group and
calling split on each condition cell in each sibling group.

Chapter 1
Working with Decision Tables

1-133

Table 1-22 (Cont.) Summary of Split Operation

Operator Description

Decision Table Same as calling split on each condition row in the Decision Table.

Depending on what is selected in the Decision Table, the compact table or merge cells
operations remove condition cells. The compact table operation can be applied to an
entire Decision Table. Additionally, the merge operation may be performed on sibling
cells or on an entire condition row. Thus, using compact table or merge you can
remove rules from a Decision Table. Table 1-23 summarizes the compact table and
merge operations.

Table 1-23 Summary of Merge Operation

Operator Description

Condition Cell Merging two or more condition cells adds all values in the cells to a single cell, and removes
all but one of the cells. If one of the cells represents "do not care", then the merged cell
represents "do not care".

This operation may merge action cells and this can create warnings for duplicate action
cells, such as, RUL-05847: Duplicate decision table action parameter.

Condition Row Combine all values in each sibling group into a single "do not care" cell for each condition
cell in the proceeding condition expression. The effect of this is the same as calling merge
on all cells in each sibling group.

This operation may merge action cells and this can create warnings for duplicate action
cells, such as, RUL-05847: Duplicate decision table action parameter.

Decision Table Compacts the Decision Table by merging conditions of rules with identical actions.

Split and merge are inverse operations when conflicting action cells are not associated
with the operation. In this case, without conflicting action cells, a merge operation
combines all the values from the siblings into one sibling, and discards the other
sibling condition cells, and as a result of merging the condition cells, when a Decision
Table contains action cells, the action cells are also merged. Thus, the merge
operation combines multiple condition cells into a single condition cell and adds all
values to the single cell.

When there are conflicting values for the action cells, a merge operation merges the
action cells in a form that requires additional manual steps. Thus, if two action cells
have conflicting parameters, after the merge the action cell contains multiple
conflicting parameter values. These conflicting values are appended to the action cell
and must be manually resolved by selecting and deleting the unwanted duplicate
parameters. For example, see Figure 1-80 that shows conflicting values in an action
cell.

An action cell that contains multiple values for a property is invalid. When you select
the action cell Rules Designer shows a popup window with check boxes to allow you
to select a single value for the action cell. As shown in the validation log in
Figure 1-80, Rules Designer shows a validation warning until you select a single value.

Chapter 1
Working with Decision Tables

1-134

Figure 1-80 Conflicting Properties to be Resolved for a Merged Action Cell

Understanding Decision Table Move Operations
You can move the conditions or actions in a Decision Table. The Move buttons let you
reorder condition rows in the Conditions area and actions in the Actions area. Moving
conditions up or down may reorder visual display of the rules, but these operations does not
change the logic in any way. For example, if (x.a == 1 and x.b == 1) is logically the same as
if (x.b == 1 and x.a == 1).

When you work with Decision Tables some operations only apply for condition cells that are
siblings. Using the Move button you can reorder rows so that Decision Table operations apply
to the tree at the desired granularity. For example, when you want to change the action of a
condition cell for a single rule, then you need to move that condition cell to the last row in the
Decision Table Conditions area. For example, consider the Decision Table shown in
Figure 1-81.

Figure 1-81 Rules in a Decision Table

Chapter 1
Working with Decision Tables

1-135

To view this table with granularity for the Driver.age, move the Driver.age condition
from the first row to the third row, as shown in Figure 1-82.

Figure 1-82 Decision Table After Move Down with Age Condition Last

Now to make the Driver.age conditions "do not care" for the first two rules, where the
driver passes the eyesight test and has had driver training is true, you can easily apply
changes to these particular conditions when the Driver.age condition is in the last
row. Thus, in this table, it is easier to view and modify age related rules when
Driver.age is in the last row, with the finest granularity.In general, the move
operations can assist you when you want to split, merge, or assign certain values that
might only be appropriate at a particular level in the tree, depending on the location of
a condition cell, or depending on the location of the parent, children, or siblings of a
condition cell.

For actions in the Actions area, clicking Move Up or Move Down lets you reorder the
actions. Actions are ordered so that when multiple actions apply, the first action runs
before subsequent actions. Thus, using the Move Up or Move Down operation on an
action may be appropriate, depending on your application.

Understanding Decision Table Gap Checking
A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a
combination of values, one from each condition, that is not covered by an existing rule.
Rules Designer provides Gap Checking to check for gaps. When you click the Gap
Analysis button, Rules Designer finds gaps and presents a dialog to fix any gaps that
are found.

You can choose to make existence of gaps a validation warning. When you clear
Allow Gaps in the Advanced Settings area, the Decision Table reports a validation
warning when a gap is found. For more information, see Using Advanced Settings with
Rules and Decision Tables in Designing Business Rules with Oracle Business Process
Management.

For example, using the Driver example if you create a gap by deleting the rule that
covers the case for Driver.age < 20 and Driver.has_training false, and then you
click Gap Analysis, Rules Designer shows the Gap Analysis dialog as shown in
Figure 1-83. Clicking OK with the check boxes selected adds either all rules or the
selected rules to the Decision Table (this example only shows a single rule to add).

Chapter 1
Working with Decision Tables

1-136

Figure 1-83 Checking Gaps

Gap checking generates different new rules for the following cases:

• Sibling rules: multiple missing sibling rules are added as a single new rule. For example,
consider a rule with two conditions, Driver.age and Driver.hair. When there are two
missing rules for different hair colors and the rules are siblings, that is, they have a
common parent, then gap checking shows a single rule as shown in Figure 1-84.

• Non-sibling rules: multiple missing non-sibling rules are added as individual new rules.
For example, when there are two different rules missing that do not have the same
parent, then gap checking provides two rules, as shown in Figure 1-85.

Figure 1-84 Gap Checking with Missing Sibling Rules

Figure 1-85 Gap Checking with Missing Non-Sibling Rules

Chapter 1
Working with Decision Tables

1-137

In both of these cases shown in Figure 1-84 and Figure 1-85 there are two missing
values, but for sibling rules the multiple values are combined in a single new rule.
Thus, in general gap checking suggests fewer more general rules in preference to
many more specific rules.

For sibling rules you can add multiple rules then edit each cell to pick the values you
want. Alternatively, you can use Find Gaps to add a rule and then split the cell with
multiple values, and delete the rules you do not want to keep.

Understanding Decision Table Conflict Analysis
The rules in a Decision Table can conflict. Two rules conflict when they overlap and
they have different actions. Two rules overlap when at least one of their condition cells
has a value in common. Overlap is common when a Decision Table contains "do not
care" condition cells. Overlap without conflict is common and harmless.

Rules Designer finds conflicts and you can see the conflicts in the Conflict
Resolution row in the Decision Table when you click Show Conflicts. How you
handle and resolve conflicts depends on the specified conflict policy. You can choose a
conflict policy or use the default manual conflict policy. When you set a conflict policy
using the Conflict Policy option in the Advanced Settings area, Rules Designer sets
the conflict policy for the Decision Table. The Conflict Policy specifies the Decision
Table conflict policy and is one of the following:

• manual: Conflicts are resolved by manually specifying a conflict resolution for
each conflicting rule.

• auto override: Conflicts are resolved automatically using an override conflict
resolution when this is possible, using the Oracle Business Rules automatic
conflict resolution policies.

• ignore: Conflicts are ignored.

For more information, see Using Advanced Settings with Rules and Decision Tables in
Designing Business Rules with Oracle Business Process Management. For example,
Figure 1-86 shows a Decision Table with conflicting rules that you resolve with the
default manual conflict policy.

Figure 1-86 Decision Table Showing Conflicting Rules in the Conflicts Area

Chapter 1
Working with Decision Tables

1-138

By clicking on the cells in the Decision Table Conflict Resolution area Rules Designer lets
you resolve conflicts between rules as follows:

• Override (Override and OverriddenBy): You override one rule with the other. Override
specifies that one rule fires. Override is a combination of prioritization and mutual
exclusion. Prioritization is transitive and not symmetric. Mutual exclusion is both transitive
and symmetric. If A overrides C and B overrides C, then A or B runs before C but only
one of A, B, or C runs.

• Run Before (RunBefore and RunAfter): You prioritize the rules. Run before lets the two
rules fire in a prescribed order. Prioritization is transitive but not symmetric. That is, if A
runs before B runs before C, then A runs before C but B does not run before A. This uses
a Decision Table runBefore list specifying that the rule that runs before has a higher
priority than rules in the list.

• Ignore (NoConflict): You OK the conflict. Ignore lets the two rules fire in arbitrary order.
For example, consider the following conflicting rules in a decision table:

rule1: everybody gets a 10% raise (as specified with a do not care value in a decision table
condition cell)
rule2: employee with Top Performer set to true gets a 5% raise

In these rules, if rule2 overrides rule1, then a top performer gets a 5% raise, and
everyone else gets a 10% raise. However, in this case, you would like to have both rules
fire. Because it does not matter which rule fires first, and there is no conflict, then a top
performer gets a 15.5% raise either way. In this case, use the NoConflict list to remove
the conflict. Note that no conflict is what you get with IF/THEN rules with equal priorities,
only you are not warned of a conflict and you have to think carefully if you want one rule
to override the other.

Figure 1-87 shows the Rules Designer Conflict Resolution dialog shown when you select a
conflicting rule in the Conflict Resolution area. This dialog lets you resolve conflicts
between rules by selecting overrides, prioritization with RunBefore or RunAfter options, and a
NoConflict option.

Figure 1-87 Using the Decision Table Conflict Resolution Dialog

You can use the Decision Table Advanced Settings Conflict Policy auto override option to
specify that, where possible, conflicts are automatically resolved. The automatic override
conflict resolution policy specifies that a special case overrides a more general case.

Thus, when there are conflicts in a Decision Table, you can do one or more of the following to
resolve the conflicts:

Chapter 1
Working with Decision Tables

1-139

• Use auto override conflict resolution by selecting the Conflict Policy and then
auto override option in the Decision Table.

• Ignore conflicts by selecting the Conflict Policy and then ignore option in the
Decision Table.

• Use manual conflict resolution by selecting the Conflict Policy and then manual
option in the Decision Table and set Conflict Resolution for each conflicting rule in
the dialog by selecting cells in the Conflict Resolution area with the Show
Conflicts check box selected.

• Change the Decision Table to remove an overlap.

• Combine actions to remove conflicts.

How to Compact or Split a Decision Table
Use the Compact Table and Split Table buttons to compact or split cells in a Decision
Table. For more information, see Understanding Decision Table Split and Compact
Operations.

To compact or split cells in a decision table:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, select the Decision Table and click Edit.

2. Click the Compact Table button to compact or the Split Table button to split the
cells.

How to Merge or Split Conditions in a Decision Table
Use the merge condition and split condition operations to merge or split a condition in
a Decision Table. For more information, see Understanding Decision Table Split and
Compact Operations.

To merge or split a condition in a decision table:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, select the Decision Table where you want to merge or split a
condition and click Edit.

2. In the Conditions area, select the condition you want to merge or split.

3. Right-click, and from the list select Merge Condition or Split Condition.

How to Use the Condition Cell Operations
Use the condition cell operations to split a condition cell, to merge sibling condition
cells, or to specify a "do not care" value for a condition cell in a Decision Table. For
more information, see Understanding Decision Table Split and Compact Operations.

How to Merge Sibling Cells in a Condition in a Decision Table
1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the

Overview tab, and select the Decision Table where you want to merge condition
cells and click Edit.

2. Select the sibling condition cells to merge.

Chapter 1
Working with Decision Tables

1-140

3. Right-click, and from the list select Merge selected cells.

How to Split a Cell in a Condition in a Decision Table
1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the Overview

tab, and select the Decision Table where you want to split a condition cell and click Edit.

2. Select the cell to split.

3. Right-click, and from the list select Split selected cell.

How to a "Do Not Care" Value for a Cell in a Condition in a Decision Table
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select the

Decision Table where you want to set the "do not care" value.

2. Select the appropriate condition cell.

3. Right-click, and from the list select Do Not Care.

How to Select all Value Sets to Specify a "Do Not Care" Value for a Cell in a Condition:
1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the Overview

tab, and select the Decision Table where you want to set the "do not care" value and click
Edit.

2. Select the appropriate condition cell.

3. Double-click, and from the list select all the available check boxes for all possible values.

How to Perform Decision Table Gap Checking
A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a
combination of values, one from each condition, that is not covered by an existing rule. Rules
Designer provides Gap Checking to check for gaps. When you use this operation Rules
Designer presents a window to fix gaps. For more information, see Understanding Decision
Table Gap Checking.

You can choose to make existence of gaps a validation warning. When you clear Allow Gaps
in the Advanced Settings area, the Decision Table reports a validation warning when a gap
is found. For more information, see Using Advanced Settings with Rules and Decision Tables
in Designing Business Rules with Oracle Business Process Management.

To perform decision table gap checking:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the Overview
tab, and select the Decision Table where you want to perform gap checking and click
Edit.

2. Click the Gap Analysis button.

How to Perform Decision Table Manual Conflict Resolution
The rules in a Decision Table can conflict. Two rules conflict when they overlap and they have
different actions. Two rules overlap when at least one of their condition cells has a value in
common. For more information, see Understanding Decision Table Conflict Analysis.

Chapter 1
Working with Decision Tables

1-141

To perform manual decision table conflict resolution:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, and select the Decision Table where you want to check conflicts
and click Edit.

2. Set the conflict policy to manual (this is the default conflict policy). For more
information, see Understanding Decision Table Conflict Analysis.

3. In the Conditions area, in the conflicts area, when conflicts exist for each rule with
a conflict double-click the appropriate condition cell to display the Conflict
Resolution dialog.

4. In the Conflict Resolution dialog, for each conflicting rule, in the Resolution field
select a resolution from the list.

How to Set the Decision Table Auto Override Conflict Resolution Policy
When you select the Advanced Settings option in a Decision Table, you can select that
Decision Table conflicts are automatically resolved using the auto override conflict
policy (this applies only when it is possible to resolve the conflict using the Oracle
Business Rules automatic conflict resolution policies). The automatic override conflict
resolution uses a policy where when there is a rule conflict a special case overrides a
more general case. For more information, see Understanding Decision Table Conflict
Analysis.

To select the auto override policy:

1. Select the rule or Decision Table where you want to use ignore conflict policy.

2. Click the Show Advanced Settings button next to the rule or Decision Table
name.

3. From the Conflict Policy option select auto override.

How to Set the Decision Table Ignore Conflicts Policy
When you select the Advanced Settings option in a Decision Table, you can select that
the Decision Table conflicts are ignored using the ignore conflict policy. The ignore
policy tells Oracle Business Rules to ignore conflicts in the Decision Table. For more
information, see Understanding Decision Table Conflict Analysis.

To select the ignore conflict policy:

1. Select the rule or Decision Table where you want to use the ignore conflicts policy.

2. Click the Show Advanced Settings button next to the rule or Decision Table
name.

3. From the Conflict Policy option select ignore.

Creating and Running an Oracle Business Rules Decision Table
Application

The Order Approval application demonstrates the integration of a SOA composite
application with Oracle Business Rules and the use of a Decision Table.

Chapter 1
Working with Decision Tables

1-142

In this application a process is modeled that uses the decision component to:

• Process rules from XML inputs including: a credit score and the annual spending of a
customer, and the total cost of the incoming order.

• Provide output that determines if an order is approved, rejected, or requires manual
processing.

To complete this procedure, you need to:

• Obtain the Source Files for the Order Approval Application

• Create an Application for Order Approval

• Create a Business Rule Service Component for Order Approval

• View Data Model Elements for Order Approval

• Add Value Sets to the Data Model for Order Approval

• Associate Value Sets with Order and CreditScore Properties

• Add a Decision Table for Order Approval

– Split the Cells in the Decision Table and Add Actions

– Compact the Decision Table

– Replace Several Specific Rules with One General Rule

– Add a General Rule

• Check Dictionary Business Rule Validation Log for Order Approval

• Deploy the Order Approval Application

• Test the Order Approval Application

How to Obtain the Source Files for the Order Approval Application
The source code for Oracle Business Rules-specific samples and SOA samples are available
online in the Oracle SOA Suite Samples and Tutorials page.

To work with the Order Approval application, you first need to obtain the order.xsd schema
file either from the sample project that you obtain online or you can create the schema file
and create all the application, project, and other files in Oracle JDeveloper. You can save the
schema file provided in the following example locally to make it available to Oracle
JDeveloper.

The following example shows the order.xsd schema file.

<?xml version="1.0" ?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://example.com/ns/customerorder"
 xmlns:tns="http://example.com/ns/customerorder"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="CustomerOrder">
 <complexType>
 <sequence>
 <element name="name" type="string" />
 <element name="creditScore" type="int" />
 <element name="annualSpending" type="double" />
 <element name="value" type="string" />
 <element name="order" type="double" />
 </sequence>
 </complexType>
 </element>

Chapter 1
Working with Decision Tables

1-143

https://www.oracle.com/middleware/technologies/soasuite-learmore.html

 <element name="OrderApproval">
 <complexType>
 <sequence>
 <element name="status" type="tns:Status"/>
 </sequence>
 </complexType>
 </element>
 <simpleType name="Status">
 <restriction base="string">
 <enumeration value="manual"/>
 <enumeration value="approved"/>
 <enumeration value="rejected"/>
 </restriction>
 </simpleType>
 </schema>

How to Create an Application for Order Approval
To work with Oracle Business Rules, you first create an application in Oracle
JDeveloper.

To create an application for order approval:

1. In the Application Navigator, click New Application.

2. In the Name your application dialog, enter the name and location for the new
application.

a. In the Application Name field, enter an application name. For example, enter
OrderApprovalApp.

b. In the Directory field, specify a directory name or accept the default.

c. In the Application Package Prefix field, enter an application package prefix,
for example com.example.order.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

d. For a SOA composite with Oracle Business Rules, in the Application Template
area select SOA Application for the application template. For example, see
Figure 1-57.

e. Click Next.

Chapter 1
Working with Decision Tables

1-144

Figure 1-88 Adding the Order Approval Application

3. In the Name your project page enter the name and location for the project.

a. In the Project Name field, enter a name. For example, enter OrderApproval.

b. Enter or browse for a directory name, or accept the default.

c. For an Oracle Business Rules project, in the Project Technologies area ensure that
SOA, ADF Business Components, Java, and XML are in the Selected area on the
Project Technologies tab, as shown in Figure 1-58. If an item is missing, select it in
the Available pane and add it to the Selected pane using the Add button.

Figure 1-89 Adding a Project to an Application

4. Click Finish.

Chapter 1
Working with Decision Tables

1-145

How to Create a Business Rule Service Component for Order Approval
After creating a project in Oracle JDeveloper you need to create a Business Rule
Service component within the project. When you add a business rule you can create
input and output variables to provide input to the service component and to obtain
results from the service component.

To use business rules with Oracle JDeveloper, you do the following:

• Add a business rules service component

• Create input and output variables for the service component

• Create an Oracle Business Rules dictionary in the project

To create a business rule service component:

1. In the Application Navigator, in the OrderApproval project expand SOA Content
and double-click composite.xml to launch the SOA composite editor (this may
already be open after you create the project).

2. From the Component Palette, drag-and-drop a Business Rule from the Service
Components area of the SOA menu to the Components lane of the
composite.xml editor.

Oracle JDeveloper displays a Create Business Rules page, as shown in
Figure 1-59.

Figure 1-90 Adding a Business Rule Dictionary with the Create Business
Rules Dialog

3. To add an input, from the list next to the Add button select Input to enter input for
the business rule.

4. In the Type Chooser dialog, click the Import Schema File... button. This displays
the Import Schema File dialog.

Chapter 1
Working with Decision Tables

1-146

5. In the Import Schema dialog click Browse Resources to choose the XML schema
elements for the input variable of the process. This displays the SOA Resource Lookup
dialog.

6. In the SOA Resource Lookup dialog, navigate to find the order.xsd schema file and click
OK.

7. In the Import Schema File dialog, make sure Copy to Project is selected, as shown in
Figure 1-60. Click OK.

Figure 1-91 Importing the Order.xsd Schema File

8. If the Localize Files dialog displays, click OK to copy the schema to the composite
process directory.

9. In the Type Chooser, navigate to the Project Schemas Files folder to select the input
variable.

For this example, select CustomerOrder as the input variable.

On the Type Chooser window, click OK. This displays the Create Business Rules dialog,
as shown in Figure 1-61.

Figure 1-92 Create Business Rules Dialog with CustomerOrder Input

10. In a similar manner, add the output fact type OrderApproval from the imported
order.xsd.

11. In the Create Business Rules dialog, select Expose as Composite Service, as shown in
Figure 1-62.

Chapter 1
Working with Decision Tables

1-147

Figure 1-93 Create Business Rules Dialog with Input and OrderApproval
Output

Click OK. This creates the Business Rule component and Oracle JDeveloper
shows the Business Rule in the canvas workspace, as shown in Figure 1-63.

Figure 1-94 Business Rules Component in OrderApproval Composite

The business rule service component enables you to integrate your SOA composite
application with a business rule. This creates a business rule dictionary and enables
you to execute business rules and make business decisions based on the rules.

Chapter 1
Working with Decision Tables

1-148

How to View Data Model Elements for Order Approval
Before adding rules you need to create the Oracle Business Rules data model. The data
model contains the business data definitions (types) and definitions for facts that you use to
create rules. For example, for this sample the data model includes the XML schema elements
from order.xsd that you specify when you define inputs and outputs for the business rule
activity.

At times when you work with Rules Designer to create a rule or a Decision Table, you may
need to create or modify elements in the data model.

To view data model elements for Oracle business rules:

1. Select the composite tab with the value composite.xml, and in the Components lane
select the business rule (this surrounds the component, OracleRules1 with a dashed
selection box).

2. Double-click the selection box to launch Rules Designer.

3. In Rules Designer select the Facts navigation tab.

4. Select XML Facts tab in the Facts navigation tab as shown in Figure 1-64.

Figure 1-95 Opening a Business Rules Dictionary with Rules Designer

How to Add Value Sets to the Data Model for Order Approval
To use a Decision Table you need to define value sets that specify how to draw values for
each cell for the conditions that constitute the Decision Table. For this example the value sets
are defined with a list of ranges that you define in Rules Designer.

To add OrderAmount value set to the data model:

1. In Rules Designer, select the Value Sets navigation tab.

2. From the drop down next to the Create Value Set... button, select Range Value Set.

3. In the Name field, enter OrderAmount. Press Enter to accept the name.

4. Double-click the OrderAmount value set icon to display the Edit Range Value Set
dialog.

Chapter 1
Working with Decision Tables

1-149

5. Click Add Value to add a value.

6. Click Add Value again to add another value.

7. In the Range Values area, in the top Endpoint field enter 1000 for the endpoint
value.

8. In the Range Values area, for the middle bucket in the Endpoint field enter 500
for the endpoint value.

9. In the Included Endpoint field for each value set ensure the check box is
selected, as shown in Figure 1-65.

Figure 1-96 Adding the OrderAmount Value Set

10. Modify the Alias field for each value to High, Medium, and Low. Click OK.

How to Add CreditScore Value Set to the Data Model

To add CreditScore value set:

1. In Rules Designer select the Value Sets navigation tab.

2. From the drop down next to the Create Valueset... button, select List of Ranges.

3. In the Name field, enter CreditScore.

4. Double-click the CreditScore valueset icon to display the Edit Valueset dialog.

5. Click Add Value to add a value.

6. Click Add Value again to add another value.

7. In the top valueset, in the Endpoint field enter 750.

8. For the middle valueset, in the Endpoint field enter 400.

9. In the Included Endpoint field for each valueset, ensure the check box is
selected.

10. Modify the Alias field for each endpoint value to solid for 750, avg for 400, and
risky for -Infinity. Click OK.

Chapter 1
Working with Decision Tables

1-150

How to Associate Value Sets with Order and CreditScore Properties
To prepare for creating Decision Tables you can associate a value set with fact properties in
the data model. In this way condition cells in a Decision Table Conditions area can use the
valuesets when you create a Decision Table.

Note that the OrderApproval.status property is associated with the Status value set when
the OrderApproval fact type is imported from the XML schema. In the schema, Status is a
restricted String type and is therefore represented as an enum valueset. Rules Designer
creates the status value set.

To associate value sets with Order and CreditScore properties:

1. In Rules Designer select the Facts navigation tab.

2. Select the XML Facts tab in the Facts navigation tab as shown in Figure 1-66.

Figure 1-97 Opening a Business Rules Dictionary with Rules Designer

3. Select the type you want to modify. For example in the XML Facts table double-click the
icon next to the CustomerOrder entry. This displays the Edit XML Fact dialog.

4. In the Edit XML Fact dialog, in the Properties table in the Value Set column select the
cell for the appropriate property and from the list select the valueset you want to use. For
example, for the property order select the OrderAmount valueset, as shown in
Figure 1-67.

Chapter 1
Working with Decision Tables

1-151

Figure 1-98 Associating the OrderAmount Valueset with
CustomerOrder.order

5. In a similar manner, for the property creditScore select the CreditScore valueset.

6. Click OK.

How to Add a Decision Table for Order Approval
You create a Decision Table to process input facts and to produce output facts, or to
produce intermediate conclusions that Oracle Business Rules can further process
using additional rules or in another Decision Table.

While you work with rules you can use the rule validation features in Rules Designer to
assist you. Rules Designer performs dictionary validation when you make any change
to the dictionary. To show the validation log window, click the Validate button or select
View>Log and select the Business Rule Validation tab. If you view the rules
validation log you should see warning messages. You remove these warning
messages as you create the Decision Table.

To use a Decision Table for rules in this sample application you work with facts
representing a customer spending level and a customer credit risk for a particular
customer and a particular order. Then, you use a Decision Table to create rules based
on customer spending, the order amount, and the credit risk of the customer.

To add a Decision Table for order approval:

1. In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.

2. Click the Add button and from the list and select Create Decision Table.

3. In the Decision Table, click the Add button and from the list select Condition.

4. In the Decision Table, double-click <edit condition>. Then, in the navigator
expand CustomerOrder and select creditScore. This enters the expression
CustomerOrder.creditScore in the Conditions column.

5. Again, in the Decision Table, click the Add button and from the list select
Condition.

Chapter 1
Working with Decision Tables

1-152

6. In the Decision Table, in the Conditions area double-click the <edit condition>. Then, in
the navigator expand CustomerOrder and select order. This enters the expression
CustomerOrder.order.

7. Again, in the Decision Table, click the Add button and from the list select Condition.

8. In the Decision Table, double-click <edit condition>.

9. In the navigator expand CustomerOrder and select annualSpending. In the text entry
area, add >2000.

Figure 1-99 Adding the Annual Spending Entry to a Decision Table

10. Type Enter to accept the value. If you view the rules validation log you should see the
warning messages. You remove these warning messages as you modify the Decision
Table in later steps.

Figure 1-100 Adding Conditions to the CustomerOrder Decision Table

How to Create an action in a Decision Table

To create an action in a Decision Table:

1. In the Decision Table click the Add button and from the list select Action > Assert New.

2. In the Actions area, double-click assert new(. This displays the Action Editor dialog.

Chapter 1
Working with Decision Tables

1-153

3. In the Action Editor dialog, in the Facts area select OrderApproval.

4. In the Action Editor dialog, in the Properties table for the property status select
the Parameterized check box and the Constant check box. This specifies that
each rule independently sets the status.

5. In the Action Editor dialog, select the Always Selected check box as shown in
Figure 1-70.

Figure 1-101 Adding an Action to a Decision Table with the Action Editor
Dialog

6. In the Action Editor dialog, click OK.

Next you need to add rules to the Decision Table and specify an action for each rule.

Split the Cells in the Decision Table and Add Actions
You can use the Decision Table split operation to create rules for the valuesets
associated with the condition rows in the Decision Table. This creates one rule for
every combination of condition valuesets. There are three order amount valuesets,
three credit score valuesets, and two boolean valuesets for the annual spending
amount for a total of eighteen rules (3 x 3 x 2 = 18).

To split cells in a decision table:

1. Select the Decision Table.

2. In the Decision Table, click the Split Table button and from the list select Split
Table. The split table operation eliminates the "do not care" cells from the table.
The table now shows eighteen rules that cover all ranges as shown in Figure 1-71.

These steps produce validation warnings for action cells with missing expressions. You
fix these in later steps.

Chapter 1
Working with Decision Tables

1-154

Figure 1-102 Splitting a Decision Table Using Split Table Operation

How to Add Actions for Each Rule in the Decision Table
In the Decision Table you specify a value for the status property associated with
OrderApproval for each action cell in the Actions area. The possible choices are:
Status.MANUAL, Status.REJECTED, or Status.ACCEPTED. In this step you fill in a value for
status for each of the 18 rules. The values you enter correspond to the conditions that form
each rule in the Decision Table.

To add actions for each rule in the decision table:

1. In the Actions area, double-click the action cell for the rule you want to work with, as
shown in Figure 1-72.

Figure 1-103 Adding Action Cell Values to a Decision Table

2. In the list, select and enter a value for the action cell. For example, enter Status.MANUAL.

3. For each action cell, enter the appropriate value as determined by the logic of your
application. For this sample application use the values for the Decision Table actions as
shown in Table 1-21.

4. Select Save All from the File main menu to save your work.

Chapter 1
Working with Decision Tables

1-155

Table 1-24 Values for Decision Table Actions

Rule C1 creditScore C2 order C3 annualSpending > 2000 A1 OrderApproval status

R1 risky Low true Status.MANUAL
R2 risky Low false Status.MANUAL
R3 risky Medium true Status.MANUAL
R4 risky Medium false Status.REJECTED
R5 risky High true Status.MANUAL
R6 risky High false Status.REJECTED
R7 avg Low true Status.APPROVED
R8 avg Low false Status.MANUAL
R9 avg Medium true Status.APPROVED
R10 avg Medium false Status.MANUAL
R11 avg High true Status.MANUAL
R12 avg High false Status.MANUAL
R13 solid Low true Status.APPROVED
R14 solid Low false Status.APPROVED
R15 solid Medium true Status.APPROVED
R16 solid Medium false Status.APPROVED
R17 solid High true Status.APPROVED
R18 solid High false Status.MANUAL

Compact the Decision Table
In this step you compact the rules to merge from eighteen rules to nine rules. This
automatically eliminates the rules that are not needed and preserves the no gap, no
conflict properties for the Decision Table.

To compact the decision table:

1. Select the Decision Table.

2. Click the Resize All Columns to Same Width button.

3. Click the Compact Table button and from the list select Compact Table. The
compact table operation eliminates rules from the Decision Table. The Decision
Table now shows nine rules, as shown in Figure 1-73.

Chapter 1
Working with Decision Tables

1-156

Figure 1-104 Compacting a Decision Table Using Compact Table

Replace Several Specific Rules with One General Rule
Notice that five of the nine remaining rules result in a manual order approval status. You can
reduce the number of rules by deleting these five rules. Note it is often best practice to not do
this (that is not replace several specific rules with one general rule). You need to compare the
benefits of having fewer rules with the added complexity of managing the conflicts introduced
when you reduce the number of rules.

To replace several specific rules with one general rule:

1. Select the Decision Table.

2. In the Decision Table, select a rule with OrderApproval status action set to
Status.MANUAL. To select a rule, click the column heading. For example, click rule R2 as
shown in Figure 1-74.

3. Click Delete to remove a rule in the Decision Table. Be careful to click the delete button
in the Decision Table area to delete a rule in the decision table (there is also a delete
button shown in the Ruleset area that deletes the complete Decision Table).

Figure 1-105 Deleting Rules from a Decision Table

4. Repeat these steps to delete all the rules with action set to Status.MANUAL. This should
leave the Decision Table with four rules as shown in Figure 1-75.

Chapter 1
Working with Decision Tables

1-157

Figure 1-106 Decision Table After Manual Actions Removed

Add a General Rule
Now you can add a single rule to handle the manual case. After adding this rule you
set the conflict policy with the option Conflict Policy auto override for conflict
resolution.

To add a general rule:

1. In the Decision Table, click the Add button and from the list select Rule.

2. In the Conditions area, for the three conditions leave the "-" do not care value for
each cell in the rule.

3. In the Actions area, enter Status.MANUAL, as shown in Figure 1-76. Notice that
the Business Rule Validation log includes the warning RUL-05851 for unresolved
conflicts.

Figure 1-107 Decision Table with Conflicting Rules

4. Show the conflicting rules by clicking the Toggle Display of Conflict Resolution
button, as shown in Figure 1-77.

Chapter 1
Working with Decision Tables

1-158

Figure 1-108 Adding a Rule to Handle Status Manual

How to Enable the Auto Override Conflict Resolution Policy

To enable the auto override conflict resolution policy:

1. In the Decision Table click Show Advanced Settings (next to the Decision Table name).

2. In the Conflict Policy list, select auto override. After adding the manual case rule and
selecting auto override, notice that the conflicts are resolved and special cases override
the general case, as shown in Figure 1-78.

Figure 1-109 Adding a Rule to Handle Status Manual with Auto Override Conflict
Policy

How to Check the Business Rule Validation Log for Order Approval
Before you can deploy the application you need to make sure the dictionary validates without
warnings. If there are any validation warnings, you need to fix any associated problems. To

Chapter 1
Working with Decision Tables

1-159

validate the dictionary, in the Business Rule Validation Log, check for any validation
warnings. If there are warnings, perform appropriate actions to correct the problems.

How to Deploy the Order Approval Application
Business rules created in a SOA application are deployed as part of the SOA
composite when you create a deployment profile in Oracle JDeveloper. You deploy a
SOA composite application to Oracle WebLogic Server.

To deploy and run the order approval application:

1. If you have not started your application server instance, then start the Oracle
WebLogic Server.

2. In the Application Navigator, right-click the OrderApproval project and select
Deploy > OrderApproval > to the appropriate server name.

Then the SOA Deployment Configuration dialog displays. Select your Application
connection which you either have created already or you can create it now. The
connection contains the authorization and other connection information (server
name, port, etc).

3. Click Next.

4. In Select Server select or create and then select your application connection.

5. Click Next, Next and Finish.

How to Test the Order Approval Application
After deploying the application you can test the Decision Table in the SOA composite
application with the Oracle Enterprise Manager Fusion Middleware Control Console.

To test the application:

1. Open the composite application in Oracle Enterprise Manager Fusion Middleware
Control Console, as shown in Figure 1-79.

Chapter 1
Working with Decision Tables

1-160

Figure 1-110 Testing the Order Approval Application

2. Click Test.

3. In the Input Arguments area, select XML View. Replace the XML with the contents of
the sample input for testing Order Approval application example as shown below.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/OracleRules1/
OracleRules1_DecisionService_1">
 <ns1:callFunctionStateless name="OracleRules1_DecisionService_1">
 <ns1:parameterList xmlns:ns3="http://example.com/ns/
customerorder">
 <ns3:CustomerOrder>
 <ns3:name>Gary</ns3:name>
 <ns3:creditScore>600</ns3:creditScore>
 <ns3:annualSpending>2001.0</
ns3:annualSpending>
 <ns3:value>High</ns3:value>
 <ns3:order>100.0</ns3:order>
 </ns3:CustomerOrder>
 </ns1:parameterList>
 </ns1:callFunctionStateless>
 </soap:Body>
</soap:Envelope>

4. Replace the values in the input shown in step 3 as desired for your test.

5. Click Test Web Service.

6. In the Response tab, view the results. For example, for this input:

/OracleRules1_DecisionService_1" xmlns:ns2="http://xmlns.oracle.com/bpel">
 <resultList>
 <OrderApproval:OrderApproval xmlns:OrderApproval="http://
example.com/ns/customerorder"

Chapter 1
Working with Decision Tables

1-161

xmlns="http://example.com/ns/customerorder">
 <status>approved</status>
 </OrderApproval:OrderApproval>
 </resultList>
 </callFunctionStatefulDecision>

Editing Decision Tables in Microsoft Excel
Business users may find that editing Decision Tables is easier to do in Microsoft Excel.
New functionality enables both developers and business users to export and edit
Decision Tables in Excel and then import the Decision Tables back into the dictionary.

You can export and edit Decision Tables at design-time in Oracle JDeveloper or
Business Process Composer. At runtime, you can export and edit in SOA Composer.
You can export one or more Decision Tables from a Rule dictionary to the same Excel
workbook.

When you import back into the dictionary, you can create a new dictionary, overwrite
the existing dictionary, or perform a Diff-Merge. The Diff-Merge enables you to
compare dictionaries and accept (merge) or reject any differences.

The Excel workbook structure consists of several worksheets: a Readme sheet, a
Value Set sheet, and one sheet for each exported Decision Table, as shown in
Figure 1-111. Only Rules and Value Sets can be edited in Excel. You can export
to .xlsm (default) or .xls.

Figure 1-111 Microsoft Excel Workbook

Chapter 1
Working with Decision Tables

1-162

When you open the Excel workbook, the macros are disabled by default. If you enable the
macros, a new tab called Oracle Business Rules, appears. This tab enables you to add or
delete rules, merge or split cells, and add or remove values from value sets. You can also
disable or enable highlighting, use a simple or advanced mode and hide or show the Readme
worksheet.

You can edit with the macros disabled, though you will not be able to:

• Choose values from drop lists for restricted cells.

• Edit free form cells.

• Copy and paste a range of cells to add a rule or Value Set.

• Delete a range of cells to delete a rule or Value Set.

• Split or merge cells.

• Create Value Sets automatically.

• Validate the structure of Decision Tables or Value Sets.

Using the predefined macros, you can:

• Add and delete rules.

• Split or merge cells.

• Add or delete Value Sets.

• Editable cells include:

– Description for Rules, Conditions, Actions.

– Condition and Action nodes.

– Action state.

– Parameterized options for Action parameters.

• Non-editable cells include:

– Condition expressions.

– Action expressions.

– Action parameters.

If you try to edit these cells, you will get an error message, as shown in Figure 1-112.

Figure 1-112 Non-Modifiable Cell

Chapter 1
Working with Decision Tables

1-163

Understanding What is Exported
In the SDK, there are shared Value Sets that can be associated with multiple
conditions across Decision Tables. However, in Excel there are no shared Value Sets--
each condition has its own Value Set--so you can only export a Value Set if it is
modifiable in Excel. The Value Sets that are non-modifiable include:

• Linked Dictionary Value Sets.

• Enums.

• Internal Value Sets, for example, boolean Value Sets.

In the worksheet, you can only select values from the drop down for the conditions
associated with non-modifiable Value Sets. A highlighting mechanism informs you
which conditions are associated with non-modifiable Value Sets.

How to Export Decision Tables
The export and import functionality is invoked using the toolbar button, as shown in
Figure 1-113.

Figure 1-113 Export and Import Toolbar Button

To export Decision Table:

1. In Rules Designer, click Export to Excel.

2. In the Export to Excel dialog box, select the Format and browse to the folder
where you want to save the workbook.

3. Click Add and select the Decision Table(s) to export and click OK.

4. Check the Read Only Value Set check box to make all of the value sets read-only
in Excel. There will not be any Value Sets sheet in the Excel workbook. All
conditions will have drop down menus from which values can be selected but no
values can be added or removed.

5. Click Export. You can now open the workbook and edit the Decision Table.

How to Import Edited Decision Tables Back to the Dictionary
The export and import functionality is invoked using the toolbar button, as shown in
Figure 1-113. You can only import Excel workbooks that have been previously
exported.

To import edited Decision tables:

1. In Rules Designer, click Import from Excel.

2. In the Import from Excel dialog box, select the File to browse to the folder where
you saved the workbook.

Chapter 1
Working with Decision Tables

1-164

3. The Perform Diff-Merge on Import check box is selected by default. Browse to the
Base Dictionary that you want to compare your file to. The base dictionary is required
for a 3 way diff-merge.

4. Clear the Perform Diff-Merge on Import check box and select Create New or
Overwrite.

5. Click Import. The decision table is imported into Rules Designer, where you can accept
or reject changes, as shown in Figure 1-114. Each changed artifact is flagged with a
change icon. Merging dictionaries should be done with caution.

For more information about using the Diff-Merge, see How to Compare or Merge Two or
More Dictionaries in Designing Business Rules with Oracle Business Process
Management.

Figure 1-114 Perform Diff-Merge on Import

How to Edit Decision Tables in Excel
In Excel, enable the macros to view the Oracle Business Rules tab, which provides you with
options to author rules, edit Value Sets, and set preferences.

Adding or Deleting Rules and Merging or Splitting Cells
For each Decision Table worksheet, you can add a rule, as shown in Figure 1-115, delete
rules, and merge or split cells.

Chapter 1
Working with Decision Tables

1-165

Figure 1-115 Oracle Business Rules tab in Excel

Adding or Removing Value Sets
In the ValueSets tab, you can add or remove Value Sets, as shown in Figure 1-116.
Depending on the cell you click in, your options will vary: endpoints or values.

Chapter 1
Working with Decision Tables

1-166

Figure 1-116 Value Sets Worksheet

Showing or Hiding Value Sets and Editing the Description
On the Value Sets worksheet, right click and select Show/Hide Values to toggle between
viewing or hiding values as shown in Figure 1-117. You can also right click and select Edit
Bucket Description to change the description.

Chapter 1
Working with Decision Tables

1-167

Figure 1-117 Show/Hide Value Sets

Setting Preferences
In the Value Sets tab, click Enable Highlighting or Disable Highlighting, as shown in
Figure 1-118.

Chapter 1
Working with Decision Tables

1-168

Figure 1-118 Enabling Highlighting

Using Simple or Advanced Mode
In your worksheet, click Simple Mode or Advanced Mode to toggle between the two modes.

Simple mode displays only the descriptions of conditions and actions and not the actual
expressions. Also, action parameters are displayed, but you cannot specify them as fixed or
variable.

Advanced mode displays both the descriptions and expressions for conditions and actions,
as shown in Figure 1-119. Also, you can specify the action parameter type from fixed and
variable, which is equivalent to specifying "Parameterized/Constant" in the SDK.

Chapter 1
Working with Decision Tables

1-169

Figure 1-119 Advanced Mode

Hiding or Showing the Readme Worksheet
Click Hide or Show ReadMe Sheet to toggle between the modes, as shown in
Figure 1-120. The ReadMe worksheet provides helpful information about how to use
the features on the Oracle Business Rules tab.

Figure 1-120 Show/Hide Readme

Editing Condition Cells
You can choose from the drop down or use auto-addition to add new values, shown in
Figure 1-121. For some of the condition cells, you can only choose values from the
drop down menu. These cells have been differentiated by using color code. Any
conditions you change between a Value Set or Decision Table are automatically
synced.

Chapter 1
Working with Decision Tables

1-170

Figure 1-121 Editing Conditions

Editing Actions
You can select the action state (active/inactive) from the drop down, as shown in
Figure 1-122.

Figure 1-122 Editing Action States

Editing Expressions
You can edit the values of action expression cells. Use care to maintain the validity of these
cells when editing.

Editing Action Expression Parameters
You can make action parameters fixed or variable, as shown in Figure 1-123. If the action
parameter is fixed, then all the rules will have the same value for that particular parameter. If
the action parameter is variable, then different rules can have different values for that
particular parameter.

Figure 1-123 Editing Action Expression Parameters

Chapter 1
Working with Decision Tables

1-171

Editing Descriptions
You can edit descriptions for actions, conditions, and rules. If the description is not
provided for any of the action or condition or rule then it will be defaulted to "A", "C" or
"R" followed by a number which denotes its position in the decision table, respectively.

Figure 1-124 Editing Descriptions

Using the Auto-Addition Feature
You can add values in the value sets in two ways:

1. Go to the specific value set in the value sets worksheet. In the Oracle Business
Rules tab, click Add Bucket.

2. Enter a value (in case of LOV valuesets) or end point (in case of Range valuesets)
in the condition cell. This is called auto-addition as the value will be automatically
added to the corresponding value set, as shown in Figure 1-125.

Figure 1-125 Entering a Value in the Condition Cell

The value set above has three values: – 1) <18 , 2) [18..60) , and 3) >=60.

3. To add a new value, for example, [18..30] and (30..60), type 30 in the cell as
shown in Figure 1-126 and press Enter.

Chapter 1
Working with Decision Tables

1-172

Figure 1-126 Adding a New Value

4. After you press enter, the value will be added to the value set and will be shown in the
drop-down as shown in Figure 1-127.

Figure 1-127 Value is Auto-Added

Various highlighting techniques are used to inform you about auto-added values in the
value set, see the following examples. The comment and the highlighting of the value is
removed after you select another value for any other rule for that condition or if a new
value is added in the same value set.

The first is to highlight the newly added value in the value set sheet as shown in
Figure 1-128.

Figure 1-128 Highlighted Value Set

The second is the addition of a comment in the condition cell, as shown in Figure 1-129.

Chapter 1
Working with Decision Tables

1-173

Figure 1-129 Comments in Condition Cells

The third is to print a message box, shown in Figure 1-130. Note that the box is
only shown the first time when the value is auto-added.

Figure 1-130 Message Dialog

Aliases of Values in the Value Sets Worksheet
In the value sets sheet, there are two rows for every value set. The first row denotes
the value and the second one denotes the alias of the value. It is the alias of the value
that is shown in the drop-down of condition cells.The aliases can be edited. Any
change made in aliases will be immediately available in corresponding condition cells.

Syncing Value Sets and Conditions
The value sets and condition cells are always in sync. Any change made in value set
is promptly synced with the condition cells whether it is an addition/deletion of any
value, or any change in the alias. The sync is always maintained between value set
and the corresponding condition cells.

Modifying MDS Configuration Using MBeans
You can use the MBean Browser to perform advanced configuration of MDS
parameters.

For more information about configuring MDS using MBeans, see Changing the MDS
Configuration Attributes Using Fusion Middleware Control in Administering Oracle
Fusion Middleware.

You must already have deployed an Oracle ADF application and have Enterprise
Manager Fusion Middleware Control available to access the application.

To modify MDS configurations using the System MBean Browser:

1. From the navigation pane, expand Application Deployments, then click the
application that you want to configure.

Chapter 1
Modifying MDS Configuration Using MBeans

1-174

2. From the Application Deployment menu, choose MDS Configuration.

3. Click Configuration MBean Browser or Runtime MBean Browser.

4. Select the MBean and the attribute you want to view or modify.

5. Change the value and click Apply.

6. In the left pane, select the parent ADF MBean ADFConfig.

7. In the right pane, click the Operations tab and click save.

The new values you have edited are written to MDS after you click save from the parent
MBean.

ADF Business Components
This section provides a high-level overview of ADF Business Components, including a
description of the key features they provide for building your business services. Features
described include entity objects, view objects, and application modules.

This section includes the following topics:

About ADF Business Components
Oracle ADF architecture is based on Model-View-Controller (MVC) design pattern that
consists of four layers – Model, View, Controller, and Business Service. The Business Service
layer is supported by the ADF Business Components, which is a framework for managing
transactions with data sources and is integrated with JDeveloper tools.

ADF Business Components is a technology to create reusable data-aware business services
with minimal developer coding. Developers can use wizards and visual editors to create ADF
Business Components services without writing any Java code. It is also possible to extend
the core ADF Business Components classes to create more advanced functionality. ADF
Business Components services are exposed through ADF Model for use by the application's
view layer.

Figure 1-131 shows how ADF Business Components fit into the ADF technology stack. Note
that ADF Business Components features directly integrate with ADF Model.

Chapter 1
ADF Business Components

1-175

Figure 1-131 ADF Architecture with Business Components

In addition, you can expose applications that you create with ADF Business
Components as services that can be consumed by other Fusion web applications,
composite applications that adhere to the Service Component Architecture (SCA), and
other applications via web service calls.

Core Benefits of ADF Business Components
Tight integration with JDeveloper tools simplifies building the business service layer of
the Fusion web application. The resulting business objects based on the ADF
Business Components framework support managing data transactions at application
runtime.

ADF Business Components provides the following benefits for developers of business
services:

• Management of database access, including connection, data retrieval, locking of
records, and insertion and update of records.

• Ability to create data models that are tailored for specific types of end users, with
only the necessary data exposed.

• Creating of data model relationships in addition to those defined by the database.

Chapter 1
ADF Business Components

1-176

• Ability to use declarative rules to enforce required fields, primary key uniqueness, data
precision-scale, and foreign key references.

• Capturing and enforcing both simple and complex business rules, programmatically or
declaratively, with multilevel validation support.

• Implementing end-user Query-by-Example data filtering without code.

• Ability to expose components as services that can be integrated with other Fusion web
applications and consumed by SOA composite applications.

• Ability to raise business events to launch business processes and trigger synchronization
of external systems.

• A built-in facility for application state management that enables application failover and
the handling of user sessions over multiple nodes in clustered and high availability server
environments.

• Features geared toward performance optimization, such as shared application modules
to handle static data and application module pooling.

• Wizards and visual editors in JDeveloper that generate XML definitions for the
components that you can also edit manually.

Key Concepts of ADF Business Components
The ADF Business Components framework supports modeling data sources for use in Fusion
web applications based on declarative business objects that define object hierarchies
(master-detail relationships) and that shape the data for display to the end user through
application-specific views. The framework manages CRUD (create, read, update, delete)
transactions at application runtime with a minimum of coding required.

ADF Business Components is an implementation of Java-based business services that
directly incorporate ADF Model. This section provides an overview of the role of business
services and how ADF Business Components implements business services.

Implementation of Business Services
Business services are behind-the-scenes components that mediate between an MVC
application and a data source (usually a database). In general, business services are
responsible for the following tasks:

• Retrieving data requested by the rest of the application

• Representing this data as Java objects usable by the rest of the application (object-
relational ["O/R"] mapping)

• Persisting changes made by the rest of the application

• Implementing business rules, such as validation logic, calculated attributes, and
defaulting logic

• Providing services that can perform large-scale batch operations on data upon request

Business services segregate the persistence and business logic of an application from the
logic that governs the application's UI and control flow. Keeping persistence and business
logic separate allows you to reuse them in multiple MVC applications.

Chapter 1
ADF Business Components

1-177

Based on Standard Java and XML
ADF Business Components is a framework implemented in Java. Base framework
classes provide generic, metadata-driven functionality. XML files store metadata that
you define to configure each component's runtime behavior. You can also extend the
base framework functionality to suit your needs.

Figure 1-132 shows the Applications window in JDeveloper and how it represents the
files that comprise ADF Business Components services. For example, the DeptVO
component is defined with a single XML file that relies entirely on underlying
framework classes. On the other hand, the CustomerVO definition consists of an XML
definition file that provides metadata and three Java classes that extend the underlying
framework classes.

Figure 1-132 XML and Java Objects for ADF Business Components

Figure 1-133 shows the source editor for an ADF Business Components view object
definition file.

Chapter 1
ADF Business Components

1-178

Figure 1-133 Source View for an ADF Business Components Definition File

JDeveloper also provides visual overview editors for ADF Business Components definition
files. Figure 1-134 shows the overview editor for the same view object definition file shown in
Figure 1-133.

Chapter 1
ADF Business Components

1-179

Figure 1-134 Overview Editor for an ADF Business Components Definition File

Application Server and Database Independence
Because ADF Business Components services are implemented using plain Java
classes and XML files, applications and services built using ADF Business
Components can run on any Java-capable application server, including any Java EE-
compliant application server. These applications and services can be run both within
and outside of a Java EE server container.

You can use ADF Business Components components with both Oracle and non-
Oracle databases. Numerous optimizations are built into ADF Business Components
for use with Oracle databases.

Declarative Metadata for Implementation Classes
ADF Business Components objects are based on a set of Java classes that provide
built-in runtime functionality that you control through declarative settings. You use an
XML component definition file to specify metadata for things like object/relation
mapping for database tables, data access methods, and validation rules. At runtime,
the metadata is injected into the implementation classes to create instances of the
services. For typical use cases, developers do not have to write any Java code to
implement the services.

Optional Custom Java Code
It is possible to further configure the behavior of a component by adding custom Java
code to the component's definition. When you need to write custom code for a
component, for example to augment the component's behavior, you can enable an
optional custom Java class for the component in question.

Chapter 1
ADF Business Components

1-180

Ability to Expose Services to SOA Applications
After you have developed ADF Business Components services, you can publish them as
external services that can be consumed by applications that are based on a service-oriented
architecture (SOA). For more information, see Service-enabled Application Modules.

Application State Management
ADF Business Components has a state management facility for application modules that
enables you to save the state of a user session, which simplifies recovery and failover
scenarios.

For more information on application module state management, see Application State
Management.

Key Components of ADF Business Components
The business service layer of the Fusion web application based on ADF Business
Components is comprised of entity objects to model the data source (including support for
object hierarchies, such as master-detail relationships) and view objects to shape the data for
display to the end user through application-specific views. Other components include
application modules which support CRUD (create, read, update, delete) transactions on
specified view objects at application runtime.

The ADF Business Components architecture consists of the following key components:

• Entity objects, which encapsulate individual objects in a data source, such as tables in a
database, and which add business logic for working with that data.

• Entity associations, which define the relationships between individual entity objects.

• View objects, which provide access to data in a form that can be used through ADF
Model bindings in a user interface. View objects that allow updating of data are based on
entity objects.

• View links, which define master-detail hierarchies between view objects.

• Application modules, which encapsulates the view objects needed for a logical unit of
work related to an end-user task.

Entity Objects
ADF entity objects are business components that encapsulate data, persistence behavior,
and business rules for items that are used in your application. For example, entity objects can
represent:

• Elements of the logical structure of the business, such as product lines, departments,
sales, and regions

• Business documents, such as invoices, change orders, and service requests

• Physical items, such as warehouses, employees, and equipment

Entity objects map to single objects in the data source. In the vast majority of cases, these
are tables, views, synonyms, or snapshots in a database. For example, you might create an
entity object called Departments that represents a database table called DEPARTMENTS.
Advanced programmers can base entity objects on objects from other data sources, such as
spreadsheets, XML files, or flat text files.

Chapter 1
ADF Business Components

1-181

Figure 1-135 shows how an entity object fits in with other objects in an ADF Business
Components application.

Figure 1-135 Entity Object Within the ADF Business Component Architecture

Entity Object Definition Files
When you use JDeveloper's wizards and visual editors to create and configure an
entity object, JDeveloper creates an XML file that contains the declarative metadata
that defines the runtime behavior of that entity object, including its O/R mapping,
validation rules, UI hints, and other metadata. At runtime, this metadata is injected into
an instance of the generic framework class oracle.jbo.server.EntityImpl.

It is also possible to add custom functionality to an entity object by writing custom
classes that extend ADF Business Components framework classes.

Ways to Configure Entity Objects
Entity objects are part of ADF Business Components implementation of ADF Model.
As such, you can add declarative metadata to an entity object definition to configure its
behavior. The following are some of the things for which you can set metadata on an
entity object:

• UI hints, which are settings that the view layer can use to automatically display the
queried information to the user in a consistent, locale-sensitive way.

• Validation rules, which you can set at both the level of entity objects or individual
attributes.

• Business events, which you can use to launch business processes and trigger
external systems synchronization.

Entity Associations
Relationships between entity object definitions are handled by entity associations,
which define a relationship between two entity object definitions based on sets of entity
attributes from each. Associations map to relationships between single objects in the

Chapter 1
ADF Business Components

1-182

data source. In the vast majority of cases, these are relationships among tables, views,
synonyms, and snapshots in a database. Advanced programmers can use associations to
represent relationships within other data sources, such as spreadsheets, XML files, or flat
text files.

When the data source is a database, associations often map to foreign key relationships
between tables in the database. Although there does not need to be a foreign key constraint
between tables for you to create a one-to-one or one-to-many association between the
corresponding entity objects, there should be an appropriate logical relationship between the
tables.

View Objects
ADF view objects are business components that collect data from the data source, shape that
data for use by clients, and allow clients to change that data in the ADF Business
Components cache. Among other things, a view object definition can gather the information
needed to:

• Populate a single table element in a form

• Create and process an insert or edit form

• Create a list of values for populating a dropdown list

• Create a search form with specific search criteria

Once you have created a view object definition and included it in the data model of an
application module, you use the Data Controls panel to create UI components based on the
collections, attributes, and operations of that view object.

Figure 1-136 View Object Within the ADF Business Component Architecture

View object definitions must have a mechanism for retrieving data from the data source.
Usually, the data source is a database, and the mechanism is a SQL query. ADF Business
Components can automatically use JDBC to pass a query to the database and receive the
result. When view object definitions use a SQL query, query columns map to view attributes
in the view object definition. The definitions of these attributes reflect the properties of these
columns, such as the columns' data types and precision and scale specifications. When view
object definitions use other data sources, view object attributes map to "columns" of data
from those data sources, as defined by the programmer.

Chapter 1
ADF Business Components

1-183

Typically, when you work with a view object, you work with only a single row set of
results at a time. To simplify this use case, the view object contains a default RowSet,
which, in turn, contains a default RowSetIterator. The default RowSetIterator allows
you to call all of the data-retrieval methods directly on the ViewObject component
itself, knowing that they will apply automatically to its default row set.

In addition, you can declaratively define view criteria for a view object. With a view
criteria, you specify query conditions that augment the WHERE clause of the target view
object in order to filter the results. You can then use those view criteria to create
Query-by-Example search forms, filter row sets or lists-of-values (LOVs) at runtime, or
create varying view instances based on a single view object definition.

Types of View Objects
There are two main types of view objects:

• Entity-based view objects, which access data from one or more entity objects and
coordinate with those entity objects to update the data source based on user
actions.

• Read-only view objects, which have direct access to the data. Because read-only
view objects do not require intermediary objects, they access data more quickly
than entity-based view objects. Create read-only view objects if you have use
cases where you need to access data without modifying it. You might have a read-
only view object and an entity-based view object for the same table.

In addition, you can create view objects with other data sources such as:

• Direct SQL queries of the database

• Programmatic sources

• Static data from CSV files

You can also create polymorphic view objects, in which multiple row set types with a
common inheritance hierarchy are represented in a single view object.

View Object Definition Files
Similar to working with entity objects, when you use JDeveloper's wizards and visual
editors to create and configure a view object definition, JDeveloper creates an XML file
that contains the declarative metadata that defines the runtime behavior of that view
object and features that are used in the UI, such as UI hints and validation rules. At
runtime, this metadata is injected into an instance of the generic framework class
oracle.jbo.server.ViewObjectImpl.

It is also possible to add custom functionality to a view object by writing custom
classes that extend ADF Business Components framework classes.

Ways to Configure View Objects
View objects are part of ADF Business Components implementation of ADF Model. As
such, you can add declarative metadata to a view object definition to configure its
behavior.

You can define the same declarative metadata for a view object as you can for an
entity object (with the exception that you cannot raise business events in view objects).
In addition, you can set other types of metadata for a view object, such as the
following:

Chapter 1
ADF Business Components

1-184

• View criteria, which function as further refined queries and which are represented in the
Data Controls panel as named queries, from which you can declaratively create search
forms.

• List UI hints, which can be used to guide how lists of values are presented in the user
interface.

• UI categories, which can be used for presenting titled groups of attributes in dynamic
forms.

• View accessors, which can be used to provide a data source for view instance attributes
involved in either list-based attribute validation or lists of values.

• Row finders, which can be used to match view instance rows by non-key attribute values
and to initiate row updates either programmatically or through ADF web services.

View Links
Relationships between view objects are handled by view links, which define a relationship
between two view objects based on sets of entity attributes from each. Like entity
associations, these can range from simple one-to-many relationships based on foreign keys
to complex many-to-many relationships.

Individual instances of view objects can also be related by individual instances of view links,
which create a master-detail relationship between the query result sets. For example,
suppose that you have view object definitions representing a query for department
information and a query for employee information, and a view link between the view objects
representing the relationship between a department and its employees. If an instance of the
former view object definition, allDepartments, is related to an instance of the latter,
employeesInDepartment, by an instance of the view link, those instances will be
synchronized: whenever a particular row of allDepartments is selected,
employeesInDepartment will only display details of that row.

Application Modules
Oracle ADF application modules are the ADF Business Components implementation of ADF
Model data controls. Application modules represent particular application tasks. The
application module definition provides a data model for the task by aggregating the view
object and view link instances required for the task. It also provides services that help the
client accomplish the task. For example, an application module can represent and assist with
tasks such as:

• Updating customer information

• Creating a new order

• Processing salary increases

Figure 1-137 illustrates how an application module works with other business components.

Chapter 1
ADF Business Components

1-185

Figure 1-137 Application Module Within the ADF Business Component
Architecture

In addition, application modules have pooling and state management features that
simplify making applications scalable, well-performing, and able to handle failover.

Types of Application Modules
You can use application module definitions in the following ways:

• As a service object, in which case each instance of the MVC application has
access to one instance of the application module. These root-level application
module instances control ADF Business Components transaction objects, which in
turn control the entity and view caches.

• As a reusable object for nesting, in which case you can create a data model and
service methods on it and then nest one of its instances in other application
module definitions. Those application module definitions can, in turn, access the
nested module's methods and data model. Nested application modules share the
root-level application module's transaction

• As a shared application module, in which data is cached for reuse across sessions
and requests. Shared application modules are particularly useful for optimizing
performance when you have data that does not change very frequently and needs
to be accessed across multiple sessions and requests.

Application Module Definition Files
An application module definition can have one or two parts:

Chapter 1
ADF Business Components

1-186

• An XML file, which represents the portion of the application that can be developed
declaratively: the view object and view link instances that the application module contains
and the way in which they are related. For many application modules, the XML file by
itself is sufficient.

• An application module class, which lets you write custom code such as service methods
that an MVC application can invoke for batch data handling. Application module classes
extend the class oracle.jbo.server.ApplicationModuleImpl. If you do not need to
write custom service methods, you need not generate an application module class—ADF
can use oracle.jbo.server.ApplicationModuleImpl directly.

Service-enabled Application Modules
Service-enabled application modules are ADF application modules that you advertise through
a service interface to service consumers. There are three scenarios for service consumers to
consume a published service-enabled application module:

• web service access

• Service Component Architecture (SCA) composite access

• access by another ADF application module

The Service Component Architecture (SCA) provides an open, technology-neutral model for
implementing remotable services that are defined in terms of business functionality and that
make middleware functions more accessible to application developers. ADF Business
Components supports an SCA-compliant solution through application modules you can
publish with a service interface. The service interface is described for Fusion web application
clients in a language-neutral way by the combination of WSDL and XSD.

When you service-enable your application module, JDeveloper generates the artifacts, which
comprise the following files:

• the Java interface defining the service

• an EJB session bean that implements this Java interface

• a WSDL file that describes the service's operations

• an XML Schema Document (XSD) that defines the service's data structures

SCA defines two kinds of service:

• Remotable services, typically coarse-grained and designed to be published remotely in a
loosely coupled SOA architecture

• Local services, typically fine-grained and designed to be used locally by other
implementations that are deployed concurrently in a tightly coupled architecture

ADF Business Components services fall into the first category, and should only be used as
remotable services.

ADF Business Components services, including data access and method calls, defined by the
remote application modules are interoperable with any other application module. This means
the same application module can support interactive web user interfaces using ADF data
controls and web service clients.

Any development team can publish a service-enabled application module to contribute to the
Fusion web application. The Fusion web application assembled from remote services also
does not require the participating services to run on a single application server.

Chapter 1
ADF Business Components

1-187

Although the web applications may run on separate application servers, the
appearance that SCA provides is one of a unified application. Consuming client
projects use the ADF service factory lookup mechanism to access the data and any
business methods encapsulated by the service-enabled application module. At
runtime, the calling client and the ADF web service may or may not participate in the
same transaction, depending on the protocol used to invoke the service (either SOAP
or RMI). Only the RMI protocol and a Java Transaction API (JTA) managed transaction
support the option to call the service in the same transaction as the calling client. By
default, to support the RMI protocol, the ADF web service is configured to participate
in the same transaction.

Application Module Pooling
Applications you build that leverage an application module as their business service
take advantage of an automatic application module pooling feature. This facility
manages a configurable set of application module instances that grows and shrinks as
the end-user load on your application changes. Due to the natural "think time" inherent
in the end user's interaction with your application user interface, the number of
application module instances in the pool can be smaller than the overall number of
active users using the system. As a given end user visits multiple pages in your
application to accomplish a logical task, an application module instance in the pool is
acquired automatically from the pool for the lifetime of each request. At the end of the
request, the instance is automatically returned to the pool for use by another user
session.

To optimize your application's performance, you can tune application module pooling
properties, such as initial and maximum pool size and the amount of time application
module instances must be inactive before they can be removed from the pool.

Application State Management
You can use application module components to implement completely stateless
applications or to support a unit of work that spans multiple browser pages. An
application module supports passivating (storing) its pending transaction state to an
XML document, which is stored in the database in a single, generic table, keyed by a
unique passivation snapshot ID. It also supports the reverse operation of activating
pending transaction state from one of these saved XML snapshots. This passivation
and activation is performed automatically by the application module pool when
needed. Activation can be triggered by server failover or simply because a user
session spans multiple instances in the application module pool before it is completed.

Overview of the ADF Business Components Process Flow
Modelling a data source to create the business service layer of the Fusion web
application that you develop with Oracle ADF Business Components follows a step-by-
step process that is supported by JDeveloper tools.

Creating a business service layer based on ADF Business Components consists of the
following general steps:

1. In JDeveloper, create an application workspace for the application.

2. Create custom classes that extend the base framework classes and then configure
the model project to base any business components that you create on these
custom classes. These classes provide a mechanism to later change base

Chapter 1
ADF Business Components

1-188

framework behavior and have those changes apply to all of the business components
you have created in the application.

3. Using wizards in JDeveloper's New Gallery, create a combination of the following objects:

• Entity objects

• Entity associations

• View objects based on the entity objects

• Optionally, view objects based on queries directly to the database

• View links between view objects to establish master-detail relationships

• Create application modules and include the appropriate view objects and view links
within them to establish your data model

4. Optionally, use JDeveloper's visual editors to declaratively specify business rules for the
entity objects and view objects.

5. Use the ADF Model Tester to test the data model's business logic.

6. Tune the application modules for performance.

7. If participating in a SOA application, publish the services so that they can be consumed
by an external application.

8. Using the Data Controls panel and various binding editors, create databound
components in the view layer.

Chapter 1
ADF Business Components

1-189

	Contents
	Preface
	Audience
	Diversity and Inclusion
	Conventions
	Documentation Accessibility

	1 Reference Topics
	Auditing Web Services
	Configuring Audit Policies
	Managing Audit Data Collection and Storage
	Viewing Audit Reports

	Introduction to Oracle Fusion Middleware Audit Framework
	What Are the Audit Objectives?
	Audit Terminology
	About Auditing with Oracle Fusion Middleware Audit Framework
	Overview of Oracle Fusion Middleware Audit Framework
	About Components and Applications

	Understanding Audit
	The Audit Model
	About the Audit Store
	How Audit Data Is Stored
	About the Oracle Fusion Middleware Audit Framework
	Audit Setup: Main Steps
	Understanding the Runtime Audit Event Flow

	About Audit Attributes, Events, and Event Categories
	Audit Attribute Groups
	About Generic Attribute Groups
	About Custom Attribute Groups
	About Audit Attribute Data Types

	Audit Events and Event Categories
	About System Categories and Events
	About Component and Application Categories

	Audit Artifact Naming Requirements

	About Audit Definition Files
	About the component_events.xml File
	Translation Files

	About Mapping and Version Rules
	What Are Version Numbers?
	About Custom Attribute to Database Column Mappings

	Managing Audit
	Audit Administration Tasks
	About Audit Data Sources
	Managing Bus-Stop Files
	Configuring Standalone Audit Loader
	Configuring the Environment
	Running Standalone Audit Loader

	Keyboard Shortcuts
	About Keyboard Shortcuts
	Tab Traversal
	Tab Traversal Sequence on a Page
	Tab Traversal Sequence in a Table

	Shortcut Keys
	Accelerator Keys
	Access Keys
	Shortcut Keys for Common Components
	Shortcut Keys for Widgets
	Shortcut Keys for Rich Text Editor Component
	Shortcut Keys for Table, Tree, and Tree Table Components
	Shortcut Keys for ADF Data Visualization Components
	Shortcut Keys for Calendar Component

	Default Cursor or Focus Placement
	The Enter Key

	Configuring WebCenter Content Web Services for Integration
	About Configuring WebCenter Content Web Services for Integration
	Technologies for Web Services
	WebCenter Content Web Services

	Configuring Web Service Security Through Web Service Policies
	Configuring SAML Support

	Using Approval Management
	Introduction to Approval Management
	AMX Components

	Understanding Approval Management Concepts
	Task
	Service Data Objects
	Stages
	List Builders
	Task Operations
	Business Rules for Approval
	List Creation
	Approver Substitution
	List Modification

	Designing Approval Management Tasks in Oracle JDeveloper
	Introduction to the Modeling Process
	Before You Begin
	Specifying General Information
	Task-Title Globalization

	Specifying Task Parameters
	How to Create Service Data Object (SDO) References
	How to Define Entity Parameters
	How to Define Collections

	Specifying Mapped Attributes
	About Attribute Labels and Attribute-Label Mappings
	How to Define Attribute-Label Mappings

	Specifying Routing and Approval Policies
	How to Model and Configure Stages
	How to Model Task Participants
	How to Model and Configure List Builders
	How to Model an Approval Groups List Builder
	How to Model a Job Level List Builder
	How to Model a Position List Builder
	How to Model a Supervisory List Builder

	How to Use Business Rules to Specify List Builders
	How to Create Lists
	How to Make Approver Substitutions
	How to Make List Modifications
	How to Define Repeating-Node Attributes of a Business Rule Condition

	How to Use Assignment Context
	Configuring Assignment Context

	How to Aggregate Task Approvals

	Defining Escalation and Renewal Policies
	Specifying Notification Settings
	Using Advanced Settings
	How to Add Callbacks for Notes, Attachments, and Validation
	How to Define Security Access Rules

	Using the End-to-End Approval Management Samples
	Using the User Metadata Migration Utility

	GET_SEARCH_RESULTS
	How to Use Advanced Mode Action Forms
	Advanced Mode Action Options in Rule Designer

	Working with Decision Tables
	Introduction to Working with Decision Tables
	What is a Decision Table?
	What You Need to Know About Decision Table Conditions
	What You Need to Know About Decision Table Actions
	What You Need to Know About Decision Table Rules

	Understanding Condition Cell Values
	Understanding Action Cell Values
	What You Need to Know About Decision Table Loops

	Creating Decision Tables
	How to Create a Decision Table
	How to Add Condition Rows to a Decision Table
	How to Use or Specify the Value Set for a Decision Table Condition
	How to Add Actions to a Decision Table
	How to Set Values for Action Cells in a Decision Table
	How to Deselect an Action Cell in a Decision Table

	How to Add a Rule to a Decision Table
	How to Define Tests in a Decision Table
	Creating and Running an Oracle Business Rules Decision Table Application
	How to Obtain the Source Files for the Order Approval Application
	How to Create an Application for Order Approval
	How to Create a Business Rule Service Component for Order Approval
	How to View Data Model Elements for Order Approval
	How to Add Value Sets to the Data Model for Order Approval
	How to Add CreditScore Value Set to the Data Model

	How to Associate Value Sets with Order and CreditScore Properties
	How to Add a Decision Table for Order Approval
	How to Create an action in a Decision Table
	Split the Cells in the Decision Table and Add Actions
	How to Add Actions for Each Rule in the Decision Table
	Compact the Decision Table
	Replace Several Specific Rules with One General Rule
	Add a General Rule
	How to Enable the Auto Override Conflict Resolution Policy

	How to Check the Business Rule Validation Log for Order Approval
	How to Deploy the Order Approval Application
	How to Test the Order Approval Application

	Introduction to Decision Table Operations
	Understanding Decision Table Split and Compact Operations
	Understanding Decision Table Move Operations
	Understanding Decision Table Gap Checking
	Understanding Decision Table Conflict Analysis

	How to Compact or Split a Decision Table
	How to Merge or Split Conditions in a Decision Table
	How to Use the Condition Cell Operations
	How to Merge Sibling Cells in a Condition in a Decision Table
	How to Split a Cell in a Condition in a Decision Table
	How to a "Do Not Care" Value for a Cell in a Condition in a Decision Table
	How to Select all Value Sets to Specify a "Do Not Care" Value for a Cell in a Condition:

	How to Perform Decision Table Gap Checking
	How to Perform Decision Table Manual Conflict Resolution
	How to Set the Decision Table Auto Override Conflict Resolution Policy
	How to Set the Decision Table Ignore Conflicts Policy

	Creating and Running an Oracle Business Rules Decision Table Application
	How to Obtain the Source Files for the Order Approval Application
	How to Create an Application for Order Approval
	How to Create a Business Rule Service Component for Order Approval
	How to View Data Model Elements for Order Approval
	How to Add Value Sets to the Data Model for Order Approval
	How to Add CreditScore Value Set to the Data Model

	How to Associate Value Sets with Order and CreditScore Properties
	How to Add a Decision Table for Order Approval
	How to Create an action in a Decision Table
	Split the Cells in the Decision Table and Add Actions
	How to Add Actions for Each Rule in the Decision Table
	Compact the Decision Table
	Replace Several Specific Rules with One General Rule
	Add a General Rule
	How to Enable the Auto Override Conflict Resolution Policy

	How to Check the Business Rule Validation Log for Order Approval
	How to Deploy the Order Approval Application
	How to Test the Order Approval Application

	Editing Decision Tables in Microsoft Excel
	Understanding What is Exported
	How to Export Decision Tables
	How to Import Edited Decision Tables Back to the Dictionary
	How to Edit Decision Tables in Excel
	Adding or Deleting Rules and Merging or Splitting Cells
	Adding or Removing Value Sets
	Showing or Hiding Value Sets and Editing the Description
	Setting Preferences
	Using Simple or Advanced Mode
	Hiding or Showing the Readme Worksheet
	Editing Condition Cells
	Editing Actions
	Editing Expressions
	Editing Action Expression Parameters
	Editing Descriptions
	Using the Auto-Addition Feature
	Aliases of Values in the Value Sets Worksheet
	Syncing Value Sets and Conditions

	Modifying MDS Configuration Using MBeans
	ADF Business Components
	About ADF Business Components
	Core Benefits of ADF Business Components
	Key Concepts of ADF Business Components
	Implementation of Business Services
	Based on Standard Java and XML
	Application Server and Database Independence
	Declarative Metadata for Implementation Classes
	Optional Custom Java Code
	Ability to Expose Services to SOA Applications
	Application State Management

	Key Components of ADF Business Components
	Entity Objects
	Entity Object Definition Files
	Ways to Configure Entity Objects

	Entity Associations
	View Objects
	Types of View Objects
	View Object Definition Files
	Ways to Configure View Objects

	View Links
	Application Modules
	Types of Application Modules
	Application Module Definition Files
	Service-enabled Application Modules
	Application Module Pooling
	Application State Management

	Overview of the ADF Business Components Process Flow

