
Oracle® Fusion Middleware
Tuning Performance Guide

14c (14.1.2.0.0)
F85527-03
April 2025

Oracle Fusion Middleware Tuning Performance Guide, 14c (14.1.2.0.0)

F85527-03

Copyright © 2015, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xv

Documentation Accessibility xv

Diversity and Inclusion xv

Related Documents xv

Conventions xvi

Part I Introduction

1 Top Performance Areas

Identifying Top Performance Areas 1-1

Securing Sufficient Hardware Resources 1-2

Tuning the Operating System 1-3

Tuning Java Virtual Machines (JVMs) 1-4

Tuning the WebLogic Server 1-4

Tuning Database Parameters 1-4

Tuning Database Parameters 1-4

Tuning Database Files 1-7

Configuring REDO Logs 1-7

Configuring UNDO Tablespace 1-8

Configuring TEMP Tablespace 1-8

Creating Additional Tablespaces 1-8

Tuning Automatic Segment-Space Management (ASSM) 1-9

Reusing Database Connections 1-9

Enabling Data Source Statement Caching 1-9

Controlling Concurrency 1-10

Setting Server Connection Limits 1-10

Setting MaxRequestWorkers / ThreadsPerChild 1-11

Setting KeepAlive 1-11

Tuning HTTP Server Modules 1-12

Configuring Connection Pools 1-12

Tuning the WebLogic Server Thread Pool 1-12

iii

Setting Logging Levels 1-14

2 Performance Planning

About Performance Planning 2-1

Performance Planning Methodology 2-1

Step 1: Defining Your Performance Objectives 2-1

Defining Operational Requirements 2-2

Identifying Performance Goals 2-2

Understanding User Expectations 2-3

Conducting Performance Evaluations 2-3

Step 2: Designing Applications for Performance and Scalability 2-4

Step 3: Monitoring and Measuring Your Performance Metrics 2-4

3 Monitoring

About Oracle Fusion Middleware Management Tools 3-1

Measuring Your Performance Metrics 3-2

Oracle Enterprise Manager Fusion Middleware Control 3-2

Oracle WebLogic Remote Console 3-2

WebLogic Diagnostics Framework (WLDF) 3-3

WebLogic Scripting Tool (WLST) 3-3

DMS Spy Servlet 3-3

Viewing Performance Metrics Using the Spy Servlet 3-4

Using the DMS Spy Servlet 3-4

Native Operating System Performance Commands 3-5

Network Performance Monitoring Tools 3-5

4 Using the Oracle Dynamic Monitoring Service

About Dynamic Monitoring Service (DMS) 4-1

Understanding Common DMS Terms and Concepts 4-1

DMS Sensors 4-2

DMS Nouns 4-4

DMS Tracing and Events 4-6

About DMS Availability 4-7

About DMS Architecture 4-7

Viewing DMS Metrics 4-8

Viewing Metrics By Using the Spy Servlet 4-8

Viewing Metrics with WLDF (WebLogic Diagnostic Framework) 4-9

Viewing Metrics with WLST (Oracle WebLogic Server) 4-9

Viewing Metrics with JConsole 4-10

iv

Viewing Metrics with Oracle Enterprise Manager 4-11

About DMS Execution Context 4-11

DMS Execution Requests and Subtasks 4-11

DMS Execution Context Usage 4-12

DMS Execution Context Communication 4-12

DMS Tracing and Events 4-13

Configuring the DMS Event System 4-14

Adding and Editing Filters 4-15

Adding and Editing Destinations 4-16

Adding and Editing Event Routes 4-16

Compound Operations 4-16

Configuring Destinations 4-17

LoggerDestination 4-17

MBean Creator Destination 4-19

Request Tracker Destination 4-20

Java Flight Recorder Destination 4-21

Understanding the Format of DMS Events in Log Messages 4-24

Understanding DMS Event Actions 4-28

DMS Best Practices 4-28

Part II Core Components

5 Tuning Oracle HTTP Server

About Oracle HTTP Server 5-1

Monitoring Oracle HTTP Server Performance 5-1

Basic Tuning Considerations 5-2

Tuning Oracle HTTP Server Directives 5-2

Reducing Process Availability with Persistent Connections 5-8

Logging Options for Oracle HTTP Server 5-9

Access Logging 5-9

Configuring the HostNameLookups Directive 5-9

Error logging 5-10

Advanced Tuning Considerations 5-10

Tuning Oracle HTTP Server 5-10

Analyzing Static Versus Dynamic Requests 5-10

Limiting the Number of Enabled Modules 5-11

Tuning the File Descriptor Limit 5-11

Tuning Oracle HTTP Server Security 5-11

Tuning Oracle HTTP Server Secure Sockets Layer (SSL) 5-11

v

Tuning Oracle HTTP Server Port Tunneling 5-13

6 Tuning Oracle Metadata Service

About Oracle Metadata Services (MDS) 6-1

Monitoring Oracle Metadata Service Performance 6-2

Basic Tuning Considerations 6-2

Tuning Database Repository 6-2

Collecting Schema Statistics 6-2

Increasing Redo Log Size 6-3

Reclaiming Disk Space 6-3

Monitoring the Database Performance 6-3

Tuning Cache Configuration 6-3

Enabling Document Cache 6-4

Purging Document Version History 6-5

Using Auto Purge 6-5

Purging Manually 6-6

Using Database Polling Interval for Change Detection 6-6

Advanced Tuning Considerations 6-6

Analyzing Performance Impact from Customization 6-7

7 Tuning Oracle Fusion Middleware Security

About Security Services 7-1

Basic Tuning Considerations 7-2

Tuning Oracle Platform Security Services 7-2

JVM Tuning Parameters 7-2

JDK Tuning Parameters 7-3

Authentication Tuning Parameters 7-3

Authorization Tuning Properties 7-3

OPSS PDP Service Tuning Parameters 7-6

Oracle Web Services Security Tuning 7-9

Choosing the Right Policy 7-9

Policy Manager 7-10

Configuring the Log Assertion to Record SOAP Messages 7-10

Configuring Connection Pooling 7-10

Monitoring the Performance of Web Services 7-11

Part III Oracle Fusion Middleware Server Components

vi

8 Tuning Oracle Application Development Framework (ADF)

About Oracle ADF 8-1

Basic Tuning Considerations 8-2

Oracle ADF Faces Configuration and Profiling 8-2

Performance Considerations for ADF Faces 8-3

Tuning ADF Faces Component Attributes 8-14

Performance Considerations for Table and Tree Components 8-17

Performance Considerations for autoSuggest 8-18

Data Delivery - Lazy versus Immediate 8-18

Performance Considerations for DVT Components 8-19

Advanced Tuning Considerations 8-20

ADF Server Performance 8-20

Tuning Session Timeout 8-21

Tuning View Objects 8-21

Enabling Batch Processing 8-25

Tuning RangeSize 8-26

Configuring Application Module Pooling 8-26

Using ADFc Regions 8-34

Deferring Task Flow Execution 8-34

Deferring Task Flow Creation in Popups 8-34

Configuring the Task Flow Inside Switcher 8-35

Reusing Static Data 8-35

Conditional Validations 8-35

9 Tuning Oracle TopLink

About Oracle TopLink and EclipseLink 9-1

Basic Tuning Considerations 9-2

SQL Statement and Query Tuning Parameters 9-2

Entity Relationships Query Tuning Parameters 9-4

Cache Configuration Tuning Parameters 9-7

About Cache Refreshing 9-12

Locking Mode Policy Options 9-13

About Mapping and Descriptor Configurations 9-14

About Data Partitioning 9-14

Advanced Tuning Considerations 9-14

Integrating with Oracle Coherence 9-14

Analyzing EclipseLink JPA Entity Performance 9-15

Part IV Oracle Identity and Access Management

vii

10

Oracle Internet Directory Performance Tuning

About Oracle Internet Directory 10-1

Monitoring Oracle Internet Directory Performance 10-1

Monitoring Performance on UNIX and Windows Systems 10-2

Updating Database Statistics by Using oidstats.sql 10-3

Setting Performance-Related Replication Configuration Attributes 10-3

Managing System Configuration Attributes 10-4

Setting Garbage Collection Configuration Attributes 10-4

Modifying Changelog Purging Attributes by Using ldapmodify 10-4

Modifying Changelog Purging in Oracle Directory Services Manager 10-5

Basic Tuning Considerations 10-5

Database Parameters 10-6

LDAP Server Attributes 10-6

Database Statistics 10-8

Low-Priority Tuning Considerations 10-8

Number of Entries to be Returned by a Search 10-8

Enabling the Group Cache 10-8

Timeout for Write Operations 10-8

Advanced Tuning Considerations 10-9

Replication or Oracle Directory Integration Platform 10-9

Replication Server Configuration 10-10

Garbage Collection Configuration 10-11

Oracle Internet Directory with Oracle RAC Database 10-11

Password Policies and Verifier Profiles 10-11

Server Entry Cache 10-12

Benefits of Using the Entry Cache 10-12

Values for Configuring the Entry Cache 10-12

Result Set Cache 10-14

When to Use Result Set Cache 10-14

Benefits of Using Result Set Cache 10-15

Configuring Result Set Cache 10-15

Values for Configuring Result Set Cache 10-15

Tuning Security Event Tracking 10-15

Optimizing Searches 10-16

Optimizing Searches for Large Group Entries 10-16

Optimizing Searches for Skewed Attributes 10-17

Optimizing Performance of Complex Search Filters 10-17

Specific Use Cases That Require Additional Tuning 10-20

Bulk Load Operations 10-20

Bulk Delete Operations 10-20

viii

High LDAP Write Operations Load 10-20

11

Oracle Access Management Performance Tuning

About Oracle Access Management 11-1

Performance Considerations for Oracle Access Management Services 11-2

Understanding Your Current Environment 11-2

Controlling Network Latency 11-3

Enabling DMS Performance Instrumentation 11-4

Tuning Oracle Access Management Access Manager 11-5

Basic Tuning Considerations for Access Manager 11-5

Tuning the Web Tier 11-5

Managing Policy Components 11-6

Tuning Common Settings 11-7

Advanced Tuning Considerations for Access Manager 11-8

Tuning Oracle Coherence 11-8

Setting the Java Message Bean Pool Size 11-9

Tuning the Server Cache 11-9

Tuning Webgate Caches 11-10

Changing Request Cache Type 11-14

Tuning Authentication Plug-Ins 11-15

Specific Use Cases That Require Additional Tuning for Access Manager 11-15

Managing Access Manager Sessions 11-15

Audit Settings 11-15

Managing Monitor Account 11-15

Kerberos Latency Issues 11-16

Oracle Access Protocol over REST Connectivity Issues 11-16

Tuning Oracle Access Management Identity Federation 11-16

Basic Tuning Considerations for Identity Federation 11-17

Tuning the Load Balancer and HTTP Server 11-17

Tuning SOAP Connections 11-17

Tuning the Data Tier Connections 11-17

Advanced Tuning Considerations for Identity Federation 11-19

Tuning Oracle Coherence 11-19

Tuning Identity Store 11-19

Tuning Protocol Binding 11-19

Tuning the Browser POST and Artifact Single Sign-On Profiles 11-20

Specific Use Cases That Require Additional Tuning for Identity Federation 11-21

Message Signing versus Token Signing 11-21

Database Tuning for Oracle Access Management 11-21

Automatic Optimizer Statistics Collection 11-21

Partitioning AM_SESSION table using Config Utility Command 11-21

ix

Purging Inactive Sessions as a Recovery Mechanism from Peak Load 11-22

12

Oracle Identity Governance Performance Tuning

About Oracle Identity Governance 12-1

Monitoring Oracle Identity Governance Performance 12-1

Basic Tuning Considerations 12-3

Tuning and Managing Application Cache 12-3

Tuning Oracle Identity Governance Cache 12-3

Purging the Cache 12-6

Tuning the Application Server for Oracle Identity Governance 12-7

Tuning JVM Memory Settings for Oracle Identity Governance 12-7

Tuning the JDBC Connection Pool for Oracle Identity Governance 12-8

Tuning OIG-specific Work Manager Properties 12-9

Disabling the Reloading of Adapters and Plug-in Configuration 12-10

Changing the Number of Open File Descriptors for UNIX (Optional) 12-10

Tuning the JVM Garbage Collection for Solaris Sparc T3 or T4 12-11

Tuning Database Parameters for Oracle Identity Governance 12-11

Sample Instance Configuration Parameters 12-12

Physical Data Placement 12-13

Resolving enq: HW - contention 12-16

Tuning Oracle Internet Directory 12-17

Tuning Application Module (AM) for User Interface 12-17

JMS Tuning 12-17

Advanced Tuning Considerations 12-17

Reconciliation Tuning 12-17

Target System And Connector Tuning 12-18

Database Indexes For Recon Matching Rules 12-20

Oracle Identity Governance Post-processing for Reconciliation 12-22

Tuning LDAP Synchronization 12-23

Increasing the Max Connection Pool for Oracle Identity Governance 12-23

Tuning Order Audit Messages To Eliminate Slow SQL 12-25

Part V SOA Suite Components

13

Tuning the SOA Infrastructure

About the SOA Infrastructure 13-1

Tuning SOA Work Managers 13-1

Configuring Database Connections with the SOADataSource Property 13-2

Configuring Work Managers with the SOAMaxThreadsConfig Attribute 13-2

Tuning SOA Infrastructure Parameters 13-4

x

Using Advanced Tuning Options 13-5

Using Composite Lazy Loading 13-5

Configuring Composite Lazy Loading for the Domain Level 13-6

Configuring Composite Lazy Loading at the Component Level 13-6

Changing Modularity Profiles 13-7

Tuning Your Database for SOA Processes 13-8

Collecting Optimizer Statistics 13-8

Tuning Temporary Tablespaces for SOA 13-9

Minimizing SOA Database Contention 13-9

Purging 13-13

Reclaiming Space 13-13

Tuning Event Delivery Network Parameters 13-14

Adding JMS Topics with Mapping 13-18

Tuning the WebLogic Server 13-19

Advanced Tuning for Work Managers 13-21

Configuring Fair Share Request Class for SOA Work Managers 13-22

Creating a New Work Manager Constraint 13-22

14

Tuning Oracle BPEL Process Manager

About BPEL Process Manager 14-1

Tuning BPEL Parameters 14-1

Tuning BPEL Engine 14-1

Tuning BPEL Engine Parameters 14-2

Tuning BPEL in a Composite 14-4

Using Other Tuning Strategies 14-5

Identifying Tables Impacted By Instance Data Growth 14-5

15

Tuning Oracle Mediator

About Oracle Mediator 15-1

Tuning Mediator Parameters 15-1

Using Resequencer for Messages 15-2

16

Tuning Oracle Managed File Transfer

About Managed File Transfer 16-1

Tuning MFT Parameters 16-1

Tuning Remote FTP / SFTP/ FILE Type Sources 16-3

Minimizing MDS label 16-4

Adjusting the Materialized Views Refresh Interval 16-4

xi

17

Tuning Oracle Business Rules

About Oracle Business Rules 17-1

Tuning Oracle Business Rules 17-1

Exerting assertXPath Support 17-2

18

Tuning Oracle Business Process Management

About Oracle Business Process Management 18-1

Tuning Business Process Management Parameters 18-1

Using Other Tuning Strategies 18-2

Tuning Oracle Workspace Applications 18-2

Tuning Process Measurement 18-4

19

Tuning Oracle Human Workflow

About Oracle Human Workflow 19-1

Tuning Human Workflow 19-1

Using Other Tuning Strategies 19-3

Improving Server Performance 19-3

Completing Workflows Faster 19-4

Tuning the Identity Provider 19-5

Tuning the Database 19-5

20

Tuning Oracle Business Activity Monitoring

About Oracle Business Activity Monitoring 20-1

Tuning BAM Server Parameters 20-1

Other Tuning Strategies 20-3

Creating an Index Column 20-3

Tuning Loggers 20-3

Tuning Continuous Query Service 20-3

21

Tuning Oracle Service Bus

About Oracle Service Bus 21-1

Tuning OSB Parameters 21-1

Tuning Oracle Service Bus with Work Managers 21-2

Tuning OSB Operation Settings 21-2

Using Other Tuning Strategies 21-4

Tuning Resequencer in OSB 21-4

Considering Design Time for Proxy Applications 21-5

Tuning XQuery 21-7

xii

Tuning Poller-based Transports 21-8

Setting the Polling Interval 21-9

Setting Read Limit 21-9

22

Tuning Oracle Enterprise Scheduler Service

About Enterprise Scheduler Service 22-1

Tuning Enterprise Scheduler Service Parameters 22-1

23

Tuning Oracle Business Intelligence Performance

About Oracle Business Intelligence 23-1

Tuning Oracle BI Server Query Performance 23-1

Tuning Oracle BI Server Query Cache Performance 23-2

Tuning Oracle BI Web Client Performance 23-2

Part VI Oracle WebCenter Components

24

Tuning Oracle WebCenter Portal

About Oracle WebCenter Portal 24-1

Basic Tuning Considerations 24-1

Setting System Limit 24-2

Setting JDBC Data Source 24-2

Using Content Compression to Reduce Downloads 24-3

Tuning Configuration for WebCenter Portal 24-4

Setting a Session Timeout for WebCenter Portal 24-4

Setting MDS Cache Size and Purge Rate 24-4

Configuring Concurrency Management 24-5

Tuning Tools and Services Configuration 24-7

Tuning Performance of Mail 24-7

Tuning Performance of RSS News Feeds 24-7

Tuning Policy Store Parameters 24-8

Tuning Identity Store Configuration 24-8

Tuning the Identity Store when Using SSL 24-8

Tuning Performance when Using OVD 24-9

Tuning Performance when Using Active Directory 24-9

Tuning Portlet Configuration 24-10

Tuning Performance of the Portlet Client 24-10

Configuring Supported Locales 24-10

Configuring Portlet Cache Size 24-11

Configuring Portlet Timeout 24-11

xiii

Customizing the Container Runtime Environment Options 24-12

Suppressing Optimistic Rendering for WSRP Portlets 24-12

Setting Portlet Container Runtime Options 24-12

Excluding Request Attributes for Portlets 24-13

Tuning Performance of Oracle PDK-Java Producers 24-13

Setting WSRP Attribute for Portlet-served Resources 24-13

Setting WSRP Attribute for Resources Not Served by the Portlet 24-14

xiv

Preface

This guide describes how to monitor and optimize performance, review the key components
that impact performance, use multiple components for optimal performance, and design
applications for performance in the Oracle Fusion Middleware environment.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
Oracle Fusion Middleware Tuning Performance is aimed at a target audience of Application
developers, Oracle Fusion Middleware administrators, database administrators, and Web
masters.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
For more information, see the following documents in the Oracle Fusion Middleware
documentation set:

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

• Understanding Oracle Fusion Middleware

• Securing Applications with Oracle Platform Security Services

• High Availability Guide

• Understanding Oracle WebLogic Server

• Tuning Performance

• Administering Oracle SOA Suite and Oracle Business Process Management Suite

• Administering Oracle HTTP Server

• Administering Web Services

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xvi

Part I
Introduction

Performance tuning is essential for improving system performance. Therefore, it is important to
understand the basic performance concepts and how to design applications for performance
and scalability.

This part contains the following topics:

• Top Performance Areas
By identifying top performance areas, you can tune Oracle Fusion Middleware for optimal
performance.

• Performance Planning
A clearly defined plan for achieving your performance objectives is essential for deciding
what to trade for higher performance.

• Monitoring
Oracle Fusion Middleware provides a variety of technologies and tools that monitor server
and application performance.

• Using the Oracle Dynamic Monitoring Service
The Oracle Dynamic Monitoring Service (DMS) publishes component performance data.

1
Top Performance Areas

By identifying top performance areas, you can tune Oracle Fusion Middleware for optimal
performance.

• Identifying Top Performance Areas
One of the most challenging aspects of performance tuning is knowing where to begin.
Therefore, it is important to identify the top performance areas for Oracle Fusion
Middleware.

• Securing Sufficient Hardware Resources
Manage the performance of Oracle Fusion Middleware applications to ensure tthere is
sufficient CPU, memory, and network resources to support the user and application
requirements for installation.

• Tuning the Operating System
Each operating system has native tools and utilities that can be useful for monitoring and
tuning purposes.

• Tuning Java Virtual Machines (JVMs)
How you tune your Java virtual machine (JVM) greatly affects the performance of Oracle
Fusion Middleware and your applications.

• Tuning the WebLogic Server
Tune the WebLogic Server to match your application needs.

• Tuning Database Parameters
To achieve optimal performance for applications that use the Oracle database, the
database tables you access must be designed with performance in mind. Monitoring and
tuning the database ensures that you get the best performance from your applications.

• Reusing Database Connections
It is important to tune the connection pool attributes in the JDBC data sources in your
WebLogic Server domain correctly to improve application and system performance.

• Enabling Data Source Statement Caching
Statement caching improves performance by caching executable statements that are used
repeatedly.

• Controlling Concurrency
Limiting concurrency at multiple layers of the system to match specific usage needs can
greatly improve performance.

• Setting Logging Levels
The amount of information that is logged can have a significant impact on the performance.

Identifying Top Performance Areas
One of the most challenging aspects of performance tuning is knowing where to begin.
Therefore, it is important to identify the top performance areas for Oracle Fusion Middleware.

Table 1-1 provides a list of common performance considerations for Oracle Fusion Middleware.
While the list is a useful tool in starting your performance tuning, it is not meant to be a
comprehensive list of areas to tune. You must monitor and track specific performance issues
within your application to understand where tuning can improve performance. See Monitoring .

1-1

Table 1-1 Top Performance Areas for Oracle Fusion Middleware

Performance Area Description and Reference

Hardware Resources Ensure that your hardware resources meet or exceed the
resource requirements to maximize performance.

See Securing Sufficient Hardware Resources for information
on how to determine if your hardware resources are
sufficient.

Operating System Each operating system has native tools and utilities that can
be useful for monitoring purposes.

See Tuning the Operating System.

Java Virtual Machines (JVMs) Follow the best practices and practical tips to tune the JVM. It
also helps improve the performance of a Jakarta EE
application, including heap size and JVM garbage collection
options.

See Tuning Java Virtual Machines (JVMs).

Database For applications that access a database, ensure that your
database is properly configured to support requirements of
the application.

See Tuning Database Parameters.

WebLogic Server If your Oracle Fusion Middleware applications are using
WebLogic Server, see Tuning the WebLogic Server.

Database Connections Pooling the connections so they are reused is an important
tuning consideration.

See Reusing Database Connections.

Data Source Statement Caching For applications that use a database, you can lower the
performance impact of repeated statement parsing and
creation by configuring statement caching properly.

See Enabling Data Source Statement Caching.

Oracle HTTP Server Tune the Oracle HTTP Server directives to set the level of
concurrency by specifying the number of HTTP connections.

See Controlling Concurrency.

Concurrency Control concurrency with Oracle Fusion Middleware
components.

See Controlling Concurrency.

Logging Levels Logging levels are thresholds that a system administrator
sets to control how much information is logged. Set the
logging levels appropriately as it impacts the performance by
the amount of information that applications log.

See Setting Logging Levels.

Securing Sufficient Hardware Resources
Manage the performance of Oracle Fusion Middleware applications to ensure tthere is
sufficient CPU, memory, and network resources to support the user and application
requirements for installation.

No matter how well you tune your applications, if the appropriate hardware resources are not
used, your applications cannot reach their optimal performance levels. Oracle Fusion
Middleware has minimum hardware requirements for its applications and database tier. For
details on Oracle Fusion Middleware supported configurations, see Verifying Certification,

Chapter 1
Securing Sufficient Hardware Resources

1-2

System Requirements, and Interoperability in Planning an Installation of Oracle Fusion
Middleware.

Sufficient hardware resources must meet or exceed the acceptable response times and
throughputs for applications without becoming saturated. To verify that you have sufficient
hardware resources, you should monitor resource utilization over an extended period to
determine if (or when) you have occasional peaks of usage or whether a resource is
consistently saturated. For details on monitoring, see Monitoring .

Tip:

Your target CPU usage should never reach 100% utilization. Target the CPU
utilization based on your application needs, including CPU cycles for peak usage.

If your CPU utilization is optimized at 100% during normal load hours, you have no
capacity to handle a peak load. In applications that are latency sensitive, maintaining
a fast response time is important. High CPU usage (approaching 100% utilization)
can increase response time while throughput stays constant or even decreases. For
such applications, a 70% - 80% CPU utilization is recommended. A good target for
non-latency sensitive applications is about 90%.

If any of the hardware resources are saturated (consistently at or near 100% utilization), one or
more of the following conditions might exist:

• The hardware resources are insufficient to run the application.

• The system is not properly configured.

• The application or database must be tuned.

For a consistently saturated resource, the solutions are to reduce load or increase resources.
For peak traffic periods when the increased response time is not acceptable, consider
increasing resources or determine if any traffic can be rescheduled. To reduce the peak load,
you must schedule the batch or background operations during slower periods.

Oracle Fusion Middleware provides a variety of mechanisms to help you control resource
concurrency. This can limit the impact of bursts of traffic. However, for a consistently saturated
system, this mechanism is a temporary solution. See Controlling Concurrency.

Tuning the Operating System
Each operating system has native tools and utilities that can be useful for monitoring and
tuning purposes.

Native operating system commands enable you to monitor CPU utilization, paging activity,
swapping, and other system activity information.

For operating system commands and guidelines on performance tuning of the network or
operating system, refer to the documentation provided by the operating system vendor.

Chapter 1
Tuning the Operating System

1-3

Tuning Java Virtual Machines (JVMs)
How you tune your Java virtual machine (JVM) greatly affects the performance of Oracle
Fusion Middleware and your applications.

For more information on tuning your JVM, see Tuning Java Virtual Machines (JVM) in Tuning
Performance of Oracle WebLogic Server.

Tuning the WebLogic Server
Tune the WebLogic Server to match your application needs.

If your Oracle Fusion Middleware applications use the WebLogic Server, see Tuning WebLogic
Server in Tuning Performance of Oracle WebLogic Server.

Tuning Database Parameters
To achieve optimal performance for applications that use the Oracle database, the database
tables you access must be designed with performance in mind. Monitoring and tuning the
database ensures that you get the best performance from your applications.

Note:

The information in these topics is a subset of database tuning information for Fusion
Middleware. Make sure that you have also reviewed the Database Performance
Tuning Guide.

Always review the tuning guidelines in your database-specific vendor documentation.

• Tuning Database Parameters

• Tuning Database Files

• Tuning Automatic Segment-Space Management (ASSM)

Tuning Database Parameters
Important Oracle 12c Database Tuning Parameters

The following tables provide common init.ora parameters and their descriptions. Follow
these guidelines to set the database parameters. Ultimately, however, the database
administrator must monitor the database health and tune parameters based on the need.

The database that is used for SOA is configured with the suggested values. Tuning the
database involves adjusting the sizing parameters based on the available resource and load
on the database.

The sga_target, pga_aggregate_target, and processes parameters from #unique_33/
unique_33_Connect_42_CJABBBAG are examples of such parameters that must be tuned
based on the System Global Area (SGA) and Parent Global Area (PGA) advisories and looking
into the number of open processes during peak load.

Chapter 1
Tuning Java Virtual Machines (JVMs)

1-4

Parameter Description Tuning Recommendation

audit_trail
Default: DB

Enables or disables database auditing. Set to NONE if there is NO policy to audit
database activity. Enabling auditing can
impact performance.

plsql_code_type
Default: INTERPRETED

Compilation mode for PL/SQL library
units. Possible modes are as follows:

• INTERPRETED: PL/SQL library units
are compiled to PL/SQL byte code
format and executed by the PL/SQL
interpreter engine.

• NATIVE: PL/SQL library units are
compiled to native (machine) code.
Such modules are executed
natively without incurring any
interpreter impacts.

Set to NATIVE.

nls_sort
Default: Derived from NLS_LANGUAGE

Collating sequence for ORDER BY
queries.

• If the value is a named linguistic
sort, the collating sequence is
based on the order of the defined
linguistic sort. Most languages
supported by the NLS_LANGUAGE
parameter also support a linguistic
sort with the same name.

• If the value is set to BINARY, then
the collating sequence is based on
the numeric value of characters.
This requires fewer system
resources.

Set to BINARY.

open_cursors
Default: 50

Maximum number of open cursors that
a session can have at once. Open
cursors are handles to private SQL
areas.

The value of OPEN_CURSORS must be
high enough to prevent your application
from running out of open cursors.

Increase to 500.

session_cached_cursors
Default: 50

Number of session cursors to cache.
Repeated parse calls of the same SQL
statement cause the session cursor for
that statement to be moved into the
session cursor cache. Subsequent
parse calls locate the cursor in the
cache. However, they do not reopen the
cursor. Oracle uses a least recently
used algorithm to remove entries in the
session cursor cache to make room for
new entries when needed.

This parameter also constrains the size
of the PL/SQL cursor cache, which
PL/SQL uses to avoid having to reparse
as statements are reexecuted.

Increase to 500.

_b_tree_bitmap_plans
Default: TRUE

Enables or disables the use of bitmap
access paths for b-tree indexes.

Set to FALSE.

Chapter 1
Tuning Database Parameters

1-5

Parameter Description Tuning Recommendation

processes
Default: 100

Maximum number of operating system
processes that can be connected to the
Oracle database concurrently. The value
of this parameter must account for
Oracle the background processes.

The SESSIONS parameter is deduced
from this value.

For most systems, increasing to 1500
must suffice.

For a large-scale system, such as
databases with a large number of users,
the recommended value is 5000.

Memory_target Oracle system-wide usable memory.
The database tunes memory to the
MEMORY_TARGET value, reducing or
enlarging the SGA and PGA as needed.

Consider setting to NONE. Then set the
SGA and PGA targets separately as
setting MEMORY_TARGET does not
allocate sufficient memory to SGA and
PGA as needed.

sga_target
Default: 0

A non-zero value enables Automatic
Shared Memory Management. This can
simplify configuration and improve
performance.

For small systems, use a minimum of 2
GB.

For large systems, set it to 18 GB.

pga_aggregate_target
Default: 0

Target aggregate PGA memory
available to all server processes
attached to the instance.

For small systems, use a minimum of 1
GB.

For large systems, set it to 8 GB.

Disk_asynch_io
Default: TRUE

Controls whether I/O to data files,
control files, and log files is
asynchronous. It decides what parallel
server processes can overlap I/O
requests with CPU processing during
table scans.

Set to FALSE only if your platform does
not support asynchronous I/O.

Filesystemio_options
Default: None

I/O operations for file system files. Set to SETALL.

Secure_Files
Default: PERMITTED

How to store LOB objects from tables. Set to ALWAYS.

parallel_max_servers
Default:
PARALLEL_THREADS_PER_CPU*CPU_CO
UNT*concurrent_parallel_users*5

Maximum number of parallel execution
processes and parallel recovery
processes for an instance.

As the demand increases, the Oracle
database increases the number of
processes from the number created at
instance startup to this value.

Set to 12.

job_queue_processes
Default: 1000

Maximum number of job slaves per
instance that can be created for the
execution of DBMS_JOB jobs and Oracle
Scheduler (DBMS_SCHEDULER) jobs.

Set to 12.

shared_servers
Default: 0 (or) 1

Number of server processes that you
want to create when an instance is
started.

Set to 0.

The table below describes the important inti.ora Database Tuning Parameters.

Database Parameter Description

AUDIT_TRAIL If there is no policy to audit database activity, consider setting
this parameter to NONE. Enabling auditing can impact
performance.

Chapter 1
Tuning Database Parameters

1-6

Database Parameter Description

MEMORY_MAX_TARGET Maximum value to which a database administrator can set
the MEMORY_TARGET initialization parameter.

MEMORY_TARGET Consider setting to NONE. Set SGA and PGA separately as
setting the MEMORY_TARGET does not allocate sufficient
memory to SGA and PGA as needed.

PGA_AGGREGATE_TARGET Consider using a value of 1G for PGA initially and monitor
the production database daily and adjust SGA and PGA
accordingly.

If the database server has more memory, consider setting
the PGA_AGGREGATE_TARGET to a value higher than 1G,
based on usage needs.

SGA_MAX_SIZE Consider setting the MEMORY_TARGET instead of setting SGA
and the PGA separately.

SGA_TARGET Consider using a value of 2G initially and then monitor the
production database daily and adjust SGA and PGA
accordingly.

If the database server has more memory, consider setting
the SGA_TARGET to a value higher than 2G, based on usage
needs.

In addition, set a minimum value for SHARED_POOL_SIZE and DB_CACHE_SIZE to minimize
frequent resizing.

Tuning Database Files
In addition to tuning the database parameters, the database administrator must configure the
REDO logs, UNDO table space, and TEMP table spaces to meet the demands of the database
workload. The recommendations here are intended to provide initial guidance in these areas.

The location of the database files must be optimized for I/O performance and growth. Segment
Advisor must be leveraged to optimize the use of segment space and ensure that performance
degradation does not occur. The advisor can provide historical growth trends of segments,
which can be used to proactively plan for growth. See Using the Segment Advisor in Oracle
Database Administrator's Guide.

• Configuring REDO Logs

• Configuring UNDO Tablespace

• Configuring TEMP Tablespace

• Creating Additional Tablespaces
Oracle recommends you to create additional tablespaces based on the requirement of the
workload.

Configuring REDO Logs
Under demanding workloads, the size of the REDO log files can influence performance.
Generally, larger REDO log files provide better performance. Undersized log files increase
checkpoint activity and log file switches, which reduces performance. You can obtain sizing
advice on the REDO Log Groups page of the Enterprise Manager.

Chapter 1
Tuning Database Parameters

1-7

Depending on your storage configuration and performance characteristics, redistribute the
REDO logs to optimize I/O performance. The REDO log files must be placed on a disk
separately from the data files to improve the I/O performance.

See Managing the REDO LogOracle Database Administrator's Guide

Configuring UNDO Tablespace
The suggested minimum size for the UNDO tablespace is 6 GB with auto-extend enabled.
Oracle recommends that the default mode of automatic undo management is leveraged to
maximize performance and efficiency.

The Oracle Enterprise Manager Automatic Undo Management Advisor must be leveraged to
set configuration details for UNDO tablespace and retention settings. This advisor also provides
access to the Undo Advisor that assesses the effect and provides advice of a new undo
retention setting. For more information about using advisors, see The Undo Advisor PL/SQL
Interface Oracle Database Administrator's Guide.

Configuring TEMP Tablespace
Oracle recommends the use of locally managed temporary tablespaces with the allocation type
set to UNIFORM extents and the default size of 1 MB.

For tuning TEMP tablespaces for SOA, see Tuning Temporary Tablespaces for SOA.

Creating Additional Tablespaces
Oracle recommends you to create additional tablespaces based on the requirement of the
workload.

You can increase the size of a tablespace by either of the following options:

• Changing Data File Size: You can alter the size of a data file. For example, you can
increase the size of one or more data files when more space is needed in the database.
For more information, see Changing Data File Size.

• Creating Data Files and Adding Data Files to a Tablespace: You can create data files
and associate them with a tablespace using several different SQL statements. For more
information, see Creating Data Files and Adding Data Files to a Tablespace.

• Enabling and Disabling Automatic Extension for a Data File: You can create data files
or alter existing data files so that they automatically increase in size when more space is
needed in the database. The file size increases in specified increments up to a specified
maximum. For more information, see Enabling and Disabling Automatic Extension for a
Data File.

Sample Script to create additional tablespaces:

CREATE TABLESPACE apps_tbs LOGGING
 DATAFILE '/u01/app/oracle/oradata/mynewdb/apps01.dbf'
 SIZE 500M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL;
-- create a tablespace for indexes, separate from user tablespace (optional)
CREATE TABLESPACE indx_tbs LOGGING
 DATAFILE '/u01/app/oracle/oradata/mynewdb/indx01.dbf'
 SIZE 100M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL;

Chapter 1
Tuning Database Parameters

1-8

Tuning Automatic Segment-Space Management (ASSM)
For permanent tablespaces, consider using automatic segment-space management. Such
tablespaces, often referred to as bitmap tablespaces, are locally managed tablespaces with
bitmap segment space management.

For backward compatibility, the default local tablespace segment-space management mode is
MANUAL.

Oracle recommends to specify the allocation type to SYSTEM.

See Free Space Management and Specifying Segment Space Management in Locally
Managed Tablespaces in Oracle Database Administrator's Guide.

Reusing Database Connections
It is important to tune the connection pool attributes in the JDBC data sources in your
WebLogic Server domain correctly to improve application and system performance.

Creating a database connection is a resource-intensive process in any environment. Typically,
a connection pool starts with a few connections. As client demands for more connections grow,
there will not be enough in the pool to fulfill the requests. WebLogic Server creates more
connections and adds them to the pool until the maximum pool size is reached.

One way to avoid connection creation delays is to initialize all connections at server startup,
rather than on-demand. This is appropriate if your load is predictable and even. Set the initial
number of connections equal to the maximum number of connections in the Connection Pool
tab of your data source configuration. Determine the optimal value for the Maximum Capacity
as part of your preproduction performance testing.

When the load is uneven, and has high number of connections at peak load than at typical
load, set the initial number of connections equal to your typical load. In addition, set the
maximum number of connections based on your supported peak load. With these
configurations, WebLogic Server can free up some connections when they are not used.

See Tuning Data Source Connection Pool Options in Administering JDBC Data Sources for
Oracle WebLogic Server.

Enabling Data Source Statement Caching
Statement caching improves performance by caching executable statements that are used
repeatedly.

When a prepared statement or callable statement is used in an application or EJB, it impacts
the performance associated with the processing of the communication between the application
server and the database server. To minimize the processing impact, enable the data source to
cache prepared and callable statements used in your applications. When an application or EJB
calls any of the statements stored in the cache, the server reuses the statement stored in the
cache. Reusing prepared and callable statements reduces CPU usage on the database server,
improving performance for the current statement and leaving CPU cycles for other tasks.

Consider the following data source configurations when performance is an issue:

• When configuring the data source, ensure that the connection pool has enough free
connections.

Chapter 1
Reusing Database Connections

1-9

• Statement caching can eliminate potential performance impacts caused by repeated cursor
creation and repeated statement parsing and creation. Statement caching also reduces the
performance impact of communication between the application server and the database
server.

• Disable unnecessary connection testing and profiling.

Each connection in a data source has its own individual cache of prepared and callable
statements used on the connection. However, you configure statement cache options as per
the data source. That is, the statement cache for each connection in a data source uses the
statement cache options specified for the data source. Each connection caches its own
statements. Statement cache configuration options include:

• Statement Cache Type—The algorithm that determines which statements to store in the
statement cache.

• Statement Cache Size—The number of statements to store in the cache for each
connection. The default value is 10. Analyze your database statement parse metrics to
size the statement cache sufficiently for the number of statements you have in your
application.

You can use the Remote Console to set statement cache options for a data source.

For details on using statement caching, see Increasing Performance with the Statement Cache
in Administering JDBC Data Sources for Oracle WebLogic Server.

Controlling Concurrency
Limiting concurrency at multiple layers of the system to match specific usage needs can
greatly improve performance.

When system capacity is reached, and a web server or an application server continues to
accept requests, application performance and stability can deteriorate. Within the Oracle
Fusion Middleware, you can throttle the requests to avoid overloading the mid-tier or database
tier systems and tune for best performance.

• Setting Server Connection Limits

• Configuring Connection Pools

• Tuning the WebLogic Server Thread Pool

Setting Server Connection Limits
Oracle HTTP Server uses directives in the httpd.conf file. This configuration file specifies the
maximum number of HTTP requests that can be processed simultaneously, logging details,
and certain limits and time outs.

For details on modifying the httpd.conf file, see Configuring Oracle HTTP Server in
Administering Oracle HTTP Server.

Use the MaxRequestWorkers and ThreadsPerChild directives to limit incoming requests to
WebLogic instances from the Oracle HTTP Server based on your expected client load and
system resources. There are several Oracle HTTP Server tuning parameters related to
connection limits that must be tuned based on the expected client load. See Tuning Oracle
HTTP Server for details on setting server connection limits and a complete list of tunable
parameters.

• Setting MaxRequestWorkers / ThreadsPerChild

• Setting KeepAlive

Chapter 1
Controlling Concurrency

1-10

• Tuning HTTP Server Modules

Setting MaxRequestWorkers / ThreadsPerChild

Note:

The MaxRequestWorkers parameter is applicable only to UNIX platforms. The same is
achieved through the ThreadsPerChild and ThreadLimit properties on Microsoft
Windows (mpm_winnt).

The MaxRequestWorkers parameter specifies a limit on the total number of server threads
running, that is, a limit on the number of clients who can simultaneously connect. If the number
of client connections reaches this limit, then subsequent requests are queued in the TCP/IP
system up to the limit specified (in the ListenBackLog directive).

You can configure the MaxRequestWorkers directive in the httpd.conf file up to a maximum of
8K (the default value is 150). If the system is not resource-saturated and the user population is
more than 150 concurrent HTTP connections, improve your performance by increasing
MaxRequestWorkers to increase server concurrency. Increase MaxRequestWorkers until your
system becomes fully utilized (85% is a good threshold).

When system resources are saturated, increasing MaxRequestWorkers does not improve
performance. In this case, the MaxRequestWorkers value could be reduced as a throttle on the
number of concurrent requests on the server.

If the server handles persistent connections, then it requires sufficient concurrent httpd server
processes to handle both active and idle connections. When you specify MaxRequestWorkers
to act as a throttle for system concurrency, consider that persistent idle httpd connections also
consume httpd processes. Specifically, the number of connections includes the currently
active persistent and non-persistent connections and the idle persistent connections. When
there are no httpd server threads available, connection requests are queued in the TCP/IP
system until a thread becomes available, and eventually clients terminate connections.

You can define few server processes and the threads per process (ThreadsPerChild) to
handle the incoming connections to Oracle HTTP Server. The ThreadsPerChild property
specifies the upper limit on the number of threads that can be created under a server (child)
process.

Note:

ThreadsPerChild, StartServers, and ServerLimit properties are inter-related with
the MaxRequestWorkers setting. All these properties must be set appropriately to
achieve the number of connections as specified by MaxRequestWorkers. See
Table 5-1 for a description of all the HTTP configuration properties.

Setting KeepAlive
A persistent HTTP connection, KeepAlive, consumes an httpd child process, or thread during
the connection, even if no requests are currently being processed for the connection.

Chapter 1
Controlling Concurrency

1-11

If you have sufficient capacity, KeepAlive must be enabled; using persistent connections
improves performance and prevents wasting CPU resources re-establishing HTTP
connections. Normally, you do not have to change KeepAlive parameters.

Note:

The default maximum request for a persistent connection is 100, as specified with the
MaxKeepAliveRequests directive in the httpd.conf file. By default, the server waits
for 15 seconds between requests from a client before closing a connection, as
specified with the KeepAliveTimeout directive in the httpd.conf file.

Tuning HTTP Server Modules
The Oracle HTTP Server (OHS) uses the mod_wl_ohs module to route requests to the
underlying WebLogic Server or the WebLogic Server cluster. The configuration details for the
mod_wl_ohs module are available in the mod_wl_ohs.conf file in the config directory.

See Understanding Oracle HTTP Server Modules in Administering Oracle HTTP Server.

Configuring Connection Pools
Connection pooling is configured and maintained per Java runtime. Connections are not
shared across different runtimes. To use connection pooling, no configuration is required.
Configuration is necessary only if pooling needs to be customized. For example; control the
size of the pools and types of connections to be pooled.

You configure connection pooling by using several system properties at program startup time.
These are system properties, not environment properties and they affect all connection pooling
requests.

For applications that use a database, performance can improve when the connection pool that
is associated with a data source limits the number of connections. Use the MaxCapacity
attribute to limit the database requests from Oracle Application Server so that incoming
requests do not saturate the database, or to limit the database requests. Thus, the database
access does not overload the Oracle Application Server-tier resource.

The connection pool MaxCapacity attribute specifies the maximum number of connections that
a connection pool allows. By default, the value of the MaxCapacity attribute is set to 15. For
best performance, specify a value for the MaxCapacity attribute that matches the number
appropriate to your database performance characteristics.

Limiting the total number of open database connections to a number your database can handle
is an important tuning consideration. Configure the database to allow at least open connections
as the total of the values specified for all the data sources MaxCapacity option, as specified in
all the applications that access the database.

For connection pool options, see Configuring Services in the Oracle WebLogic Remote
Console Online Help and Tuning Data Source Connection Pool Options in Administering JDBC
Data Sources for Oracle WebLogic Server.

Tuning the WebLogic Server Thread Pool
By default, WebLogic Server uses a single thread pool. All types of work are executed in this
thread pool. WebLogic Server uses work managers to prioritize work based on rules that you

Chapter 1
Controlling Concurrency

1-12

can define, and runtime metrics, including the actual time it takes to execute a request and the
rate at which requests are entering and leaving the pool. There is a default work manager that
manages the common thread pool.

The common thread pool changes its size automatically to maximize throughput. WebLogic
Server monitors throughput over time and based on history, determines whether to adjust the
thread count. For example, if historical throughput statistics indicate that a higher thread count
increased throughput, WebLogic increases the thread count. Similarly, if statistics indicate that
fewer threads did not reduce throughput, WebLogic decreases the thread count.

The WebLogic Server thread pool is sized automatically and hence in most situations you do
not need to tune it. However, for special requirements, an administrator can configure custom
work managers to manage the thread pool at a more granular level for sets of requests that
have similar performance, availability, or reliability requirements. With custom work managers,
you can define priorities and guidelines for how to assign pending work (including specifying a
min threads or max threads constraint, or a constraint on the total number of requests that
can be queued or executed before WebLogic Server begins rejecting requests).

Use the following guidelines to help you determine when to use work managers to customize
thread management:

• The default fair share is not sufficient.

This usually occurs in situations where one application is given a higher priority over
another.

• A response time goal is required.

• A minimum thread constraint is specified to avoid server deadlock.

• You use MDBs in your application.

To ensure MDBs use a well-defined share of server thread resources, and to tune MDB
concurrency, most MDBs are modified to reference a custom work manager that has a
max-threads-constraint. In general, a custom work manager is useful when you have
multiple MDB deployments, or if you determine that a particular MDB needs more threads.

Note:

For details on how to use custom work managers to customize thread management,
and when to use custom work managers, see the following:

• Tune Pool Sizes in Tuning Performance of Oracle WebLogic Server

• Thread Management in Tuning Performance of Oracle WebLogic Server

• MDB Thread Management in Tuning Performance of Oracle WebLogic Server

• Using Work Managers to Optimize Scheduled Work in Administering Server
Environments for Oracle WebLogic Server

• Avoiding and Managing Overload in Administering Server Environments for
Oracle WebLogic Server

Use Oracle WebLogic Remote Console to view general information about the status of the
thread pool (such as active thread count, total thread count, and queue length.) You can also
use the Console to view the scope of the application and the work manager metrics from the
Workload tab on the Monitoring page. The metrics provided include the number of pending
requests and number of completed requests.

Chapter 1
Controlling Concurrency

1-13

The work manager and thread pool metrics can also be viewed from the Oracle Fusion
Middleware Control.

Setting Logging Levels
The amount of information that is logged can have a significant impact on the performance.

The amount of information that applications log depends on how the environment is configured
and how the application code is instrumented. To maximize performance, it is recommended
that the logging level is not set higher than the default INFO level logging. If the logging setting
does not match the default level, reset the logging level to the default for best performance.

After you set the application and server logging levels, ensure that the debugging properties or
other application level debugging flags are set correctly or disabled. To avoid performance
impacts, do not set log levels to levels that produce more diagnostic messages, including the
FINE or TRACE levels.

Each component has specific recommendations for logging levels.

Chapter 1
Setting Logging Levels

1-14

2
Performance Planning

A clearly defined plan for achieving your performance objectives is essential for deciding what
to trade for higher performance.

• About Performance Planning
To maximize performance, you must monitor, analyze, and tune all the components that
are used by your applications.

• Performance Planning Methodology
The Fusion Middleware components are built for performance and scalability. To maximize
the performance capabilities of your applications, you must build performance and
scalability into your design.

About Performance Planning
To maximize performance, you must monitor, analyze, and tune all the components that are
used by your applications.

Performance tuning usually involves a series of trade-offs. After you have determined what is
causing the bottlenecks, modify performance in some other areas to achieve the expected
results. However, if you have a defined plan for achieving your performance objectives, the
decision on what to trade for higher performance is easier.

Performance Planning Methodology
The Fusion Middleware components are built for performance and scalability. To maximize the
performance capabilities of your applications, you must build performance and scalability into
your design.

The performance plan should address the current performance requirements, the existing
issues, such as bottlenecks or insufficient hardware resources, and any anticipated variances
in load, users, or processes. The performance plan should also address how the components
scale during peak usage without impacting performance.

• Step 1: Defining Your Performance Objectives

• Step 2: Designing Applications for Performance and Scalability

• Step 3: Monitoring and Measuring Your Performance Metrics

Step 1: Defining Your Performance Objectives
Before you can begin performance tuning your applications, you must first identify the
performance objectives you hope to achieve. To determine your performance objectives, you
must understand the applications deployed and the environmental constraints placed on the
system.

Performance objectives are limited by constraints, such as:

• The configuration of hardware and software such as CPU type, disk size, disk speed, and
sufficient memory.

2-1

There is no single formula to determine your hardware requirements. The process of
determining what type of hardware and software configuration is required to meet
application needs adequately is called capacity planning.

Capacity planning requires assessment of your system performance goals and an
understanding of your application. Capacity planning for server hardware must focus on
maximum performance requirements.

• The configuration of high availability architecture to address peak usage and response
times. For more information on implementing high availability features in Oracle Fusion
Middleware applications, see Introduction and Roadmap in High Availability Guide.

• The ability to interoperate between domains, use legacy systems, support legacy data.

• Development, implementation, and maintenance costs.

Understanding these constraints-and their impacts-ensure that you set realistic performance
objectives for your application environment, such as response time, throughput, and load on
specific hardware.

• Defining Operational Requirements

• Identifying Performance Goals

• Understanding User Expectations

• Conducting Performance Evaluations

Defining Operational Requirements
Before you begin to deploy and tune your application on Oracle Fusion Middleware, it is
important to clearly define the operational environment. The operational environment is
determined by high-level constraints and requirements such as:

• Application Architecture

• Security Requirements

• Hardware Resources

Identifying Performance Goals
Whether you are designing a new system or maintaining an existing system, you should set
specific performance goals so that you know how and what to optimize. To determine your
performance objectives, you must understand the application deployed and the environmental
constraints placed on the system.

Gather information about the levels of activity that application components are expected to
meet, such as:

• Anticipated number of users

• Number and size of requests

• Amount of data and its consistency

• Target CPU utilization

Chapter 2
Performance Planning Methodology

2-2

Understanding User Expectations

Adjusting Capacity and Functional Demand

Application developers, database administrators, and system administrators must be careful to
set appropriate performance expectations for users. When the system carries out a
complicated operation, response time is slower than while performing a simple operation.

For example, ensure that 90% of the response time is not greater than 5 seconds and the
maximum response time for all is 20 seconds. Usually, it's not that simple. Application may
include various operations with differing characteristics and acceptable response time. Set
measurable goals for each of these operations.

Determine how variances in the load can affect the response time. For example, users might
access the system heavily between 9:00 am and 10:00 am and then again between 1:00 pm
and 2:00 pm, as illustrated by the graph in #unique_56/unique_56_Connect_42_CJABDBHG.
If the peak load occurs regularly, for example, daily or weekly, it is advised to configure and
tune systems to meet the peak load requirements. Accessing application in off-time gives
better response time than accessing it during peak-time. If your peak load is infrequent, higher
response times at peak loads must be expected for the cost savings of smaller hardware
configurations.

Conducting Performance Evaluations
With clearly defined performance goals and performance expectations, you can readily
determine when performance tuning has been successful. Success depends on the functional
objectives that you have established with the user community, your ability to measure whether
the criteria are being met, and your ability to take corrective action to overcome any
exceptions.

Ongoing performance monitoring enables you to maintain a well-tuned system. Keeping a
history of the application's performance over time enables you to make useful comparisons.
With data about the actual resource consumption for a range of loads, you can conduct
objective scalability studies and from these reports predict the resource requirements for
anticipated load volumes. For details on Monitoring, see, Monitoring .

Chapter 2
Performance Planning Methodology

2-3

Step 2: Designing Applications for Performance and Scalability
The key to good performance is good design. The design phase of the application
development cycle should be an on-going process. Cycling through the planning, monitoring
and tuning phases of the application development cycle is critical to achieving optimal
performance across Fusion Middleware deployments. Using an iterative design methodology
enables you to accommodate changes in your work loads without impacting your performance
objectives.

Step 3: Monitoring and Measuring Your Performance Metrics
Oracle Fusion Middleware provides a variety of technologies and tools that can be used to
monitor server and application performance. Monitoring enables you to evaluate the server
activity, watch trends, diagnose system bottlenecks, debug applications with performance
problems and gather data that can assist you in tuning the system.

Performance tuning is specific to the applications and resources that you have deployed on
your system. Some common tuning areas are included in Top Performance Areas .

Chapter 2
Performance Planning Methodology

2-4

3
Monitoring

Oracle Fusion Middleware provides a variety of technologies and tools that monitor server and
application performance.

• About Oracle Fusion Middleware Management Tools
Monitoring enables you to evaluate server activity, watch trends, diagnose system
bottlenecks, debug applications with performance problems, and gather data that can
assist in tuning the system.

• Oracle Enterprise Manager Fusion Middleware Control
Fusion Middleware Control is a web browser-based, graphical user interface that you can
use to monitor and administer your domain.

• Oracle WebLogic Remote Console
Oracle WebLogic Remote Console is a web browser-based, graphical user interface that
you use to manage an Oracle WebLogic Server domain.

• WebLogic Diagnostics Framework (WLDF)
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic framework
that can collect diagnostic data that servers and applications generate.

• WebLogic Scripting Tool (WLST)
The Oracle WebLogic Scripting Tool (WLST) is a command-line scripting environment that
you can use to create, manage, and monitor Oracle WebLogic Server domains.

• DMS Spy Servlet
The DMS Spy Servlet provides access to DMS metric data from a web browser.

• Native Operating System Performance Commands
Each operating system has native tools and utilities that can be useful for monitoring
purposes.

• Network Performance Monitoring Tools
Your operating system's network monitoring tools can be used to monitor utilization, verify
that the network is not becoming a bottleneck, or detect packet loss or other network
performance issues.

About Oracle Fusion Middleware Management Tools
Monitoring enables you to evaluate server activity, watch trends, diagnose system bottlenecks,
debug applications with performance problems, and gather data that can assist in tuning the
system.

After you install and configure Oracle Fusion Middleware, you can use the graphical user
interfaces or command-line tools to manage your environment.

Each tool is described in Overview of Oracle Fusion Middleware Administration Tools in
Administering Oracle Fusion Middleware.

3-1

Note:

The Oracle Process Manager and Notification Server (OPMN) is no longer used in
Oracle Fusion Middleware. Instead, system components are managed by the
WebLogic Management Framework, which includes WLST, Node Manager and the
pack and unpack commands. See What Is the WebLogic Management Framework in
Understanding Oracle Fusion Middleware.

• Measuring Your Performance Metrics

Measuring Your Performance Metrics
Metrics are the criteria you use to measure your scenarios against your performance
objectives. You can use performance metrics to help locate bottlenecks, identify resource
availability issues, or help tune your components to improve throughput and response times.
After you have determined your performance criteria, take measurements of the metrics used
to quantify your performance objectives.

For example, you might use response time, throughput, and resource utilization as your
metrics. The performance objective for each metric is the value that is acceptable. You match
the actual value of the metrics to your objectives to verify that you are meeting, exceeding, or
failing to meet your performance objectives.

When you manage or monitor an Oracle Fusion Middleware component or application with
Fusion Middleware Control, you may see performance metrics that provide insight into the
current performance of the component or application. In many cases, these metrics are shown
in interactive charts; other times they are presented in tabular format. The best way to use and
correlate the performance metrics is from the Performance Summary page for the component
or application that you are monitoring.

If you are new to Oracle Fusion Middleware or if you need additional information about
monitoring your environment by using the Performance Summary pages, see Viewing the
Performance of Oracle Fusion Middleware in Administering Oracle Fusion Middleware. In
addition, the Fusion Middleware Control online help provides definitions and other information
about specific performance metrics that are available on its management and monitoring
pages.

Oracle Enterprise Manager Fusion Middleware Control
Fusion Middleware Control is a web browser-based, graphical user interface that you can use
to monitor and administer your domain.

It can manage an Oracle WebLogic Server domain with its Administration Server, one or more
Managed Servers, clusters, the Oracle Fusion Middleware components that are installed,
configured, and running in the domain, and the applications that you deploy.

See Getting Started Using Oracle Enterprise Manager Fusion Middleware Control in
Administering Oracle Fusion Middleware.

Oracle WebLogic Remote Console
Oracle WebLogic Remote Console is a web browser-based, graphical user interface that you
use to manage an Oracle WebLogic Server domain.

Chapter 3
Oracle Enterprise Manager Fusion Middleware Control

3-2

It is accessible from any supported web browser with network access to the Administration
Server.

See Getting Started Using Oracle WebLogic Server Administration Console in Administering
Oracle Fusion Middleware.

Additional WebLogic Server Console Resources:

For details on the content contained in each summary table, see Monitor Servers in the Oracle
WebLogic Remote Console Online Help.

For detailed information on using the WebLogic Server to monitor your domain, see Tuning
Performance of Oracle WebLogic Server.

WebLogic Diagnostics Framework (WLDF)
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic framework that
can collect diagnostic data that servers and applications generate.

The WLDF can be configured to collect the data and store it in various sources, including log
records, data events, and harvested metrics.

See Understanding the Diagnostic Framework in Administering Oracle Fusion Middleware.

Note:

For details on the WebLogic Diagnostics Framework and how it can be leveraged for
monitoring Oracle Fusion Middleware components, see Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

WebLogic Scripting Tool (WLST)
The Oracle WebLogic Scripting Tool (WLST) is a command-line scripting environment that you
can use to create, manage, and monitor Oracle WebLogic Server domains.

It is based on the Java scripting interpreter, Jython. In addition to supporting standard Jython
features such as local variables, conditional variables, and flow-control statements, WLST
provides a set of scripting functions (commands) that are specific to WebLogic Server. You can
extend the WebLogic scripting language to suit your needs by following the Jython language
syntax.

See Getting Started Using the Oracle WebLogic Scripting Tool (WLST) in Administering Oracle
Fusion Middleware.

DMS Spy Servlet
The DMS Spy Servlet provides access to DMS metric data from a web browser.

Data that is created and updated by DMS-enabled applications and components is accessible
through the DMS Spy Servlet.

• Viewing Performance Metrics Using the Spy Servlet

• Using the DMS Spy Servlet

Chapter 3
WebLogic Diagnostics Framework (WLDF)

3-3

Viewing Performance Metrics Using the Spy Servlet
The DMS Spy Servlet is part of the DMS web application. The DMS web application's web
archive file is dms.war, and can be found in the same directory as dms.jar: /modules/
oracle.dms_12.1.2/dms.war.

The DMS web application is deployed by default as part of a JRF-enabled server instance. The
URL is: http://host:port/dms/Spy.

Only users who have Administrator role access can view this URL as access is controlled by
standard Jakarta EE elements in web.xml.

Using the DMS Spy Servlet
Spy Servlet Page - Metrics Tables

#unique_68/unique_68_Connect_42_CFAGHCFD shows the initial page of the Spy servlet:
both sides show the same list of metric tables.

The Spy servlet can display metric tables for WebLogic Server and also for non-Jakarta EE
components that are deployed.

Chapter 3
DMS Spy Servlet

3-4

For metric tables to appear in the Spy servlet, the component that creates and updates that
table must be installed and running. Metric tables for components that are not running are not
displayed. Metric tables with : in their name (for example,
weblogic_j2eeserver:app_overview) are aggregated metric tables generated by metric rules.

To view the contents of a metric table, click the table name. For example, #unique_68/
unique_68_Connect_42_CFADCFGG shows the MDS_Partition table.

To get a description of the fields in a metric table, click the Metric Definitions link below the
table.

Native Operating System Performance Commands
Each operating system has native tools and utilities that can be useful for monitoring purposes.

Native operating system commands enable you to gather and monitor system activity
information. For example CPU utilization, paging activity, swapping, and so on.

For details on operating system commands, refer to the documentation provided by the
operating system vendor.

Network Performance Monitoring Tools
Your operating system's network monitoring tools can be used to monitor utilization, verify that
the network is not becoming a bottleneck, or detect packet loss or other network performance
issues.

For details on network performance monitoring, refer to your operating system documentation.

Chapter 3
Native Operating System Performance Commands

3-5

4
Using the Oracle Dynamic Monitoring Service

The Oracle Dynamic Monitoring Service (DMS) publishes component performance data.

• About Dynamic Monitoring Service (DMS)
The Oracle Dynamic Monitoring Service (DMS) enables Oracle Fusion Middleware
components to provide administration tools, such as Oracle Enterprise Manager, with data
regarding the component's performance, state, and on-going behavior.

• About DMS Availability
DMS functionality is available on all certified Jakarta EE servers.

• About DMS Architecture
It is important to understand the components of DMS and how they interact with other
Oracle Fusion Middleware components.

• Viewing DMS Metrics
Oracle Fusion Middleware components are instrumented with DMS metrics to collect
information that developers, system administrators, and support analysts can use to
analyze system performance or monitor system status.

• About DMS Execution Context
The DMS execution context is the mechanism by which requests (such as RMI requests)
can be uniquely identified and thus tracked as they flow through the system.

• DMS Tracing and Events
The DMS tracing feature can be used to diagnose issues or collect specific data at a
specific time for a specific set of criteria.

• DMS Best Practices
Implement the following best practices when you use DMS metrics.

About Dynamic Monitoring Service (DMS)
The Oracle Dynamic Monitoring Service (DMS) enables Oracle Fusion Middleware
components to provide administration tools, such as Oracle Enterprise Manager, with data
regarding the component's performance, state, and on-going behavior.

Fusion Middleware components push data to DMS and in turn DMS publishes that data
through a range of different components. DMS measures and reports metrics, traces events
and system performance, and provides a context correlation service for these components.

• Understanding Common DMS Terms and Concepts

Understanding Common DMS Terms and Concepts
There are common DMS terms and concepts related to DMS Senors, DMS Nouns, and DMS
Tracing and Events.

• DMS Sensors

• DMS Nouns

• DMS Tracing and Events

4-1

DMS Sensors
DMS sensors measure performance data and enable DMS to define and collect a set of
metrics. Certain metrics are always included with a sensor and others are optional.

• DMS PhaseEvent Sensors

• DMS Event Sensors

• DMS State Sensors

• Sensor Naming Conventions

DMS PhaseEvent Sensors
A DMS PhaseEvent sensor measures the time spent in a specific section of code that has a
beginning and an end. Use a PhaseEvent sensor to track time in a method or in a block of
code.

DMS can calculate optional metrics that are associated with a PhaseEvent, including the
average, maximum, and minimum time that is spent in the PhaseEvent sensor.

Table 4-1 lists the metrics that are available with PhaseEvent sensors.

Table 4-1 DMS PhaseEvent Sensor Metrics

Metric Description

sensor_name.time Specifies the total time spent in the phase sensor_name.

Default metric: time is a default PhaseEvent sensor metric.

sensor_name.completed Specifies the number of times the phase sensor_name has
completed since the process was started.

Optional metric.

sensor_name.minTime Specifies the minimum time spent in the phase
sensor_name, for all the times the sensor_name phase
completed.

Optional metric.

sensor_name.maxTime Specifies the maximum time spent in the phase
sensor_name, for all the times the sensor_name phase
completed.

Optional metric.

sensor_name.avg Specifies the average time spent in the phase sensor_name,
computed as the (total time)/(number of times the phase
completed).

Optional metric.

sensor_name.active Specifies the number of threads in the phase sensor_name,
at the time the DMS statistics are gathered (the value
changes over time).

Optional metric.

sensor_name.maxActive Specifies the maximum number of concurrent threads in the
phase sensor_name, since the process started.

Optional metric.

Chapter 4
About Dynamic Monitoring Service (DMS)

4-2

DMS Event Sensors
A DMS event sensor counts system events. Track system events through a DMS event sensor
that has a short duration, or where the occurrence of the event is of interest.

Table 4-2 describes the metric that is associated with an event sensor.

Table 4-2 DMS Event Sensor Metrics

Metric Description

sensor_name.count Specifies the number of times the event has occurred since
the process started. sensor_name is the name of the event
sensor as specified in the DMS instrumentation API.

Default: count is the default metric for an event sensor. No
other metrics are available for an event sensor.

DMS State Sensors
A DMS state sensor tracks the value of Java primitives or the content of a Java object.
Supported types include integer, double, long, and object. Use a state sensor when you want
to track the system status information or when you need a metric that is not associated with an
event. For example, use state sensors to track queue lengths, pool sizes, buffer sizes, or host
names. You assign a precomputed value to a state sensor.

Table 4-3 describes the state sensor metrics. State sensors support a default metric value, as
well as optional metrics. The optional minValue and maxValue metrics only apply for state
sensors if the state sensor represents a numeric Java primitive (of type integer, double, or
long).

Table 4-3 DMS State Sensor Metrics

Metric Description

sensor_name.value Specifies the metric value for sensor_name, by using the
type assigned when sensor_name is created.

Default: value is the default state metric.

sensor_name.count Specifies the number of times sensor_name is updated.

Optional metric.

sensor_name.minValue Specifies the minimum value for sensor_name since startup.

Optional metric.

sensor_name.maxValue Specifies the maximum value for this sensor_name since
startup.

Optional metric.

Sensor Naming Conventions
The following list describes the DMS sensor naming conventions:

• Sensor names must be descriptive, but not redundant. Sensor names should not contain
any part of the noun name hierarchy, or type, as it is redundant.

• Sensor names must avoid containing the value for the individual metrics.

Chapter 4
About Dynamic Monitoring Service (DMS)

4-3

• Where multiple words are required to describe a sensor, the first word must start with a
lowercase letter, and the following words must start with uppercase letters. For example,
computeSeries.

• In general, avoid using a /character in a sensor name. However, there are cases where it
makes sense to use a name that contains /. If a / is used in a noun or sensor name, then
when you use the sensor in a string with DMS methods, use an alternative delimiter, such
as , or _, which does not appear anywhere in the path; it enables the / to be properly
understood as part of the noun or sensor name rather than as a delimiter.

For example, a child noun can have a name such as:

examples/jsp/num/numguess.jsp

and you can look this up by using the string:

,default,WEBs,defaultWebApp,JSPs,example/jsp/num/numguess.jsp,service

where the delimiter is the ,character.

• The Event sensor and PhaseEvent sensor names should have the form verbnoun. For
example, activateInstance and runMethod. When a PhaseEvent monitors a function,
method, or code block, it must be named to reflect the task performed as clearly as
possible.

• The name of a state sensor must be a noun, possibly preceded by an adjective, which
describes the semantics of the value that is tracked with this state sensor. For example,
lastComputed, totalMemory, port, availableThreads, activeInstances.

• To avoid confusion, do not name sensors with strings such as .time, .value, or .avg,
which are names of sensor metrics, as shown in Table 4-1, Table 4-2, and Table 4-3.

DMS Nouns
DMS nouns organize performance data. Sensors, with their associated metrics, are organized
in hierarchy according to nouns. Nouns enable you to organize DMS metrics in a manner
comparable to a directory structure in a file system. For example, nouns can represent classes,
methods, objects, queues, connections, applications, databases, or other objects that you want
to measure.

A noun type is the attribute that identifies the noun's type. Nouns that represent similar types
of entities typically have the same noun type and usually record a common set of
measurements for each of those entities.

• General DMS Naming

• General DMS Naming Conventions and Character Sets

• Noun and Noun Type Naming Conventions

General DMS Naming
A noun name is a string, which does not include a delimiter. For example, BasicBinomial is a
noun name. A noun full name consists of the noun name with the namespace and localpart.
The noun name is preceded by the full name of its parent, and a delimiter. For example, /
dmsDemo/BasicBinomial/"{http://mynamespace/}JAXWSHelloService" is a noun full name.

A sensor name is a string, which does not include the . or the derivation. For example,
computeSeries, loops, and lastComputed are sensor names.

Chapter 4
About Dynamic Monitoring Service (DMS)

4-4

A sensor full name consists of the sensor name, preceded by the name of its associated
noun and a delimiter. For example, /dmsDemo/BasicBinomial/computeSeries, /dmsDemo/
BasicBinomial/loops, /dmsDemo/BasicBinomial/lastComputed.

A DMS metric name consists of a sensor name plus the . character plus the metric. For
example, computeSeries.time, loops.count, and lastComputed.value are valid DMS metric
names.

Note:

The suffixes .time, .count, and .value are immutable. Sensor and noun names,
however, can be modified as needed.

General DMS Naming Conventions and Character Sets
DMS names must be as compact as possible. When you define noun and sensor names, avoid
special characters such as white space, slashes, periods, parenthesis, commas, and control
characters.

Table 4-4 shows the DMS replacement for special characters in names.

Table 4-4 Replacement for Special Characters in DMS Names

Character DMS Replacement Character

Space character Underscore character: _
Period character: . Underscore character: _
Control character Underscore character: _
Less than character: < Open parenthesis: (
Greater than character: > Close parenthesis:)
Ampersand: & Caret: ^
Double quote: " Backquote: '
Single quote: ' Backquote: '

Note:

Oracle Fusion Middleware includes several built-in metrics. The Oracle Fusion
Middleware built-in metrics do not always follow the DMS naming conventions.

Noun and Noun Type Naming Conventions
The following conventions are used when naming noun and noun types:

• A noun name must be unique.

• A noun name must identify a specific entity of interest.

Chapter 4
About Dynamic Monitoring Service (DMS)

4-5

• Noun types should have names that clearly reflect the set of metrics that are being
collected. For example, Servlet is the type for a noun under which the metrics that are
specific to a given servlet fall.

• Noun type names must start with a capital letter to distinguish them from other DMS
names. All nouns of a given type must contain the same set of sensors.

• The noun naming scheme uses a / as the root of the hierarchy, with each noun acting as a
container under the root or under its parent noun.

DMS Tracing and Events
Conceptually, DMS generates a stream of events; each event is in response to one of the
event-producing actions that are being performed on the DMS API by the components that
integrate with DMS (such as a sensor being updated). That stream of events can be ignored or
routed (and optionally filtered) to destinations that can respond in some way to events.

Table 4-5 provides a list of DMS tracing and event terminology.

Table 4-5 DMS Tracing and Event Terminology

DMS Term Definition

Condition A condition is the logic behind a condition filter. It
determines which events might pass through a filter, based
on the rules defined in the condition. Every condition filter
has zero or one root condition, but conditions might include
AND or OR arguments together to create compound
conditions. The single root condition can describe a relatively
complex rule.

Two types of condition exist:

• Noun Type Condition: operates on the name of the noun
type that is associated with a sensor or noun event.

• Context Condition: operates on the values currently set
within the current Execution Context.

See DMS Tracing and Events.

Destination A destination implements a mechanism for reacting to
events that are passed to it. For example, a destination logs
events to a file, sends transformed copies of events to the
Java Flight Recorder, renders information gathered from
incoming events as data in an MBean.

Event Route An event route connects a filter to a destination. Event
routes can be enabled or disabled.

Filter An event tracing filter selectively passes a subset of all
possible DMS runtime events. Filters can be configured with
rules that determine the events that are passed and the
events that are blocked.

For example, it is possible to define filters to:

• Only pass sensor updates that are made when the
execution context has a key-value pair of role-admin

• Only pass sensor updates from nouns of type
JDBC_Statement

See DMS Tracing and Events.

Listener A DMS listener is also known as the destination. See
Configuring Destinations.

Chapter 4
About Dynamic Monitoring Service (DMS)

4-6

About DMS Availability
DMS functionality is available on all certified Jakarta EE servers.

This includes both the runtime features and supporting commands. Also, several features of
DMS operates in JSE applications and standalone C applications.

For details on which servers are certified, see the Oracle Fusion Middleware Certification
Matrix.

About DMS Architecture
It is important to understand the components of DMS and how they interact with other Oracle
Fusion Middleware components.

DMS consists of the following features:

• DMS Metrics: The DMS metrics feature provides Java and C APIs, which the Oracle
Fusion Middleware components use for instrumenting code with performance
measurements and other useful state metrics.

• Execution Context: Execution Context supports the maintenance and propagation of a
specific context structure throughout the Oracle stack. By exploiting the propagated
context structure, Oracle Fusion Middleware components can record diagnostic
information (such as log records) that can be correlated between different components and
products running on the same or different servers and hosts. See About DMS Execution
Context.

• Events and Tracing: Event Tracing enables you to configure live tracing with no restarts.
DMS metrics that are updated by using Oracle Fusion Middleware products must be traced
by using the DMS Event Tracing feature. The system has been designed to facilitate not
only tracing, but also to support the other functionality that is driven from DMS activity.

Figure 4-1 shows the components of DMS and how they interact with other Oracle Fusion
Middleware components. The arrows show the direction in which information flows from one
component to the next.

Chapter 4
About DMS Availability

4-7

Figure 4-1 DMS Interactions with Oracle Fusion Middleware Components

Viewing DMS Metrics
Oracle Fusion Middleware components are instrumented with DMS metrics to collect
information that developers, system administrators, and support analysts can use to analyze
system performance or monitor system status.

The Fusion Middleware Control online help provides information on each of the specific
metrics. See Viewing the Performance of Oracle Fusion Middleware in Administering Oracle
Fusion Middleware for information on accessing metric information.

The Oracle Fusion Middleware metrics come from various sources and locations. They include
MBean attributes and DMS metrics. They also come from non-Jakarta EE servers, such as
Oracle servers.

You can use various tools to view the DMS metrics.

• Viewing Metrics By Using the Spy Servlet

• Viewing Metrics with WLDF (WebLogic Diagnostic Framework)

• Viewing Metrics with WLST (Oracle WebLogic Server)

• Viewing Metrics with JConsole

• Viewing Metrics with Oracle Enterprise Manager

Viewing Metrics By Using the Spy Servlet
The Spy Servlet is part of the DMS Application that is deployed by default on JRF-extended
installations. The Spy Servlet is launched from http://<host>:<port>/dms/Spy. The default
port for WebLogic is 1521.

Chapter 4
Viewing DMS Metrics

4-8

The DMS Application's web archive file is dms.war, and can be found in the same directory as
dms.jar: oracle_common/modules/oracle.dms_12.1.2/dms.war.

See DMS Spy Servlet.

Note:

The Spy Servlet is secured by using standard Jakarta EE declarative security in the
web-application's web.xml file, and access is granted only to members of the
Administrator's group.

Viewing Metrics with WLDF (WebLogic Diagnostic Framework)
You can use WebLogic Diagnostic Framework (WLDF) to harvest DMS metrics from DMS
metric MBeans. You can also use WLDF to monitor changes to the attribute value of an
MBean. See Configuring the Harvester for Metric Collection in Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

Viewing Metrics with WLST (Oracle WebLogic Server)
DMS Commands

DMS provides three commands to view metrics in WLST and they are detailed in the table
below.

Use this command... To do this...

displayMetricTableNames() List the names of the available metric tables.

If there are many metric tables, consider using the
outputfile parameter with
displayMetricTableNames(). It is useful when the output
is expected to be large. When
displayMetricTableNames() has the outputfile
parameter, it returns null to the script instead of the whole
output. This prevents the command from running out of
memory.

NOTE: The command syntax for
displayMetricTableNames() differs slightly for system
components (such as OHS). After you connect WLST to
Node Manager by using the nmConnect() command, you
must specify both the server name and the server type
explicitly.

For example:

displayMetricTableNames(servertype="OHS",
servers="ohs1")

Chapter 4
Viewing DMS Metrics

4-9

Use this command... To do this...

displayMetricTables() Show the content of the DMS metric tables.

If you have many DMS metric tables, consider using the
outputfile parameter with displayMetricTables().
This is useful when the output is expected to be large. When
displayMetricTables() has the outputfile parameter,
it returns null to the script instead of the whole output. This
prevents the command from running out of memory.

NOTE: The command syntax for displayMetricTables()
differs slightly for system components (such as OHS). After
you connect WLST to Node Manager by using the
nmConnect() command, you must specify both the server
name and the server type explicitly.

For example:

displayMetricTables(servertype="OHS",
servers="ohs1")

dumpMetrics() Display metrics in the internal format. Valid formats for the
dumpMetrics command include raw, xml, and pdml.

If you have many DMS metric tables, consider using the
outputfile parameter with dumpMetrics(). This is useful
when the output is expected to be large. When
dumpMetrics() has the outputfile parameter, it returns
null to the script instead of the whole output. This prevents
the command from running out of memory.

NOTE: The command syntax for dumpMetrics() differs
slightly for system components (such as OHS). After you
connect WLST to Node Manager by using the nmConnect()
command, you must specify both the server name and the
server type explicitly.

For example:

dumpMetrics()(servertype="OHS", servers="ohs1")

As well as displaying textual output, these commands also return a structured object, or a
single value that you can use in a script to process.

For details on using these commands, see the following:

• Getting Started Using the Oracle WebLogic Scripting Tool (WLST) in Administering Oracle
Fusion Middleware

• DMS Metric Commands in WLST Command Reference for Infrastructure Components

Viewing Metrics with JConsole
To provide a standards-based way to access metrics, DMS exposes them through MBeans. An
MBean is created and registered for each type with the runtime MBean Server. The DMS
sensors contained by the noun are exposed as the attributes of the MBean. Exposing the DMS
metrics as MBeans allows administrators to use tools, such as JConsole (the Java monitoring
and management console) and other Java Management Extension (JMX) clients, to access the
DMS metrics.

MBeans also allow for integration with other Oracle diagnostics software such as WLDF
(WebLogic Diagnostics Framework). The noun name and noun type are exposed as the name
and type properties of the metric MBean object name. The MBean domain name is
oracle.dms. The object name also reflects the DMS noun hierarchy.

Chapter 4
Viewing DMS Metrics

4-10

Note:

You can use JConsole to view DMS generated MBeans on a Jakarta EE server either
locally or remotely. DMS generates an MBean for each Java DMS noun that has a
valid noun type. It does not generate MBeans for the non-Jakarta EE component
metrics and the DMS nouns that have no noun types. Each DMS metric contained
under the noun is mapped to an attribute in the metric MBean.

Viewing Metrics with Oracle Enterprise Manager
Oracle Fusion Middleware automatically and continuously measures data regarding the
component's performance, state, and the on-going behavior. The metrics are automatically
enabled; there is no need to set options or perform any extra configuration to collect them. See
Oracle Enterprise Manager Fusion Middleware Control.

About DMS Execution Context
The DMS execution context is the mechanism by which requests (such as RMI requests) can
be uniquely identified and thus tracked as they flow through the system.

It also provides the means by which context information can be communicated between
cooperating Fusion Middleware components involved in fulfilling requests.

• DMS Execution Requests and Subtasks

• DMS Execution Context Usage

• DMS Execution Context Communication

DMS Execution Requests and Subtasks
The DMS execution context has been developed with the understanding that a single request
(or task) might create many subtasks that are coordinated to complete the request or root task.
Consider the following examples of requests and their associated subtasks:

1. A request sent directly to Oracle WebLogic Server from a browser:

• Root task only on Oracle WebLogic Server

2. A request sent through Oracle Server (acting as a reverse proxy) to Oracle WebLogic
Server:

• Root task on Oracle Server

• Single sub-task on Oracle WebLogic Server

3. A request sent from an Oracle Server (acting as a reverse proxy) to an Oracle WebLogic
Server that requires invocation of two remote web services from an Oracle WebLogic
Server to fulfill the request:

• Root task on an Oracle Server

• Single sub-task on an Oracle WebLogic Server

• Two sub-subtasks, one on each web service

A DMS execution context is composed of the following:

• A unique identifier, the Execution Context ID (ECID).

Chapter 4
About DMS Execution Context

4-11

The ECID is unique for each new root task and is shared across the tree of tasks that are
associated with the root task.

• A relationship identifier, the Relationship ID (RID).

The RID is an ordered set of numbers that describes the location of each task in the tree of
tasks. The leading number is usually a zero. A leading number of 1 indicates that it has not
been possible to track the location of the sub-task within the overall sub-task tree.

• A set of name-value pairs by which globally relevant data can be shared among Oracle
Fusion Middleware components.

The following three scenarios illustrate how ECID and RID are used when a request is sent
from an Oracle Server (acting as a reverse proxy) to an Oracle WebLogic Server and the
server requires invocation of two remote web services from Oracle WebLogic Server.

1. Root task on Oracle Server:

• New ECID = B5C094FA...BE4AE8

• Root RID = 0

2. Single subtask on Oracle WebLogic Server:

• Same ECID = B5C094FA...BE4AE8

• Sub-task RID = 0:1

3. Two subtasks, one on each web service:

• First web service invoked

Same ECID = B5C094FA...BE4AE8

Sub-task RID = 0:1:1

• Second web service invoked

Same ECID = B5C094FA...BE4AE8

Sub-task RID = 0:1:2

DMS Execution Context Usage
The most immediate benefits of the DMS execution context are realized when attempting to
correlate log messages between servers. The Oracle standard format for logging involves a
field dedicated to the ECID. Once the ECID is known, when its read from an ERROR level log
message for example, it is possible to locate all other log messages that are associated with
that task by querying the log files for messages that contain that ECID.

The following example shows a very specific case of using the command:

displayLogs(e);

In this example, any log files with messages that contain the ECID B5C094FA...BE4AE8 is
displayed.

DMS Execution Context Communication
Figure 4-2 shows the components that cooperate to communicate the DMS execution context
between each other. Arrows pointing to a component indicate the protocols that are inspected
for incoming context information. Outgoing arrows show protocols to which context information
is added. It is possible for a single component to send requests to itself, passing context
information in that request.

Chapter 4
About DMS Execution Context

4-12

Figure 4-2 DMS Execution Context Communication Protocols

DMS Tracing and Events
The DMS tracing feature can be used to diagnose issues or collect specific data at a specific
time for a specific set of criteria.

DMS can selectively trace the following:

• DMS sensor lifecycle events (create, update, delete of state sensors, event sensors, and
phase sensors)

• Context events (start, stop)

• Events (start, stop)

The configuration that controls which of these types of events are traced, and how those
events are processed, is recorded in the dms_config.xml file. The DMS trace configuration is
split into three parts:

1. Filter Configuration

Defines the rules that select the events that are of interest

2. Destination Configuration

Defines how the events are used

3. eventRoute Configuration

Defines which filters are wired to which destinations

A filter can be associated with one or more destinations thus granting the administrator to
define a filter rule once and have the resulting subset of all possible events processed on one
or more destinations.

Chapter 4
DMS Tracing and Events

4-13

The configuration can be modified by using the DMS configuration MBean or WLST
commands at runtime; this makes the DMS tracing feature invaluable for diagnosing issues
within a specific time period or collecting specific data at a specific time for a specific set of
criteria.

See Configuring Selective Tracing Using WLST in Administering Oracle Fusion Middleware.

The following types of filter rules are supported:

• Event Type Conditions

Used to identify if an event was triggered from the START or STOP of a PHASE_SENSOR
• Context Type Conditions

Used to identify if the event was generated from a unit of work whose context contains a
value (for example, USER)

• Noun Type Conditions

Used to identify if the event was triggered from a sensor whose noun is of a specific type
(for example, JDBC_CONNECTION)

• Logical AND and OR combinations of the conditions mentioned

• Configuring the DMS Event System

• Configuring Destinations

• Understanding the Format of DMS Events in Log Messages

• Understanding DMS Event Actions

Configuring the DMS Event System
Configuration is recorded in each server dms_config.xml file. MBean updates can be made at
runtime by using the command-line interface (CLI) commands and through the Event
Configuration Mbean. Configuration updates are applied to the running system in a thread
safe, but non-atomic, manner.

The object name of the DMS Event configuration MBean is:
oracle.dms.event.config:name=DMSEventConfigMBean,type=JMXEventConfig
To review the current state of the DMS event configuration on your system , use the following
command:

listDMSEventConfiguration([server=<server>])

The resulting output looks similar to:

Event routes:
 FILTER : auto662515911
 DESTINATION : destination1
 ENABLED : true
 FILTER : filter0
 DESTINATION : q
 ENABLED : true
Filters with no event route:
 Fred

Destinations with no event route:
 des4

Chapter 4
DMS Tracing and Events

4-14

• Adding and Editing Filters

• Adding and Editing Destinations

• Adding and Editing Event Routes

• Compound Operations

Adding and Editing Filters

DMS Operators

Filters define the rules that select the events that are considered for tracing.

The following example shows how to add a filter that selects all events related to JDBC
operations:

addDMSEventFilter(id='myJDBCFilter', props={'condition': 'NOUNTYPE sw JDBC_'})

Or:

addDMSEventFilter(id='myJDBCFilter', props={'condition': 'NOUNTYPE startsWith JDBC_'})

This filter assumes that all DMS sensor updates that are associated with JDBC operations are
performed on nouns of types whose names begin with JDBC_.

If the rule must be modified, the filter must be updated as shown in the following example:

updateDMSEventFilter(id="myJDBCFilter", props={'condition': 'NOUNTYPE startsWith JDBC_
OR NOUNTYPE startsWith MDS_'});

As of Oracle Fusion Middleware 11.1.1.6.0, the following shortened convenience operators
have been added. Operators can be specified by using either the shortened or longer name.

Operators with an underscore have been deprecated in favor of the ODL format, which is to
use mixed case. For example, not_equals becomes notEquals or ne. The old format works,
but is discouraged.

Noun Type Operators Details

equals, eq notEquals, ne
contains in
startsWith, sw -

Context Operators Details

equals, eq notequals, ne
isnull isnotnull
startswith, sw contains
lt gt

Example:

addDMSEventFilter(id='mdsbruce', name='MyFilter', props={'condition':
'NOUNTYPE eq MDS_Connections AND CONTEXT user ne bruce'})

addDMSEventFilter(id='mdsbruce', name='MyFilter', props={'condition':
'NOUNTYPE equals MDS_Connections AND CONTEXT user notequals bruce'})

Chapter 4
DMS Tracing and Events

4-15

For details on the syntax used to describe a filter's rule (the condition property), refer to the
WebLogic Scripting Tool Command Reference or the command help.

Adding and Editing Destinations
Destinations encapsulate logic for responding to events. For example, a basic destination logs
the event, a different destination might transform an event and pass it to another system for
further processing.

The following example shows how to add a destination that logs events:

addDMSEventDestination(id="myLoggerDestination",
class="oracle.dms.trace2.runtime.LoggerDestination", props={"loggerName":"myLogger"});

Merely adding the destination is not sufficient for events to be logged; to log the events, you
must associate a filter with a destination by using an eventRoute, and the eventRoute must be
enabled (default).

The types of destination available, and their configuration options, are described in Configuring
Destinations. The following example shows how to edit an existing destination:

updateDMSEventDestination(id="myLoggerDestination",
props={"loggerName":"myTraceLogger"});

Adding and Editing Event Routes
The following example shows how to join the filter and create a destination.

addDMSEventRoute(filterid='myJDBCFilter', destinationid='myLoggerDestination')

You can invoke addDMSEventRoute without an explicit filterId. In these scenarios, all events
are passed to the destination without filtering.

To remove a filter or destination, you must first remove the event routes that are associated
with the filter or destination (even if the event route is disabled). For example, if you wanted to
remove myJDBCFilter, you would first need to remove the eventRoute created in the previous
example, and then remove the filter as shown in the following example:

removeDMSEventRoute(filterid='myJDBCFilter', destinationid='myLoggerDestination')
removeDMSEventFilter(id='myJDBCFilter')

Compound Operations
It is possible to create a filter and an eventRoute based on that filter by using a single
command (rather than using two separate commands as shown in Adding and Editing Event
Routes).

Note:

The destination to be used by the event route must already be defined:

enableDMSEventTrace (destinationid='myLoggerDestination', condition='NOUNTYPE
starts_with JDBC_')

Chapter 4
DMS Tracing and Events

4-16

In the example above, enableDMSEventTrace automatically creates a filter with the specified
condition, and also creates and enables an event route by using the new filter and the
nominated destination. The output is shown in the following example:

Filter "auto605449842" using Destination "myLoggerDestination" added, and event-route
enabled for server "AdminServer"

Configuring Destinations
DMS offers several types of destinations.

• LoggerDestination

• MBean Creator Destination

• Request Tracker Destination

• Java Flight Recorder Destination

LoggerDestination

Table 4-6 Logger Destination

Properties Details

Description The LoggerDestination writes each event to the associated
logger.

Implementing Class oracle.dms.trace2.runtime.LoggerDestination

Properties

loggerName The name of the ODL logger to which events are written.

Instances of logger destinations write events to the named logger at a log level of FINER.

The loggerName property specifies the name of a logger, but the logger does not necessarily
have to be described in logging.xml, though it can be. If the logger name refers to a logger
that is explicitly named in logging.xml, then the logger is referred to as a static logger (see
Static Loggers and Handlers). If the logger name refers to a logger that is not explicitly named
in logging.xml, then the logger is referred to as a dynamic logger (see Dynamic Loggers and
Handlers).

Default configuration: the default configuration defines the logger destination, with an
identification of LoggerDestination. This instance does not form part of any eventRoute and
therefore is not active. It is provided for convenience, and uses a dynamic logger.

• Static Loggers and Handlers

• Dynamic Loggers and Handlers

• Default Locations of the logging.xml File

• Using a CLI Command to Query the Trace Log File

Static Loggers and Handlers
Loggers are the objects to which log records are presented. Log handlers are the objects
through which log records are written to log files.

Chapter 4
DMS Tracing and Events

4-17

For complete control over the log file to which DMS trace data is written, define the logger
named in the logger destination in logging.xml. It allows you to define the name of the log file,
the maximum size, format, file rotation, and policies.

Oracle recommends using commands (like the example here) to update the configuration.

setLogLevel(logger="myTraceLogger", level="FINER", addLogger=1);

configureLogHandler(name="my-trace-handler", addToLogger=["myTraceLogger"], path="/tmp/
myTraceLogFiles/trace", maxFileSize="10m", maxLogSize="50m",
handlerType="oracle.core.ojdl.logging.ODLHandlerFactory", addHandler=1,
useParentHandlers=0);

configureLogHandler(name="my-trace-handler", propertyName="useSourceClassandMethod",
propertyValue="false", addProperty=1);

For details on logging configuration, see Managing Log Files and Diagnostic Data in
Administering Oracle Fusion Middleware.

The use of the optional property useSourceClassandMethod set to FALSE prevents the
SRC_CLASS and SRC_METHOD from appearing in every message and improves performance by
reducing file output times.

For static loggers, consider setting the useParentHandlers parameter to FALSE, otherwise
duplicate event messages are logged to [server]-diagnostics.log, and are shown in a log
query.

See Understanding the Format of DMS Events in Log Messages.

Dynamic Loggers and Handlers
If the named logger has no associated handler defined in logging.xml, then the logger
destination dynamically creates a handler object that writes to a file in the server's default log
output directory. (Instances of logger destinations write events to the named logger at a log
level of FINER.) The file name is the logger's name followed by -event.log. For instance, in the
example in Static Loggers and Handlers, DMS events would be written to myTraceLogger-
event.log.

Default Locations of the logging.xml File
The logging.xml file can typically be found in one of the following platform locations:

Table 4-7 Default locations of the logging.xml file

Platform Server Location

Oracle WebLogic Server AdminServer ORACLE_HOME/WLS_Home/
user_projects/domains/
base_domain/config/fmwconfig/
servers/AdminServer/logging.xml

Using a CLI Command to Query the Trace Log File
If the logger destination's logger and handler are defined in the logging.xml file then you can
take advantage of the displayLogs() command to access logged trace data without having to
manually locate or search for it.

Examples:

Chapter 4
DMS Tracing and Events

4-18

• To display all the log messages for the myTraceLogger:

displayLogs(query='MODULE equals myTraceLogger')
• To display only the log messages for myTraceLogger that have an ECID of

0000HpmSpLWEkJQ6ub3FEH194kwB000004:

displayLogs(query='MODULE equals myTraceLogger and ECID equals
0000HpmSpLWEkJQ6ub3FEH194kwB000004')

• To display only the log messages for myTraceLogger that have an ECID of
0000HpmSpLWEkJQ6ub3FEH194kwB000004 in the last 10 minutes:

displayLogs(query='MODULE equals myTraceLogger and ECID equals
0000HpmSpLWEkJQ6ub3FEH194kwB000004', last=10)

• To display all the log messages from a dynamic logger the log file name must be included:

displayLogs(disconnected=1, log=DOMAIN_ROOT+"/servers/AdminServer/logs/myTraceLogger-
event.log")

MBean Creator Destination

Table 4-8 MBean Creator Destination Details

Properties Details

Description The MBean creator destination make nouns accessible as
MBeans, exposing their metrics as attributes, for access
through WLDF, JConsole, and so on.

Implementing Class oracle.dms.jmx.MetricMBeanFactory

Use in the default configuration: An instance of the MBean Creator destination is configured
and active by default, and creates MBeans for all nouns created in the server.

By associating an instance of this destination type with a filter based on a noun-type rule, it is
possible to expose (as MBeans) only those types that are of interest to the administrator.

Although it is possible to modify the configuration that is associated with an MBean creator
destination at runtime, it must be understood that the reinitialization process for this type of
destination impacts the performance. Frequent runtime reconfiguration is therefore
discouraged.

WebLogic Diagnostic Framework (WLDF) can be used to harvest DMS metrics exposed by the
MBean creator destination. See Configuring and Using the Diagnostics Framework for Oracle
WebLogic Server.

• Metric MBean Object Name

Metric MBean Object Name
The noun name and noun type are exposed as the name and type properties of the metric
MBean object name. The MBean domain name is oracle.dms. The object name also reflects
the DMS noun hierarchy.

For example, if the noun's full path name is:

/oracle/dfw/ofm/base_domain/AdminServer
and the noun type is DFW_Incident, the object name of the MBean representing the noun is

Chapter 4
DMS Tracing and Events

4-19

oracle.dms:Location=AdminServer,name=/oracle/dfw/ofm/base_domain/
AdminServer,type=DFW_Incident.

Request Tracker Destination

Table 4-9 Request Tracker Destination Details

Properties Details

Description The Request Tracker destinations maintains a list of active
requests, and makes the requests accessible to other
Diagnostic Framework (DFW) components.

Implementing Class oracle.dms.event.RequestTrackerDestination
Properties

excludeHeaderNames Comma-separated list of header names to exclude from
tracking.

Use in the default configuration: An instance of the request tracker destination is enabled by
default. When a DFW incident is generated, the active request list is dumped automatically,
allowing an administrator to correlate the failure with a specific request.

For each request the following information is dumped:

• Uniform Resource Identifier (URI)

• Start time of the request

• Execution Context ID (ECID)

• Query string

• Headers

When the request tracker is not enabled the Request Dump outputs the following:

Requests are not being tracked. To enable request tracking enable the DMS
oracle.dms.event.RequestTrackerDestination in dms_config.xml

• Executing the Request Tracker Dump

Executing the Request Tracker Dump
The information maintained by the request tracker can be accessed manually. When
connected to a server, to execute the dump that reports the request information the WLST
executeDump command can be used, as follows:

> executeDump(name=".requests")
Active Requests:

StartTime: 2009-12-14 02:24:41.870
ECID: 0000IMChyqEC8xT6uBf9EH1B9X9^000009,0
URI: /myApp/Welcome.jsp
QueryString:
Headers:
 Host: myHost.example.com:7001
 Connection: keep-alive
 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.5 (KHTML,
like Gecko) Chrome/4.0.249.30 Safari/532.5
 Accept: application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/
png,*/*;q=0.5

Chapter 4
DMS Tracing and Events

4-20

 Accept-Encoding: gzip,deflate
 Cookie: ORA_MOS_LOCALE=en%7CGB; s_nr...
 Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

Java Flight Recorder Destination
The Java Flight Recorder (JFR) records information regarding the runtime status and behavior
of the Java JVM. JFR also exposes an API through which third party events can be reported.

DMS traces and JFR traces only show part of the picture of the actions that are being
performed in the server. DMS integration with JFR enhances the diagnostic information that is
available to administrators and developers as follows:

1. Application level events and JVM level events can be reported as a single sequence. This
avoids the need to combine such events from separate log files based only on the
timestamp (which might not tick over fast enough to order events created at or around the
same time).

2. Recent DMS activity can be dumped, retroactively, from the JVM at will.

3. Recent DMS and JVM events can be dumped to disk in the event of a fatal error so the
JVM exits gracefully.

4. The DMS ECID can be used to correlate activity relating to the same request, or unit of
work, across the span of a JFR recording.

5. The DMS ECID can be used to collect diagnostic information from all systems involved
with an event, or series of events, recorded by JFR.

• Dynamically Derived JFR Event Types – Names, Values, and Descriptions

Dynamically Derived JFR Event Types – Names, Values, and Descriptions

Values of the JFR Event for a Noun Type

A DMS noun type is associated with a JFR InstantEvent event type:

• The name of the JFR event type for a noun type is the noun type name with the suffix
state.

• The path of the JFR event type for a noun type is dms/ followed by the producer-name,
followed by the event type name.

• Event sensors do not contribute any values to the JFR event type.

• The values of the JFR event for a noun type are described in #unique_113/
unique_113_Connect_42_CIHCDEEC:

Value Name Description Relational Notes

ECID The Execution Context ID
(ECID) associated with the
action.

Yes

RID The RID associated with the
action.

Yes

Chapter 4
DMS Tracing and Events

4-21

Value Name Description Relational Notes

<noun type> name The full path of the noun. This field is populated with
the full path of the noun. The
field name assumes that the
noun_type meaningfully
categorizes all objects
measured by the nouns of
that type.

<state-sensor-name> The value of the state sensor. No Each state sensor belonging
to the noun contributes one of
these values to the instant
event. There might be more
that one value in each noun.

event name The name of the event sensor
that was updated, left null
otherwise.

No The event name field is
required for counting the
number of times a DMS event
sensor has been updated in a
recording (event sensors do
not contribute values to an
event type).

A DMS phase sensor is associated with a JFR DurationEvent event type in the following ways:

• The name of the JFR event type for a phase sensor belonging to a noun of a particular
noun type is the noun type name followed by the phase sensor name.

• The path of the JFR event for a noun type is dms/ followed by the producer-name, followed
by the event type name.

• The values of the duration event is as mentioned (except for the sensorName value). For
example, the stop of a phase event results in a JFR duration event being reported to JFR
that contains the state information of the phase event parent noun.

Several DMS objects allow integrators to add descriptions. Descriptions from DMS objects are
used as follows:

• Noun type description is used in creation of the JFR event type.

• State and event sensor descriptions are not applied–there is nowhere to apply them.

• Phase sensor descriptions are applied to their JFR event type.

• Examples of Dynamically Derived Producers and Events

Examples of Dynamically Derived Producers and Events

Table 4-10 provides examples for the rules described in Dynamically Derived JFR Event Types
– Names, Values, and Descriptions:

Chapter 4
DMS Tracing and Events

4-22

Table 4-10 Examples of Dynamically Derived Producers and Events

DMS Java Flight Recorder (JFR)

Noun type:
JDBC_Connection
Noun path:
/JDBC/Driver/CONNECTION_7
Sensors:
CreateStatement (P)
CreateNewStatement (P)
DBWaitTime (P)
JDBC_Connection_Url (S)
JDBC_Connection_Username (S)
Where:
P: Phase Sensor

S: State Sensor

E: Event Sensor

Producer Name: JDBC

The Producer Name is based on the leading component of
the noun path.

Event Type 1
Event Type Name: JDBC_Connection State
noun type State
Event Type Path: dms/JDBC/JDBC_Connection_State
dms/leading component of noun path/noun type/
_State
Fields:
• ECID
• RID
• JDBC_Connection name

Value is the full path of the noun
• JDBC_Connection_Url

Value of the state sensor of this name at the time of the
event

• JDBC_Connection_Username
Value of the state sensor of this name at the time of the
event

• Event Name
Value is one of the following:

– The name of the DMS event sensor whose
activation caused this JFR event instance

– Null if this JFR event instance was created for a
state sensor update

- Producer Name: JDBC

Event Type 2
Event Type Name: JDBC_Connection CreateStatement
Event Type Path:

dms/JDBC/JDBC_Connection_CreateStatement
Fields:
• ECID
• RID
• JDBC_Connection name
• JDBC_Connection_Url
• JDBC_Connection_Username

Chapter 4
DMS Tracing and Events

4-23

Table 4-10 (Cont.) Examples of Dynamically Derived Producers and Events

DMS Java Flight Recorder (JFR)

- Producer Name: JDBC

Event Type 3
Event Type Name: JDBC_Connection
CreateNewStatement
Event Type Path:

dms/JDBC/JDBC_Connection_CreateNewStatement
Fields:
• ECID
• RID
• JDBC_Connection name
• JDBC_Connection_Url
• JDBC_Connection_Username

- Producer Name: JDBC

Event Type 4
Event Type Name: JDBC_Connection DBWaitTime
Event Type Path:

dms/JDBC/JDBC_Connection_DBWaitTime
Fields:
• ECID
• RID
• JDBC_Connection name
• JDBC_Connection_Url
• JDBC_Connection_Username

Understanding the Format of DMS Events in Log Messages
Table 4-11 describes the fields that make up a DMS event. Field elements are separated by :
(with a few exceptions). Sample events are provided to illustrate the position of the field within
an actual event string.

Table 4-11 Event Formatting Descriptions

Applicable Events Field Number Name Description

All 1 Version number The version number of the
event format.

For example:

v1:1280737384058:_REQUE
ST:STOP:/MyWebApp/emp

All 2 Event time The time at which the event
occurred.

For example:

v1:1280737384058:_REQUE
ST:STOP:/MyWebApp/emp

Chapter 4
DMS Tracing and Events

4-24

Table 4-11 (Cont.) Event Formatting Descriptions

Applicable Events Field Number Name Description

All 3 Source object type The type of object on which
an action was performed to
produce the event including:

• NOUN
• EVENT_SENSOR
• STATE_SENSOR
• PHASE_SENSOR
• EXECUTION_CONTEXT
• _REQUEST
For example:

v1:1280737384058:_REQUE
ST:STOP:/MyWebApp/emp

All 4 Action type The type of action that
resulted in the generation of
this event. A given source
object type might not produce
events for every action type:

• CREATE
• UPDATE
• DELETE
• START
• STOP
• ABORT
For example:

v1:1280737384058:_REQUE
ST:STOP:/MyWebApp/emp

Nouns 5 Noun type The name of the noun type.

For example:

v1:1281344803506:NOUN:C
REATE:JDBC_Connection:/
JDBC/JDBC Data
Source-0/CONNECTION_1

6 Noun path The full path identifying the
noun to which the sensor
belongs

For example:

v1:1281344803506:NOUN:C
REATE:JDBC_Connection:/
JDBC/JDBC Data
Source-0/CONNECTION_1

Chapter 4
DMS Tracing and Events

4-25

Table 4-11 (Cont.) Event Formatting Descriptions

Applicable Events Field Number Name Description

All Sensor Types 5 Noun type The name of the noun type to
which this sensor belongs.

For example:

v1:1280503318973:STATE_S
ENSOR:UPDATE:JDBC_Con
nection:LogicalConnection:/
JDBC/JDBC Data Source-0/
CONNECTION_1:State.ANY:
LogicalConnection@13bed08
6

6 Sensor name The name of the sensor.

For example:

v1:1280737383069:PHASE_
SENSOR:STOP:JDBC_Connec
tion:DBWaitTime:/JDBC/
JDBC Data Source-0/
CONNECTION_1:1280737382
950:1280737383069

7 Noun path The full path identifying the
noun to which the sensor
belongs.

For example:

v1:1280737383069:PHASE_
SENSOR:STOP:JDBC_Connec
tion:DBWaitTime:/JDBC/
JDBC Data Source-0/
CONNECTION_1:1280737382
950:1280737383069

Phase Sensor Types 8 Start token The start token of the phase.

For example:

v1:1280737383069:PHASE_
SENSOR:STOP:JDBC_Connec
tion:DBWaitTime:/JDBC/
JDBC Data Source-0/
CONNECTION_1:1280737382
950:1280737383069

9 Stop token The end token of the phase.

For example:

v1:1280737383069:PHASE_
SENSOR:STOP:JDBC_Connec
tion:DBWaitTime:/JDBC/
JDBC Data Source-0/
CONNECTION_1:1280737382
950:1280737383069

Chapter 4
DMS Tracing and Events

4-26

Table 4-11 (Cont.) Event Formatting Descriptions

Applicable Events Field Number Name Description

State Sensor Types 8 State value type The type of value held by the
state sensor including:

• State.DOUBLE
• State.INTEGER
• State.LONG
• State.OBJECT
• State.ANY
For example:

v1:1280503318973:STATE_
SENSOR:UPDATE:JDBC_Conn
ection:LogicalConnectio
n:/JDBC/JDBC Data
Source-0/
CONNECTION_1:State.ANY:
LogicalConnection@13bed
086

9 State value The value of the state
represented in string form.

For example:

v1:1280503318973:STATE_
SENSOR:UPDATE:JDBC_Conn
ection:LogicalConnectio
n:/JDBC/JDBC Data
Source-0/
CONNECTION_1:State.ANY:
LogicalConnection@13bed
086

Requests 5 URI Uniform Resource Identifier
(URI) identifies the resource
upon which to apply the
request.

For example:

v1:1280737382889:_REQUE
ST:START:/myWebApp/
showEmployees
v1:1280737384058:_REQUE
ST:STOP:/myWebApp/
showEmployees

Chapter 4
DMS Tracing and Events

4-27

Table 4-11 (Cont.) Event Formatting Descriptions

Applicable Events Field Number Name Description

Execution Context 5 ECID, RID The context identifier
(composed of ECID and RID
separated by a comma).

For execution context events
the complete substring
starting at the first character
after the fourth event field
separator (:) records the
ECID, RID identifiers-the
context identifiers might
contain : but do not interpret
them as event field
separators.

For example:

v1:1280737384058:EXECUT
ION_CONTEXT:STOP:bc4fd0
668f79d507:367c127f:12a
23f2013c:-8000-00000000
00000f73,0

Understanding DMS Event Actions
Table 4-12 shows the action types that can be performed on source object types.

Table 4-12 Actions Performed on Source Object Types

Object Type Create Update Delete Start Stop Abort

Noun Yes - Yes - - -

Event Sensor Yes Yes Yes - - -

Phase Sensor Yes - Yes Yes Yes Yes

State Sensor Yes Yes Yes - - -

Execution
Context

- - - Yes Yes -

Request - - - Yes Yes -

DMS Best Practices
Implement the following best practices when you use DMS metrics.

Default System Clock Time versus Actual Time (in milliseconds)

The use of DMS metrics can have an impact on application performance. When you add
metrics, consider the following:

• Use a High Resolution Clock to increase DMS Precision.

By default, DMS uses the system clock for measuring time intervals during a PhaseEvent.
The default clock reports microsecond precision in C processes such as Apache and

Chapter 4
DMS Best Practices

4-28

reports millisecond precision in Java processes. Optionally, DMS supports a high
resolution clock to increase the precision of performance measurements and lets you
select the values for reporting time intervals. Use a high resolution clock to time phase
events accurately than using the default clock or when the system's default clock does not
provide the resolution needed for your requirements.

System clocks are not necessarily as accurate as their precision implies. For example, a
system clock that reports time in milliseconds might not tick (change) once per millisecond.
Instead, it might take up to 15 ms to tick as shown in the following example:

Actual Time System Time

12:00:00.000 12:00:00.000

12:00:00.001 12:00:00.000

12:00:00.002 12:00:00.000

[...]

12:00:00.014 12:00:00.000

12:00:00.015 12:00:00.015

12:00:00.016 12:00:00.015

#unique_75/unique_75_Connect_42_CIHIAEGF shows a phase with a 12 ms duration that
runs from actual time 12:00:00.002 to 12:00:00.014 would be calculated in system time as
having a duration of zero. Similarly, a phase with a 2 ms duration running from
12:00:00.014 to 12:00:00.016 would be reported in system time as having a duration of 15
ms.

Note:

These behaviors are more evident on some operating systems than others. Use
caution when you analyze individual periods of time that are shorter than the tick
period of the system clock. Configuring DMS to use a higher resolution clock
causes DMS to record phase sensor activations with higher resolution, but the
accuracy will still be limited by the underlying system.

• Configure DMS Clocks for Reporting Time for Java.

Selecting the high resolution clock changes clocks for all applications running on the server
where the clock is changed. You set the DMS clock and the reporting values globally by
using the oracle.dms.clock and oracle.dms.clock.units properties, which control
process startup options.

For example, to use the high resolution clock with the default values, set the following
property on the Java command line:

-Doracle.dms.clock=highres

Chapter 4
DMS Best Practices

4-29

Caution:

If you use the high resolution clock, the default values are different from the value
that Fusion Middleware Control expects (msecs). If you need the Fusion
Middleware Control displays to be correct when you use the high resolution
clock, then set the units property as follows:

-Doracle.dms.clock.units=msecs

#unique_75/unique_75_Connect_42_CIHBFIGE shows the supported values for the
oracle.dms.clock property.

Value Description

DEFAULT Specifies that DMS use the default clock. With the default
clock, DMS uses the Java call
java.lang.System.currentTimeMillis to obtain times
for PhaseEvents.

The default value for the units for the default clock is MSECS.

HIGHRES The Java Highres clock uses System.nanoTime() (no JNI
required).

#unique_75/unique_75_Connect_42_CIHFEEJJ shows the supported values for the
oracle.dms.clock.units property.

Value Description

MSECS Specifies that the time must be converted to milliseconds and
reported as msecs. A millisecond is 10-3 seconds.

Note: This is the default value for the default clock.

USECS Specifies that the time must be converted to microseconds
and reported as usecs. A microsecond is 10-6 seconds.

NSECS Specifies that the time must be converted to nanoseconds
and reported as nsecs. A nanosecond is 10-9 seconds.

Note: This is the default value for the high resolution clock.

Note the following when you use the high resolution DMS clock:

– When you set the oracle.dms.clock and the oracle.dms.clock.units properties, any
combination of upper and lower case characters is valid for the value that you select
(case is not significant). For example, any of the following values are valid to select the
high resolution clock: highres, HIGHRES, and HighRes.

– DMS checks the property values at startup. When the clock property is set with a value
that is not listed in #unique_75/unique_75_Connect_42_CIHBFIGE, DMS uses the
default clock. If the oracle.dms.clock property is not set, DMS uses the default clock.

– When the clock units property is set to a value not listed in #unique_75/
unique_75_Connect_42_CIHFEEJJ, DMS uses the default units for the specified
clock.

Chapter 4
DMS Best Practices

4-30

Part II
Core Components

The core components in Oracle Fusion Middleware need to be tuned for optimal performance.

This part describes configuring core components to improve performance. It contains the
following topics:

Note:

For information on performance tuning the Oracle WebLogic Server, see Tuning
Performance of Oracle WebLogic Server.

• Tuning Oracle HTTP Server
You can tune Oracle HTTP Server (OHS) to optimize its performance as the web server
component for Oracle Fusion Middleware.

• Tuning Oracle Metadata Service
You can tune Oracle Metadata Services (MDS) to optimize its performance as an
application server and Oracle relational database.

• Tuning Oracle Fusion Middleware Security
You can tune Oracle Fusion Middleware security services to optimize the performance of
security services through Oracle Platform Security Services (OPSS) and Oracle Web
Services.

5
Tuning Oracle HTTP Server

You can tune Oracle HTTP Server (OHS) to optimize its performance as the web server
component for Oracle Fusion Middleware.

Note:

The configuration examples and recommended settings are for illustrative purposes
only. Consult your own use case scenarios to determine the configuration options
that can provide performance improvements.

• About Oracle HTTP Server
Oracle HTTP Server (OHS) is the Web server component for Oracle Fusion Middleware.

• Monitoring Oracle HTTP Server Performance
Oracle Fusion Middleware automatically and continuously measures runtime performance
for Oracle HTTP Server.

• Basic Tuning Considerations
Tuning configurations may improve the performance of the Oracle HTTP Server. Always
consult your own use case scenarios to determine if these settings are applicable to your
deployment.

• Advanced Tuning Considerations
Advanced tuning recommendations may or may not apply to your environment. Review the
following recommendations to determine if the changes would improve your Oracle HTTP
Server performance.

About Oracle HTTP Server
Oracle HTTP Server (OHS) is the Web server component for Oracle Fusion Middleware.

It provides a listener for Oracle webLogic Server and the framework for hosting static pages,
dynamic pages, and applications over the web. Oracle HTTP Server is based on the Apache
2.4.x infrastructure, and includes modules developed specifically by Oracle. The features of
single sign-on, clustered deployment, and high availability enhance the operation of the Oracle
HTTP Server.

For more information on the Apache open-source software infrastructure, see the Apache
Software Foundation at http://www.apache.org/.

Monitoring Oracle HTTP Server Performance
Oracle Fusion Middleware automatically and continuously measures runtime performance for
Oracle HTTP Server.

The performance metrics are automatically enabled; you do not need to set options or perform
any extra configuration to collect them. If you encounter a problem, such as an application that

5-1

http://www.apache.org/

is running slowly or is hanging, you can view particular metrics to find out more information
about the problem.

Note:

Fusion Middleware Control provides real-time data. See Managing and Monitoring
Server Processes in Administering Oracle HTTP Server.

For monitoring, Oracle HTTP Server uses the Dynamic Monitoring Service (DMS), which
collects metrics for every functional piece. You can review these metrics as needed to
understand system behavior at a given point of time. This displays memory, CPU information
and the minimum, maximum, and average times for the request processing at every layer in
Oracle HTTP Server. The metrics also display details about load level, number of threads,
number of active connections, and so on, which can help in tuning the system based on real
usage.

See Viewing Metrics with WLST (Oracle WebLogic Server).

Basic Tuning Considerations
Tuning configurations may improve the performance of the Oracle HTTP Server. Always
consult your own use case scenarios to determine if these settings are applicable to your
deployment.

• Tuning Oracle HTTP Server Directives

• Reducing Process Availability with Persistent Connections

• Logging Options for Oracle HTTP Server

Tuning Oracle HTTP Server Directives
Oracle HTTP Server uses directives in the httpd.conf configuration file. This configuration file
specifies the maximum number of requests that can be processed simultaneously, logging
details, and certain limits and time outs.

See the Oracle HTTP Server, see Understanding Oracle HTTP Server Management Tools in
Administering Oracle HTTP Server.

Oracle HTTP Server supports three different Multi-Processing Modules (MPMs) by default. The
MPMs supported are:

• Worker: It uses Multi-Process-Multi-Threads model and is the default MPM on all
platforms other than Microsoft Windows platforms. Multithread support makes it more
scalable by using fewer system resources and multiprocess support makes it more stable.

• WinNT: This MPM is for Windows platforms only. It consists of a parent process and a
child process. The parent process is the control process, and the child process creates
threads to handle requests.

• Prefork: This is Apache 1.3.x style and uses processes instead of threads. It is considered
the least efficient MPM.

• Event: This MPM is designed to allow more requests to be served simultaneously by
passing off some processing work to supporting threads, freeing up the main threads to

Chapter 5
Basic Tuning Considerations

5-2

work on new requests. It is based on the worker MPM, which implements a hybrid
multiprocess multithreaded server.

The directives for each MPM type are defined in the DOMAIN_HOME/config/fmwconfig/
components/OHS/<componentName>/httpd.conf. The default MPM type is the event MPM. To
use a different MPM (such as prefork MPM), edit the ohs.plugins.nodemanager.properties
file found in the same directory.

Note:

The information here is based on the use of worker and WinNT MPMs, which use
threads. The directives listed might not be applicable if you are using the prefork
MPM. If you are using Oracle HTTP Server based on Apache 1.3.x or Apache 2.2
with prefork MPM, refer to the Oracle Application Server 10g Release 3
documentation at https://docs.oracle.com/en/middleware/webcenter/index.html.

Table 5-1 Oracle HTTP Server Configuration Properties

Directive Description

ListenBackLog
This directive maps to the Maximum Queue Length field on
the Performance Directives screen.

Specifies the maximum length of the queue of pending
connections. Generally no tuning is needed. Some operating
systems do not use exactly what is specified as the backlog,
but use a number based on, but normally larger than, what is
set.

Default Value: 511

Chapter 5
Basic Tuning Considerations

5-3

https://docs.oracle.com/en/middleware/webcenter/index.html

Table 5-1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

MaxRequestWorkers
This directive maps to the Maximum Requests field on the
Performance Directives screen.

This parameter is not available in mod_winnt (Microsoft
Windows). Winnt uses a single process, multithreaded model
and is controlled by the ThreadLimit directive.

Specifies a limit on the total number of servers running, that
is, a limit on the number of clients who can simultaneously
connect. If the number of client connections reaches this
limit, then subsequent requests are queued in the TCP/IP
system up to the limit specified with the ListenBackLog
directive (after the queue of pending connections is full, new
requests generate connection errors until a thread becomes
available).

You can configure the MaxRequestWorkers directive in the
httpd.conf file up to a maximum of 8000 (8K) (the default
value is 150). If your system is not resource-saturated and
you have a user population of more than 150 concurrent
HTTP/Thread connections, you can improve your
performance by increasing MaxRequestWorkers to increase
server concurrency. Increase MaxRequestWorkers until your
system becomes fully utilized (85% is a good threshold).

Conversely, when system resources are saturated,
increasing MaxRequestWorkers does not improve
performance. In this case, the MaxRequestWorkers value
could be reduced as a throttle on the number of concurrent
requests on the server.

If the server handles persistent connections, then it might
require sufficient concurrent httpd or thread server processes
to handle both active and idle connections. When you specify
MaxRequestWorkers to act as a throttle for system
concurrency, you must consider that persistent idle httpd
connections also consume httpd/thread processes.
Specifically, the number of connections includes the currently
active persistent and non-persistent connections and the idle
persistent connections. A persistent KeepAlive http
connection consumes an httpd child process, or thread,
during the connection, even if no requests are currently being
processed for the connection.

If you have sufficient capacity, KeepAlive must be enabled;
using persistent connections improves performance and
prevents wasting CPU resources reestablishing connections.
Normally, you should not change KeepAlive parameters.

The maximum allowed value for MaxRequestWorkers is
8192 (8K).

Default Value: 150

Chapter 5
Basic Tuning Considerations

5-4

Table 5-1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

StartServers
This directive maps to the Initial Child Server Processes
field on the Performance Directives screen.

Specifies the number of child server processes that are
created on startup. If you expect a sudden load after restart,
set this value based on the number of child servers that are
required.

The following parameters are inter-related and applicable
only on UNIX platforms (worker_mpm):

• MaxRequestWorkers
• MaxSpareThreads and MinSpareThreads
• ServerLimit and StartServers
On the Windows platform (mpm_winnt), as well as UNIX
platforms, the following parameters are important to tune:

• ThreadLimit
• ThreadsPerChild
Each child process has a set of child threads that are defined
for them and that can actually handle the requests. Use
ThreadsPerChild with this directive.

The values of ThreadLimit, ServerLimit, and
MaxRequestWorkers can indirectly affect this value. Read
the notes for these directives and use them with this
directive.

Default Value: 2

ServerLimit
This parameter is not available in mod_winnt (Microsoft
Windows). Winnt uses a single process, multithreaded model

Specifies an upper limit on the number of server (child)
processes that can exist or be created. This value overrides
the StartServers value if that value is greater than the
ServerLimit value. It is used to control the maximum
number of server processes that can be created.

Default Value: 16

ThreadLimit Specifies the upper limit on the number of threads that can
be created under a server (child) process. This value
overrides the ThreadsPerChild value if that value is greater
than the ThreadLimit value. It is used to control the
maximum number of threads created per process to avoid
conflicts or issues.

Default Values:

• Windows Multi-Processing Module (mpm_winnt): 1920
• All others: 64

Chapter 5
Basic Tuning Considerations

5-5

Table 5-1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

ThreadsPerChild
This directive maps to the Threads Per Child Server
Process field on the Performance Directives screen.

Sets the number of threads created by each server (child)
process at startup.

Default Value: 150 when mpm_winnt is used and 25 when
worker MPM is used.

The ThreadsPerChild directive works with other directives,
as follows:

At startup, Oracle HTTP Server creates a parent process,
which creates several child (server) processes as defined by
the StartServers directive. Each server process creates
several threads (server or worker), as specified in
ThreadsPerChild, and a listener thread, which listens for
requests and transfers the control to the worker or server
threads.

After startup, based on load conditions, the number of server
processes and server threads (children of server processes)
in the system are controlled by MinSpareThreads (minimum
number of idle threads in the system) and
MaxSpareThreads (maximum number of idle threads in the
system). If the number of idle threads in the system is more
than MaxSpareThreads, Oracle HTTP Server terminates the
threads and processes if there are no child threads for a
process. If the number of idle threads is fewer than
MinSpareThreads, it creates new threads and processes if
the ThreadsPerChild value has already been reached in
the running processes.

The ServerLimit, ThreadLimit, and
MaxRequestWorkers directives affect the other directives as
follows:

• ServerLimit: Defines the upper limit on the number of
servers that can be created. This affects
MaxRequestWorkers and StartServers.

• ThreadLimit: Defines the upper limit on
ThreadsPerChild. If ThreadsPerChild is greater
than ThreadLimit, then it is automatically trimmed to
the latter value.

• MaxRequestWorkers: Defines the upper limit on the
number of server threads that can process requests
simultaneously. This must be equal to the number of
simultaneous connections that can be made. This value
must be a multiple of ThreadsPerChild. If
MaxRequestWorkers is greater than ServerLimit
multiplied by ThreadsPerChild, it is automatically
trimmed to the latter value.

Chapter 5
Basic Tuning Considerations

5-6

Table 5-1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

MaxConnectionsPerChild
This directive maps to the Max Requests Per Child Server
Process field on the Performance Directives screen.

Specifies the number of requests that each child process is
allowed to process before the child process dies. The child
process ends to avoid problems after prolonged use when
Apache (and any other libraries it uses) leak memory or other
resources. On most systems, it is not needed, but some
UNIX systems have notable leaks in the libraries. For these
platforms, set MaxConnectionsPerChild to 10000; a
setting of 0 means unlimited requests.

This value does not include KeepAlive requests after the
initial request per connection. For example, if a child process
handles an initial request and 10 subsequent keep alive
requests, it would only count as 1 request toward this limit.

Default Value: 0
Note: Windows systems MaxConnectionsPerChild must
always be set to 0 (unlimited) since there is only one server
process.

MaxSpareThreads
MinSpareThreads
These directives map to the Maximum Idle Threads and
Minimum Idle Threads fields on the Performance Directives
screen.

These parameters are not available in mod_winnt (Windows
platform).

Controls the server-pool size. Rather than estimating how
many server threads you need, Oracle HTTP Server
dynamically adapts to the actual load. The server tries to
maintain enough server threads to handle the current load,
plus a few more server threads to handle transient load
increases such as multiple simultaneous requests from a
single browser.

The server periodically checks how many server threads are
waiting for a request. If there is fewer than
MinSpareThreads, it creates a new spare. If there is more
than MaxSpareThreads, some of the spares are removed.

Default Values:

MaxSpareThreads: 75
MinSpareThreads: 25

Timeout
This directive maps to the Request Timeout field on the
Performance Directives screen.

The number of seconds to wait for an incoming request to be
received before sending a time-out.

Default Value: 300

KeepAlive
This directive maps to the Multiple Requests Per
Connection field on the Performance Directives screen.

Whether to allow persistent connections (more than one
request per connection). Set to Off to deactivate.

Default Value: On

MaxKeepAliveRequests The maximum number of requests to allow during a
persistent connection. Set to 0 to allow an unlimited amount.

If you have long client sessions, consider increasing this
value.

Default Value: 100

KeepAliveTimeout
This directive maps to the Allow With Connection Timeout
(seconds) field, which is located under the Multiple
Requests Per Connection field, on the Performance
Directives screen.

Number of seconds to wait for the next request from the
same client on the same connection.

Default Value: 5 seconds

Chapter 5
Basic Tuning Considerations

5-7

Table 5-1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

limit
ulimit

Number of objects that a program uses to read or write to an
open file or open network sockets. A lack of available file
descriptors can impact operating system performance.

Tuning the file descriptor limit can be accomplished by
configuring the hard limit (ulimit) in a shell script, which
starts the OHS. Once the hard limit has been set, the OHS
then adjusts the soft limit (limit) to match.

Configuring file descriptor limits is platform-specific. Refer to
your operating system documentation for details.

Reducing Process Availability with Persistent Connections
If your browser supports persistent connections, you can support them on the server by using
the KeepAlive directives in the Oracle HTTP Server. Persistent connections can improve
performance by reducing the work load on the server. With persistent connections enabled, the
server does not have to repeat the work to set up the connections with a client.

The default settings for the KeepAlive directives are:

KeepAlive on
MaxKeepAliveRequests 100
KeepAliveTimeOut 5

These settings allow enough requests per connection and time between requests to reap the
benefits of the persistent connections, while minimizing the drawbacks. Consider the size and
behavior of your own user population when you set these values. For example, if you have a
large user population and the users make small infrequent requests, you may want to reduce
the keepAlive directive default settings, or even set KeepAlive to off. If you have a small
population of users that return to your site frequently, you may want to increase the settings.

The KeepAlive option should be used judiciously along with MaxRequestWorkers directive. The
KeepAlive option would tie a worker thread to an established connection until it times out or
the number of requests reaches the limit specified by MaxKeepAliveRequests. This means that
the connections or users in the ListenBacklog queue would be starving for a worker until the
worker is relinquished by the keep-alive user. The starvation for resources happens on the
KeepAlive user load with the user population consistently higher than the specified
MaxRequestWorkers.

Note:

The MaxRequestWorkers property is applicable only to UNIX platforms. On Windows,
the same functionality is achieved through the ThreadLimit and ThreadsPerChild
parameters.

Increasing MaxRequestWorkers may impact the performance in the following ways:

• A high number of MaxRequestWorkers can overload the system resources and may lead to
poor performance.

Chapter 5
Basic Tuning Considerations

5-8

• For a high user population with fewer requests, consider increasing the
MaxRequestWorkers to support the KeepAlive connections to avoid starvation. This can
impact overall performance when the user concurrency increases. System performance is
impacted by increased concurrency and can possibly cause the system to fail.

MaxRequestWorkers must always be set to a value where the system would be stable or
performing optimally (~85% CPU).

Typically for high user population with less frequent requests, consider turning off the
KeepAlive option or reduce it to a low value to avoid starvation.

Disabling the KeepAlive connection may impact performance in the following ways:

• Connection establishment for every request has a cost.

• If the frequency of creating and closing connections is higher, then some system resources
are used. The TCP connection has a time_wait interval before it can close the socket
connection and open file descriptors for every connection. The default time_wait value is
60 seconds and each connection can take 60 seconds to close, even after it is relinquished
by the server.

WARNING:

To avoid potential performance issues, values for any parameters should be set only
after you consider the nature of the workload and the system capacity.

Logging Options for Oracle HTTP Server
The logging options for Oracle HTTP Server include types of logging, log levels, and the
performance implications for using logging.

• Access Logging

• Configuring the HostNameLookups Directive

• Error logging

Access Logging
Access logs are generally enabled to track who accessed what. The access_log file, available
in the ORACLE_INSTANCE/diagnostics/logs/OHS/ohsname directory, contains an entry for each
request that is processed. This file grows as time passes and can consume disk space.
Depending on the nature of the workload, the access_log has little impact on performance. If
you notice that performance is becoming an issue, the file can be disabled if some other proxy
or load balancer is used and gives the same information.

Configuring the HostNameLookups Directive
By default, the HostNameLookups directive is set to Off. The server writes the IP addresses of
incoming requests to the log files. When HostNameLookups is set to On, the server queries the
DNS system on the Internet to find the host name that is associated with the IP address of
each request, then writes the host names to the log. Depending on the server load and the
network connectivity to your DNS server, the performance impact of the DNS HostNameLookup
may be high. When possible, consider logging only IP addresses. On UNIX systems, you can

Chapter 5
Basic Tuning Considerations

5-9

resolve IP addresses to host names offline, with the logresolve utility found in the /Apache/
Apache/bin/ directory.

Error logging
The server notes unusual activity in an error log. The ohsname.log file, available in
ORACLE_INSTANCE/diagnostics/logs/OHS/ohsname directory, contains errors, warnings,
system information, and notifications (depending on the log-level setting).

The d.conf file contains the error log configuration for OHS. The OraLogMode directive defines
the logging mode. The default is odl-text, which produces the Oracle diagnostic logging
format in a text file. Alternatively, change it to odl-xml to produce the Oracle diagnostic logging
format in an XML file.

For Oracle diagnostic-style logging, OraLogSeverity directive is used for setting the log level.

For Apache-style logging, the ErrorLog and LogLevel directives identify the log file and the
level of detail of the messages recorded. The default debug level is Warn.

Excessive logging can have some performance cost and might also fill disk space. The log
level control must be used based on need. For requests that use dynamic resources, like
mod_osso or mod_plsql, there is a performance cost associated.

Advanced Tuning Considerations
Advanced tuning recommendations may or may not apply to your environment. Review the
following recommendations to determine if the changes would improve your Oracle HTTP
Server performance.

• Tuning Oracle HTTP Server

• Tuning Oracle HTTP Server Security

Tuning Oracle HTTP Server
You can follow the topics to avoid or debug potential Oracle HTTP Server performance
problems.

• Analyzing Static Versus Dynamic Requests

• Limiting the Number of Enabled Modules

• Tuning the File Descriptor Limit

Analyzing Static Versus Dynamic Requests
It is important to understand where your server is spending resources so you can focus your
tuning efforts in the areas where the most stands to be gained. When you configure your
system, it can be useful to know what percentage of the incoming requests are static and what
percentage are dynamic.

Generally, you want to concentrate your tuning effort on dynamic pages because dynamic
pages can be costly to generate. Also, by monitoring and tuning your application, you may find
that much of the dynamically generated content, such as catalog data, can be cached, sparing
significant resource usage.

Chapter 5
Advanced Tuning Considerations

5-10

Limiting the Number of Enabled Modules
Oracle HTTP Server, based on Apache 2.2, has a slight change in architecture, in the way the
requests are handled, compared to the previous release.

The new architecture, Oracle HTTP Server invokes the service function of each module that is
loaded (in the order of definition in the d.conf file) until the request is serviced. This indicates
that there is some cost associated with invoking the service function of each module, to know if
the service is accepted or declined.

Because of this change in architecture, consider placing the most frequently hit modules above
the others in the d.conf file.

For the static page requests, which are directly deployed to Oracle HTTP Server and served by
the default handler, the request has to go through all the modules before the default handler is
invoked. This process can impact performance of the request so consider enabling only the
modules that are required by the deployed application. For example, if mod_plsql is never
used by the deployed application, disable it to maintain performance.

In addition, there are a few modules that register their hooks to do some work during the URL
translation phase, which would add to the cost of request processing time. For example,
mod_security, when enabled, has a cost of about 10% on CPU Cost per Transaction for the
specweb benchmark. Again, enable only those modules that are required by your deployed
applications to save CPU time.

Tuning the File Descriptor Limit
A lack of available file descriptors can cause a wide variety of symptoms, which are not always
easily traced back to the operating system's file descriptor limit. You can tune the file descriptor
limit by configuring the operating system's hard limit for the user who starts the OHS. Once
configured, the OHS adjusts the soft limit to match the operating system limit.

Configuring file descriptor limits is platform-specific. Refer to your operating system
documentation for details. The following code example shows the command for Linux:

 APACHECTL_ULIMIT="ulimit -S -n `ulimit -H -n`"

Note:

This limit must be reconfigured after you apply a patch set.

Tuning Oracle HTTP Server Security
Tuning Oracle HTTP Server includes tuning the SSL and Port Tunneling.

• Tuning Oracle HTTP Server Secure Sockets Layer (SSL)

• Tuning Oracle HTTP Server Port Tunneling

Tuning Oracle HTTP Server Secure Sockets Layer (SSL)
Secure Sockets Layer (SSL) is a protocol developed by Netscape Communications
Corporation that provides authentication and encrypted communication over the Internet.
Conceptually, SSL resides between the application layer and the transport layer on the

Chapter 5
Advanced Tuning Considerations

5-11

protocol stack. While SSL is technically an application-independent protocol, it has become a
standard for providing security over and all major web browsers support SSL.

SSL can become a bottleneck in both the responsiveness and the scalability of a web-based
application. Where SSL is required, the performance challenges of the protocol should be
carefully considered. Session management, in particular session creation and initialization, is
generally the most costly part of using the SSL protocol, in terms of performance.

• Caching SSL on Oracle HTTP Server

• Using SSL Application Level Data Encryption

• Tuning SSL Performance

Caching SSL on Oracle HTTP Server
When an SSL connection is initialized, a session-based handshake between client and server
occurs that involves the negotiation of a cipher suite, the exchange of a private key for data
encryption, and server and, optionally, client, authentication through digitally signed certificates.

After the SSL session state has been initiated between a client and a server, the server can
avoid the session creation handshake in subsequent SSL requests by saving and reusing the
session state. The Oracle HTTP Server caches a client's SSL session information by default.
With session caching, only the first connection to the server incurs high latency.

The SSLSessionCacheTimeout directive in the ssl.conf file determines how long the server
keeps a saved SSL session (the default is 300 seconds). The session state is discarded if it is
not used after the specified time period, and any subsequent SSL request must establish a
new SSL session and begin the handshake again. The SSLSessionCache directive specifies the
location for saved SSL session information. The default location is the following directory:

$ORACLE_INSTANCE/diagnostics/logs/$COMPONENT_ TYPE/$COMPONENT_NAME
Multiple Oracle HTTP Server processes can use a saved session cache file.

Saving the SSL session state can significantly improve performance for applications using
SSL. For example, in a simple test to connect and disconnect to an SSL-enabled server, the
elapsed time for 5 connections was 11.4 seconds without SSL session caching. With SSL
session caching enabled, the elapsed time for 5 round trips was 1.9 seconds.

The reuse of the saved SSL session state has some performance costs. When the SSL
session state is stored to disk, reuse of the saved state normally requires locating and
retrieving the relevant state from disk. This cost can be reduced when you use persistent
connections. Oracle HTTP Server uses persistent connections by default, assuming they are
supported on the client-side. In over SSL as implemented by Oracle HTTP Server, the SSL
session state is kept in memory while the associated connection is persisted, a process which
essentially eliminates the performance impacts that are associated with SSL session reuse
(conceptually, the SSL connection is kept open along with the connection). For more
information, see Reducing Process Availability with Persistent Connections.

Using SSL Application Level Data Encryption
In most applications using SSL, the data encryption cost is small compared with the cost of
SSL session management. Encryption costs can be significant where the volume of encrypted
data is large, and in such cases the data encryption algorithm and key size chosen for an SSL
session can be significant. In general there is a trade-off between security level and
performance.

Chapter 5
Advanced Tuning Considerations

5-12

Oracle HTTP Server negotiates a cipher suite with a client based on the SSLCipherSuite
attribute specified in the ssl.conf file. OHS 11g uses the 128 bit Encryption algorithm by
default and no longer supports lower encryption.

Note:

The previous release [10.1.3x] used 64 bit encryption for Windows. For UNIX, the
10.x releases used the 128 bit encryption by default.

Tuning SSL Performance
The following recommendations can assist you to determine performance requirements when
you work with Oracle HTTP Server and SSL.

• The SSL handshake is a resource-intensive process in terms of both CPU usage and
response time. Thus, use SSL only where needed. Determine the parts of the application
that require the security, and the level of security required, and protect only those parts at
the requisite security level. Attempt to minimize the need for the SSL handshake by using
SSL sparingly, and by reusing the session state as much as possible. For example, if a
page contains a small amount of sensitive data and several non-sensitive graphic images,
use SSL to transfer the sensitive data only. If the application requires server authentication
only, do not use client authentication. If additional hardware is required, the performance
goals of an application cannot be met by this method.

• Design the application to use SSL efficiently. Group secure operations to take advantage
of SSL session reuse and SSL connection reuse.

• Use persistent connections, if possible, to minimize the cost of SSL session reuse.

• Tune the session cache timeout value (the SSLSessionCacheTimeout directive in the
ssl.conf) file. A trade-off exists between the cost of maintaining an SSL session cache
and the cost of establishing a new SSL session. As a rule, any secured business process,
or conceptual grouping of SSL exchanges, must be completed without incurring session
creation more than once. The default value for the SSLSessionCacheTimeout attribute is
300 seconds. Test the application usability to help tune this setting.

• If large volumes of data are being protected through SSL, pay close attention to the cipher
suite being used. The SSLCipherSuite directive specified in the ssl.conf file controls the
cipher suite. If lower levels of security are acceptable, use a less-secure protocol by using
a smaller key size (improves performance significantly). Finally, test the application by
using each available cipher suite for the specified security level to find the optimal suite.

• If SSL remains a bottleneck to the performance and scalability of your application, after
taking the preceding considerations into account, consider deploying multiple Oracle HTTP
Server instances over a hardware cluster or consider the use of SSL accelerator cards.

Tuning Oracle HTTP Server Port Tunneling
When OracleAS Port Tunneling is configured, every request processed passes through the
OracleAS Port Tunneling infrastructure. Thus, using OracleAS Port Tunneling can have an
impact on the overall Oracle HTTP Server request handling performance and scalability.

Except for the number of OracleAS Port Tunneling processes to run, the performance of
OracleAS Port Tunneling is self-tuning. The only performance control available is to start more
OracleAS Port Tunneling processes; it increases the number of available connections and the
scalability of the system.

Chapter 5
Advanced Tuning Considerations

5-13

The number of OracleAS Port Tunneling processes is based on the degree of availability
required, and the number of anticipated connections. This number cannot be automatically
determined because for each additional process a new port must be opened through the
firewall between the DMZ and the intranet. Ensure to check the number of open ports. Start
processes equivalent to the number of open ports.

To measure the OracleAS Port Tunneling performance, determine the request time for servlet
requests that pass through the OracleAS Port Tunneling infrastructure. The response time
running with OracleAS Port Tunneling must be compared with a system without OracleAS Port
Tunneling to determine whether your performance requirements can be met by using OracleAS
Port Tunneling.

Chapter 5
Advanced Tuning Considerations

5-14

6
Tuning Oracle Metadata Service

You can tune Oracle Metadata Services (MDS) to optimize its performance as an application
server and Oracle relational database.

• About Oracle Metadata Services (MDS)
Oracle Metadata Services (MDS) is an application server and Oracle relational database
that keeps metadata in these areas: the ClassPath, the ServletContext, database
repository and, sometimes, the file system.

• Monitoring Oracle Metadata Service Performance
MDS uses DMS sensors to provide tuning and diagnostic information, which can be
viewed by using Enterprise Manager. This information is useful, for example, to see if the
MDS caches are large enough.

• Basic Tuning Considerations
Tuning the MDS configuration is essential for improving performance.

• Advanced Tuning Considerations
After you have performed recommended modifications, you can make additional changes
that are specific to your deployment. Consider carefully whether the advance tuning
recommendations are appropriate for your environment.

About Oracle Metadata Services (MDS)
Oracle Metadata Services (MDS) is an application server and Oracle relational database that
keeps metadata in these areas: the ClassPath, the ServletContext, database repository and,
sometimes, the file system.

One of the primary uses of MDS is to store customizations and persisted personalization for
Oracle applications. MDS is used by components such as Oracle Application Development
Framework (ADF) to manage metadata. Examples of metadata objects managed by MDS are:
JSP pages and page fragments, ADF page definitions and task flows, and customized variants
of those objects.

Note:

Most of the Oracle Metadata Services configuration parameters are immutable and
cannot be changed at runtime unless otherwise specified.

Tuning MDS tablespace and cache size is important before you tune Oracle B2B and other
Oracle products. If you are using the Using Oracle B2B to tune B2B, make sure you have
completed the tuning described here first.

6-1

Monitoring Oracle Metadata Service Performance
MDS uses DMS sensors to provide tuning and diagnostic information, which can be viewed by
using Enterprise Manager. This information is useful, for example, to see if the MDS caches
are large enough.

Information on DMS metrics can be found in the Fusion Middleware Control Console. Click
Help at the top of the page to get more information. In most cases, the Help window displays a
help topic about the current page. Click Contents in the Help window to browse the list of help
topics, or click Search to search for a particular word or phrase.

Basic Tuning Considerations
Tuning the MDS configuration is essential for improving performance.

The default MDS configuration must be tuned in almost all deployments. It is important to
review the requirements and recommendations carefully.

• Tuning Database Repository

• Tuning Cache Configuration

• Purging Document Version History

• Using Database Polling Interval for Change Detection

Tuning Database Repository
For optimal performance of MDS APIs, the database schema for the MDS repository must be
monitored and tuned by the database administrator.

For additional information on tuning the database, see Optimizing Instance Performance in
Oracle Database Performance Tuning Guide.

• Collecting Schema Statistics

• Increasing Redo Log Size

• Reclaiming Disk Space

• Monitoring the Database Performance

Collecting Schema Statistics
While MDS provides database indexes, they might not be used as expected due to a lack of
schema statistics. If performance is an issue with MDS operations such as accessing or
updating metadata in the database repository, the database administrator must ensure that the
statistics are available and current.

The following example shows one way that the Oracle database schema statistics can be
collected:

execute dbms_stats.gather_schema_stats(ownname => '<username>',
estimate_percent => dbms_stats.auto_sample_size, method_opt=> 'for all
columns size auto', cascade=>true);

If performance does not improve after statistics collection, then try to flush the database shared
pool to clear out the existing SQL plans by using the following command:

Chapter 6
Monitoring Oracle Metadata Service Performance

6-2

alter system flush shared_pool;

In general, the database must be configured with automatic statistics recollection. For
additional information on gathering statistics, see Automatic Performance Statistics in Oracle
Database Performance Tuning Guide.

Increasing Redo Log Size
The size of the redo log files can influence performance because the behavior of the database
writer and archiver processes depend on the redo log sizes. Generally, larger redo log files
provide better performance. Undersized log files increase checkpoint activity and can reduce
performance.

For more information, see Sizing Redo Log Files in Oracle Database Performance Tuning
Guide.

Reclaiming Disk Space
While manual and auto-purge operations delete the metadata content from the repository, the
database may not immediately reclaim the space held by tables and indexes. This may result
in the disk space that is consumed by MDS schema to grow. Database administrators can
manually rebuild the indexes and shrink the tables to increase performance and to reclaim disk
space.

For more information, see Reclaiming Unused Space in Oracle Database Performance Tuning
Guide.

Monitoring the Database Performance
Database administrators must monitor the database (for example, by generating automatic
workload repository (AWR) reports for Oracle database) to observe lock contention, I/O usage
and take appropriate action to address the issues.

See:

• Generating Automatic Workload Repository Reports in Oracle Database Performance
Tuning Guide.

• Monitoring Performance in Oracle Database Performance Tuning Guide.

Tuning Cache Configuration
MDS uses a cache to store metadata objects and related objects (such as XML content) in
memory. MDS Cache is a shared cache that is accessible to all users of the application (on the
same JVM). If a metadata object is requested repeatedly, with the same customizations, that
object might be retrieved more quickly from the cache (a warmread). If the metadata object is
not found in the cache (a cold read), then MDS might cache that object to facilitate subsequent
read operations depending on the cache configuration, the type of metadata object and the
frequency of access.

Cache can be configured or changed post deployment through MBeans. This element maps to
the MaximumCacheSize attribute of the MDSAppConfig MBean. For more information, see
Changing MDS Configuration Attributes for Deployed Applications in Administering Oracle
Fusion Middleware.

Chapter 6
Basic Tuning Considerations

6-3

Note:

MDS Metrics, visible in Enterprise Manager, are useful for tuning the MDS cache. In
particular, IOs Per MO Content Get or IOs Per Metadata Object Get must be less
than 1. If not, consider increasing the size of the MDS cache. For more information
on viewing DMS metric information, see .

Having a correctly sized cache can significantly improve throughput for repeated reading of
metadata objects. The optimal cache size depends on the number of metadata objects used
and the individual sizes of these objects. Manually update the cache-config in the adf-
config.xml file by adding the following entry prior to packaging the Enterprise ARchive (EAR)
file:

<mds-config>
 <cache-config>
 <max-size-kb>200000</max-size-kb>
 </cache-config>
</mds-config>

Note:

MDS cache grows in size as metadata objects are accessed until it hits max-size-kb.
After that, objects are removed from the cache to make room as needed on a least
recently used (LRU) basis to make room for new objects.

• Enabling Document Cache

Enabling Document Cache
In addition to the main MDS cache, MDS uses a document cache with each metadata store to
store thumbnail information about metadata documents (base document and customization
documents) in memory. The entry for each document is small (<100 bytes) and the cache size
limit is specified in terms of the number of document entries. MDS calculates an appropriate
default size limit for the document cache based on the configured maximum size of the MDS
Cache, as follows:

• If MDS cache is disabled, MDS defaults to having no document cache.

• If MDS cache is enabled, MDS defaults the document cache size to one document entry
per KB of document cache configured.

• If cache-config is not specified, MDS defaults to 10000 document entries.

• If MDS cache is set to a small value, MDS uses a minimum size of 500 for document
cache.

In general, the defaults must be sufficient usually. However, insufficient document cache size
might impact performance. Set document cache size by adding this entry to the adf-
config.xml file prior to packaging the Enterprise ARchive (EAR) file:

<metadata-store-usage id="db1">
 <metadata-store …>
 <property name = …/>
 </metadata-store>

Chapter 6
Basic Tuning Considerations

6-4

 <document-cache max-entries="10000"/>
</metadata-store-usage>

Note:

Document cache is cleared when it exceeds the document-cache max-entries
value. To avoid performance issues, consider increasing the document cache size if
you receive a notification like the following for example:

NOTIFICATION: Document cache DBMetadataStore : MDS Repository connection
= <> exceeds its maximum number of entries <NNNN>, so the cache is
cleared.

The DMS metric IOs Per Document Get (visible in Enterprise Manager, see Monitoring Oracle
Metadata Service Performance) must be less than 1. If not, consider increasing the document
cache size.

Purging Document Version History
MDS keeps document version history in the database's metadata store. As version history
accumulates, it requires more disk space and degrades read/write performance. Assuming the
document versions are not part of an active label, you can purge version history automatically
or manually.

Note:

Purging version history manually may impact performance depending on the number
of metadata updates that have been made since the last purge.

• Using Auto Purge

• Purging Manually

Using Auto Purge
The auto-purge interval can be configured or changed post deployment through MBeans. This
element maps to the AutoPurgeTimeToLive attribute of the MDSAppConfig MBean. If your
application uses the database store for MDS, you can set auto-purge by adding this entry in
the adf-config.xml file prior to packaging the EAR:

<persistence-config>
 <auto-purge seconds-to-live="T"/>
</persistence-config>

In the example above, the auto-purge is executed every T seconds and removes versions that
are older than the specified time T (in seconds). For more information, see Changing MDS
Configuration Attributes for Deployed Applications in Administering Oracle Fusion Middleware.

Chapter 6
Basic Tuning Considerations

6-5

Purging Manually
When you suspect that the database is running out of space or performance is becoming
slower, you can manually purge existing version history by using the WLST command or through
Oracle Enterprise Manager. Manual purging may impact performance, so plan to purge during
a maintenance window or when the system is not busy.

See Purging Metadata Version History in Administering Oracle Fusion Middleware.

Using Database Polling Interval for Change Detection
MDS employs a polling thread, which queries the database to check if the data in the MDS in-
memory cache is out of sync with data in the database. It happens when metadata is updated
in another JVM. If it is out of sync, MDS clears any out-of-date-cached data so subsequent
operations see the latest versions of the metadata. MDS invalidates the document cache, as
well as MDS cache, so subsequent operations have the latest version of the metadata.

The polling interval can be configured or changed post deployment through MBeans. The
element maps to the ExternalChangeDetection and ExternalChangeDetectionInterval
attributes of the MDSAppConfig MBean. Configure the polling interval by adding this entry in the
adf-config.xml file prior to packaging the Enterprise ARchive (EAR) file:

<mds-config>
 <persistence-config>
 <external-change-detection enabled="true" polling-interval-secs="T"/>
 </persistence-config>
</mds-config>

In the example mentioned, T specifies the polling interval in seconds. The minimum value is 1.
Lower values cause metadata updates, that are made in other JVMs, to be seen more quickly.
It is important to note, however, that a lower value can also create increased middle tier and
database CPU consumption due to the frequent queries. By default, polling is enabled (true)
and the default value of 30 seconds is suitable for most purposes. See Changing MDS
Configuration Attributes for Deployed Applications in Administering Oracle Fusion Middleware.

Note:

When setting the polling interval, consider the following: if you poll too frequently, the
database is queried for out-of-date versions; too infrequently, and those versions
might stack up and polling can take longer to process.

Advanced Tuning Considerations
After you have performed recommended modifications, you can make additional changes that
are specific to your deployment. Consider carefully whether the advance tuning
recommendations are appropriate for your environment.

• Analyzing Performance Impact from Customization

Chapter 6
Advanced Tuning Considerations

6-6

Analyzing Performance Impact from Customization
MDS customization might impact performance at run-time. The impact from customization
depends on many factors including:

• The type of customization that has been created (shared or user level).

• The percentage of metadata objects in the system that is customized. The lower this
percentage, the lower the impact of customization.

• The number of configured customization layers, and the efficiency of the customization
classes.

There are two main types of customization:

• Shared Customizations: are layers of customization corresponding to customization
classes whose getCacheHint method returns ALL_USERS or MULTI_USER, meaning the layer
applies to all or multiple users. Shared customizations are cached in the (shared) MDS
cache.

• User Level Customizations (also known as Personalizations): are layers of customization
corresponding to customization classes whose getCacheHint method returns
SINGLE_USER, meaning the layer applies to one user. User customizations are cached on
the user's session (Session) until the user logs out.

For details on customization concepts, writing customization classes, and configuring
customization classes, see Customizing Applications with MDS in Developing Fusion Web
Applications with Oracle Application Development Framework.

Chapter 6
Advanced Tuning Considerations

6-7

7
Tuning Oracle Fusion Middleware Security

You can tune Oracle Fusion Middleware security services to optimize the performance of
security services through Oracle Platform Security Services (OPSS) and Oracle Web Services.

• About Security Services
Oracle Fusion Middleware provides security services through Oracle Platform Security
Services (OPSS) and Oracle Web Services.

• Basic Tuning Considerations
Tuning considerations might improve the performance of the Oracle Fusion Middleware
security services.

• Tuning Oracle Platform Security Services
Oracle Platform Security Services (OPSS) includes the following basic tuning
configurations.

• Oracle Web Services Security Tuning
Oracle Web Services Security provides a framework of authorization and authentication for
interacting with a web service by using XML-based messages. There are several factors
that may affect performance of the web service.

About Security Services
Oracle Fusion Middleware provides security services through Oracle Platform Security
Services (OPSS) and Oracle Web Services.

• Oracle Platform Security Services

Oracle Platform Security Services is a key component of Oracle Fusion Middleware. It
offers an integrated suite of security services and is easily integrated with Java SE and
Jakarta EE applications that use the Java security model. Security Services includes
features that implement user authentication, authorization, and delegation services that
developers can integrate into their application environments. Instead of devoting resources
to developing these services, application developers can focus on the presentation and
business logic of their applications.

Using Oracle Platform Security for Java, applications can enforce fine-grained access
control upon resource users. The three key steps are:

1. Configure and invoke a login module, as appropriate. You can use provided login
modules, or you can use custom login modules.

2. Authenticate the user attempting to log in, which is the role of the identity store service.

3. Authorize the user by checking permissions for that role.

• Oracle Web Services Security

Oracle Web Services Security provides a framework of authorization and authentication for
interacting with a web service by using XML-based messages.

7-1

Note:

The information here assumes that you have reviewed and understand the concepts
and administration information for Oracle Fusion Middleware Security Services. See,
Administering Web Services before you tune any security parameters.

Basic Tuning Considerations
Tuning considerations might improve the performance of the Oracle Fusion Middleware
security services.

If you discover a performance bottleneck, you must first verify that you have addressed the
expected traffic load throughout your web services deployment. If there is a system in the
critical path that is at 100% CPU usage, add one or more computers to the cluster.

If there is a bottleneck in your deployment, it is likely to be within one of the following:

• Traffic through a slow connection with an agent

• Latency in connections to third-party queuing systems like JMS

For any of these problems, check the following potential sources:

• Problems with policy assertions that include connections to outside resources, especially
the following types:

– Database Repositories

– LDAP Repositories

– Secured Resources

– Proprietary Security Systems

• Problems with database performance

If you identify one of these as the cause of a bottleneck, you might need to change how you
manage your database or LDAP connections or how you secure the resources.

Tuning Oracle Platform Security Services
Oracle Platform Security Services (OPSS) includes the following basic tuning configurations.

• JVM Tuning Parameters

• JDK Tuning Parameters

• Authentication Tuning Parameters

• Authorization Tuning Properties

• OPSS PDP Service Tuning Parameters

JVM Tuning Parameters
Tuning the JVM parameters can greatly improve performance. For example, the JVM Heap
size should be tuned depending upon the number of roles and permissions in the store. At
runtime, all roles and permissions are stored in the in-memory cache. For more JVM tuning
information, see Tuning Java Virtual Machines (JVMs).

Chapter 7
Basic Tuning Considerations

7-2

JDK Tuning Parameters
Starting with Java Development Kit 7 (JDK 7), the default keystore size is now 2048 bits. JDK
6 and earlier had a default size of 1024 bits.

When you use the Java keytool to generate keystores, the -keysize parameter can be used to
control the keystore size. Larger keystores provide stronger security, though at the cost of
decreased security performance. Consider your environment's use case scenarios to
determine if increasing the keystores would negatively impact your security or performance
thresholds.

See the JDK 7 release notes at http://www.oracle.com/technetwork/java/javase/jdk7-
relnotes-418459.html

Authentication Tuning Parameters
For OPSS Authentication tuning, see "Improving the Performance of WebLogic and LDAP
Authentication Providers" in Oracle Fusion Middleware Securing Oracle WebLogic Server
guide on the Oracle Technology Network http://download.oracle.com/docs/cd/
E12840_01/wls/docs103/secmanage/atn.html#wp1199087.

Authorization Tuning Properties
The following Java system properties can be used to optimize authorization:

Chapter 7
Tuning Oracle Platform Security Services

7-3

http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/atn.html#wp1199087
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/atn.html#wp1199087

Table 7-1 Authorization Properties

Java System Properties Default Value Valid Values Notes

-Djps.subject.cache.key 4 3
4
5

JPS uses a Subject Resolver
to convert a platform subject
to a JpsSubject, which
contains the user/
enterprise-role
information, as well as the
ApplicationRole
information. This information
is represented as principals in
the subject.

This conversion can be CPU
intensive, especially if the
subject's principal set has a
large population. To improve
performance, JPS code
caches the conversion
between the Platform subject
and the JpsSubject. Two
subjects could be confusing
when their contents are the
same, but the case of the
principals' name is different.

The following settings can be
used to configure the cache
key:

• 3: Use the platform
subject directly as the
key. Note: On WLS, if the
principalEqualCasei
nsensitive flag is
enabled, two subjects
could be confusing if
their contents are the
same, but the case of the
principals is different.

• 4: This setting is similar
to 3but overcomes the
case-sensitive issue.
This is the ready—to—
use setting.

• 5: Instead of using the
whole subject as the key,
this setting uses a subset
of the principal set inside
the subject as the key
(actually use principals of
the WLSUSerImpl type).

This setting accelerates
the cache retrieval
operation if the subject
has a large principal set.
On a non-WLS platform
such as WAS and
JBOSS, this reverts back
to case 4, so this setting

Chapter 7
Tuning Oracle Platform Security Services

7-4

Table 7-1 (Cont.) Authorization Properties

Java System Properties Default Value Valid Values Notes

is for WLS only. For this
case, there is also a
Time To Live setting
(TTL) flag, which controls
how long the cache is
valid, as explained.

-Djps.subject.cache.ttl 60000ms Cache's Time To Live (TTL)
for case 5(above). This
system property controls how
long the cache is valid. When
the time has expired, the
cached value is dumped. The
setting is controlled by the -
Djps.subject.cache.ttl=
xxxxflag, where xxxis the
duration in milliseconds.

Consider setting the duration
of this TTL setting to the
same value as the value used
for the group and user cache
TTL in WLS LDAP
authenticator.

-
Djps.combiner.optimize=
true

True True
False

This system property is used
to cache the protection
domains for a given subject.
Setting the flag -
Djps.combiner.optimize=
true can improve the Java
authorization performance.

-
Djps.combiner.optimize.
lazyeval=true

True True
False

This system property is used
to evaluate a subject's
protection domain when a
checkPermission occurs.
Setting the flag -
Djps.combiner.optimize.
lazyeval=true can improve
the Java authorization
performance.

Chapter 7
Tuning Oracle Platform Security Services

7-5

Table 7-1 (Cont.) Authorization Properties

Java System Properties Default Value Valid Values Notes

-
Djps.policystore.hybrid
.mode=true

True True
False

This hybrid mode property is
used to facilitate transition
from SUN
java.security.Policy to OPSS
Java Policy Provider.

The OPSS Java Policy
Provider reads from both
java.policy and system-
jazn-data.xml. When
starting the Weblogic server,
the Hybrid mode can be
disabled by setting the
system property
jps.policystore.hybrid.
mode to false . Setting -
Djps.policystore.hybrid
.mode=false can reduce the
runtime overhead.

-Djps.authz=ACC ACC ACC
SM

Delegates the call to JDK API
AccessController.checkP
ermission, which can
reduce the performance
impact at runtime or while
debugging.

ACC: Delegate the call to
AccessController.checkP
ermission.

SM: If SecurityManager is
set, delegate the call to
SecurityManager .

OPSS PDP Service Tuning Parameters
Table 7-2 describes OPSS tuning parameters for policy store:

Chapter 7
Tuning Oracle Platform Security Services

7-6

Table 7-2 OPSS PDP Service Tuning Parameters

Parameter Default Value Valid Values Notes

oracle.security.jps.pol
icystore.rolemember.cac
he.type

STATIC STATIC, SOFT, WEAK This parameter specifies the
type of role member
cache.Valid only in Jakarta
EE applications.

Valid values:

• STATIC: Cache objects
are statically cached and
can be cleaned explicitly
only according to the
applied cache strategy,
such as FIFO. The
garbage collector does
not clean a cache of this
type.

• SOFT: The cleaning of a
cache of this type relies
on the garbage collector
when there is a memory
crunch.

• WEAK: The behavior of a
cache of this type is
similar to a cache of type
SOFT, but the garbage
collector cleans it more
frequently.

Consider maintaining the
default value for best
performance.

oracle.security.jps.pol
icystore.rolemember.cac
he.strategy

FIFO FIFO
NONE

The type of strategy used in
the role member cache. Valid
only in Jakarta EE
applications.

Valid values:

• FIFO: The cache
implements the first-in-
first-out strategy.

• NONE: All entries in the
cache grow until a
refresh or reboot occurs.
There is no control over
the size of the cache; not
recommended but
typically efficient when
the policy footprint is
small.

Consider maintaining the
default value for best
performance.

Chapter 7
Tuning Oracle Platform Security Services

7-7

Table 7-2 (Cont.) OPSS PDP Service Tuning Parameters

Parameter Default Value Valid Values Notes

oracle.security.jps.pol
icystore.rolemember.cac
he.size

1000 The size of the role member
cache. The role being
referred to is the enterprise
role (group). You can find out
the number of the groups you
have in your ID store first.
Then, based on your
performance requirement,
you can set this number to
the number of the groups -
full cache scenario. Or you
can change to a certain
percentage of the number of
the groups - partial group
cache scenario.

oracle.security.jps.pol
icystore.policy.lazy.lo
ad.enable

True True
False

Enables or disables the policy
lazy loading. If this parameter
is set to False, the server
initial startup time takes
longer - especially in a large
policy store. For faster start-
up time, the recommended
value is True.

oracle.security.jps.pol
icystore.policy.cache.s
trategy

PERMISSION_FIFO PERMISSION_FIFO
NONE

The type of strategy used in
the permission cache. Valid
only in Jakarta EE
applications.

Valid Values:

• PERMISSION_FIFO: The
cache implements the
first-in-first-out strategy.

• NONE: All entries in the
cache grow until a
refresh or reboot occurs;
there is no control over
the size of the cache; not
recommended but
typically efficient when
the policy footprint is
small.

Consider using the default
value for the best
performance.

oracle.security.jps.pol
icystore.policy.cache.s
ize

1000 The size of the permission
cache. If you cache all
policies, then you can set this
value to the total number of
grants.

oracle.security.jps.pol
icystore.cache.updatabl
e

True True
False

This property is used to
enable refresh. Consider
maintaining the default value
for the best performance.

Chapter 7
Tuning Oracle Platform Security Services

7-8

Table 7-2 (Cont.) OPSS PDP Service Tuning Parameters

Parameter Default Value Valid Values Notes

oracle.security.jps.pol
icystore.refresh.enable

True True
False

This property is used to
enable refresh. Consider
maintaining the default value
for performance.

oracle.security.jps.pol
icystore.refresh.purge.
timeout

43200000 The time, in milliseconds,
after which the policy store is
refreshed. Consider
maintaining the default value
for the best performance.

oracle.security.jps.lda
p.policystore.refresh.i
nterval

600000 (10 minutes) The interval, in milliseconds,
at which the policy store is
polled for changes. Consider
maintaining the default value
for the best performance. This
property is valid in Jakarta EE
and J2SE applications.

oracle.security.jps.pol
icystore.rolemember.cac
he.warmup.enable

False True
False

This property controls the
way the ApplicationRole
membership cache is
created. If set to True, the
cache is created at server
startup; otherwise, it is
created on demand (lazy
loading).

Set to True when the number
of users and groups are
higher than the number of
application roles set to True;
set to False otherwise, that is,
when the number of
application roles are high.

Oracle Web Services Security Tuning
Oracle Web Services Security provides a framework of authorization and authentication for
interacting with a web service by using XML-based messages. There are several factors that
may affect performance of the web service.

• Choosing the Right Policy

• Policy Manager

• Configuring the Log Assertion to Record SOAP Messages

• Configuring Connection Pooling

• Monitoring the Performance of Web Services

Choosing the Right Policy
Oracle Web Services Security supports many policies and the appropriate policies must be
implemented based on the security need of the deployment. Careful consideration should be
given to performance, since each additional policy can impact performance. For example,

Chapter 7
Oracle Web Services Security Tuning

7-9

Transport-level security (SSL) is faster than Application-level security, but Transport-level
security can be vulnerable in multistep transactions. Application-level security has more
performance implications, but provides end-to-end security.

See Determining Which Predefined Policies to Use in Securing Web Services and Managing
Policies with Oracle Web Services Manager to determine which security policies are required
for a deployment.

Policy Manager
There is an inherent performance impact when you use the database-based policy
enforcement. When database policy enforcement is chosen, careful consideration must be
given to the pollingfrequency of the agent to the database.

Configuring the Log Assertion to Record SOAP Messages
The request and response pipelines of the default policy include a log assertion that causes
policy enforcement points (PEP) to record SOAP messages to either a database or a
component-specific local file. There can be potential performance impacts to the logging level.
To prevent performance issues, consider using the lowest logging level that is appropriate for
your deployment.

The following logging levels can be configured in the log step:

• Header: Only the SOAP header is recorded.

• Body: Only the message content (body) is recorded.

• Envelope: The entire SOAP envelope, which includes both the header and the body, is
recorded. Any attachments are not recorded.

• All: The full message is recorded. It includes the SOAP header, the body, and all
attachments, probably the URLs existing outside the SOAP message itself.

Note:

Typically, system performance improves when log files are located in topological
proximity to the enforcement component. If possible, use multiple distributed logs in a
highly distributed environment.

Configuring Connection Pooling
When you request that a Context instance use connection pooling by using the
com.sun.jndi.ldap.connect.pool environment property, the connection that is used might or
might not be pooled. The default rule is that plain (non-SSL) connections that use simple or no
authentication are allowed to be pooled. You can change this default to include SSL
connections and the DIGEST-MD5 authentication type by using system properties. To allow
both plain and SSL connections to be pooled, set the
com.sun.jndi.ldap.connect.pool.protocol system property to the string plain ssl as
shown below:

"-Dcom.sun.jndi.ldap.connect.pool.protocol="plain ssl"

Chapter 7
Oracle Web Services Security Tuning

7-10

Monitoring the Performance of Web Services
You can monitor the performance on the following Oracle Web Services through the Web
Services home page of Oracle Fusion Middleware Control:

• Endpoint Enabled Metrics such as:

– Policy Reference Status

– Total Violations

– Security Violations

• Invocations Completed

• Response Time, in seconds

• Policy Violations such as:

– Total Violations

– Authentication Violations

– Authorization Violations

– Confidentiality Violations

– Integrity Violations

• Total Faults

For general information on monitoring Oracle Fusion Middleware components, see .

For detailed information on using Oracle Fusion Middleware Control to monitor Oracle Web
Services, see Overview of Performance Monitoring, Auditing, and Tuning in Administering Web
Services.

Chapter 7
Oracle Web Services Security Tuning

7-11

Part III
Oracle Fusion Middleware Server
Components

The Oracle Fusion Middleware server components need to be tuned for optimal performance.

This part describes configuring Oracle Fusion Middleware server components to improve
performance. It contains the following topics:

• Tuning Oracle Application Development Framework (ADF)
You can tune Oracle Application Development Framework (ADF) to optimize its
performance and scalability with design, configuration, and deployment considerations.

• Tuning Oracle TopLink
You can tune EclipseLink, an open-source persistence framework used with Oracle
TopLink, to optimize its performance as the Java Persistence API (JPA) implementation.

8
Tuning Oracle Application Development
Framework (ADF)

You can tune Oracle Application Development Framework (ADF) to optimize its performance
and scalability with design, configuration, and deployment considerations.

Note:

• Developing Fusion Web Applications with Oracle Application Development
Framework

• Developing Web User Interfaces with Oracle ADF Faces

• About Oracle ADF
Oracle Application Development Framework (Oracle ADF) is an end-to-end application
framework that builds on Java Platform, Enterprise Edition (Jakarta EE) standards and
open-source technologies to simplify and accelerate implementing service-oriented
applications.

• Basic Tuning Considerations
To achieve optimal performance, you can follow tuning recommendations before you build,
configure, and deploy ADF applications.

• Advanced Tuning Considerations
After you have performed the recommended tuning modifications, you can make additional
changes that are specific to your ADF Server deployment. Consider carefully whether the
advanced tuning recommendations are appropriate for your environment.

About Oracle ADF
Oracle Application Development Framework (Oracle ADF) is an end-to-end application
framework that builds on Java Platform, Enterprise Edition (Jakarta EE) standards and open-
source technologies to simplify and accelerate implementing service-oriented applications.

Oracle ADF is suitable for enterprise developers who want to create applications that search,
display, create, modify, and validate data by using web, wireless, desktop, or web services
interfaces. If you develop enterprise solutions that search, display, create, modify, and validate
data by using web, wireless, desktop, or web services interfaces, Oracle ADF can simplify your
job. Used in tandem, Oracle JDeveloper 11g and Oracle ADF give you an environment that
covers the full development lifecycle from design to deployment, with drag-and-drop data
binding, visual UI design, and team development features built-in.

For more information, see Introduction to Oracle ADF in Developing Fusion Web Applications
with Oracle Application Development Framework.

8-1

Basic Tuning Considerations
To achieve optimal performance, you can follow tuning recommendations before you build,
configure, and deploy ADF applications.

• Oracle ADF Faces Configuration and Profiling

• Performance Considerations for ADF Faces

• Tuning ADF Faces Component Attributes

• Performance Considerations for Table and Tree Components

• Performance Considerations for autoSuggest

• Data Delivery - Lazy versus Immediate

• Performance Considerations for DVT Components

Oracle ADF Faces Configuration and Profiling
Configuration options for Oracle ADF Faces are set in the web.xml file. Most of these options
have default values that are tuned for performance. Table 8-1 describes some of these
configuration options.

Table 8-1 ADF Configuration Options

Parameter Description

Compression View State

org.apache.myfaces.trinidad.COMPRESS_VIEW_STATE
Controls whether the page state is compressed. If the size of
the data is compressed, latency can be reduced. This
parameter should be set to True.

Enhanced Debug

org.apache.myfaces.trinidad.resource.DEBUG
Controls whether output should be enhanced for debugging.
This parameter should be removed or set to False.

Check File Modification

oracle.adf.view.rich.CHECK_FILE_MODIFICATION
Controls whether ADF faces check for modification date of
JSP pages and discards any saved state if the file is
changed. This parameter should be removed or set to
False.

Client State Method

oracle.adf.view.rich.CLIENT_STATE_METHOD
Specifies the type of saving (all or token) that should be
used when client-side state saving is enabled. The default
value is token.

Client-Side Log Level
oracle.adf.view.rich.LOGGER_LEVEL

Sets the log level on the client-side. The default value is OFF.
This parameter should be removed or set to False.

Assertion Processing

oracle.adf.view.rich.ASSERT_ENABLED
Specifies when to process assertions on the client-side. The
default value is OFF. This parameter should be removed or
set to False.

Chapter 8
Basic Tuning Considerations

8-2

Note:

When you are profiling or measuring client response by time using the Firefox
browser, ensure that the Firebug plug-in is disabled. While this plug-in is very useful
for getting information about the page and for debugging JavaScript code on the
page, it can impact the total response time.

For more information on disabling the Firefox Firebug plug-in, see the Firefox Support
Home Page at http://support.mozilla.com/en-US/kb/.

Performance Considerations for ADF Faces
Table 8-2 provides configuration recommendations that may improve performance of ADF
Faces:

Table 8-2 Configuration Parameters for ADF Faces

Configuration Recommendation Description

Avoid inline JavaScript in pages. Inline JavaScript can increase response payload size, is
never cached in the browser, and can block browser
rendering. Instead of using inline JavaScript, consider putting
all scripts in .js files in JavaScript libraries and add scripts
to the page by using af:resource tag.

TIP: Consider using af:resource rather than trh:script
when possible.

Configure the JSP timeout parameter. Using the JavaServer Pages (JSP) timeout parameter
causes infrequently used pages to be flushed from the cache
by the following setting in web.xml:

<servlet>
 <servlet-name>
 oraclejsp
 <init-param>
 <param-name>
 jsp_timeout
 </param-name>
 <param-value>
 x
 </param-value>
 </init-param>
 </servlet-name>
</servlet>

Note:

Set parameter x based on your
own use case scenarios.

Chapter 8
Basic Tuning Considerations

8-3

http://support.mozilla.com/en-US/kb/

Table 8-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Create a single toolbar item with a drop-down popup. When the browser size is small because of the screen
resolution, the menubar/toolbar overflow logic becomes
expensive in Internet Explorer 7 and 8. It especially has
problems with laying out DOM structures with input fields.

Create a single toolbar item with a drop-down and put all the
input fields inside it. This drop down should have deferred
child creation and contentDelivery="lazy".

Remove unknown rowCount. A table that has an unknown rowCount can impact
performance because getting the last set of rows takes
excessive scrolling from the user and the application can
appear to be very slow.

Remove unknown rowCount by setting
DeferEstimatedRowCountProperty="false" on the view
object (VO).

Disable pop-ups that cannot be displayed by the user. The fnd:attachment component, when stamped in a table,
can generate an excessive amount of DOM and client
component. The amount of DOM + Client component is ~8K
per cell, which impacts the performance of the entire page
especially on slower browsers.

Most cells have no attachments initially and only one popup
can be displayed by the user. Therefore, pop-ups that cannot
be displayed by the user should have renderer="false".
This cuts down the unnecessary DOM or client components
sent to the browser. Similarly, the DOM has a
panelGroupLayout with a number of cells that are empty.
There is no need to send DOM for empty cells.

Do not use hover pop-ups on navigation links. A hover popup on a navigation link causes the navigation to
wait for the hover to be fetched first.

Consider removing the hover popup on the compensate
workforce table navigation link column and, instead, place it
on a separate column or on an icon inside the cell.

Increase table scrolling timeout. Tables send a fetch request to the server on a scroll after a
timeout. The timeout, before the fetch is sent to the server, is
typically only 20ms if the user scrolls a short distance, but
can increase to 200ms if the user scrolls further. Therefore,
performance can be impacted when the user scrolls to the
bottom of a page and the table sends multiple requests to the
server.

To prevent the performance impact, consider increasing the
timeout limit to 300ms.

Chapter 8
Basic Tuning Considerations

8-4

Table 8-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Use a timeout to call _prepareForIncompleteImages. During Partial Page Rendering (PPR) some images may not
load completely. When this occurs, the parent component
must be notified that the size of one of its descendants has
changed. In the past this was done by using the complete
attribute on the image tag. Now with Internet Explorer 8 the
complete attribute is always false to alleviate performance
issues with Internet Explorer 7 and 8. The attribute shows as
false event for cached images immediately after the PPR
content is fetched.

For Internet Explorer 8 use a timeout (10ms) to call
_prepareForIncompleteImages so that the image tag
called right after the .xml request is processed. Note that
this is not an issue for Mozilla Firefox or Google Chrome.

Cache the GetFirstVisibleRowKeyandRow. Performance can be improved by locally caching the first
visible Rowkey and row. This cached value can be deleted on
a scroll or a resize.

Use partial page navigation. Partial Page Navigation is a feature of the ADF Faces
framework that enables navigating from one ADF Faces page
to another without a full page transition in the browser. The
new page is sent to the client by using Partial Page
Rendering (PPR)/Ajax channel.

The main advantage of partial page navigation over
traditional full page navigation is improved performance: the
browser no longer reinterprets and reexecutes Javascript
libraries, and does not spend time for cleanup or initialization
of the full page. The performance benefit from this
optimization is very big; it should be enabled whenever
possible.

Some known limitations of this feature are:

• For the document's metaContainerfacet (the HEAD
section), only scripts are brought over with the new
page. Any other content, such as icon links or style rules
can be ignored.

• Applications cannot use anchor (hash) URLs for their
own purposes.

Chapter 8
Basic Tuning Considerations

8-5

Table 8-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Use page templates. Page templates enable developers to build reusable, data-
bound templates that can be used as a shell for any page. A
developer can build one or more templates that provide
structure and consistency for other developers building web
pages. The templates have both static areas on them that
cannot be changed when they are used and dynamic areas
on them where the developer can place content specific on
the page they are building.

There are some important considerations when using
templates:

• Since templates are present in every application page,
they have to be optimized so that common performance
impacts are avoided. For example, adding round corners
to the template, can impact the performance for every
page.

• When building complex templates, sometimes it is easier
to build them in multiple pieces and include them in the
top-level template by using the <f:subview> tag.
However, from a performance perspective, this is not
typically recommended since it can impact memory
usage on the server side. The <f:subview>tag
introduces another level into the ID scoping hierarchy,
which results in longer IDs. Long IDs have a negative
impact on performance. Developers are advised to avoid
using the <f:subview> tag unless it is required. If you
can ensure that all IDs are unique, it is not necessary to
use the <f:subview> around <jsp:include> . For
example, if you are using <jsp:include>, break a
large page into multiple pieces for easier editing. And
whenever possible, avoid using the <f:subview> tag. If
you are including content developed by someone else,
use the <f:subview> tag if you do not know which IDs
the developer used. In addition, you do not have to put
the <f:subview> tag at the top of a region definition.

• Avoid long IDs in all cases, especially on
pageTemplates, subviews, subforms, and on tables or
within tables. Long IDs can have a performance impact
on the server side, network traffic, and client processing.

Chapter 8
Basic Tuning Considerations

8-6

Table 8-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Enable ADF rich client geometry management. ADF Rich Client supports geometry management of the
browser layout where parent components are in the UI
explicitly. The children components are sized to stretch and
fill up available space in the browser. While this feature
makes the UI look better, it has a cost. The impact is on the
client-side where the browser must spend time resizing the
components. The components that have geometry
management by default are:

PanelAccordion
PanelStretchLayout
PanelTabbed
BreadCrumbs
NavigationPane
PanelSplitter
Toolbar
Toolbox
Table
Train
Notes:
• When you use geometry management, try to minimize

the number of child components that are under a parent
geometry managed component.

• The cost of geometry management is directly related to
the complexity of child components.

• The performance cost of geometry management can be
smaller (as perceived by the user) for the pages with
table or other data stamped components when table
data streaming is used. The client-side geometry
management can be executed while the browser is
waiting for the data response from the server.

Use the ADF rich client overflow feature. ADF Rich Client supports overflow feature. This feature
moves the child components to the non-visible overflow area
if they cannot fit the page. The components that have built-in
support for overflow are: PanelTabbed, BreadCrumbs,
NavigationPane, PanelAccordion, Toolbar, and Train.
The Toolbar component should be contained in a Toolbox
to handle the overflow.

While there were several optimizations done to reduce the
cost of overflow, it is necessary to pay special attention to the
number of child components and complexity of each of them
in the overflow component. Sometimes it is a good practice
to set a big enough initial size of the overflow component
such that overflow does not happen in most cases.

Chapter 8
Basic Tuning Considerations

8-7

Table 8-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Use ADF Rich Client Partial Page Rendering (PPR). ADF Rich Client is based on Asynchronous JavaScript and
XML (Ajax) development technique. Ajax is a web
development technique for creating interactive web
applications, where web pages feel more responsive by
exchanging small amounts of data with the server behind the
scenes, without the whole web page being reloaded. The
effect is to improve a web page's interactivity, speed, and
usability.

With ADF Faces, the feature that delivers the Ajax partial
page refresh behavior is called partial page rendering (PPR).
PPR enables small areas of a page to be refreshed without
having to redraw the entire page. For example, an output
component can display what a user has chosen or entered in
an input component or a command link or button can cause
another component on the page to be refreshed.

Two main Ajax patterns are implemented with partial page
rendering (PPR):

• native component refresh
• cross-component refresh
While the framework builds in native component refresh,
cross-component refresh has to be done by developers in
certain cases.

Cross-component refresh is implemented declaratively or
programmatically by the application developer defining the
components that are to trigger a partial update and the other
components that are to act as partial listeners, and so be
updated. Using cross-component refresh and implementing it
correctly is one of the best ways to improve client-side
response time. While designing the UI page always think
about what should happen when the user clicks a command
button. Is it needed for the whole page to be refreshed or
only the output text field? What should happen if the value in
some field is updated? For more information, see Developing
Fusion Web Applications with Oracle Application
Development Framework.

Consider a typical situation in which a page includes an
af:inputText component, an af:commandButton
component, and an af:outputText component. When the
user enters a value for the af:inputText, then clicks the
af:commandButton, the input value is reflected in the
af:outputText. Without PPR, clicking the
af:commandButton triggers a full-page refresh. Using PPR,
user can limit the scale of the refresh to only those
components you want to refresh, in this case the
af:outputText component. To achieve this, you would do
two things:

• Set up the af:commandButton for partial submit by
setting the partialSubmit attribute to true. Doing this
causes the command component to start firing partial
page requests each time it is clicked.

• Define the components that are to be refreshed when
the partial submit takes place, in this example the
af:outputText component, by setting the
partialTriggers attribute for each of them to the id of

Chapter 8
Basic Tuning Considerations

8-8

Table 8-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

the component triggering the refresh. In this example,
this means setting the partialTriggers attribute of
the af:outputText component to give the id of the
af:commandButton component.

The steps above achieve PPR by using a command button to
trigger the partial page refresh.

The main reason why partial page rendering can significantly
boost the performance is that full page refresh does not
happen and the framework artifacts (such as ADF Rich Client
JS library and style sheets) are not reloaded and only a small
part of page is refreshed. In several cases, this means no
extra data is fetched or no geometry management.

The ADF Rich Client has shown that partial page rendering
results in the best client-side performance. Besides the
impact on the client-side, server-side processing can be
faster and can have better server-side throughput and
scalability.

Use ADF rich client navigation. ADF Rich Client has an extensive support for navigation.
One of the common use cases is tabbed navigation. This is
currently supported by components like navigationPane,
which can bind to xmlMenuModel to easily define navigation.

There is one drawback in this approach, however. It results in
a full page refresh every time the user switches the tab. One
option is to use panelTabbed instead. panelTabbed has
built-in support for partial page rendering of the tabbed
content without requiring any developer work. However,
panelTabbed cannot bind to any navigational model and the
content has to be available from within the page, so it has
limited applicability.

Cache resources. Developers are strongly encouraged to ensure that any
resources that can be cached (images, CSS, and JavaScript)
have their cache headers specified appropriately. Also, client
requests for missing resources on the server result in
addition round trips to the server. To avoid this, make sure
that all the resources are present on the server.

Consider using the ResourceServlet to configure the
web.xml file to enable resource caching:

<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/js/*</url-pattern>
 </servlet-mapping>
<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/images/*</url-pattern>
 </servlet-mapping>

Chapter 8
Basic Tuning Considerations

8-9

Table 8-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Reduce the size of state token cache. This property is defined in web.xml
org.apache.myfaces.trinidad.CLIENT_STATE_MAX_TO
KENS in token-based client-side state saving and determines
how many tokens should be preserved at any one time. The
default value is 15. When this value is exceeded, state is
forgotten for the least recently viewed pages, which can
impact users that actively use the Back button or have
multiple windows that are open simultaneously.

To reduce live memory per session, consider reducing this
value to 2. Reducing the state token cache to 2 means one
Back button click is supported. For applications without
support for a Back button, this value should be set to 1.

Chapter 8
Basic Tuning Considerations

8-10

Table 8-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Define custom styles at the top of the page. A common developer task is to define custom styles inside a
regular page or template page. Since most browsers use
progressive scanning of the page, a late introduction of styles
forces the browser to recompute the page. This impacts the
page layout performance. For better performance, define
styles at the top of the page and possibly wrap them inside
the ADF group tag.

An HTML page basically has two parts, the head and the
body. When you add an af:document component to a
page, this component creates both parts of the page for you.
Any child component of the af:document is in the body part
of the page. To get a component (or static CDATA content) to
show up in the head, use the metaContainer facet.

To get a component (or static CDATA content) to display in
the head, use the metaContainer facet as follows:

<af:document title="#{attrs.documentTitle}"
theme="dark">
<f:facet name="metaContainer">
<af:group><![CDATA[
<style type="text/css">
.TabletNavigationGlobal {
text-align: right;
padding-left: 0px;
padding-right: 10px;
white-space: nowrap;
}
HTML[dir=rtl] .TabletNavigationGlobal {
text-align: left;
padding-left: 10px;
padding-right: 0px;
}
</style>
]]>
<af:facetRef facetName="metaContainer"/>
</af:group>
</f:facet>
<af:form ...>
<af:facetRef facetName="body"/>
</af:form>
</af:document>

If you use page templates, consider including af:document
and af:form in the template definition and expose anything
that you may want to customize in those tags through the
page template attributes and page template af:facetRef.
Your templates are then able to utilize the metaContainer
facet if they have template-specific styling as shown above.
Also, your usage pages do not have to repeat the same
document and form tags on every page.

See Developing Fusion Web Applications with Oracle
Application Development Framework for details about
af:facetRef.

Chapter 8
Basic Tuning Considerations

8-11

Table 8-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Optimize custom JavaScript code. ADF Rich Client uses JavaScript on the client side. The
framework itself provides most of the functionality needed.
However, you may have to write a custom JavaScript code.
To get the best performance, consider bundling the
JavaScript code into one JS lib (one JavaScript file) and
deliver it to the client. The easiest approach is to use the
ADF tag: <af:resource type="javascript" source="
"/>.

If most pages require custom JavaScript code, the tag should
be included in the application template. Otherwise, including
it in particular pages can result in better performance. If you
customize the Javascript code the lib file becomes too big.
Then consider splitting it into meaningful pieces and include
only the pieces needed by the page. Overall, this approach is
faster since the browser cache is used and the html content
of the page is smaller.

Disable debug output mode. The debug-output element in the trinidad-config.xml
file specifies whether output should be more verbose to help
with debugging. When set to TRUE, the output debugging
mechanism in Trinidad produces pretty-printed, commented
HTML content. To improve performance by reducing the
output size, you should disable the debug output mode in
production environments.

Set the debug-output element to FALSE, or if necessary,
remove it completely from the trinidad-config.xml file.

Disable test automation. Enabling test automation parameter
oracle.adf.view.rich.automation.ENABLED generates
a client component for every component on the page, which
can negatively impact performance.

Set the oracle.adf.view.rich.automation.ENABLED
parameter value to FALSE (the default value) in the web.xml
file to improve performance.

Disable animation. ADF Rich Client framework has client-side animation enabled
by default. Animation is introduced to provide an enhanced
user experience. Some of the components, like pop-up table,
have animation set for some of the operations. While using
animation can improve the user experience, it can increase
the response time when an action is executed. If speed is the
biggest concern, then animation can be disabled by setting
the flag in the trinidad-config.xml file.

Disable client-side assertions. Assertions on client-side code base can have a significant
impact on client-side performance. Set the parameter value
to FALSE (the default value) to disable client-side assertions.
Also ensure that the
oracle.adf.view.rich.ASSERT_ENABLED is not explicitly
set to TRUE in the web.xml file.

Disable JavaScript Profiler. When the JavaScript
oracle.adf.view.rich.profiler.ENABLED profiler is
enabled, an extra round-trip occurs on every page to fetch
the profiler data. Disable the profiler in the web.xml file to
avoid this extra round-trip.

Chapter 8
Basic Tuning Considerations

8-12

Table 8-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Disable resource debug mode. When resource debug mode is enabled, the response
headers do not tell the browser that resources (JS libraries,
CSS style sheets, or images) can be cached.

Disable the
org.apache.myfaces.trinidad.resource.DEBUG
parameter in the web.xml file to ensure that caching is
enabled.

Disable timestamp checking. The
org.apache.myfaces.trinidad.CHECK_FILE_MODIFICA
TION parameter controls whether the jsp or the jspx files are
checked for modifications each time they are accessed.

Ensure that the parameter value
org.apache.myfaces.trinidad.CHECK_FILE_MODIFICA
TION is set to FALSE (the default value) in the web.xml file.

Disable checking for CSS file modifications. The
org.apache.myfaces.trinidad.CHECK_FILE_MODIFICA
TION parameter controls when the CSS file modification
checks are made. To aid in performance, this configuration
option defaults to false-does not check for css file
modifications. Set this to TRUE if you want the skinning css
file changes to be reflected without stopping or starting the
server.

Enable content compression. By default, style classes that are rendered are compressed
to reduce the page size. In production environments, make
sure that you remove the DISABLE_CONTENT_COMPRESSION
parameter from the web.xml file or set it to FALSE.

For debugging, turn off the style class content compression.
You can do this by setting the
DISABLE_CONTENT_COMPRESSION property to TRUE.

Chapter 8
Basic Tuning Considerations

8-13

Table 8-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Enable JavaScript obfuscation. ADF Faces supports a runtime option for providing a non-
obfuscated version of the JavaScript library. The obfuscated
version is supplied by default, but the non-obfuscated version
is supplied for development builds. Obfuscation reduces the
overall size of the JavaScript library by about 50%.

To provide an obfuscated ADF Faces build, set the
org.apache.myfaces.trinidad.DEBUG_JAVASCRIPT
parameter to FALSE in the web.xml file.

There are two ways to check that the code is obfuscated by
using Firefox with Firebug enabled:

Check the download size:

1. Ensure that All or JS is selected on the Net tab.

2. Locate the all-11-version.js entry.

3. Check the size of the column. It should be about 1.3 MB
(as opposed to 2.8 MB).

Check the source:

1. From the Script tab select all-11-version.js from the
drop-down menu located above the tabs.

2. Examine the code. If there are comments and long
variable names, the library is not obfuscated.

Note: Copyright comments are kept even in the
obfuscated version of the JS files.

Enable library partitioning. In the Oracle 11g release, library partitioning is ON by
default. In the previous versions, library partitioning was OFF
by default. Ensure that the library partitioning is ON by
validating the
oracle.adf.view.rich.libraryPartitioning.DISABL
ED property is set to false in the web.xml file.

Tuning ADF Faces Component Attributes
Table 8-3 provides configuration recommendations for ADF Faces Component Attributes:

Chapter 8
Basic Tuning Considerations

8-14

Table 8-3 ADF Faces Component Attributes

Configuration Recommendation Description

Use the immediate attribute. ADF Rich Client components have an immediate attribute. If
a component has its immediate attribute set to TRUE
(immediate="true"), then the validation, conversion, and
events that are associated with the component are
processed during the applyRequestValues phase. These
are some cases where setting immediate to TRUE can lead
to better performance.

• To avoid processing the data from the current screen
while navigating to the new page set the immediate
attribute to TRUEin the commandNavigationItem in the
navigationPane.

• If the input component value has to be validated before
the other values, immediate should be set to TRUE. In
case of an error it be detected earlier in the cycle and
additional processing be avoided.

ADF Rich Client is built on top of JSF and uses standard JSF
lifecycle. See Using the JSF Lifecycle with ADF Faces in
Developing Web User Interfaces with Oracle ADF Faces.

There are some important issues that are associated with the
immediate attribute. Refer to Using the Immediate Attribute
in Developing Web User Interfaces with Oracle ADF Faces
for more information.

Note that this is an advanced feature. Most of the
performance improvements can be achieved by using the
af:subform component.

Use the visible and rendered attributes. All ADF Faces Rich Client display components have two
properties that dictate how the component is displayed on
the page:

• The visible property specifies whether the component
is to be displayed on the page or to be hidden.

• The rendered property specifies whether the
component shall exist in the client page at all.

The EL expression is commonly used to control these
properties. For better performance, consider setting the
component to not rendered instead of not visible, assuming
that there is no client interaction with the component. Making
a component not rendered can improve server performance
and client response time since the component does not have
client-side representation.

Chapter 8
Basic Tuning Considerations

8-15

Table 8-3 (Cont.) ADF Faces Component Attributes

Configuration Recommendation Description

Use client-side events. ADF Rich Client framework provides the client-side event
model based on component-level events rather than DOM
level. The client-side event model is a very useful feature that
can speed up the application. Review the following
performance considerations:

• Consider using client-side events for relatively simple
event handling that can be done on the client side. This
improves client-side performance by reducing the
number of server round trips. Also, it can increase
server-side throughput and scalability since requests do
not have to be handled by the server.

• By default, the events generated on the client-side by the
client components are propagated to the server. If a
client-side event handler is provided, consider canceling
the event at the end of processing so that the event does
not propagate to the server.

Use the id attribute. The id attribute should not be longer than 7 characters in
length. This is particularly important for naming containers. A
long id can impact performance as the amount of HTML that
must be sent down to the client is impacted by the length of
the ids.

Use client-side components. ADF Rich Client framework has client-side components that
play a role in client-side event handling and component
behavior. The clientComponent attribute is used to
configure when (or if) a client-side component should be
generated. Setting clientComponent attribute to TRUE has
a performance impact, so determine if its necessary to
generate client-side components.

For more information, see What Happens When You Set
clientComponent to true in Developing Web User Interfaces
with Oracle ADF Faces.

Set the childCreation attribute on af:popup to deferred
for a server-side performance enhancement

Setting childCreation to deferred postpones
construction of the components under the popup until the
content is delivered. A deferred setting can therefore reduce
the footprint of server-side state in some cases.

CAUTION: This approach cannot be used if any of the
following tags are present inside the popup:

• f:attribute
• af:setPropertyListener
• af:clientListener
• af:serverListener
It also cannot be used if you need to refer to any child
components of the popup before the popup is displayed.
Setting childCreation="deferred" postpones creating
any child components of the popup and you cannot refer to
them until after the popup is shown.

Chapter 8
Basic Tuning Considerations

8-16

Performance Considerations for Table and Tree Components
Table, Tree, and TreeTable are some of the most complex, and frequently used, components.
Since these components can include large sets of data, they can be the common source of
performance problems. Table 8-4 provides some performance recommendations.

Table 8-4 Table and Tree Component Configurations

Configuration Recommendation Description

Use editingMode="clickToEdit". When using editingMode="editAll" all content of the
editable values holders and their client components is sent.
This can significantly increase the payload and the
Document Object Model (DOM) content on the client.

Consider switching to editingMode="clickToEdit" to
reduce the amount of transmitted data and potentially
improve user interaction.

Reduce fetchSize when possible. A larger fetch size attribute on af:table implies that more
data needs to be processed, fetched from the server, and
displayed on the client. This can also increase the amount of
DOM displayed on the client.

Modify table fetch size. Tables have a fetch size, which defines the number of rows to
be sent to the client in one round-trip. To get the best
performance, keep this number low while still allowing
enough rows to fulfill the initial table view port. This ensures
the best performance while eliminating extra server requests.

In addition, consider keeping the table fetch size and iterator
range size in sync. By default, the table fetch size is set to
the EL expression #{bindings.<name>.rangeSize} and
should be equal to the iterator size.

For more information, see Using Tables, Trees, and Other
Collection-Based Components in Developing Web User
Interfaces with Oracle ADF Faces.

Disable column stretching. Columns in the table and treeTable components can be
stretched so that there is no unused space between the end
of the last column and the edge of the table or treeTable
component. This feature is turned off by default due to
potential performance impacts. Turning this feature on may
have a performance impact on the client rendering time, so
use caution when you enable this feature with complex
tables.

Consider using header rows and frozen columns only when
necessary.

The table component provides features that enable you to
set the row header and frozen columns. These options can
provide a well-designed interface, which can lead to a good
user experience. However, they can impact client-side
performance. To get the best performance for table
components, use these options only when they are needed.

Chapter 8
Basic Tuning Considerations

8-17

Table 8-4 (Cont.) Table and Tree Component Configurations

Configuration Recommendation Description

Consider using visitTree instead of invokeOnComponent. A partial visit using visitTree is always at least as fast as
invokeOnComponent. In addition, for components that
control visiting, providing both invokeOnComponent and
visitTree implementations is a source of errors. Consider
deprecating invokeOnComponent and use visitTree
instead.

For more information, see Using Tables, Trees, and Other
Collection-Based Components in Developing Web User
Interfaces with Oracle ADF Faces.

Performance Considerations for autoSuggest
The autoSuggest feature can be enabled for inputText, inputListOfValues, and
inputComboboxListOfValues components. When the user types characters in the input field,
the component displays a list of suggested items. The feature performs a query in the
database table to filter the results. To speed up database processing, a database index should
be created on the column for which autosuggest is enabled. This improves the component's
response times especially when the database table has a large number of rows.

Data Delivery - Lazy versus Immediate
Data for Table, Tree, and other stamped components can be delivered immediately or lazily. By
default, lazy delivery is used. This means that data is not delivered in the initial response from
the server. Rather, after the initial page is rendered, the client asks the server for the data and
gets it as a response to the second request.

In the case of immediate delivery, data can be in line with the response to the page request. It
is important to note that data delivery is per component and not per page. This means that
these two can be mixed on the same page.

When choosing between these two options, consider the following:

Chapter 8
Basic Tuning Considerations

8-18

Delivery option Description

Lazy Delivery (default) Lazy delivery should be used for tables, or other stamped
components, which are known to have slow fetch time. For
example, the stamped components are the ones based on
data controls using web services calls or other data controls
with slow data fetch. Lazy delivery can also be used on
pages where content is not immediately visible unless the
user scrolls down to it. In this case the time to deliver the
visible context to the client is shorter, and the user perceives
better performance.

Lazy delivery is implemented by using the data streaming
technique. The advantage of this approach is that the server
has the ability to execute data fetches in parallel and stream
data back to the client as soon as the data is available. The
technique performs very well for a page with two tables, one
that returns data very quickly and one that returns data very
slowly. Users see the data for the fast table as soon as the
data is available.

Executing data fetches in parallel also speeds up the total
time to fetch data. This gives an advantage to lazy loading in
cases of multiple, and possibly slow, data fetches. While
streaming is the default mechanism to deliver data in lazy
mode, parallel execution of data controls is not. To enable
parallel execution, open the page definition and change
RenderHint on the iterator to background.

In certain situations, the advantage of parallel execution is
faster response time. Parallel execution could potentially use
more resources due to multiple threads executing requests in
parallel and possibly more database connections are
opened.

Consider using parallel execution only when there are
multiple slow components on the page and the stamped
components belong to different data control frames (such as
isolated task flows). When there is a single data control
frame, parallel execution may not improve performance,
since parallel execution synchronizes on the data control
frame level.

Immediate Delivery Immediate delivery (contentDelivery="immediate")
should be used if the table data control is fast, or if it returns
a small set of data. In these cases, the response time is
faster than using lazy delivery.

Another advantage of immediate delivery is less server
resource usage, compared to lazy delivery. Immediate
delivery sends only one request to the server, which results
in lower CPU and memory usage on the server for the given
user interaction.

Performance Considerations for DVT Components
DVT components are data visualization components built on top of ADF Rich Client
components. DVT components include graphs, gauges, Gantt charts, pivot tables and maps.
Table 8-5 provides some configuration recommendations for DVT components:

Chapter 8
Basic Tuning Considerations

8-19

Table 8-5 DVT Component Configurations

Configuration Recommendation Description

Modify the RangeSize attribute. The RangeSize attribute defines the number of rows to
return simultaneously. A RangeSize value of -1 causes the
iterator to return all the rows. Using a lower value may
improve performance, but it may be harder to stop the data
and any data beyond RangeSize is not available in the view.

Use horizontal text instead of vertical text. By default, pivot tables use horizontal text for column
headers. However, there is an option to use vertical text as
well. Vertical text can be used by specifying a CSS style for
the header format such as:

writing-mode:tb-rl;filter:flipV flipH;
While vertical text can look better in some cases, it has a
performance impact when the Firefox browser is used.

The problem is that vertical text is not native in Firefox as it is
in Internet Explorer. To show vertical text, the pivot table uses
images produced by GaugeServlet. These images cannot
be cached as the text is dynamic and depends on the binding
value. Due to this, every rendering of the pivot table incurs
extra round-trips to the server to fetch the images, which
impact network traffic, server memory, and CPU.

To have the best performance, consider using horizontal text
instead of vertical text.

Advanced Tuning Considerations
After you have performed the recommended tuning modifications, you can make additional
changes that are specific to your ADF Server deployment. Consider carefully whether the
advanced tuning recommendations are appropriate for your environment.

• ADF Server Performance

ADF Server Performance
Oracle ADF Server components consist of the non-UI components within ADF. These include
the ADF implementations of the model layer (ADFm), business services layer (ADFbc), and
controller layer (ADFc). As the server components are highly configurable, it is important to
choose the combination of configurations that best suits the available resources with the
specified application performance and functionality.

Note:

When you use ADFm, consider using deferred execution and monitor the refresh
conditions to maintain performance.

• Tuning Session Timeout

• Tuning View Objects

• Enabling Batch Processing

Chapter 8
Advanced Tuning Considerations

8-20

• Tuning RangeSize

• Configuring Application Module Pooling

• Using ADFc Regions

• Deferring Task Flow Execution

• Deferring Task Flow Creation in Popups

• Configuring the Task Flow Inside Switcher

• Reusing Static Data

• Conditional Validations

Tuning Session Timeout
For ADF applications with a significant user community, the amount of memory held by
sessions waiting to expire can negatively impact performance when the default session timeout
of 45 minutes is used. The memory being held can be higher than what is physically available,
causing the server to not be able to handle the load. For large numbers of users, such as those
using a public facing website, the session timeout should be as short as possible.

To improve performance, consider modifying the default session timeout value (in minutes) in
the web.xml file. Use a session timeout value that works with your use case scenario. The
example below shows a session timeout of 10 minutes:

<session-config>
 <session-timeout>
 10
 </session-timeout>
</session-config>

Tuning View Objects
View objects (VOs) provide many tuning options to enable a developer to tailor the View Object
to the application's specific needs. View Objects should be configured to use the minimal
feature set required to fulfill the functional requirement. Developing Fusion Web Applications
with Oracle Application Development Framework provides detailed information on tuning View
Objects. Provided here are some tips pertaining to View Object performance.

• Creating View Objects

• Configuring View Object Data Fetching

• Setting Additional View Object Configurations

Creating View Objects
To maximize View Object performance, the View Object should match the intended usage. For
instance, data retrieved for a list of values pick-list is typically read-only, so a read-only View
Object should be used to query this data. Tailoring the View Object to the specific needs of the
application can improve performance, memory usage, CPU usage, and network usage.

Chapter 8
Advanced Tuning Considerations

8-21

Table 8-6 Types of View Objects

View Object Type Description

Read-only View Objects If the View Object does not have to insert or update data,
consider using a read-only View Object. There are two
options for read-only View Objects:

• Non-updatable EO-based View Objects
• Expert-mode View Objects
Non-updatable EO-based View Objects offer the advantage
of a customizable select list at runtime, which retrieve
attributes needed in the UI, data reads from local cache
(instead of reexecuting a database query), and data
consistency with other updatable View Objects based on the
same EO.

Expert-mode View Objects have the ability to perform SQL
operations that are not supported by EOs and avoid the
small performance impact from coordinating View Object and
EO rows. EO-based View Objects can be marked non-
updatable by deselecting the updatable option in the
selected EO for the View Object, which can also be done by
adding the parameter ReadOnly="true" on the
EntityUsage attribute in the View Object XML definition.

Insert-only View Objects For View Objects that are used only for inserting records, you
can prevent unnecessary select queries from being executed
when you use the View Object. To do this, set the option No
Rows in the Retrieve from the Database group box in the
View Objects Overview tab. This sets MaxFetchSize to 0
(zero) for the View Object definition.

run time-created View Objects View Objects can be created at runtime by using the
createViewObjectFromQueryStmt() API on the AM.
However, avoid using runtime-created View Objects, unless
absolutely necessary, due to potential performance impacts
and complexity of tuning.

Configuring View Object Data Fetching
View Object performance is largely dependent on how the view object is configured to fetch
data. If the fetch options are not tuned correctly for the application, then the view object may
fetch an excessive amount of data or may take too many round-trips to the database. Fetch
options can be configured through the Retrieve from the Database group box in the View
Object dialog Figure 8-1.

Chapter 8
Advanced Tuning Considerations

8-22

Figure 8-1 View Object Dialog

Table 8-7 View Object Configurations

Fetch Option Description

Fetch Mode The default fetch option is the All Rows option, which is
retrieved as needed (FetchMode="FETCH_AS_NEEDED") or
all at once (FetchMode="FETCH_ALL"), depending on which
option is appropriate. The As Needed option ensures that an
executeQuery() operation on the view object initially
retrieves only as many rows as necessary to fill the first page
of a display. The number of rows is set based on the view
object's range size.

Fetch Size In conjunction with the fetch mode option, the Batches field
controls the number of records fetched simultaneously from
the database (FetchSize in the View Object, XML). The
default value is 1, which may impact performance unless only
1 row is fetched. The suggested configuration is to set to the
n+1 value where n is the number of rows that are displayed
in the user interface.

Note that for DVT objects, Fetch Size should be n+1 where n
is either rangeSize or the likely maximum rowset size if
rangeSize is -1.

Chapter 8
Advanced Tuning Considerations

8-23

Table 8-7 (Cont.) View Object Configurations

Fetch Option Description

Max Fetch Size The default max fetch size for a View Object is -1, which
means that there is no limit to the number of rows the View
Object can fetch. Setting a max fetch size of 0 (zero) makes
the View Object insert-only. In cases where the result set
should only contain n rows of data, the option Only Up to
Row Number should be selected and set or call
setMaxFetchSize(N) to set this programmatically. To set
this manually, add the parameter MaxFetchSize to the View
Object XML.

For View Objects whose WHERE clause expects to retrieve a
single row, set the option At Most One Row. This option
ensures that the view object knows not to expect any more
rows and skips its normal test for that situation. In this case
no select query is issued and no rows are fetched.

Max fetch size can also be used to limit the impact from an
non-selective query that may return hundreds (or thousands)
of rows. In such cases, specifying the max fetch size limits
the number of rows that can be fetched and stored into
memory.

Forward-Only Mode If a data set is only traversed going forward, then forward-
only mode can help performance when iterating through the
data set. This can be configured by programmatically calling
setForwardOnly(true) on the View Object. Setting
forward-only can also prevent caching previous sets of rows
as the data set is traversed.

Setting Additional View Object Configurations
Table 8-8 provides additional tuning considerations when you use the View Object:

Table 8-8 Additional View Object Configurations

Configuration Recommendation Description

Optimize large data sets. View Objects provide a mechanism to page through large
data sets so that a user can jump to a specific page in the
results. This is configured by calling setRangeSize(N)
followed by setAccessMode(RowSet.RANGE_PAGING) on
the View Object where N is the number of rows contained
within 1 page. When you navigate to a specific page in the
data set, the application can call scrollToRangePage(P)
on the View Object to navigate to page P. Range paging
fetches and caches only the current page of rows in the View
Object row cache at the cost of another query execution to
retrieve each page of data. Range paging is not appropriate
where it is beneficial to have all fetched rows in the View
Object row cache (for example, when the application must
read all rows in a data set for an LOV or page back and forth
in records of a small data set).

Chapter 8
Advanced Tuning Considerations

8-24

Table 8-8 (Cont.) Additional View Object Configurations

Configuration Recommendation Description

Disable spilloverconfigurations when possible. You can use the data source as virtual memorywhen the
JVM container runs out of memory. By default, this is
disabled and can be enabled (if needed) by setting
jbo.use.pers.coll=true. Keep this option disabled (if
possible) to avoid a potential performance impact.

Review SQL style configuration. If the generic SQL92 SQL style is used to connect to generic
SQL92-compliant database, then some View Object tuning
options do not apply. The View Object fetch size is one such
tuning option. When SQL92 SQL style is used, the fetch size
defaults to 10 rows, regardless of what is configured for the
View Object. When defining the database connection, the
SQL style is set. By default, when you define an Oracle
database connection, the SQL style is Oracle. To manually
override the SQL style, pass the parameter -
Djbo.SQLBuilder="SQL92" to the JVM at startup.

Use bind variables for view object queries. If the query that is associated with the View Object contains
values that may change from execution to execution,
consider using bind variables. This may help to avoid
reparsing the query on the database. Bind variables can be
added to the View Object in the Query section of the View
Object definition.

Use query optimizer hints for view object queries. The View Object can pass hints to the database to influence
which execution plan to use for the associated query. The
optimizer hints can be specified in the Retrieve from the
Database group box.

Use dynamic SQL generation. View Objects can be configured to dynamically generate
SQL statements at runtime instead of defining the SQL at
design time. A View Object instance, that is configured with
generating SQL statements dynamically, can avoid
requerying a database. This is especially true during page
navigation if a subset of all attributes with the same key
Entity Object list is used in the subsequent page navigation.
Performance can be improved by activating a superset of all
the required attributes to eliminate a subsequent query
execution.

Enabling Batch Processing
Batch processing enables multiple inserts, updates, and deletes to be processed together
when sending the operations to the database. Enabling this feature is done on the Entity
Object (EO) by either selecting the Use Update Batching check box in the Tuning section of
the EO's General tab, or by directly modifying the EO's XML file and adding the parameter
BatchThreshold with the specified batch size to the Entity attribute.

The BatchThreshold value is the threshold at which a group of operations can be batched
instead of performing each operation one at a time. If the threshold is not exceeded, then rows
may be affected one at a time. On the other hand, more rows than specified by the threshold
can be batched into a single batch.

Chapter 8
Advanced Tuning Considerations

8-25

Note:

the BatchThreshold configuration for the EO is not compatible if an attribute in the
EO exists with the configuration to refresh after insert (RetrievedOnInsert="true")
or update (RetrievedOnUpdate="true").

Tuning RangeSize
This parameter controls the number of records ADFm requests from the BC layer
simultaneously. The default RangeSize is 25 records. Consider setting this value to the number
of records to be displayed in the UI simultaneously for the View Object so that the number of
round-trips between the model and BC layers is reduced to one. This is configured in the
Iterator attribute of the corresponding page's page definition XML.

Configuring Application Module Pooling
Application module (AM) pooling enables multiple users to share several application module
instances. The configurations for the AM pool vary depending on the expected usage of the
application.

Most of the AM pool parameters can be set through Oracle JDeveloper. The configurations are
saved in the bc4j.xcfgfile, which can be manually edited if needed. Parameters can also be
set at the system level by specifying these as JVM parameters (-Dproperty=value). The
bc4j.xcfg configuration takes precedence over the JVM configuration; this enables a generic
system-level configuration to be overridden by an application-specific exception.

Table 8-9 Application Module (AM) Pool Tuning

Configuration Recommendation Description

Optimize the number of AM pools in the application. Parameters that are applied at the system level are applied
per AM pool. If the application uses more than 1 AM pool,
then the system-level values for the number of AM instances
must be multiplied by the number of AM pools to realize the
actual limits specified on the system as a whole.

For example, if an application uses four separate AM pools to
service the application, and a system-level configuration is
used to limit the max AM pool size to 100, then this can
result in a maximum of 400 AM instances (4 pools * 100 max
pool size).

If the intent is to limit the entire application to a max pool size
of 100, then the system-level configuration should specify a
max pool size of 25 (100 max pool size / 4 pools). Finer
granularity for configuring each AM pool can be achieved by
configuring each pool separately through JDev or directly in
the bc4j.xcfgfile.

Chapter 8
Advanced Tuning Considerations

8-26

Table 8-9 (Cont.) Application Module (AM) Pool Tuning

Configuration Recommendation Description

Optimize the number of database connections. By default, AM instances retain their database connections
even when checked back into the AM pool. There are many
performance benefits to maintain this association. To
maintain performance, consider configuring more AM
instances than the maximum number of specified database
connections.

Note:

If you have an AM pool that
needs to be used as the root
pool, consider tuning at the
specific AM pool level. For
pools that are infrequently
used, consider tuning pool
sizes on the pool level so that
top-level application
parameters are not used.

• General AM Pool Configurations

• Configuring Application Module Pool Sizing

• Configuring Application Module Pool Resource Cleanup

• Designing an Application Module

General AM Pool Configurations
Use the following guidelines as a general starting point when tuning AM and AM pool behavior.
More specific tuning for memory or CPU usage can be found in Configuring Application Module
Pool Sizing.

Table 8-10 AM Pool Tuning Parameters

Parameter Description

Initial Pool Size

jbo.ampool.initpoolsize
Specifies the number of application module instances to
create when the pool is initialized (default is zero). Setting a
nonzero initial pool size increases the time to initialize the
application, but improves subsequent performance for
operations that require an AM instance.

Configure this value to 10% more than the anticipated
number of concurrent AM instances that are required to
service all users.

Maximum Pool Size

jbo.ampool.maxpoolsize
Specifies the maximum number of application module
instances that the pool can allocate (default is 4096). The
pool can never create more application module instances
than the specified limit. A general guideline is to configure
this to 20% more than the initial pool size to allow for some
additional growth.

Chapter 8
Advanced Tuning Considerations

8-27

Table 8-10 (Cont.) AM Pool Tuning Parameters

Parameter Description

Minimum Available Size

jbo.ampool.minavailablesize
The minimum number of available application module
instances that the pool monitor should leave in the pool
during a resource cleanup operation, when the server is
under light load.

If you want the pool to shrink to contain no instances when
all instances have been idle for longer than the idle time-out
after a resource cleanup, set to 0 (zero).

The default is 5 instances.

While application module pool tuning allows different values
for the jbo.ampool.minavailablesize |
jbo.ampool.maxavailablesize parameters, in most
cases it is fine to set these minimum and maximum tuning
properties to the same value.

Maximum Available Size

jbo.ampool.maxavailablesize
The ideal maximum number of available application module
instances in the pool when the server is under load.

When the pool monitor wakes up to do resource cleanup, it
will try to remove available application module instances to
bring the total number of available instances down to this
ideal maximum. Instances that have been not been used for
a period longer than the idle instance time-out always get
cleaned up at this time. Then, additional available instances
are removed, if necessary, to bring the number of available
instances down to this size.

The default maximum available size is 25 instances.
Configure this to leave the maximum number of available
instances desired after a resource cleanup. A lower value
generally results in more application module instances being
removed from the pool during cleanup.

While application module pool tuning allows different values
for the jbo.ampool.maxavailablesize |
jbo.ampool.minavailablesize parameters, in most
cases it is fine to set these minimum and maximum tuning
properties to the same value.

Referenced Pool Size

jbo.recyclethreshold
Specifies the maximum number of application module
instances in the pool that attempt to preserve session affinity
for the next request made by the session that used them last
before releasing them to the pool in managed-state mode
(default is 10).

The referenced pool size should always be less than or equal
to the maximum pool size. This enables the configured
number of available instances to try and remain loyalto the
affinity they have with the most recent session that released
them in managed state mode.

Configure this value to the expected number of concurrent
users that perform multiple operations with short think times.
If there are no users expected to use the application with
short think times, then this can be configured to 0 (zero) to
eliminate affinity.

Chapter 8
Advanced Tuning Considerations

8-28

Table 8-10 (Cont.) AM Pool Tuning Parameters

Parameter Description

Maximum Instance Time to Live

jbo.ampool.timetolive
The number of milliseconds after which to consider a
connection instance in the pool as a candidate for removal
during the next resource cleanup, regardless of whether it
would bring the number of instances in the pool below
minimum available size.

The default is 3600000 milliseconds of total time to live
(which is 3600 seconds, or one hour). A lower value reduces
the time an application module instance can exist before it
must be removed at the next resource cleanup. The default
value is sufficient for most applications. A higher value
increases the time an application module instance can exist
before it must be removed at the next cleanup.

Idle Instance Timeout

jbo.ampool.maxinactiveage
The number of milliseconds after which to consider an
inactive application module instance in the pool as a
candidate for removal during the next resource cleanup.

The default is 600000 milliseconds of idle time (which is 600
seconds or ten minutes). A lower value results in more
application module instances being marked as a candidate
for removal at the next resource cleanup. A higher value
results in fewer application module instances being marked
as a candidate for removal at the next resource cleanup.

Pool Polling Interval

jbo.ampool.monitorsleepinterval
The length of time in milliseconds between pool resource
cleanup.

While the number of application module instances in the pool
never exceeds the maximum pool size, available instances
which are candidates for getting removed from the pool do
not get cleaned upuntil the next time the application module
pool monitor wakes up to do its job.

The default is to have the application module pool monitor
wake up every 600000 milliseconds (which is 600 seconds or
ten minutes). Configuring a lower interval results in inactive
application module instances being removed more frequently
to save memory. Configuring a higher interval results in less
frequent resource cleanups.

Chapter 8
Advanced Tuning Considerations

8-29

Table 8-10 (Cont.) AM Pool Tuning Parameters

Parameter Description

Failover

jbo.dofailover
Specifies whether to disable or enable failover. By default,
failover is disabled. To enable failover, set the parameter to
true.

Note:

When you enable application
module state passivation, a
failure can occur when Oracle
WebLogic Server is configured
to forcibly release the
connection back into the pool.
A failure of this type produces a
SQLException (connection has
already been closed) that is,
saved to the server log. The
exception is not reported
through the user interface.

To ensure that state passivation occurs and changes are
saved, set an appropriate value for the weblogic-
application.xml deployment descriptor parameter
inactive-connection-timeout-seconds on the
<connection-check-params> pool-params element.

Setting the deployment descriptor parameter to several
minutes, in most cases, should avoid forcing the inactive
connection timeout and the resulting passivation failure.
Adjust the setting as needed for your environment.

Locking Mode

jbo.locking.mode
Specifies the locking mode (optimistic or pessimistic).
The default is pessimistic, which means that a pending
transaction state can be created on the database with row-
level locks. With pessimistic locking mode, each time an AM
is recycled, a rollback is issued in the JDBC connection. Web
applications should set the locking mode to optimistic to
avoid creating the row-level locks.

Database Connection Pooling

jbo.doconnectionpooling
Specifies whether the AM instance can be disconnected from
the database connection when the AM instance is returned
to the AM pool. This enables an application to size the AM
pool larger than the database connection pool. The default is
false, which means that an AM instance can retain its
database connection when the AM instance is returned to
the AM pool. When set to true, the AM can release the
database connection back to the database connection pool
when the AM instance is returned to the AM pool. Note that
before an AM is disconnected from the database connection,
a rollback can be issued on that database connection to
revert any pending database state.

Chapter 8
Advanced Tuning Considerations

8-30

Table 8-10 (Cont.) AM Pool Tuning Parameters

Parameter Description

Transaction Disconnect Level

jbo.txn.disconnect_level
When used in conjunction with
jbo.doconnectionpooling=true, it specifies BC4J
behavior for maintaining JDBC ResultSets. By default,
jbo.txn.disconnect_level is 0and you can use
passivation to close any open ResultSets when the database
connection is disconnected from the AM instance.
Configuring jbo.txn.disconnect_level to 1 can prevent
this behavior to avoid the passivation costs for this situation.

For parameters that can be configured for memory-constrained systems, see Table 8-11.

Table 8-11 AM Pool Sizing Configurations - Memory Considerations

Parameter Description

Initial Pool Size

jbo.ampool.initpoolsize
Set this to a low value to conserve memory at the cost of
slower performance when additional AM instances are
required. The default value of 0 (zero) does not create any
AM instances when the AM pool is initialized.

Maximum Pool Size

jbo.ampool.maxpoolsize
Configure this to prevent the number of AM instance from
exceeding the determined value. However, if this is set too
low then some users may see an error while accessing the
application if no AM instances are available.

Minimum Available Pool Size

jbo.ampool.minavailablesize
Set to 0 (zero) to shrink the pool to contain no instances
when all instances have been idle for longer than the idle
time out after a resource cleanup. However, a setting of 1 is
commonly used to avoid the costs of re-creating the AM pool.

Maximum Available Pool Size

jbo.ampool.maxavailablesize
Configure this to leave the maximum number of available
instances specified after a resource cleanup.

For parameters that can be configured to reduce the load on the CPU to some extent through
a few parameters, see Table 8-12.

Table 8-12 AM Pool Sizing Configurations - CPU Considerations

Parameter Description

jbo.ampool.initpoolsize Set this value to the number of AM instances you want the
application pool to start with. Creating AM instances during
initialization takes the CPU processing costs of creating AM
instances during the initialization instead of on-demand when
additional AM instances are required.

jbo.recyclethreshold Configure this value to maintain the AM instance's affinity to
a user's session. Maintaining this affinity as much as possible
saves the CPU processing cost of needing to switch an AM
instance from one user session to another.

Chapter 8
Advanced Tuning Considerations

8-31

Configuring Application Module Pool Sizing
The Application Module pool sizing configuration is largely dependant on the number of
concurrent users you expect to have. To prevent performance issues, you need to make sure
AM pool size is sufficient to serve all concurrent users.

Caution:

The following example assumes at least 100 concurrent users. Always consult your
own use case scenarios to determine the appropriate settings for your deployment.

To configure these parameters, open the setDomainEnv.sh file for the WebLogic Server
instance and find these lines:

JAVA_OPTIONS="${JAVA_OPTIONS}"
export JAVA_OPTIONS

Replace these lines with the following:

JAVA_OPTIONS="-Djbo.ampool.doampooling=true
-Djbo.ampool.minavailablesize=1
-Djbo.ampool.maxavailablesize=120
-Djbo.recyclethreshold=60
-Djbo.ampool.timetolive=-1
-Djbo.load.components.lazily=true
-Djbo.doconnectionpooling=true
-Djbo.txn.disconnect_level=1
-Djbo.connectfailover=false
-Djbo.max.cursors=5
-Doracle.jdbc.implicitStatementCacheSize=5
-Doracle.jdbc.maxCachedBufferSize=19 ${JAVA_OPTIONS}"

Note:

To limit performance implications, set the ampool.maxavailablesize to a value that is
at least 20% more than the maximum number of concurrent users you expect in your
own use case scenarios.

Configuring Application Module Pool Resource Cleanup
These parameters affect the frequency and characteristics for AM pool resource cleanups.

For memory-constrained systems, configure the AM pool to clean up more AM instances more
frequently so that the memory consumed by the AM instance can be freed for other purposes.
However, reducing the number of available AM instances and increasing the frequency of
cleanups can result in higher CPU usage and longer response times. See Table 8-13 for more
information.

Chapter 8
Advanced Tuning Considerations

8-32

Table 8-13 AM Pool Resource Cleanup Configurations - Memory Considerations

Parameter Description

jbo.ampool.minavailablesize A setting of 0 (zero) shrinks the pool to contain no instances
when all instances have been idle for longer than the idle
time out. However, a setting of 1 is commonly used to avoid
the costs of recreating the AM pool.

jbo.ampool.maxavailablesize A lower value generally results in more AM instances being
removed from the pool during cleanup.

jbo.ampool.timetolive A lower value reduces the time an AM instance can exist
before it must be removed at the next resource cleanup.

jbo.ampool.maxinactiveage A low value results in more AM instances being marked as a
candidate for removal at the next resource cleanup.

jbo.ampool.monitorsleepinterval This controls how frequent resource cleanups can be
triggered. Configuring a lower interval results in inactive AM
instances being removed more frequently to save memory.

The AM pool can be configured to reduce the need for CPU processing by allowing more AM
instances to exist in the pool for longer periods of time. This generally comes at the cost of
consuming more memory.

Table 8-14 AM Pool Resource Cleanup Configurations - CPU Considerations

Parameter Description

jbo.ampool.minavailablesize and
jbo.ampool.maxavailablesize

Setting these to a higher value leaves more idle instances in
the pool, so that AM instances do not have to be recreated at
a later time. However, the values should not be set
excessively high to keep more AM instances than can be
required at maximum load.

jbo.ampool.timetolive A higher value increases the time an AM instance can exist
before it must be removed at the next resource cleanup.

jbo.ampool.maxinactiveage A higher value results in fewer AM instances being marked
as a candidate for removal at the next resource cleanup.

jbo.ampool.monitorsleepinterval Configuring a higher interval results in less frequent resource
cleanups.

Designing an Application Module
Designing an application's module granularity is an important consideration that can
significantly impact performance and scalability. It is important to note that each root
application module generally holds its own database connection. If a user session consumes
multiple root application modules, then that user session can potentially hold multiple database
connections simultaneously. This can occur even if the connections are not actively being
used, due to the general affinity maintained between an application module and a user
session. To reduce the possibility that a user can hold multiple connections at once, consider
the following options:

• Design larger application modules to encompass all the functionality that a user needs.

• Nest smaller application modules under a single root application module so that the same
database connection can be shared among the nested application modules.

Chapter 8
Advanced Tuning Considerations

8-33

• Use lazy loading for application modules. In the Application Module tuning section,
customize runtime instantiation behavior to use lazy loading. Lazy loading can also be set
JVM-wide by adding the following JVM argument:

-Djbo.load.components.lazily=true

Using ADFc Regions
Adding regions to a page can be a powerful addition to the application. While there is no limit
to the number of remote regions that you can render in a JSF page, use this capability with
caution. For simple pages, where tabs are not used, regions may be combined in the page
such that the maximum number of regions is determined by the design of the region and the
view object queries it executes. Alternatively, for complex pages that use tabs, limit the use of
regions to achieve best performance. For complex tabbed pages, ADF does not deactivate
task flow transactions once a region is loaded. When switching tabs, the ongoing transaction
must be stopped to achieve best performance.

Deferring Task Flow Execution
By default, task flows are activated when the page is loaded, even when the task flow is not
initially rendered. This causes unnecessary overhead if the task flow is never displayed.

Note:

For regions and task flows, the amount of time it takes to evaluate the current viewId
and the time it takes to calculate input parameters to the flow can impact your overall
performance. Consider this during your design phase.

Deferring Task Flow Creation in Popups
By default, the child components under a pop-up are created even when pop-up is not
accessed. To avoid this overhead, consider the following:

• Set childCreation to deferred
Set childCreation="deferred" on the popup

Set activation="deferred" on the task flow

Chapter 8
Advanced Tuning Considerations

8-34

Note:

This approach cannot be used if any of the following tags are present inside the
pop-up:

– f:attribute
– af:setPropertyListener
– af:clientListener
– af:serverListener
It also cannot be used if you need to refer to any child components of the popup
before the popup is displayed. Setting childCreation="deferred" postpones
creating any child components of the popup and you cannot refer to them until
after the popup is shown. In that case, use Conditional Activation.

• Use conditional activation

Add property listener on the popup in the jsff to set a condition

Set activation="conditional" on the task flow

Set activate=condition on the task flow

Configuring the Task Flow Inside Switcher
By default, task flows under switchers are activated when the page is loaded, not when the
switcher facet is displayed. To avoid this, use conditional activation and set active to an
expression language (EL) expression that returns true when the facet is displayed.

Reusing Static Data
If the application contains static data that can be reused across the application, the cache data
can be collected by using a shared application module. For more information on creating and
using shared application modules, see Sharing Application Module View Instances in
Developing Fusion Web Applications with Oracle Application Development Framework.

Conditional Validations
For resource-intensive validations on entity attributes, consider using preconditions to
selectively apply the validations only when needed. The cost of validation must be weighted
against the cost of the precondition to determine if the precondition is beneficial to the
performance. For more information on specifying preconditions for validation, see How to Set
Preconditions for Validation in Developing Fusion Web Applications with Oracle Application
Development Framework.

Chapter 8
Advanced Tuning Considerations

8-35

9
Tuning Oracle TopLink

You can tune EclipseLink, an open-source persistence framework used with Oracle TopLink, to
optimize its performance as the Java Persistence API (JPA) implementation.

• About Oracle TopLink and EclipseLink
Oracle TopLink includes the open source EclipseLink as the Java Persistence API (JPA)
implementation. Oracle TopLink extends EclipseLink with advanced integration into the
Oracle Application Server.

• Basic Tuning Considerations
To achieve optimal performance, you can follow the tuning recommendations that apply to
your own use case scenarios.

• Advanced Tuning Considerations
After you have performed the recommended modifications, you can make additional
changes that are specific to your deployment. Consider carefully whether the advanced
tuning recommendations are appropriate for your environment.

About Oracle TopLink and EclipseLink
Oracle TopLink includes the open source EclipseLink as the Java Persistence API (JPA)
implementation. Oracle TopLink extends EclipseLink with advanced integration into the Oracle
Application Server.

The information here assumes that you are familiar with the basic functionality of EclipseLink.
Before you begin tuning, consider reviewing the following introductory information:

• Understanding Queries at http://www.eclipse.org/eclipselink/documentation/2.6/
concepts/queries.htm#CHDGGCJB

• Understanding Caching at http://www.eclipse.org/eclipselink/documentation/2.6/
concepts/general004.htm#CHDEEBFG

• Understanding Mappings at http://www.eclipse.org/eclipselink/documentation/2.6/
concepts/mappingintro.htm#CHDFEJIJ

For more information on Oracle TopLink, see the TopLink page on the Oracle Technology
Network (OTN).

Note:

The information here serves as a Quick Start guide to performance tuning JPA in the
context of a Jakarta EE environment. While this information provides common
performance tuning considerations and related documentation resources, it is not
meant to be a comprehensive list of areas to tune.

9-1

http://www.eclipse.org/eclipselink/documentation/2.6/concepts/queries.htm#CHDGGCJB
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/queries.htm#CHDGGCJB
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/general004.htm#CHDEEBFG
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/general004.htm#CHDEEBFG
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/mappingintro.htm#CHDFEJI
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/mappingintro.htm#CHDFEJI
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html

Basic Tuning Considerations
To achieve optimal performance, you can follow the tuning recommendations that apply to your
own use case scenarios.

• SQL Statement and Query Tuning Parameters

• Cache Configuration Tuning Parameters

• About Mapping and Descriptor Configurations

• About Data Partitioning

SQL Statement and Query Tuning Parameters
Table 9-1 and Table 9-2 show tuning parameters and performance recommendations related to
SQL statements and querying.

Table 9-1 EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

Parameterized SQL Binding By using parameterized SQL and
prepared statement caching, you can
improve performance by reducing the
number of times the database SQL
engine parses and prepares SQL for a
frequently called query. EclipseLink
enables parameterized SQL by default.
However, not all databases and JDBC
drivers support these options. Note that
the Oracle JDBC driver bundled with
Oracle Application Server does support
this option. Use the persistence
property eclipselink.jdbc.bind-
parameters in the persistence.xml
file to configure this.

See also "Understanding Caching" at
http://www.eclipse.org/
eclipselink/documentation/2.6/
concepts/cache.htm#CDEFHHEH and
"Understanding Querying" at http://
www.eclipse.org/eclipselink/
documentation/2.6/concepts/
queries.htm#CHDGGCJB
Default Value:
PERSISTENCE_UNIT_DEFAULT, which
is true by default.

Leave parameterized SQL binding
enabled for selected databases and
JDBC drivers that support these
options.

Chapter 9
Basic Tuning Considerations

9-2

http://www.eclipse.org/eclipselink/documentation/2.6/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/queries.htm#CHDGGCJB
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/queries.htm#CHDGGCJB
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/queries.htm#CHDGGCJB
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/queries.htm#CHDGGCJB

Table 9-1 (Cont.) EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

JDBC Statement Caching Statement caching is used to lower the
performance impact of repeated cursor
creation and repeated statement
parsing and creation; this can improve
performance for applications by using a
database.

Note: For Jakarta EE applications, use
the data source's statement caching
and do not use EclipseLink Statement
Caching for EJB3.0/JPA. For example:
eclipselink.jdbc.cache-
statements="true".

Set this option in an Oracle Weblogic
data source by setting Statement
Cached Type and Statement Cached
Size configuration options.

See also Increasing Performance with
the Statement Cache in Administering
JDBC Data Sources for Oracle
WebLogic Server.

Default Value: The Oracle Weblogic
Server data source default statement
cache size is 10 statements per
connection.

If your JDBC driver supports this option,
you should always enable statement
caching. The Oracle JDBC driver
supports this option.

Fetch Size The JDBC fetch size gives the JDBC
driver a hint as to the number of rows
that should be fetched from the
database when more rows are needed.

For large queries that return a large
number of objects, you can configure
the row fetch size used in the query to
improve performance by reducing the
number database hits required to satisfy
the selection criteria.

Most JDBC drivers use a default fetch
size of 10. If you are reading 1000
objects, increasing the fetch size to 256
can significantly reduce the time
required to fetch the query's results.

Note: The default value means use the
JDBC driver default value, which is
typically 10 rows for the Oracle JDBC
driver.

To configure this, use query hint
eclipselink.jdbc.fetch-size.
Default Value: 0.

The optimal fetch size is not always
obvious. Usually, a fetch size of one half
or one quarter of the total expected
result size is optimal. Note that if you
are unsure of the result set size,
incorrectly setting a fetch size too large
or too small can decrease performance.

Chapter 9
Basic Tuning Considerations

9-3

Table 9-1 (Cont.) EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

Batch Writing Batch writing can improve the database
performance by sending groups of
INSERT, UPDATE, and DELETE
statements to the database in a single
transaction, rather than individually.

Use the persistence property
"eclipselink.jdbc.batch-
writing"="JDBC" in the
persistence.xml file to configure this.

Default Value: Off.

Enable for the persistence unit.

Change Tracking This is an optimization feature that lets
you tune the way EclipseLink detects
changes in an entity.

Default Value: If using weaving (Jakarta
EE default) AttributeLevel otherwise
Deferred.

Leave at default AttributeLevel for
best performance.

Weaving Can disable through persistence.xml
properties eclipselink.weaving
Default Value: On.

Leave On for best performance.

Read Only Setting an EJB3.0 JPA entity to Read
Only ensures that the entity cannot be
modified and enables EclipseLink to
optimize unit of work performance.

Set through query hint
eclipselink.read-only.

Can also be set at entity level by using
the @ReadOnly class annotation.

Default Value: False.

For optimal performance use Read
Only on any query where the resulting
objects are not changed.

firstResult and maxRows These are JPA query properties that are
used for paging large queries. Typically,
these properties can be used when the
entire result set of a query returning a
large number of rows is not needed. For
example, when a user scans the result
set (a page at a time) looking for a
particular result and then discards the
rest of the data after the record is found.

Use on queries that can have a large
result set and only a subset of the
objects is needed.

Sequence number pre-allocation Sequence number preallocation enables
a batch of ids to be queried from the
database simultaneously to avoid
accessing the database for an id on
every insert.

Default Value: 50.

Always use sequence number
preallocation for best performance for
inserts. SEQUENCE or TABLE sequencing
should be used for optimal performance,
not IDENTITY, which does not allow
preallocation.

• Entity Relationships Query Tuning Parameters

Entity Relationships Query Tuning Parameters
Table 9-2 shows the entity relationship between the query parameters for performance tuning.

Chapter 9
Basic Tuning Considerations

9-4

Table 9-2 EJB3.0 Entity Relationship Query Performance Options

Tuning Parameter Description Performance Notes

Batch Fetching The eclipselink.batch hint supplies
EclipseLink with batching information so
subsequent queries of related objects
can be optimized in batches instead of
being retrieved one-by-one or in one
large joined read.

Batch fetching has three types: JOIN,
EXISTS , and IN. The type is set
through the query hint
eclipselink.batch.type.

Note that batching is only allowed on
queries that have a single object in their
select clause. The query hint to
configure this is eclipselink.batch.
Batch fetching can also be set by using
the @BatchFetch annotation.

Default Value: Off.

Use it to query the tables with columns
mapping to the table data you need. You
should only use either batch fetching or
joining if you know that you are going to
access all the data; if you do not intend
to access the relationships, then let the
indirection defer their loading.

Batch fetching is more efficient than
joining because it avoids reading
duplicate data; therefore for best
performance for queries where batch
fetching is supported, consider using
batch fetching instead of join reading.

Join Fetching Join fetching is a query optimization
feature that enables a single query for a
class to return the data to build the
instances of that class and its related
objects.

Use this feature to improve query
performance by reducing database
access. By default, relationships are not
join-read; if you are using lazy-loading,
each relationship is fetched separately
when accessed or as a separate
database query if you are not using
lazy-loading.

You can specify the use of join in JPQL
(JOIN FETCH), or you can set it as
multilevel in the query hint
eclipselink.join-fetch. It also can
be set in the mapping annotation
@JoinFetch.

Joining is part of the JPA specification,
whereas batch fetching is not. And,
joining works on queries that do not
work with batch fetching. For example,
joining works on queries with multiple
objects in the select clause, queries with
a single result, and for cursors and first
or max results, whereas batch fetching
does not.

See also "Join Fetching" at http://
www.eclipse.org/eclipselink/
documentation/2.6/solutions/
performance001.htm#CHDEGCHH
Default Value: Not Used.

Use it to query the tables with columns
mapping to the table data you need. You
should only use either batch fetching or
joining if you know that you are going to
access all the data; if you do not intend
to access the relationships, then let the
indirection defer their loading. For the
best performance of selects, where
batch fetching is not supported, a join is
recommended

Chapter 9
Basic Tuning Considerations

9-5

http://www.eclipse.org/eclipselink/documentation/2.6/solutions/performance001.htm#CHDEGCHH
http://www.eclipse.org/eclipselink/documentation/2.6/solutions/performance001.htm#CHDEGCHH
http://www.eclipse.org/eclipselink/documentation/2.6/solutions/performance001.htm#CHDEGCHH
http://www.eclipse.org/eclipselink/documentation/2.6/solutions/performance001.htm#CHDEGCHH

Table 9-2 (Cont.) EJB3.0 Entity Relationship Query Performance Options

Tuning Parameter Description Performance Notes

Lazy loading Without lazy loading on, when
EclipseLink retrieves a persistent object,
it retrieves all the dependent objects to
which it refers. When you configure lazy
reading (also known as indirection, lazy
loading, or just-in-time reading) for an
attribute mapped with a relationship
mapping, EclipseLink uses an
indirection object as a place holder for
the referenced object.

EclipseLink defers reading the
dependent object until you access that
specific attribute. This can result in a
significant performance improvement,
especially if the application is interested
only in the contents of the retrieved
object, rather than the objects to which it
is related.

See also "Using Lazy Loading" at
http://www.eclipse.org/
eclipselink/documentation/2.6/
concepts/
mappingintro001.htm#CEGBCJAG.

Default Value: On for collection mapping
(ToMany mappings, @OneToMany and
@ManyToMany)

Default Value: Off for reference (ToOne
mappings, @OneToOne and
@ManyToOne)

Note:

Setting
lazy
loading to
On for
@OneToOn
eand
@ManyToO
ne
requires
weaving,
which is
set to On
by default
for Jakarta
EE.

Use lazy loading for all mappings. Using
lazy loading and querying the
referenced objects by using batch
fetching or Join is more efficient than
Eager loading.

You may also consider using optimized
loading with LoadGroups, which allows
a query to force instantiation of
relationships.

Chapter 9
Basic Tuning Considerations

9-6

http://www.eclipse.org/eclipselink/documentation/2.6/concepts/mappingintro001.htm#CEGBCJAG
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/mappingintro001.htm#CEGBCJAG
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/mappingintro001.htm#CEGBCJAG
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/mappingintro001.htm#CEGBCJAG

Cache Configuration Tuning Parameters
You can tune the default internal cache that is provided by EclipseLink. Oracle Toplink or
EclipseLink can also be integrated with Oracle Coherence. For information on configuring and
tuning an EclipseLink Entity Cache by using Oracle Coherence, see .

The default settings for EJB3.0/JPA that is used with the EclipseLink persistence manager and
cache are no locking, no cache refresh, and cache-usage DoNotCheckCache. To ensure that
your application uses the cache and does not read stale data from the cache (when you do not
have exclusive access), you must configure these and other isolation related settings
appropriately. Table 9-3 shows the cache configuration options.

For more information on cache configuration, see "Understanding Caching" at http://
www.eclipse.org/eclipselink/documentation/2.6/concepts/cache.htm#CDEFHHEH.

Note:

By default, EclipseLink assumes that your application has exclusive access to the
data it is using that is, there are no external, non-EclipseLink, or applications that are
modifying the data. If your application does not have exclusive access to the data,
then you must change some of the defaults from Table 9-3.

Chapter 9
Basic Tuning Considerations

9-7

http://www.eclipse.org/eclipselink/documentation/2.6/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/cache.htm#CDEFHHEH

Table 9-3 EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Object Cache EclipseLink sessions provide an object
cache. EJB3.0 JPA applications that use
the EclipseLink persistence manager
create EclipseLink sessions that by
default use this cache. This cache,
known as the session cache, retains
information about objects that are read
from or written to the database, and is a
key element for improving the
performance of an EclipseLink
application.

Typically, a server session's object
cache is shared by all client sessions
that are acquired from it. Isolated
sessions provide their own session
cache isolated from the shared object
cache.

The annotation type @Cacheable
specifies whether an entity should be
cached. Caching is enabled when the
value in the persistence.xml file
caching element is ENABLE_SELECTIVE
or DISABLE_SELECTIVE. The value of
the Cacheable annotation is inherited
by subclasses; it can be overridden by
specifying Cacheable on a subclass.

Cacheable(false) means that the
entity and its state must not be cached
by the provider.

Default Value: Enabled (shared is
True).

Generally, it is recommended that you
leave caching enabled. If you have an
object that is always read from the
database, as in a pessimistic locked
object, then the cache for that entity
should be disabled. Also, consider
disabling the cache for infrequently
accessed entities.

Chapter 9
Basic Tuning Considerations

9-8

Table 9-3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Query Result Set Cache In addition to the object cache in
EclipseLink, EclipseLink also supports a
query cache:

• The object cache indexes objects
by their primary key, allowing
primary key queries to obtain cache
hits. By using the object cache,
queries that access the data source
can avoid the cost of building the
objects and their relationships if the
object is already present.

• The query cache is distinct from the
object cache. The query cache is
indexed by the query and the query
parameters-not the object's primary
key. This enables any query
executed with the same parameters
to obtain a query cache hit and
return the same result set.

The query hints for a query cache are:

eclipselink.query-cache
eclipselink.query-cache.size
eclipselink.query-
cache.invalidation
See also "Understanding Caching" at
hhttp://www.eclipse.org/
eclipselink/documentation/2.6/
concepts/cache.htm#CDEFHHEH and
"JPA Query Customization Extensions"
at http://www.eclipse.org/
eclipselink/
documentation/2.6/jpa/
extensions/
queryhints.htm#sthref498.

Default Value: Not Used.

Use for frequently executed non-primary
key queries with infrequently changing
result sets. Use with a cache
invalidation time out to refresh as
needed.

Chapter 9
Basic Tuning Considerations

9-9

http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.6/jpa/extensions/queryhints.htm#sthref498
http://www.eclipse.org/eclipselink/documentation/2.6/jpa/extensions/queryhints.htm#sthref498
http://www.eclipse.org/eclipselink/documentation/2.6/jpa/extensions/queryhints.htm#sthref498
http://www.eclipse.org/eclipselink/documentation/2.6/jpa/extensions/queryhints.htm#sthref498
http://www.eclipse.org/eclipselink/documentation/2.6/jpa/extensions/queryhints.htm#sthref498

Table 9-3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Cache Size Cache size can be configured through
the following persistence properties:
eclipselink.cache.size.entity
eclipselink.cache.size.default
eclipselink.cache.type.default
See also "About the Persistence Unit" at
http://www.eclipse.org/
eclipselink/documentation/2.6/
concepts/
appdeployment002.htm#BABHCJDG
and "Class PersistenceUnitProperties"
at http://www.eclipse.org/
eclipselink/api/2.6/org/
eclipse/persistence/config/
PersistenceUnitProperties.html.

Default Value: Type SoftWeak, Size 100
(per Entity). The default value may be
different if Toplink is running on
Exalogic. See Enable the Exalogic
Automated Tuner in the Solutions Guide
for Oracle TopLink for more information
about the Exalogic default.

Based on your tolerance for stale data,
set the cache size relative to how much
memory you have available, how many
instances of the class you have, the
frequency the entities are accessed,
and how much caching you want.

Consider creating larger cache sizes for
entities that have many instances that
are frequently accessed and stale data
is not a big issue.

Consider using smaller cache sizes or
no cache for frequently updated entities
that must always have fresh data, or
infrequently accessed entities.

Locking Oracle supports the locking policies
shown in Table 9-4: No Locking,
Optimistic, Pessimistic, and Read
Only.

Locking is set through JPA @Version
annotation, eclipselink.read-only
See "Descriptors and Locking" at
http://www.eclipse.org/
eclipselink/documentation/2.6/
concepts/
descriptors002.htm#CHEEEIEA.

Default Value: No Locking.

For entities that can be updated
concurrently, consider using the locking
policy to prevent a user from writing
over another users changes. To
optimize performance for read-only
entities, consider defining the entity as
Read Only or use a read-only query
hint.

Chapter 9
Basic Tuning Considerations

9-10

http://www.eclipse.org/eclipselink/documentation/2.5/concepts/appdeployment002.htm#BABHCJDG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/appdeployment002.htm#BABHCJDG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/appdeployment002.htm#BABHCJDG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/appdeployment002.htm#BABHCJDG
http://www.eclipse.org/eclipselink/api/2.6/org/eclipse/persistence/config/PersistenceUnitProperties.html
http://www.eclipse.org/eclipselink/api/2.6/org/eclipse/persistence/config/PersistenceUnitProperties.html
http://www.eclipse.org/eclipselink/api/2.6/org/eclipse/persistence/config/PersistenceUnitProperties.html
http://www.eclipse.org/eclipselink/api/2.6/org/eclipse/persistence/config/PersistenceUnitProperties.html
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/descriptors002.htm#CHEEEIEA

Table 9-3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Cache Usage By default, all query types search the
database first and then synchronize with
the cache. Unless refresh has been set
on the query, the cached objects can be
returned without being refreshed from
the database. You can specify whether a
given query runs against the in-memory
cache, the database, or both.

To get performance gains by avoiding
the database lookup for objects already
in the cache, you can configure that the
search attempts to retrieve the required
object from the cache first, and then
search the data source only if the object
is not in the cache. For a query that
looks for a single object based on a
primary key, this is done by setting the
query hint eclipselink.cache-usage
to CheckCacheByExactPrimaryKey.

Default Value: DoNotCheckCache.

For faster performance on primary key
queries, where the data is typically in
the cache and does not require a lot of
refreshing, it is recommended to check
the cache first on these queries by using
CheckCacheByExactPrimaryKey.

This avoids the default behavior of
retrieving the object from the database
first and then for objects already in the
cache, returning the cached values,
which are not updated from the
database access, unless refresh has
been set on the query.

Isolation There is not a single tuning parameter
that sets a particular database
transaction isolation level in a JPA
application that uses EclipseLink.

In a typical EJB3.0 JPA application, a
variety of factors affect when database
transaction isolation levels apply and to
what extent a particular database
transaction isolation can be achieved,
including the following:

• Locking mode
• Use of the Session Cache
• External Applications
• Database Login method

setTransactionIsolation
See also Isolated Cache at http://
www.eclipse.org/eclipselink/
documentation/2.6/concepts/
cache001.htm#CDEEGICF.

Chapter 9
Basic Tuning Considerations

9-11

http://www.eclipse.org/eclipselink/documentation/2.6/concepts/cache001.htm#CDEEGICF
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/cache001.htm#CDEEGICF
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/cache001.htm#CDEEGICF
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/cache001.htm#CDEEGICF

Table 9-3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Cache Refreshing By default, EclipseLink caches objects
read from a data source. Subsequent
queries for these objects access the
cache and thus improve performance by
reducing data source access and
avoiding the cost of rebuilding object's
and their relationships. Even if a query
accesses the data source, if the objects
corresponding to the records returned
are in the cache, EclipseLink uses the
cached objects. This default caching
policy can lead to stale data in the
application.

Refreshing can be enabled at the entity
level (alwaysRefresh or
refreshOnlyIfNewer and expiry)
and at the query level (with the
eclipselink.refresh query hint).
You can also force queries to go to the
database with (disableHits). Using
an appropriate locking policy is the only
way to ensure that stale or conflicting
data does not get committed to the
database.

See About Cache Refreshing .

See also Understanding Caching at
http://www.eclipse.org/
eclipselink/documentation/2.6/
concepts/cache.htm#CDEFHHEH.

Default Value: No Cache Refreshing

Try to avoid entity level cache refresh
and instead, consider configuring the
following:

• cache refresh on a query-by-query
basis

• cache expiration
• isolated caching

• About Cache Refreshing

• Locking Mode Policy Options

About Cache Refreshing
There are a few scenarios to consider for data refreshing in the cache, all with performance
implications:

• In the case where you never want cached data and always want fresh data, consider using
an isolated cache (Shared=False). This is the case when certain data in the application
changes so frequently that it is desirable to always refresh the data, instead of only
refreshing the data when a conflict is detected.

• In the case when you want to avoid stale data, but getting stale data is not a major issue,
then using a cache expiry policy would be the recommended solution. In this case you
should also use optimistic locking, which automatically refresh stale objects when a locking
error occurs. If using optimistic locking, you could also enable the entity @Cache attributes
alwaysRefresh and refreshOnlyIfNewer to allow queries that access the database to
refresh any stale objects returned, and avoid refreshing invalid objects when unchanged.
You may also want to enable refreshing on certain query operations when you know you

Chapter 9
Basic Tuning Considerations

9-12

http://www.eclipse.org/eclipselink/documentation/2.6/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/cache.htm#CDEFHHEH

want refreshed data, or even provide the option of refreshing something from the client that
would call a refreshing query.

• In the case when you are not concerned about stale data, you should use optimistic
locking; this automatically refreshes stale objects in the cache on locking errors.

Locking Mode Policy Options
The locking modes, as shown in Table 9-4, along with EclipseLink cache-usage and query
refreshing options, ensures data consistency for EJB entities using JPA. The different
combinations have both functional and performance implications, but often the functional
requirements for up-to-date data and data consistency lead to the settings for these options,
even when it may be at the expense of performance.

For more information, see "Descriptors and Locking" at http://www.eclipse.org/
eclipselink/documentation/2.6/concepts/descriptors002.htm#CHEEEIEA.

Table 9-4 Locking Mode Policies

Locking Option Description Performance Notes

No Locking The application does not prevent users
overwriting each other's changes. This
is the default locking mode. Use this
mode if the entity is never updated
concurrently or concurrent reads and
updates to the same rows with read-
committed semantics is sufficient.

Default Value: No Locking.

In general, no locking is faster, but may
not meet your needs for data
consistency.

Optimistic All users have read access to the data.
When a user attempts to make a
change, the application checks to
ensure that the data has not changed
since the user read the data.

See also "Using Optimistic Locking" at
http://www.eclipse.org/
eclipselink/documentation/2.6/
concepts/
mappingintro005.htm#CEGDIIIB.

If infrequent concurrent updates to the
same rows are expected, then optimistic
locking may provide the best
performance while providing data
consistency guarantees.

Pessimistic The first user who accesses the data
with the purpose of updating it locks the
data until completing the update.

If frequent concurrent updates to the
same rows are expected, pessimistic
locking may be faster than optimistic
locking that is getting a lot of concurrent
access exceptions and retries.

When using pessimistic locking at the
entity level, it is recommended that you
use it with an isolated cache
(Shared=False) for best performance.

Read Only Setting an EJB3.0 JPA entity to Read
Only ensures that the entity cannot be
modified and enables EclipseLink to
optimize the unit of work performance.

Set at the entity level by using
@ReadOnly class annotation. Can also
be set at the query level through the
query hint eclipselink.read-only.

Defining an entity as Read Only can
perform better than an entity that is not
defined as Read Only, yet does no
inserts, updates, or deletes, since it
enables EclipseLink to optimize the unit
of work performance. Always use Read
Only for all read-only operations.

Chapter 9
Basic Tuning Considerations

9-13

http://www.eclipse.org/eclipselink/documentation/2.6/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro005.htm#CEGDIIIB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro005.htm#CEGDIIIB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro005.htm#CEGDIIIB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro005.htm#CEGDIIIB

About Mapping and Descriptor Configurations
EclipseLink can transform data between an object representation and a representation specific
to a data source. This transformation is called mapping and it is the core of a EclipseLink
project.

A mapping corresponds to a single data member of a domain object. It associates the object
data member with its data source representation and defines the means of performing the two-
way conversion between object and data source.

For information on Mapping, see “Mapping and Descriptors” at http://www.eclipse.org/
eclipselink/documentation/2.6/solutions/performance002.htm#sthref153.

About Data Partitioning
EclipseLink allows you to configure data partitioning by using the @Partitioned annotation.
Partitioning enables an application to scale information across multiple databases; including
clustered databases.

For more information on using @Partitioned and other partitioning policy annotations, see
"Partitioning Annotations" at http://www.eclipse.org/eclipselink/
documentation/2.6/jpa/extensions/annotations_ref.htm#CACHIHIB.

Advanced Tuning Considerations
After you have performed the recommended modifications, you can make additional changes
that are specific to your deployment. Consider carefully whether the advanced tuning
recommendations are appropriate for your environment.

• Integrating with Oracle Coherence

• Analyzing EclipseLink JPA Entity Performance

Integrating with Oracle Coherence
Oracle Toplink can be integrated with Oracle Coherence. This integration is provided through
the Oracle TopLink Grid feature. With TopLink Grid, there are several types of integration with
EclipseLink JPA features.

For example:

• Replace the default EclipseLink L2 cache with Coherence. This provides support for very
large L2 caches that span cluster nodes. EclipseLink's default L2 cache improves
performance for multithreaded and Jakarta EE server hosted applications that are running
in a single JVM, and requires configuring special cache coordination features if used
across a cluster.

• Configure entities to execute queries in the Coherence data grid instead of the database.
This allows clustered application deployments to scale beyond database-bound
operations.

For using EclipseLink JPA with a Coherence Cache, see Grid Cache Configuration in
Integrating Oracle Coherence.

For details on Oracle Toplink integration with Oracle Coherence, see Integrating Toplink Grid
with Oracle Coherence in Integrating Oracle Coherence.

Chapter 9
Advanced Tuning Considerations

9-14

http://www.eclipse.org/eclipselink/documentation/2.6/solutions/performance002.htm#sthref153
http://www.eclipse.org/eclipselink/documentation/2.6/solutions/performance002.htm#sthref153
http://www.eclipse.org/eclipselink/documentation/2.6/jpa/extensions/annotations_ref.htm#CACHIHIB
http://www.eclipse.org/eclipselink/documentation/2.6/jpa/extensions/annotations_ref.htm#CACHIHIB

Analyzing EclipseLink JPA Entity Performance
The following features in EclipseLink can help you analyze your JPA application performance:

• For form monitoring performance, see "Performance Monitoring" at http://
www.eclipse.org/eclipselink/documentation/2.6/concepts/
monitoring003.htm#BABJABIH. Note that this tool is intended to profile and monitor
information in a multithreaded server environment.

• For profiling performance, see "Task 1: Measure EclipseLink Performance with the
EclipseLink Profiler" at http://www.eclipse.org/eclipselink/documentation/2.6/
solutions/performance002.htm#CHDIAFJI. Note that this tool is intended for use with
single-threaded finite use cases.

• For debugging performance issues and testing, you can view the SQL generated from
EclipseLink. To view the SQL, increase the logging level to FINE by using the EclipseLink
JPA extensions for logging.

For best performance, remember to restore the logging levels to the default levels when
you are done profiling or debugging.

Chapter 9
Advanced Tuning Considerations

9-15

http://www.eclipse.org/eclipselink/documentation/2.5/concepts/monitoring003.htm#BABJABIH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/monitoring003.htm#BABJABIH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/monitoring003.htm#BABJABIH
http://www.eclipse.org/eclipselink/documentation/2.6/solutions/performance002.htm#CHDIAFJI
http://www.eclipse.org/eclipselink/documentation/2.6/solutions/performance002.htm#CHDIAFJI

Part IV
Oracle Identity and Access Management

This part describes tuning the Oracle Identity and Access Management Suite components to
improve performance. The Oracle Identity Management products enable you to configure and
manage the identities of users, devices, and services across diverse servers. The Access
Management products enable you to delegate administration of these identities and to provide
end users with self-service privileges. These products also enable you to configure single sign-
on across applications and to process users' credentials to ensure that only users with valid
credentials can sign into and access online resources.

It contains the following chapters:

• Oracle Internet Directory Performance Tuning
This chapter provides guidelines for tuning and sizing an Oracle Internet Directory
installation.

• Oracle Access Management Performance Tuning

• Oracle Identity Governance Performance Tuning
This chapter provides guidelines for tuning and sizing specific to Oracle Identity
Governance (OIG).

10
Oracle Internet Directory Performance Tuning

This chapter provides guidelines for tuning and sizing an Oracle Internet Directory installation.

It contains these topics:

• About Oracle Internet Directory

• Monitoring Oracle Internet Directory Performance

• Basic Tuning Considerations

• Advanced Tuning Considerations

• Specific Use Cases That Require Additional Tuning

About Oracle Internet Directory
Oracle Internet Directory is Oracle's Lightweight Directory Application Protocol (LDAP) version
3 Directory Server.

Oracle Internet Directory is highly scalable, available, and manageable. It has a multi-threaded,
multiprocess, multi-instance process architecture with Oracle Database as the directory store.
This unique physical architecture enables Oracle Internet Directory to be deployed on several
hardware architectures including Symmetric Multi-Processor (SMP), Non-Uniform Memory
Access (NUMA) and Cluster hardware. Oracle Internet Directory's physical architecture
enables linear performance scalability with hardware resources and numerous high availability
configurations.

For more information see Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory.

Note:

Oracle Internet Directory's ready—to—use configuration is not optimal for most
production or test deployments. You must follow at least the steps listed in
Section 23.3, "Basic Tuning Considerations" to achieve optimal performance and
availability.

Monitoring Oracle Internet Directory Performance
To identify performance bottlenecks, you can monitor real-time performance metrics for the
Oracle Internet Directory database. For more information on how to monitor other Oracle
Fusion Middleware components, see Monitoring .

• Monitoring Performance on UNIX and Windows Systems

• Updating Database Statistics by Using oidstats.sql

• Setting Performance-Related Replication Configuration Attributes

10-1

• Managing System Configuration Attributes

• Setting Garbage Collection Configuration Attributes

Monitoring Performance on UNIX and Windows Systems
Knowledge of the following tools is recommended for Linux, Solaris, and other UNIX-like
operating systems:

Tool Description

top Displays the top CPU consumers on a system

vmstat Shows running statistics on various parts of the system including the Virtual Memory
Manager

mpstat Shows an output similar to vmstat but split across various CPUs in the system. This is
available on Solaris only.

iostat Shows the disk I/O statistics from various disk controllers

sar Collect, report, or save system activity information.

Knowledge of the following tools is recommended for Microsoft Windows:

Tool Description

Windows Performance
Monitor

Provides a customized view of the events in the system

Windows Task Manager Provides a high level output (like top on UNIX) of the major things
happening in the system.

Knowledge of the following tools is recommended for the Oracle Database:

• utlbstat.sql and utlestat.sql, or statspack
• The ANALYZE function in the DBMS_STATS package

See Also:

– Database Reference in the Oracle Database Documentation Library for
information about utlbstat.sql and utlestat.sql

– Database Performance Tuning Guide for information about stats package

– Database Concepts in the Oracle Database Documentation Library for
information about the ANALYZE function in the DBMS_STATS package

In addition to the operating system tools, the LDAP applications being used in a customer
environment must be able to provide latency and throughput measurement.

In addition, the Database Statistics Collection Tool (oidstats.sql), located at $ORACLE_HOME/
ldap/admin, is provided to analyze the various database 'ods' schema objects to estimate the
statistics. See Updating Database Statistics by Using oidstats.sql.

Chapter 10
Monitoring Oracle Internet Directory Performance

10-2

Updating Database Statistics by Using oidstats.sql
Database statistics are updated automatically, OIDMON runs oidstats.sql for every
configured number of updates to the database. By default, for every 5000 entries added
OIDMON runs the oidstats.sql. This frequency can be changed using ldapmodify commad
as shown below

$ORACLE_HOME/bin/ldapmodify -p <oidPort> -h <oidHost> -D cn=orcladmin -w <adminPassword>
<< eof
dn: cn=configset,cn=oidmon,cn=subconfigsubentry
changetype: modify
replace: orclstatsperiodicity
orclstatsperiodicity: <desired_number>
eof

See Also:

The oidstats.sql command-line tool reference in Reference for Oracle Identity
Management

Setting Performance-Related Replication Configuration Attributes
To set the replication attributes, you can use either the Replication Wizard in Oracle Enterprise
Manager Fusion Middleware Control or the command line.

The attributes orclthreadspersupplier, orclchangeretrycount, and orclconflresolution
are replication configuration set attributes.

See Also:

• "Configure Replication Attributes by Using Fusion Middleware Control" in
Administering Oracle Internet Directory

• "Configuring Attributes of the Replication Configuration Set by Using ldapmodify"
in Administering Oracle Internet Directory

for information about

The attributes orclhiqschedule and orclupdateschedule are replication agreement entry
attributes.

Chapter 10
Monitoring Oracle Internet Directory Performance

10-3

See Also:

• "Viewing or Modifying an LDAP-Based Replication Setup by Using the Fusion
Middleware Control Replication Wizard" in Administering Oracle Internet
Directory

• "Configuring Replication Agreement Attributes by Using ldapmodify" in
Administering Oracle Internet Directory

See Also:

• "Setting Up a One-Way, Two-Way, or Multimaster LDAP-Based Replication
Agreement by Using the Replication Wizard in Fusion Middleware Control" in
Administering Oracle Internet Directory or information on setting replication
attributes by using the Replication Wizard.

• "Configuring Attributes of the Replication Configuration Set by Using ldapmodify"
in Administering Oracle Internet Directory.

Managing System Configuration Attributes
You can set most performance-related system configuration attributes from Oracle Enterprise
Manager Fusion Middleware Control or from the command line. You can also use the Data
Browser in Oracle Directory Services Manager to modify system configuration attributes.

For information on setting system configuration attributes for Oracle Internet Directory, see
"Managing System Configuration Attributes" in the Administering Oracle Internet Directory:

• "Managing System Configuration Attributes by Using Fusion Middleware Control"

• "Managing System Configuration Attributes by Using WLST"

• "Managing System Configuration Attributes by Using LDAP Tools"

• "Managing System Configuration Attributes by Using ODSM Data Browser"

Setting Garbage Collection Configuration Attributes
The attributes orclpurgetargetage and orclpurgeinterval reside in the changelog purging
configuration entry. You can change them with ldapmodify or Oracle Directory Services
Manager.

• Modifying Changelog Purging Attributes by Using ldapmodify

• Modifying Changelog Purging in Oracle Directory Services Manager

Modifying Changelog Purging Attributes by Using ldapmodify
The following example is an LDIF file used to configure change log purging.

Chapter 10
Monitoring Oracle Internet Directory Performance

10-4

See Also:

"Change Log Purging" in Administering Oracle Internet Directory for a description of
change log purging.

This example configures time-based purging for 120 hours (5 days). Use an LDIF file similar to
this:

dn: cn=changelog purgeconfig,cn=purgeconfig,cn=subconfigsubentry
changetype:modify
replace: orclpurgetargetage
orclpurgetargetage: 240

To apply the LDIF file mod.ldif, type:

ldapmodify -D "cn=orcladmin" -q -p port -h host -D dn -q -f mod.ldif

See Also:

"Configuring Time-Based Change Log Purging" in Administering Oracle Internet
Directory.

Modifying Changelog Purging in Oracle Directory Services Manager
You can modify orclpurgetargetage and orclpurgeinterval by using the data browser in
Oracle Directory Services Manager. You cannot navigate to the changelog purging
configuration entry directly in the data tree, but you can get to it by using an advanced search
as follows:

1. On the Data Browser tab, click Advanced.

2. Expand Garbage Collection in the left pane, then select changelog purgeconfig. The
Garbage Collector Window appears in the right pane.

3. In the right pane, enter the changes you want to make to the Purge Target Age and
Purge Interval.

4. Choose Apply.

Basic Tuning Considerations
Tuning is the adjustment of parameters to improve directory performance. The default Oracle
Internet Directory configuration must be tuned in almost all deployments. Please review the
requirements and recommendations in this section carefully.

• Database Parameters

• LDAP Server Attributes

• Database Statistics

• Low-Priority Tuning Considerations

Chapter 10
Basic Tuning Considerations

10-5

Database Parameters
The suggested minimum values for Oracle Database instance parameters are described in
Table 10-1:

Table 10-1 Minimum Values for Oracle Database Instance Parameters

Parameter Value Notes

sga_target and

sga_max_size
1700M for 32-bit
systems

Applicable when SGA Auto Tuning using sga_target and
sga_max_size is being used. Especially important for
bulkdelete performance.

A higher value may be required if the directory size exceeds
1 million entries or a high rate of I/O is observed. In case of
64-bit systems, one can go up to 60-70% of the RAM
available for the Oracle Database on the box.

db_cache_size 1200M for 32-bit
systems.

Applicable when SGA Auto Tuning using sga_target and
sga_max_size is not being used. (SGA auto tuning using
sga_target and sga_max_size is recommended instead
of this parameter.)

A higher value may be required if the directory size exceeds
1 million entries or a high rate of I/O is observed. In case of
64-bit systems, one can go up to 60-70% of the RAM
available for the Oracle Database on the box.

shared_pool_size 300M Applicable when SGA Auto Tuning using sga_target and
sga_maxsize is not being used

session_cached_cursors 100

processes 500

pga_aggregate_target 300M Before performing a large bulkload operation, set this to
1-4GB, if sufficient RAM is available. Set it back after the
operation has completed

job_queue_processes 1000 Maximum number of job slaves per instance that can be
created for the execution of DBMS_JOB jobs and Oracle
Scheduler (DBMS_SCHEDULER) jobs.

max_commit_propagation_delay 99 or lower Tune this parameter only in Oracle RAC Database
deployments, RDBMS v10.1.

See the Oracle Database Performance Tuning Guide for information on setting Oracle
Database instance parameters.

LDAP Server Attributes
The recommendations in this section are summarized in Table 10-2.

• Tune the number of processes and threads for the Oracle Internet Directory server
instance that services LDAP application traffic. This has a major impact on overall
performance. See the recommended settings for orclmaxcc and orclserverprocs in
Table 10-2.

• Disable change log generation if you are not deploying either replication or Oracle
Directory Integration Platform. Set the attribute orclgeneratechangelog to 0.

• Skip referrals in LDAP searches if you have no referral entries in the directory. Set
orclskiprefinsql to 1. This can have a major impact on performance.

Chapter 10
Basic Tuning Considerations

10-6

• Close idle LDAP connections after a period of time instead of leaving them open. This
prevents the unnecessary buildup of connections. For example, you can set
orclldapconntimeout to 60 minutes.

As of 10g (10.1.4.0.1), you can only set this for users who are not configured for operation
statistics tracking. Connections by users configured for statistics collection do not time out
as per this setting.

See Also:

"Configuring a User for Statistics Collection by Using Fusion Middleware Control"
in Administering Oracle Internet Directory.

• If no clients require detailed MatchDN information when the Base DN of an LDAP search
operation is not present in the directory, disable it. Change orclmatchdnenabled to 0.

The following values are appropriate for most deployments:

Table 10-2 LDAP Server Attributes to Tune

Attribute Default Recommended Value Notes

orclmaxcc 2 10 Server restart required.

orclserverprocs 1 Number of CPU cores on
the system

orclskiprefinsql 0 1 This change is highly recommended. Do not
change if you have LDAP referral entries.
LDAP referral entries are not common.

Server restart required.

orclgeneratechangelog 1 0 Disable change log generation only if you do
not deploy either replication or Oracle
Directory Integration Platform.

orclldapconntimeout 0 (no timeout) Varies, 60 minutes is
reasonable

Users configured for statistics tracking do not
time out.

orclmatchdnenabled 1 0 Disable only if no application needs detailed
MatchDN information when base DN of a
search is not present.

For information about configuring orclserverprocs, orclldapconntimeout, and
orclmatchdnenabled with Oracle Enterprise Manager Fusion Middleware Control, see
"Attributes of the Instance-Specific Configuration Entry" in the Administering Oracle Internet
Directory.

For information about configuring orclskiprefinsql or orclmatchdnenabled with Oracle
Enterprise Manager Fusion Middleware Control, see "Configuring Shared Properties" in the
Administering Oracle Internet Directory.

For information about configuring these attributes, as well as orclgeneratechangelog, from
the command line, see "Setting System Configuration Attributes by Using ldapmodify" in the
Administering Oracle Internet Directory.

Chapter 10
Basic Tuning Considerations

10-7

Database Statistics
If you use LDAP commands to add a large number entries to Oracle Internet Directory, it can
affect directory performance. If this occurs, update the database statistics. See Updating
Database Statistics by Using oidstats.sql.

Typically, you only need to do this when you add entries in bulk for the first time after installing
the Oracle Internet Directory. You do not need to do it again because the database statistics
are updated nightly automatically. If, however, you suddenly experience slow LDAP operations,
without a corresponding change in data footprint, consider running oidstats.sql once to see if
that improves performance. The impact may be due to changes in database SQL execution
plans, which oidstats.sql can help to improve.

You do not need to update database statistics if you use the bulkload tool to add the entries.
The bulkload command automatically updates the database statistics.

Low-Priority Tuning Considerations
This section describes attributes that can sometimes improve performance, but are considered
low-priority.

• Number of Entries to be Returned by a Search

• Enabling the Group Cache

• Timeout for Write Operations

Number of Entries to be Returned by a Search
The attribute orclsizelimit controls the maximum number of entries to be returned by a
search. The default value is 10000. Setting it very high impacts server performance. It also
plays a role in limiting the maximum number of changelogs the replication server can process
at a time.

See "Setting System Configuration Attributes by Using ldapmodify" in the Administering Oracle
Internet Directory.

Enabling the Group Cache
The instance-specific subentry attribute orclenablegroupcache controls whether privilege
groups and ACL groups are cached. Using this cache can improve the performance of access
control evaluation for users.

Use the group cache when a privilege group membership does not change frequently. If a
privilege group membership does change frequently, then it is best to turn off the group cache.
It is important to note that computing a group cache may affect performance. The default is 1
(enabled). Change to 0 (zero) to disable.

See "Setting System Configuration Attributes by Using ldapmodify" in the Administering Oracle
Internet Directory.

Timeout for Write Operations
When an LDAP client initiates an operation, then does not respond to the server for a
configured number of seconds, the server closes the connection. The number of seconds is

Chapter 10
Basic Tuning Considerations

10-8

controlled by the orclnwrwtimeout attribute of the instance-specific configuration entry. The
default is 30 seconds.

You can modify orclnwrwtimeout by using Fusion Middleware Control or the command line.
See "Attributes of the Instance-Specific Configuration Entry" in the Administering Oracle
Internet Directory.

Advanced Tuning Considerations
After you have performed the modifications recommended in the previous section, you can
make additional changes that are specific to your deployment. Consider carefully whether the
recommendations in this section are appropriate for your environment.

• Replication or Oracle Directory Integration Platform

• Replication Server Configuration

• Garbage Collection Configuration

• Oracle Internet Directory with Oracle RAC Database

• Password Policies and Verifier Profiles

• Server Entry Cache

• Result Set Cache

• Tuning Security Event Tracking

• Optimizing Searches

Replication or Oracle Directory Integration Platform
When you deploy Oracle Internet Directory with the Oracle Directory Integration Platform or
with replication, you can improve performance by having a dedicated LDAP server instance for
those two servers. This allows the default Oracle Internet Directory LDAP instance to serve the
LDAP application traffic and the second instance to serve LDAP requests from the replication
and Oracle Directory Integration Platform servers.

1. Create an additional server instance, as described in the chapter "Managing Oracle
Internet Directory Instances" in Administering Oracle Internet Directory.

2. Set orclmaxcc to 10 and orclserverprocs to 1 in the new instance configuration.

3. Restart the server, as described in the chapter "Managing Oracle Internet Directory
Instances" in Administering Oracle Internet Directory.

4. Set the SSL and non-SSL ports used by the new instance and configure the replication
and Oracle Directory Integration Platform to point to them.

To configure orclmaxcc and orclserverprocs, see "Attributes of the Instance-Specific
Configuration Entry" in the Administering Oracle Internet Directory. and "Setting System
Configuration Attributes by Using ldapmodify" in the Administering Oracle Internet Directory.

Chapter 10
Advanced Tuning Considerations

10-9

Note:

In an Oracle Internet Directory Cluster configuration (rack-mounted or multi-box), the
replication server must be started on one hardware node only. The LDAP server
instance dedicated to replication must be started on the same node. The Oracle
Directory Integration Platform server can be on a different node.

Replication Server Configuration
The following recommendations can be useful when replication traffic is heavy. Be sure you
understand the trade-offs before making these changes. The recommended values are
summarized in #unique_236/unique_236_Connect_42_CIHIGDAD.

Replication Attributes

• If you are deploying a single master with read-only replica consumers, you may reduce
performance impacts by turning off conflict resolution. To do so, change the value of
orclconflresolution to 0.

• If the supplier is a bottleneck, increase orclthreadspersupplier on the supplier. You can
also increase orclthreadspersupplier at the consumer if is a bottleneck, but be aware
that increased parallelism causes race conditions in the application of changelogs,
resulting in more human intervention queue (HIQ) changes.

• Decrease orclchangeretrycount so that new changelogs get more resources. If there are
conflicts, however, this increases the human intervention queue (HIQ) changes.

• Change orclupdateschedule to 0 to make the server process changelogs immediately,
instead of at the default, 60-second intervals. Do this on both the supplier and consumer.

• Increase the orclhiqschedule to a higher value. For example, if accessing the human
intervention queue (HIQ) four times a day is sufficient and appropriate for your deployment,
set the orclhiqschedule to 21600 seconds (6 hours).

#unique_236/unique_236_Connect_42_CIHIGDAD summarizes these recommendations.

Attribute Default Recommended
Value

Notes

orclthreadspersupplier transport=1

apply=5

Set transport
threads to 1 and
apply threads to
10 or greater

Most useful if the supplier is the bottleneck.

orclchangeretrycount 10 4 Provides more resources to changelogs but
might increase HIQ.

orclupdateschedule 60 seconds 0 Causes changelogs to be processed
immediately

orclhiqschedule 600 seconds 21600 seconds Provides more resources to process new
changes.

orclconflresolution 1 0 Change only if you are deploying a single
master with read-only replica consumers.

See Setting Performance-Related Replication Configuration Attributes for information on
setting these replication attributes.

Chapter 10
Advanced Tuning Considerations

10-10

Garbage Collection Configuration
By default, Oracle Internet Directory runs database jobs to purge change logs, server
manageability statistics, and other data beginning at midnight, with each job starting 15
minutes after the previous one. You can change this configuration to suite your deployment
needs by modifying the parameters shown in Table 10-3.

Table 10-3 Garbage Collection Configuration Parameters

Parameter Value Notes

orclpurgetargetage Less than 10days (240
hours)

Only if there is no requirement to retain change logs

orclpurgeinterval 6–12 hours

You can modify these attributes by using ldapmodify or Oracle Directory Services Manager.
See Setting Garbage Collection Configuration Attributes.

Oracle Internet Directory with Oracle RAC Database
As described in Replication Server Configuration, you can have a dedicated LDAP server for
Oracle Directory Integration Platform and replication, in addition to the default server. In an
Oracle Internet Directory Cluster, start the default LDAP instance on all Oracle Internet
Directory nodes, but start the dedicated instance only on the node where Oracle Directory
Integration Platform and replication are running.

Consider carefully which database instance Oracle Internet Directory should connect to:

• You can configure the Oracle Internet Directory for load balancing between Oracle
Database instances in the cluster, or failover mode.

• If you use a dedicated LDAP server instance for replication and Oracle Directory
Integration Platform, you can configure the connection strings of that instance for failover.
You would use the following in tnsnames.ora:

(FAILOVER=ON)(LOAD_BALANCE=OFF)
• When performing a bulk operation, such as bulkload, connect the tool to just one Oracle

Database instance for the entire operation.

• Configure Oracle Internet Directory instances as follows:

– One Oracle Internet Directory instance on each of the nodes to service LDAP
application traffic

– An instance of the Oracle Internet Directory replication server and Oracle Directory
Integration Platform server on one node

Password Policies and Verifier Profiles
Oracle Internet Directory has password policies and password verifier profiles enabled out of
box. If Oracle Internet Directory is not required to enforce password policies in a given
deployment, then the password policies can be disabled. The password verifier profiles
enabled out of box control the generation of certain password verifiers required by Oracle
products like Enterprise User Security and Oracle Collaboration Suite. If Oracle Internet
Directory is not being deployed for other Oracle products, you can disable all the password
verifier profiles.

Chapter 10
Advanced Tuning Considerations

10-11

You can disable password policies and password verifiers by using Oracle Directory Services
Manager or ldapmodify.

See Also:

• The "Managing Password Policies" chapter in Administering Oracle Internet
Directory.

• The "Managing Password Verifiers" chapter in Administering Oracle Internet
Directory.

Server Entry Cache
The Oracle Internet Directory server entry cache enables LDAP entries to be cached on the
Oracle Internet Directory server process heap for better performance. Configuring the entry
cache provides benefits if, and only if, all or most entries can be cached.

Note:

The server entry cache is beneficial for small directory deployments only. Some of
the tuning recommendations here contradict the tuning recommendations in the
earlier sections. Review the applicability of entry cache to a given deployment and
incorporate the tuning mentioned in this section only if all considerations enumerated
here are met.

• Benefits of Using the Entry Cache

• Values for Configuring the Entry Cache

Benefits of Using the Entry Cache
One of the key benefits of using the entry cache is that the LDAP search operations with base
scope are about five times as fast. This applies only when all or most entries can be cached. A
cache miss is more expensive than disabling the entry cache.

Values for Configuring the Entry Cache
You can configure and optimize the server entry cache by setting the values shown in
Table 10-4.

Table 10-4 Server Entry Cache Configuration

Attribute Default Recommended
Value

Notes

orclmaxcc 2 10 Restart the server after changing this attribute.

orclserverprocs 1 Total number of
cores on the system.

orclecacheenabled 2 2

Chapter 10
Advanced Tuning Considerations

10-12

Table 10-4 (Cont.) Server Entry Cache Configuration

Attribute Default Recommended
Value

Notes

orclecachemaxsize 200000000 Bytes Total size of the
directory, in bytes

To determine the optimal setting for this
attribute, use the number of entries in the
Directory Information Tree and multiply by the
average entry size.

Estimate three times the size of the entries in
LDIF format.

orclecachemaxentries 100000 Total number of
entries in the DIT

orclecachemaxentsize 1000000 Size, in bytes, of the
largest entry in the
DIT

The largest entry is usually a group entry or an
entry with binary attribute values.

For example, if the total size of the Directory Information Tree is 300K and the total size of
300K entries in LDAP Data Interchange Files (LDIF) format is 500M, you would set
orclecacheenabled to 1, orclecachemaxsize to 1,500,000,000, and orclecachemaxentries to
300,000. If the size of the largest group entry or entry with binary value is 10M, you would set
orclecachemaxentsize to 10,000,000.

To obtain the number of entries in the Directory Information Tree, use the following command:

sqlplus ods@oiddb
select count(*) from ct_dn;

oidctl connect=oiddb status -diag

The following example shows the oidctl connect=oiddb status -diag command output:

 +--+
 | Process | PID | InstName | CompName |Inst#| Port | Sport |
 +--+
 | oidmon | 8192 | inst1 | oid1 | 0| | |
 +--+
oidldapd disp	8201	inst1	oid1	1	5678	0
oidldapd serv	8205	inst1	oid1	1	5678	0
oidldapd serv	8209	inst1	oid1	1	5678	0
oidldapd serv	8213	inst1	oid1	1	5678	0
oidldapd serv	8217	inst1	oid1	1	5678	0
Config DN	cn=oid1,cn=osdldapd,cn=subconfigsubentry					
 +--+

 +--+
 |Printing LDAP Operation in progress status ... |
 +--+
 +--+
 OIDLDAPD_PID: 8205 WorkerID: 8 DBSID: 168 DBPID: 8245 ==> IDLE
 +--+
 OIDLDAPD_PID: 8205 WorkerID: 9 DBSID: 170 DBPID: 8253 ==> IDLE
 +--+
 OIDLDAPD_PID: 8205 WorkerID: 10 DBSID: 180 DBPID: 8261 ==> IDLE
 +--+
 OIDLDAPD_PID: 8205 WorkerID: 11 DBSID: 189 DBPID: 8269 ==> IDLE
 +--+
 OIDLDAPD_PID: 8209 WorkerID: 13 DBSID: 171 DBPID: 8249 ==> IDLE

Chapter 10
Advanced Tuning Considerations

10-13

 +--+
 OIDLDAPD_PID: 8209 WorkerID: 9 DBSID: 181 DBPID: 8257 ==> IDLE
 +--+
 OIDLDAPD_PID: 8209 WorkerID: 12 DBSID: 193 DBPID: 8267 ==> IDLE
 +--+
 OIDLDAPD_PID: 8209 WorkerID: 10 DBSID: 199 DBPID: 8225 ==> IDLE
 +--+
 OIDLDAPD_PID: 8209 WorkerID: 11 DBSID: 190 DBPID: 8227 ==> IDLE
 +--+
 OIDLDAPD_PID: 8205 WorkerID: 13 DBSID: 197 DBPID: 8223 ==> IDLE
 +--+
 OIDLDAPD_PID: 8205 WorkerID: 12 DBSID: 182 DBPID: 8229 ==> IDLE
 +--+

 Cache Max Size : 1000000512
 Max Entries configured : 1000000
 Max Entries cached : 100000
 Num Entries in Cache : 100000
 Num Entries in GC : 0
 Page size : 976556
 Entry cache Hit count : 6172127
 Entry cache Mis count : 99999
 Hash Area bytes used : 24497696
 Hash Area blocks used : 37
 ResultSet cache bytes used : 6799604
 Resultset cache blocks used : 300000
 Entry cache bytes used : 404047820
 Entry cache blocks used : 5900293
 Cache memory used : 435345120

To configure the attributes, see "Attributes of the Instance-Specific Configuration Entry" in the
Administering Oracle Internet Directory and "Setting System Configuration Attributes by Using
ldapmodify" in the Administering Oracle Internet Directory.

Result Set Cache
Result set cache allows complete result sets to be stored in memory. If an SQL query is
executed and its result set is in the cache, then almost the entire overhead of the SQL
execution is avoided. This includes parse time, logical reads, physical reads, and any cache
contention overhead (for example, latches) that might normally be incurred. Configuring the
result cache can improve performance since most LDAP applications typically look up user
entries such as mail=john.doe@example.com or uid=john.doe from a user tree. Such queries
are repeated by the application every time a user logs in or uses the application. The result set
may be a single entry. Performance may be affected as OID makes a trip to the database for
the entry each time the query is run.

• When to Use Result Set Cache

• Benefits of Using Result Set Cache

• Configuring Result Set Cache

• Values for Configuring Result Set Cache

When to Use Result Set Cache
Consider using Result Set Cache only under the following conditions:

• Filter matches one or few entries.

Chapter 10
Advanced Tuning Considerations

10-14

• SQL statement causes multiple reads from disk or buffer (expensive)

Benefits of Using Result Set Cache
Benefits of using the entry cache include:

• OID evaluates the filter without making a trip to the database and therefore reduces the
load on the database.

Note that the result set cache database parameter can be configured on the client side or
server side. When the server side cache is enabled, the result set cache can consume a
significant amount of database memory and OID performance may be impacted.

• Performance improved by 3 to 5 times when compared to performance when result set
cache is not used.

Configuring Result Set Cache
The OrclRSCacheAttr attribute is used to configure the result set cache for OID.
OrclRSCacheAttr is a multi-valued attribute that includes cn, mail, uid, and orclguid. Typically
these attributes are not modified for the life of the entry.

To enable result set cache, set orclecacheenabled=2. Result set cache can be turned off by
setting orclecacheenabled=1 or orclecacheenabled=0.

Any change to these configuration attributes requires a restart of OID server (all the instances).

Values for Configuring Result Set Cache
Note that any change to the following configuration attributes requires a restart of OID server
(all the instances).

Table 10-5 Result Set Cache Attributes to Tune

Attribute Default Recommended
Value

Notes

OrclRSCacheAttr cn, mail, uid, orclguid Multi valued attribute, Value contains the
name of the Attribute. Typically these
attributes are not modified for the life of
the entry.

ResultSetMaxEntries 4 Maximum number of entries for a given
search that can be cached.

ResultSetMaxCacheSize 10 MB Maximum memory that can be allocated
in the shared memory for the result set
cache.

ResultSetMaxTime 8 hours Time to live for the result set cache when
the cache is full.

Tuning Security Event Tracking
The instance-specific configuration entry attributes orcloptrackmaxtotalsize and
orcloptracknumelemcontainers control how much memory is used for security event tracking.

The attribute orcloptrackmaxtotalsize specifies the maximum number of bytes of RAM that
security events tracking can use for each type of operation. If the Directory Server exceeds this

Chapter 10
Advanced Tuning Considerations

10-15

limit for information collected for an operation, the server stops collecting new information and
records appropriate messages in server log files. For the compare operation, the Directory
Server uses twice the value of the attribute, which is the combined amount of information about
users performing compare operation and users whose passwords are being compared. The
default value of orcloptrackmaxtotalsize is 100000000 Bytes, which should be sufficient for
most deployments. It can be increased to 200MB. For information about modifying
orcloptrackmaxtotalsize, see the instance-specific configuration attribute examples in
"Setting System Configuration Attributes by Using ldapmodify" in the Administering Oracle
Internet Directory.

The attribute orcloptracknumelemcontainers allows you to choose the number of in-memory
cache containers to be allocated for security event tracking in the Oracle Internet Directory
server. There are two subtypes for this attribute. They are 1stlevel and 2ndlevel. The
1stlevel subtype is for setting the number of in-memory cache containers for storing
information about users performing operations. The 2ndlevel subtype, which is applicable only
to compare operation, sets the number of in-memory cache containers for information about
the users whose user password is compared and tracked when detailed compare operation
statistics is programmed.The default value of both subtypes is 256. The appropriate values for
these subtypes depend on the number of users in your environment and the number of
applications used to access the directory, as follows:

• In a deployment where several applications perform operations on behalf of a large
number of end users, set 1stlevel proportional to the number of applications, plus a few
hundred more for end users directly accessing the directory. Then set 2ndlevel proportional
to the number of end users.

• In a deployment where end users themselves perform the operations, set 1stlevel
proportional to the number of end users, then set 2ndlevel to a small value, such as 25.

• A typical proportional value is one fifth. Proportions between one tenth and one half are
reasonable in most environments.

If your deployment requires it, set the values for orcloptracknumelemcontainers only when
security events collection is turned on.

Optimizing Searches
This section contains these topics:

• Optimizing Searches for Large Group Entries

• Optimizing Searches for Skewed Attributes

• Optimizing Performance of Complex Search Filters

Optimizing Searches for Large Group Entries
Searches for group entries with several thousand attribute values for either the member or
uniquemember attribute can have high latency. If you find the latency unacceptably high, there
are steps you can take to reduce it.

The simplest step is to reduce the number of attributes you are searching for. If you do not
need to retrieve all the attributes of the group entry, specify required attributes in the search
request to optimize the latency.

• Entry Cache Enabled Configuration

• Entry Cache Disabled Configuration.

Chapter 10
Advanced Tuning Considerations

10-16

Entry Cache Enabled Configuration
If you still see unacceptable latency, even with required attributes specified, then you can try to
cache the large group entry in the entry cache. To do this, increase the value of the
orclEcacheMaxEntSize attribute in the instance-specific configuration entry:

cn=componentname,cn=osdldapd,cn=subconfigsubentry

This attribute controls the maximum size of a cache entry.

Note:

If you expect frequent updates to large groups, then do not use this tuning
methodology. Use the Entry Cache Disabled Configuration.

Entry Cache Disabled Configuration.
No action is required. This configuration is enabled by default.

Optimizing Searches for Skewed Attributes
To service a typical search request, the Directory Server sends a SQL statement to the Oracle
Database. If a given attribute has very different response times depending on its value, then
the attribute is said to be skewed. For example, if searches for my_attribute=value1 and
my_attribute=value2 have very different response times, then my_attribute is said to be a
skewed.

You can uniform the response times for searches for such an attribute by adding it as a value
of the orclskewedattribute attribute, which is in the DSA configuration entry. The DN of the
DSA configuration entry is

cn=dsaconfig,cn=configsets,cn=oracle internet directory

By default, the objectclass attribute is listed as a value in the orclskewedattribute attribute.

You can change the value of orclskewedattribute by using or ldapmodify. See "Attributes of
the Instance-Specific Configuration Entry" in the Administering Oracle Internet Directory and
"Setting System Configuration Attributes by Using ldapmodify" in the Administering Oracle
Internet Directory.

Optimizing Performance of Complex Search Filters
When Oracle Internet Directory receives an LDAP search filter from a client application, it
sends the filter to the Oracle Database as an SQL query. Sometimes client applications send
filters that include terms that match a large number of entries in the directory. For example,
consider the following filter:

(&(uid=msmith)(objectclass=inetorgperson)(orclisenabled=TRUE))

The terms (objectclass=inetorgperson) and (orclisenabled=TRUE) in that filter match
nearly all entries. It would be very resource-intensive to execute that entire filter in the Oracle
Database. To improve performance, you can specify that Oracle Internet Directory execute a
portion of that filter in its own memory, rather than in the database. To do that, you use
orclinmemfiltprocess, an attribute in the DSA configuration entry:

Chapter 10
Advanced Tuning Considerations

10-17

cn=dsaconfig,cn=configsets,cn=oracle internet directory

When orclinmemfiltprocess is configured, the following events occur each time Oracle
Internet Directory receives an LDAP search:

1. Oracle Internet Directory removes all the terms that are configured in the
orclinmemfiltprocess before forming the SQL query.

2. Oracle Internet Directory sends the SQL query to Oracle Database.

3. Oracle Database sends the entries resulting from the SQL query to Oracle Internet
Directory.

4. Oracle Internet Directory applies the original filter sent by the client (the terms in
orclinmemfiltprocess) to those entries in memory.

5. Oracle Internet Directory sends the entries that match that filter to the client.

For example, suppose orclinmemfiltprocess is set to (objectclass=inetorgperson)
(orclisenabled=TRUE). When Oracle Internet Directory receives the search (&(uid=msmith)
(objectclass=inetorgperson)(orclisenabled=TRUE)), it sends a filter containing only the
parameter (uid=msmith) to the database. After Oracle Internet Directory receives entries back
from the database, Oracle Internet Directory itself applies the filter
(objectclass=inetorgperson) (orclisenabled=TRUE) to those entries.

By default, orclinmemfiltprocess is set to the following values:

(objectclass=inetorgperson)
(objectclass=oblixorgperson)
(|(!(obuseraccountcontrol=*))(obuseraccountcontrol=activated))
(|(obuseraccountcontrol=activated)(!(obuseraccountcontrol=*)))
(objectclass=*)
(objectclass=oblixworkflowstepinstance)
(objectclass=oblixworkflowinstance)
(objectclass=orcljaznpermission)
(obapp=groupservcenter)(!(obdynamicparticipantsset=*))
(objectclass=orclfeduserinfo)
You can change the value of orclinmemfiltprocess by using or ldapmodify. See "Attributes
of the Instance-Specific Configuration Entry" in the Administering Oracle Internet Directory and
"Setting System Configuration Attributes by Using ldapmodify" in the Administering Oracle
Internet Directory.

Under some conditions, Oracle Internet Directory ignores orclinmemfiltprocess and sends
the entire filter to the database. It does this if the filter it receives meets the following
conditions:

• It contains only one parameter, that is, one attribute-value pair.

• It contains no filter condition other than those in orclinmemfiltprocess
• It contains an OR condition applied to the terms that are in orclinmemfiltprocess
• It contains the same terms as in orclinmemfiltprocess, but in a different order

Chapter 10
Advanced Tuning Considerations

10-18

The following cases illustrate those conditions. In all of the following cases,
orclinmemfiltprocess is set to (objectclass=inetorgperson)(employeetype=Contract).

Examples

Case A

(&(manager=cn=john doe)(objectclass=inetorgperson) (employeetype=Contract))
Oracle Internet Directory sends the filter (&(manager=cn=john doe)) to the database.

Case B

(&(uid=rmsmith)((objectclass=inetorgperson)(employeetype=Contract)))
Oracle Internet Directory sends only (&(uid=rmsmith)) to the database, then applies the filter
(&(objectclass=inetorgperson)(employeetype=Contract)) to the entries that are returned
from the database.

Case C

(|(uid=rmsmith)(objectclass=inetorgperson) (employeetype=Contract))
In this filter, the terms that match orclinmemfiltprocess are part of an OR condition. Oracle
Internet Directory sends the filter, as is, to the database.

Case D

(&(uid=rmsmith)(employeetype=Contract) (objectclass=inetorgperson))
Even though some of the terms in this filter match orclinmemfiltprocess, they are in a
different order, so Oracle Internet Directory sends the whole filter to the database. You could
add (employeetype=Contract)(objectclass=inetorgperson) to orclinmemfiltprocess if
you do not want Oracle Internet Directory to send this filter to the database.

Case E

(|(&(uid=rmsmith)(sn=smith)(objectclass=inetorgperson)(employeetype=Contract))
In this filter, the terms that match orclinmemfiltprocess are part of an OR condition. Oracle
Internet Directory sends the filter, as is, to the database.

Case F

(&(|(uid=rmsmith)(sn=smith))(objectclass=inetorgperson)(employeetype=Contract)))
Even though this filter contains an OR operator, it is not applied to the terms that match
orclinmemfiltprocess. Oracle Internet Directory sends (&(|(uid=rmsmith)(sn=smith))) to
the directory and applies the filter (&(manager=cn=john doe)(&(objectclass=inetorgperson)
(employeetype=Contract)) to the entries that are returned from the database.

Configuring Multiple Filters

If the application is sending multiple filters, and the terms in one filter are a superset of the
terms in the other, you must configure orclinmemfiltprocess for both values.For example,
suppose the application is sending the following two filters:

(&(uid=rmsmith)(objectclass=inetorgperson)(employeetype=Contract))
(&(uid=rmsmith)(objectclass=inetorgperson)(employeetype=Contract)
(departmentNumber=627))

Chapter 10
Advanced Tuning Considerations

10-19

where (departmentNumber=627) matches a lot of entries. You must configure
orclinmemfiltprocess as follows:

(objectclass=inetorgperson)(employeetype=Contract)
(departmentNumber=627)
Optimizing Performance for Search baseDN

In the DIT, if all the users are under one baseDN, such as cn=users,dc=acme,dc=com, and all
the LDAP search clients send base as cn=users,dc=acme,dc=com, then the configuration of the
orclinmemfilter will significantly reduce database processing time. See the following
example:

orclinmemfiltprocess;dn: cn=users,dc=acme,dc=com

Specific Use Cases That Require Additional Tuning
This section describes some specific use cases that require additional tuning, in addition to
Basic Tuning Considerations.

• Bulk Load Operations

• Bulk Delete Operations

• High LDAP Write Operations Load

Bulk Load Operations
If you are planning a large bulkload operation, make the following changes:

• Set the database initialization parameter pga_aggregate_target to 1-4GB for the duration
of the operation, if sufficient RAM is available.

• Increase the database temporary tablespace before loading a large number entries. You
need about 1G of temporary tablespace per million entries being loaded. You can free up
the tablespace after the operation.

Bulk Delete Operations
If you are planning a large bulkdelete operation, perform the following tasks:

• Ensure that the database initialization parameter sga_target are tuned as described in
Database Parameters.

• Set the database initialization parameter log_buffer to 10M. This can provide additional
performance benefit.

• Ensure that you have at least three database redo log files with at least 100MB.

• Ensure that the undo tablespace is at least 1 GB in total size.

• Follow the recommendations about redo logs and undo tablespace in the next section,
High LDAP Write Operations Load .

High LDAP Write Operations Load
If you have a high LDAP write operations load, or if you perform many bulkdelete operations,
consider tuning the following values:

Chapter 10
Specific Use Cases That Require Additional Tuning

10-20

• Increase the size or number of the database redo log files so that the total size is
1000-1500 MB. Other considerations affect the total size of redo logs.

• Depending on how the disks are configured, it might be beneficial to isolate the redo log
files to a dedicated set of disks.

• Increase the undo tablespace size by adding data files to this tablespace. For most
deployments, 2-4 GB should suffice.

• Do not use the Oracle Internet Directory server entry cache. See Server Entry Cache.

• If neither Oracle Internet Directory replication nor DIP is deployed, disable change log
generation. See Replication or Oracle Directory Integration Platform.

Table 10-6 summarizes the redo log and undo tablespace recommendations provided in this
section.

Table 10-6 Redo Log and Undo Tablespace Values

Attribute Value Notes

Redo Log 3 logs, 100MB
each

Many bulkdelete operations.

Redo Log Total size
1000-15000MB

Large number of write operations.

Undo
Tablespace

At least 1GB
total

Many bulkdelete operations.

Undo
Tablespace

2-4 GB Large number of write operations.

Chapter 10
Specific Use Cases That Require Additional Tuning

10-21

11
Oracle Access Management Performance
Tuning

This chapter provides guidelines for tuning and sizing the services that make up an Oracle
Access Management 14c Release 14.1.2.1.0 installation.

• About Oracle Access Management

• Performance Considerations for Oracle Access Management Services

• Tuning Oracle Access Management Access Manager

• Tuning Oracle Access Management Identity Federation

• Database Tuning for Oracle Access Management

• Purging Inactive Sessions as a Recovery Mechanism from Peak Load

About Oracle Access Management
Oracle Access Management includes a full range of services that provide Web perimeter
security functions and Web single sign-on; identity context, authentication and authorization;
policy administration; testing; logging; auditing; and more.

Oracle Access Management is a Java Platform, Enterprise Edition (Jakarta EE)-based
enterprise-level security application that provides restricted access to confidential information
and centralized authentication and authorization services. Many existing access technologies
in the Oracle Identity Management stack converge in Oracle Access Management.

Starting with release 11.1.2, Oracle Access Management includes the following "services":

• Oracle Access Management Access Manager (formerly the standalone product named
Oracle Access Manager)

• Oracle Access Management Identity Federation (formerly the standalone product named
Oracle Identity Federation)

For more information on administering these services, see the Oracle Fusion Middleware
Administrator’s Guide for Oracle Access Management.

Note:

Prior to the Oracle Fusion Middleware 11.1.2 release some of the services discussed
in this chapter, such as Oracle Identity Federation and Oracle Secure Token Service,
were standalone products and tuned individually.

11-1

Performance Considerations for Oracle Access Management
Services

Identifying the areas of your Oracle Access Management environment that may impact
performance is the first step in effective performance tuning. This section provides information
on some of the common areas to review. Always consult your specific usecase scenarios and
performance requirements to determine which configurations are applicable.

Before you begin tuning Oracle Access Management services, review the following sections as
well as the recommendations discussed in Top Performance Areas :

• Understanding Your Current Environment

• Controlling Network Latency

• Enabling DMS Performance Instrumentation

Understanding Your Current Environment
Before tuning Access Management services consider the tuning recommendations described
in Table 11-1:

Table 11-1 Understanding Your Current Environment: Tuning Considerations

Tuning Consideration Description

Number of Users Understanding the overall user population size; group, membership and attribute counts;
data types, and configuration parameters of the LDAP and database is essential. See
Performance Planning for more information on using population data to improve
performance.

Daily Activity Usage Access Manager: It is important to know how many users are active during a 24-hour period
and the expected traffic. Spikes in usage may require additional tuning to avoid performance
issues. See Monitoring for more information on collecting performance data.

Identity Federation: It is important to know how many Federated SSO requests are
processed in a 24-hour period and the expected traffic. Spikes in usage may require
additional tuning to avoid performance issues

Hardware Resources and
Topology

Like any application deployed for interactive use in a demanding environment, proper server
sizing and configuration is critical for acceptable performance. Ensuring that your hardware is
sufficient to prevent bottlenecks is a key factor in performance tuning. See Securing
Sufficient Hardware Resources for more information on optimizing hardware resources.

Partners and Protocols When tuning Identity Federation, knowing which partners are configured, how those partners
are modeled and the federation protocol used are important considerations. Specifically you
should understand how many partners this instance has and what protection policies are
assigned to them.

Chapter 11
Performance Considerations for Oracle Access Management Services

11-2

Table 11-1 (Cont.) Understanding Your Current Environment: Tuning Considerations

Tuning Consideration Description

JVM and Garbage Collection Optimal performance of the Access Management services depends on correctly tuning JVM
heap sizes and garbage collection.

NOTE: When uploading large Plugins or CRLs (10MB+) through the OAM Console UI, you
need to ensure that the OAM Server heap size is optimally tuned to overcome OutOfMemory
issues.

For example, increase the -Xmx and XX:MaxPermSize if the following error message is seen
in the OAM logs:

 javax.management.RuntimeErrorException: GC overhead
limit exceeded

Use Parallel, Concurrent Mark and Sweep GC modes with the JVM running in the Server
Mode. In addition, Oracle reccomends to set the Heap size to a large value and use the
same values for Minimum and Maximum (-Xms=-Xmx) .

Controlling Network Latency
The performance of the overall network is a major factor in the performance of the system. A
reduction in network latency can improve network performance.

To control network latency, consider the following:

• Keep database repositories close to the OAM servers. Installing OAM servers on a remote
server may cause significant latency. Latency between the application tier and the
database tier should be 5ms or less to maintain optimal performance.

• Add an SSL accelerator or load balancer outside of the Oracle Access Manager system to
improve the performance of your network.

• Deploying a load balancer in front of the Web servers or application servers is a best
practice for increasing availability and performance of Web-based applications, including
Oracle Access Manager. However, load balancers are not recommended between the
Oracle Access Manager components themselves.

• Place the Access Manager Servers closer to client applications than to the directory.

During normal operations there can be a considerable amount of traffic between Webgates
and Access Manager Servers. Locating these managed servers closer to the applications
can reduce the latency between devices in high-traffic parts of the network.

Access Manager provides keep alive, failover, and failback functionality to handle LDAP and
network outages, replication, and related activities. The built-in features of Oracle Access
Manager are often the same or better than similar features provided by a load balancer.

Note:

In addition to ensure fast failover, tune the settings for fast failover. The defaults rely
on the OS TCP/IP settings which must be tuned for the OS on which the Webgate is
running.

Chapter 11
Performance Considerations for Oracle Access Management Services

11-3

You may use Load Balancers to manage the Access Manager server communication
information for OAP (Oracle Access Protocol) by virtualizing it. The benefits of using a Load
Balancer between Webgates and Servers should be measured against the following
constraining requirements:

• OAP connections are persistent and need to be kept open for a configurable duration even
while idle.

• The Webgates need to be configured to recycle their connections proactively prior to the
Load Balancer terminating the connections, unless the Load Balancer is capable of
sending TCP resets to both the Webgate and the server ensuring clean connection
cleanup.

• The Load Balancer should distribute the OAP connection uniformly across the active
Access Manager Servers for each WG (distributing the OAP connections according the
source IP), otherwise a load imbalance may occur.

Caution:

If the above constraining requirements are not met, you can negatively impact the
performance of Access Manager resulting in outages.

Ensure that the LDAP timeout under load are negligible. This requires ensuring that
LDAP Server is appropriately patched and load testing be performed to simulate
OAM LDAP queries (bind, user/group lookup, search queries). LDAP timeouts under
load increases OAM Server SSO latencies and increase the risk of an OAM server
outage.

Temporary latency blips (for example, increase in LDAP query latency, server
processing due to increased Coherence latency) results in increased Webgate
response times. If the Web Tier does not have adequate capacity to handle the
incoming user requests (through queuing or throttling) especially during peak load,
you may run into a situation where the entire Web Tier is blocked and unable to
accept new requests.This results in end users not being able to login to access
business application.

Enabling DMS Performance Instrumentation
For performance tuning purposes, consider enabling Dynamic Monitoring Service (DMS)
performance instrumentation which can tell you the latency and throughput of functional and
operational metrics. DMS can identify components that are either processing a heavier load or
taking longer than usual to service requests. See Viewing DMS Metrics for more information on
determining the overall time to process calls to various components.

Note:

If you are using Enterprise Manager Grid Control, create Dashboard Reports based
on the OAM Metrics of most interest, which can then be email’d on a regular
schedule.

Chapter 11
Performance Considerations for Oracle Access Management Services

11-4

Tuning Oracle Access Management Access Manager
Oracle Access Management Access Manager (Access Manager) is an enterprise level solution
that centralizes critical access control services to provide an integrated solution that delivers
authentication, authorization, Web single sign-on, policy administration and enforcement, agent
management, session control, systems monitoring, reporting, logging, and auditing.

For more information on using Access Manager, see "Introduction to Oracle Access
Management Access Manager" in the Oracle Fusion Middleware Administrator's Guide for

Oracle Access Management.

• Basic Tuning Considerations for Access Manager

• Advanced Tuning Considerations for Access Manager

• Specific Use Cases That Require Additional Tuning for Access Manager

Basic Tuning Considerations for Access Manager
Depending on your Access Manager usage and performance issues, you may consider tuning
the following basic parameters. See Top Performance Areas for additional tuning
considerations.

• Tuning the Web Tier

• Managing Policy Components

• Tuning Common Settings

Tuning the Web Tier
Tuning your Web application's server is essential to maintaining optimal performance for
Access Manager. This section describes tuning configurations for the following:

• Tuning Oracle HTTP Server
You can tune Oracle HTTP Server (OHS) to optimize its performance as the web server
component for Oracle Fusion Middleware.

• Tuning Access Manager Webgate

• Tuning OAM Agents

Tuning Oracle HTTP Server
You can tune Oracle HTTP Server (OHS) to optimize its performance as the web server
component for Oracle Fusion Middleware.

Note:

The configuration examples and recommended settings are for illustrative purposes
only. Consult your own use case scenarios to determine the configuration options
that can provide performance improvements.

Tuning Access Manager Webgate

Chapter 11
Tuning Oracle Access Management Access Manager

11-5

Webgate is an out-of-the-box access client for Access Manager. This Web Server access client
intercepts HTTP requests for Web resources and forwards them to the Access Manager
Server. Webgates for various Web Servers are shipped with Access Manager.

Consider tuning the following parameters to increase the number of connections from the
Webgate Server to the Access Manager servers. Adding more connections enables the
servers to process more concurrent requests.

Parameter Description

Max Connections Maximum number of connections that this Access Manager Agent
can establish with all the Access Manager Servers.

Maximum Number Of
Connections

Maximum number of connections that the Access ManagerAgent
can establish with a specified Access Manager Server.

For more information on setting these parameters, see "Registering Agents and Applications"
in the Administering Oracle Access Management.

Tuning OAM Agents
Once you have registered an OAM Agent, you can tune the following parameters to the
recommended values:

Parameter Recommendation

Cache Pragma Header Delete the default of no-cache so that this field is empty.

Cache Control Header: Delete the default of no-cache so that this field is empty.

AAA Timeout Threshold Default is -1, which means that there no timeout. You should
change this to a hard number.

Too low a number means that the socket connection can be closed
before a reply comes from the OIM server. Too high a number
means the connection may hang while waiting for a response.

Max Number of Connections for
Each Server

For each server under Server Lists, change the Max Number of
Connections from 1 to 10

To find these parameters, navigate the following menus: OAM 14c Admin console >
SystemConfig (tab) > Application Security > SSO Agents > (search and select the agent).

For more information on these parameters, see "Understanding Registered OAM Agent
Configuration Parameters in the Console" in Administering Oracle Access Management .

Managing Policy Components
In order to limit the Access Manager processing overhead, all resources that do not require
security should be modeled as excluded resources as opposed to unprotected resources.
Modeling these resources as excluded resources can substantially help with ADF Applications.
Excluded resources use a one-time interaction between the Webgate and the Access Manager
Server as opposed to a per request interaction for unprotected resources.

For more information, see "Managing Shared Policy Components" in the Administering Oracle
Access Management.

To design authentication policies for optimal performance, do the following:

• Get an inventory of all attributes you want for authZ and pre-fetch them at AuthN time.

• Combine attributes in the supplementary list to reduce AuthN time LDAP load.

Chapter 11
Tuning Oracle Access Management Access Manager

11-6

Note the following:

1. Change all OAM policy responses for userid return from $user.attr.uid
to $user.userid.This is because the latter is computed at login time as opposed to the
former which is computed onDemand during authorization

OAM_REMOTE_USER is populated by default.

2. To design authorization policies for optimal performance, do the following:

• Use $session namespace. Attributes used for authorization must be retrieved and
stored in the user's OAM session during login. This ensures that the authZ latency is
constant to make OAM responsive thereby improving the user experience.

For example, modify ismemberof, loa and any other attribute related policy response
to get value at authentication time instead of authZ time.

[Authentication Policies]ismemberof -> SESSION -> $user.attr.ismemberof
loa -> SESSION -> $user.attr.loa
uid ->SESSION -> $user.userid

 [Authorization Policies]Responses:
uid: $user.userid
ismemberof: $session.attr.ismemberof
loa: $session.attr.cmsRoles

• For Authorization policies involving attributes, store and use attributes in the $session
namespace instead of query them on-the-fly by using the $user.attr namespace.

• Use group based policies instead of explicitly listing users.

Tuning Common Settings
All OAM Servers and services in the domain share a set of common settings. You can tune
them from the Launch Pad. See "Managing Common Settings" in the Administering Oracle
Access Management for how to find these settings.

This section provides tuning values for the following Common Settings:

• Global Session Settings

• Default and System Identity Stores

Global Session Settings
The recommended values for the following parameters:

Session Lifetime = 5m

Maximum Number of Sessions should be set somewhere between 0 and 8. The default for this
setting is 8. Usually the default is sufficient, but this number should be as low as possible. Note
that setting this parameter to 0 means that a user can have unlimited sessions running
concurrently, which is inadvisable.

For descriptions of these parameters, see "About Global Session Lifecycle Settings" in the
Administering Oracle Access Management.

Default and System Identity Stores
LDAP stores are accessed by connection pools maintained by Access Manager. Identity store
definitions contain the exposed pool parameters. Middleware Control and the DMS Spy Servlet
can expose per-operation counts and latency which can be used to identify bottlenecks.

Chapter 11
Tuning Oracle Access Management Access Manager

11-7

Consider specifying an explicit time-out value (default=unlimited) and ensure that the initial and
maximum number of connections in the pool are appropriate for the deployment.

See #unique_277 for more advanced tuning recommendations.

For more information on the how to find these settings, see "Defining the User Identity Store
Registration Settings" in the Administering Oracle Access Management for more information.

Advanced Tuning Considerations for Access Manager
The following Access Manager tuning considerations are provided as a guide. Always consult
your own use case scenarios to determine if these configurations should be used in your
deployment.

• Tuning Oracle Coherence

• Setting the Java Message Bean Pool Size

• Tuning the Server Cache

• Tuning Webgate Caches

• Changing Request Cache Type

• Tuning Authentication Plug-Ins

Tuning Oracle Coherence
Oracle Access Manager uses Oracle Coherence to replicate session states within a distributed
installation. Coherence is used to communicate state changes between the Oracle Access
Manager Console and Access Manager Servers.

This section contains the following topic:

• Updating Optimization Interval Time

Updating Optimization Interval Time
In the oam-config.xml file, the value of the OptimizedSessionUpdatesIntervalInMillis
element should be less than the value configured for Idle Timeout parameter, which is 15
minutes by default.

In the configuration file, the OptimizedSessionUpdatesIntervalInMillis element appears as
follows:

 <Setting Name="DBSMEConfig" Type="htf:map">
 <Setting Name="SessionCreationLockAcquirePercentage"
Type="xsd:integer">60</Setting>
 <Setting Name="SessionPurgeLockExpiryIntervalSeconds"
Type="xsd:long">3000</Setting>
 <Setting Name="SessionCreationLockExpiryIntervalSeconds"
Type="xsd:long">10</Setting>
 <Setting Name="SessionConcurrencyHardLimit" Type="xsd:long">5</
Setting>
 <Setting Name="OptimizedSessionUpdatesIntervalInMillis"
Type="xsd:long">180000</Setting>
 </Setting>

Chapter 11
Tuning Oracle Access Management Access Manager

11-8

Note:

This configuration should be under the XPath /DeployedComponent/Server/
NGAMServer/Profile/Sme.

Based on the configured interval, the session updates during authorization will be
optimised and it should be within the limit mentioned above. It is recommended to
configure a minimum interval value to avoid any unexpected behaviour. In most of the
cases, default value of 3 minutes (180000 ms) is sufficient to handle the load.

Setting the Java Message Bean Pool Size
By default, the Access Manager Proxy is set to handle 100 concurrent Webgate requests.

If necessary, consider adjusting the pool settings to reflect the maximum Webgate request load
for the deployment. This is achieved by setting the max-beans-in-free-pool element to an
appropriate value.

You can also calculate the appropriate value for the max-beans-in-free-pool based on the
Web Tier settings discussed in Tuning the Web Tier. This value should be greater than the Max
Number of connections (in Webgate) multiplied by the ServerLimit (in Oracle HTTP Server)
multiplied by the Number of Webgates.

Tuning the Server Cache
The following server caches can be tuned to improve Access Manager performance:

• Tuning Identity Store Cache

Tuning Identity Store Cache

Authorization policy administration allows authoring of grants to users or groups.
Administrators can search within specific identity stores, selecting certain users or groups and
granting or denying them access. Search results provide canonical identifiers for users and
groups such that those values are stored as principals of the Identity Constraint component of
Access Manager Authorization policy. The console displays the names and the Identity Store of
origin.

To maximize performance, review configuration settings of the following Identity Store caches:

• Group Membership Cache

The Group Membership cache stores indirect membership data which is essentially a
group's membership in another group. The number of entries and entry time-to-live are
configurable parameters. The cache should be tuned if your deployment includes groups
that will be checked against or exported as responses, such as groups that are set in
identity constraints, for example.

CAUTION: The Group Membership Cache is populated by a recursive search of the entire
LDAP tree of nested groups without any loop detection. Consider disabling this cache if
you are experiencing degraded Access Manager Server performance.

• User Attribute Cache

Chapter 11
Tuning Oracle Access Management Access Manager

11-9

User Attributes, once fetched, are always cached. Pre-fetching of attributes during
authentication is controlled by specifying the attribute list in the
SUPPLEMENTAL_RETURN_ATTRIBUTES parameter value of the Identity Store.

Supplemental attribute return values are useful when you do not require the user to make
a list selection for the attributes, yet you want those attributes values, as determined by the
current row, to participate in the update.

Note:

All LDAP Attribute Condition used in Authz Policy must be retrieved during login
and be cached. This improves authz latency and throughout while reducing the
burden on the LDAP tier.

Tuning Webgate Caches
Webgate caches information on authentication and on whether or not a resource is protected.
Webgate cache tuning sets the total number of unique URLs expected over the timeout
interval. Default is 0 URLs, but this means that the cache is not automatically updated and is
flushed only when the administrator manually updates the cache. While this is a good option
for performance in some scenarios, it may not apply to your individual use cases.

For more information, see "Reviewing OAM Agent Metrics" in Administering Oracle Access
Management.

This section provides the following topics:

• Introducing Webgate Caches

• Reducing Network Traffic Between Components

• Changing the Webgate Polling Frequency

Introducing Webgate Caches
Webgate caches various information related to resources, authentications and authorizations
to improve performance. It uses the cached information to avoid trips to 14c Server for
requesting same information. Table 11-2 are the caches used by Webgate to maintain this
information.

Table 11-2 Webgate Cache Types

Cache Type Description

Resource to Authentication
Scheme

This cache maintains information related to authentication schemes
being used.

Default: 100000 elements

Authentication Scheme This cache maintains information related to authentication schemes
being used.

Default: 25 elements

Typically Authentication Scheme cache elements require less than 2
Kb of memory per element.

See Also: " Tuning Cache Timeout Values ".

Chapter 11
Tuning Oracle Access Management Access Manager

11-10

Table 11-2 (Cont.) Webgate Cache Types

Cache Type Description

Resource to Authorization Policy

14c Webgate only

This cache maintains information related to resources accessed and
associated authorization policy.

Default: 100000 elements

See Also: " Tuning Maximum Cache Elements " and " Tuning Cache
Timeout Values ".

Authorization Result

14c Webgate only

This cache maintains information related to authorizations
associated with user sessions.

Default: 1000 elements

See Also: " Tuning Authorization Result Cache ".

About the 14c Webgate Diagnostics Page

This page displays useful information related to currently effective Cache configuration
parameters. It also displays runtime information about the caches that include information on
the number of cached elements, number of hits and misses so far, and current memory usage
of individual caches. The page is found at the following URL:

http://webserver:port/ohs/modules/webgate.cgi?progid=1

After upgrading Oracle Webgate 10.1.4.3.0 to Bundle Patch 13 (BP13), the output of the
Diagnostic page is a blank page.Starting with Bundle Patch 13, the Diagnostic Page is
disabled by default.

To enable this page, per Webgate registration, add the parameter/value :
enableDiagnosticPage=true in the list of user parameter of the webgate.With a Webgate
instance already registered:

• Go to OAM Console > System Configuration > Access Manager > SSO Agents > OAM
Agents : Search and Select your Webgate profile

• Add in the end of the list of the "User Defined Parameters" :
enableDiagnosticPage=true.

• Click on Apply: a pop-up window mentions where the new artifacts are located.

• Copy the newly ObAccessClient.xml in the OHS configuration instance.

• Restart the OHS instance and check that the Diagnostic Page is displayed.

Note:

Changes to Webgate parameters are not reflected on Webgate until the next
configuration refresh. For 14c Agents, the default configuration refresh interval is 10
minutes.

Tuning Maximum Cache Elements

By default, the Resource to Authentication Scheme and Resource to Authorization Policy
caches are created to store 100000 elements. Typically, elements of these caches require less
than 1 Kb of memory per element. Therefore, with 100000 elements in each of these caches,
typical memory requirement for the caches will be 100000 Kb or 100 Mb each.

Chapter 11
Tuning Oracle Access Management Access Manager

11-11

Considering memory requirements and your deployment, the Web Server being used and
number of unique URLs in your application, you might want to increase or decrease the
maximum number of elements to be cached.

Note:

Increase or decrease the Maximum Cache Elements parameter value as needed. If
this is set to a value of -1, all Webgate caches are disabled.

For both 12c and 14c Webgates, you can tune the maximum number of elements to be cached
property, by changing the Maximum Cache Elements parameter. Updates to this parameter
require a Webgate restart.

How to tune the maximum number of elements to be cached

1. Locate and open the desired Webgate registration page in the Oracle Access Manager
Console.

2. Set the Maximum Cache Elements parameter as desired.

3. Restart Webgate Web server.

Tuning Authorization Result Cache

By default, the Authorization Result cache is created to store 1000 elements. Authorization
Result cache elements store the user session identifier, authorization policy identifier, and
associated authorization result including any processed policy responses. Therefore,
Authorization Result cache elements are bulky and generally require more than 2Kb of
memory per element.

Considering memory requirements and the number of concurrent user sessions in your
deployment, you might want to increase the number of elements to be cached.

How to tune the number of elements to be cached

1. Locate and open the desired 14c Webgate registration page in the Oracle Access Manager
Console.

2. In User Defined Parameters, add or update maxAuthorizationResultCacheElems as
desired.

3. Restart Webgate Web server.

Tuning Cache Timeout Values

By default, the following caches are created with a timeout value of 1800 seconds or 30
minutes:

• Resource to Authentication Scheme

• Authentication Scheme

• Resource to Authorization Policy

Elements in these caches are stored with an expiry time that forces these caches to be flushed
on expiry.

Considering the frequency of updates to Authentication Schemes, and Authentication and
Authorization Policies in your deployment, you might want to increase or decrease the default
timeout value.

Chapter 11
Tuning Oracle Access Management Access Manager

11-12

How to tune the cache timeout

1. Locate and open the desired Webgate registration page in the Oracle Access Manager
Console.

2. Set the Cache Timeout parameter as desired.

3. Restart Webgate Web server.

Tuning Authorization Result Cache Timeout

By default, the Authorization Result Cache timeout value is set at 15 seconds. Elements in the
Authorization Result Cache is stored with an expiry time that forces it to be flushed on expiry. A
low timeout value ensures that authorization results are cached for a small amount of time only.

Considering average length of user sessions and frequency with which user sessions are
created and destroyed, you might want to change the default timeout value. Unlike other
caches and parameters, updates to this parameter do not require Webgate restart. Instead, the
updated value is dynamically picked up by 14c Webgate and enforced immediately.

Note:

If authorizationResultCacheTimeout is set to 0, Authorization Cache is disabled.

How to tune the authorization result cache timeout

1. Locate and open the desired 14c Webgate registration page in the Oracle Access Manager
Console.

2. In User Defined Parameters, add or update authorizationResultCacheTimeout as
desired.

3. Restart Webgate Web server.

Reducing Network Traffic Between Components
The Webgate-to-OAM Server configuration polling reduces the traffic between both the
Webgate and OAM Server and the OAM Server and the registered data stores for Oracle
Access Manager.

Process overview: Webgate-to-OAM Server configuration polling

1. When the Webgate is inactive for 60 seconds, it reduces the frequency of polling for its
configuration information.

The polling frequency is determined by the parameter InactiveReconfigPeriod, which is a
user-defined parameter that is set in the Webgate configuration page. The value for
InactiveReconfigPeriod is specified in minutes. Within ten seconds of resuming activity, the
Webgate performs reconfiguration polling once a minute.

2. At startup, the Webgate checks the bootstrap configuration to see if any important
parameters have changed.

This makes the re-initialization process unnecessary in most cases and reduces the
transient OAM Server load.

3. Webgate and AccessClient configurations are cached in the OAM Server.

The default cache timeout is 59 seconds. This should cause no modifications to the system
behavior on non-Apache access clients. The Apache Web server with Webgate avoids

Chapter 11
Tuning Oracle Access Management Access Manager

11-13

unnecessary hits to the directory server. The caching parameters can be set in the
Webgate registration page.

• Max Cache Elements sets the maximum size of the cache (default 9999)

• Cache Timeout determines the maximum lifetime of any element in the cache (default
59 seconds)

There are two ways to reduce off-time network traffic between both the Webgate and OAM
Server and the OAM Server and the database:

• Changing the default configuration cache timeout for Webgate and AccessClient
configurations that are cached in the OAM Server, as described in Step 3.

• Changing Webgate polling frequency for configuration information, as described next.

Changing the Webgate Polling Frequency
One way to reduce off-time network traffic between both the Webgate and OAM Server and
between the OAM Server and the database is to change the Webgate polling frequency using
the InactiveReconfigPeriod parameter.

The default is 1 minute. When the Webgate is inactive for more than 60 seconds (for example,
when no authentication requests are being processed), it reduces the frequency of polling for
its configuration information. Within ten seconds of resuming activity, the Webgate resumes
reconfiguration polling once every minute:

• If set to -2, Webgate never polls.

• If set to a value greater than 0 it polls at the specified interval.

• If set to -1 and Webgate is inactive and has been for 1 minute, then Webgate does not poll.
Webgate resumes reconfiguration polling when it returns to an active state.

For example, the OAM Server reads the shared secret from the directory at an interval of 10
minutes and this cached value is returned to Webgate. In the idle state the Webgate reads the
shared secret from the OAM Server using the InactiveReconfigPeriod value. If this value is not
set, the Webgate polls the OAM Server for the shared secret value at an interval of 1 minute
even though the updated shared secret value will be returned only after 10 minutes.

To change the configuration polling frequency

1. Locate the desired Webgate registration page using instructions in "Searching for a
Webgate Registration" in Administering Oracle Access Management.

2. Add the InactiveReconfigPeriod parameter as a user-defined parameter on the Webgate
registration page.

3. Specify the value for InactiveReconfigPeriod in minutes.

4. Apply your changes to the Webgate registration page.

Changing Request Cache Type
The default Request Cache type is set to COOKIE, which relies on the use of cookies to cache
an unauthenticated request state.

Changing the type to BASIC can improve performance, but it is important to consider the
following: If the server being used for an authentication flow goes down in the middle of that
flow, the user's current state in the flow will be lost on their next request as the load balancer
sends them to a different server.

Changing the type to FORM can improve performance when lengthy URLs are being accessed.

Chapter 11
Tuning Oracle Access Management Access Manager

11-14

Tuning Authentication Plug-Ins
Authentication plug-ins can affect performance. When you develop customizations for Access
Manager, consider the following to minimize performance impact:

• Evaluate the sequence in which actions are executed

• Minimize the plug-in footprint and external dependencies whenever possible

Specific Use Cases That Require Additional Tuning for Access Manager
This section describes some specific use cases that require specialized tuning, in addition to
the Basic Tuning Considerations for Access Manager.

• Managing Access Manager Sessions

• Managing Access Manager Sessions

• Audit Settings

• Managing Monitor Account

• Kerberos Latency Issues

• Oracle Access Protocol over REST Connectivity Issues

Managing Access Manager Sessions
By default, there can only be a maximum of 8 concurrent sessions for a given user ID. It is
possible to raise this limit, but it is important to note that as the limit increases the security
value of the feature is eroded, and ultimately disappears. Further, there is a performance cost
associated with the feature, which increases with the limit. Therefore, if there is a need to have
more than 20 concurrent user sessions, then consider disabling this feature by setting the limit
to 0.

Audit Settings
OAM tends to generate a lot of audit information. During peak business hours, OAM generates
audit information at a rate that is faster than the rate at which the OPSS AuditLoader can move
the information to the Audit Database.

Given that SSO is a security service, it is recommend to set the Audit Filter to a value of
MEDIUM or ALL. Also, ensure that the Audit BusStop directory has no max size limit
(maxDirSize=0) to avoid zero data losses. In addition, monitor and confirm that the Audit data
is constantly being moved to the Audit Database even if the AuditLoader falls behind during
peak business hours.

Managing Monitor Account
Enterprises use automated monitors to measure end user latency and generate alerts when
thresholds are exceeded.

Oracle recommends the following best practices:

1. Monitors should logout when their work is done. This ensures that sessions do not pile up
in memory.

2. Monitors should not use the same user credential. This ensures that a single user does not
create a very large number of sessions in a short amount of time.

Chapter 11
Tuning Oracle Access Management Access Manager

11-15

3. Prune monitor sessions periodically. This can be done through the OAM Console or by
writing a program using the ASDK. It also ensures that you do not have to set the
maximum number of sessions to a very large value to accommodate monitors.

4. Refrain from running monitors very frequently when problems are seen.

Typically, monitors are set to run very frequently when an exception condition is noted (for
example, when login latencies exceed the threshold). This has the effect of putting
additional load on the system especially if this happens under peak load and this increases
the risk of a catastrophic failure.

Kerberos Latency Issues
Kerberos authentication, by default, uses the UDP protocol. However, UDP does not perform
well when the connection between the OAM Server and Kerberos Server has to span subnets
or the packet loss increases during business hours. As a result, it recommended that Kerberos
be configured to use TCP instead of UDP.

This can be done by setting udp_preference_limit=1 in the /etc/krb5.conf file.

Oracle Access Protocol over REST Connectivity Issues
Oracle Access Protocol (OAP) over REST enables the use of HTTP infrastructure to route and
load balance requests. This is a new feature introduced in WebGate starting with release
12.2.1.4.0. Under load, you may see connection errors in the WebGate and/or HTTP Server
logs.

Oracle recommends the following best practices to reduce the connection errors:

• Ensure that the HTTP Server has enough idle or spare Server threads to receive incoming
requests.

• Increase the OAM WebLogic Server wm/OAPOverRestWM work manager capacity.

• Optionally, increase the RAM allocated to the HTTP Server and the WebLogic Server.

Tuning Oracle Access Management Identity Federation
Oracle Access Management Identity Federation (Identity Federation) 11gR2 is an identity
federation server built into the Oracle Access Manager server. All configuration is performed in
Oracle Access Manager; unlike the standalone 11gR1 version. Identity Federation provides a
self-contained and flexible multi-protocol federation server that can be rapidly deployed with
existing identity and access management systems. It enables you to securely share identities
across vendors, customers, and business partners without the increased costs of managing,
maintaining, and administering additional identities and credentials.

For more information on administering Oracle Access Management Identity Federation, see
"Introduction to Identity Federation in Oracle Access Management" in the Administering Oracle
Access Management.

• Basic Tuning Considerations for Identity Federation

• Advanced Tuning Considerations for Identity Federation

• Specific Use Cases That Require Additional Tuning for Identity Federation

Chapter 11
Tuning Oracle Access Management Identity Federation

11-16

Basic Tuning Considerations for Identity Federation
The following sections describe basic tuning configurations that you should also consider while
tuning Identity Federation:

• Tuning the Load Balancer and HTTP Server

• Tuning SOAP Connections

• Tuning the Data Tier Connections

Tuning the Load Balancer and HTTP Server
As of Oracle Fusion Middleware Release 11gR2, some of the features of Identity Federation
are embedded in Access Manager. To optimize Identity Federation performance, follow the
Load Balancer and HTTP Server tuning guidelines discussed in Tuning the Web Tier for
Access Manager.

Tuning SOAP Connections
Identity Federation uses the Simple Object Access Protocol (SOAP) to send Security Assertion
Markup Language (SAML) requests and to receive SAML responses. To optimize
performance, configure the following SOAP connections:

• Total maximum number of SOAP connections that Identity Federation and Security Token
Service can open at the same time

• Maximum number of SOAP connections that Identity Federation and Security Token
Service can open at the same time to a given remote server

Tuning the Data Tier Connections
LDAP stores are accessed by connection pools. Identity store definitions contain the exposed
pool parameters. As discussed in Default and System Identity Stores, Middleware Control and
the DMS Spy Servlet can expose per-operation counts and latency. Identity Federation uses an
RDBMS to store session and runtime data. The server uses a caching mechanism to improve
performance at runtime. This enables the server to keep a reference to recently used objects in
memory to avoid read access to the database. The RDBMS also has an asynchronous write
and delete mechanism.

Note:

The following parameters typically do not need to be changed. Review the
descriptions, however, to determine if an adjustment could improve performance for
your deployment.

To optimize RDBMS session caching and asynchronous writes, configure the parameters as
described in Table 11-3:

Chapter 11
Tuning Oracle Access Management Identity Federation

11-17

Table 11-3 Asynchronous Write Settings

Parameter Description

rdbmsasynchronousmanagerinterval Execution interval for the asynchronous thread
manager

rdbmsasynchronousmanagersleep Sleep interval for the asynchronous thread
manager, to check if execution should occur

rdbmsasynchronousqueuesize Size of the queue containing RDBMS operations of
the same type (create session, create artifact…)

NOTE: It is important to size the
rdbmsasynchronousqueuesize correctly. If it is
made too large, it can cause a lag in the
asynchronous write to the database and may
cause SSO operation to fail.

rdbmsasynchronousqueuesleep Sleep time before the calling thread can retry to
add an operation to a queue, in case the queue is
full

rdbmsasynchronousqueueretries Number of retries when trying to add an operation
to the queue

rdbmsasynchronousthreadcore Number of default threads in the RDBMS thread
executor module for RDBMS asynchronous
operations

rdbmsasynchronousthreadkeepalive Maximum amount of time to keep the extra threads
in the RDBMS thread executor module for RDBMS
asynchronous operation

rdbmsasynchronousthreadmax Maximum number of threads in the RDBMS thread
executor module for RDBMS asynchronous
operation

rdbmsasynchronousthreadmax should be
adjusted to handle the maximum system load
based on the size of your system.

rdbmsasynchronousthreadpolicy Thread policy of the RDBMS thread executor
module for RDBMS asynchronous operation

rdbmsasynchronousthreadqueuesize Size of the thread queue of the RDBMS thread
executor module for RDBMS asynchronous
operation

Table 11-4 describes the RDBMS memory cache settings for artifact and transient cache:

Table 11-4 Cache Settings

Parameter Description

RDBMS Artifact memory RDBMS Artifact memory cache settings, used in
conjunction of the RDBMS asynchronous module:

artifactrdbmscachetimeout Time to live in the memory cache

artifactrdbmsretries Maximum number of time to retry to locate an entry in
RDBMS before returning a failure

artifactrdbmssleep Sleeping time between retrying lookup operations

RDBMS Memory cache RDBMS Memory cache settings (except for Artifact):

transientrdbmscachesize Size of the cache

Chapter 11
Tuning Oracle Access Management Identity Federation

11-18

Table 11-4 (Cont.) Cache Settings

Parameter Description

transientrdbmscachetimeout Time to live for the objects in the cache, before being
invalid and thus forcing an RDBMS lookup operation
when an object is searched

Interval for the RDBMS cleanup thread Indicates the interval of sleep of the thread removes
expired entries from OIF DB tables

Advanced Tuning Considerations for Identity Federation
This section provides advanced tuning recommendations which may or may not apply to your
environment. Review the following recommendations to determine if the changes would
improve your Identity Federation deployment.

• Tuning Oracle Coherence

• Tuning Identity Store

• Tuning Protocol Binding

• Tuning the Browser POST and Artifact Single Sign-On Profiles

Tuning Oracle Coherence
Identity Federation, as part of Access Manager 11gR2, uses Oracle Coherence to replicate
session states within a distributed installation. See Tuning Oracle Coherence for more
information.

Tuning Identity Store
Identity Federation, as part of Access Manager 11.1.2.0.0, will benefit from tuning the identity
store as discussed in Tuning the Server Cache.

Tuning Protocol Binding
This section describes the protocol binding options:

• XML Digital Signatures

Identity Federation relies on XML Digital Signatures to ensure the authenticity of messages
and that messages are not tampered with.

When possible, sign the Assertion and/or the Response to prevent any modifications.
When no XML Digital Signature is present on the message, the audited message that is
archived does not contain any data that proves the authenticity and integrity of the
message.

Configuring Identity Federation or Security Token Service to not sign Assertion and/or
Response may be appropriate if:

– Performance must be improved

– SSL with SSL authentication is enabled for SOAP communications

– Disabling XML Digital Signatures is compliant with company security regulations

• XML Encryption

Chapter 11
Tuning Oracle Access Management Identity Federation

11-19

Federated Single Sign-On allows the use of token and element level encryption to provide
confidentiality to the message exchange. Disabling use of encryption improves the latency and
throughput of Identity Federation.

Tuning the Browser POST and Artifact Single Sign-On Profiles
There are two Single Sign-On profiles defined by the SAML specifications:

• POST Profile

In the POST profile, the Assertion transits through the user's browser, therefore the
Assertion and/or the Response must be signed to ensure that the content has not been
modified.

• Artifact Profile

In the Artifact profile, the Identity Provider creates a random identifier referencing the
Assertion in the IdP's local store. (The Assertion is provided directly from the Identity
Provider to the Service Provider.) That identifier is carried by the user's browser and
presented to the Service Provider that contacts the Identity Provider to de-reference the
identifier and retrieve the corresponding Assertion.

If the SOAP connection made from the SP to the IdP is encrypted using the SSL protocol
with an SSL Server Certificate, then the SP authenticates the IdP and the content of the
communication has not been tampered with: in this case, the transport layer is providing
the authenticity and the integrity of the message, and the XML Digital Signature on the
SAML Response and Assertion can be optional.

If no XML Digital Signature is present on the message, then the audited message that is
archived does not contain any data that proves the authenticity and integrity of the
message.

Since the Artifact profile involves an additional round trip between the Service Provider and
the Identity Provider, you may be able to improve performance by avoiding use of the
Artifact profile.

• Outbound SOAP Connections

Outbound SOAP Connections
OAM Federation can communicate with remote SAML Servers using different bindings, among
them the SOAP binding. When OAM needs to send a message to a remote server using the
SOAP protocol, it will directly open a connection and send a SOAP message.

You can configure the following connection settings:

soapmaxconnections - The maximum number of concurrent connections that OAM Federation
can open when sending SOAP messages.

soapmaxconnectionsperhost - The maximum number of concurrent connections that OAM
Federation can open when sending SOAP messages to a specific provider.

soapsockettimeout - The default socket timeout (SO_TIMEOUT) in milliseconds which is the
timeout for waiting for data. A timeout value of zero is interpreted as an infinite timeout.

soapconnectiontimeout- Sets the timeout until a connection is established. A value of zero
means the timeout is not used.

You can use WLST cmd to set the above properties. For example, putLongProperty ("/
fedserverconfig/{PropertyName}", {Value}).

Chapter 11
Tuning Oracle Access Management Identity Federation

11-20

Specific Use Cases That Require Additional Tuning for Identity Federation
This section describes some specific use cases that may benefit from additional tuning.

• Message Signing versus Token Signing

Message Signing versus Token Signing
Message exchange between the Service and Identity providers may be signed. Message
signature provide additional security when the request/response transits numerous
intermediaries. Disabling message signatures can improve performance but this should be
done only when the security risk of doing so is mitigated by other security mechanisms

Database Tuning for Oracle Access Management
This section describes the tuning process for the OAM Database.

• Automatic Optimizer Statistics Collection

• Partitioning AM_SESSION table using Config Utility Command

Automatic Optimizer Statistics Collection
Ensure that this is performed where AM_SESSION table has data. Normally this table will have
data during the working hours. Automatic Optimizer Statistics Collection Job should be
configured to run at a time when this table has data. Configuring to run at midnight or off peak
hours may cause the wrong statistics to be collected and in turn cause performance
degradation of the OAM servers.

Follow the procedure below to check the job details.

1. Connect as dba and run the query.

2. select * from dba_autotask_client where client_name = 'auto optimizer stats collection'

Partitioning AM_SESSION table using Config Utility Command
By default, the AM_SESSION table is not partitioned.

It is recommended to partition the AM_SESSION table for stability when high load is expected
on the system. Also, the database statistics should be gathered at regular intervals to ensure
that queries on the AM_SESSION table perform well.

Run the following Config utility command to partition or non-partition the AM_SESSION table:

java -cp $MW_HOME/idm/oam/server/tools/config-utility/config-
utility.jar:$MW_HOME/oracle_common/modules/oracle.jdbc/ojdbc8.jar
oracle.security.am.migrate.main.ConfigCommand $DOMAIN_HOME createAMSessionTable /
scratch/config.properties
The following line should be a part of the properties file (/scratch/config.properties) along
with other default properties required for executing config utility commands:

oam.sessionTable.type=<value>
Where <value> should be one of the following:

Chapter 11
Database Tuning for Oracle Access Management

11-21

• PARTITIONED - To partition AM_SESSION table

• NON-PARTITIONED - To use non-partitioned AM_SESSION table

Purging Inactive Sessions as a Recovery Mechanism from Peak
Load

Following is the sample REST API:

Method: POST Path: https://oam-policy-admin-host:oam-policy-admin-port/oam/
services/rest/access/api/v1/sme/purge?allInactiveSessions=true

Note:

This operation should be executed only during a maintenance or low load window
(For example: midnight). You must ensure that following conditions are met:

• AM_SESSION table is partitioned.

• Heavy load was observed in current day.

• Heavy load is anticipated in upcoming days.

If the peak load is expected only for a very short duration in a day, you should not
perform this operation. The performance will be optimal with right tunings in place.

Chapter 11
Purging Inactive Sessions as a Recovery Mechanism from Peak Load

11-22

12
Oracle Identity Governance Performance
Tuning

This chapter provides guidelines for tuning and sizing specific to Oracle Identity Governance
(OIG).

Note:

As with any enterprise class business application, there is no simple procedure for
tuning that works for all systems. The tuning sections in this chapter provide (in some
cases) sample configurations and outline the principles for tuning Oracle Identity
Governance. Consider your own use case scenarios to determine which settings are
appropriate.

• About Oracle Identity Governance

• Monitoring Oracle Identity Governance Performance

• Basic Tuning Considerations

• Advanced Tuning Considerations

About Oracle Identity Governance
Oracle Identity Governance (OIG) provides operational and business efficiency through
centralized administration and complete automation of identity and user provisioning events
across the enterprise, as well as extranet applications.

For more information on using Oracle Identity Governance, see the Administering Oracle
Identity Governance.

Monitoring Oracle Identity Governance Performance
To identify performance bottlenecks, you can monitor real-time performance metrics for Oracle
Identity Governance. For more information on how to monitor your Oracle Fusion Middleware
components, see Monitoring .

For Oracle Identity Governance it is recommended that you perform the following at regular
intervals:

• Monitor real-time performance by using a performance-monitoring tool such as Oracle
Enterprise Manager console or Automatic Workload Repository (AWR) in Oracle Database
19c.

12-1

Note:

You can use Oracle Enterprise Manager 14.1.2 Fusion Middleware Control to
monitor Oracle Identity Governance. To do so:

1. Under Identity Management, select Oracle Identity Governance to go to the
home page. On the Home page, you can monitor Oracle Identity
Governance.

2. From the Oracle Identity Governance menu, select Performance to view
performance metrics.

• Collect routine statistics and report by using Oracle Database Enterprise Manager (EM),
which is available in Oracle Database as a standard offering.

– Routine Statistics Gathering

Routine statistics gathering can be taken care by the 'Automated Maintenance Tasks',
which is available in the following navigation path in Oracle Database:

Oracle EM, the Server tab, Query Optimizer, Manage Optimizer Statistics, the
Automated Maintenance Tasks link

– Reporting requirements of statistics through Oracle Database 19c EM

To report on the state of the currently gathered statistics, EM provides a reporting
interface in the following navigation path:

Oracle EM, the Server tab, Query Optimizer, Manage Optimizer Statistics, the
Object Statistics link

This interface can be used for the reporting purpose for All Objects (of the Schema or
even the Object of choice), which have Stale, Missing, or Locked states or are already
analyzed.

• Collect complete schema statistics upon implementation of Oracle Identity Governance.

Update OIG schema and its dependent schemas (*_MDS, *_SOAINFRA, *_OPSS and
*_ORASDPM). You must consider complete schema or table statistics on mass data
change events such as bulkload of users or accounts, import of a new connector, a huge
reconciliation run from a new target system, or use of an archival utility. You should collect
statistics regularly for OIG and also OIG dependent schemas *_MDS, *_SOAINFRA,
*_OPSS and *_ORASDPM.

This helps the CBO determine an efficient query execution plan that is based on the
current state of data. The following is a sample SQL command to collect database
statistics on a regular basis:

See Also:

Gathering routine statistics and reporting can be done by performing the
automated maintenance tasks available in Oracle Database 19c. See Oracle
Database Performance Tuning Guide 11g Release 1 (11.1) for details.

DBMS_STATS.GATHER_SCHEMA_STATS(OWNNAME=> schema_owner,
Exec dbms_stats.gather_schema_stats(OWNNAME=>
'OIG_OIG',ESTIMATE_PERCENT=>DBMS_STATS.AUTO_SAMPLE_SIZE,degree

Chapter 12
Monitoring Oracle Identity Governance Performance

12-2

=>DBMS_STATS.DEFAULT_DEGREE,options=>'GATHER AUTO', no_invalidate
=>FALSE,cascade=>TRUE);

• Look for relevant recommendations provided in advisory sections in the Automatic
Database Diagnostic Monitor (ADDM) or Automatic Workload Repository (AWR) report,
and adjust the instance configuration parameters according to the recommended settings.
This is specially required after importing a new connector and completing a round of
reconciliation from a new target system so that you can identify the need of any new
indexes according to your matching rules.

Basic Tuning Considerations
Depending on your Oracle Identity Governance usage and performance issues, you may
consider tuning the following basic parameters. See Top Performance Areas for additional
tuning considerations.

• Tuning and Managing Application Cache

• Tuning the Application Server for Oracle Identity Governance

• Tuning Database Parameters for Oracle Identity Governance

• Tuning Oracle Internet Directory

• Tuning Application Module (AM) for User Interface

• JMS Tuning

Tuning and Managing Application Cache
Oracle Identity Governance allows caching of metadata, which reduces DB activities. This
results in reduced network load and improved performance.

By default, caching for most of the configurations are disabled (set to false) so that the
configuration changes are reflected immediately without having to restart the application
servers in the development environments.

The following sections provide some recommended cache values for tuning Oracle Identity
Governance:

• Tuning Oracle Identity Governance Cache

• Purging the Cache

Tuning Oracle Identity Governance Cache
Caching is configured in the /db/oim-config.xml configuration file, which is located in MDS
where Oracle Identity Governance stores the configuration. You can use Oracle Enterprise
Manager (EM) to turn on caching, or export the oim-config.xml to make changes and then
import it back to turn on caching.

Oracle recommends the following settings for the production environments for optimal and
better performance. Using EM, go to System Mbean> Application Defined Mbeans>
oracle.iam> server:OIM_server1> Application: OIM> XMLConfig> Config>
XMLConfig.CacheConfig> Cache> XMLConfig.CacheConfig.CacheCategoryConfig, and do the
following:

• Set the caching to true for all the components except the following two sections:

threadLocalCacheEnabled="false"

Chapter 12
Basic Tuning Considerations

12-3

• For non-clustered installation, set clustered="false". For clustered installation, set
clustered="true".

Note:

Changing this value gets saved into the MDS database schema used by the Oracle
Identity Governance servers. Therefore, change only once for multi-node/clustered
installations.

Enabling Cache Categories User_Org_Membership_And_Chain and ObjectDefinition

It is recommended that you enable the cache categories described in Table 12-1, based on
your Oracle Identity Governance version. Note that you do not need to enable these, if your
Oracle Identity Governance version is not same as given in "Applicable Release" column in
the following table:

Chapter 12
Basic Tuning Considerations

12-4

Table 12-1 Instructions to Enable Cache Category

Cache Category
Name

Applicable Release Instructions

User_Org_Members
hip_And_Chain

Oracle Identity
Governance 14c
Release (14.1.2.1.0)

You can enable this cache category using Oracle
Enterprise Manager (EM) or by editing the oim-
config.xml configuration file. To do this, complete the
following steps:

Using EM

1. Log in to EM.

2. Go to mbean XMLConfig.CacheConfig under
oracle.iam, and set the value of attribute Enabled to
true, if not already set to true. Mbean's Object
name is
"oracle.iam:name=Cache,type=XMLConfig.Cache
Config,XMLConfig=Config,Application=OIM,Appli
cationVersion=14.1.2.1.0".

3. Create a new cache category using mbean's
createCacheCategoryConfig operation with the
following parameters:

enabled=true
expirationTime=3600
name=User_Org_Membership_And_Chain

Using oim-config.xml File

1. Go to $OIM_HOME /bin.

2. Set the environment variable OIM_ORACLE_HOME
appropriately.

3. Open the weblogic.properties file, and set the
following properties in order to export the metadata
file:

wls_servername=
 OIM_server1

application_name=OIMAppMetadata
metadata_to_loc=
 <TMP_DIRECTORY>

metadata_files=/db/oim-config.xml

4. Run the following command script to export the /db/
oim-config.xml metadata file:

./weblogicExportMetadata.sh
When prompted, enter the WebLogic credentials and
the JNDI URL.

5. Open the $TMP_DIRECTORY /db/oim-config.xml
file, and add the following in the
cacheCategoriesConfig tag:

<cacheCategoryConfig enabled="true"
expirationTime="14400"
name="User_Org_Membership_And_Chain"/>

Chapter 12
Basic Tuning Considerations

12-5

Table 12-1 (Cont.) Instructions to Enable Cache Category

Cache Category
Name

Applicable Release Instructions

6. Open the weblogic.properties file, and set the
following properties in order to import the modified
metadata file:

wls_servername=
 OIM_server1

application_name=OIMAppMetadata
metadata_from_loc=
 <TMP_DIRECTORY>

7. Run the following command to import the
modified /db/oim-config.xml metadata file into
MDS:

./weblogicImportMetadata.sh
When prompted, enter the WebLogic credentials and
the JNDI URL.

ObjectDefinition Oracle Identity
Governance 14c
(14.1.2.1.0)

You can enable this cache category using Oracle
Enterprise Manager (EM). To do so, complete the
following steps:

1. Log in to EM.

2. Go to mbean XMLConfig.CacheConfig under
oracle.iam, and set the value of attribute Enabled to
true for the cache category ObjectDefinition.

Note:

For more information on configuration change using Enterprise Manager, see Using
Enterprise Manager for Managing Oracle Identity Governance Configuration in
Administering Oracle Identity Governance .

Purging the Cache
If you want to purge the cache, use the PurgeCache utility in the OIM_HOME/server/bin/
directory. This utility purges all elements in the cache.

Chapter 12
Basic Tuning Considerations

12-6

Note:

• Purging is required when caching is enabled and if you make any system
configuration changes. It is not required if caching is disabled.

• Before running the PurgeCache utility, navigate to the OIM_HOME/server/bin/
directory.

Before running the PurgeCache utility, you must run the DOMAIN_HOME/bin/setDomainEnv.sh
script.

To use the PurgeCache utility, run PurgeCache.bat CATEGORY_NAME on Microsoft Windows or
PurgeCache.sh CATEGORY_NAME on UNIX. The CATEGORY_NAME argument represents the name
of the category that must be purged. For example, the following commands purge all
FormDefinition entries from a system and its clusters:

PurgeCache.bat FormDefinition
PurgeCache.sh FormDefinition

To purge all Oracle Identity Governance categories, pass a value of "All" to the PurgeCache
utility. It is recommended to clear all the categories.

Tuning the Application Server for Oracle Identity Governance
This section describes how to tune Oracle WebLogic Server for Oracle Identity Governance to
improve performance. For additional Oracle WebLogic Server performance tuning information,
see Tuning Performance of Oracle WebLogic Server.

Note:

• All tuning parameter suggestions and values in this section are for reference
purposes only. Values should be modified based on your requirement, application
usage patterns, loads, and hardware specifications.

• Changing any of the settings may require you to restart the server.

• Tuning JVM Memory Settings for Oracle Identity Governance

• Tuning the JDBC Connection Pool for Oracle Identity Governance

• Tuning OIG-specific Work Manager Properties

• Disabling the Reloading of Adapters and Plug-in Configuration

• Changing the Number of Open File Descriptors for UNIX (Optional)

• Tuning the JVM Garbage Collection for Solaris Sparc T3 or T4

Tuning JVM Memory Settings for Oracle Identity Governance

JVM Parameters to be set for Tuning JVM Memory Settings

These settings should be used in addition to those described in Tuning Java Virtual Machines
(JVMs).

Chapter 12
Basic Tuning Considerations

12-7

It is recommended to increase the heap and permgen memory for production environments as
in #unique_320/unique_320_Connect_42_BABDBIIC and monitor the memory usage pattern.
Based on the usage, you can choose to increase or decrease the memory settings.

JVM Parameter HotSpot JVM

Min. Heap Size (Xms) 4GB

Max Heap Size (Xmx) 8GB

MetaspaceSize (-XX:MetaspaceSize) 500m

MaxMetaspaceSize (-XX:MaxMetaspaceSize) 1GB

To change the JVM memory setting:

1. Use DOMAIN_HOME/bin/setStartupEnv.sh (Unix) or set OIMDomainEnv.cmd (Windows). If
not, continue to use DOMAIN_HOME/bin/setStartupEnv.sh (Unix) or setStartupEnv.cmd
(Windows) to change the heap size settings.

2. Change the value of the memory argument SERVER_MEM_ARGS_xxHotSpot for OIM-MGD_SVRS
in DOMAIN_HOME/bin/setStartupEnv.sh (Unix) or setStartupEnv.cmd (Windows).

3. Restart all servers.

If you are using the console to restart all the servers, then you must also restart the node
manager.

Note:

For a clustered or multi-node installation, repeat the above steps on all the install
locations.

Tuning the JDBC Connection Pool for Oracle Identity Governance
Oracle Identity Governance uses the ApplicationDBDS, oimOperationsDB and oimJMSStoreDS
data sources deployed on the Oracle WebLogic Server. You may have to increase the
connection pool size for each data source, based on your requirements

To increase the capacity of the JDBC connection pools:

1. Open the WebLogic Remote Console.

2. Click Services > Data Sources > Data Source Name and then click the Connection
Pool tab.

3. Adjust the Initial Capacity and Maximum Capacity based on requirement.

4. Set the Inactive Connection Timeout parameter to 300.

5. Navigate to Advanced tab and set Seconds to Trust an Idle Pool Connection to 30.

6. Save and activate the changes.

Chapter 12
Basic Tuning Considerations

12-8

Note:

Ensure that any increase in number of connections on the application server
connection pools are compensated by database configuration changes. You
might have to increase the MAX SESSIONS settings on Oracle Database.

Tuning OIG-specific Work Manager Properties
This section describes some tuning options for OIG-specific Work Managers. By default, Work
Managers are not optimized for production. Tuning them can help performance by prioritizing
processes into a configuration more tailored to your use case.

While Oracle can recommend a few MaxThreadsConstraint values, as shown in Table 12-2,
you can determine the optimal value for your system configurations using calculations also
given in Table 12-2.

To calculate the optimal Maximum Threads Constraint for each Work Manager in your
particular installation, you should first consult your DBA and ascertain the following values:

• Number of database CPU available for the OIG database

• Number of nodes in your OIG cluster

• Number of threads used in OIG Access Policy Scheduled task "Evaluate User Policy."

Once you know these values, calculate the following values:

1. Multiply the number of database CPU available for the OIG database by 8. The resulting
number is the total number of database connections.

2. Divide the number of database connections by the number of nodes in your OIG cluster.

3. For the following equations in Table 12-2, replace the following variables with the values
you have calculated:

• d = the total number of database connections

• n = the number of nodes in your OIG cluster

• t = the number of threads used in OIG Access Policy Scheduled task "Evaluate User
Policy"

Table 12-2 Recommended Max Thread Constraints for OIG Work Managers

Work Managers Role Recommended Value for
Max Thread Constraint

OIMMDBWorkManager This Work Manager applies to most
OIG Message Driven Beans (MDB)
and limits the number of concurrent
threads/MDB-processing JMS
messages for all offline activities
except audit.

Round(1/3[([d-t]/n)-10])

OIMAuditWorkManager This Work Manager applies to audit
MDBs. It limits the number of
concurrent threads/MDB processing
audit-related JMS messages.

5

Chapter 12
Basic Tuning Considerations

12-9

Table 12-2 (Cont.) Recommended Max Thread Constraints for OIG Work Managers

Work Managers Role Recommended Value for
Max Thread Constraint

OIMWorkManager This Work Manager applies to all OIG
Jakarta Enterprise Beans (EJBs),
which implement underlying APIs. It
also limits the number of concurrent
threads processing incoming API
calls.

Round(2/3[([d-t]/n)-10])

OIMUIWorkManager This Work Manager limits the number
of threads serving requests to and
from the user interface.

10 (based on UI Concurrency)

OIMAccessPolicyWorkManage
r

N/A 6

OIMRoleGrantRevokeWorkMan
ager

N/A 6

For more information on how to tune Work Managers, see Using Work Managers to Optimize
Scheduled Work in Administering Server Environments for Oracle WebLogic Server.

Disabling the Reloading of Adapters and Plug-in Configuration
By default, reloading of adapters and plug-in configuration are enabled for ease of
development. These should be disabled in the production environment. To do so:

1. Export the /db/oim-config.xml file from MDS as described in Exporting and Importing
Configuration Files in Administering Oracle Identity Governance.

2. In the oim-config.xml file, replace the following:

<ADPClassLoaderConfig adapterReloadingEnabled="true" loadingStyle="ParentFirst"
reloadInterval="15" reloadingEnabled="true">

With:

<ADPClassLoaderConfig adapterReloadingEnabled="false" loadingStyle="ParentFirst"
reloadInterval="15" reloadingEnabled="false">

3. Replace the following:

<storeConfig reloadingEnabled="true" reloadingInterval="20"/>

With:

<storeConfig reloadingEnabled="false" reloadingInterval="20"/>
4. Save the oim-config.xml file and import it back to MDS.

Changing the Number of Open File Descriptors for UNIX (Optional)
WebLogic limits the number of open file descriptors in the WEBLOGIC_HOME/common/bin/
commEnv.sh script to 1024. In some cases, if there is a large number of concurrent users,
WebLogic may throw the "TOO MANY OPEN FILES" exception. If you receive this error, then
consider increasing the limit beyond 1024 in the script. Ensure that the operating system is
able to handle the increase in the number of open files. To set the number of open file

Chapter 12
Basic Tuning Considerations

12-10

descriptors, see Setting the Open File Limit and Number of Processes Settings on UNIX
Systems in System Requirements and Specifications.

Tuning the JVM Garbage Collection for Solaris Sparc T3 or T4
To tune the JVM garbage collection for Solaris Sparc T3 or T4:

1. In a text editor, open the setSOADomainEnv.sh or setSOADomainEnv.cmd file in the
DOMAIN_HOME/bin/ directory.

2. Set the value of USER_MEM_ARGS similar to the following:

Note:

The values shown for USER_MEM_ARGS are examples. You can change the
values based on your requirement.

USER_MEM_ARGS="-Xms3048m -Xmx3048m -Xmn1648m -Xss256k -XX:PermSize=384m -
XX:MaxPermSize=384m"

3. Set the value of JAVA_OPTIONS similar to the following:

Note:

The values shown for JAVA_OPTIONS are examples. You can change the values
based on your requirement.

JAVA_OPTIONS="-Xnoclassgc -XX:SurvivorRatio=8 -XX:TargetSurvivorRatio=90
 -XX:PermSize=350m -XX:MaxPermSize=350m -XX:+AggressiveOpts
 -XX:+UseParallelOldGC -XX:ParallelGCThreads=8 -XX:+PrintGCDetails
 -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:ReservedCodeCacheSize=64m
 -XX:CICompilerCount=8 -XX:+AlwaysPreTouch -XX:+PrintReferenceGC
 -XX:+ParallelRefProcEnabled -XX:-UseAdaptiveSizePolicy
 -XX:+PrintAdaptiveSizePolicy -XX:+DisableExplicitGC"

4. Save and close the file.

Tuning Database Parameters for Oracle Identity Governance
This section describes one sample configuration and outlines the principles for tuning Oracle
Database for Oracle Identity Governance. For general database tuning information, see Tuning
Database Parameters.

Oracle Identity Governance has many configuration options. The best way to identify
bottlenecks and optimize performance is to monitor key database performance indicators in
your production environment and adjust the configuration accordingly. Review the monitoring
tasks described in Monitoring Oracle Identity Governance Performance and then use the
guidelines in this section to help you choose the initial baseline database configuration.

Chapter 12
Basic Tuning Considerations

12-11

Note:

It is important that you maintain the baseline database tuning parameters when
working with Oracle Identity Governance. See the Oracle Database Performance
Tuning Guide 11g Release 1 (11.1) for information on setting Oracle Database
instance parameters.

• Sample Instance Configuration Parameters

• Physical Data Placement

• Resolving enq: HW - contention
The High Water enqueue contention (enq: HW - contention) event occurs when competing
processes are inserting into the same table and try to simultaneously increase the high
water mark of a table.

Sample Instance Configuration Parameters
Table 12-3 provides information on some important performance-related database initialization
parameters.

SGA,PGA size are limited by the underlying operating system restrictions on the maximum
available memory in some platforms. See Support Note: Oracle Database Server and the
Operating System Memory Limitations [ID 269495.1].

Note:

For the Database Instance Parameters listed in Table 12-3, following memory
management approach should be used based on the Oracle Database versions.

Using Automatic Shared Memory Management (ASMM) available in Oracle Database
10g onward: Here, the SGA components can be managed by specifying the
SGA_TARGET and SGA_MAX_SIZE parameters. PGA is managed separately
through PGA_AGGREGATE_TARGET.

You should set the processes parameter to accommodate the following connection
pool requirements and few extra connections for external programs:

• Connection pool size of XA datasource configured in Application Server

• Connection pool size for non-XA datasource configured in Application Server

• Direct database connection pool size configured in xlconfig.xml

Table 12-3 Sample Configuration Parameters

Parameter Recommended Initial Settings for Oracle Database

db_keep_cache_size 800M

cursor_sharing FORCE

open_cursors 800

session_cached_cursors 800

Chapter 12
Basic Tuning Considerations

12-12

Table 12-3 (Cont.) Sample Configuration Parameters

Parameter Recommended Initial Settings for Oracle Database

query_rewrite_integrity TRUSTED

query_rewrite_enabled TRUE

processes Based on connection pool settings

MAX_DISPATCHERS 0

MAX_SHARED_SERVERS 0

distributed_lock_timeout 1400

filesystemio_options SETALL

sga_target 6GB

pga_aggregate_target 2GB

Physical Data Placement
The basic installation of Oracle Identity Governance uses three physical tablespaces to store
the OIG database objects:

• Data Tablespace to store the data of tables, their indexes and other objects.

• LOB Tablespace to store OIG Orchestration LOB data.

• Archival Tablespace to store OOTB Archival Tables of the OIG Entities catering to the
Real-time Purge feature.

Tip:

To minimize disk space consumption, Oracle recommends the following:

During the initial startup phase of the deployment, Oracle Identity Governance
tablespace is expected to grow at the rate 20G for every hundred thousand users
reconciled into Oracle Identity Governance. LOB tablespace grows at around 30% of
the size of main Oracle Identity Governance tablespace for the same users.
Depending on the usage of orchestration in Oracle Identity Governance, which
affects the LOB tablespace growth, the LOB tablespace can grow at a rate of 60% to
100% of the main tablespace in scenarios where orchestration is widely used.

Database administrators must monitor the exact growth rate in the real system for
efficient disk space management.

For better performance, create multiple locally managed tablespaces and store each category
of database object in a dedicated tablespace. This storage optimization helps efficient data
access. The tables that are frequently accessed and have potential growth are highlighted in
the following sections. Oracle recommends that you place these tables in their own dedicated
tablespace(s).

Note that the tables highlighted in the following sections generally grow bigger and are
accessed frequently in a typical Oracle Identity Governance deployment. In addition, you can
use performance metrics to identify tables that are accessed frequently (hot tables). To reduce
I/O contention, move hot tables to dedicated tablespaces.

Chapter 12
Basic Tuning Considerations

12-13

Note:

Oracle Identity Governance offers archival and purge solution in both Real-time
online mode and Command Line mode to contain the data growth in most of these
tables. See "Using the Archival Utilities" in Using the Archival and Purge Utilities for
Controlling Data Growth for more information.

• Tasks Tables

• Reconciliation Tables

• OIG Orchestration LOB Tables

• Audit Tables

• Redo-Log Files

• Keep Pool Changes

Tasks Tables
Oracle Identity Governance stores provisioning and approval task details in the following
tables. These tables have lot of potential to grow big overtime. It is recommended to group
these in one or more dedicated tablespaces.

• OSI

• OSH

• SCH

Reconciliation Tables
The reconciliation schema of Oracle Identity Governance has both static and dynamic tables.
The following is a list of static tables. The dynamic tables can be identified by querying the
RECON_TABLE_NAME column in the RECON_TABLES table.

• RECON_ACCOUNT_OLDSTATE

• RECON_BATCHES

• RECON_CHILD_MATCH

• RECON_EVENTS

• RECON_EVENT_ASSIGNMENT

• RECON_EXCEPTIONS

• RECON_HISTORY

• RECON_JOBS

• RECON_TABLES

• RECON_UGP_OLDSTATE

• RECON_USER_OLDSTATE

• RECON_ACCOUNT_MATCH

• RECON_ORG_MATCH

• RECON_ROLE_HIERARCHY_MATCH

Chapter 12
Basic Tuning Considerations

12-14

• RECON_ROLE_MATCH

• RECON_ROLE_MEMBER_MATCH

• RECON_USER_MATCH

• RA_LDAPUSER

• RA_MLS_LDAPUSER

• RA_LDAPROLE

• RA_MLS_LDAPROLE

• RA_LDAPROLEMEMBERSHIP

• RA_LDAPROLEHIERARCHY

If your environment generates a large amount of reconciliation data, then move these tables to
one or more dedicated tablespace(s).

OIG Orchestration LOB Tables
You can use the Archival and Purge Utilities to control data growth in Orchestration tables. For
more information, see Using the Archival and Purge Utilities for Controlling Data Growth in
Administering Oracle Identity Governance.

Audit Tables
Oracle Identity Governance audits the transactions based on the audit level setting. Most of the
audit levels are likely to increase data growth significantly. Oracle recommends storing audit
tables in their own tablespace. Oracle Identity Governance audit tables are of two categories.
Following are the tables that store audit data in XML format. In this list, UPA table is especially
expected to grow big and it is important to place it in a dedicated tablespace.

• UPA

• GPA

The user profile audit data is stored in the following flat structured tables. These tables are
used by Oracle Identity Governance historical reports for compliance reporting. It is
recommended to store these tables and their indexes in a dedicated tablespace.

• UPA_FIELDS

• UPA_GRP_MEMBERSHIP

• UPA_RESOURCE

• UPA_USR

• UPA_UD_FORMS

• UPA_UD_FORMFIELDS

You can use the Archival and Purge Utilities to control data growth in Audit (UPA) table. For
more information, see Using the Archival and Purge Utilities for Controlling Data Growth in
Oracle Fusion Middleware System Administrator's Guide for Oracle Identity Governance.

Redo-Log Files
Depending on the reconciliation processes configured in Oracle Identity Governance, the
volume of database transactions and commits during a reconciliation run can be high. Oracle
recommends that you use multiple redo-log files. The total allocated redo-log space should be
1 GB to 2 GB.

Chapter 12
Basic Tuning Considerations

12-15

http://docs.oracle.com/cd/E14571_01/doc.1111/e14308/archival_utilities.htm

Oracle recommends:

1. Use at least three redo log groups with redo log members.

2. Start with an initial size of 1GB for each redo log member and continue to monitor redo
logs for contention or frequent log switches.

3. The multiplexing and the exact number of members and disk space for each member can
be considered in accordance with the planning for failure.

4. Adjust the size or add more redo log files based on your findings.

Keep Pool Changes
By default, Oracle Identity Governance assigns frequently referenced small tables to be
cached in the database by using a keep pool buffer. See db_keep_cache_size in Table 12-3. If
your installation contains more than 50,000 users, then Oracle recommends that you use the
default database buffer for USR and PCQ tables instead of the keep pool buffer. You can use
the following commands to put these tables in default buffer pool.

ALTER TABLE USR STORAGE(buffer_pool default);
ALTER TABLE PCQ STORAGE(buffer_pool default);

Resolving enq: HW - contention
The High Water enqueue contention (enq: HW - contention) event occurs when competing
processes are inserting into the same table and try to simultaneously increase the high water
mark of a table.

In an OIG database, this issue is experienced by tables that have large object (LOB) columns.
Under a heavy load, LOB segments in these tables experience contention, which is seen in an
AWR report as the wait event enq: HW - contention.

The default storage for LOBs in an Oracle database is BasicFiles. Frequently allocating extents
or reclaiming chunks may cause contention for the LOB segment high water marks. This
contention can also occur for LOB segments that are ASSM-managed, since space allocation
only acquires one block at a time.

This contention can be eliminated by switching LOB storage from BasicFiles to SecureFiles.
SecureFiles is an LOB storage architecture that provides performance benefits over traditional
BasicFiles. See About LOB Storage in Database SecureFiles and Large Objects Developer's
Guide for more information on these two architectures.

If you encounter the enq: HW – contention event on your OIG database, you can resolve it by
migrating LOB storage to SecureFiles by setting the following database event:

ALTER SYSTEM SET EVENT='44951 TRACE NAME CONTEXT FOREVER, LEVEL 1024'
scope=spfile;

Note:

This fix should only be applied when you see the enq: HW – contention event for
SOA-related SQLs during certification. This is similar to Migrating BasicFiles to
SecureFiles (enq:HW - contention), which provides additional details on resolving
contention issues.

Chapter 12
Basic Tuning Considerations

12-16

Tuning Oracle Internet Directory
To ensure that the Oracle Identity Governance is performing at the optimal level, it is important
to tune the Oracle Internet Directory as described in Oracle Internet Directory Performance
Tuning.

Tuning Application Module (AM) for User Interface
For more information on AM Pool tunings, see section Application Module Pooling in the
Oracle Fusion Middleware Performance and Tuning Guide.

Note:

The recommended settings assume 100 concurrent users per node. If your number
of concurrent users is different, use the following formula to change
Djbo.ampool.maxavailablesize:

Djbo.ampool.maxavailablesize = # of concurrent users + 20%

JMS Tuning
It is recommended to change the defaults (-1) of Message Buffer Size and Messages
Maximumproperties. Set the Message Buffer Size to 1 GB (1073741824 bytes) and
Messages Maximum1000000 respectively.

Go to WebLogic Remote Console to change these properties.

• Message Buffer Size:

Services > JMS Servers >JRFWSAsyncJmsServer_auto_*.

• Messages Maximum:

Services > JMS Servers > JRFWSAsyncJmsServer_auto_*> Thresholds tab

Advanced Tuning Considerations
This section provides advanced tuning recommendations which may or may not apply to your
environment. Review the following recommendations to determine if the changes would
improve your Oracle Identity Governance performance.

• Reconciliation Tuning

• Tuning LDAP Synchronization

• Tuning Order Audit Messages To Eliminate Slow SQL

Reconciliation Tuning
Three distinct process stages or functional modules come into play during the end-to-end
reconciliation flow. The following are the three functional modules or stages that need to be
optimized separately, but in relation to each other, to achieve complete performance
optimization:

Chapter 12
Advanced Tuning Considerations

12-17

http://docs.oracle.com/cd/E17904_01/core.1111/e10108/adf.htm#BDCCCEAB
http://docs.oracle.com/cd/E17904_01/core.1111/e10108/toc.htm

• The Target System And The Connector

The Connector fetches data from the target system, and invokes reconciliation create
event APIs to create events and event data in reconciliation staging tables in the OIG
database schema.

• OIG Reconciliation Engine

The OIG reconciliation engine extracts data from the staging tables and reconciles into
OIG. The process includes verification, matching of data, and taking actions based on the
rules. The engine uses database's bulk collection mechanism to do all of the above
processing in bulk.

• Oracle Identity Governance Post-processing for Reconciliation

Post-processing stage kicks in after reconciliation engine has completed processing of
incoming data from the target. During this stage, OIG kernel orchestrations get triggered to
execute event-handlers to do things like default password generation as per policy, role
assignment, resource provisioning, audit processing and so on.

This section includes the following topics:

• Target System And Connector Tuning

• Database Indexes For Recon Matching Rules

• Oracle Identity Governance Post-processing for Reconciliation

Target System And Connector Tuning
This section describes the tuning that needs to be applied on your target systems as well as
Oracle Identity Governance Connectors.

Oracle Internet Directory

During a reconciliation run, all changes in the target system records are reconciled into Oracle
Identity Governance. Depending on the number of records to be reconciled, this process may
require a large amount of time. In addition, if the connection breaks during reconciliation, then
the process would take longer to complete. It is recommended that "paged reconciliation" is
configured to optimize performance.

To configure paged reconciliation, you must specify a value for the PageSize attribute of the
user reconciliation scheduled task. The default value of 100 for PageSize suits for most of the
scenarios.

Note:

OID LDAP Server (the target system in this case) v10.1.4 or later versions support
the paged reconciliation related LDAP operations.

SAP

It is recommended that you use a reconciliation batch size of 100.

Active Directory (12.2.1.3.0 and 11.1.1.6.0 Connector)

• Performance improvement patch

Chapter 12
Advanced Tuning Considerations

12-18

– If you are using Active Directory 12.2.1.3.0, make sure that you apply patch #
15916848. You can download the patch from My Oracle Support. For patching
instructions, refer to the Readme that is available with the patch.

– If you are using Active Directory 11.1.1.6.0, download the patch # 15916848 from My
Oracle Support. Import only the ReconAttributeMap.xml that is provided as part of the
patch, using the deployment manager. You can ignore
ActiveDirectory.Connector.dll provided in the patch, as it is updated in the
11.1.1.6.0 version itself. For patching instructions, refer to the Readme that is available
with the patch.

• Configuring the reconciliation engine to skip the ignore event API

The default behavior would be to first check to create a recon event or to ignore it for each
of the user records returned by the connector. This process involves comparing the values
of all the attributes of the user coming in from the connector against the values stored in
the OIG database. To ignore this, open the lookup definition
Lookup.Configuration.ActiveDirectory and add below entry.

– Code Key: Ignore Event Disabled
– Decode: true

Note:

You must evaluate the pros and cons of disabling the ignore event API call before
you make the above changes.

• Batching

If batching is used in the AD connector, then the result set needs to be sorted. Therefore,
batching can be used when number of records to be reconciled is less than 10000. The
recommended batch size is 500.

• Paging

– When number of records to be reconciled is more than 10000, use the Page Size
Configuration property present in Lookup.Configuration.ActiveDirectory and
Lookup.Configuration.ActiveDirectory.Trusted.

– If paging is configured to be used, then you must make sure that no value is specified
for the scheduled task parameters - Batch Size, Batch Start, Number of Batches,
Sort By, and Sort Direction.

– Paging splits the entire result set of a query into smaller subsets called, appropriately
enough, pages. In general, it is recommended to set this value to the maximum page
size for simple searches. By setting the page size to the maximum value, you can
minimize the network round trips necessary to retrieve each page, which tends to be
more expensive operation for simple searches. If you specify a PageSize greater than
the MaxPageSize of the target system, the Active Directory server ignores it and uses
the MaxPageSize instead. No exception is generated in this case. In some cases, you
might need to specify a smaller page size to avoid timeouts or overtaxing the server.
Some queries are especially expensive. Therefore, limiting the number of results in a
single page can help avoid this. For the Active Directory Connector, use the default
value 1000 for the best performance.

• Filters

Chapter 12
Advanced Tuning Considerations

12-19

https://support.oracle.com/signin
https://support.oracle.com/signin
https://support.oracle.com/signin

It is recommended to use Filters and provide the value for the Search Base, if a specific
set of records is to be retrieved from the target. Filter provided in the scheduled task is
converted into LDAP query. The filters help narrow down the search, making the searching
and processing of the data quicker. For more information about the filters, refer to the
Active Directory Connector Documentation.

• For the reconciliation in the forest topology, you can use connector for reconciling the data
from the complete forest (via Global Catalog Server) or you can use the connector for
reconciling the data from the specific domain or domain controller. It is recommended to
use the second approach whenever the data from the specific data center is to be
reconciled, instead of using first option with search base.

For example:

Assume that there are 10 data centers in the Active Directory forest namely DC1, DC2, … ,
DC10. To reconcile data from an organization (tempOrg) which is present on DC2, you
have use one of the following approaches:

1. Use Global Catalog and provide the DN of the organization in the Search Base.

2. Use DC2 and provide the DN of the organization in the Search Base.

It is recommended to use the second approach for better performance.

Database Indexes For Recon Matching Rules
Reconciliation uses matching algorithm to find if the user/account/role/organization for which
the change is requested, already exists in OIG. The matching algorithm compares the data in
set of columns in OIG with the data in target staging table columns. The columns that contain
the matching rules are defined in the reconciliation profile and they are defined at run-time. To
improve the performance of the matching operation, there must be correct indexes created on
the matching rule columns.

To illustrate the recommended method of identifying the appropriate indexes, a sample Active
Directory (AD) user profile present in the Meta Data Store (MDS) repository is taken as an
example. This example covers the following:

• Selecting Indexes For Trusted Source Reconciliation

• Selecting Indexes For Target Source Reconciliation

• Selecting Indexes For Target Source Reconciliation With Multi-Valued Data

Note:

Starting OIG 11g Release 2 (11.1.2.1.0), the indexes are automatically created in
some cases where possible. It is still recommended to follow the below procedure
and make sure that all of the indexes required for reconciliation matching rule are in
place.

Selecting Indexes For Trusted Source Reconciliation

To select indexes based on the matching rule criteria in trusted source reconciliation, you must
complete the following steps:

1. Open the Active Directory user profile file in a text editor. You can open Active Directory
user profile using Validate Recon Profile test present in the diagnostic dashboard, or by
using Validate Recon Profile MBean present in EM.

Chapter 12
Advanced Tuning Considerations

12-20

2. Search for ownerMatchingRuleWhereClause or matchingRule for all entities:

ownerMatchingRuleWhereClause =
(((UPPER(USR.USR_LOGIN)=UPPER(RA_ADUSER7.RECON_USERID5A729570)) OR
(UPPER(USR.USR_UDF_OBGUID)=UPPER(RA_ADUSER7.RECON_OBJECTGUID))))

3. After identifying the columns constituting the matching rule in the profile, create the
indexes accordingly.

For example, following indexes are needed for matching rule in the above example.

Table 12-4 Table Names and Columns to be Indexed

Table Name Column to be Indexed

USR UPPER(USR_LOGIN)
USR UPPER(USR.USR_UDF_OBGUID)
RA_ADUSER7 UPPER(RECON_USERID5A729570)
RA_ADUSER7 UPPER(RA_ADUSER7.RECON_OBJECTGUID)

Note:

• It is important that the indexes are created along with functions like UPPER,
SUBSTR in the matching rule. In Table 12-4, UPPER is the function used on all
columns.

• Some of the columns and functions might have been indexed already. In
Table 12-4, USR table should already have function-based index on
UPPER(USR_LOGIN).

Selecting Indexes For Target Source Reconciliation

To select indexes based on the matching rule criteria in target resource reconciliation, you
must complete the following steps:

1. Open the Active Directory user profile file in a text editor. You can open Active Directory
user profile using Validate Recon Profile test present in the diagnostic dashboard, or by
using Validate Recon profile MBean present in EM.

2. Search for account search tag <matchingruleWhereClause>:

<matchingruleWhereClause>((UD_ADUSER.UD_ADUSER_OBJECTGUID=RA_ADUSER7.RECON_OBJ
ECTGUID))</matchingruleWhereClause>

3. After identifying the columns constituting the matching rule in the profile, create the
indexes accordingly.

For example, following indexes are needed for matching rule in the above example.

Table 12-5 Table Names and Columns to be Indexed

Table Name Column to be Indexed

UD_ADUSER UD_ADUSER_OBJECTGUID
RA_ADUSER7 RECON_OBJECTGUID

Chapter 12
Advanced Tuning Considerations

12-21

Note:

• It is important that the indexes are created along with functions like UPPER,
SUBSTR in the matching rule.

• Some of the columns and functions might have been indexed already.

Selecting Indexes For Target Source Reconciliation With Multi-Valued Data

To select indexes based on the matching rule criteria in target resource reconciliation with
multi-valued data, you must complete the following steps:

1. Open the Active Directory user profile file in a text editor. You can open Active Directory
user profile using Validate Recon Profile test present in the diagnostic dashboard, or by
using Validate Recon profile MBean present in EM.

2. For entitlements, search for the <matchingruleWhereClause> tag under
<childreconeventdata>:

<matchingruleWhereClause>((UD_ADUSRC.UD_ADUSRC_GROUPNAME=RA_UD_ADUSRC.RECON_ME
MBEROF))</matchingruleWhereClause>

3. After identifying the columns constituting the matching rule in the profile, create the
indexes accordingly. For example, following indexes are needed for matching rule in the
above example.

Table 12-6 Table Names and Columns to be Indexed

Table Name Column to be Indexed

UD_ADUSRC UD_ADUSRC_GROUPNAME
RA_UD_ADUSRC RECON_MEMBEROF

Note:

• It is important that the indexes are created along with functions like UPPER,
SUBSTR in the matching rule.

• Some of the columns and functions might have been indexed already.

Oracle Identity Governance Post-processing for Reconciliation
Table 12-7 lists some of the important out-of-the-box event handlers that are invoked during
post-processing of reconciliation.

Table 12-7 Event Handlers and Their Descriptions

Event Handler Description

AccountReconAuditHandler Responsible for Auditing account/target reconciliation
changes

Chapter 12
Advanced Tuning Considerations

12-22

Table 12-7 (Cont.) Event Handlers and Their Descriptions

Event Handler Description

ReconScheduledTaskAccountHandle
r

Trigger workflows associated with account/target
reconciliation

ReconScheduledTaskUserHandler Trigger workflows associated with trusted reconciliation

ReconUserDisplayNameHandler Generates custom display name for trusted reconciliation

ReconUserLoginHandler Generates custom login during for reconciliation

ReconUserPasswordHandler Generates custom passwords for trusted reconciliation

UserCreateLdapPostProcessHandle
r

Creates user in LDAP if LDAP synchronization is enabled

UserUpdateLdapPostProcessHandle
r

Updates user in LDAP if LDAP synchronization is enabled

You can find the rest of out-of-the-box and custom event handlers in DMS metric page of
WebLogic Application Server. Use the following URL to go to the DMS metric page:

http://<servername>:<port>/dms
In this URL, port refers to the WebLogic Administration Server port. To log in, you must use
the WebLogic admin credentials.

After you log into the DMS metric page, click on OIG_EventHandler to see the list of event
handlers and their processing time metrics. You can use these metrics to identify event
handlers that may need to be optimized.

Tuning LDAP Synchronization
Tuning performance in Oracle Identity Governance involves the following:

• Increasing the Max Connection Pool for Oracle Identity Governance

Increasing the Max Connection Pool for Oracle Identity Governance
To increase the max connection pool for Oracle Identity Governance:

1. Login to Oracle Identity System Administration.

2. On the left pane, under Configuration, click IT Resource. The Manage IT Resource page
is displayed in a new window.

3. From the IT Resource Type list, select Directory Server, and then click Search.

4. For the Directory Server IT resource, click Edit. The Edit IT Resource Details and
Parameters page is displayed.

5. Change the value of the following configuration parameters to 500:

• Initial pool size: 500

• Minimum pool size: 500

• Maximum pool size: 500

6. Click Update.

• Increasing the LDAP Synchronization Batch Size

Chapter 12
Advanced Tuning Considerations

12-23

• Setting Configuration Parameters in OVD

• Setting Configuration Parameters in OID

• Setting Configuration Parameters in Identity Virtualization Library (libOVD)

• Setting Configuration Parameters in WebLogic Server and JDBC

Increasing the LDAP Synchronization Batch Size
To increase the LDAP synchronization batch size, set the batch size of the following LDAP
synchronization reconciliation scheduled jobs to 1000:

• LDAP User Create and Update Reconciliation

• LDAP Role Create and Update Reconciliation

• LDAP Role Hierarchy Reconciliation

• LDAP Role Membership Reconciliation

Setting Configuration Parameters in OVD
When LDAP synchronization with OVD configured for OID is enabled in Oracle Identity
Governance, the configuration parameters in OVD, as listed in Table 12-8, must be set:

Table 12-8 Configuration Parameters in OVD

Name Parameter Value

OVD general Listeners - LDAP Endpoint 50

- Listeners - LDAP SSL Endpoint 50

User Adapter Max Pool Size 500

- Operation Timeout 1500000

- Max Pool Wait 1000

Changelog adapter Max Pool Size 500

- Operation Timeout 1500000

Setting Configuration Parameters in OID
When LDAP synchronization with OVD/OID is enabled in Oracle Identity Governance, the
configuration parameters in OID, as listed in Table 12-9, must be set:

Table 12-9 Configuration Parameters in OID

Name Parameter Value

Max Number of DB Connections orclmaxcc 10

Number of Processes orclserverprocs 2 - 4

Skip Referral Process orclskiprefinsql 1

LDAP Connection Timeout orclldapconntimeout 60

Enable MatchDN Processing orclmatchdnenabled 0

Enable Entry Cache orclcacheenabled 0

Chapter 12
Advanced Tuning Considerations

12-24

To modify the attributes in Table 12-9, use the following syntax:

ldapmodify -h HOST_NAME -p PORT_NUMBER -D cn=orcladmin -w PASSWORD -v <<EOF
dn: cn=oid1,cn=osdldapd,cn=subconfigsubentry

Setting Configuration Parameters in Identity Virtualization Library (libOVD)
When LDAP synchronization with Identity Virtualization Library (libOVD) configured for OID is
enabled in Oracle Identity Governance, the configuration parameters in Identity Virtualization
Library (libOVD), as listed in Table 12-10, must be set:

Note:

You can manage the Identity Virtualization Library (libOVD) tuning parameter
configuration by using the WLST command.

Table 12-10 Configuration Parameters in Identity Virtualization Library (libOVD)

Name Parameter Value

User Adapter Max Pool Size 500

User Adapter Operation Timeout 1500000

User Adapter Max Pool Wait 1000

Changelog adapter Max Pool Size 500

Changelog adapter Operation Timeout 1500000

See Also:

Enabling Access Logging in Identity Virtualization Library (libOVD) in the Oracle
Fusion Middleware Integration Guide for Oracle Identity Management for information
about enabling access logging in Identity Virtualization Library (libOVD) to capture all
requests and responses flowing through Identity Virtualization Library (libOVD), which
can be very useful in triaging performance issues.

Setting Configuration Parameters in WebLogic Server and JDBC
For information about setting configuration parameters in Oracle WebLogic Server and JDBC,
see Tuning the Application Server for Oracle Identity Governance.

Tuning Order Audit Messages To Eliminate Slow SQL
While running extremely heavy load and the rate of processing by audit job is slower than the
changes happening, it leads to accumulation. In order to increase the rate of processing and
eliminate slow SQL during Issue Audit Message task, set Order Audit Messages to NO.

Sysadmin > Scheduler > Issue Audit Message > Order Audit Message = No

Chapter 12
Advanced Tuning Considerations

12-25

Note:

It is recommended to always set the default value to True. However, during heavy
loads it could lead to huge accumulation. In such cases, you can choose to turn off
the ordering clause. When the ordering clause is turned off, there might be failures
due to out of order processing and that will leave some audit entries unprocessed in
aud_jms table. These failed entries can be processed again by the job updating
failed column to 1 for all the failed aud_jms rows.

Chapter 12
Advanced Tuning Considerations

12-26

Part V
SOA Suite Components

The Oracle SOA Suite components need to be tuned for optimal performance.

This part covers how to tune Oracle SOA Suite components to improve performance.

Tuning information for B2B, Healthcare Integration, and adapters are documented in other
documents. You can find how to tune for performance by using the links provided.

The SOA Suite components are documented in the following topics:

• Tuning the SOA Infrastructure
You can tune the SOA Infrastructure to optimize its performance in managing composites
and their lifecycle, service engines, and binding components in Oracle WebLogic Server,
by using Work Managers and other tuning parameters.

• Tuning Oracle BPEL Process Manager
You can tune Oracle Business Process Execution Language (BPEL) Process Manager
properties to optimize its performance at the composite, fabric, application, and server
levels.

• Tuning Oracle Mediator
You can tune Oracle Mediator to optimize its performance as the framework for mediation
between various providers and consumers of services and events.

• Tuning Oracle Managed File Transfer
You can tune Managed File Transfer (MFT) to optimize its performance as the managed
file gateway.

• Tuning Oracle Business Rules
You can tune Oracle Business Rules to optimize its performance in enabling automation of
business rules and extraction of business rules from procedural logic, such as Java code
or BPEL processes.

• Tuning Oracle Business Process Management
You can tune Oracle Business Process Management to optimize its performance in
providing a seamless integration of all stages of the application development life cycle from
design-time and implementation to runtime and application management.

• Tuning Oracle Human Workflow
You can tune Oracle Human Workflow to optimize its performance in handling various
aspects of human interaction with a business process.

• Tuning Oracle Business Activity Monitoring
You can tune Oracle Business Activity Monitoring (BAM) to optimize its performance in
monitoring business services and processes in the enterprise.

• Tuning Oracle Service Bus
You can tune Oracle Service Bus (OSB) to optimize its performance in providing
connectivity, routing, mediation, management, and also some process orchestration
capabilities between two or more applications.

• Tuning Oracle Enterprise Scheduler Service
You can tune Oracle Enterprise Scheduler Service (ESS) to optimize its performance in
enabling scheduling and running jobs.

• Tuning Oracle Business Intelligence Performance
You can tune Oracle Business Intelligence to optimize its performance in collecting,
presenting, and delivering data.

13
Tuning the SOA Infrastructure

You can tune the SOA Infrastructure to optimize its performance in managing composites and
their lifecycle, service engines, and binding components in Oracle WebLogic Server, by using
Work Managers and other tuning parameters.

• About the SOA Infrastructure
The SOA Infrastructure is a Jakarta EE-compliant application running on Oracle WebLogic
Server.

• Tuning SOA Work Managers
You can perform a few simple checks and configurations to take advantage of Work
Managers.

• Tuning SOA Infrastructure Parameters
Tuning SOA infrastructure parameters is important for optimal performance.

• Using Advanced Tuning Options
You can configure additional performance tuning settings for SOA for specific scenarios.

• Advanced Tuning for Work Managers
Work Managers are mapped to SOA projects and specific components, and you can use
some advanced configuration options to fine-tune the Work Manager performance.

About the SOA Infrastructure
The SOA Infrastructure is a Jakarta EE-compliant application running on Oracle WebLogic
Server.

The application manages composites and their lifecycle, service engines, and binding
components. For more information, see Introduction to the SOA Infrastructure Application in
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

The information presented here does not cover any diagnostic tools or methodologies that are
needed for a holistic approach, but addresses isolated tuning options for isolated symptoms.
For information on monitoring the SOA Infrastructure performance to pinpoint problem areas,
see Monitoring the SOA Infrastructure in Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

Tuning SOA Work Managers
You can perform a few simple checks and configurations to take advantage of Work Managers.

Beginning with Oracle SOA Suite 12c (12.2.1), Work Managers handle most SOA-related work
threads. For more details on how Work Managers manage threads and self-tune, see
Understanding Work Managers in Administering Server Environments for Oracle WebLogic
Server.

Before you attempt to configure Work Managers, you should have a good understanding of
your environment and be able to quantify the following:

• Volume of incoming requests that you need processed.

13-1

• Internal processing requirements, including any SLA expectations for transactions.

• An understanding of the processes you have that do not use Work Managers, such as the
Event Delivery Network and most adapters.

Based on the information collected above, you can take advantage of the Work Managers' self-
tuning feature.

• Configuring Database Connections with the SOADataSource Property

• Configuring Work Managers with the SOAMaxThreadsConfig Attribute

Configuring Database Connections with the SOADataSource Property
The SOADataSource property determines the total number of concurrent database connections
that are available for your SOA processes. Because SOA processes use the database for most
of their activities, this is a very important setting and can create a bottleneck if not appropriately
configured.

To tune this setting, it is important to understand your database resources and consult your
DBA.

To tune the SOADataSource, do the following:

1. Log in to the Oracle WebLogic Remote Console.

2. Select Edit Tree > Services > Data Sources.

3. On the DataSource configuration page, select SOADataSource.

4. Select the Connection Pool tab and scroll down to find the Maximum Capacity attribute.

The default for the Maximum Capacity attribute is 50. For most practical use cases, you
should set this value to 300 to increase the size of the entire SOADataSource connection pool.

The SOADataSource setting is leveraged by the SOAMaxThreadConfig configuration that is
explained in Configuring Work Managers with the SOAMaxThreadsConfig Attribute. The
SOADataSource attribute defines the total number of connections that are available to all Work
Managers, while the SOAMaxThreadConfig attribute defines what percentage of those
connections are available to certain categories of Work Managers.

Configuring Work Managers with the SOAMaxThreadsConfig Attribute
Thread distributions for Work Managers determined by SOAMaxThreadsConfig

SOA composites are associated with a group of Work Managers that handles various
components and functional areas. The SOAMaxThreadsConfig attribute determines the number
of threads allowed for different groups of SOA Work Managers in a domain.

The number of threads allotted to handle incoming requests, internal processes, and other
SOA processes are defined as percentages of the SOADataSource property that is explained in
Configuring Database Connections with the SOADataSource Property. The default percentage
values and categories of the SOAMaxThreadsConfig attribute are listed in #unique_366/
unique_366_Connect_42_BGBIECDJ.

Chapter 13
Tuning SOA Work Managers

13-2

Group Description

incomingRequestsPercentage
Default: 20%

This parameter determines the percentage of threads that
your system allocates to Work Managers that process
incoming client requests such as EDN.

The parameter is used for requests like Facade invocation,
WebService client, Direct/ADF/Rest, and BulkRecovery
requests.

internalBufferPercentage
Default: 30%

This parameter determines the percentage of threads
distributed to other SOA functions, such as adapters.

This parameter is also used for inbound adapters that are not
part of workmanagers in 12.1.3.

internalProcessingPercentage
Default: 50%

This parameter determines the percentage of threads that
your system allocates to Work Managers for internal
processes.

This parameter is also used for handling all SOA backend
processing services like message processing by
BPELEngine, Mediator Error Handling and Parallel
Processing, Resequencer and QuartzScheduler.

This attribute is defined at the domain level and applies to all the Work Managers under that
domain. You can set this attribute by using the SoaInfraConfig MBean in the Fusion
Middleware Control MBean Browser.

To access the attribute:

1. Log in to Fusion Middleware Control.

2. Select System MBean Browser from the WebLogic Domain menu.

3. In the System MBean Browser folder structure, navigate through the following folders:
Application Defined MBeans --> oracle.as.soainfra.config --> Server:
AdminServerName --> SoaInfraConfig --> soa-infra.

4. When you click on soa-infra, its attributes are listed in the main pane on the right. Look for
the SOAMaxThreadsConfig attribute and click it. You should then see the parameters and
values listed in #unique_366/unique_366_Connect_42_BGBIECDJ.

When you are ready to make your changes, click Apply.

Remember that the values you are adjusting on this screen are percentages, not the discrete
number of threads. You should ascertain the total number of threads available to you by
checking the value of the SOADataSource property, which is described in Configuring Database
Connections with the SOADataSource Property.

In a sample scenario, where the SOADataSource attribute is set to 50 connections and if you
kept the default SOAMaxThreadConfig percentages that are listed in #unique_366/
unique_366_Connect_42_BGBIECDJ, you would have the following thread allocations:

• 20% of 50 = 10 threads to process incoming request

• 30% of 50 = 15 threads for processes not using work managers

• 50% of 50 = 25 threads to process internal processes

Chapter 13
Tuning SOA Work Managers

13-3

Tuning SOA Infrastructure Parameters
Tuning SOA infrastructure parameters is important for optimal performance.

Table 13-1 describes the optimal settings for parameters with the greatest impact on SOA
Infrastructure performance.

Table 13-1 Essential SOA Infrastructure Tuning

Parameter Problem Tuning Recommendation Trade-offs

AuditLevel
Default: Production

• High database CPU
• Contentions causing

increased processing
times in applications

To prevent possible
performance degradation,
decrease the audit level to
“off”. Set the default value of
Production only for audit
purposes.

This parameter can be set in
the Enterprise Manager. You
can find the Audit Level
parameter page on the SOA
Infrastructure Common
Properties page.

To find this page:

1. Toggle the SOA folder in
your left-hand Target
Navigation.

2. Right-click on the soa-
infra (soa_server)
you want to tune.

3. Select SOA
Administration -->
Common Properties

For more information about
this parameter, see
Configuring Oracle SOA Suite
and Oracle BPM Suite
Profiles in Administering
Oracle SOA Suite and Oracle
Business Process
Management Suite.

Keeping the default audit level
will generate audit data to be
captured in the database and
hence cause database
growth. Users should use the
audit information for
debugging errors.

Chapter 13
Tuning SOA Infrastructure Parameters

13-4

Table 13-1 (Cont.) Essential SOA Infrastructure Tuning

Parameter Problem Tuning Recommendation Trade-offs

Audit Purge Policy
Default: Everyday Midnight
and purges records older
than 7 days

• Exponential growth in
database size

• If configured at peak
hours, purging can take
resources from other
processes

• Ensure that auto purge is
enabled.

• Perform purges more
often.

• Set the auto purge to
kick off at a time when
there is less resource
contention from other
processes.

For information on
finding the Auto Purge
page in the Oracle
Enterprise Manager
Fusion MIddleware
Control, see Deleting
Large Numbers of
Instances with Oracle
Enterprise Manager
Fusion Middleware
Control in Administering
Oracle SOA Suite and
Oracle Business Process
Management Suite.

Disabling this feature makes
maintaining on-going
database growth more time-
consuming.

Using Advanced Tuning Options
You can configure additional performance tuning settings for SOA for specific scenarios.

These options are presented here in no specific order. Before you change any of these
properties, you should have a holistic knowledge of your environment, SOA processes, and
non-SOA processes.

It is important to understand that any advanced performance optimization should be a
customized approach for individual scenarios, settings, environments, and expectations. A
customized approach requires detailed capturing of diagnostic information to pinpoint and
isolate bottlenecks and areas that need optimization.

For information on monitoring the SOA Infrastructure performance to pinpoint problem areas,
see Monitoring the SOA Infrastructure in Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

• Using Composite Lazy Loading

• Changing Modularity Profiles

• Tuning Your Database for SOA Processes

• Tuning Event Delivery Network Parameters

• Tuning the WebLogic Server

Using Composite Lazy Loading
Composite lazy loading is a new feature in 12c. It improves server startup time when there is a
large number of composites deployed.

Chapter 13
Using Advanced Tuning Options

13-5

At server startup, composites are loaded minimally, meaning that they only create in-memory
java models and MBeans. Any initializing tasks, such as loading components and resources
used by composite, namely WSLD and Schema file, are loaded later at first-request time when
they are needed.

This greatly improves server startup times and staggers the composite startup times for when
they receive requests, reducing overhead from rarely used or retired composites.

Composite lazy loading is helpful for:

• Scenarios that require speedy disaster recovery times during a server failure

• Customers with a huge number of composites that use large WSDLS or schema files

Composite lazy loading is enabled by default and can be configured at the domain level and at
the composite levels.

• Configuring Composite Lazy Loading for the Domain Level

• Configuring Composite Lazy Loading at the Component Level

Configuring Composite Lazy Loading for the Domain Level
Composite lazy loading is enabled by default at the domain level. This setting can be disabled
from the System MBean Browser in Enterprise Manager for Fusion Middleware Control.
Changes to this setting takes affect when the server restarts.

To change the setting for lazy loading feature for the domain level:

1. After you log into Enterprise Manager, right-click the domain that you want to tune from the
list of the WebLogic domains in the Target Navigation browser.

2. Select System MBean Browser from the drop-down menu.

3. In the System MBean Browser folder structure, navigate through the following folders:
Application Defined MBeans --> oracle.as.soainfra.config --> Server:
AdminServerName --> SoaInfraConfig --> soa-infra.

4. When you click soa-infra, its attributes are listed in the main pane on the right. Look for
the CompositeLazyLoading attribute and click it.

5. On the CompositeLazyLoading page, you can set the value to true to enable it or false to
disable it. When you are ready to make your changes, click Apply.

Configuring Composite Lazy Loading at the Component Level
By default, composites inherit the lazy loading setting from the domain level. If there is a use
case where you would like to control this behavior at specific composite level, then this can be
configured in the composite.xmlfile, which is a file that is generated when you create a new
SOA Suite composite application.

You can find the composite.xmlfile in the home folder of the application that you want to edit.
You can also edit the composite.xml file by accessing it in JDeveloper. For more information
on the composite.xml file, see What Happens When You Create a SOA Application and
Project in Developing SOA Applications with Oracle SOA Suite.

At the beginning of the composite.xml file of the application that you want to edit, you need to
add the new property lazyLoading="false" to override the default behavior at the domain
level. Then redeploy the composite.

Below is a sample code snippet:

Chapter 13
Using Advanced Tuning Options

13-6

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 12.2.1.0.0 at [8/7/13 4:14 PM]. -->
<composite name="ValidatePayment"
 revision="1.0"
 label="2013-08-07_16-14-11_843"
 mode="active"
 state="on"
 lazyLoading="false"
 xmlns="http://xmlns.oracle.com/sca/1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
……….
……….
</composite>

Changing Modularity Profiles
Modularity Profiles

Modularity is another 12c feature that helps improve your memory footprint and server startup
times. Some profile options are limited to only components and features that are used by your
selected composites. The modularity profile you select determines what components are
loaded in memory.

12c has ready—to—use profiles that can be changed after you complete installation. By
default, new 12c customers have SOA_FOUNDATION as their install profile. Existing customers
upgrading to 12c have SOA_CLASSIC as their install profile by default.

#unique_368/unique_368_Connect_42_BGBCDFGA shows the modularity profiles in the
increasing order of memory footprint size.

Profile Components

BPEL-ONLY BPEL Components + SOA Common Infrastructure + Partial
Adapter set

ORCHESTRATION BPEL-Only + HWF + Partial Adapter set

SOA FOUNDATION
Default for new 12c customers

Orchestration + Mediator + Rules + Partial Adapter set

SOA FOUNDATION ENTERPRISE SOA Foundation + Full Adapter Set

SOA FOUNDATION WITH B2B SOA Foundation Enterprise + B2B

SOA FOUNDATION WITH HEALTHCARE SOA Foundation with B2B + Healthcare UI

SOA CLASSIC
Default for upgrade customers

SOA Foundation with B2B + BPM Modules

If you are using a limited set of components or features in the SOA suite, you can change your
profile to optimize your memory usage and server startup times. This can free up resources for
crucial processes and can improve disaster recovery.

You can change your modularity profile from the SOA dashboard in Enterprise Manager for
Fusion Middleware Control.

See, Configuring SOA Infrastructure Properties in Administering Oracle SOA Suite and Oracle
Business Process Management Suite to find the SOA Infrastructure Common Properties
page.

Chapter 13
Using Advanced Tuning Options

13-7

Then, see Configuring Oracle SOA Suite and Oracle BPM Suite Profiles in Administering
Oracle SOA Suite and Oracle Business Process Management Suite for more information on
the profiles.

Tuning Your Database for SOA Processes
If needed, you can adopt advanced strategies for tuning your database for SOA processes.
Make sure you have already read and followed the general database tuning suggestions
covered in Tuning Database Parameters of this book before you progress.

• Collecting Optimizer Statistics

• Tuning Temporary Tablespaces for SOA

• Minimizing SOA Database Contention

• Purging

• Reclaiming Space

Collecting Optimizer Statistics
Optimizer statistics provide details about the database and the objects in the database. The
query optimizer uses these statistics to choose the best execution plan for each SQL
statement. See Introduction to the Query Optimizer in Oracle Database SQL Tuning Guide for
more information.

• Gathering Statistics Automatically

• Gathering Statistics Manually

• Optimizing the MDS Database Repository With Statistics

Gathering Statistics Automatically
Because objects in a database can change constantly, you must update statistics regularly so
that they accurately describe these objects.

All SOA databases should use the Automatic Statistics Collection, which is enabled by default.
This job runs every night. See Controlling Automatic Optimizer Statistics Collection in Oracle
Database SQL Tuning Guide for more information.

Gathering Statistics Manually
Automatic optimizer statistics collection is sufficient for most database objects, but in a
database that is close to going live or for tables that are modified or purged significantly,
manual statistic gathering is needed. See Gathering Optimizer Statistics Manually in Oracle
Database SQL Tuning Guide for more information.

For SOA databases that implement purging of stale data on regular basis, you should collect
stats manually right after purging has completed. In these cases, use the
DBMS_STATS.GATHER_TABLE_STATS procedure. See DBMS_STATS in Oracle Database PL/SQL
Packages and Types Reference for how to do this.

Optimizing the MDS Database Repository With Statistics
Ensure that automatic statistics collection is enabled. See Controlling Automatic Optimizer
Statistics Collection in Oracle Database SQL Tuning Guide for more information.

Chapter 13
Using Advanced Tuning Options

13-8

In most cases, the first 32 characters of PATH_FULLNAME in the MDS_PATHS table are the same.
You can prevent the database from putting them in the same section of the histogram by doing
the following:

1. Drop the histogram for PATH_FULLNAME column by executing a command structured like the
following as system:

execute dbms_stats.delete_column_stats(ownname=>'mdsSchemaOwner',
tabname=>'MDS_PATHS', colname=>'PATH_FULLNAME', col_stat_type=> 'HISTOGRAM');

2. Set table preferences to exclude collecting histogram for the PATH_FULLNAME column with a
command structured like the following:

execute dbms_stats.set_table_prefs(mdsSchemaOwner, 'MDS_PATHS', 'METHOD_OPT', 'FOR
COLUMNS SIZE 1 PATH_FULLNAME');

Tuning Temporary Tablespaces for SOA
See Tuning Database Files for general guidelines on tuning TEMP tablespaces for Oracle
Fusion Middleware before you progress to this topic.

Some SOA queries can generate a large amount of disk sorts that require high amounts of
temporary space. Therefore, the use of multiple temporary tablespaces and tablespace groups
is recommended to meet these requirements and assure optimal performance.

The suggested minimum size for the TEMP tablespace or tablespace group that is assigned to
the SOA schema owner is 6 GB with auto-extend enabled. See Changing Data File Size in
Oracle Database Administrator's Guide for more information on how to resize a tablespace and
enable auto-extend.

Minimizing SOA Database Contention
Most SOA workloads generate heavy DML activity in the database and are likely to experience
contention on database objects.

Wait event data in Automatic Workload Repository (AWR) reports reveal various symptoms
that might impact performance. The most common wait events that could occur in SOA
database are as follows:

• DB CPU
• Db file sequential read, db file scattered read
• log file sync
• enq: HW - contention
• enq: TX - index contention
• buffer busy waits
• gc buffer busy acquire, gc buffer busy release (RAC)

• enq: SQ - contention
• Tuning the Redo Log Performance (log file sync)

• Migrating BasicFiles to SecureFiles (enq:HW - contention)

• Creating Hash Partitioned Indexes (enq: TX - index contention)

Chapter 13
Using Advanced Tuning Options

13-9

Tuning the Redo Log Performance (log file sync)
In a SOA database, it is very common to see the foreground wait event log file sync with a
high average wait time. This is caused by the redo log performance. The possible reasons for
high log file sync waits are as follows:

• The database log writer (LGWR) is unable to complete writes fast enough for one of the
following reasons:

– Disk I/O performance to log files is not good enough.

– LGWR is starving for CPU resources.

• LGWR is unable to post the processes fast enough due to excessive commits.

• LGWR is suffering from other database contentions, such as enqueue waits or latch
contention.

Tuning the redo log performance can improve the performance for applications that run in an
Oracle Fusion Middleware environment.

See Tuning Database Files for general guidelines on tuning redo logs for Oracle Fusion
Middleware before using the strategies here to tune for SOA processes.

Finding LGWR wait events

The first step in identifying the root cause is to find and break down LGWR wait events. You
can query for LGWR wait events by using its SID, as shown in the following example:

SQL> SELECT sid, event, time_waited, time_waited_micro
 FROM v$session_event
 WHERE sid IN
 (SELECT SID FROM v$session WHERE type!='USER' AND program LIKE '%LGWR%')
ORDER BY time_waited;

Sizing Online Redo Logs to Control the Frequency of Log Switches and Minimize
System Waits

The suggested minimum setting for redo logs is to have at least 3 log groups of 2 GB each.
Monitor the redo log performance periodically. Then adjust the number of redo log groups and
size of each member as appropriate to control the frequency of log switches and minimize
system waits.

Size the redo log files according to the amount of redos that the system generates. A rough
guide is to switch logs at most once every 20 minutes.

For example, if your online redo logs switches once every 5 minutes during peak database
activity, the logs would each need to be 4 times larger then their current size to achieve the 20
minute guideline. The calculation for this is 20min / 5min = 4x.

Optimizing the Redo Log Disk to Prevent Bottlenecks

A SOA database is highly write-intensive, which generates massive amount of redo per second
and per transaction. Sometimes no amount of disk tuning may relieve redo log bottlenecks,
because Oracle must push all updates for all disks into a single redo location.

If I/O bandwidth is an issue, doing anything other than improving I/O bandwidth is not useful.
One way to relieve redo bottlenecks is to use faster redo storage. It is recommended to use
Solid State Disk (SSD) redo log files. SSD has greater bandwidth than platter disk.

Determining the Optimal Sizing of the log_buffer

Chapter 13
Using Advanced Tuning Options

13-10

SOA applications insert, modify, and delete large volumes of data. Most of these operations
are committed in a row-by-row fashion rather than in batch mode. Frequent commits cause a
significant overhead on the redo performance, so sizing the log_buffer optimally is important for
performance.

The statistic REDO BUFFER ALLOCATION RETRIES from your AWR reports and/or from V$ views
reflects the number of times a user process waits for space in the redo log buffer. You can
obtain this statistic through the dynamic performance view V$SYSSTAT with the following query:

SELECT NAME, VALUE
FROM V$SYSSTAT
WHERE NAME = 'redo buffer allocation retries';

The value of redo buffer allocation retries should be near zero over an interval. If this value
increments consistently, then processes have had to wait for space in the redo log buffer. The
wait can be caused by the log buffer being too small or by check pointing. You can improve this
wait by attempting the following:

• Increase the size of the redo log buffer, if necessary, by changing the value of the
initialization parameter LOG_BUFFER. The value of this parameter is expressed in bytes. A
good starting rule of thumb for a write intensive workload is to configure the log buffer to
100mb. Use caution while increasing log_buffer setting, because excessive redo size can
also cause high log file sync waits.

• Improve the check pointing or archiving process.

You can also check to see if the log buffer space wait event is a significant factor in the wait
time for the instance. If not, the log buffer size is most likely adequate.

Tuning the LGWR Process

For most SOA workloads, the commit rate is very high, and decreasing commits is not an
option. If previous strategies to address high log file sync did not improve redo log
performance, try increasing the priority of LGWR or increasing the priority class of LGWR to RT
from the command line.

Using Smart Flash Logging for ExaData

If your database is on ExaData machine, it should have a minimum of Bundle Patch 11 (BP11)
installed to take advantage of the Smart Flash Logging feature.

Exadata Smart Flash Logging is an additional feature that is implemented in Exadata Storage
software 11.2.2.4.2 and database version 11.2.0.2 + BP11. With this feature, 512 MB of flash
storage is reserved for redo writes and the LGRW process adopts a different pattern of
behavior.

In a system which does not use this feature, LGWR writes in parallel to multiplexed copies of
the redo logs and then waits for all writes to complete. This means that the time taken to
perform these writes (indicated by the Oracle wait interface statistics log file parallel write) is
the time taken for the slowest disk to complete the write.

With Exadata Smart Flash Logging, the redo log files remain on disk, but the additional
reserved 512 MB of space is created on flash storage. When issuing a write call, LGWR writes
to the redo logs on disk as usual but also makes a parallel write to the flash area. LGWR then
waits for whichever of these writes completes first to post it, after which it continues without
waiting for the other.

Chapter 13
Using Advanced Tuning Options

13-11

Migrating BasicFiles to SecureFiles (enq:HW - contention)
The High Water enqueue contention (enq: HW - contention) occurs when competing processes
are inserting into the same table and are trying to increase the high water mark of a table
simultaneously.

In a SOA database, this issue is experienced by tables that have large object (LOB) columns,
such as CUBE_SCOPE, XML_DOCUMENT, AUDIT_DETAILS, and so on. Under a heavy load, LOB
segments in these tables experience contention, which is seen in an AWR report as the wait
event enq: HW contention.

The default storage for LOBs in an Oracle database is BasicFiles. Frequently allocating extents
or reclaiming chunks may cause contention for the LOB segment high water marks. This
contention can also occur for LOB segments that are ASSM-managed, since space allocation
only acquires one block at a time.

This contention can be eliminated by switching LOB storage from BasicFiles to SecureFiles.
SecureFiles is an LOB storage architecture that provides performance benefits over traditional
BasicFiles. See About LOB Storage in Database SecureFiles and Large Objects Developer's
Guide for more information on these two architectures.

Migrating BasicFiles to SecureFiles can be done by using one of the following methods:

LOB Storage Attributes

• Set the database parameter SECURE_FILES = ALWAYS.

This method is applicable for new installations prior to creating SOA tables by using RCU.
Once this parameter is set at the instance level, any new LOB segments created uses
SecureFiles automatically.

• Use the online redefinition method.

This method is applicable for installations that already have SOA tables created in them. In
such cases, LOB segments from tables in an SOA database experiencing enq: HW
contention can be migrated to SecureFiles.

Using the online redefinition method to migrate to SecureFiles can be done with very little
downtime.

• Set the database event value to 44951 by using the following script:

ALTER SYSTEM SET EVENT='44951 TRACE NAME CONTEXT FOREVER, LEVEL 1024' scope=spfile;

This method helps SOA installations using an Oracle version older than 11g to avoid enq:
HW contention on LOB segments.

You can use your AWR and Automatic Database Diagnostic Monitor (ADDM) reports to identify
which LOB objects are suffering from enq:HW - contention. For most systems, however, it is
highly recommended to move the LOB columns listed in the following table to SecureFiles.

Table Name Column Name Recommended LOB Storage
Attributes

ATTACHMENT ATTACHMENT COMPRESS CACHE
AUDIT_DETAILS BIN COMPRESS CACHE
CUBE_SCOPE SCOPE_BIN COMPRESS CACHE

Chapter 13
Using Advanced Tuning Options

13-12

Creating Hash Partitioned Indexes (enq: TX - index contention)
In most SOA scenarios, multiple database sessions insert thousands of rows into SOA tables.
In these situations, the number of index keys is constantly increasing, particularly the primary
key indexes.

Though the number of primary key indexes increases over time, B-tree structure indexes only
target a few database blocks for key insertions. These B-tree index insertions can become
problematic in a Real Application Cluster (RAC). This issue is seen in an AWR report as high
buffer busy waits.

B-tree indexes create other contentions for RAC environments that show in an AWR as gc
buffer busy acquire and gc buffer busy release wait events. These occur when a
transaction inserting a row in an index has to wait for the end of a different transaction's index
block split, forcing the session to wait as well. When many concurrent inserts lead to excessive
index block splits, performance decreases.

The solution for these contentions is to create global, hash partitioned indexes. This forces a
random distribution of index keys across many database blocks to avoid these contentions or
hot spots.

Hash partitioning has proven to be the best tuning method to address index contention. You
should use your AWR and ADDM reports to identify indexes that need to be partitioned. Once
you have identified hot indexes, consider hash partitioning them to reduce or avoid index
contention.

Purging
The need for aggressive and continuous purging is a key aspect to improving performance and
controlling disk space in SOA.

Managing the auto purge feature, enabled by default to help manage on-going database
growth is described in Table 13-1. SOA installations that accumulate a lot of data should also
implement a purging strategy to clean up redundant data, to help the SQL query performance,
and to save disk space.

To create a purging strategy, see Developing a Purging and Partitioning Methodology in
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Reclaiming Space
SOA installations that implement frequent purging of unwanted data from SOA tables are more
likely to experience disk space issues.

This problem occurs even with ASSM and locally managed tablespaces. When automatic
purge scripts delete rows from database tables and indexes to release space within the data
blocks for reuse, space is not released immediately after the rows are deleted. This causes
fragmentation, with some space too small for reuse, particularly when the tables contain LOB
columns.

To alleviate fragmentation and consolidate disk space, you should manually shrink tables and
LOB columns to reclaim space on a routine basis.

Use the Segment Advisor to identify segments that would benefit from online segment shrink.
Note that most SOA segments should be candidates for online segment shrink operations after
constant purging. See Using the Segment Advisor in Oracle Database Administrator's Guide
for more information on how to use the Segment Advisor.

Chapter 13
Using Advanced Tuning Options

13-13

Once you have identified the database tables and indexes that need shrinking, use the
following commands to reclaim space manually:

ALTER TABLE CUBE_SCOPE ENABLE ROW MOVEMENT;
ALTER TABLE CUBE_SCOPE SHRINK SPACE;
ALTER TABLE CUBE_SCOPE MODIFY LOB (SCOPE_BIN) (SHRINK SPACE);
ALTER TABLE CUBE_SCOPE DISABLE ROW MOVEMENT;

This shrink operation consolidates free space below the high water mark and compacts the
segment. Then it moves the high water mark and deallocates space above the high water
mark.

Tuning Event Delivery Network Parameters
The Event Delivery Network (EDN) delivers events published by Oracle Mediator, Oracle BPEL
Process Manager, and external publishers such as Oracle Application Development
Framework entity objects. See Introduction to the Event Delivery Network and JMS Provider
Types in Administering Oracle SOA Suite and Oracle Business Process Management Suite for
a more detailed description.

Table 13-2 lists parameters that you can find in the Fusion Middleware MBean Browser and
tune for improved event delivery.

Table 13-2 Event Delivery Network Tuning

Parameter Problem Tuning Recommendation Trade-offs

numberOfPollerThreads
Default: -1

• Out-of-resource issues,
for example, out of
memory, system
overload, transaction
issue, and so on.

• Contention with other
SOA threads

The default value of -1 means
that the system uses
ThreadsPerSubscriber to
determine a poller thread
count. This is optimal for most
configurations.

However, if you have a high
number of subscribers, the
default setting tries to assign
a thread to each subscriber.
This slows your system down.
You should define a positive
integer to limit the amount of
poller threads created for this
task.

See Updating the Local
numberOfPollerThreads
Value at the Service
Component Level in
Administering Oracle SOA
Suite and Oracle Business
Process Management Suite
for information on how to
change this parameter's value
in the Fusion Middleware
MBean Browser.

If the value is too low for your
system, then poller threads
can cause event backlogs
and long latencies between
event publishing and
composite instance creation.

If the value is too high, then
excess poller threads
consume the server’s
resources needlessly.

Chapter 13
Using Advanced Tuning Options

13-14

Table 13-2 (Cont.) Event Delivery Network Tuning

Parameter Problem Tuning Recommendation Trade-offs

ThreadsPerSubscriber
Default: 1 thread

• Out-of-resource issues,
for example, out of
memory, system
overload, transaction
issue, and so on.

• Contention with other
SOA threads

Typically, the default of 1
thread per subscriber is
optimal.

Note that
numberOfPollerThreads
should be adjusted first, since
that parameter takes
precedence over this value.

See Updating the
ThreadsPerSubscriber
Attribute in the System
MBean Browser in
Administering Oracle SOA
Suite and Oracle Business
Process Management Suite
for information on how to
change this parameter's value
in the Fusion Middleware
MBean Browser.

If the value is too low for your
system, then poller threads
can cause event backlogs
and long latencies between
event publishing and
composite instance creation.

If the value is too high, then
excess poller threads
consume the server’s
resources needlessly.

Table 13-3 lists the parameters that you can modify for individual business events in
JDeveloper. To modify these attributes, right-click the event that you want to edit to bring up the
pop-up menu. From this menu, select Edit Subscribed Events... or Edit Published Events...,
depending on the parameter that you are trying to edit.

For descriptions of the subscribed event parameters you can edit, see How to Subscribe to a
Business Event in Developing SOA Applications with Oracle SOA Suite.

Table 13-3 Business Event Tuning

Parameter Problem Tuning Recommendation Trade-offs

Consistency for a Subscribed
Event

Default: oneAndOnlyOne

You are experiencing either
one or both problems with
business event delivery.

• Unfulfilled delivery
guarantee requirements
to event subscribers

• Unnecessary system
overhead from global
transactions

Set the level for a selected
business event to
guaranteed in JDeveloper. A
guaranteed delivery is
performed in a local
transaction with only one trip
to the main queue.

You can also edit this
parameter on the
Subscriptions page in the
Oracle Enterprise Manager
Fusion Middleware Control.
See Viewing Business Event
Subscribers in Administering
Oracle SOA Suite and Oracle
Business Process
Management Suite for details.

The oneAndOnlyOne
parameter guarantees
delivery by taxing resources.

If a guaranteed delivery
fails, then there are no local
retries and a system failure
message is generated.
Message duplication could
occur in the event that the
calling global transaction rolls
back and retries since the
message delivery is outside
of that transaction.

Chapter 13
Using Advanced Tuning Options

13-15

Table 13-3 (Cont.) Business Event Tuning

Parameter Problem Tuning Recommendation Trade-offs

Durability for a Subscribed
Event

Default: Yes

You are experiencing either
one or both problems with
business event messages.

• Multiple dropped events
• Unnecessary retention of

messages in the system

Set the value under the
Durable column to No to
disable durability for a
subscribed event by using
JDeveloper. This frees the
system from having to persist
messages to storage.

If the subscriber is not
running when events are
published, setting the value to
No causes the system to drop
events.

Setting the value to Yes
retains events in the JMS
server and incurs overhead.

Persistent Delivery for a
Published Event

Default: yes

• Unreliable messaging
• High overhead

Set this value to No to disable
persistent delivery. This
reduces overhead.

Setting the value to No
causes less reliable
messaging following an event
publish since there is no
persistence.

Setting the value to Yes
incurs overhead by guarding
against a JMS server crash.

Chapter 13
Using Advanced Tuning Options

13-16

Table 13-3 (Cont.) Business Event Tuning

Parameter Problem Tuning Recommendation Trade-offs

Time-to-live for a Published
Event

Default: 0 ms

• Non-expired and
unconsumed messages
are occupying system
resources and requiring
manual cleanup.

• Messages are deleted
before subscribers can
read them.

Specify a positive integer so
that expired messages are
automatically removed from
the system and not
consumed by the subscribers.
The integer represents
milliseconds.

The best value depends on
your system and can be
determined by monitoring
metrics.

N

o

t

e

:

T
h
e
d
e
f
a
u
l
t
v
a
l
u
e
o
f
0
m
e
a
n
s
t
h
a
t
m
e
s
s
a

If the message expiration
duration value is too low,
published messages can
expire before an intended
subscriber can read it. Once
it is gone, it cannot be
retrieved.

If the value is too high, then
lingering messages can
occupy system resources.

Chapter 13
Using Advanced Tuning Options

13-17

Table 13-3 (Cont.) Business Event Tuning

Parameter Problem Tuning Recommendation Trade-offs

g
e
s
n
e
v
e
r
e
x
p
i
r
e
s
.

• Adding JMS Topics with Mapping

Adding JMS Topics with Mapping
By default, all events are mapped to a single WLS topic.

If you have a large backlog of events or are experiencing latency or slowness in event
processing due to single or limited JMS topics, you should create additional JMS topics and
modify events to JMS mapping so that event types of different performance characteristics may
be grouped or managed separately.

However, if you do this, the system will have additional JMS topics and JMS artifacts to
manage, and you will have mapping changes to consider.

• Choosing a JMS Topic Type

• Creating JMS Topics

• Mapping Events to JMS Topics

Choosing a JMS Topic Type
You can create either a WLSJMS topic or an AQJMS topic.

WLSJMS is the default JMS topic type. It does not provide database indexing, LOB streaming,
embedded rules engines, and lock management as well as AQJMS.

AQJMS is typically not faster than WLSJMS, but if your system has high concurrences, AQJMS
works well because it is single-threaded. AQJMS can also get constrained by lower and storage
nodes in Exalogic.

Creating JMS Topics
You can create a new WLSJMS topic under the SOAJMSModule in the WebLogic Remote Console
if you are logged in as an Administrator. See Create a JMS System Module in the Oracle

Chapter 13
Using Advanced Tuning Options

13-18

WebLogic Remote Console Online Help for details on navigating to the Create a New JMS
System Module Resource and creating a JMS topic.

You can create an AQJMS topic by using the Database Navigator in JDeveloper or SQL
Developer as soainfra user by running the following script:

define edn_user=your_soainfra_schema_username
define topic=your_custom_aqjms_topic_name, e.g. 'EDN_AQJMS_TOPIC_2'
define topic_table=your_custom_aqjms_topic_table, e.g. 'EDN_AQJMS_TOPIC_TABLE_2'

begin
 DBMS_AQADM.stop_queue(queue_name => '&edn_user..&topic');
 DBMS_AQADM.drop_queue(queue_name => '&edn_user..&topic');
 DBMS_AQADM.drop_queue_table(queue_table => '&edn_user..&topic_table');
end;
/
begin
 dbms_aqadm.create_queue_table(queue_table => '&edn_user..&topic_table',
 queue_payload_type => 'SYS.AQ$_JMS_MESSAGE',
 multiple_consumers => true);
 dbms_aqadm.create_queue(queue_name => '&edn_user..&topic',
 queue_table => '&edn_user..&topic_table',
 max_retries => 256);
 dbms_aqadm.start_queue(queue_name => '&edn_user..&topic');
end;
/
commit;

You can reference Create a JMS Queue or Topic in Administering JMS Resources for Oracle
WebLogic Server for information about AQ JMS topics.

Mapping Events to JMS Topics
When you have created new JMS topics, you can map business events to specific topics. Note
that one event type can be mapped to only one JMS topic, whereas one JMS topic can store
multiple event types.

For more information on using the Enterprise Manager for Fusion Middleware Control to map
events, see Mapping Business Events to JMS Topic Destinations on the Business Events Page
in Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Tuning the WebLogic Server
The performance of the SOA Infrastructure depends on the WebLogic Server. Though tuning
the WebLogic Server is a separate task not thoroughly addressed in this book, you can use
Table 13-4 to check the tuning knobs that affect the SOA Infrastructure.

Chapter 13
Using Advanced Tuning Options

13-19

Table 13-4 Essential WebLogic Server Tuning for SOA Infrastructure

Parameter Tuning Recommendation Resource

ProductionModeEnabled
Default: The mode you set during
domain creation.

Production mode maximizes
performance. You should enable this if
you are not developing applications. You
can enable the
ProductionModeEnabled MBean in
Oracle Fusion Middleware Control.

See Configure General Settings in
Administering Oracle WebLogic Server
with Fusion Middleware Control.

Changing the domain mode also
changes certain security and
autodeployment settings. See
Development vs. Production Mode
Default Tuning Values in Tuning
Performance of Oracle WebLogic
Server for more information on domain
modes.

WebLogic Server Logging Levels

Default: Notification
To reduce the volume of logging
requests, use the lowest acceptable
logging level, such as ERROR or
WARNING whenever possible. You can
set log levels for handlers and loggers in
a variety of ways.

See Using Log Severity Levels in
Configuring Log Files and Filtering Log
Messages for Oracle WebLogic Server
for these methods.

HTTP Access Logging

Default: Enabled

By default, the HTTP subsystem keeps
a log of all HTTP transactions in a text
file. Turn off HTTP access logging to
improve performance. You can disable
this property by using the Oracle
WebLogic Server Remote Console.

See Configure HTTP in the Oracle
WebLogic Remote Console Online
Help.

JMS Persistence and Persistence
Storage

Default: Enabled

Ensure that the right persistence level is
set for the JMS services destinations.

• For persistent JMS scenarios, there
are two choices: File Store and
JDBC Store. Typically, operations
on a File Store perform better than
JDBC Store. If there are multiple
JMS servers involved, create each
store on a separate disk to lower
I/O contention.

• For non-persistent JMS scenarios,
turn off persistence at the JMS
server level by un-checking the
Store Enabled flag from the
Advanced section of the General
tab for the JMS server in the
WebLogic Remote Console. You
can also override the persistence
mode at the JMS destination level.

See Using Custom File Stores and
JDBC Stores in Tuning Performance of
Oracle WebLogic Server for more
information on creating and managing
persistent JMS stores.

Connection Backlog Buffering You can tune the Accept Backlog
parameter when dealing with a large
number of concurrent clients.

The Accept Backlog parameter
specifies how many TCP connections
can be buffered in a wait queue. You
can tune the number of connection
requests that a WebLogic Server
instance accepts before refusing
additional requests.

For more information, see Tuning
Connection Backlog Buffering in Tuning
Performance of Oracle WebLogic
Server.

Chapter 13
Using Advanced Tuning Options

13-20

Advanced Tuning for Work Managers
Work Managers are mapped to SOA projects and specific components, and you can use some
advanced configuration options to fine-tune the Work Manager performance.

When SOA Suite is installed, it creates a set of default Work Managers, global Work
Managers, and application Work Managers to manage various areas of the SOA Infrastructure.

High priority composites can be associated with a Work Manager group that has been
configured for higher priority. Table 13-5 lists the set of Work Managers that are created when
SOA is installed and describes the work area they manage.

Table 13-5 Work Manager Descriptions

Work Manager Name Responsible Area

SOA_Request_WM SOA synchronous request clients, such as the following:

• Facade invocation
• WebService client requests
• Direct/ADF/Rest requests
• B2B

SOA_Notification_WM All SOA notification requests.

WorkManagerName_dspSystem BPEL-specific system dispatcher messages.

WorkManagerName_dspInvoke BPEL-specific engine process invocation dispatcher
messages.

WorkManagerName_dspEngine BPEL engine process dispatcher messages.

WorkManagerName_dspNonBlocking BPEL engine process non-blocking invocation dispatcher
messages.

WorkManagerName__Analytics BPEL analytics.

WorkManagerName_MediatorParallelRouting Mediator parallel routing.

WorkManagerName_MediatorErrorHandling Mediator error handling.

WorkManagerName_bpmnSystem BPM system dispatcher messages.

WorkManagerName__bpmnInvoke BPM engine process invocation dispatcher messages.

WorkManagerName__bpmnEngine BPM process engine dispatcher messages.

WorkManagerName__bpmnNonBlocking BPM process non-blocking invocation dispatcher messages.

SOA_DataSourceBound_WM All SOA backend processing services that
access.SOADataSource, including Workflow Jakarta
Enterprise Beans (EJBs).

SOA_Default_WM All SOA services that do not access the SOADataSource
connection pool. It also handles Case Management.

SOA_EDN_WM Event Delivery Network (EDN).

WorkManagerName_Adapter Adapter framework.

The SOAMaxThreadsConfig property, discussed in Configuring Work Managers with the
SOAMaxThreadsConfig Attribute, determines the number of connections that are used by
Work Managers to process incoming requests, internal processes, and other processes. This
configuration determines the optimal usage for each of these processing categories when the
system is functioning at its full potential.

Chapter 13
Advanced Tuning for Work Managers

13-21

Minimum and Maximum Constraints can also be set on Work Managers to control upper and
lower limit of connections for Work Managers. A Fair Share Request class for a Work Manager
can be created to determine the relative priority assigned to a Work Manager. The constraints
and request class mentioned here are the ones most commonly configured for SOA Work
Managers.

All SOA Work Managers are preconfigured with request classes and constraints that make
most sense. It is strongly recommended to run with the default settings and make any essential
changes after an evaluation period.

For information on all Work Manager constraints and request classes you can create and their
default behaviors, refer to Managing Work Manager Groups in Administering Oracle SOA Suite
and Oracle Business Process Management Suite.

• Configuring Fair Share Request Class for SOA Work Managers

• Creating a New Work Manager Constraint

Configuring Fair Share Request Class for SOA Work Managers
A Fair Share Request Class allows you to specify the relative priority of a given Work Manager.
All SOA Work Managers managing internal process have been configured to one of the two
Fair Share Classes that are created by default: soa_fairShare_20 and soa_fairShare_80, with
fair share values set to 20 and 80 respectively. A Fair Share value is a relative value from 1 to
1000.

If you want to further tune SOA Work Manager priorities, you need to create new Fair Share
classes. For more information on how to do this, see Viewing and Creating Work Manager
Groups in Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Creating a New Work Manager Constraint
In addition to the default categories available in the SOAMaxThreadConfigproperty, you can
create new categories to address specific scenarios.

Some processes in SOA do not require database connections. These processes do not
depend on SOA Data Source allocation and hence do not have to wait for available
connections.

The SOA Infrastructure automatically creates Work Managers that manage most of your
processes and allocate resources accordingly. For most cases, performance can be improved
by leveraging existing Work Managers and tuning their performance by using some of the
knobs described above.

If you have special scenarios where you would like to handle uniquely, you can create a new
Work Manager and configure it to meet special circumstances. You will be either creating a
new application or a web application Work Manager. See Viewing and Creating Work Manager
Groups in Administering Oracle SOA Suite and Oracle Business Process Management Suite
for detailed procedures.

Chapter 13
Advanced Tuning for Work Managers

13-22

14
Tuning Oracle BPEL Process Manager

You can tune Oracle Business Process Execution Language (BPEL) Process Manager
properties to optimize its performance at the composite, fabric, application, and server levels.

• About BPEL Process Manager
Oracle BPEL Process Manager offers a comprehensive and easy-to-use infrastructure for
creating, deploying, and managing BPEL business processes.

• Tuning BPEL Parameters
You can tune BPEL parameters for optimal performance.

• Using Other Tuning Strategies
You can locate the Oracle BPEL Process Manager tables that are impacted by instance
data growth and purge them for optimal performance.

About BPEL Process Manager
Oracle BPEL Process Manager offers a comprehensive and easy-to-use infrastructure for
creating, deploying, and managing BPEL business processes.

BPEL is the standard for assembling a set of discrete services into an end-to-end process flow,
radically reducing the cost and complexity of process integration initiatives.

For an overview of Oracle BPEL Process Manager, see Oracle Business Process Execution
Language (BPEL) Process Manager under Key Components in Understanding Oracle SOA
Suite.

Tuning BPEL Parameters
You can tune BPEL parameters for optimal performance.

Tuning recommendations for BPEL parameters described here are likely or highly likely to
improve performance. For descriptions of the other tuning parameters available for SOA
Components, see the component-specific topics in this guide.

For detailed information on how to monitor, configure, and manage BPEL process service
components and service engines, see Administering BPEL Process Service Components and
Engines in Administering Oracle SOA Suite and Oracle Business Process Management Suite.
Also see Using the BPEL Process Service Component in Developing SOA Applications with
Oracle SOA Suite for how to use sensors to monitor select BPEL activities.

• Tuning BPEL Engine

• Tuning BPEL in a Composite

Tuning BPEL Engine
You can configure the performance tuning properties at the BPEL engine level by using the
Enterprise Manager Fusion Middleware Control. For information on using Oracle Enterprise
Manager Fusion Middleware Control to configure and monitor parameters, see Getting Started
with Administering Oracle SOA Suite and Oracle BPM Suite and Accessing the System MBean

14-1

Browser from the Component Property Pages in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

• Tuning BPEL Engine Parameters

Tuning BPEL Engine Parameters
Table 14-1 lists the essential tuning parameter that you can adjust to improve performance for
the BPEL engine.

Table 14-1 Essential BPEL Engine Tuning

Parameter Problem Tuning Recommendation Trade-offs

auditLevel
Default: Inherit

You are experiencing low
performance because of
frequent database inserts into
the audit_trail table.

Use the Off value to stop
storing audit information.

Note that the auditLevel is
set at the SOA Infrastructure
level. See Configuring BPEL
Process Service Engine
Properties in Administering
Oracle SOA Suite and Oracle
Business Process
Management Suite to see
how to find and tune this
parameter.

This property sets the audit
trail logging level for both
durable and transient
processes.

If you turn this off, both
business flow and payload
tracking is disabled. You
cannot view the state of
BPEL processes in the
Oracle Enterprise Manager
Console.

Table 14-2 describes additional BPEL engine parameters that can be tuned for small
performance improvements. Note that for most use cases, the default value is the
recommended value.

Table 14-2 Other BPEL Engine Tuning Knobs

Parameter Description

SyncMaxWaitTime
Default: 45 seconds.

You can decrease this parameter's value to improve
performance.

The SyncMaxWaitTime property sets the maximum time the
process result receiver waits for a result before returning.
This property is required for synchronous interactions and is
applicable to transient processes.

See How To Specify Transaction Timeout Values in
Developing SOA Applications with Oracle SOA Suite for
instructions on how to find this property in the System
MBean Browser of Oracle Enterprise Manager Fusion
Middleware Control.

Chapter 14
Tuning BPEL Parameters

14-2

Table 14-2 (Cont.) Other BPEL Engine Tuning Knobs

Parameter Description

largedocumentthreshold
Default: 10000 (100 kilobytes).

You can decrease this parameter's value to improve
performance.

This property sets the maximum size (in kilobytes) of a BPEL
variable before it is stored in a separate table from the rest of
the instance scope data. It is applicable to both durable and
transient processes.

Large XML documents can slow down the performance if
they are constantly used while processing an instance.

See Configuring BPEL Process Service Engine Properties in
Administering Oracle SOA Suite and Oracle Business
Process Management Suite to see how to find and tune this
parameter in the Enterprise Manager Fusion Middleware
Control.

validateXML
Default: False.

You should set this parameter to the default value of False
to improve performance.

This property can make the Oracle BPEL Process Manager
intercept nonschema-compliant payload data by validating
incoming and outgoing XML documents. However, XML
payload validation can slow performance.

You can find this parameter in the System MBean Browser.
See Configuring BPEL Process Service Engine Properties in
Administering Oracle SOA Suite and Oracle Business
Process Management Suite for information on how to find
advanced BPEL properties by using the More BPEL
Configuration Properties... button from the BPEL Service
Engine Properties page in Enterprise Manager Fusion
Middleware Control.

InstanceKeyBlockSize
Default: 10000 keys.

You can increase the instance key block size to a value
greater than the number of updates to the ci_id_range
table to improve performance.

The InstanceKeyBlockSize property controls the instance
ID range size. Oracle BPEL Server creates instance keys (a
range of process instance IDs) in batches by using the value
specified. After creating this range of in-memory IDs, the next
range is updated and saved in the ci_id_range table.

See Configuring BPEL Process Service Engine Properties in
Administering Oracle SOA Suite and Oracle Business
Process Management Suite to see how to find and tune this
parameter by using the System MBean Browser in Enterprise
Manager Fusion Middleware Control.

Audit Level Threshold

Default: 10000.

You can decrease this parameter's value to improve
performance.

This property sets the maximum size (in kilobytes) of an audit
trail details string before it is stored separately from the audit
trail. Strings larger than the threshold setting are stored in the
audit_details table instead of the audit_trail table.
In cases where the variable is very large, performance can
be severely impacted by logging it to the audit trail.

See Configuring BPEL Process Service Engine Properties in
Administering Oracle SOA Suite and Oracle Business
Process Management Suite to see how to find and tune this
parameter in Enterprise Manager Fusion Middleware Control.

Chapter 14
Tuning BPEL Parameters

14-3

Tuning BPEL in a Composite
Essential BPEL in a Composite Tuning

You can tune BPEL properties for individual composites to improve performance. The BPEL
properties set inside a composite affect the behavior of the component containing the BPEL
process only. Each BPEL process can be created as a component of a composite.

BPEL composite properties can be modified in the composite.xml file by using JDeveloper, or
in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control. For
in-depth descriptions of each property's function, see Deployment Descriptor Properties in
Developing SOA Applications with Oracle SOA Suite.

The BPEL tuning considerations listed in #unique_393/unique_393_Connect_42_CHDBJJBE
may not be applicable to all BPEL deployments. Always consult your own use case scenarios
to determine if these configurations should be used in your deployment. See How to Define
Deployment Descriptor Properties in the Property Inspector in Developing SOA Applications
with Oracle SOA Suite for information on how to find and edit the parameters listed below.

Parameter Problem Tuning Recommendation Trade-offs

OneWayDeliveryPolicy
Default: async.persist

Slow performance because
resources are being used to
persist delivery messages.

Set value to async.cache.
Incoming delivery messages
for durable processes are
kept only in the in-memory
cache.

By default, incoming requests
are saved in the delivery
service database table
dlv_message.

This setting has a high risk of
losing messages or
overloading the system. It
also changes the threading
model for adapter.

Audit Policy
Default: All activities

Slow performance because
every activity is being
audited.

Audit only key activities. Lower level activities do not
have an audit trail.

inMemoryOptimization
Default: False

Slow performance because
the
completionPersistPolicy
parameter has been activated
at the BPEL component level,
causing the BPEL server to
dehydrate either all or some
instances.

Set value to False to tell the
Oracle BPEL Server that this
process is a transient process
and dehydration is not
required.

No dehydration means that
activities in the instance are
lost if the system crashes.

#unique_393/unique_393_Connect_42_CHDGIHBI describes additional BPEL parameters that
can be tuned for small performance improvements, but in most cases, the default value is the
recommended value. For in-depth descriptions of each property's function, see Properties for
the partnerLinkBinding Deployment Descriptors in Developing SOA Applications with Oracle
SOA Suite.

Parameter Description

idempotent
Default: True

An idempotent activity is an activity that can be retried.
Keeping this parameter's value as True allows idempotent
activities by preventing the BPEL server from dehydrating
immediately after a failed activity.

This parameter is configured in a partner link at runtime in
BPEL.

Chapter 14
Tuning BPEL Parameters

14-4

Parameter Description

validateXML
Default: False

False means that the system does not validate all XML
messages during a receive activity.

This parameter is configured in a partner link at runtime in
BPEL.

Using Other Tuning Strategies
You can locate the Oracle BPEL Process Manager tables that are impacted by instance data
growth and purge them for optimal performance.

• Identifying Tables Impacted By Instance Data Growth

Identifying Tables Impacted By Instance Data Growth
Oracle BPEL Process Manager Tables Impacted by Instance Data Growth

Instance data occupies space in Oracle BPEL Process Manager schema tables. Data growth
from auditing and dehydration can have a significant impact on database performance and
throughput.

You can use #unique_395/unique_395_Connect_42_CHDDBGCA to locate tables that may be
affected by instance data growth. See Monitoring Space Usage, Hardware Resources, and
Database Performance in Administering Oracle SOA Suite and Oracle Business Process
Management Suite for advice on how to monitor performance for the following database tables:

Table Name Table Description

audit_trail Stores the audit trail for instances. The audit trail viewed in
Oracle BPEL Control is created from an XML document. As
an instance is processed, each activity writes events to the
audit trail as XML.

audit_details Stores audit details that can be logged through the API.
Activities such as an assign activity logs the variables as
audit details by default.

Audit details are separated from the audit_trail table due
to their large size. If the size of a detail is larger than the
value specified for this property, it is placed in this table.
Otherwise, it is placed in the audit_trail table.

cube_instance Stores process instance metadata (for example, the instance
creation date, current state, title, and process identifier)

cube_scope Stores the scope data for an instance (for example, all
variables declared in the BPEL flow and some internal
objects that help route logic throughout the flow).

dlv_message Stores incoming (invocation) and callback messages upon
receipt. This table only stores the metadata for a message
(for example, current state, process identifier, and receive
date).

dlv_subscription Stores delivery subscriptions for an instance. Whenever an
instance expects a message from a partner (for example, the
receive or onMessage activity) a subscription is written out
for that specific receive activity.

Chapter 14
Using Other Tuning Strategies

14-5

Table Name Table Description

document_ci_ref Stores cube instance references to the data stored in the
xml_document table.

document_dlv_msg_ref Stores references to dlv_message documents stored in the
xml_document table.

wftask Stores tasks created for an instance. The TaskManager
process keeps its current state in this table.

work_item Stores activities created by an instance. All activities in a
BPEL flow have a work_item table. This table includes the
metadata for the activity (current state, label, and expiration
date (used by wait activities)).

xml_document Stores all large objects in the system (for example,
dlv_message documents). This table stores the data as
binary large objects (BLOBs). Separating the document
storage from the metadata enables the metadata to change
frequently without being impacted by the size of the
documents.

Headers_properties Stores headers and properties information.

When you have determined which tables are causing slow performance, you can purge them.
See Understanding Growth Management Challenges and Testing Strategies in Administering
Oracle SOA Suite and Oracle Business Process Management Suite for more information on
managing database growth.

Chapter 14
Using Other Tuning Strategies

14-6

15
Tuning Oracle Mediator

You can tune Oracle Mediator to optimize its performance as the framework for mediation
between various providers and consumers of services and events.

• About Oracle Mediator
Mediator is a component of the Oracle SOA Suite offering that provides mediation
capabilities like selective routing, transformation and validation capabilities, along with
various message exchange patterns, like synchronous, asynchronous and event
publishing or subscription.

• Tuning Mediator Parameters
You can tune the Oracle Mediator properties to improve performance if necessary.

• Using Resequencer for Messages
A Resequencer is used to rearrange a stream of related but out-of-sequence messages
back into order.

About Oracle Mediator
Mediator is a component of the Oracle SOA Suite offering that provides mediation capabilities
like selective routing, transformation and validation capabilities, along with various message
exchange patterns, like synchronous, asynchronous and event publishing or subscription.

Oracle Mediator provides the framework to mediate between various providers and consumers
of services and events. The Mediator service engine runs with the SOA Service Infrastructure
Jakarta EE application.

Note:

For details about the SOA Suite, see Developing SOA Applications with Oracle SOA
Suite.

For details about Oracle Mediator, see Administering Oracle Mediator Service
Components and Engines in Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

Tuning Mediator Parameters
You can tune the Oracle Mediator properties to improve performance if necessary.

In most business environments, customer data resides in disparate sources including business
partners, legacy applications, enterprise applications, databases, and custom applications. The
challenge of integrating this data efficiently can be met by using Oracle Mediator to deliver real-
time data access to all applications that update or have a common interest in the same data.

15-1

Note:

Before you begin tuning Oracle Mediator properties, be sure that you have read and
understand the Oracle Mediator topics under Administering Oracle Mediator Service
Components and Engines in Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

Table 15-1 describes the parameter values that can be tuned for performance. Note that the
need to tune Mediator to improve performance is unlikely.

Table 15-1 Essential Mediator Tuning Knobs

Parameter Tuning Recommendation

DeferredMaxRowsRetrieved
Default: 20 rows

Increase the default value to retrieve more deferred
processing messages from the DB in one iteration.

Note that in Mediator, this parameter is only used with
parallel routing rules.

DeferredLockerThreadSleep
Default: 2 seconds

If deferred messages constitute a small percentage of total
messages, increase the default value to perform fewer trips
to the DB to retrieve deferred messages.

Some use case scenarios can benefit from an idle time of
3600 seconds (60 minutes).

metricsLevel
Default: enabled

If you do not need to collect DMS metrics data, disabling this
parameter can improve performance.

For more information about each parameter, see Configuring Oracle Mediator Service
Components and Engines in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Using Resequencer for Messages
A Resequencer is used to rearrange a stream of related but out-of-sequence messages back
into order.

It sequences the incoming messages that arrive in a random order and then sends them to the
target services in an orderly manner.

Table 15-2 lists the tunable parameters for Resequencer in Mediator. You can tune the
following parameters by accessing the Mediator Service Engine Properties page or the System
MBean Browser by using one of the methods described under Configuring Oracle Mediator
Service Engine Properties in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Table 15-2 Essential Tuning Knobs for Resequencer in Mediator

Parameter Tuning Recommendation

ResequencerMaxGroupsLocked
Default: 4 rows

Increase the default value to lock more Resequencer groups
from the database in one iteration.

Chapter 15
Using Resequencer for Messages

15-2

Table 15-2 (Cont.) Essential Tuning Knobs for Resequencer in Mediator

Parameter Tuning Recommendation

ResequencerLockerThreadSleep
Default: 10 seconds

If resequencer groups constitute a small percentage of total
groups and messages, increase the default value to perform
fewer trips to the database to lock resequencer groups.

DeleteMessageAfterComplete
Default: True

Set the value to True to delete message after successful
execution. For a high load use case, this results in more
database space.

Changing the default value to False retains the resequenced
messages in the resequencer database. This slows down the
resequencer database queries, which in turn degrades the
performance.

See Configuring Resequenced Messages in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

Chapter 15
Using Resequencer for Messages

15-3

16
Tuning Oracle Managed File Transfer

You can tune Managed File Transfer (MFT) to optimize its performance as the managed file
gateway.

• About Managed File Transfer
Oracle Managed File Transfer (MFT) is a high performance, standards-based, end-to-end
managed file gateway.

• Tuning MFT Parameters
You can tune MFT parameters to optimize performance.

About Managed File Transfer
Oracle Managed File Transfer (MFT) is a high performance, standards-based, end-to-end
managed file gateway.

It features design, deployment, and monitoring of file transfers using a lightweight web-based
design-time console that includes file encryption, scheduling, and embedded FTP and sFTP
servers.

For more information about Managed File Transfer, see Understanding Oracle Managed File
Transfer in Using Oracle Managed File Transfer.

Tuning MFT Parameters
You can tune MFT parameters to optimize performance.

Table 16-1 lists and describes parameters that you likely need to tune to improve MFT
performance. To diagnose problem areas in MFT, see Monitoring Oracle Managed File
Transfer and Administering Oracle Managed File Transfer in Using Oracle Managed File
Transfer.

Table 16-1 Essential MFT Tuning

Parameter Problem Tuning Recommendation Trade-offs

Processor count

Default: 2 for each type of
processor

JMS messages are
accumulating in message
processing queues.

Increase the processor count
for the queues where
messages are accumulating.

The optimal value depends
on the meta data and
incoming payload. You can
calculate the optimal
processor count by using
DMS metrics.

To enable DMS metrics, add
the MBean property
enablePerformanceMetric
. To disable metrics later, set
the value to False.

Having more processors
requires more system
resources for concurrent
processing.

16-1

Table 16-1 (Cont.) Essential MFT Tuning

Parameter Problem Tuning Recommendation Trade-offs

Maximum Concurrent
Request and Max Logins
settings for Embedded FTP/
SFTP server

Default: 10

• Multiple connection
requests in waiting status

• The message Too many
users logged in, user
will be disconnected
occurs in the embedded
server log file

Increase the maximum
number of concurrent
requests and maximum
number of logins for
embedded FTP/SFTP server.

You can increase the count
so long as performance
continues to scale linearly.

If the embedded server
service (FTP/SFTP) is not
being used, then disable this
setting.

Increased count requires
more system resources for
concurrent processing.

LDAP Max Pool

Default: 10
Number of concurrent
connections to the LDAP
consistently reaches max
limit.

Increase count.

Because LDAP is a shared
resource for all deployed
applications in WebLogic
server, you should monitor
LDAP connections and adjust
this value accordingly.

Increased count requires
more system resources.

Max connections to
MFTDataSource
Default: 50

Number of concurrent
connection to the data source
consistently reaches max
limit.

Increase the connection
count so long as performance
continues to scale linearly.

Optimal value can be
determined based on the
number of processors,
listening source threading
model, and max concurrent
request settings of embedded
servers.

Increased count requires
more system resources.

Generating checksum setting

Default: Enabled
Overall MFT message
processing is slow.

Disable this parameter if
checksum validation for
delivered payloads from MFT
is not necessary.

Generating checksum is a
time consuming operation.

Regular purge

Default: Disabled
• Disk space is

approaching the
maximum limit.

• Table space used by
MFT tables reaches the
max table space allotted.

Run purge to free disk or
table space.

Historical information or data
is discarded.

Table 16-2 describes the tuning properties that do not regularly need to be tuned. Keeping their
default values is recommended, so you can check these parameters see if their values have
been changed.

Chapter 16
Tuning MFT Parameters

16-2

Table 16-2 MFT Parameters with Low or Medium Importance

Parameter Problem Tuning Recommendation Trade-offs

Processing function or callout
usage recommendation for
broadcasting use cases

Default: Target Level

Associated processing
function or callout is executed
for each target that degrades
the performance.

For broadcasting use cases,
associate processing
functions or callouts at source
level instead of target level as
much as possible.

None.

Sub-folder count MBean
setting

Default: 256

Degraded disk performance
caused by MFT switching
among a high number of sub-
folders to store files.

Reduce the sub-folder count. Reducing the number of sub-
folders increases the number
of files stored in each sub-
folder. If the volume of
incoming files is high, the
number of the files inside a
single sub-folder degrades
performance.

Store Inline payload setting

Default: File System
Slow performance because
accessing inline payload for
Web Service sources from
the disk takes too much time.

Store inline payload in the
database rather than the file
system.

The table size used by MFT
increases as inline payloads
are stored in the database.

Always Save Modified
Files setting at the target
level

Default: False

If you have changed this
setting to True for auditing
purposes, you will have
increased the disk space
usage.

The default value of False
reduces disk space usage.

No audit information is
available.

Note that a target level
resubmit does not work if
there was any pre-processing
associated with the target.

minFileSizeForProgressM
onitor
Default: 10 MB

Frequent updates about byte
transfer.

Specify a minimum file size
so that the transfer progress
screen appears for larger files
only.

For files smaller than the
minimum specified, the file
transfer progress is not
displayed.

progressMonitorTimeToCo
mmit MBean

Default: 4 seconds

Frequent updates about byte
transfer.

Specify a minimum file size
so that the transfer progress
screen appears for larger files
only.

Database updates on bytes
transferred for ongoing file
transfers are slower.

MaxMdsSessionCacheCount
Default: 100

Out-of-memory exceptions
caused by MDS cache
memory footprint.

Decrease this value. Decreasing this will decrease
the performance of the overall
MFT message processing
because accessing data from
the cache is faster.

• Tuning Remote FTP / SFTP/ FILE Type Sources

• Minimizing MDS label

• Adjusting the Materialized Views Refresh Interval

Tuning Remote FTP / SFTP/ FILE Type Sources
If MFT is not able to pick up files even after the polling frequency is expired, you need to tune
the remote FTP/SFTP/FILE type sources. MFT uses the JCA Adapters underneath for all these
source types. Refer to the SOA adapter recommendations listed under Oracle JCA Adapter
Framework Performance and Tuning in Understanding Technology Adapters.

Table 16-3 lists the properties.

Chapter 16
Tuning MFT Parameters

16-3

Table 16-3 Tuning Remote FTP/SFTP/FILE Type Source

Parameter Problem Tuning Recommendation Trade-offs

ThreadCount
Default: -1

A high priority endpoint is
downloading files slowly
because of insufficient
threads in the global pool.

Specify a value greater than
0. This creates a dedicated
thread pool for a given end
point to download files.

A very high value may result
in lots of threads assigned to
one end point, which can lead
to lower overall performance.

SingleThreaded
Default: False

In rare cases, you may not
want to use global threads or
allocate a separate thread
pool for a low-priority end
point.

Set value to True. If set to true, it can result in a
delay in downloading files
from the end point as now
there is a single thread for
polling as well as
downloading new files.

Minimizing MDS label
Artifact deployment results in creation of new MDS labels. More MDS labels increases the
memory footprint and time to retrieve the metadata.

In general, users should follow these best practices for deployments:

• Minimize frequent deployments and meta data creations.

• Use bulk deployment for WLST commands.

• Make all changes for metadata and deploy them at once.

Adjusting the Materialized Views Refresh Interval
Materialized views refresh every 1 minute. If there is a heavy load on the database server, you
may want to increase the refresh frequency from 1 minute.

You can view data from materialized views on the MFT console. If a high load is observed on
the database server, this refresh frequency can be adjusted by using the following command:

ALTER MATERIALIZED VIEW <<MV_NAME>> REFRESH NEXT <<REFRESH_INTERVAL>>;

The materialized views used by MFT are:

• MV_MFT_PAYLOAD_INFO
• MV_MFT_SOURCE_INFO
• MV_MFT_SOURCE_MESSAGE
• MV_MFT_TARGET_INFO
• MV_MFT_TRANSFER
• MV_MFT_TRANSFER_COUNT_INFO

Chapter 16
Tuning MFT Parameters

16-4

17
Tuning Oracle Business Rules

You can tune Oracle Business Rules to optimize its performance in enabling automation of
business rules and extraction of business rules from procedural logic, such as Java code or
BPEL processes.

• About Oracle Business Rules
Oracle Business Rules provides an easy-to-use authoring environment as well as a very
high-performance inference-capable rules engine.

• Tuning Oracle Business Rules
You can tune Oracle Business Rules to optimise performance.

About Oracle Business Rules
Oracle Business Rules provides an easy-to-use authoring environment as well as a very high-
performance inference-capable rules engine.

Oracle Business Rules is part of the Oracle Fusion Middleware stack and is a core component
of many Oracle products including both middleware and applications.

See Designing Business Rules with Oracle Business Process Management and Getting
Started with Oracle Business Rules in Developing SOA Applications with Oracle SOA Suite.

Tuning Oracle Business Rules
You can tune Oracle Business Rules to optimise performance.

In most cases, writing of Rules should not require a focus on performance. However, as in any
technology, there are tips and tricks that can be used to maximize performance when needed.
Most of the considerations are focused on the initial configuration of the data model.

Table 17-1 Essential Business Rules Tuning Strategies

Strategy Description Recommendation

Use Java Beans The rule engine is most efficient when
the facts it is reasoning on are Java
Beans (or RL classes) and the
associated tests involve bean
properties.

The beans should expose the get and
set methods (if set is allowed) for each
bean property.

If application data is not directly
available in Java Beans, flatten the data
to a collection of Java Beans that are
asserted as facts (and used in the
rules).

Assert child facts instead of multiple
dereferences

Expressions like
Account.Contact.Address involve
more than one object dereference. In a
rule condition, this is not as efficient as
expressions with single dereferences.

It is a best practice to flatten fact types
as much as possible.

If the fact type has a hierarchical
structure, consider using the
assertXPath method or other means
to assert object hierarchy.

17-1

Table 17-1 (Cont.) Essential Business Rules Tuning Strategies

Strategy Description Recommendation

Avoid side effects in rule conditions The tests in a rule condition may be
evaluated a greater or lesser number of
times than would occur in a procedural
program.

Methods or functions, which have side
effects such as changing a value or
state should not be used in a rule
condition.

If a method or function has side effects,
those side effects may be performed an
unexpected number of times.

Avoid expensive operations in rule
conditions

Expensive operations would include any
operation that involves I/O (disk or
network) or even intensive
computations. These operations should
be done externally to the rules engine.

Expensive operations should be avoided
in rule conditions. In general, consider
avoiding I/O or DBMS access from the
rules engine directly.

For other expensive operations or
calculations, consider performing the
computations and assert the results as
a Java or RL fact. These facts are used
in the rule conditions instead of the
expensive operations.

Consider pattern ordering Reordering rule patterns can improve
the performance of rule evaluation in
time, memory use, or both. Finding the
optimal order for your system requires
some experimentation.

If a fact is not expected to change or
does not change frequently during rule
evaluation, order the fact clauses by the
expected rate of change from least to
greatest.

If a fact clause (including any tests that
involve only that fact) is expected to
match fewer facts than other fact
clauses in the rule condition, order the
fact clauses from most restrictive
(matches fewest facts) to least
restrictive.

Consider the ordering of tests in rule
conditions

Proper ordering can reduce the amount
of computation required for facts that do
not satisfy the rule condition.

The tests in a rule condition should be
ordered so that a more restrictive test
occurs before a less restrictive test.

If the degree of restrictiveness is not
known, or estimated to be equal for a
collection of tests, then simpler tests
should be placed before more
expensive tests.

• Exerting assertXPath Support

Exerting assertXPath Support
The assertXPath method asserts the whole hierarchy in one call, but also asserts some XLink
facts for children facts to link back to parent facts. Though very convenient, it may have a
performance impact.

To improve the performance of the assertXPath method, select the Enable improved
assertXPath support for performancecheck box in the Dictionary Properties page in Rule
Author. Taking advantage of this requires that the following conditions are met:

• The assertXPath method is only invoked with an XPath expression of "//*". Any other
XPath expression results in an RLIllegalArgumentException.

Chapter 17
Tuning Oracle Business Rules

17-2

• XLink facts should not be used in rule conditions as the XLink facts are not asserted.

If XLink facts for children facts are not needed, and you need to assert only a few levels as
facts, it is better to turn off the Supports XPathfor the relevant fact types and then use a
function to do custom asserts. Instead of using the assertXPath method, the following example
uses a function to assert ExpenseReport and ExpenseLineItems:

function assertAllObjectsFromList(java.util.List objList)
{
 java.util.Iterator iter = objList.iterator();
 while (iter.hasNext())
 {
 assert(iter.next());
 }
}

function assertExpenseReport (demo.ExpenseReport expenseReport)
{
 assert(expenseReport);
 assertAllObjectsFromList(expenseReport.getExpenseLineItem());
}

Chapter 17
Tuning Oracle Business Rules

17-3

18
Tuning Oracle Business Process Management

You can tune Oracle Business Process Management to optimize its performance in providing a
seamless integration of all stages of the application development life cycle from design-time
and implementation to runtime and application management.

• About Oracle Business Process Management
The Oracle Business Process Management Suite provides an integrated environment for
developing, administering, and using business applications centered around business
processes.

• Tuning Business Process Management Parameters
You can tune BPM performance parameters in the Enterprise manager, through the SOA
Administration in BPMN properties.

• Using Other Tuning Strategies
You can consider using the following strategies to further improve performance.

About Oracle Business Process Management
The Oracle Business Process Management Suite provides an integrated environment for
developing, administering, and using business applications centered around business
processes.

Oracle Business Process Management is layered on the Oracle SOA Suite and shares many
of the same product components, including Business Rules, Human Workflow, and Oracle
Adapter Framework for Integration.

See,Oracle Fusion Middleware User's Guide for Oracle Business Process Management.

For more details on tuning Oracle Business Process Management with your other Oracle
Fusion Middleware components, see .

Tuning Business Process Management Parameters
You can tune BPM performance parameters in the Enterprise manager, through the SOA
Administration in BPMN properties.

To tune the performance of the Oracle Business Process Management engine, you can reduce
resource demands to reduce latency.

To reduce resource demands, you can tune the parameters listed in Table 18-1:

18-1

Table 18-1 Essential Business Process Management Tuning to Reduce Resource Demands

Parameter Problem Tuning Recommendation Trade-offs

largedocumentthreshold
Default: 10000 (100
kilobytes)

Instances are being
processed slowly because
you are storing large BPMN
Data objects.

Decrease the maximum size
(in kilobytes) of this
parameter to limit the size of
BPMN Data Objects. If they
surpass this limit, they are
stored in a separate location
from the rest of the instance
scope data.

This property is applicable to
both durable and transient
processes.

The overflow data is stored in
an external append-only
table. This adds to overall
database size and can
increase the overall workload
when loading instances from
the database.

auditLevel
Default: Inherit from
Infrastructure

You are seeing frequent
database inserts into the
audit_trail table. These
are caused by audit events
being logged by a process.

Reduce or disable audit. You
can switch to any of the
following settings:

• Off to log no events or
audit events

• Minimal to log only
events

• Error to log only serious
problems

You can also consider
expanding the size of the
AuditKeyExtents.

You lose granular error
reporting that you could use
to diagnose problems later.
Always choose the audit level
according to your business
requirements and use cases.

For more information on how
to use audit trails for
monitoring, see Monitoring
BPMN Process Service
Components and Engines in
Administering Oracle SOA
Suite and Oracle Business
Process Management Suite.

You can also try to purge completed instances as allowed by business requirements and add
indexes for any flex fields.

Using Other Tuning Strategies
You can consider using the following strategies to further improve performance.

• Tuning Oracle Workspace Applications

• Tuning Process Measurement

Tuning Oracle Workspace Applications
Database performance and session state management are the primary drivers for
performance. Effective database tuning and configuration of HTTP session timeout are
important.

Application design is the next largest factor, especially if there are additional data controls used
to render contextual data on task forms. In these cases, it is important to optimize data access
from those data controls and when possible defer retrieving additional data unless it is needed.
For more details on tuning ADF, see Oracle ADF Faces Configuration and Profiling.

The following parameters can be changed in the web.xml descriptor in the
OracleBPMWorkspace web application. Once they have been modified, you may have to
redeploy.

Chapter 18
Using Other Tuning Strategies

18-2

Table 18-2 Workspace and Worklist Application Tuning

Parameter Problem Tuning Recommendation Trade-offs

HTTP Session Timeout
Default: 15 minutes

Memory is being allocated for
users who may no longer be
actively using the system.

To better manage resource
usage, decrease the session
timeout value, in minutes, to
the smallest value that
preserves the expected user
experience. This allows the
system to reclaim any
resources that are associated
with unused sessions as soon
as possible.

This parameter is edited in
the in the web.xml file. The
following is a sample snippet
of theweb.xml file:

<session-config>
 <session-timeout>
 5
 </session-timeout>
</session-config>

A short timeout value may
mean users have to login
more often if they let the time
expire. They also may
potentially lose session data.

ADF Client State Token
Default: 15

The default value may
consume too much memory.

Decrease the value to 3 to
minimize the memory
footprint.

Through this setting, you can
control the number of pages
users can navigate by using
the browser Back button
without losing information. To
reduce CPU and memory
usage, you can decrease the
value in the web.xml file.

The following is a sample
snippet of theweb.xml file:

<context-param>
 <param-name>
org.apache.myfaces.trinid
ad.CLIENT_STATE_MAX_TOKEN
S
 </param-name>
 <param-value>
 3
 </param-value>
</context-param>

If the user clicks the Back
button more than 3 times,
there is no session data
stored for that page.

If the value is too small, users
get an error when they click
the Back button.

Chapter 18
Using Other Tuning Strategies

18-3

Table 18-2 (Cont.) Workspace and Worklist Application Tuning

Parameter Problem Tuning Recommendation Trade-offs

Compress_View_State
Token
Default: True

Slow performance on slower
or higher latency networks.

Set this value to True to
enable zipping. By default,
this value is set to True.

This setting controls whether
the page state is
compressed. Zipping greatly
reduces the memory being
taken up by page state in the
session object.

The following is a snippet of
theweb.xmlfile:

<param-
name>org.apache.myfaces.t
rinidad.COMPRESS_VIEW_STA
TE</param-name>
 <param-value>true</
param-value>

There is an additional CPU
cost to zipping and unzipping
the view state.

DISABLE_CONTENT_COMPRES
SION
Default: False

Slow initial load of pages. In production environments,
make sure you remove the
DISABLE_CONTENT_COMPRES
SION parameter from the
web.xml file or set it to
FALSE. By default, style
classes that are rendered are
compressed to reduce page
size.

The following is a snippet of
theweb.xmlfile:

<param-
name>org.apache.myfaces.t
rinidad.DISABLE_CONTENT_C
OMPRESSION</param-name>
 <param-value>false</
param-value>

None.

Tuning Process Measurement
Process Analytics uses measurement events to sample the process and publish
measurements to registered consumers. In 19c (19.1.0.0.0), these measurements can be
enabled by setting the DisableAnalytics parameter to False in the BPM Enterprise Manager's
Analytics Configuration MBean.

The two supported consumers for measurements in 12c are BAM 11g Monitor Express and
BAM 12c Process Metrics. They can be enabled or disabled by using the
DisableProcessMetrics and DisableMonitorExpress attributes of the AnalyticsConfig
mbean.

Chapter 18
Using Other Tuning Strategies

18-4

Note:

Only data that is useful should be published. The process design specifies what data
(dimensions, measure, and counters) should be published and at what points. If data
is being generated that is not useful, then it could be adding unnecessary load to the
system.

Measurement events are published on the JMS Topic: MeasurementTopic, and consumed by
registered Action MDBs. To tune JMS for Measurements, consider changing the parameters
listed in Table 18-3, as needed, in a high volume environment:

Table 18-3 Essential JMS Resource Tuning for BPM

JMS Resource Problem Tuning Recommendation Trade-offs

dist_MeasurementTopic_a
uto
Default: Forwarding
Policy Replicated

A distributed measurement
topic in a cluster installation is
configured by default with
FORWARDING POLICY
REPLICATED even though
this is not the best
performance option for BPM
analytics.

Change the Forwarding
Policy for this parameter to
PARTITIONED.

This parameter can be
altered in the WebLogic
console. You can find it from
the front page with the
following options: JMS
Modules ->
BPMJMSModule ->
dist_MeasurementTopic_au
to. You need to restart all
SOA BPM cluster nodes for
the changes to take effect.

A distributed topic with a
Partitioned policy
generally outperforms the
FORWARDING POLICY
REPLICATED.

For more information on
distributed topics versus other
topic types, see Supported
Topic Types in Developing
Message-Driven Beans for
Oracle WebLogic Server.

For more information on
partitioned and replicated
forwarding policies, see
Configuring Partitioned
Distributed Topics in
Administering JMS
Resources for Oracle
WebLogic Server.

MeasurementTopicConnect
ionFactory
Default: Send Timeout
200000

You have a high volume
environment and you are
receiving frequent resource
allocation exceptions from
message producers.

For more information, see
Defining a Send Timeout on
Connection Factories in
Tuning Performance of Oracle
WebLogic Server.

Increase the Send Timeout
for this parameter to 240000
in a high volume environment.

The numerical value
represents the maximum
length of time in milliseconds.

This parameter can be
altered in the WebLogic
console. You can find it from
the front page with the
following options: JMS
Modules ->
BPMJMSModule -->
MeasurementTopicConnect
ioNFactory --> Default
Delivery.

You may create a message
backlog that consumes
memory and resources.

Chapter 18
Using Other Tuning Strategies

18-5

Table 18-3 (Cont.) Essential JMS Resource Tuning for BPM

JMS Resource Problem Tuning Recommendation Trade-offs

MeasurementQuota
Defaults: Message Maximum
1000000 and Bytes
Maximum 800000000

Measurement messages
cannot be published and fails
with
javax.jms.ResourceAlloc
ationException thrown.

Set the Message Maximum
and Bytes Maximum for this
parameter equal to the
amount of system memory
available after you have
accounted for the rest of your
application load.

The MeasurementQuota
attributes can be altered in
the WebLogic console. You
can find it from the front page
with the following options:
JMS Modules ->
BPMJMSModule ->
MeasurementQuota.

Increasing this value
consumes more memory.
Message delivery may still fail
if the aggregate size of
messages pushed to the
consumer is larger than the
current protocol's maximum
message size.

For more information about
measurement quotas, see
Tuning for Large Messages in
Tuning Performance of Oracle
WebLogic Server.

BPMJMSServer
Default: MessageBuffer
size 100000

The JMS server is frequently
writing message bodies to
disk.

Increase the Message Buffer
Size for a given
BPMJMSServer.

Note that the BPMJMSServer
uses Paging File and
JMSFileStore.

This parameter can be
altered in the WebLogic
console. You can find it from
the front page with the
following options: JMS
Servers_auto_number.

The JMS server uses more
memory.

Chapter 18
Using Other Tuning Strategies

18-6

19
Tuning Oracle Human Workflow

You can tune Oracle Human Workflow to optimize its performance in handling various aspects
of human interaction with a business process.

• About Oracle Human Workflow
Oracle Human Workflow is a service engine running in Oracle SOA Service Infrastructure
that allows the execution of interactive human driven processes.

• Tuning Human Workflow
You can tune Oracle Human Workflow to optimize its performance in handling the various
aspects of human interaction with a business process.

• Using Other Tuning Strategies
You can consider using the following strategies to further improve performance.

About Oracle Human Workflow
Oracle Human Workflow is a service engine running in Oracle SOA Service Infrastructure that
allows the execution of interactive human driven processes.

A human workflow provides the human interaction support such as approve, reject, and
reassign actions within a process or outside any process. The Human Workflow service
consists of a number of services that handle the various aspects of human interaction with a
business process.

For more information, see Using the Human Workflow Service Component in Developing SOA
Applications with Oracle SOA Suite.

See also the Oracle Human Workflow web site at http://www.oracle.com/technetwork/
middleware/human-workflow/overview/index.html

Tuning Human Workflow
You can tune Oracle Human Workflow to optimize its performance in handling the various
aspects of human interaction with a business process.

The suggestions presented here are all applicable to API usage.

19-1

http://www.oracle.com/technetwork/middleware/human-workflow/overview/index.html
http://www.oracle.com/technetwork/middleware/human-workflow/overview/index.html

Table 19-1 Essential Human Workflow Tuning Strategies

Name Description Recommendation

Minimize Client Response Time Since workflow client applications are
interactive, it is important to have good
response time at the client.

Some of the factors that affect the
response time include service call
performance impacts, querying time to
determine the set of qualifying tasks for
the request, and the amount of
additional information to be retrieved for
each qualifying task.

Review your performance metrics to
determine how response time can be
improved.

Choose the Right Workflow Service
Client

Remote client is the best option in terms
of performance in most cases. If the
client is running in the same JVM as the
workflow services (soa-infra
application), the API calls are optimized
so that there is no remote method
invocation (RMI) involved. If the client is
on a different JVM, then RMI is used,
which can impact performance due to
the serialization and deserialization of
data between the API methods.

SOAP client is preferred for
standardization (based on web
services). There are additional
performance considerations compared
to the remote method invocation (RMI)
used in the remote client. Additional
processing is performed by the web
services technology stack, which
causes the marshalling and
unmarshalling of API method arguments
between XML.

If the client application is based on
Jakarta EE technology, then consider
which client should be used based on
your use case scenarios.

Note that if the client application is
based on .Net technologies, then only
the SOAP workflow services can be
used.

Narrow Qualifying Tasks Using Precise
Filters

When a task list is retrieved, the query
should be as precise as possible so the
maximum filtering can be done at the
database level.

Use precise filters to improve response
time.

Retrieve Subset of Qualifying Tasks
(Paging)

The query API has paging parameters
that control the number of qualifying
rows returned to the user and the start
row.

Decrease the startRow and endRow
parameters to values that may limit the
number of returned records. This
decreases the query time, the
application process time, and the
amount of data returned to client.

Fetch Only the Information That Is
Needed for a Qualifying Task

Typically only some of the payload fields
are needed for displaying the task list.

When you use the queryTask service,
consider reducing the amount of
optional information retrieved for each
task returned in the list.

In rare cases where the entire payload
is needed, then the payload information
can be requested.

Reduce the Number of Return Query
Columns

When you use the queryTask service,
consider reducing the number of query
columns to improve the SQL time.

Try to use the common columns as they
are the most likely indexed columns.
This allows the SQL to execute faster.

Chapter 19
Tuning Human Workflow

19-2

Table 19-1 (Cont.) Essential Human Workflow Tuning Strategies

Name Description Recommendation

Use the Aggregate API for Charting
Task Statistics

Sometimes it is necessary to display
charts or statistics to summarize task
information.

Consider using the new aggregate APIs
to compute the statistics at the database
level rather than fetching all the tasks by
using the query API and computing the
statistics at the client layer.

Use the Count API Methods for
Counting the Number of Tasks

Sometimes it is only necessary to count
how many tasks exist that match certain
criteria.

Call the countTasks API method,
which returns only the number of
matching tasks.

Create Indexes On Demand for
Flexfields

The workflow schema table WFTASK
contains several flexfield attribute
columns that can be used for storing
task payload values in the workflow
schema. Because there are numerous
columns, and their use is optional, the
installed schema does not contain
indexes for these columns.

Create indexes on these columns in
certain cases where certain mapped
flexfield columns are frequently used in
query predicates.

Use the doesTaskExist Method Sometimes it is necessary to check
whether a task exists that matches a
particular query criteria.

Consider using the doesTaskExist
method instead of the default
countTasksmethod.

The doesTaskExist method performs
an optimized query that checks if any
rows exist that match the specified
criteria. This method may achieve better
results than calling the countTasks
method.

Using Other Tuning Strategies
You can consider using the following strategies to further improve performance.

• Improving Server Performance

• Completing Workflows Faster

• Tuning the Identity Provider

• Tuning the Database

Improving Server Performance
Essential server performance tuning strategies

Server performance essentially determines the scalability of the system under heavily loaded
conditions. In Tuning Human Workflow, strategy Minimize Client Task Response Time lists
several ways in which client response times can be minimized by fetching the right of amount
of information and reducing the potential performance impact that is associated with querying.
These techniques also reduce the database and service logic performance impacts on the
server and can improve server performance. In addition, a few other configuration changes can
be made to improve server performance:

Chapter 19
Using Other Tuning Strategies

19-3

Name Description Recommendation

Archive Completed Instances
Periodically

The database scalability of a system is
largely dependent on the amount of
data in the system. Since business
processes and workflows are temporal
in nature, once they are processed, they
are not queried frequently.

Consider using an archival scheme to
periodically move completed instances
to another system that can be used to
query historical data. Archival should be
done carefully to avoid orphan task
instances.

Select the Appropriate Workflow
Callback Functionality

The workflow callback functionality can
be used to query or update external
systems after any significant workflow
event, such as assignment or task
completion.

Ensure that there are sufficient
resources to update the external system
after the task is completed instead of
after every workflow event.

If a callback cannot be avoided, then
consider using a Java callback instead
of a BPEL callback. Java callbacks do
not have the performance impact that is
associated with a BPEL callback since
the callback method is executed in the
same thread.

Minimize Performance Impacts from
Notification

Notifications are useful for alerting users
that they have a task to execute. In
environments where most approvals
happen through email, actionable
notifications are especially useful. This
also implies that there is not much load
in terms of worklist usage.

Minimize the notification to alert a user
only when a task is assigned instead of
sending out notifications for each
workflow event.

Also consider making the notifications
secure, in which case only a link to the
task is sent in the notification and not
the task content itself.

Deploy Clustered Nodes All workflow instances and state
information are stored in the dehydration
database. Workflow services are
stateless, which means they can be
used concurrently on a cluster of nodes.

When performance is critical and a
highly scalable system is needed, a
clustered environment can be used for
supporting workflow.

Completing Workflows Faster
Essential workflow completion tuning strategies

The time it takes for a workflow to complete depends on the routing type that is specified for
the workflow. The workflow functionality provides some options that can be used to decrease
the amount of time it takes to complete workflows.

Name Description Recommendation

Use Workflow Reports to Monitor
Progress

Several workflow reports (and
corresponding views) are available that
can make monitoring and proactive
problem fixing easier.

By checking the unattended tasks
report, you can assign tasks that have
been in the queue for a long time to
specific users.

By monitoring cycle time and other
statistics, you can add staff to groups
that are overloaded or take a longer
time to complete their tasks.

Chapter 19
Using Other Tuning Strategies

19-4

Name Description Recommendation

Specify Escalation Rules To ensure that tasks do not get stuck at
any user, you can specify escalation
rules. For example, you can move a task
to a manager if a certain amount of time
passes without any action being taken
on the task. If the task must be
escalated to some other user based on
alternative routing logic, custom
escalation rules can also be plugged in.

By specifying proper escalation rules,
you can reduce workflow completion
times.

Specify User and Group Rules for
Automated Assignment

Rules can help significantly reduce
workflow waiting time, which results in
faster workflow completion.

Instead of manually reassigning tasks to
other users or members of a group, you
can use user and group rules to perform
automated reassignment. This ensures
that workflows get timely attention.

Use Task Views to Prioritize Work A user's inbox can contain tasks of
various types with various due dates.
The user has to manually shift through
the tasks or sort them to find out which
one the user should work on next.

By creating task views where tasks are
filtered based on due dates or priority,
users can get their work prioritized
automatically so they can focus on
completing their tasks instead of
wasting their time on deciding which
tasks to work on.

Tuning the Identity Provider
The workflow service uses information from the identity provider in constructing the SQL query
to determine the tasks that qualify for a user based on the role or group membership. The
identity provider is also queried for determining role information to determine privileges of a
user when fetching the details of a task and determining what actions the user can perform on
a task. There are a few ways to speed up requests made to the identity provider.

• Set the search base in the identity configuration file to the nodes as specific as possible.
Ideally, you should populate workflow-related groups under a single node to minimize
traversal for search and lookup. This is not always possible; for example, you may need to
use existing groups and grant membership to groups located in other nodes. If it is
possible to specify filters that can narrow down the nodes to be searched, then you should
specify them in the identity configuration file.

• Index all critical attributes such as dn and cn in the identity provider. This ensures that
when a search or a lookup is done, only a subset of the nodes are traversed instead of a
full tree traversal.

• Use an identity provider that supports caching. Not all LDAP providers support caching but
Oracle Internet Directory supports caching, which can make lookup and search queries
faster.

• If you use Oracle Internet Directory as the Identity Provider, ensure that you run the
oidstats.sql to gather latest statistics on the database after the data shape has changed.

Tuning the Database
The Human Workflow schema is shipped with several indexes defined on the most important
columns. Based on the type of request, different SQL queries are generated to fetch the task
list for a user. The database optimizer evaluates the cost of different plan alternatives (for
example, full table scan, access table by index) and decides on a plan that is lower in cost. For
the optimizer to work correctly, the index statistics should be current at all times. As with any

Chapter 19
Using Other Tuning Strategies

19-5

database usage, it is important to make sure that the database statistics are updated at regular
intervals and other tunable parameters such as memory, table space, and partitions are used
effectively to get maximum performance.

For more information on tuning the database, see Tuning Database Parameters.

Chapter 19
Using Other Tuning Strategies

19-6

20
Tuning Oracle Business Activity Monitoring

You can tune Oracle Business Activity Monitoring (BAM) to optimize its performance in
monitoring business services and processes in the enterprise.

• About Oracle Business Activity Monitoring
Oracle Business Activity Monitoring (BAM) provides the tools for monitoring business
services and processes in the enterprise.

• Tuning BAM Server Parameters
You can improve performance of the BAM server by following certain tuning
recommendations.

• Other Tuning Strategies
If Oracle BAM is running more slowly than expected, you can try other tuning strategies.

About Oracle Business Activity Monitoring
Oracle Business Activity Monitoring (BAM) provides the tools for monitoring business services
and processes in the enterprise.

It allows correlation of market indicators to the actual business process and to change
business processes quickly or taking corrective actions if the business environment changes.

Oracle BAM also provides the necessary tools and runtime services for creating dashboards
that display real-time data inflow and define rules to send alerts under specified conditions.

For information on how to monitor your BAM installation's performance, see Monitoring Oracle
BAM Performance in Monitoring Business Activity with Oracle BAM.

Tuning BAM Server Parameters
You can improve performance of the BAM server by following certain tuning recommendations.

BAM performance largely depends on the performance of the following components:

• The Weblogic Server. See Tuning Performance of Oracle WebLogic Server.

• Metadata Service. See Tuning Oracle Metadata Service.

• Coherence. See Administering Oracle Coherence.

• ADF. See Tuning Oracle Application Development Framework (ADF).

• Database Settings. See Tuning Database Parameters.

• Java Virtual Machines (JVMs). See Tuning Java Virtual Machines (JVM) in Tuning
Performance of Oracle WebLogic Server.

• Oracle Platform Security Service. See Tuning Oracle Fusion Middleware Security .

BAM performance also depends on good data object design strategies at design time and on
having good data object purging strategies at runtime.

While BAM 12c can support much larger transaction volumes (data arrival rates into BAM),
BAM 12c is an operational analytics product, not a business intelligence product.

20-1

Hence, it is recommended that data that is of analytical value for operational decision-making
be kept in BAM. For most customers, this means storing about 5-30 days of transactional data
in BAM. Resting data sizes typically comparable to a data warehouse are not useful for
operational decision-making, so such data volumes do not constitute a mainstream use case
for BAM 12c.

The tuning suggestions listed and described in Table 20-1 can be used to improve
performance of the BAM Server:

Table 20-1 Essential BAM Server Tuning

Parameter Problem Tuning Recommendation Trade-offs

Max connections to
BAMDatasource
Default: 50

The number of concurrent
connection to the data source
consistently reaches max
limit.

Increase count as long as the
performance continues to
scale linearly.

This is set at the WebLogic
level. The value can be
determined mainly based on
the number of processors,
listening source threading
model and max concurrent
request settings of embedded
servers.

Increasing the count will most
likely increase the system
resources usage.

Viewset Expiry Time
Default: 180 seconds

Viewsets are lingering after
the DC connection is lost.

Decrease the expiry time
value so that viewsets do not
linger.

See Monitoring Viewsets in
Monitoring Business Activity
with Oracle BAM for
information on how to find
and modify this parameter.

None.

DiagnosticLevel
Default: Info

You need granular diagnostic
logs to identify a problem.

OR

Your system is running fine
and you do not need detailed
logs.

Keeping the default of INFO
will help performance.

For more information on
using the BAM Diagnostic
Framework, see Using the
BAM Diagnostic Framework
in Monitoring Business
Activity with Oracle BAM.

If your system slows down,
you do not have detailed logs
to identify a problem.

ASM (Automatic Server
Migration)
Default: WSM

You want to migrate a SOA
Suite installation with BAM to
High Availability. Because
BAM is a real-time system,
you should enable ASM.

ASM is used so High
Availability can occur faster
than WSM. Given that BAM is
a real-time system, ASM is
required for BAM HA.

None.

JVM heap size
Default: -Xms768m -
Xmx1536m

Oracle BAM is running slowly
and an out-of-memory
exceptions occur.

Increase the heap size to 2
GB. Use the following
command with the -
Xms2048m and -Xmx2048m
arguments:

setenv USER_MEM_ARGS "-
Xms2048m -Xmx2048m -
XX:PermSize=256m -
XX:MaxPermSize=768m"

Increasing the JVM heap size
for BAM could affect other
SOA components.

For more heap size tuning
tips, see Tuning Tips for Heap
Sizes in Tuning Performance
of Oracle WebLogic Server.

Chapter 20
Tuning BAM Server Parameters

20-2

Other Tuning Strategies
If Oracle BAM is running more slowly than expected, you can try other tuning strategies.

• Creating an Index Column

• Tuning Loggers

• Tuning Continuous Query Service

Creating an Index Column
If throughput of data into a data object from an Enterprise Message Source or other source is
slow, create an index column for the primary key column. See Adding Index Columns in
Monitoring Business Activity with Oracle BAM for more information.

Tuning Loggers
The default Oracle Diagnostic Logging Level for all loggers is Notification. For stress testing
and production environments, consider using the lowest acceptable logging level, such as
ERROR or WARNING.

The loggers in BEAM that can affect BAM performance are as follows:

oracle.beam.common.alertsengine
oracle.beam.server.service.alertsengine
oracle.beam.Common
oracle.beam.cqservice
oracle.beam.composer
com.oracle.beam
oracle.beam.datacontrol
oracle.beam.datacontrol.management
oracle.beam.server.service.ems
oracle.beam.messaging
oracle.beam.server.service.persistence
oracle.beam.server.service.reportcache
oracle.beam.security
oracle.beam.mbean
oracle.beam.shared
oracle.beam.server
oracle.beam.impexp.t2p
oracle.beam

For information about locating these loggers and changing their Oracle Diagnostic Logging
Level, see Configuring Log Files in Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

Tuning Continuous Query Service
Tuning the Continuous Query Service

The Continuous Query Service (CQS) is a BAM-specific wrapper around the Continuous Query
Language (CQL) engine within the Oracle Complex Event Processing Service Engine. The
CQS is a pure push system: query results are delivered automatically. The CQS supports both
stream (non-persistent) and archived relation (persistent) data objects.

Chapter 20
Other Tuning Strategies

20-3

When you create a query, the CQS sets up tables in the CQL engine, registers the query, and
listens for data changes from the persistence engine. The query result is processed in the CQL
engine, then pushed to the CQS and on to the report cache.

For information on how to monitor continuous queries for performance issues, see Monitoring
Continuous Queries in Monitoring Business Activity with Oracle BAM. Once you understand
how your current system is performing, you can try to improve performance by tuning the
knobs described in #unique_424/unique_424_Connect_42_BABCGIJG. Note that for most of
these parameters, tuning for performance means losing diagnostic information.

Parameter Problem Tuning Recommendation

Data Object type
Default: None

You have arbitrarily designated simple
data objects as stream, archived
stream, and archived relation, and are
not sure what to do.

Categorize your data objects as stream
if you do not care about historical data.

See Data Object Types in Monitoring
Business Activity with Oracle BAM for
detailed descriptions of each data object
type and relation.

Data Object purging
Default: Disabled

By default, data object retention is not
set. Many rows in the data object cause
performance issues.

Customer can set Data Object retention
in the Data Object Retention tab to
specify how many days they want to
keep the data in a Data Object. When
the specified number of days has
elapsed, the data rows are automatically
purged.

See Setting Data Retention in a Data
Object in Monitoring Business Activity
with Oracle BAM for information on how
to find and change this setting.

Replay for Archived Stream Data
Objects

Data parsing is slow for archived stream
data objects.

Specify a smaller Replay Unit or a
lower Replay Amount to reduce the
amount of past data retained in memory.
This reduces the time and memory to
parse data retrieved from the database.

Time Window on Input Streams You have chosen to turn an Active Data
query into a continuous query and are
receiving out-of-memory exceptions.

Decrease the time window size on the
Active Data stream. This restricts the
amount of memory the window uses to
store elements.

To get an idea of how much the window
size affects memory usage, consider a
scenario where the Window Size = 1
hour (RANGE 1 hour) and the event
size = 100 bytes. If the event rate is
1000 events / second, then the window
will contain 1000 * 3600 events when it
is full. The memory consumed is 1000 *
3600 * 100 bytes = ~340 MB.

See Enabling Active Data in a View in
Monitoring Business Activity with Oracle
BAM for information on how to configure
the window size on an active data view.

Chapter 20
Other Tuning Strategies

20-4

Parameter Problem Tuning Recommendation

Active Data Collapsing Interval
Default: Unchecked

You have checked the box for Active
Data Collapsing to make data
aggregation active. You want more
frequent snapshots or need to free up
memory.

Define a smaller Interval to make the
view update more frequently and to
reduce the amount of aggregated data
stored in memory.

You can maximize your memory usage
by taking note of the evaluation interval,
the event size, and the event rate. Given
the following values:

Interval: Every 5 minutes
Event Size: 100 bytes
Event Rate: 1000 events/second

The maximum size of the aggregated
view is 5 * 60 * 1000 = 300,000 events =
~28 MB.

See Using Active Data in Monitoring
Business Activity with Oracle BAM for
information on finding the Active Data
Collapsing setting.

Slow Changing Dimension for
Data Object Dimension Tables
Default: Unchecked

Continuous queries on dimension tables
are slow and consuming memory.

Check this property to activate it. This
indicates that the data in this dimension
table changes infrequently.

For information on specifying slow-
changing dimensions for a data object,
see Specifying Slow-Changing
Dimensions for a Data Object in
Monitoring Business Activity with Oracle
BAM.

Query Type
Default: SQL

You are experiencing out-of-memory
exceptions and most of your queries are
continuous.

Use schedule query (SQL) where you
do not expect frequent output. This
saves memory because SQL involves
JDBC resources while CQL stores data
in memory.

Chapter 20
Other Tuning Strategies

20-5

21
Tuning Oracle Service Bus

You can tune Oracle Service Bus (OSB) to optimize its performance in providing connectivity,
routing, mediation, management, and also some process orchestration capabilities between
two or more applications.

• About Oracle Service Bus
Within a SOA framework, Oracle Service Bus (OSB) provides connectivity, routing,
mediation, management, and also some process orchestration capabilities.

• Tuning OSB Parameters
Oracle Service Bus performance largely depends on the performance of the other
components.

• Using Other Tuning Strategies
After you have performed the recommended modifications, you can make additional
changes that are specific to your deployment.

About Oracle Service Bus
Within a SOA framework, Oracle Service Bus (OSB) provides connectivity, routing, mediation,
management, and also some process orchestration capabilities.

The design philosophy for OSB is to be a high performance and stateless (non-persistent
state) intermediary between two or more applications. However, given the diversity in scale
and functionality of SOA implementations, OSB applications are subject to a large variety of
usage patterns, message sizes, and QOS requirements.

In most SOA deployments, OSB is part of a larger system where it plays the role of an
intermediary between two or more applications (servers). A typical OSB configuration involves
a client invoking an OSB proxy service, which may make one or more service callouts to
intermediate back-end services and then route the request to the destination back end system
before responding to the client.

It is necessary to understand that OSB is part of a larger system and the objective of tuning is
the optimization of the overall system performance. This involves not only tuning OSB as a
standalone application, but also using OSB to implement flow-control patterns such as
throttling, request-buffering, caching, prioritization and parallelism.

For more information about Oracle Service Bus, see Oracle Fusion Middleware Administrator's
Guide for Oracle Service Bus.

Tuning OSB Parameters
Oracle Service Bus performance largely depends on the performance of the other
components.

The following components affect OSB performance:

• WebLogic Server

• Coherence

21-1

• Adapters

You can begin tuning Oracle Service Bus if you believe the above components are tuned to
your satisfaction.

• Tuning Oracle Service Bus with Work Managers

• Tuning OSB Operation Settings

Tuning Oracle Service Bus with Work Managers
Oracle Service Bus can be tuned by several Oracle WebLogic Server Work Managers.

For example, Split-Join tuning can be accomplished by using Work Managers. By default,
applications do not specify a Work Manager for Split-Joins, but Split-Joins can be assigned a
Work Manager if there are strict thread constraints that need to be met, such as scheduling
parallel tasks.

For optimal performance, strike a balance between the following Work Manager constraints:

• min-threads-constraint so that Split-Join operations are not starved of threads.

• max-threads-constraint so that Split-Joins do not starve other resources

By default, there is no minimum or maximum thread constraint defined, which could either slow
Split-Join operations down or slow down other operations sharing the same thread pool.

Work Managers take Split-Join operations into account when allotting threads to system-wide
processes so that this balance is met automatically.

For more information on tuning OSB with Work Managers, see Using Work Managers with
Oracle Service Bus in Developing Services with Oracle Service Bus.

Tuning OSB Operation Settings
Essential OSB Operation Tuning

#unique_429/unique_429_Connect_42_BABIBCDA lists and describes the knobs you will most
likely need to tune to improve performance. For more information on monitoring Oracle Service
Bus to diagnose trouble areas, see Monitoring Oracle Service Bus in Administering Oracle
Service Bus.

Parameter Problem Tuning Recommendation Trade-offs

Monitoring and Alerting

Default: Disabled
The Monitoring and Alerting
framework is designed to
have minimal impact on
performance, but all of these
processes have performance
impacts.

In general, the more
monitoring rules and pipeline
actions you have defined, the
larger the performance
impact.

Keep the default of Disabled
at the OSB level. Most
settings can be defined
globally or per service.

The settings for monitoring
and alerting can be
configured in the Enterprise
Manager Administrator
Console.

Note that monitoring must be
enabled for SLA alerts but not
for Pipeline alerts.

Disabling these processes to
improve performance means
you are sacrificing certain
metrics and alerts that could
help you troubleshoot issues
in the future.

For more information on the
OSB Monitoring Framework,
see Introduction to the Oracle
Service Bus Monitoring
Framework in Administering
Oracle Service Bus.

Chapter 21
Tuning OSB Parameters

21-2

Parameter Problem Tuning Recommendation Trade-offs

Tracing

Default: Disabled

If you have large message
sizes and high throughput
scenarios, tracing may be
slowing your system down.

Leave tracing disabled to
improve performance.

For more information, see
How to Enable or Disable
Tracing in Oracle Fusion
Middleware Administrator's
Guide for Oracle Service Bus.

If disabled, you lose metrics.

Tracing prints the entire
message context, including
headers and message body.
This is an extremely useful
feature both in a development
and production environment
for debugging, diagnosing,
and troubleshooting problems
involving message flows in
one or more proxy services.

com.bea.wli.sb.pipeline.
RouterRuntimeCache.size

Default: 100

You may have one of the
following issues:

Proxy services are accessed
slowly.This means you want
to store more proxy services
in the static portion of the
OSB cache for pipeline
service runtime metadata.
The proxy services stored
here are never garbage-
collected, meaning they are
accessed faster.

OR

You are seeing a lot of cache
misses in DMS dumps.

If you want to include more
proxy services in the static
cache, increase this value as
long as there is sufficient
memory for runtime data
processing for large number
of proxy services.

If you are seeing cache
misses in DMS dumps,
increase this value.

This system property caps
the number of proxy services
in the static portion of the
OSB cache for pipeline
service runtime metadata.
These services never get
garbage collected.

You set the size of this value
in the setDomainEnv.sh
file as an extra java
argument, as follows:

-
Dcom.bea.wli.sb.pipeline.
RouterRuntimeCache.size={
size}

For example, if you want to
set this value to 3000, you
would write:

EXTRA_JAVA_PROPERTIES=
"-
Dcom.bea.wli.sb.pipeline.
RouterRuntimeCache.size=3
000
${EXTRA_JAVA_PROPERTIES}"

Increasing this value
decreases the time it takes to
make initial calls to the proxy
server. It can also preload the
cache when a configuration
session is committed.
However, while caching proxy
services helps reduce
compilation costs, it also
increases memory
consumption.

Decreasing this value may
means you free up memory,
but making initial calls to the
proxy server may take longer.

Chapter 21
Tuning OSB Parameters

21-3

Parameter Problem Tuning Recommendation Trade-offs

reorderJsonAsPerXmlSche
ma
Default: False

JSON input to REST service
may not be ordered as
expected by the schema
definition.

When converting from JSON
to XML, OSB runtime uses
the order in which JSON
name or value appear to
construct the corresponding
XML element. While well-
formed, this format is not
valid according to XML
schema.

Set this parameter to True by
running the REST wizard and
checking the box on the first
page.

Checking this option makes
the REST service reorder the
input JSON so that the
response from the external
REST endpoint can be
ordered as per the valid
schema definition.

Using this option adds
significant performance
overhead.

Using Other Tuning Strategies
After you have performed the recommended modifications, you can make additional changes
that are specific to your deployment.

Consider carefully whether the additional tuning recommendations are appropriate for your
environment.

• Tuning Resequencer in OSB

• Considering Design Time for Proxy Applications

• Tuning XQuery

• Tuning Poller-based Transports

Tuning Resequencer in OSB
Essential Resequencer Tuning

A Resequencer is used to rearrange a stream of related but out-of-sequence messages back
into order. It sequences the incoming messages that arrive in random order and then sends
them to the target services in an orderly manner.

You can fine-tune the Resequencer by setting the properties listed in #unique_430/
unique_430_Connect_42_BABHACDB using the Global operational settings page in the OSB
EM console:

Chapter 21
Using Other Tuning Strategies

21-4

Parameter Problem Tuning Recommendation Trade-offs

ResequencerMaxGroupsLock
ed

Default: 4 groups

This parameter defines the
maximum number of
message groups that can be
locked by resequencer locker
threads for parallel
processing. The locked
groups can then use worker
threads to process their
respective messages.

If message processing is
being delayed, identify which
of the following situations is
true:

• Incoming messages
belong to many groups.

• There are many
messages and they
belong to fewer groups.

If you have many groups with
a small number of messages
each, increase this
parameter's value.
Resequencer will lock more
groups in one iteration.

If you have a few groups with
many messages, decrease
this value. Resequencer will
lock less number of groups
for processing.

Increasing the
MaxGroupsLocked value
may result in locking more
groups than there are
available worker threads. This
could result in groups getting
blocked while waiting for the
availability of the worker
threads for message
processing.

Decreasing the default value
may result in under utilization
of resources.

ResequencerLockerThreadSl
eep

Default: 10 seconds

The resequencer locker
thread queries the database
to lock groups for parallel
processing. When no groups
are available, the locker
thread sleeps for the
configured amount of time
specified by this parameter.

If you have either of the
following situations, this
parameter needs tuning:

• You have a high number
of messages and
processing time between
database queries is slow.

• You have few messages
but frequent database
queries.

Decrease this parameter
value if you have a high
number of messages to
reduce the lag time during
processing.

If Resequencer locker
threads are making frequent
database round trips even
though you do not have many
incoming messages, increase
this value.

If the sleep time is too short,
there may not be enough
worker threads available to
process incoming messages
of the locked groups. Too
many database queries will
also cause slow performance.

If the time interval between
incoming messages is
already long, configuring a
higher value is not beneficial.

DeleteMessageAfterComplet
e

Default: True

The resequencer database is
low on space. If you changed
this parameter's value to
false, processed messages
remain in the resequencer
database and slow down
database inquiries.

Keep the default value of
True to delete message after
successful execution. This
frees up database space.

You do not have a detailed
history of processed
messages.

Considering Design Time for Proxy Applications
Tuning Design Time for Proxy Application

Consider the design configurations described in #unique_431/
unique_431_Connect_42_BABEHEJG for proxy applications based on your OSB usage and
use case scenarios:

Chapter 21
Using Other Tuning Strategies

21-5

Strategy Description Recommendations

Avoid creating many OSB context
variables that are used once within
another XQuery

Context variables created by using an
Assign action are converted to
XmlBeans and then reverted to the
native XQuery format for the next
XQuery. Multiple Assignactions can be
collapsed into a single Assign action by
using a FLWOR expression. Intermediate
values can be created by using let
statements.

Avoiding redundant context variable
creation eliminates overheads that are
associated with internal data format
conversions. This benefit has to be
balanced against visibility of the code
and reuse of the variables.

Transform contents of a context variable
such as $body.

Transforming the contents of a context
variable could be time-consuming.

Use a Replace action to complete the
transformation in a single step.

If the entire content of $body is to be
replaced, leave the XPath field blank
and select Replace node contents. This
is faster than pointing to the child node
of $body (for example, $body/Order)
and selecting Replace entire node.

Leaving the XPath field blank eliminates
an extra XQuery evaluation.

Specify a special XPath. A general XPath like $body/Order
must be evaluated by the XQuery
engine before the primary
transformation resource is executed.
OSB treats $body/*[1] as a special
XPath that can be evaluated without
invoking the XQuery engine.

Use $body/*[1] to represent the
contents of $body as an input to a
Transformation (XQuery / XSLT)
resource.

This is faster than specifying an
absolute path pointing to the child
of $body.

Enable streaming for pure content-
based routing scenarios.

OSB leverages the partial parsing
capabilities of the XQuery engine when
streaming is used in conjunction with
indexed XPaths.

See Tuning XQuery for additional
details.

Enabling streaming means that the
payload is parsed and processed only to
the field referred to in the XPath.
Streaming also eliminates the overhead
that is associated with parsing and
serialization of XmlBeans.

Trade-offs: If the payload is accessed a
large number of times for reading
multiple fields, the gains from streaming
can be negated. If all fields read are
located in a single subsection of the
XML document, a hybrid approach
provides the best performance.

The output of a transformation is stored
in a compressed buffer format either in
memory or on disk. Therefore,
streaming should be avoided when
running out of memory is not a concern.

Set the appropriate QOS level and
transaction settings.

OSB can invoke a back end HTTP
service asynchronously if the QOS is
Best- Effort. Asynchronous invocation
allows OSB to scale better with long
running back-end services. It also
allows Publish over HTTP to be truly
fire-and-forget.

Do not set XA or Exactly-Once unless
the reliability level required is once and
only once and it is possible to use the
setting. If the client is a HTTP client it is
not possible to use this setting. If OSB
initiates a transaction, it is possible to
replace XA with LLR to achieve the
same level of reliability.

Chapter 21
Using Other Tuning Strategies

21-6

Strategy Description Recommendations

Disable or delete all log actions. Log actions add an I/O overhead.
Logging also involves an XQuery
evaluation, which can be expensive.
Writing to a single device (resource or
directory) can also result in lock
contentions.

Disable or delete all log actions.

Tuning XQuery
XQuery Tuning Strategies

OSB uses XQuery and XPath extensively for various actions like Assign, Replace, and Routing
Table. The following XML structure ($body) is used to explain XQuery and XPath tuning
concepts:

<soap-env:Body>
<Order>
<CtrlArea>
<CustName>Mary</CustName>
</CtrlArea>
<ItemList>
<Item name="ACE_Car" >20000 </Item>
<Item name=" Ext_Warranty" >1500</Item>
…. a large number of items
</ItemList>
<Summary>
<Total>70000</Total>
<Status>Shipped</Status>
<Shipping>My Shipping Firm </Shipping>
</Summary>
</Order>
</soap-env:Body>

You can use the tuning strategies listed in #unique_432/unique_432_Connect_42_BABCACJC
to tune XQuery.

Strategy Description Recommendations

Avoid the use of double front slashes (//)
in XPaths.

//implies all occurrences of a node
irrespective of the location in an XML
tree. Thus, the entire depth and breadth
of the XML tree has to be searched for
the pattern specified after a //.

Use //only if the exact location of a node
is not known at design time.

Chapter 21
Using Other Tuning Strategies

21-7

Strategy Description Recommendations

Index XPaths when applicable. Indexing helps your system process
only what is needed. When indexing,
only the top part of the document is
processed by the XQuery engine.

Index an XPath by adding [1]after each
node of the path.

For example, the XPath $body/Order/
CtrlArea/CustName implies returning
all instances Order under $body and all
instances of CtrlArea under Order.
The entire document has to be read to
correctly process the above XPath.

But if you know that there is a single
instance of Order under $body and a
single instance of CtrlArea under
Order, you can index the above XPath
by rewriting it as $body/Order[1]/
CtrlArea[1]/CustName[1]. This only
returns the first instances of the child
nodes.

Note: Do not index when you need a
whole array of nodes returned. Indexing
only returns the first item node of the
array.

Extract frequently used parts of a large
XML document as intermediate
variables within a FLWOR expression.

An intermediate variable can be used to
store the common context for multiple
values.

Using intermediate variables consumes
more memory but reduces redundant
XPath processing.

Use a hybrid approach for read-only
scenarios with streaming.

If the payload is accessed a large
number of times for reading multiple
fields, The gains from streaming can be
negated. If all fields read are located in
a single subsection of the XML
document, a hybrid approach provides
the best performance.

Enable streaming at the proxy level and
assigning the relevant subsection to a
context variable. The individual fields
can then be accessed from this context
variable.

The fields Total and Status can be
retrieved by using three Assign actions:

Assign "$body/Order[1]/
Summary[1]" to "foo"
Assign "$foo/Total" to "total"
Assign "$foo/Status" to "total"

Note:

Pipelines enabled for content streaming should use XQuery 1.0. Using XQuery 2004
does work, but incurs a significant performance overhead, as there are on-the-fly
conversions that happen to and from XQuery 1.0 engine. There is a design-time
warning to that effect.

Tuning Poller-based Transports
Latency and throughput of poller-based transports depends on the frequency with which a
source is polled and the number of files and messages read per polling sweep.

• Setting the Polling Interval

• Setting Read Limit

Chapter 21
Using Other Tuning Strategies

21-8

Setting the Polling Interval
Consider using a smaller polling interval for high throughput scenarios where the message size
is not very large and the CPU is not saturated. The primary polling interval defaults are listed
below with links to additional information:

Polling Intervals Default Interval Additional Information

File Transport 60 seconds File Transport Configuration Page in
Developing Services with Oracle
Service Bus

FTP Transports 60 seconds FTP Transport Configuration Page in
Developing Services with Oracle
Service Bus

MQ Transport 1000 milliseconds MQ Transport Configuration Page in
Developing Services with Oracle
Service Bus

SFTP Transport 60 seconds SFTP Transport Configuration Page
in Developing Services with Oracle
Service Bus

JCA Transport 60 seconds JCA Transport Configuration Page in
Developing Services with Oracle
Service Bus

Setting Read Limit

Essential Read Limit Tuning

The read limit determines the number of files or messages that are read per polling sweep. You
can tune it with the information in #unique_435/unique_435_Connect_42_BABJAEFC.

For more information, see Using the File Transport in Developing Services with Oracle Service
Bus.

Parameter Symptoms if not properly
tuned

Tuning Recommendation Performance Trade-offs

Read Limit

Default: 10 for File and FTP
transports

Excessive memory use or
high memory use due to a
large number of files read into
memory simultaneously.

Set this value to the desired
concurrency. It can be set to
0 to specify no limit.

The read limit determines the
number of files or messages
that are read per polling
sweep.

Setting the Read Limit to a
high value and the Polling
Interval to a small value may
result in a large number of
messages being
simultaneously read into
memory. If the message size
is large, this can lead to an
out-of-memory error .

Chapter 21
Using Other Tuning Strategies

21-9

22
Tuning Oracle Enterprise Scheduler Service

You can tune Oracle Enterprise Scheduler Service (ESS) to optimize its performance in
enabling scheduling and running jobs.

• About Enterprise Scheduler Service
Oracle Enterprise Scheduler enables scheduling and running jobs within a particular time
frame, or workshift, by using rules to create work assignments.

• Tuning Enterprise Scheduler Service Parameters
You can tune the enterprise scheduler service parameters for optimal performance.

About Enterprise Scheduler Service
Oracle Enterprise Scheduler enables scheduling and running jobs within a particular time
frame, or workshift, by using rules to create work assignments.

Oracle Enterprise Manager Fusion Applications Control allows you to define, control and
manage Oracle Enterprise Scheduler job metadata, including job definitions, job requests, job
sets (a collection of job requests), incompatibilities (job definitions and job sets that cannot run
at the same time for a given application) and schedules governing the execution of job
requests.

For more information, see Introduction to Administering Oracle Enterprise Scheduler in
Administering Oracle Enterprise Scheduler.

Tuning Enterprise Scheduler Service Parameters
You can tune the enterprise scheduler service parameters for optimal performance.

Table 22-1 describes the enterprise scheduler service tuning parameters.

Maximum Poll Interval is a dispatcher parameter that applies to the Oracle Enterprise
Scheduler request dispatcher. The request dispatcher manages requests that are awaiting
their scheduled execution. The request processor handles the job requests once they have
dispatched.

Thread Count is a processor tuning parameter that applies to the Oracle Enterprise Scheduler
request processor. The request processor manages job requests whose scheduled execution
time has arrived, and are ready to execute.

22-1

Table 22-1 Essential Enterprise Scheduler Service Tuning

Name Symptoms Recommendations Trade-offs

Maximum Poll Interval
Default: 15 seconds

A high number of requests
whose execution time has
been reached and remain in
WAIT state for an extended
time.

If there is an excess of
waiting requests that are
eligible to be dispatched and
processor threads are
available, decrease this
value .

Lowering the value increases
CPU usage and database
activity.

Increasing the value may
delay the dispatching of
requests that are ready for
processing.

Thread Count
Default: 25

A high number of requests in
READY state that are
otherwise available for
processing.

If there is a build up of
requests that are ready to be
executed and the increase
system resource usage is
acceptable, increase this
value.

Lower the value to reduce the
amount of system resources
used for request processing.

Increasing this value
increases CPU usage,
memory usage, and database
activity.

Lowering this value may
result in a build up and
potentially delay processing
of requests.

Chapter 22
Tuning Enterprise Scheduler Service Parameters

22-2

23
Tuning Oracle Business Intelligence
Performance

You can tune Oracle Business Intelligence to optimize its performance in collecting, presenting,
and delivering data.

• About Oracle Business Intelligence
Oracle Business Intelligence (BI) Enterprise Edition (or Oracle Business Intelligence)
provides a full range of business intelligence capabilities that collects up-to-date data from
the organization, presents the data in easy-to-understand formats (such as tables and
graphs), and delivers the data quickly to the members of the organization.

• Tuning Oracle BI Server Query Performance
You can improve query performance by tuning and indexing underlying databases, by
using aggregate tables, query caching.

• Tuning Oracle BI Server Query Cache Performance
You can configure the Oracle BI Server to maintain a local, disk-based cache of query
result sets (query cache).

• Tuning Oracle BI Web Client Performance
You can improve the performance of the Oracle BI web client (UI) by configuring your web
server to serve up all static files, as well as enabling compression for both static and
dynamic resources.

About Oracle Business Intelligence
Oracle Business Intelligence (BI) Enterprise Edition (or Oracle Business Intelligence) provides
a full range of business intelligence capabilities that collects up-to-date data from the
organization, presents the data in easy-to-understand formats (such as tables and graphs),
and delivers the data quickly to the members of the organization.

These capabilities enable the organization to make better decisions, take informed actions,
and implement more-efficient business processes.

Tuning Oracle BI Server Query Performance
You can improve query performance by tuning and indexing underlying databases, by using
aggregate tables, query caching.

For detailed information on BI performance tuning, see Managing Performance Tuning and
Query Caching in System Administrator's Guide for Oracle Business Intelligence Enterprise
Edition.

The following list summarizes methods that you can use to improve query performance:

• Tuning and indexing underlying databases: For Oracle BI Server database queries to
return quickly, the underlying databases must be configured, tuned, and indexed correctly.
Note that different database products have different tuning considerations.

If there are queries that return slowly from the underlying databases, then you can capture
the SQL statements for the queries in the query log and provide them to the database

23-1

administrator (DBA) for analysis. See Managing the Query Log in System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition for more information about
configuring query logging on the system.

• Aggregate tables: It is extremely important to use aggregate tables to improve query
performance. Aggregate tables contain precalculated summarizations of data. It is much
faster to retrieve an answer from an aggregate table than to recompute the answer from
thousands of rows of detail.

The Oracle BI Server uses aggregate tables automatically, if they have been properly
specified in the repository. See Metadata Repository Builder's Guide for Oracle Business
Intelligence Enterprise Edition for examples of setting up aggregate navigation.

• Query caching: The Oracle BI Server can store query results for reuse by subsequent
queries. Query caching can dramatically improve the apparent performance of the system
for users, particularly for commonly used dashboards, but it does not improve performance
for most ad-hoc analysis.

See About the Oracle BI Server Query Cache in System Administrator's Guide for Oracle
Business Intelligence Enterprise Edition for more information about query caching
concepts and setup.

• Setting parameters in Fusion Middleware Control: You can set various performance
configuration parameters by using Fusion Middleware Control to improve system
performance. See Setting Performance Parameters in Fusion Middleware Control in
System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more
information.

• Setting parameters in NQSConfig.INI: The NQSConfig.INI file contains additional
configuration and tuning parameters for the Oracle BI Server, including parameters to
configure disk space for temporary storage, set virtual table page sizes, and several other
advanced configuration settings. See NQSConfig.INI File Configuration Settings in System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more
information.

Tuning Oracle BI Server Query Cache Performance
You can configure the Oracle BI Server to maintain a local, disk-based cache of query result
sets (query cache).

The query cache allows the Oracle BI Server to satisfy many subsequent query requests
without having to access back-end data sources (such as Oracle or DB2). This reduction in
communication costs can dramatically decrease query response time. See About the Oracle BI
Server Query Cache in System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition.

Tuning Oracle BI Web Client Performance
You can improve the performance of the Oracle BI web client (UI) by configuring your web
server to serve up all static files, as well as enabling compression for both static and dynamic
resources.

BI 11g ships with WebLogic Server (WLS) serving as the default HTTP server for the BI web
client. By allowing the Oracle HTTP Server (OHS) to proxy requests to WLS instead, you may
see an improvement in BI Web Client performance. See Improving Oracle BI Web Client
Performance in System Administrator's Guide for Oracle Business Intelligence Enterprise
Edition.

Chapter 23
Tuning Oracle BI Server Query Cache Performance

23-2

Part VI
Oracle WebCenter Components

The Oracle WebCenter components need to be tuned for optimal performance.

This part describes configuring Oracle WebCenter components to improve performance. It
contains the following topic:

• Tuning Oracle WebCenter Portal
You can tune Oracle WebCenter Portal to optimize its performance as a deployed
application.

24
Tuning Oracle WebCenter Portal

You can tune Oracle WebCenter Portal to optimize its performance as a deployed application.

• About Oracle WebCenter Portal
Oracle WebCenter Portal helps companies to build enterprise-scale intranet and extranet
portals that provide a foundation for the next-generation user experience (UX) with Oracle
Fusion Middleware and Oracle Fusion Applications.

• Basic Tuning Considerations
Tuning considerations apply to most WebCenter Portal application deployment scenarios.

• Tuning Configuration for WebCenter Portal
You can tune configuration parameters to improve the performance of WebCenter Portal.

• Tuning Tools and Services Configuration
You can tune the performance of tools and services used by WebCenter Portal.

• Tuning Identity Store Configuration
Performance-related configurations may be required for specific environments.

• Tuning Portlet Configuration
You can tune the performance of portlets in WebCenter Portal.

About Oracle WebCenter Portal
Oracle WebCenter Portal helps companies to build enterprise-scale intranet and extranet
portals that provide a foundation for the next-generation user experience (UX) with Oracle
Fusion Middleware and Oracle Fusion Applications.

Portals built with Oracle WebCenter Portal commonly support thousands of users who create,
update, and access content and data from multiple back-end sources. Oracle WebCenter
Portal delivers intuitive user experiences by leveraging the best UX capabilities from a
significant portfolio of leading portal products and related technologies. From the user's
perspective, the integration is seamless.

Business users can easily assemble new portals or composite applications by using Portal
Composer and a page editor that includes a library of prebuilt reusable components. They can
enhance user experience by wiring components together on the page, configuring content
personalization, enabling the use of integrated social tools, and creating data visualizations.

For more information about Oracle WebCenter Portal, see:

• Using Portals in Oracle WebCenter Portal

• Building Portals with Oracle WebCenter Portal

• Administering Oracle WebCenter Portal

• Developing for Oracle WebCenter Portal

Basic Tuning Considerations
Tuning considerations apply to most WebCenter Portal application deployment scenarios.

24-1

It is highly recommended that you review these configurations and implement those that meet
your particular usage requirements.

• Setting System Limit

• Setting JDBC Data Source

• Using Content Compression to Reduce Downloads

Setting System Limit
To run WebCenter Portal at moderate load, set the open-files-limit to 4096. If you encounter
errors, such as running out of file descriptors, then increase the system limit.

For example, on Linux, you can use this command:

ulimit -n 8192

Refer to your operating system documentation to find out how to change this system limit.

Setting JDBC Data Source
To determine the correct setting for the JDBC data source, use the Oracle WebLogic Remote
Console to monitor the running system database connection usage as described in Configuring
Services. If the Waiting for Connection Failure rate is noticeably higher, and the Active
Connections Current Count is close to reaching the maximum capacity, then consider
increasing the capacity to avoid potential database connection contention.

However, if the Active Connections Current Count is routinely lower than the maximum
capacity, consider reducing the capacity to save memory.

For more information, see Configuring Connection Pool Features in Administering JDBC Data
Sources for Oracle WebLogic Server.

The following data source settings are WebCenter Portal defaults for data sources mds-
SpacesDS and WebCenterDS. These settings can be adjusted depending on the application's
usage pattern and load.

 <jdbc-connection-pool-params>
 <initial-capacity>10</initial-capacity>
 <max-capacity>50</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrink-frequency-seconds>0</shrink-frequency-seconds>
 <highest-num-waiters>2147483647</highest-num-waiters>
 <connection-creation-retry-frequency-seconds>0</connection-creation-retry-
frequency-seconds>
 <connection-reserve-timeout-seconds>60</connection-reserve-timeout-seconds>
 <test-frequency-seconds>0</test-frequency-seconds>
 <test-connections-on-reserve>true</test-connections-on-reserve>
 <ignore-in-use-connections-enabled>true</ignore-in-use-connections-enabled>
 <inactive-connection-timeout-seconds>0</inactive-connection-timeout-seconds>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <login-delay-seconds>0</login-delay-seconds>
 <statement-cache-size>5</statement-cache-size>
 <statement-cache-type>LRU</statement-cache-type>
 <remove-infected-connections>true</remove-infected-connections>
 <seconds-to-trust-an-idle-pool-connection>60</seconds-to-trust-an-idle-pool-
connection>
 <statement-timeout>-1</statement-timeout>
 <pinned-to-thread>false</pinned-to-thread>
 </jdbc-connection-pool-params>

Chapter 24
Basic Tuning Considerations

24-2

For information on how to edit MDS data source settings, see Tuning Data Source Connection
Pools in Administering JDBC Data Sources for Oracle WebLogic Server.

Using Content Compression to Reduce Downloads
If clients connect to your server using relatively slow connections, that is, by using modems or
VPN from remote locations, consider compressing the content before it downloads to the
client. While content compression increases the load on the server, the client's download
experience is much improved.

Note:

Beginning with release 11.1.1.8.0, WebCenter Portal is preconfigured with an ADF
caching filter, which automatically sets up caching for static resources and do
compression. This preconfigured ADF caching filter is available only for use with
WebLogic Server.

Several content compression methods are available. The following steps describe how to use
the mod_deflate module from Apache.

1. Enable mod_deflate module on Apache.

To do this, add the following to the httpd.conf ($OH/instances/$INSTANCE_NAME/
config/OHS/$OHS_NAME)
LoadModule deflate_module "${ORACLE_HOME}/ohs/modules/mod_deflate.so"

2. Setup the Output Filter and specify the rules for compression.

Here is a sample snippet that you can add to the httpd.conf (same location mentioned
above). Modify the content based on your content and the compression requirements.

<IfModule mod_deflate.c>
SetOutputFilter DEFLATE
AddOutputFilterByType DEFLATE text/plain
AddOutputFilterByType DEFLATE text/xml
AddOutputFilterByType DEFLATE application/xhtml+xml
AddOutputFilterByType DEFLATE text/css
AddOutputFilterByType DEFLATE application/xml
AddOutputFilterByType DEFLATE image/svg+xml
AddOutputFilterByType DEFLATE application/rss+xml
AddOutputFilterByType DEFLATE application/atom+xml
AddOutputFilterByType DEFLATE application/x-javascript
AddOutputFilterByType DEFLATE text/html
SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.(?:exe|t?gz|zip|bz2|sit|rar)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.(?:pdf|doc?x|ppt?x|xls?x)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.avi$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.mov$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.mp3$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.mp4$ no-gzip dont-vary
</IfModule>

For more information about the mod_deflate module, refer to: http://httpd.apache.org/
docs/2.0/mod/mod_deflate.html.

Chapter 24
Basic Tuning Considerations

24-3

http://httpd.apache.org/docs/2.0/mod/mod_deflate.html
http://httpd.apache.org/docs/2.0/mod/mod_deflate.html

Tuning Configuration for WebCenter Portal
You can tune configuration parameters to improve the performance of WebCenter Portal.

• Setting a Session Timeout for WebCenter Portal

• Setting MDS Cache Size and Purge Rate

• Configuring Concurrency Management

Setting a Session Timeout for WebCenter Portal
The default session timeout for the WebCenter Portal application is 45 minutes. Administrators
can customize the session time to suit their installation. For details see Specifying Session
Timeout Settings in Using Portals in Oracle WebCenter Portal.

Setting MDS Cache Size and Purge Rate
If you encounter the any of the following conditions, then you can increase the MDS cache size
in the adf-config.xml file. The default MDS cache size is 100 MB.

• Error message JOC region full
• Frequent MDS database access after the page is warmed up

• Retained memory by ADF application is close to the max-size-kb
Post deployment, modify these properties through the System MBeans Browser. For more
information, see Changing MDS Configuration Attributes for Deployed Applications in
Administering Oracle Fusion Middleware.

The following is a sample snippet of the adf-config.xml file:

<cache-config>
<max-size-kb>150000</max-size-kb>
</cache-config>

Purging MDS data improves MDS queries. If your portal site changes frequently, you may want
to purge old MDS data more often, by reducing the time between purges.

Consider setting the MDS auto-purge seconds-to-live parameter (as shown in the example
below) to remove older versions of metadata automatically every hour. By default, old versions
of metadata are automatically purged every hour, that is, the auto-purge seconds-to-live
parameter is set to 3600 seconds (as shown in the example below).

Note:

Each purge incurs CPU usage in the database. Do not purge too often (for example,
every 5 or 10 minutes) because the database CPU impact might outweigh the
performance gains from the purge.

If excessive metadata is accumulated and each purge is very expensive, reduce this interval in
the adf-config.xml file.

Chapter 24
Tuning Configuration for WebCenter Portal

24-4

By default, there is no auto-purge entry in the adf-config.xml file. Use the following sample
snippet of the adf-config.xml file to modify auto-purge:

<mdsC:adf-mds-config version="11.1.1.000">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namePortal>
 ...
 </metadata-namespace>
 <auto-purge seconds-to-live="3600"/>
 </persistence-config>

To ensure the initial purge does not impact ongoing user activities, consider using the following
WLST command to induce an MDS purge immediately before the bulk of the user load hits the
system:

The following example shows how to purge all documents in the application repository whose
versions are older than 10 seconds:

wls:/weblogic/
serverConfig>purgeMetadata(application='[AppName]',server='[ServerName]',olderThan=10)

Configuring Concurrency Management
Concurrency management includes global settings that impact the entire WebCenter Portal
and the service and resource specific settings that only impact a particular service.

You can define deployment-specific overrides or additional configuration in the adf-config.xml
file. For example, you can specify resource-specific (producers) values that are appropriate for
a particular deployment.

The following code snippet describes the format of the global, service, and resource entries in
the adf-config.xml file:

<concurrent:adf-service-config
 xmlns="http://xmlns.oracle.com/webcenterportal/concurrent/config">
 <global
 queueSize="SIZE"
 poolCoreSize="SIZE"
 poolMaxSize="SIZE"
 poolKeepAlivePeriod="TIMEPERIOD"
 timeoutMinPeriod="TIMEPERIOD"
 timeoutMaxPeriod="TIMEPERIOD"
 timeoutDefaultPeriod="TIMEPERIOD"
 timeoutMonitorFrequency="TIMEPERIOD"
 hangMonitorFrequeny="TIMEPERIOD"
 hangAcceptableStopPeriod="TIMEPERIOD" />
 <service
 service="SERVICENAME"
 timeoutMinPeriod="TIMEPERIOD"
 timeoutMaxPeriod="TIMEPERIOD"
 timeoutDefaultPeriod="TIMEPERIOD" />
 <resource
 service="SERVICENAME"
 resource="RESOURCENAME"
 timeoutMinPeriod="TIMEPERIOD"
 timeoutMaxPeriod="TIMEPERIOD"
 timeoutDefaultPeriod="TIMEPERIOD" />
</concurrent:adf-service-config>

Where:

Chapter 24
Tuning Configuration for WebCenter Portal

24-5

SIZE: A positive integer. For example: 20.

TIMEPERIOD: Any positive integer followed by a suffix indicating the time unit, which must be
one of: ms for milliseconds, s for seconds, m for minutes, or h for hours. For example: 50ms, 10s,
3m, or 1h. The following are examples of default settings for different services. These settings
are overwritten with any service-specific configurations in the connections.xml file or the adf-
config.xml files:

<concurrent:adf-service-config
 xmlns="http://xmlns.oracle.com/webcenter/concurrent/config">
 <service service="oracle.webcenter.community" timeoutMinPeriod="2s"
timeoutMaxPeriod="50s" timeoutDefaultPeriod="30s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.doclib"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.collab.calendar.community"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.collab.rtc"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.list"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.collab.tasks"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
</concurrent:adf-service-config>

Note:

All the attributes except service and resource are optional, and therefore, for
example, the following tags are valid:

<global queueSize="20"/>
 <resource service="foo" resource="bar" timeoutMaxPeriod="5s"/>

You can use the Enterprise Manager System MBean Browser to view, add, modify, and delete
the concurrency configuration based on your usage pattern. To access the MBean Browser,
see Accessing the System MBean Browser in Administering Oracle WebCenter Portal.

1. In System MBean Browser, navigate to:

Application Defined MBeans -> oracle.adf.share.config -> Server: (your server name)
-> Application: (your application name) ->ADFConfig -> ADFConfig (bean) ->
ADFConfig -> WebCenterConcurrentConfiguration -> Operations -> listResource

2. To view the current concurrency settings, select listResource, and then click Invoke.

3. To change a setting, select setResource, enter the resource details, and then click
Invoke.

Take care to enter the correct values for service, resource, name, and value.

Chapter 24
Tuning Configuration for WebCenter Portal

24-6

Note:

If the resource parameter that you are attempting to modify already has a value
setting, you must remove the setting first by invoking the removeResource
operation.

4. To save changes, navigate to Application Defined MBeans: ADFConfig:ADFConfig ->
save, and click Invoke.

Tuning Tools and Services Configuration
You can tune the performance of tools and services used by WebCenter Portal.

For information about how to tune and improve the performance of back-end servers, for
example, mail servers, BPEL servers, content servers, and so on, refer to the appropriate
product documentation for each server.

• Tuning Performance of Mail

• Tuning Performance of RSS News Feeds

• Tuning Policy Store Parameters

Tuning Performance of Mail
To manage the overall resource usage for mail, you can tune the Connection Timeout
property:

• Default: 10 seconds

• Minimum: 0 seconds

• Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion Middleware Control
or by using WLST. For details, see:

• Modifying Mail Server Connection Details Using Fusion Middleware Control in
Administering Oracle WebCenter Portal

• Modifying Mail Server Connection Details Using WLST in Administering Oracle WebCenter
Portal

The following is a sample code snippet of the connections.xml file to change the default
timeout to 5 seconds:

<Reference name="MailConnection"
className="oracle.adf.mbean.share.connection.webcenter.mail.MailConnection">
 <StringRefAddr addrType="connection.time.out">
 <Contents>5</Contents>
 </StringRefAddr>
</Reference>

Tuning Performance of RSS News Feeds
To manage the overall resource usage for RSS news feeds, you can adjust the refresh interval
and timeout in the adf-config.xml file.

If you must modify these properties, post deployment, use the System MBeans Browser.

Chapter 24
Tuning Tools and Services Configuration

24-7

The following is a sample snippet of the adf-config.xmlfile:

<rssC:adf-rss-config>
 <rssC:RefreshSecs>3600</rssC:RefreshSecs>
 <rssC:TimeoutSecs>3</rssC:TimeoutSecs>
 <rssC:Configured>true</rssC:Configured>
</rssC:adf-rss-config>

Tuning Policy Store Parameters
If you are experiencing performance issues post login, especially in the area of permission
checks, you may need to tune the policy store parameters as described in OPSS PDP Service
Tuning Parameters. Depending on your use case scenarios, performance of WebCenter Portal
can be improved by modifying the following parameters:

• Set oracle.security.jps.policystore.rolemember.cache.warmup.enable to True

• Modify oracle.security.jps.policystore.rolemember.cache.size based on the
number of active portals in your WebCenter Portal deployment.

Note:

Only modify this parameter if your WebCenter Portal deployment expects to have
more than 3000 active portals.

• Set oracle.security.jps.policystore.policy.cache.size to 5 times the expected
number of portals.

Note:

Always refer to your own use case scenarios before you modify the policy store
parameters. For more information, see Administering Web Services before tuning
any security parameters.

Tuning Identity Store Configuration
Performance-related configurations may be required for specific environments.

• Tuning the Identity Store when Using SSL

• Tuning Performance when Using OVD

• Tuning Performance when Using Active Directory

Tuning the Identity Store when Using SSL
When you configure an identity store for WebCenter Portal, you can choose to configure either
an SSL port or a non-SSL port. If you choose an SSL port, by default, the JNDI connections
are not pooled causing increased response time and decreased performance when looking up
users, groups, or other identity store entities. To address this, do the following:

1. Open the jps-config.xml file under domain_home/config/fmwconfig/jps-config.xml,
locate the idstore.ldap service instance and add the line highlighted below:

Chapter 24
Tuning Identity Store Configuration

24-8

<!-- JPS WLS LDAP Identity Store Service Instance -->
 <serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">
 <property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/>
 <property name="CONNECTION_POOL_CLASS"
value="oracle.security.idm.providers.stdldap.JNDIPool"/>
 <property name="java.naming.ldap.factory.socket"
value="javax.net.ssl.SSLSocketFactory"/>
 </serviceInstance>

2. Restart all the servers within the domain that are connected to the identity store on an SSL
port with the following JVM parameter:

-Dcom.sun.jndi.ldap.connect.pool.protocol=ssl

You can specify this by modifying setDomainEnv.sh or directly from the console.

Tuning Performance when Using OVD
For Oracle Virtual Directory (OVD), the only object class against which attributes are looked up
is inetOrgPerson (and it's parent object classes). Since the Profile Gallery can display
attributes not defined in inetOrgPerson, all the additional attributes not covered in
inetOrgPerson would require an additional round trip to the identity store.For best performance
when using OVD in a production environment, Oracle recommends that you add the following
configuration entry (in bold) to the domain-level jps-config.xml file:

 <!-- JPS WLS LDAP Identity Store Service Instance -->
 <serviceInstance name="idstore.ldap"
 provider="idstore.ldap.provider">
 <property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/>
 <property name="CONNECTION_POOL_CLASS"
value="oracle.security.idm.providers.stdldap.JNDIPool"/>

 <extendedProperty>
 <name>user.object.classes</name>
 <values>
 <value>top</value>
 <value>person</value>
 <value>inetorgperson</value>
 <value>organizationalperson</value>
 <value>orcluser</value>
 <value>orcluserv2</value>
 <value>ctCalUser</value>
 </values>
 </extendedProperty>
 </serviceInstance>

Tuning Performance when Using Active Directory
When the Portal Server is connected to Active Directory, logging in to Portal is delayed. To
avoid delays and to enable best performance while using Active Directory in a production
environment, Oracle recommends you complete the following configuration:

1. Log into the Enterprise Manager as admin.

2. In the navigation pane, select Weblogic Domain.

3. Navigate to Security > Security Provider Configuration.

4. Expand Identity Store Provider.

Chapter 24
Tuning Identity Store Configuration

24-9

5. Click Configure.

The Identity Store Configuration page appears.

Note:

Configure is similar to Configure parameters for User and Role APIs to
interact with identity store.

6. Under Custom Properties, click Add.

7. Add the following new property:

Property Name=PROPERTY_ATTRIBUTE_MAPPING

Value=WIRELESS_ACCT_NUMBER=mobile:MIDDLE_NAME=middlename:MAIDEN_NAME=sn:DATE_OF_HIRE=
pwdLastSet:NAME_SUFFIX=generationqualifier:DATE_OF_BIRTH=pwdLastSet:DEFAULT_GROUP=pri
maryGroupID

8. Click OK.

9. Restart the Admin Server.

10. After the restart, log into the Enterprise Manager and check the values you entered in the
previous step.

Tuning Portlet Configuration
You can tune the performance of portlets in WebCenter Portal.

• Tuning Performance of the Portlet Client

• Customizing the Container Runtime Environment Options

• Tuning Performance of Oracle PDK-Java Producers

• Setting WSRP Attribute for Portlet-served Resources

• Setting WSRP Attribute for Resources Not Served by the Portlet

Tuning Performance of the Portlet Client
Several tuning options are available for Portlet Client.

• Configuring Supported Locales

• Configuring Portlet Cache Size

• Configuring Portlet Timeout

Configuring Supported Locales
To manage the overall resource usage and user response time, you can remove unnecessary
locale support, modify portlet timeout and cache size in the adf-config.xml file.

For the Portlet service, 28 supported locales are defined and ready-to-use. You can remove
the locales that are unnecessary for your application.

If you must modify these properties, post deployment, you must edit the adf-config.xml file
manually. See Editing adf-config.xml in Administering Oracle WebCenter Portal.

Chapter 24
Tuning Portlet Configuration

24-10

The following is a sample snippet of the adf-config.xml file:

<portletC:adf-portlet-config xmlns="http://xmlns.oracle.com/adf/portlet/config">
 <supportedLocales>
 <value>es</value>
 <value>ko</value>
 <value>ru</value>
 <value>ar</value>
 <value>fi</value>
 <value>nl</value>
 <value>sk</value>
 <value>cs</value>
 <value>fr</value>
 <value>no</value>
 <value>sv</value>
 <value>da</value>
 <value>hu</value>
 <value>pl</value>
 <value>th</value>
 <value>de</value>
 <value>it</value>
 <value>pt</value>
 <value>tr</value>
 <value>el</value>
 <value>iw</value>
 <value>pt_BR</value>
 <value>zh_CN</value>
 <value>en</value>
 <value>ja</value>
 <value>ro</value>
 <value>zh_TW</value>
 </supportedLocales>
 <defaultTimeout>20</defaultTimeout>
 <minimumTimeout>1</minimumTimeout>
 <maximumTimeout>300</maximumTimeout>
 <parallelPoolSize>10</parallelPoolSize>
 <parallelQueueSize>20</parallelQueueSize>
 <cacheSettings enabled="true">
 <maxSize>10000000</maxSize>
 </cacheSettings>
</portletC:adf-portlet-config>

Configuring Portlet Cache Size
You can modify the portlet cache size in the adf-config.xml file. The default portlet cache size
is set to 10 MB.

If you must modify these properties, post deployment, you must edit the adf-config.xml file
manually.

For more information, see How to Edit Portlet Client Configuration in Developing for Oracle
WebCenter Portal

Configuring Portlet Timeout
You can modify the portlet timeout value in the adf-portlet-config element of the adf-
config.xml file.

• Default: 10 seconds

• Minimum: 0.1 seconds

Chapter 24
Tuning Portlet Configuration

24-11

https://docs.oracle.com/middleware/1221/wcp/develop/toc.htm

• Maximum: 60 seconds

If you must modify these properties, post deployment, you must edit the adf-config.xml file
manually. See Editing adf-config.xml in Administering Oracle WebCenter Portal.

The following is a sample snippet of the adf-config.xml file:

<adf-portlet-config>

 <defaultTimeout>5</defaultTimeout>
 <minimumTimeout>2</minimumTimeout>
 <maximumTimeout>300</maximumTimeout>
</adf-portlet-config>

Customizing the Container Runtime Environment Options
Customizing container runtime options can improve overall performance.

For more information, see How to Customize the Runtime Environment for JSR 286 Portlets in
Developing for Oracle WebCenter Portal.

• Suppressing Optimistic Rendering for WSRP Portlets

• Setting Portlet Container Runtime Options

• Excluding Request Attributes for Portlets

Suppressing Optimistic Rendering for WSRP Portlets
To suppress the optimistic render of WSRP portlets after a WSRP
PerformBlockingInteraction or HandleEvents call, set the Portlet container runtime option in
the portlet.xml file to true. For example:

com.oracle.portlet.suppressWsrpOptimisticRender=true

Normally, if a WSRP portlet receives a WSRP PerformBlockingInteraction request
(processAction in JSR168/JSR286 portlets) and the portlet does not send any events as a
result, the WSRP producer renders the portlet and returns the portlet's markup in response to
the PerformBlockingInteraction SOAP message. This markup may be cached by the
consumer until the consumer's page renders, and if nothing else affecting the state of the
portlet happens (such as the portlet receiving an event), the cached markup can be used by
the consumer, eliminating the need for a second SOAP call to GetMarkup.

This assumes that the portlet's render phase is idempotent, which is always a best practice.
However, if the portlet expects to receive an event, or rendering the portlet is more costly than
a second SOAP message for GetMarkup, the developer may use this container option to
suppress the optimistic render of the portlet after a processAction or handleEvent call. The
portlet still renders normally when the producer receives the WSRP GetMarkup request.

For more information, see How to Customize the Runtime Environment for JSR 286 Portlets in
Developing for Oracle WebCenter Portal.

Setting Portlet Container Runtime Options
You can use the WebCenter Portal-specific excludedActionScopeRequestAttributes
container runtime option to specify how to store action-scoped request attributes so that they
are available to portlets until a new action occurs.

Chapter 24
Tuning Portlet Configuration

24-12

Request attributes that match any of the regular expressions are not stored as action-scoped
request attributes if the javax.portlet.actionScopedRequestAttributes container runtime
option is used, in addition to any request parameters whose values match the regular
expressions defined in the com.oracle.portlet.externalScopeRequestAttributes container
runtime option.

If set to true, you can specify a second value of numberOfCachedScopes and a third value
indicating the number of scopes to be cached by the portlet container.

For more information, see How to Customize the Runtime Environment for JSR 286 Portlets in
Developing for Oracle WebCenter Portal.

Excluding Request Attributes for Portlets
The excludedActionScopeRequestAttributes is a multivalued, Portlet container runtime
property, where each value is a regular expression.

If you use the javax.portlet.actionScopedRequestAttributes container runtime option with
a portlet, it is possible to optimize the request attributes that are stored between portlet
lifecycles by using the com.oracle.portlet.excludedActionScopeRequestAttributes
container runtime option. Any request attributes that are unnecessary to store between
lifecycles can be indicated to increase performance.

For more information, see How to Customize the Runtime Environment for JSR 286 Portlets in
Developing for Oracle WebCenter Portal.

Tuning Performance of Oracle PDK-Java Producers
To manage the overall resource usage for a Web producer, you can tune the Connection
Timeout property:

• Default: 30000 ms

• Minimum: 5000 ms

• Maximum: 60000 ms

Post deployment, modify the Connection Timeout property through Fusion Middleware Control
or by using WLST. For details, see:

• Editing WSRP Producer Registration Details Using Fusion Middleware Control in
Administering Oracle WebCenter Portal.

• Editing Producer Registration Details Using WLST in Administering Oracle WebCenter
Portal.

The following is a sample snippet of the connections.xml file:

<webproducerconnection producerName="wc-WebClipping" urlConnection="wc-WebClipping-
urlconn" timeout="10000" establishSession="true" mapUser="false"/>

Setting WSRP Attribute for Portlet-served Resources
To specify the default WSRP requiresRewrite flag to use when generating Resource URLs for
portlet-served resources, set the portlet container runtime option (specified in portlet.xml) as
follows: com.oracle.portlet.defaultServedResourceRequiresWsrpRewrite
This setting is used for all ResourceURLs created by the portlet, unless overridden by the
presence of the oracle.portlet.server.resourceRequiresRewriting request attribute when
the ResourceURL methods write() or toString() are called. This setting is also used to

Chapter 24
Tuning Portlet Configuration

24-13

specify the WSRP requiresRewriting flag on the served resource response, but can be
overridden by the presence of the oracle.portlet.server.resourceRequiresRewriting
request attribute when the portlet's serveResource() method returns.

Valid values:

• unspecified: (Default) The requiresRewrite URL flag is not given a value, and the
requiresRewriting response flag for a serveResource operation is based on the MIME
type of the response.

• true: The requiresRewrite URL flag and requiresRewriting response flag is set to true,
indicating that the resource should be rewritten by the consumer.

• false: The requiresRewrite URL flag and requiresRewriting response flag is set to
false, indicating that the resource does not necessarily need to be rewritten by the
consumer, though the consumer may choose to rewrite the resource.

Setting WSRP Attribute for Resources Not Served by the Portlet
To specify the default WSRP requiresRewrite flag to use when encoding URLs for resources
not served by the portlet, set the Portlet container runtime option (specified in portlet.xml) as
follows: com.oracle.portlet.defaultProxiedResourceRequiresWsrpRewrite.

This setting is used for all URLs returned by the PortletResponse.encodeURL() method,
unless overridden by the presence of the
oracle.portlet.server.resourceRequiresRewriting request attribute when the
PortletResponse.encodeURL() method is called.

Valid values:

• true: (Default) The requiresRewrite URL flag is set to true, indicating that the resource
should be rewritten by the consumer.

• false: The requiresRewrite URL flag is set to false, indicating that the resource does not
necessarily need to be rewritten by the consumer.

Chapter 24
Tuning Portlet Configuration

24-14

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	Part I Introduction
	1 Top Performance Areas
	Identifying Top Performance Areas
	Securing Sufficient Hardware Resources
	Tuning the Operating System
	Tuning Java Virtual Machines (JVMs)
	Tuning the WebLogic Server
	Tuning Database Parameters
	Tuning Database Parameters
	Tuning Database Files
	Configuring REDO Logs
	Configuring UNDO Tablespace
	Configuring TEMP Tablespace
	Creating Additional Tablespaces

	Tuning Automatic Segment-Space Management (ASSM)

	Reusing Database Connections
	Enabling Data Source Statement Caching
	Controlling Concurrency
	Setting Server Connection Limits
	Setting MaxRequestWorkers / ThreadsPerChild
	Setting KeepAlive
	Tuning HTTP Server Modules

	Configuring Connection Pools
	Tuning the WebLogic Server Thread Pool

	Setting Logging Levels

	2 Performance Planning
	About Performance Planning
	Performance Planning Methodology
	Step 1: Defining Your Performance Objectives
	Defining Operational Requirements
	Identifying Performance Goals
	Understanding User Expectations
	Conducting Performance Evaluations

	Step 2: Designing Applications for Performance and Scalability
	Step 3: Monitoring and Measuring Your Performance Metrics

	3 Monitoring
	About Oracle Fusion Middleware Management Tools
	Measuring Your Performance Metrics

	Oracle Enterprise Manager Fusion Middleware Control
	Oracle WebLogic Remote Console
	WebLogic Diagnostics Framework (WLDF)
	WebLogic Scripting Tool (WLST)
	DMS Spy Servlet
	Viewing Performance Metrics Using the Spy Servlet
	Using the DMS Spy Servlet

	Native Operating System Performance Commands
	Network Performance Monitoring Tools

	4 Using the Oracle Dynamic Monitoring Service
	About Dynamic Monitoring Service (DMS)
	Understanding Common DMS Terms and Concepts
	DMS Sensors
	DMS PhaseEvent Sensors
	DMS Event Sensors
	DMS State Sensors
	Sensor Naming Conventions

	DMS Nouns
	General DMS Naming
	General DMS Naming Conventions and Character Sets
	Noun and Noun Type Naming Conventions

	DMS Tracing and Events

	About DMS Availability
	About DMS Architecture
	Viewing DMS Metrics
	Viewing Metrics By Using the Spy Servlet
	Viewing Metrics with WLDF (WebLogic Diagnostic Framework)
	Viewing Metrics with WLST (Oracle WebLogic Server)
	Viewing Metrics with JConsole
	Viewing Metrics with Oracle Enterprise Manager

	About DMS Execution Context
	DMS Execution Requests and Subtasks
	DMS Execution Context Usage
	DMS Execution Context Communication

	DMS Tracing and Events
	Configuring the DMS Event System
	Adding and Editing Filters
	Adding and Editing Destinations
	Adding and Editing Event Routes
	Compound Operations

	Configuring Destinations
	LoggerDestination
	Static Loggers and Handlers
	Dynamic Loggers and Handlers
	Default Locations of the logging.xml File
	Using a CLI Command to Query the Trace Log File

	MBean Creator Destination
	Metric MBean Object Name

	Request Tracker Destination
	Executing the Request Tracker Dump

	Java Flight Recorder Destination
	Dynamically Derived JFR Event Types – Names, Values, and Descriptions
	Examples of Dynamically Derived Producers and Events

	Understanding the Format of DMS Events in Log Messages
	Understanding DMS Event Actions

	DMS Best Practices

	Part II Core Components
	5 Tuning Oracle HTTP Server
	About Oracle HTTP Server
	Monitoring Oracle HTTP Server Performance
	Basic Tuning Considerations
	Tuning Oracle HTTP Server Directives
	Reducing Process Availability with Persistent Connections
	Logging Options for Oracle HTTP Server
	Access Logging
	Configuring the HostNameLookups Directive
	Error logging

	Advanced Tuning Considerations
	Tuning Oracle HTTP Server
	Analyzing Static Versus Dynamic Requests
	Limiting the Number of Enabled Modules
	Tuning the File Descriptor Limit

	Tuning Oracle HTTP Server Security
	Tuning Oracle HTTP Server Secure Sockets Layer (SSL)
	Caching SSL on Oracle HTTP Server
	Using SSL Application Level Data Encryption
	Tuning SSL Performance

	Tuning Oracle HTTP Server Port Tunneling

	6 Tuning Oracle Metadata Service
	About Oracle Metadata Services (MDS)
	Monitoring Oracle Metadata Service Performance
	Basic Tuning Considerations
	Tuning Database Repository
	Collecting Schema Statistics
	Increasing Redo Log Size
	Reclaiming Disk Space
	Monitoring the Database Performance

	Tuning Cache Configuration
	Enabling Document Cache

	Purging Document Version History
	Using Auto Purge
	Purging Manually

	Using Database Polling Interval for Change Detection

	Advanced Tuning Considerations
	Analyzing Performance Impact from Customization

	7 Tuning Oracle Fusion Middleware Security
	About Security Services
	Basic Tuning Considerations
	Tuning Oracle Platform Security Services
	JVM Tuning Parameters
	JDK Tuning Parameters
	Authentication Tuning Parameters
	Authorization Tuning Properties
	OPSS PDP Service Tuning Parameters

	Oracle Web Services Security Tuning
	Choosing the Right Policy
	Policy Manager
	Configuring the Log Assertion to Record SOAP Messages
	Configuring Connection Pooling
	Monitoring the Performance of Web Services

	Part III Oracle Fusion Middleware Server Components
	8 Tuning Oracle Application Development Framework (ADF)
	About Oracle ADF
	Basic Tuning Considerations
	Oracle ADF Faces Configuration and Profiling
	Performance Considerations for ADF Faces
	Tuning ADF Faces Component Attributes
	Performance Considerations for Table and Tree Components
	Performance Considerations for autoSuggest
	Data Delivery - Lazy versus Immediate
	Performance Considerations for DVT Components

	Advanced Tuning Considerations
	ADF Server Performance
	Tuning Session Timeout
	Tuning View Objects
	Creating View Objects
	Configuring View Object Data Fetching
	Setting Additional View Object Configurations

	Enabling Batch Processing
	Tuning RangeSize
	Configuring Application Module Pooling
	General AM Pool Configurations
	Configuring Application Module Pool Sizing
	Configuring Application Module Pool Resource Cleanup
	Designing an Application Module

	Using ADFc Regions
	Deferring Task Flow Execution
	Deferring Task Flow Creation in Popups
	Configuring the Task Flow Inside Switcher
	Reusing Static Data
	Conditional Validations

	9 Tuning Oracle TopLink
	About Oracle TopLink and EclipseLink
	Basic Tuning Considerations
	SQL Statement and Query Tuning Parameters
	Entity Relationships Query Tuning Parameters

	Cache Configuration Tuning Parameters
	About Cache Refreshing
	Locking Mode Policy Options

	About Mapping and Descriptor Configurations
	About Data Partitioning

	Advanced Tuning Considerations
	Integrating with Oracle Coherence
	Analyzing EclipseLink JPA Entity Performance

	Part IV Oracle Identity and Access Management
	10 Oracle Internet Directory Performance Tuning
	About Oracle Internet Directory
	Monitoring Oracle Internet Directory Performance
	Monitoring Performance on UNIX and Windows Systems
	Updating Database Statistics by Using oidstats.sql
	Setting Performance-Related Replication Configuration Attributes
	Managing System Configuration Attributes
	Setting Garbage Collection Configuration Attributes
	Modifying Changelog Purging Attributes by Using ldapmodify
	Modifying Changelog Purging in Oracle Directory Services Manager

	Basic Tuning Considerations
	Database Parameters
	LDAP Server Attributes
	Database Statistics
	Low-Priority Tuning Considerations
	Number of Entries to be Returned by a Search
	Enabling the Group Cache
	Timeout for Write Operations

	Advanced Tuning Considerations
	Replication or Oracle Directory Integration Platform
	Replication Server Configuration
	Garbage Collection Configuration
	Oracle Internet Directory with Oracle RAC Database
	Password Policies and Verifier Profiles
	Server Entry Cache
	Benefits of Using the Entry Cache
	Values for Configuring the Entry Cache

	Result Set Cache
	When to Use Result Set Cache
	Benefits of Using Result Set Cache
	Configuring Result Set Cache
	Values for Configuring Result Set Cache

	Tuning Security Event Tracking
	Optimizing Searches
	Optimizing Searches for Large Group Entries
	Entry Cache Enabled Configuration
	Entry Cache Disabled Configuration.

	Optimizing Searches for Skewed Attributes
	Optimizing Performance of Complex Search Filters

	Specific Use Cases That Require Additional Tuning
	Bulk Load Operations
	Bulk Delete Operations
	High LDAP Write Operations Load

	11 Oracle Access Management Performance Tuning
	About Oracle Access Management
	Performance Considerations for Oracle Access Management Services
	Understanding Your Current Environment
	Controlling Network Latency
	Enabling DMS Performance Instrumentation

	Tuning Oracle Access Management Access Manager
	Basic Tuning Considerations for Access Manager
	Tuning the Web Tier
	Tuning Oracle HTTP Server
	Tuning Access Manager Webgate
	Tuning OAM Agents

	Managing Policy Components
	Tuning Common Settings
	Global Session Settings
	Default and System Identity Stores

	Advanced Tuning Considerations for Access Manager
	Tuning Oracle Coherence
	Updating Optimization Interval Time

	Setting the Java Message Bean Pool Size
	Tuning the Server Cache
	Tuning Identity Store Cache

	Tuning Webgate Caches
	Introducing Webgate Caches
	Reducing Network Traffic Between Components
	Changing the Webgate Polling Frequency

	Changing Request Cache Type
	Tuning Authentication Plug-Ins

	Specific Use Cases That Require Additional Tuning for Access Manager
	Managing Access Manager Sessions
	Audit Settings
	Managing Monitor Account
	Kerberos Latency Issues
	Oracle Access Protocol over REST Connectivity Issues

	Tuning Oracle Access Management Identity Federation
	Basic Tuning Considerations for Identity Federation
	Tuning the Load Balancer and HTTP Server
	Tuning SOAP Connections
	Tuning the Data Tier Connections

	Advanced Tuning Considerations for Identity Federation
	Tuning Oracle Coherence
	Tuning Identity Store
	Tuning Protocol Binding
	Tuning the Browser POST and Artifact Single Sign-On Profiles
	Outbound SOAP Connections

	Specific Use Cases That Require Additional Tuning for Identity Federation
	Message Signing versus Token Signing

	Database Tuning for Oracle Access Management
	Automatic Optimizer Statistics Collection
	Partitioning AM_SESSION table using Config Utility Command

	Purging Inactive Sessions as a Recovery Mechanism from Peak Load

	12 Oracle Identity Governance Performance Tuning
	About Oracle Identity Governance
	Monitoring Oracle Identity Governance Performance
	Basic Tuning Considerations
	Tuning and Managing Application Cache
	Tuning Oracle Identity Governance Cache
	Purging the Cache

	Tuning the Application Server for Oracle Identity Governance
	Tuning JVM Memory Settings for Oracle Identity Governance
	Tuning the JDBC Connection Pool for Oracle Identity Governance
	Tuning OIG-specific Work Manager Properties
	Disabling the Reloading of Adapters and Plug-in Configuration
	Changing the Number of Open File Descriptors for UNIX (Optional)
	Tuning the JVM Garbage Collection for Solaris Sparc T3 or T4

	Tuning Database Parameters for Oracle Identity Governance
	Sample Instance Configuration Parameters
	Physical Data Placement
	Tasks Tables
	Reconciliation Tables
	OIG Orchestration LOB Tables
	Audit Tables
	Redo-Log Files
	Keep Pool Changes

	Resolving enq: HW - contention

	Tuning Oracle Internet Directory
	Tuning Application Module (AM) for User Interface
	JMS Tuning

	Advanced Tuning Considerations
	Reconciliation Tuning
	Target System And Connector Tuning
	Database Indexes For Recon Matching Rules
	Oracle Identity Governance Post-processing for Reconciliation

	Tuning LDAP Synchronization
	Increasing the Max Connection Pool for Oracle Identity Governance
	Increasing the LDAP Synchronization Batch Size
	Setting Configuration Parameters in OVD
	Setting Configuration Parameters in OID
	Setting Configuration Parameters in Identity Virtualization Library (libOVD)
	Setting Configuration Parameters in WebLogic Server and JDBC

	Tuning Order Audit Messages To Eliminate Slow SQL

	Part V SOA Suite Components
	13 Tuning the SOA Infrastructure
	About the SOA Infrastructure
	Tuning SOA Work Managers
	Configuring Database Connections with the SOADataSource Property
	Configuring Work Managers with the SOAMaxThreadsConfig Attribute

	Tuning SOA Infrastructure Parameters
	Using Advanced Tuning Options
	Using Composite Lazy Loading
	Configuring Composite Lazy Loading for the Domain Level
	Configuring Composite Lazy Loading at the Component Level

	Changing Modularity Profiles
	Tuning Your Database for SOA Processes
	Collecting Optimizer Statistics
	Gathering Statistics Automatically
	Gathering Statistics Manually
	Optimizing the MDS Database Repository With Statistics

	Tuning Temporary Tablespaces for SOA
	Minimizing SOA Database Contention
	Tuning the Redo Log Performance (log file sync)
	Migrating BasicFiles to SecureFiles (enq:HW - contention)
	Creating Hash Partitioned Indexes (enq: TX - index contention)

	Purging
	Reclaiming Space

	Tuning Event Delivery Network Parameters
	Adding JMS Topics with Mapping
	Choosing a JMS Topic Type
	Creating JMS Topics
	Mapping Events to JMS Topics

	Tuning the WebLogic Server

	Advanced Tuning for Work Managers
	Configuring Fair Share Request Class for SOA Work Managers
	Creating a New Work Manager Constraint

	14 Tuning Oracle BPEL Process Manager
	About BPEL Process Manager
	Tuning BPEL Parameters
	Tuning BPEL Engine
	Tuning BPEL Engine Parameters

	Tuning BPEL in a Composite

	Using Other Tuning Strategies
	Identifying Tables Impacted By Instance Data Growth

	15 Tuning Oracle Mediator
	About Oracle Mediator
	Tuning Mediator Parameters
	Using Resequencer for Messages

	16 Tuning Oracle Managed File Transfer
	About Managed File Transfer
	Tuning MFT Parameters
	Tuning Remote FTP / SFTP/ FILE Type Sources
	Minimizing MDS label
	Adjusting the Materialized Views Refresh Interval

	17 Tuning Oracle Business Rules
	About Oracle Business Rules
	Tuning Oracle Business Rules
	Exerting assertXPath Support

	18 Tuning Oracle Business Process Management
	About Oracle Business Process Management
	Tuning Business Process Management Parameters
	Using Other Tuning Strategies
	Tuning Oracle Workspace Applications
	Tuning Process Measurement

	19 Tuning Oracle Human Workflow
	About Oracle Human Workflow
	Tuning Human Workflow
	Using Other Tuning Strategies
	Improving Server Performance
	Completing Workflows Faster
	Tuning the Identity Provider
	Tuning the Database

	20 Tuning Oracle Business Activity Monitoring
	About Oracle Business Activity Monitoring
	Tuning BAM Server Parameters
	Other Tuning Strategies
	Creating an Index Column
	Tuning Loggers
	Tuning Continuous Query Service

	21 Tuning Oracle Service Bus
	About Oracle Service Bus
	Tuning OSB Parameters
	Tuning Oracle Service Bus with Work Managers
	Tuning OSB Operation Settings

	Using Other Tuning Strategies
	Tuning Resequencer in OSB
	Considering Design Time for Proxy Applications
	Tuning XQuery
	Tuning Poller-based Transports
	Setting the Polling Interval
	Setting Read Limit

	22 Tuning Oracle Enterprise Scheduler Service
	About Enterprise Scheduler Service
	Tuning Enterprise Scheduler Service Parameters

	23 Tuning Oracle Business Intelligence Performance
	About Oracle Business Intelligence
	Tuning Oracle BI Server Query Performance
	Tuning Oracle BI Server Query Cache Performance
	Tuning Oracle BI Web Client Performance

	Part VI Oracle WebCenter Components
	24 Tuning Oracle WebCenter Portal
	About Oracle WebCenter Portal
	Basic Tuning Considerations
	Setting System Limit
	Setting JDBC Data Source
	Using Content Compression to Reduce Downloads

	Tuning Configuration for WebCenter Portal
	Setting a Session Timeout for WebCenter Portal
	Setting MDS Cache Size and Purge Rate
	Configuring Concurrency Management

	Tuning Tools and Services Configuration
	Tuning Performance of Mail
	Tuning Performance of RSS News Feeds
	Tuning Policy Store Parameters

	Tuning Identity Store Configuration
	Tuning the Identity Store when Using SSL
	Tuning Performance when Using OVD
	Tuning Performance when Using Active Directory

	Tuning Portlet Configuration
	Tuning Performance of the Portlet Client
	Configuring Supported Locales
	Configuring Portlet Cache Size
	Configuring Portlet Timeout

	Customizing the Container Runtime Environment Options
	Suppressing Optimistic Rendering for WSRP Portlets
	Setting Portlet Container Runtime Options
	Excluding Request Attributes for Portlets

	Tuning Performance of Oracle PDK-Java Producers
	Setting WSRP Attribute for Portlet-served Resources
	Setting WSRP Attribute for Resources Not Served by the Portlet

