
Oracle® Fusion Middleware
Developing Business Processes with Oracle
Business Process Management Studio

12c (12.2.1.4.0)
E95671-06
March 2021

Oracle Fusion Middleware Developing Business Processes with Oracle Business Process Management
Studio, 12c (12.2.1.4.0)

E95671-06

Copyright © 2010, 2021, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxviii

Documentation Accessibility xxviii

Related Documents xxviii

Conventions xxviii

Part I Using Oracle Business Process Management Studio

1 Introduction to Oracle Business Process Management Studio

1.1 Working with Oracle Business Process Management Suite 1-1

1.2 Overview of the Application Development Life Cycle 1-2

1.3 Introduction to the Oracle Business Process Management Studio User Interface 1-3

1.3.1 Applications Window 1-3

1.3.2 BPMN Process Editor 1-4

1.3.3 Components Window 1-5

1.3.4 Process Asset Manager Navigator 1-6

1.3.5 Structure View 1-7

1.3.6 Thumbnail View 1-8

1.3.7 Simulation View 1-9

1.3.8 Log Window 1-9

1.3.9 Documentation Window 1-9

2 Working with Business Process Management Projects

2.1 Introduction to BPM Projects 2-1

2.1.1 Introduction to Project Resources 2-1

2.1.2 Sharing Projects Between Oracle BPM Users 2-2

2.2 Creating and Working with Projects 2-2

2.2.1 How to Create a New Project 2-2

2.2.2 How to Open a Project from the File System 2-3

2.2.3 How to Export a Project 2-3

iii

2.2.4 How to Import a Previously Exported Project 2-4

2.2.5 How to Edit Project Preferences 2-4

3 Working with Processes and the Process Editor

3.1 Getting Started with Processes 3-1

3.1.1 Introduction to Business Processes 3-1

3.1.1.1 Types of Processes 3-1

3.1.2 How to Create a New Business Process 3-2

3.1.3 How to Open a Business Process 3-3

3.1.4 How to Delete a Business Process 3-3

3.1.4.1 What You Need to Know About Deleting a Business Process 3-3

3.2 Introduction to the Process Editor 3-3

3.3 Working with Processes 3-5

3.3.1 How to Export a Process As an Image 3-5

3.3.2 How to Change the Highlight Level for Messages in a Process 3-6

3.3.3 How to Change the Zoom Level in a Process 3-7

3.3.4 How to Configure Layout Properties and Use a Grid in a Process 3-7

3.4 Working with Flow Objects in Your Process 3-8

3.4.1 How to Add Flow Objects from the Component Window 3-8

3.4.2 How to Add Flow Objects from the Process Editor Toolbar 3-8

3.4.3 How to Add Flow Objects from a Context Menu 3-9

3.4.4 How to Edit Flow Object Properties 3-9

3.4.5 How to Display and Fix Errors or Warnings in Flow Objects 3-10

3.4.6 How to Mark and Unmark a Flow Object as Draft 3-11

3.4.7 How to Copy and Paste Flow Objects 3-12

3.4.8 How to Add and Use Sequence Flows 3-13

3.5 Working with Draft Processes 3-14

3.5.1 Introduction to Draft Processes 3-14

3.5.2 How to Mark a Flow Object as Draft 3-14

3.6 Documenting Your Process 3-14

3.6.1 Introduction to the Documentation Editor 3-15

3.6.2 How to Add Documentation to Your Process 3-15

3.6.3 Generating Process Reports for Your Project 3-15

Part II Modeling a Process

4 Modeling Your Organization

4.1 Introduction to Organizations 4-1

4.1.1 Introduction to the Organization Editor 4-1

iv

4.2 Introduction to Roles 4-2

4.2.1 How to Create a New Role 4-2

4.2.2 How to Add Members to a Role 4-2

4.3 Introduction to Organizational Charts 4-3

4.4 Introduction to Organizational Units 4-3

4.4.1 How to Create an Organizational Unit 4-4

4.5 Introduction to Calendars 4-4

4.5.1 How to Create a Calendar 4-4

4.6 Introduction to Holidays 4-5

4.6.1 How to Create Holidays 4-5

4.7 Introduction to Business Parameters 4-5

4.7.1 How to Add a Business Parameter 4-6

4.7.2 How to Assign a Value to a Business Parameter 4-6

5 Handling Information in Your Process Design

5.1 Introduction to Handling Information in Your Process Design 5-1

5.1.1 Basic Data Objects versus Complex Data Objects 5-2

5.2 Introduction to Data Objects 5-3

5.2.1 Supported Data Types for Data Objects 5-4

5.2.2 Default Values 5-4

5.3 Working with Process Data Objects 5-5

5.3.1 How to Add a Process Data Object 5-5

5.3.2 How to Edit a Process Data Object 5-6

5.3.3 How to Delete a Data Object 5-6

5.3.4 How to Assign a Value to a Process Data Object 5-6

5.4 Introduction to Activity Instance Attributes 5-7

5.5 Working with Activity Instance Attributes 5-8

5.6 Introduction to Subprocess Data Objects 5-8

5.7 Working with Subprocess Data Objects 5-9

5.7.1 Adding a Data Object to a Subprocess 5-9

5.7.2 Editing a Data Object in a Subprocess 5-9

5.7.3 Deleting a Data Object from a Subprocess 5-10

5.8 Introduction to Project Data Objects 5-10

5.8.1 Business Indicators 5-11

5.8.2 Supported Data Types for Project Data Objects 5-11

5.9 Working with Project Data Objects 5-11

5.9.1 How to Add a Project Data Object 5-12

5.9.2 How to Edit a Project Data Object 5-12

5.9.3 How to Delete a Project Data Object 5-13

5.9.4 How to Assign a Value to a Project Data Object 5-13

v

5.10 Introduction to Arguments 5-13

5.11 Naming Conventions 5-14

5.12 Scope and Access 5-14

5.13 Introduction to Data Associations 5-16

5.13.1 Introduction to the Data Association Editor 5-16

5.14 Introduction to Transformations 5-17

5.15 Defining Transformations 5-18

5.15.1 How to Define a Transformation 5-18

5.15.2 What Happens When You Define a Transformation 5-19

Part III Analyzing Process Performance

6 Running Simulations in Oracle BPM

6.1 Introduction to Running Simulations in Oracle BPM 6-1

6.1.1 Simulation Models and Simulation Definitions 6-1

6.2 Creating Simulation Models 6-2

6.2.1 How to Create a Simulation Model from a Business Process 6-2

6.2.2 How to Create and Configure a Simulation Model 6-3

6.3 Configuring Boundary Events 6-5

6.4 Creating Simulation Definitions 6-7

6.4.1 How to Create a Simulation Definition 6-7

6.5 Running Simulations 6-9

6.5.1 How to Run a Simulation 6-9

6.5.2 What Happens When You Run a Simulation 6-10

6.5.3 Understanding the Simulation View 6-10

6.6 Analyzing the Results of a Simulation 6-11

6.6.1 How to Analyze the Results of a Simulation Using a Chart 6-11

6.6.2 How to Generate a Simulation Report 6-12

6.6.3 What Happens when You Generate a Simulation Report 6-13

7 Using Process Analytics

7.1 Introduction to Process Analytics 7-1

7.1.1 Process and Activity Performance Metrics 7-2

7.1.2 Workload Metrics 7-3

7.1.3 Human Resource Metrics 7-3

7.2 Typical Process Analytics Workflow 7-3

7.2.1 How to Enable Global Flags for Publishing Analytics 7-4

7.3 Configuring Projects, Processes, and Activities to Generate Sampling Points 7-5

7.3.1 User-Defined Measurements 7-6

vi

7.3.2 Enable HWF and Case Measurements 7-6

7.3.3 How to Configure the Sampling Point Generation of a Project 7-6

7.3.4 What Happens When You Configure a Project To Generate Sampling Points 7-7

7.3.5 How to Configure the Sampling Point Generation for an Activity 7-7

7.3.6 What Happens When You Configure the Sampling Points for an Activity 7-7

7.4 Adding Business Indicators to Projects 7-7

7.4.1 How to Add a Business Indicator to a Project 7-9

7.4.1.1 Create the Business Indicator 7-9

7.4.1.2 Bind Business Indicators to a Project Data Object 7-11

7.4.1.3 Create Data Associations for a Project Data Object. 7-12

7.4.2 What Happens When You Add a Business Indicator to a Process 7-12

7.5 Adding Measurement Marks to Processes 7-13

7.5.1 How to Add Single Measurement Marks to a Process 7-15

7.5.2 What Happens When You Add a Single Measurement to a Process 7-16

7.5.3 How to Measure a Business Indicator in a Process Section Using
Measurement Marks 7-17

7.5.4 What Happens When You Use Measurement Marks to Measure Business
Indicator Values for a Section of a Process 7-18

7.6 Adding Counters to the Activities in a Process 7-18

7.6.1 How to Add a Counter Mark to an Activity in a Process 7-19

7.6.2 What Happens When You Add a Counter Mark to an Activity in a Process 7-19

7.6.3 How to Delete a Counter Mark 7-19

7.6.4 What Happens When You Delete a Counter Mark 7-19

7.7 Defining Analytics View Identifier 7-19

7.7.1 How to Define the Analytics View Identifier 7-20

7.8 Configuring BAM 12c Process Metrics Generation in a Project 7-20

7.8.1 BAM 12c Process Metrics 7-20

7.8.2 How to Configure BAM 12c Process Metrics Generation in a Project 7-21

7.8.3 What Happens When You Enable BAM 12c Process Metrics in a Project 7-21

7.9 Enabling Oracle BAM 11g in a Project 7-22

7.9.1 How to Enable Oracle BAM 11g in a Project 7-22

7.9.2 What Happens When You Enable Oracle BAM 11g 7-23

Part IV Working with Business Components

8 Using the Business Catalog

8.1 Introduction to the Business Catalog 8-1

8.1.1 Non-Synthesized Components 8-3

8.1.2 Synthesized Components 8-3

8.1.3 Adding Components to the Business Catalog 8-3

vii

8.1.4 Using Modules to Organize Business Components 8-4

8.1.4.1 Predefined Modules 8-5

8.2 Adding a New Module 8-6

8.2.1 How to Add a New Module 8-6

8.3 Deleting a Module 8-6

8.3.1 How to Delete a Module 8-6

8.4 Customizing Synthesized Types 8-7

8.4.1 How to Customize a Synthesized Type 8-7

8.5 Creating an Enumeration 8-7

8.5.1 How to Create an Enumeration 8-8

8.5.2 How to Add Attributes to an Enumeration 8-8

8.5.3 Using an Enumeration in a Simple Expression 8-9

9 Sharing BPM Projects Using the Process Asset Manager

9.1 Introduction to the Process Asset Manager 9-1

9.2 Working with BPM Projects Stored in the Process Asset Manager 9-2

9.2.1 How to Set Up an Environment to Work with Projects Stored in the Process
Asset Manager 9-2

9.2.2 How to Modify a BPM Project Stored in the Process Asset Manager 9-3

9.2.3 How to add a BPM Project to the Process Asset Manager 9-3

9.2.4 How to Export a BPM Project Stored in the Business Process Manager 9-3

9.3 Working with the Process Asset Manager 9-4

9.3.1 How to Create a Process Asset Manager Connection 9-4

9.3.2 How to Check Out a BPM Project from the Process Asset Manager 9-5

9.3.3 How to Save a BPM Project to the Process Asset Manager 9-5

9.3.4 How to Update Local BPM Projects 9-6

9.3.5 How to Delete a BPM Project from the Process Asset Manager 9-7

9.3.6 How to View the Change History 9-7

10

Modeling Business Objects

10.1 Introduction to Business Objects 10-1

10.1.1 Types of Business Objects 10-3

10.1.2 Benefits of Modeling Using Business Objects 10-3

10.1.3 Naming Conventions for Business Objects 10-4

10.2 Working with Business Objects 10-4

10.2.1 How to Add a Business Object 10-5

10.2.2 What Happens When You Add a Business Object 10-5

10.2.3 How to Modify a Business Object 10-5

10.2.4 How to Delete a Business Object 10-6

10.2.5 What Happens When You Delete a Business Object 10-6

viii

10.2.6 How to Document a Business Object 10-6

10.2.7 What Happens When You Document a Business Object 10-6

10.3 Using a Business Object in a Process 10-6

10.3.1 How to Use a Business Object in a Process 10-7

10.3.2 What Happens When You Use a Business Object in a Process 10-7

10.4 Adding Business Objects Based on a XML Schema Element or Type 10-7

10.4.1 How to Add a Business Object Based on a XML Schema Element or Type 10-8

10.4.2 What Happens When You Create a Business Object Based on an XML
Schema Element or Type 10-8

10.4.3 How to add an XML Schema to Your BPM Project 10-8

10.4.4 What Happens When You Add a Schema File to Your Project 10-9

10.5 Introduction to Business Object Attributes 10-9

10.5.1 Supported Data Types for Business Object Attributes 10-9

10.5.2 Naming Conventions for Business Object Attributes 10-10

10.6 Working with Business Object Attributes 10-10

10.6.1 How to Add a Business Object Attribute 10-11

10.6.2 How to Remove a Business Object Attribute 10-11

10.6.3 How to Document a Business Object Attribute 10-12

10.6.4 What Happens When You Document a Business Object Attribute 10-12

10.7 Working with Business Object Methods 10-12

10.7.1 How to Add a Business Object Method 10-12

10.7.2 How to Change the Signature of Business Object Method 10-13

10.7.3 How to Remove a Business Object Method 10-13

10.7.4 How to Document a Business Object Method 10-13

10.8 Sharing Business Objects 10-14

10.8.1 How to Export a Business Object 10-14

10.8.2 How to Import Business Objects from a File 10-14

10.9 Introduction to Business Object Inheritance 10-15

10.9.1 Method Overloading 10-15

10.9.2 Polymorphism 10-15

10.9.3 Method Overriding 10-15

10.9.4 Attribute Shadowing 10-15

10.9.5 Abstract Business Objects 10-15

10.10 Working with Business Object Inheritance 10-16

10.10.1 How to Create a Child Business Object 10-16

10.10.2 How to Mark a Business Object as Abstract 10-16

11

Working with Human Tasks

11.1 Introduction to Human Tasks in BPM 11-1

11.2 Using Human Task Patterns in Oracle BPM 11-2

11.3 Updating User Tasks Using Update Tasks 11-3

ix

11.3.1 Update Task Operations 11-3

11.3.2 How to Update a User Task Using Update Tasks 11-4

11.3.3 How to Configure Update Tasks 11-4

12

Working with Services and References

12.1 Introduction to Services and References 12-1

12.1.1 Introduction to Services 12-2

12.1.2 Introduction to References 12-2

12.1.3 Introduction to Callbacks 12-2

12.2 Introduction to Service Adapters in Oracle BPM 12-3

12.3 Introduction to Oracle Mediator in Oracle BPM 12-5

12.4 Introduction to BPEL Processes in Oracle BPM 12-8

12.5 Using Services in Oracle BPM 12-9

12.6 Using References in Oracle BPM 12-10

12.7 Customizing Services and References 12-10

12.7.1 How to Customize a Service or a Reference 12-11

12.7.2 How to Customize an Operation 12-11

12.7.3 What Happens When You Customize a Service or a Reference 12-11

13

Using Business Rules

13.1 Introduction to Business Rules in Oracle BPM 13-1

13.1.1 Using Business Rules in a BPMN Process 13-2

13.2 Assigning an Existing Business Rule to a Business Rule Task 13-3

13.2.1 How to Assign an Existing Business Rule to a Business Rule Task 13-3

13.2.2 What Happens When You Assign an Existing Business Rule to a Business
Rule Task 13-3

13.2.3 How to Edit the Business Rule Associated to a Business Rule Task 13-4

13.3 Creating a Business Rule from Oracle BPM Studio 13-4

13.3.1 How to Create a Business Rule from Oracle BPM Studio 13-4

13.3.2 How to Add Input and Output Arguments When Creating a Business Rule
Component 13-5

13.3.3 How to Configure the Advanced Properties When Creating a Business Rule
Component 13-6

13.3.4 What Happens When You Create a Business Rule Task from Oracle BPM 13-6

14

Sending Notifications

14.1 Introduction to Notifications 14-1

14.2 Sending Email Notifications 14-1

14.2.1 How to Send an Email Notification 14-1

x

14.2.2 How to Configure Email Notification General Properties 14-2

14.2.3 How to Configure Email Notification Content Properties 14-2

14.2.4 How to Configure Email Notification Attachment Properties 14-3

14.2.5 How to Configure Email Notification Header Properties 14-3

14.3 Sending a User Notification 14-4

14.3.1 How to Send a User Notification 14-4

14.3.2 How to Configure User Notification General Properties 14-4

14.3.3 How to Configure User Notification Properties 14-4

14.4 Sending an SMS Notification 14-5

14.4.1 How to Send an SMS Notification 14-5

14.4.2 How to Configure SMS Notification General Properties 14-5

14.5 Sending an IM Notification 14-6

14.5.1 How to Send an IM Notification 14-6

14.5.2 How to Configure IM Notification General Properties 14-6

15

Using SOA Composites with BPM Projects

15.1 Introduction to SOA Composites 15-1

15.1.1 Understanding the Relationship Between SOA Composites and SOA
Components 15-2

15.1.2 Working with SOA Components 15-2

15.1.3 BPMN Process in SOA Composites 15-3

15.1.4 How Do BPMN Errors Affect the SOA Composite Status 15-3

15.2 Opening the SOA Composite in a BPM Project 15-4

15.2.1 How to Open the SOA Composite in a BPM Project 15-4

15.3 Opening BPMN Processes from the SOA Composite in a BPM Project 15-4

15.3.1 How to Open a BPMN Process from the SOA Composite in a BMP Project 15-4

15.4 Adding a BPMN Process from the SOA Composite Editor 15-5

15.4.1 How to Add a BPMN Process from the SOA Composite Editor 15-5

15.5 Integrating with BPEL Processes Using the SOA Composite 15-5

15.6 Adding a BPMN Process as a Partner Link in a BPEL Process 15-6

15.6.1 How to Add a BPMN Process as a Partner Link in a BPEL Process 15-6

15.7 Connecting to a BPMN Process Using Web Services 15-7

15.8 Building a BPM Project 15-7

15.8.1 How to Build a BPM Project 15-7

Part V Controlling the Process Flow

xi

16

Controlling the Process Flow

16.1 Introduction to Controlling the Process Flow 16-1

16.1.1 Gateways 16-1

16.1.2 Timer Events 16-1

16.1.3 Errors 16-1

16.1.4 Message Events 16-2

16.1.5 Send and Receive Tasks 16-2

16.1.6 Loop Markers 16-2

16.1.7 Multi-Instance Loop Markers 16-2

16.1.8 Suspending the Current Process Flow 16-2

16.2 Introduction to Loop and Multi-Instance Markers in Subprocesses 16-2

16.2.1 How to Configure Loop Markers 16-3

16.2.2 How to Configure Multi-Instance Markers 16-3

16.3 Suspending the Current Process Flow to Run an Alternative Process Flow 16-5

16.3.1 How to Configure a Flow Object to Suspend the Current Process Flow 16-5

16.3.2 How to Resume the Suspended Process Flow 16-5

17

Adding Delays, Deadlines, and Time-Based Cycles to a Process

17.1 Introduction to Timer Events 17-1

17.2 Adding a Delay to the Process Flow 17-2

17.2.1 How to Add a Delay to the Process Flow 17-2

17.3 Designing a Process to Start Based on a Time Condition 17-3

17.3.1 How to Design a Process to Start Based on a Time Condition 17-3

17.4 Configuring a Deadline for an Activity 17-4

17.4.1 How to Configure a Deadline for an Activity 17-4

17.5 Configuring a Deadline for a BPMN Process 17-5

17.5.1 How to Configure a Deadline for a BPMN Process 17-6

17.6 Running Additional Activities 17-6

17.6.1 How to Run Additional Activities While an Activity is Running 17-7

17.6.2 How to Run Additional Activities While a Process is Running 17-8

17.7 Configuring Timer Events 17-8

17.7.1 How to Configure a Timer Event To Use a Specific Date and Time 17-8

17.7.2 How to Configure a Timer Event to Use an Interval 17-9

17.7.3 How to Configure a Timer Event to Run Periodically 17-10

18

Handling Errors

18.1 Introduction to Error Handling 18-1

18.1.1 Handling Errors Using Exceptions 18-2

18.2 Using Business Exceptions 18-2

xii

18.3 Using System Exceptions 18-2

18.4 Typical Flow of an Exception 18-4

18.4.1 Typical Flow of an Exception Thrown in a Task 18-4

18.4.2 Typical Flow of an Exception in a Subprocess 18-4

18.4.3 Typical Flow of an Exception in a Reusable Process 18-5

18.5 Handling Exceptions in a Business Process 18-5

18.5.1 How to Handle an Exception Using a Boundary Error Catch Event 18-6

18.5.2 How to Handle an Exception Using an Event Subprocess 18-7

18.5.3 How to Configure an Error Event to Catch Business Exceptions 18-8

18.5.4 How to Configure a Catch Event to Catch System Exceptions 18-8

18.6 Configuring Catch Events to Recover from an Exception 18-9

18.7 Throwing Exceptions in Subprocesses or Reusable Processes 18-10

18.7.1 How to Throw an Exception 18-10

18.7.2 How to Create a Business Exception 18-11

18.8 Handling Exceptions in Subprocesses 18-11

18.9 Handling Errors in a Peer Process Using Message Events 18-11

18.9.1 How to Handle Errors in a Peer Process Using Message Events 18-12

19

Using Fault Handling in BPM

19.1 Handling Faults with the Fault Management Framework 19-1

19.2 Designing Fault Policies for Oracle BPM Suite 19-1

19.2.1 Designing Composite Level Fault Policies 19-2

19.2.2 Designing Service Component Level Fault Policies 19-3

19.2.3 Designing Reference Level Fault Policies (Calling a BPM Process) 19-4

19.2.4 Designing Reference Level Fault Policies (Calling a File Adapter) 19-6

19.2.5 What You May Need to Know About the Difference Between Reference
Naming Conventions in Oracle SOA Suite and Oracle BPM Suite 19-7

20

Communicating With Other BPMN Processes and Services

20.1 Introduction to Communication with Other BPMN Processes and Services 20-1

20.1.1 Introduction to Synchronous and Asynchronous Operations 20-2

20.2 Communicating With Other BPMN Processes and Services Using Message Events 20-2

20.3 Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN
Processes 20-4

20.3.1 How to Invoke Asynchronous Service Operation Using Message Events 20-5

20.3.2 How to Receive the Callback Operation of an Asynchronous Service Using
Message Events 20-6

20.3.3 What Happens When You Invoke an Asynchronous Service Operation Using
Message Events 20-6

20.3.4 How to Invoke an Asynchronous BPMN Process Operation Using Message
Events 20-7

xiii

20.3.5 How to Invoke the Callback Operation of an Asynchronous BPMN Process
Using Message Events 20-7

20.3.6 What Happens When You Invoke an Asynchronous BPMN Process Using
Message Events 20-8

20.4 Using Message Events Configured as Boundary Events 20-9

20.5 Using Service Tasks to Invoke Synchronous Operations in Services and BPMN
Processes 20-9

20.5.1 How to Invoke a Synchronous Service Operation Using a Service Task 20-10

20.5.2 What Happens When You Invoke a Synchronous Service Operation Using a
Service Task 20-10

20.5.3 How to Invoke a Synchronous BPMN Process Operation Using a Service
Task 20-10

20.5.4 What Happens When You Invoke a Synchronous BPMN Process Operation
Using a Service Task 20-11

20.6 Communicating With Other BPMN Processes and Services Using Send and
Receive Tasks 20-11

20.7 Using Send and Receive Tasks to Invoke Asynchronous Services and
Asynchronous BPMN Processes 20-12

20.7.1 How to Use a Send Task to Invoke an Asynchronous Service Operation 20-13

20.7.2 How to Use the Receive Task to get Callbacks from the Invoked
Asynchronous Service 20-14

20.7.3 What Happens When You Invoke an Asynchronous Service Using Send and
Receive Tasks 20-14

20.7.4 How to Use the Send Task to Invoke an Asynchronous BPMN Process
Operation 20-15

20.7.5 How to Use a Receive Task to get the Callback operation of an Invoked
Asynchronous BPMN Process 20-15

20.7.6 What Happens When You Invoke an Asynchronous BPMN Process Using
Send and Receive Tasks 20-16

20.8 Introduction to Invoking a Process Using Call Activities 20-16

20.9 Invoking a Process Using Call Activities 20-17

20.9.1 How to Invoke a Process Using Call Activities 20-17

20.10 Introduction to Communication Between Processes Using Signal Events 20-17

20.11 Communicating Between Processes Using Signal Events 20-19

20.11.1 How to Broadcast a Signal to Multiple Processes 20-19

20.11.2 How to Configure Your Process to React to a Specific Signal 20-20

21

Defining the Process Interface

21.1 Defining the Process Interface 21-1

21.2 Using Message Events to Define the BPMN Process Interface 21-1

21.2.1 Using Message Events to Define the Callback Interface for BPMN Processes 21-3

21.3 Using Message Events to Define Asynchronous Operations in a BPMN Processes 21-4

21.3.1 How to Configure the Start Operation of a BPMN Process as Asynchronous
Using Message Events 21-4

xiv

21.3.2 How to Define a Callback Operation Using Message Events 21-5

21.3.3 What Happens When You Configure a BPMN Process Start Operation as
Asynchronous Using Message Events 21-6

21.3.4 How to Add an Asynchronous Operation to a BPMN Process Interface Using
Intermediate Message Events 21-6

21.4 Using Message Events to Define a Synchronous Operation in a BPMN Processes
Interface 21-7

21.4.1 How to Configure the Start Operation of a BPMN Process as Synchronous
Using Message Events 21-7

21.4.2 How to Configure the End Event of a Synchronous Process 21-8

21.4.3 What Happens When You Configure the Start Operation of a BPMN Process
as Synchronous Using Message Events 21-8

21.5 Using Message Events with an Interface from the Business Catalog to Define Your
Process Interface 21-9

21.5.1 How to Use an Interface from the Business Catalog to Define an Operation in
a BPMN Process Interface Using Message Start and Catch Events 21-10

21.5.2 How to Configure a Message End or a Message Throw Event to Use an
Interface from the Business Catalog Using Message Events 21-11

21.5.3 What Happens When You Use an Interface from the Business Catalog to
Define an Operation 21-12

21.6 Defining the BPMN Process Interface Using Send and Receive Tasks 21-12

21.6.1 Defining the Callback Interface for BPMN Processes Using a Send Task 21-13

21.7 Defining Asynchronous Processes Operations Using Send and Receive Tasks 21-14

21.7.1 How to Define an Asynchronous Process Operation Using Send and Receive
Tasks 21-14

21.7.2 How to Add an Asynchronous Process Operation to the Process Interface
Using a Receive Task 21-15

21.7.3 How to Define a Callback Process Operation Using a Send Task 21-15

21.7.4 What Happens When You Define an Asynchronous Operation Using Send
and Receive Tasks 21-16

21.8 Using Send and Receive Tasks to Define a Synchronous Operation in a BPMN
Process 21-16

21.8.1 How to Configure a Process Operation as Synchronous Using Send and
Receive Tasks 21-17

21.8.2 What Happens When You Define a Synchronous Operation Using Send and
Receive Tasks 21-17

21.9 Using Send and Receive Tasks with an Interface from the Business Catalog to
Define Your Process Interface 21-18

21.9.1 How to Use an Interface from the Business Catalog to Define an Operation in
a BPMN Process Interface Using Send and Receive Tasks 21-19

21.9.2 How to Configure a Message End or a Message Throw Event to Use an
Interface from the Business Catalog Using Send and Receive Tasks 21-19

21.9.3 What Happens When You Use Send and Receive Tasks with an Interface
from the Business Catalog to Define an Operation 21-20

21.10 Defining the Process Input and Output 21-20

21.10.1 How to Add Input and Output Arguments to a BPMN Process 21-21

xv

21.10.2 How to Edit the Input and Output Arguments of a BPMN Process 21-21

21.10.3 How to Delete an Input or Output Argument of a BPMN Process 21-21

22

Communicating Business Processes Using Correlations

22.1 Introduction to Correlations 22-1

22.2 Understanding the Components of a Correlation 22-2

22.3 Typical Design Workflow 22-2

22.4 Defining Correlations for a BPMN Element 22-3

22.4.1 How to Define a Correlation for a Flow Object 22-3

22.4.2 How to Define a Correlation Using Simple Mode 22-4

22.4.3 How to Define a Correlation Using Advanced Mode 22-4

22.5 Creating Correlations Keys 22-5

22.5.1 How to Create a Correlation Key 22-5

22.5.2 How to Configure a Correlation Key 22-5

23

Defining Conversations

23.1 Introduction to Conversations 23-1

23.1.1 Defining the Default Conversation 23-1

23.2 Understanding the Different Types of Conversations 23-2

23.3 Creating Conversations 23-2

23.3.1 How to Create a Conversation 23-2

23.4 Defining Conversations for a BPMN Element 23-3

23.4.1 How to Define a Conversation for a BPMN Element 23-3

23.5 Viewing the Collaboration Diagram 23-4

23.5.1 How to View the Collaboration Diagram 23-4

23.5.2 How to Hide a Collaboration 23-4

23.5.3 How to Show a Collaboration 23-4

24

Writing Expressions

24.1 Introduction to Expressions in Oracle BPM 24-1

24.2 Writing Conditions in Conditional Sequence Flows 24-2

24.2.1 How to Implement a Conditional Sequence Flow 24-3

24.3 Writing Expressions in Complex Gateways 24-3

24.3.1 How to Implement a Complex Gateway 24-3

24.4 Writing Expressions in Timer Events 24-4

24.4.1 How to Use an Expression in a Timer Event 24-4

24.5 Writing Expressions in Data Associations 24-4

24.5.1 How to Use an Expression in a Data Association 24-5

24.6 Writing Conditions in Loop and Multi-Instance Markers in Subprocesses 24-5

xvi

24.6.1 How to Configure Loop Markers 24-6

24.6.2 How to Configure Multi-Instance Markers 24-7

24.7 Writing Expressions and Conditions Using the Simple Expression Builder 24-7

24.7.1 How to Use a Data Object in an Expression 24-8

24.7.2 How to Use a Function in an Expression 24-9

24.8 Simple Expression Builder Supported Operators 24-9

24.8.1 Operators Precedence 24-11

24.9 Simple Expression Builder Supported Functions 24-11

24.9.1 String Functions 24-11

24.9.1.1 length 24-11

24.9.1.2 concatenation 24-12

24.9.1.3 contains 24-12

24.9.1.4 startsWith 24-12

24.9.2 Numeric Functions 24-13

24.9.2.1 floor 24-13

24.9.2.2 ceil 24-13

24.9.2.3 round 24-14

24.9.2.4 abs 24-14

24.9.3 DateTime and Duration Functions 24-14

24.9.3.1 now 24-14

24.9.3.2 addition 24-15

24.9.3.3 subtraction 24-15

24.9.3.4 year 24-15

24.9.3.5 month 24-15

24.9.3.6 day 24-16

24.9.3.7 hours 24-16

24.9.3.8 minutes 24-16

24.9.3.9 seconds 24-17

24.9.3.10 timezone 24-17

24.10 Writing Expressions Using the XPath Expression Builder 24-18

24.10.1 How to Add a Variable to an XPath Expression 24-19

24.10.2 How to Use a Function in an XPath Expression 24-19

24.11 Using Arrays 24-19

24.11.1 Accessing an Attribute of an Element Within an Array 24-20

24.11.2 Obtaining the Length of an Array 24-20

24.12 Using Literals 24-20

24.12.1 Using String Literals 24-20

24.12.2 Using Time Literals 24-21

24.12.3 Using Duration Literals 24-22

24.12.4 Using Array Literals 24-22

24.13 XPath BPM Extension Functions 24-23

xvii

24.13.1 getActivityInstanceAttribute 24-23

24.13.2 getDataInput 24-23

24.13.3 getDataObject 24-23

24.13.4 getDataOutput 24-24

24.13.5 getGatewayInstanceAttribute 24-24

24.13.6 getProcessInstanceAttribute 24-24

24.13.7 getBusinessParameter 24-25

25

Writing BPM Scripts

25.1 Introduction to BPM Scripting 25-1

25.2 Introduction to the BPM Code Editor 25-1

25.3 Introduction to the Scripting Catalog 25-2

25.4 Importing Custom Libraries 25-3

25.4.1 How to Import a Custom Library 25-3

25.5 Working with the Elements of a BPM Project 25-4

25.5.1 How to Work with Business Objects 25-4

25.5.2 How to Work with Business Parameters 25-5

25.6 Importing Business Objects from the Business Catalog 25-5

25.7 Predefined Variables 25-5

25.8 Implementing Script Tasks 25-6

25.8.1 How to Implement a Script Task 25-6

25.9 Type Description Mapping for XML Schema Types 25-7

26

Debugging a BPM Project

26.1 Introduction to Debugging a BPM Project 26-1

26.2 Adding a Breakpoint to a BPMN Flow Object 26-2

26.2.1 How to Add a Breakpoint to a BPMN Flow Object 26-2

26.3 Adding a Breakpoint to a BPMN Component 26-2

26.3.1 How to Add a Breakpoint to a BPMN Component 26-2

26.4 Disabling a Breakpoint 26-3

26.4.1 How to Disable a Breakpoint 26-3

26.5 Debugging a BPM Project 26-3

26.5.1 How to Attach a BPM Project to the Debugger 26-3

Part VI Using Human Interaction Components

xviii

27

Getting Started with Human Workflow

27.1 Introduction to Human Workflow 27-1

27.2 Introduction to Human Workflow Concepts 27-3

27.2.1 Introduction to Design and Runtime Concepts 27-3

27.2.1.1 Task Assignment and Routing 27-3

27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment 27-6

27.2.1.3 Task Stakeholders 27-7

27.2.1.4 Task Deadlines 27-8

27.2.1.5 Notifications 27-9

27.2.1.6 Task Forms 27-9

27.2.1.7 Advanced Concepts 27-10

27.2.1.8 Reports and Audit Trails 27-11

27.2.2 Introduction to the Stages of Human Workflow Design 27-12

27.3 Introduction to Human Workflow Features 27-12

27.3.1 Task Assignment to a User or Role 27-12

27.3.2 Use of the Various Participant Types 27-13

27.3.3 Escalation, Expiration, and Delegation 27-13

27.3.4 Automatic Assignment and Delegation 27-14

27.3.5 Dynamic Assignment of Users Based on Task Content 27-14

27.4 Introduction to Human Workflow Architecture 27-14

27.4.1 Human Workflow Services 27-15

27.4.2 Use of Human Task 27-17

27.4.3 Service Engines 27-18

27.5 Human Workflow and Business Rule Differences Between Oracle SOA Suite and
Oracle BPM Suite 27-18

28

Designing Human Tasks in Oracle BPM

28.1 Introduction to Designing Human Tasks in Oracle BPM 28-1

28.1.1 Typical Design Workflow 28-1

28.2 Creating a Human Task from Oracle BPM Studio 28-2

28.2.1 How to Create a Human Task from Oracle BPM Studio 28-3

28.2.2 How to Configure the Outcome of a Human Task 28-4

28.2.3 How to Add a Parameter to Human Task 28-5

28.2.4 How to Configure the Outcome Target of a Human Task 28-5

28.2.5 What Happens When You Create a Human Task from Oracle BPM Studio 28-5

28.3 Editing a Human Task from Oracle BPM Studio 28-6

28.3.1 How to Edit a Human Task Using the User Task Properties Dialog 28-7

28.4 Creating a Human Task from the SOA Composite Editor 28-7

28.4.1 How to Create a Human Task from the SOA Composite Editor 28-7

28.5 Implementing a User Task with an Existing Human Task 28-8

xix

28.5.1 How to Implement a User Task With an Existing Human Task 28-8

28.5.2 What Happens When You Implement a User Task With an Existing Human
Task 28-9

28.5.3 How to Associate the Process Payload to the Human Task Payload 28-9

28.6 Editing a Human Task Using the Human Task Editor 28-10

28.6.1 How to Edit a Human Task Using the Human Task Editor 28-10

28.7 Configuring a Human Task Using the Human Task Editor 28-11

28.7.1 How to Specify an E-mail Address for the Recipient of a Notification 28-12

28.7.2 How to Configure Oracle UCM Repository to Store Task Attachments 28-13

28.8 Working with Screenflows 28-14

28.8.1 Creating a Screenflow 28-14

29

Configuring Human Tasks

29.1 Accessing the Sections of the Human Task Editor 29-1

29.1.1 How to Access the Sections of the Human Task Editor 29-1

29.2 Specifying the Title, Description, Outcome, Priority, Category, Owner, and
Application Context 29-3

29.2.1 How to Specify the Title, Description, Outcome, Priority, Category, Owner,
and Application Context 29-3

29.2.2 How to Specify a Task Title 29-4

29.2.3 How to Specify a Task Description 29-5

29.2.4 How to Specify a Task Outcome 29-5

29.2.5 How to Specify a Task Priority 29-7

29.2.6 How to Specify a Task Category 29-7

29.2.7 How to Specify a Task Owner 29-8

29.2.7.1 Specifying a Task Owner Statically Through the User Directory or a List
of Application Roles 29-8

29.2.7.2 Specifying a Task Owner Dynamically Through an XPath Expression 29-13

29.2.8 How To Specify an Application Context 29-14

29.3 Specifying the Task Payload Data Structure 29-15

29.3.1 How to Specify the Task Payload Data Structure 29-15

29.4 Assigning Task Participants 29-17

29.4.1 How to Specify a Stage Name and Add Parallel and Sequential Blocks 29-19

29.4.2 How to Assign Task Participants 29-20

29.4.3 How to Configure the Single Participant Type 29-21

29.4.3.1 Creating a Single Task Participant List 29-24

29.4.3.2 Specifying a Time Limit for Acting on a Task 29-34

29.4.3.3 Inviting Additional Participants to a Task 29-35

29.4.3.4 Bypassing a Task Participant 29-35

29.4.4 How to Configure the Parallel Participant Type 29-35

29.4.4.1 Specifying the Voting Outcome 29-37

xx

29.4.4.2 Creating a Parallel Task Participant List 29-38

29.4.4.3 Specifying a Time Limit for Acting on a Task 29-39

29.4.4.4 Inviting Additional Participants to a Task 29-39

29.4.4.5 Bypassing a Task Participant 29-39

29.4.5 How to Configure the Serial Participant Type 29-39

29.4.5.1 Creating a Serial Task Participant List 29-42

29.4.5.2 Specifying a Time Limit for Acting on a Task 29-42

29.4.5.3 Inviting Additional Participants to a Task 29-43

29.4.5.4 Bypassing a Task Participant 29-43

29.4.6 How to Configure the FYI Participant Type 29-43

29.4.6.1 Creating an FYI Task Participant List 29-44

29.5 Selecting a Routing Policy 29-44

29.5.1 How to Route Tasks to All Participants in the Specified Order 29-46

29.5.1.1 Allow All Participants to Invite Other Participants or Edit New
Participants 29-47

29.5.1.2 Allow Initiator to Add Participants 29-48

29.5.1.3 Stopping Routing of a Task to Further Participants 29-48

29.5.1.4 Enabling Early Completion in Parallel Subtasks 29-49

29.5.1.5 Completing Parent Subtasks of Early Completing Subtasks 29-50

29.5.2 How to Specify Advanced Task Routing Using Business Rules 29-50

29.5.2.1 Introduction to Advanced Task Routing Using Business Rules 29-50

29.5.2.2 Facts 29-50

29.5.2.3 Action Types 29-52

29.5.2.4 Sample Ruleset 29-52

29.5.2.5 Linked Dictionary Support 29-54

29.5.2.6 Creating Advanced Routing Rules 29-54

29.5.3 How to Use External Routing 29-55

29.5.4 How to Configure the Error Assignee and Reviewers 29-57

29.6 Specifying Multilingual Settings and Style Sheets 29-59

29.6.1 How to Specify WordML and Other Style Sheets for Attachments 29-59

29.6.2 How to Specify Multilingual Settings 29-60

29.7 Specifying What to Show in Task Details in the Worklist 29-61

29.8 Escalating, Renewing, or Ending the Task 29-61

29.8.1 Introduction to Escalation and Expiration Policy 29-62

29.8.2 How to Specify a Policy to Never Expire 29-63

29.8.3 How to Specify a Policy to Expire 29-63

29.8.4 How to Extend an Expiration Policy Period 29-64

29.8.5 How to Escalate a Task Policy 29-64

29.8.6 How to Specify Escalation Rules 29-65

29.8.7 How to Specify a Due Date 29-66

29.9 Specifying Participant Notification Preferences 29-67

xxi

29.9.1 How to Notify Recipients of Changes to Task Status 29-69

29.9.2 How to Edit the Notification Message 29-70

29.9.3 How to Set Up Reminders 29-71

29.9.4 How to Change the Character Set Encoding 29-71

29.9.5 How to Secure Notifications to Exclude Details 29-71

29.9.6 How to Display the Oracle BPM Worklist URL in Notifications 29-71

29.9.7 How to Make Email Messages Actionable 29-72

29.9.8 How to Send Task Attachments with Email Notifications 29-72

29.9.9 How to Send Email Notifications to Groups and Application Roles 29-72

29.9.10 How to Customize Notification Headers 29-73

29.10 Specifying Access Policies and Task Actions on Task Content 29-73

29.10.1 How to Specify Access Policies on Task Content 29-74

29.10.1.1 Introduction to Access Rules 29-74

29.10.1.2 Specifying User Privileges for Acting on Task Content 29-75

29.10.1.3 Specifying Actions for Acting Upon Tasks 29-77

29.11 Creating and Implementing Digital Certificates 29-78

29.11.1 How to Create a Digital Certificate Authority 29-78

29.11.2 How to Create Digital User Certificates 29-79

29.11.3 How to Generate Digital Certificate Revocation List 29-80

29.11.4 How to Specify a Certificate Authority 29-81

29.11.5 How to Specify a Workflow Digital Signature Policy 29-81

29.12 Specifying Restrictions on Task Assignments 29-83

29.12.1 How to Specify Restrictions on Task Assignments 29-83

29.13 Specifying Java or Business Event Callbacks 29-83

29.13.1 How to Specify Callback Classes on Task Status 29-84

29.13.1.1 Specifying Java Callbacks 29-85

29.13.1.2 Specifying Business Event Callbacks 29-86

29.13.2 How to Specify Task and Routing Customizations in BPEL Callbacks 29-88

29.13.3 How to Disable BPEL Callbacks 29-88

29.14 Storing Documents in Oracle Enterprise Content Management 29-88

29.14.1 How to Configure Oracle UCM Repository to Store Task Attachments 29-89

30

Working with Guided Business Processes

30.1 Introduction to Guided Business Processes 30-1

30.1.1 Guided Business Process Design Time Architecture 30-4

30.1.2 Components of a Guided Business Process 30-5

30.1.3 Guided Business Process Runtime Architecture 30-5

30.1.3.1 Client Tier 30-7

30.1.3.2 Business Logic Tier 30-8

30.1.3.3 Data Tier 30-9

xxii

30.2 Guided Business Process Use Cases 30-9

30.2.1 Online Public Sector Form Processing 30-9

30.2.2 Online Loan Application Procedure 30-10

30.3 The Typical Flow of Developing a Guided Business Process 30-12

30.4 Introduction to Developing a Guided Business Process 30-13

30.5 Developing a BPMN Guided Business Process 30-14

30.5.1 How to Develop a BPMN Guided Business Process 30-14

30.5.2 What Happens When You Develop a BPMN Guided Business Process 30-14

30.5.3 How to Add a New Milestone to a Guided Business Process 30-14

30.5.4 What Happens When You Add a Milestone to a Guided Business Process 30-15

30.5.5 How to Add a User Task to a Milestone 30-15

30.5.6 What Happens When You Add a User Task to a Milestone 30-15

30.5.7 How to Move a User Task to Another Milestone 30-15

30.5.8 What Happens When You Move a User Task to Another Milestone 30-15

30.5.9 How to Order the Milestones in a BPMN Guided Business Process 30-16

30.5.10 What Happens When You Order the Milestones in a Guided Business
Process 30-16

30.5.11 How to Delete a Task from a Guided Business Process 30-16

30.5.12 What Happens When You Delete a Task from a Guided Business Process 30-16

30.5.13 How to Delete a Milestone 30-16

30.5.14 What Happens When You Delete Milestone 30-17

30.5.15 How to Configure an Optional Task 30-17

30.5.16 What Happens When You Configure an Optional Task 30-17

30.5.17 How to Configure a Parallel Task Flow in a BPMN Guided Business Process 30-18

30.5.18 How to Branch the Task Flow in a BPMN Guided Business Process 30-18

30.5.19 How to Configure a Task to Display a Blocked Icon 30-18

30.5.20 What Happens When You Configure a Task to Display a Blocked Icon and
Message 30-18

30.5.21 How to Configure an Icon for a Guided Business Process 30-18

30.5.22 What Happens When You Configure an Icon for a Guided Business Process 30-19

30.5.23 How to Configure an Icon for a Milestone 30-19

30.5.24 What Happens When You Configure an Icon for a Milestone 30-19

30.5.25 How to Configure the Display Mode for a Guided Business Process 30-19

30.5.26 What Happens When You Configure the Display Mode for a Guided
Business Process 30-20

30.5.27 How to Configure the Display Mode for a Milestone 30-20

30.5.28 What Happens When You Configure the Display Mode for a Milestone 30-20

30.5.29 How to Configure the Display Mode for a User Task 30-21

30.5.30 What Happens When You Configure the Display Mode for a User Task 30-21

30.5.31 How to Configure the Task Access Mode for a Guided Business Process 30-21

30.5.32 What Happens When You Configure the Task Access Mode for a Guided
Business Process 30-22

xxiii

30.5.33 How to Localize a BPMN Guided Business Process 30-22

30.5.34 How to Localize a Milestone 30-23

30.5.35 How to Localize a User Task 30-23

30.5.36 What Happens When You Localize a Guided Business Process 30-24

30.6 Configuring Activity Guide Properties 30-24

30.7 Deploying a Guided Business Process to Oracle WebLogic Server 30-26

30.7.1 How to Deploy a Guided Business Process 30-26

30.8 Testing Guided Business Processes 30-27

31

Building a Guided Business Process Client Application

31.1 Introduction to Building a Guided Business Process Client Application 31-1

31.2 Developing a Guided Business Process Client Application with Oracle ADF 31-1

31.2.1 How to Develop a Guided Business Process Client Application 31-1

31.2.2 What Happens When You Develop a Guided Business Process Application
with Oracle ADF 31-4

31.2.3 What Happens at Runtime: How a Guided Business Process Application Is
Developed with Oracle ADF 31-4

31.3 Securing the Guided Business Process Client Application 31-5

31.4 Localizing a Guided Business Process Client Application 31-5

31.4.1 How to Configure the Supported Locales for a Guided Business Process
Client Application 31-6

31.5 Guided Business Process Runtime APIs 31-7

31.5.1 Guided Business Process query Service API 31-7

31.5.2 JNDI Names for the Guided Business Process Enterprise Java Beans 31-9

31.6 Developing an Example of a User Interface for Guided Business Process Tasks
Using Guided Business Process Runtime Services 31-9

31.7 Using Guided Business Process Logging 31-13

31.7.1 How to Enable Client Side Logging 31-13

31.7.2 How to Enable Server-Side Logging 31-13

31.7.3 Configuring Log Levels 31-14

31.7.4 How to View Guided Business Process Log Messages 31-14

31.7.5 Understanding Guided Business Process Log Messages 31-14

32

Using Approval Management

32.1 Introduction to Approval Management 32-1

32.1.1 AMX Components 32-2

32.2 Understanding Approval Management Concepts 32-3

32.2.1 Task 32-4

32.2.2 Service Data Objects 32-6

32.2.3 Stages 32-7

xxiv

32.2.4 List Builders 32-8

32.2.5 Task Operations 32-9

32.2.6 Business Rules for Approval 32-9

32.2.6.1 List Creation 32-10

32.2.6.2 Approver Substitution 32-10

32.2.6.3 List Modification 32-10

32.3 Designing Approval Management Tasks in Oracle JDeveloper 32-11

32.3.1 Introduction to the Modeling Process 32-11

32.3.2 Before You Begin 32-11

32.3.3 Specifying General Information 32-12

32.3.3.1 Task-Title Globalization 32-12

32.3.4 Specifying Task Parameters 32-14

32.3.4.1 How to Create Service Data Object (SDO) References 32-14

32.3.4.2 How to Define Entity Parameters 32-15

32.3.4.3 How to Define Collections 32-16

32.3.5 Specifying Mapped Attributes 32-16

32.3.5.1 About Attribute Labels and Attribute-Label Mappings 32-17

32.3.5.2 How to Define Attribute-Label Mappings 32-17

32.3.6 Specifying Routing and Approval Policies 32-19

32.3.6.1 How to Model and Configure Stages 32-19

32.3.6.2 How to Model Task Participants 32-22

32.3.6.3 How to Model and Configure List Builders 32-22

32.3.6.4 How to Use Business Rules to Specify List Builders 32-31

32.3.6.5 How to Use Assignment Context 32-43

32.3.6.6 How to Aggregate Task Approvals 32-44

32.3.7 Defining Escalation and Renewal Policies 32-45

32.3.8 Specifying Notification Settings 32-45

32.3.9 Using Advanced Settings 32-45

32.3.9.1 How to Add Callbacks for Notes, Attachments, and Validation 32-45

32.3.9.2 How to Define Security Access Rules 32-46

32.4 Using the End-to-End Approval Management Samples 32-48

32.5 Using the User Metadata Migration Utility 32-48

33

Working with Adaptive Case Management

33.1 Introduction to Adaptive Case Management 33-1

33.1.1 Differences Between Adaptive Case Management and Business Processes 33-2

33.1.2 Adaptive Case Management Artifacts 33-3

33.1.3 Use Cases 33-4

33.1.4 Case State Model 33-4

33.2 Creating a Case 33-5

xxv

33.2.1 How to Create a Case 33-5

33.3 Configuring a Case 33-6

33.3.1 How to Edit a Case 33-6

33.4 Configuring Case General Properties 33-7

33.4.1 Case Deadlines 33-8

33.4.2 How to Configure the Case General Properties 33-8

33.4.3 How to Add Case Milestones 33-8

33.4.4 How to Define Case Outcomes 33-9

33.5 Configuring Case Data and Documents 33-9

33.5.1 Case Document Operations 33-9

33.5.2 Specifying Permission Tags for Case Documents 33-9

33.5.3 Using the BPM Database for Data Storage 33-10

33.5.4 Case Links in WebCenter Case Documents 33-10

33.5.5 Customizing Case Links in WebCenter Case Documents 33-10

33.5.6 Creating Case Fields in Oracle WebCenter Content 33-11

33.5.7 How to Configure Case Data 33-11

33.5.8 Configuring Case Flex Fields 33-12

33.5.9 How to Create a Case Flex Field 33-12

33.5.10 How to Configure the Document Location 33-13

33.5.11 How to Configure Enterprise Content Management 33-14

33.6 Configuring Case User Events 33-14

33.6.1 How to Add User Events 33-14

33.6.2 How to Publish Case User Events 33-15

33.7 Defining Case Stakeholders and Permissions 33-15

33.7.1 How to Add Case Stakeholders 33-19

33.7.2 How to Add Case Permissions 33-20

33.7.3 How to Manage Case Permissions 33-21

33.8 Defining Case Tag Permissions 33-21

33.8.1 How to Manage Case Tag Permissions 33-22

33.9 Localizing a Case 33-22

33.9.1 How to Configure Case Localization 33-24

33.9.2 Localizing Case Objects 33-25

33.10 Case Activities and Sub Cases 33-26

33.10.1 Case Activity and Sub Case Attributes 33-26

33.10.2 Predefined Case Activities 33-27

33.10.3 Specifying the Order of Case Activities 33-27

33.10.4 How to Promote a BPMN Process to a Case Activity 33-28

33.10.5 How to View the BPMN Process 33-29

33.10.6 How to Promote a Human Task to a Case Activity 33-29

33.10.7 How to View the Human Task 33-30

33.10.8 How to Create a Custom Case Activity 33-30

xxvi

33.10.9 Creating Sub Cases 33-31

33.10.10 How to Create a Sub Case 33-31

33.11 Defining Input Parameters for Case Activities 33-31

33.11.1 How to Add a Case Activity Input Parameter 33-32

33.12 Defining Output Parameters for Case Activities 33-33

33.12.1 How to Add a Case Activity Output Parameter 33-34

33.13 Configuring Case Activities 33-35

33.13.1 How to Edit a Case Activity 33-35

33.13.2 Configuring Case Activity Basic Properties 33-35

33.14 Creating a Global Case Activity 33-35

33.15 Using Business Rules with Cases 33-36

33.15.1 Defining the Condition of a Case Business Rule 33-37

33.15.2 Understanding the Case Business Rule Dictionary 33-38

33.15.3 How to Generate a Case Business Rule Dictionary 33-39

33.16 Closing Cases 33-40

33.17 Integrating with Oracle BPM 33-40

33.17.1 Invoking a Case From a BPMN Process 33-41

33.17.2 How to Use Correlations with Case Events 33-41

33.18 Schema Reference 33-42

33.18.1 Simple Workflow Payload Schema 33-42

33.18.2 Email Notification Payload Schema 33-45

33.18.3 Example of Global Case Activity Metadata Schema 33-46

33.18.4 CaseEvent.edl 33-46

Part VII Appendices

A Process Star Schema Views

A.1 Standard Data Objects A-1

A.2 Composite-Specific Data Objects A-2

B Oracle BPM Studio Accessibility Features

B.1 Oracle BPM Studio Keyboard Navigation B-1

xxvii

Preface

Developing Business Processes with Oracle Business Process Management Studio
describes how to use Oracle Business Process Management (BPM) Studio to develop
business processes.

Audience
This guide is intended for process developers who use Oracle Business Process
Management (BPM) Studio to create and implement business processes, and
configure Oracle BPM projects used to created process-based applications using the
Oracle BPM Suite. The information in this guide assumes that you have basic
knowledge of business process design and are familiar with Business Process
Management Notation (BPMN) 2.0. It also assumes you are familiar with Oracle SOA
Suite.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
Refer to the Oracle Fusion Middleware library on the Oracle Help Center for additional
information.

• For Oracle Business Process Management information, see Oracle Business
Process Management.

• For Oracle SOA Suite information, see Oracle SOA Suite.

• For versions of platforms and related software for which Oracle products are
certified and supported, review the Certification Matrix on OTN.

Conventions
The following text conventions are used in this document:

Preface

xxviii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/fusion-middleware/index.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxix

Part I
Using Oracle Business Process Management
Studio

Oracle Business Process Management (BPM) Studio is a desktop IDE application that
enables process developers to implement the processes modeled by business analysts.
Process developers use Oracle BPM Studio to edit the Business Process Management
Notation (BPMN) process models and artifacts to complete their implementation.

• Introduction to Oracle Business Process Management Studio

• Working with Business Process Management Projects

• Working with Processes and the Process Editor

1
Introduction to Oracle Business Process
Management Studio

Oracle BPM Studio is a desktop IDE application that enables process developers to
implement the processes modeled by business analysts. Process developers use Oracle
BPM Studio to edit the BPMN process models and artifacts to complete their implementation.

You can edit the following assets in BPM Studio:

• BPMN processes

• Reusable process components

• Process data

• Organizational data

• Human tasks

• Business rules

• Activity Guides

• Adaptive Case Management

• Simulations

• Web services, XML files and other artifacts needed for complex implementations

• Working with Oracle Business Process Management Suite

• Overview of the Application Development Life Cycle

• Introduction to the Oracle Business Process Management Studio User Interface

1.1 Working with Oracle Business Process Management Suite
Oracle BPM Suite consists of Business Process Composer for modeling processes and BPM
Studio for implementing the processes.

• Oracle Business Process Composer is a web-based, collaborative application that
enables business analysts to model business processes and perform the basic
implementation of some of the artifacts used in the business process.

• Oracle BPM Studio is a desktop IDE application that enables process developers to
implement the processes modeled by business analysts. Process developers use Oracle
BPM Studio to edit the BPMN process models and artifacts to complete their
implementation.

Oracle BPM Studio is part of the Oracle JDeveloper IDE and shares many of the
JDeveloper user interface elements used by Oracle SOA Suite.

It is also possible to create and model business processes using Oracle BPM Studio, but
Business Process Composer is better suited to modeling BPMN processes.

See Overview of the Application Development Life Cycle for more information on how these
tools fit into the application development life cycle.

1-1

1.2 Overview of the Application Development Life Cycle
The life cycle of application development can be divided into three stages: modeling,
implementation, and deployment. In a real-world application development
environment, the distinctions between these stages may not be clearly defined.

A final production application may go through several iterations of modeling and
implementation before it is deployed as a working application. Additionally, applications
may be deployed for testing and then passed back to the modeling and
implementation stages for further refinement before being deployed to a production
environment.

Figure 1-1 shows a typical workflow in which application design is performed using
both Process Composer and BPM Studio.

Figure 1-1 Modeling, Implementation, and Deployment from Studio

The following steps describe each stage of the workflow:

1. Create process models using Business Process Composer (business analyst).

2. Share process models with process developers using the business asset
manager.

3. Implement the required services and application resources using Oracle BPM
Studio (process developer).

After implementing the processes, developers can share the business processes
with business analyst using the business asset manager.

4. Compile the application (process developer).

5. Deploy to Oracle BPM runtime (process developer / process administrator).

Chapter 1
Overview of the Application Development Life Cycle

1-2

1.3 Introduction to the Oracle Business Process Management
Studio User Interface

Oracle BPM Studio is an integrated part of Oracle JDeveloper and the user interface uses
many of the same components as other Oracle products.

Figure 1-2 shows the layout of Oracle BPM Studio displaying the LoanApplication example
project.

Figure 1-2 Oracle BPM Studio

1.3.1 Applications Window
The Applications window displays a hierarchical view of the components of a project. The
components displayed in the navigator are related to the modeling and implementation of
business processes.

Table 1-1 Oracle BPM Project Components

Component Description

BPMN Processes Contains the business processes of this project. The Applications window
shows the ID of the processes.

Business Components Contains the business components defined for this project.

Simulations Contains the process and project simulation models defined for this project.

Business Rules Contains the business rules defined for this project.

Chapter 1
Introduction to the Oracle Business Process Management Studio User Interface

1-3

Table 1-1 (Cont.) Oracle BPM Project Components

Component Description

Human Tasks Contains the human tasks defined for this project.

Activity Guide Contains the milestones defined for this project.

Organization Contains the organizational elements defined for this project.

Figure 1-3 shows some of the files of the LoanApplication example that appear in the
Applications window.

Figure 1-3 Application Navigator

1.3.2 BPMN Process Editor
The process editor enables you to model business processes by dragging and
dropping BPMN components, called flow objects, from the Component Palette.
Figure 1-4 shows the Request Quote example process opened in the process editor.
You can also use the flow object drop-down menus on the toolbar to insert objects.

Chapter 1
Introduction to the Oracle Business Process Management Studio User Interface

1-4

Figure 1-4 Process Editor

1.3.3 Components Window
The Components window contains a list of the BPMN flow objects supported by Oracle BPM.
You can model business processes by dragging and dropping these flow objects from the
BPM Components window to the process editor.

The BPMN flow objects are grouped in the Component window according to type, such as
Activities, Events, and Gateways. A group may be further divided into subtypes. Figure 1-5
shows the Activities group in the BPM Components window expanded to show two types of
activities, default and interactive.

Chapter 1
Introduction to the Oracle Business Process Management Studio User Interface

1-5

Figure 1-5 Component Window

1.3.4 Process Asset Manager Navigator
The Process Asset Manager Navigator allows you to view and use projects stored in
the process asset manager repository. For more information about process asset
manager, see Sharing BPM Projects Using the Process Asset Manager.

Chapter 1
Introduction to the Oracle Business Process Management Studio User Interface

1-6

Figure 1-6 Process Asset Manager Navigator

1.3.5 Structure View
The Structure window offers a structural view of the data in the component currently selected
in the active window of those windows that participate in providing structure: the diagrams,
the navigators, the editors and viewers, and the Property Inspector.

The structure components displayed in the Structure window are usually of components
selected in the Project Navigator or Application Navigator.

You can perform a variety of tasks from the Structure window, including:

• Edit process properties

• Configure an activity guide and create new milestones

• Convert a BPMN Process to BPEL

• Create business objects, modules, and business exceptions

• Create new simulation models

Figure 1-7 shows the Structure window when a BPMN process is selected in the Applications
window.

Chapter 1
Introduction to the Oracle Business Process Management Studio User Interface

1-7

Figure 1-7 Structure View

The structure of a process is divided into the following categories in the Structure
window: Activities, Business Indicators, Conversations, Correlations, Measurements,
Process Data Objects, and Project Data Objects. If the process is a reusable process,
two additional categories are provided: Process Input Arguments and Process Output
Arguments. A category may have subcategories, for example, Activities is further
subdivided into Activities, Gateways, and Events. For information on the BPMN flow
objects supported by Oracle BPM see the Developing Business Processes with Oracle
Business Process Composer.

1.3.6 Thumbnail View
The Thumbnail window allows you to display a thumbnail representation of the active
business process that is opened in the process editor. Because the Thumbnail view is
synchronized with the process editor, it is useful for navigating large processes that do
not fit in the process editor window.

By default the Thumbnail window is located next to the Structure window, as shown in
Figure 1-8. A white rectangle on the Thumbnail view shows the section of the process
that is currently in view in the process editor. By dragging the white rectangle on the
Thumbnail view, you can pan the process in the process editor, change which section
of the process to view in the process editor, and quickly navigate to a specific object
on the process.

Chapter 1
Introduction to the Oracle Business Process Management Studio User Interface

1-8

Figure 1-8 Thumbnail View

1.3.7 Simulation View
The Simulation View allows you to run and see the result of project simulation models.
Figure 1-9, shows the results of a simulation displayed as a bar chart.

Figure 1-9 Simulation View

1.3.8 Log Window
The Log Window displays messages, errors, and warnings to the BPM project as well as
compilation and deployment of SOA composite applications.

1.3.9 Documentation Window
The Documentation Window allows you to create end-user and use case documentation for
your processes. You add documentation for the entire process or for each flow object within
your process. Figure 1-10 shows the Documentation Window.

Chapter 1
Introduction to the Oracle Business Process Management Studio User Interface

1-9

Figure 1-10 Documentation WIndow

Chapter 1
Introduction to the Oracle Business Process Management Studio User Interface

1-10

2
Working with Business Process Management
Projects

BPM projects contain one or more business process and may include other resources used
by the business processes or overall application.

• Introduction to BPM Projects

• Creating and Working with Projects

2.1 Introduction to BPM Projects
A BPM project is a container for the resources used to create and support business
applications created using Oracle BPM.

You create new projects in Business Process Composer and edit them in Oracle BPM Studio
to develop the process implementation.

Projects can be shared between Business Process Composer and Oracle BPM Studio or
deployed to BPM runtime. See Overview of the Application Development Life Cycle for
information on how projects are used within the development life-cycle.

2.1.1 Introduction to Project Resources
Each BPM project contains one or more business process and may include other resources
used by the business processes or overall application. This can include other reusable
resources that allow you to connect your application to other applications and systems.

The following are the key resources of an Oracle BPM project:

• BPMN Processes: includes BPM processes.

• Business Components: includes reusable components including services, adapters,
business objects (data definitions), business events, enumerations and business
exceptions.

• Business Rules: includes the business rules used in the BPM project.

• Human Tasks: includes the human tasks used to implement the interactive activities of
the BPMN process in the BPM project.

• Simulations: includes the simulations models defined for a project and individual BPMN
processes.

• Activity Guide: provides a milestone view of the BPMN process. This node appears after
you create an activity guide. Note that you cannot use activity guides and adaptive case
management at the same time.

• Organization: includes the organization elements used to mimic the organizational
structure of your organization within BPMN process models.

• Resources: contain the XML transformations defined for your project.

2-1

It contains related business processes and process related assets such as human task
definition, services, rule definitions, data definitions (Business Object), Business
Exceptions, Business Events and more. These reusable, shared assets are contained
in a Business Catalog inside the BPM Project. In addition to Business Catalog, the
BPM Project contains simulations, organization model and XSLT mapping etc

Each of these resources are accessible from the Projects section in the Applications
window. Additional application resources are accessible from other sections in the
Applications window.

2.1.2 Sharing Projects Between Oracle BPM Users
Oracle BPM uses the process asset manager (PAM) repository to share projects and
project templates between other Oracle BPM Studio and Business Process Composer
users.

The process asset manager the design-time repository for Oracle Business Process
Management Suite. By default it connects to an embedded source control system, you
can configure it to use and external source control system and it connects with an
identity manager for authentication and authorizations. The process asset manager
provides a unified source for the development of processes across Business Process
Composer and Oracle BPM Studio.

See Overview of the Application Development Life Cycle for more information on how
projects and project templates are shared between BPM Studio and Business Process
Composer.

See Sharing BPM Projects Using the Process Asset Manager for more information on
the process asset manager.

2.2 Creating and Working with Projects
As you work with projects, you create new projects, open existing ones, import and
export projects, and edit the preferences.

See Sharing BPM Projects Using the Process Asset Manager for more information on
working with projects using the process asset manager.

2.2.1 How to Create a New Project
Oracle BPM projects are created in the same way as other types of SOA composite
application components.

To create a new Oracle BPM project:

1. Choose File > From Gallery from the menu.

2. Under Categories, select BPM Tier, then select BPM Project and click OK.

3. Enter a name for your project.

Note:

Use only ASCII chars A-Z, a-z, 0-9 and "_" for project names, and the
name must begin with A-Z,a-z.

Chapter 2
Creating and Working with Projects

2-2

4. Ensure that BPM and SOA appear in the Selected column, then click Next.

5. Enter a name for the SOA composite.

By default a BPM project is created and configured using the Composite With BPMN
Process template.

6. Click Finish.

The new project is created and appears in the Applications window. After the project and
composite file are created, the Create BPMN Process wizard starts automatically. You can
choose to create a new process or cancel the wizard.

See How to Create a New Business Process for more information on creating a new BPMN
process.

2.2.2 How to Open a Project from the File System
You can open an Oracle BPM project directly from the file system. This is generally used to
open local projects that you have previously closed.

Projects that are shared with other users are imported from an exported Oracle BPM project
or using Oracle BPM MDS.

To open a project:

1. Choose File > Open from the menu.

2. Browse to the location of your project folder.

3. Select the Java Project (.jpr) file for your project.

4. Click Open.

The project appears in the Applications window.

Note:

When you open a project from the file system, the project remains in its original
location. It is not copied to the Oracle JDeveloper working directory.

2.2.3 How to Export a Project
Exported projects enable you to share projects with other Oracle BPM Studio users. This is
useful when it is not feasible to share projects by publishing them to Oracle BPM MDS.

To export a project:

1. Choose File > Export from the menu.

2. Select Export BPM Project, then click OK.

3. Provide a name for your project, then browse to the location where you want to export the
project.

4. Click Next.

5. Click Next, then click Finish.

Chapter 2
Creating and Working with Projects

2-3

2.2.4 How to Import a Previously Exported Project
After you export an Oracle BPM project from Oracle BPM Studio or Oracle Business
Business Process Composer, you can import it back to Oracle BPM Studio. This
enables you to share projects directly from a file system instead of using Oracle BPM
MDS.

To import a project:

1. Choose File > Import from the menu.

2. Select Import BPM Project, then click OK.

3. Browse to the location of the .exp file of the exported project and click Open.

4. Select a project root folder, then click Next.

5. Provide a project name, then click Next.

6. Click Next, then click Finish.

2.2.5 How to Edit Project Preferences
You can edit project preferences to configure the behavior of an Oracle BPM project,
including the following:

• Configure sampling points and process analytics.

• Configure general process properties, layout properties, severity level for process-
related messages to highlight, and the default mode to use in data associations.

• Add localization languages to a project.

To edit project preferences:

1. In the Application window, right-click the project whose preferences you want to
edit, then select BPM.

2. Select Project Preferences.

3. Edit the project preferences as necessary, then click OK.

For more information on specific project preferences, see the online Help for Project
Preferences.

Chapter 2
Creating and Working with Projects

2-4

3
Working with Processes and the Process
Editor

You can create and use business processes in Oracle BPM Studio. Use process editor
window to create business processes and flow objects in processes.

• Getting Started with Processes

• Introduction to the Process Editor

• Working with Processes

• Working with Flow Objects in Your Process

• Working with Draft Processes

• Documenting Your Process

3.1 Getting Started with Processes
Business processes are the core components of process-based business applications
created with Oracle BPM Suite.

Projects are higher level wrappers that contain all the resources of a business application,
while the processes within the project determine how the application works.

3.1.1 Introduction to Business Processes
A business process is a sequence of tasks which, after they are performed, result in a well-
defined outcome.

Business processes are generally created by business analysts who determine the business
requirements that must be addressed and define the corresponding process flow using
Business Process Composer. They then share the business process with process developers
using the process asset manager, the design-time repository provided by Oracle BPM Suite.

The flow is defined by various BPMN flow objects. BPMN (Business Process Modeling
Notation) is a graphical notation for capturing business process models. It captures the visual
flow and the implementation properties. Oracle BPM Suite uses BPMN 2.0 for modeling and
implementing BPMN processes.

3.1.1.1 Types of Processes
Use Oracle BPM to create different types of BPMN processes, depending on what needs to
be done. Table 3-1 describes the types of processes supported by Oracle BPM.

3-1

Table 3-1 Process Types

Process Type Description

Synchronous Service Synchronous services are processes that can be invoked from other
processes or services synchronously. In a synchronous service, the
calling process waits until the process completes before continuing.

Asynchronous Service Asynchronous services are processes that can be invoked from other
processes or services asynchronously. In an asynchronous service,
the calling process does not wait until the process completes before
continuing.

Manual Process Manual processes are processes that require user interaction. Manual
processes begin and end with none start and end events. Immediately
after the start event they have an initiator task that triggers the process
when a participant submits a UI form.

Reusable Process A process that can be invoked from a call activity. Reusable processes
can only be invoked using the call activity. Reusable processes also
begin and end with none start and end events.

In Oracle BPM, a reusable process is identified as having only one
none start event; in addition there is no initiator node in the process
flow. If the none start event is changed to another type or if an initiator
node is added to the process flow, the process is no longer considered
to be reusable. For example, if a user task with the initiator pattern or a
receive task implemented as a create instance is added immediately
after the none start event, the process can no longer be reused or
called by another process.

3.1.2 How to Create a New Business Process
Business processes are created within an Oracle BPM project. You can add one or
more processes to your project.

To create a new business process:

1. Open your project.

2. Expand the node for your project in the Applications window.

3. Right-click BPMN Processes, then select New then BPMN 2.0 Process.

The BPMN 2.0 Process Wizard appears

4. Enter a name and optional description.

5. Select the type of process you want to create, then click Next.

See Types of Processes for more information on process types.

6. Optionally, define the process arguments and initial implementation properties.

7. Define advanced properties, such as Process Sampling Points, Is Primary
Process, Suspend instance on data association failure, and Service namespace.

Select Is Primary Process to mark the process as the primary orchestrating
process flow in the composite. When checked, Business Activity Monitoring (BAM)
can filter and analyze data objects for only the primary process flow in the
composite.

8. Click Finish.

Chapter 3
Getting Started with Processes

3-2

The new process is opened in the process editor.

New business processes are created with a start and end event connected by a default
sequence flow. The type of start and end events depend on the type of process you created.

3.1.3 How to Open a Business Process
After opening an Oracle BPM project, you can open any of the processes it contains.
Processes are opened in the process editor window.

To open a business process:

1. Open your project.

2. Expand the project node in the Applications window.

3. Expand BPMN Processes.

4. Double-click the process you want to open.

The process opens in the process editor window. See Introduction to the Process Editor for
more information on working with processes in the process editor.

3.1.4 How to Delete a Business Process
You can delete processes from your project. However, you should ensure that there are no
remaining references to the deleted process elsewhere in your project.

To delete a business process from a project:

1. Open your project.

2. Expand BPMN Processes in the Applications window.

3. Right-click the process you want to delete, then select Delete.

The Confirm Delete dialog box appears.

4. Optionally, click Show Usages to view the usages of the process to delete.

5. Click Yes.

3.1.4.1 What You Need to Know About Deleting a Business Process
When you delete a business process from a project, you must remove any references to it
from other parts of your project.

For example, if the deleted process is invoked from another process through a message
throw event, reconfigure the invoking process so it no longer refers to the deleted process.

Review the usages of the process you want to delete before deleting it and removing the
references.

3.2 Introduction to the Process Editor
The process editor has a canvas on which you can create a model of the process. You can
also work with other BPMN processes through conversations.

Figure 3-1 shows an example of the process editor.

Chapter 3
Introduction to the Process Editor

3-3

Figure 3-1 The Process Editor

There are editor tabs at the bottom of each process editor:

• Designer editor tab: Provides a canvas and lets you create and model business
processes using Business Process Management Notation and Modeling (BPMN).
By default, a process opens in Designer mode.

• Scripting editor tab: Displays the scripts used in the process. You can select the
script to display from the list on the top of the editor.

• Collaboration editor tab: Enables you to work with other BPMN processes and
services through conversations.

• History editor tab: Displays the history of changes. You can also view a list of
changes and compare different versions of the process.

The term process editor refers to the Designer mode of the editor, unless explicitly
specified otherwise.

When a process is opened in the process editor window, a flow object toolbar at the
top of the canvas enables you to insert various BPM notations. The status bar below
the canvas provides controls that enable you to show and fix errors or warnings,
configure the layout, and change the zoom level. The process editor is also
synchronized with a view of the process in the Thumbnail window. For more
information about thumbnails, see Thumbnail View.

Flow Object Toolbar and Drop-down Menus

The flow object toolbar provides easy access to common BPM flow objects. The flow
objects are available through the following drop-down menus on the toolbar:

• Activity: Includes activities such as Call, Business Rule, and Send.

• Interactive: Includes interactive activities such as User and Initiator.

• Notification: Includes activities such as Mail and SMS.

• Catch: Includes events such as Error and Message.

• Throw: Includes events such as Throw Signal and End Signal.

• Gateway: Includes Exclusive and Parallel.

Chapter 3
Introduction to the Process Editor

3-4

• Artifacts: Includes Measurement and Sequence Flow.

The drop-down menus provide the same flow objects as found in the Component Palette. For
more information on BPMN flow objects, see BPMN Flow Object Reference in Developing
Business Processes with Oracle Business Process Composer.

Search

Enables you do run a search for a specific flow object using its name.

Go To Composite Editor

This toolbar item opens the SOA Composite Editor.

Figure 3-2 Status Bar of Process Editor

Highlight Level

This status bar item enables you to change the severity level of messages to be highlighted
in the process by special overlay symbols. For information on how to use this item, see How
to Change the Highlight Level for Messages in a Process.

Zoom

This status bar item enables you to change the scale of the process. For information on how
to use the zoom tool, see How to Change the Zoom Level in a Process.

Layout and Show Grid

These status bar items enable you to use and configure the automatic layout utility, and turn
on or turn off a grid overlay in the process. For more information, see How to Configure
Layout Properties and Use a Grid in a Process.

3.3 Working with Processes
As you work with processes in the process editor, you can open more than one process,
export a process as an image, change the highlight level for messages, change the zoom
level, or configure layout properties.

You can open one or more processes in the editor window. Each process is identified by a
process name in a document tab at the top of the editor window. Only one process can be in
focus (active) at any time.

3.3.1 How to Export a Process As an Image
You can export an entire process design to a PNG file only.

To export a process:

1. Open the process you want to export as an image.

2. Right-click anywhere on the canvas where there is no flow object and choose Generate
Process Image.

Chapter 3
Working with Processes

3-5

3. In the Select Object File dialog box, navigate to the directory of your choice.

4. Enter a file name and click OK.

3.3.2 How to Change the Highlight Level for Messages in a Process
When a flow object in a process has an error or a warning message, the flow object
icon in the process editor is highlighted by a red error symbol or a yellow warning
symbol overlay.

You can change the severity level of messages to be highlighted in the process. The
highlight levels available are:

• None: No errors or warnings are displayed.

• Errors: Only errors are displayed.

• Warnings: Both warnings and errors are displayed.

Note:

The highlight level you set in the process editor affects flow objects in the
active process only. Other processes already opened in other process editor
tabs are not affected. However the highlight level set in the active process
editor does affect all new processes that you subsequently open or create in
the same project. This is because the Highlighting Level preference in the
Project Preferences dialog box is updated to the same value at the time you
make the process-level highlight change.

To set the severity level of messages to be highlighted for all processes in a
project, see How to Edit Project Preferences.

To change the highlight level for messages to show in a process:

1. Open the process in the process editor.

2. On the status bar, click Highlight Level to open a slider.

3. Slide to the level you want to use.

Error or warning symbols on the affected flow objects turn off or turn on, according
to the level you set.

The current highlight level in the process is indicated by an icon and a label on the
status bar of the process editor: a red 'x' circle for Errors and a yellow '!'
(exclamation mark) triangle for Warnings. If no severity level is set, only the label
'None' displays.

Note:

To display messages associated with a flow object in the process, see How
to Display and Fix Errors or Warnings in Flow Objects.

Chapter 3
Working with Processes

3-6

3.3.3 How to Change the Zoom Level in a Process
Three status bar items are provided in the process editor to enable you to change the scale
of the active process quickly.

To change the zoom level in a process:

1. Open the process in the process editor.

2. To change the scale, use one of the following ways:

• Use the slider to change the zoom level. Double-click the slider to return the scale to
100%.

• Click the drop-down arrow next to the current percent value to select another percent
zoom level.

• Click the Zoom Reset icon to return the scale to 100%.

3.3.4 How to Configure Layout Properties and Use a Grid in a Process
You can configure a process to use the automatic layout utility: When automatic layout is
turned on, JDeveloper automatically aligns the placement of flow objects horizontally and
vertically as they are added to the process. When automatic layout is off, you can use a grid
of horizontal and vertical lines in the process background to help you align flow objects.

You can also activate lanes optimization in the process, which means JDeveloper would
remove unnecessary lanes by moving all activities to other named lanes, where possible.

To use the automatic layout utility and optimize lanes in a process:

1. Open the process in the process editor.

2. On the status bar click Layout.

3. In the pop-up dialog, click OFF to turn on the automatic layout utility or click ON to turn it
off.

4. When automatic layout is on, select Optimize lanes to prune interactive roles with non-
interactive activities.

Lane optimization is available only when the automatic layout utility is turned on.

5. When automatic layout is off, click Run layout once to automatically align flow objects in
the process without turning the automatic layout utility on in the process and project.

To use a grid in the process:

1. Open the process in the process editor.

2. On the status bar, select Show Grid to add a grid on the process design.

3. To turn off the grid, deselect Show Grid.

Chapter 3
Working with Processes

3-7

Note:

With the exception of the Run layout once utility, when you activate or
deactivate lanes optimization, automatic layout or the grid in a process,
similar configuration settings in the Project Preferences dialog box are
simultaneously updated to the same values. This means all processes in the
project will use the same settings until you change any preference in the
dialog box or in the process editor status bar.

To set the layout or grid preferences in a project, see How to Edit Project
Preferences.

3.4 Working with Flow Objects in Your Process
You can use several different methods to add flow objects to the process. You can also
edit the properties, copy and paste, and mark flow objects as draft. You can also use
sequence flows and fix errors or warnings.

For more information on BPMN flow objects, see BPMN Flow Object Reference in
Developing Business Processes with Oracle Business Process Composer.

3.4.1 How to Add Flow Objects from the Component Window
You can add BPMN flow objects from the Component window.

To add flow objects from the Component window:

1. Open the process into which you want to add a flow object.

2. From the Window menu, choose Components.

3. In the Component window, click the flow object to add.

4. In the process editor, click the point in the process where you want to add the flow
object.

5. Edit the flow object properties as needed in the dialog box that opens, then click
OK.

For more information on specific flow object properties, see the online Help for the
flow object.

3.4.2 How to Add Flow Objects from the Process Editor Toolbar
The process editor toolbar contains drop-down menus for the same BPMN flow
objects as found in the Component Palette. This is useful when you maximize the
process editor window to full screen mode and you cannot use the Component Palette
to add flow objects.

To add flow objects from the process editor toolbar:

1. Open the process where you want to add a flow object.

2. On the toolbar, click the drop-down arrow next to the flow object icon that you wish
to add. Then choose an object from the drop-down menu.

Chapter 3
Working with Flow Objects in Your Process

3-8

The menu icon on the toolbar changes to the icon of the object you selected. The cursor
also changes to the same icon. To deselect the chosen object without adding it to the
process, press Esc.

3. On the process editor canvas, position the cursor at the point in the process where you
want to add the flow object, and click to insert.

4. Edit the flow object properties as necessary in the dialog box that opens, then click OK.

For more information on specific flow object properties, see the online Help for the flow
object.

Note:

The last object you chose from a drop-down menu becomes the default selected
object for that menu. The default object is indicated by the menu icon on the toolbar.
This means the next time you click that menu icon and then click the canvas, the
default object is added to the process.

3.4.3 How to Add Flow Objects from a Context Menu
You can add BPMN flow objects using a context menu on the process editor canvas.

To add flow objects from a context menu:

1. Open the process to which you want to add a flow object.

2. Position the cursor at the point in the process where you want to add a flow object and
right-click.

3. From the context menu, choose Add Activity and then choose a flow object from one of
the submenus: Tasks, Subprocess, Events, Gateways.

4. Right-click the flow object you just added and choose Properties.

5. Edit the flow object properties as necessary in the dialog box that opens, then click OK.

For more information on specific flow object properties, see the online Help for the flow
object.

3.4.4 How to Edit Flow Object Properties
You can use the Properties dialog box to edit the properties for each flow object within your
process.

To edit the properties of a flow object:

1. Open the process containing the flow object you want to edit.

2. Right-click the flow object, then select Properties.

3. Edit the properties as necessary, then click OK.

Chapter 3
Working with Flow Objects in Your Process

3-9

3.4.5 How to Display and Fix Errors or Warnings in Flow Objects
When a process or a flow object in the process has an error or a warning, the process
icon in the Applications window or the flow object icon in the process editor has a red
error 'x' circle symbol or a yellow warning '!' (exclamation mark) triangle symbol.

In the process editor, you can use the message area above the status bar to display
error and warning messages related to a flow object or you can display a list of all the
errors or warnings in the process. Then you can select a problem for fixing, if a fix
suggestion is available.

To display and fix errors or warnings in flow objects:

1. Open the process containing flow objects with errors or warnings.

2. Change the severity level of messages to be highlighted in the process, if
necessary. For more information, see How to Change the Highlight Level for
Messages in a Process.

3. Select the Live Issues tab to view the messages in the process.

Figure 3-3 Process Editor With Live Issues Tab Selected

4. Select a flow object that has an error or a warning symbol.

Messages related to the selected flow object are listed in the message area, as
shown in Figure 3-3. Errors have a red 'x' circle symbol; warnings have a yellow '!'
triangle symbol.

Where a fix suggestion is available, a light bulb icon displays in the margin next to
the message. Not all problems have fix suggestions. For example, nodes that do

Chapter 3
Working with Flow Objects in Your Process

3-10

not have implementations, or nodes that have problems in user task properties and data
associations offer fix suggestions.

5. Where applicable, click the light bulb icon in the margin next to a message.

A popup opens, displaying one or more possible fix suggestions for the problem.

6. Select a fix suggestion in the popup.

7. Where applicable, do one of the following:

• If a dialog box opens, make the changes as necessary, then click OK.

• If you have multiple start events or unconditional outgoing sequence flows, select the
one you want to keep when prompted.

Note:

To display all errors and warnings for all the flow objects that have problems,
deselect the selected object in the process editor with the message area already
expanded. If the message area is hidden, click Show without selecting any object in
the process.

3.4.6 How to Mark and Unmark a Flow Object as Draft
A flow object marked as Draft means the object has a default implementation where data
object values can be set. A Draft flow object is indicated in a process by a gray icon in place
of its default color icon.

Flow objects marked as Draft are considered to be unimplemented. However a process that
contains Draft flow objects can still be deployed, but a warning will be issued.

Only events and activities can be marked as Draft. Events and activities that already have
implementations defined can also be marked as Draft. Existing data associations, however,
will be removed in the implementation when you change the Draft status.

Data objects in a Draft flow object can be initialized using custom assignments in the Data
Associations dialog box, but implementation arguments are not available in the dialog box.
An error message appears at the top of the Data Associations dialog box when you attempt
to define data associations in a Draft flow object, as shown in Figure 3-4.

Figure 3-4 Data Associations Dialog

Chapter 3
Working with Flow Objects in Your Process

3-11

For more information about data objects and data associations, see Chapter 8,
"Handling Information in Your Process Design".

To mark and unmark a flow object as draft:

1. Open the process containing the flow object you want to edit.

2. Right-click the flow object you want to mark and choose Mark Node as Draft.

The color of the flow object icon changes to gray.

3. To unmark the flow object, right-click the icon and choose Unmark Node as Draft.

The color of the flow object returns to its original color.

Note:

You can also toggle the Draft state of a flow object through the Is Draft
check box in the Properties dialog box of the flow object. For information
about how to use the Properties dialog box, see How to Edit Flow Object
Properties.

3.4.7 How to Copy and Paste Flow Objects
You can copy and paste one or more flow objects within a process or between
processes. Note that sequence flows, boundaries and measurements are copied only
if the following conditions are met:

• the transitions, boundaries and measurements are selected

• all the elements the transitions, boundaries and measurements are attached to are
also selected for copy

Note:

You cannot copy and paste objects inside an event subprocess.

To copy and paste a flow object in a process:

1. Open the process containing the flow object you want to copy. If you are copying
between processes, open both processes.

2. Do one of the following:

• Click the flow object you want to copy to select it.

• To select more than one flow object, press and hold Ctrl and then click each
object.

• Click and drag your cursor around a group of flow objects to select the objects.
A box is drawn on the canvas as you click and drag.

3. Right-click and choose Copy.

If Copy does not appear in the context menu, this means the object you selected
cannot be copied.

Chapter 3
Working with Flow Objects in Your Process

3-12

4. Navigate to the process where you want to insert the copied flow object.

5. At a blank location in the process canvas where you want to add the new flow object,
right-click and choose Paste.

If you paste outside a swimlane, a new role is added to the process and the new flow
object is pasted there. For information about roles and swimlanes, see "BPMN Flow
Object Reference" in the Developing Business Processes with Oracle Business Process
Composer.

If necessary, use the Run layout once utility in the Layout popup to align the objects
automatically. For more information about automatic layout in the process editor, see How to
Configure Layout Properties and Use a Grid in a Process.

3.4.8 How to Add and Use Sequence Flows
A new business process is created with a start and end event already connected by a
sequence flow. As you add flow objects to the process, inserting them anywhere along the
sequence flow, JDeveloper automatically connects the new objects into the flow.

You can, however, create your own sequence flows where they are applicable and needed.
For example, you may need to add a gateway with two conditional sequence flows and one
default sequence flow.

For more information about controlling process flow with sequence flows and gateways, see
"BPMN Flow Object Reference" in the Developing Business Processes with Oracle Business
Process Composer.

You can also change the style of the arrow line used in a sequence flow and move a
connected object from one sequence flow to another.

To connect two objects with a sequence flow:

1. Open the process.

2. In the Components window, expand Artifacts and then click Sequence Flow.

3. In the process editor, place the cursor over the first object where the outgoing sequence
flow starts.

The cursor changes to a + plus symbol when it is over an object where an outgoing
sequence flow can start. For example, you can start an outgoing flow from a gateway
object but not from a start event that already has an outgoing flow.

4. Click to anchor the start of the sequence flow, then drag the cursor to the second object
where the sequence flow should end.

As you drag the cursor, a line with an arrow at the end is drawn on the canvas. When the
cursor is over an object where an incoming sequence flow can be placed, you should see
a + plus symbol.

5. Click to anchor the end of the sequence flow.

By default the two objects are connected by an orthogonal style sequence flow.

To change the style of a sequence flow:

1. Open the process.

2. Right-click the sequence flow line that you wish to modify.

3. From the context menu, choose Style and then choose Straight, Curved or Orthogonal.

Chapter 3
Working with Flow Objects in Your Process

3-13

The existing style of the selected line is grayed out in the context submenu.

To move a connected object from one sequence flow to another:

1. Open the process.

2. Click the connected object that you want to move.

The connected object in the sequence flow already has incoming and outgoing
connecting flows.

3. Drag the object to a new point in the process.

The new point must be located in another sequence flow in the same process. The
target flow changes to blue to indicate that you are allowed to insert the dragged
object into that new point.

4. Release the cursor when you have located a suitable target sequence flow.

The selected object is disconnected from the original sequence flow and
reconnected into the target sequence flow.

3.5 Working with Draft Processes
A draft process is a process that has one or more flow objects which do not have their
implementation defined. With draft projects, you can test the parts of the process that
have been completed before all flow objects have been implemented.

You create draft processes by marking one or more flow objects within the process as
draft.

3.5.1 Introduction to Draft Processes
When you configure a flow object to be a draft, you cannot configure data associations
for the flow object. If mark a flow object as draft that you have previously assigned
data associations for, the data associations will be lost.

You can define the implementation details of a draft flow object. However, it is not
required. A draft flow object with no implementation defined will not generate errors
when the project is validated.

3.5.2 How to Mark a Flow Object as Draft
Flow objects are marked as draft within the basic properties.

To mark a flow object as draft:

1. Open your process

2. In the process editor, right-click the flow object you want to mark as draft.

3. Select Mark Node as Draft.

3.6 Documenting Your Process
With the documentation editor, you can add process or use case documentation for
the process and the flow objects.

Chapter 3
Working with Draft Processes

3-14

The documentation editor contains a toolbar and editor pane where you enter the
documentation.

3.6.1 Introduction to the Documentation Editor
Figure 3-5 shows the documentation editor.

Figure 3-5 The Documentation Editor

The toolbar allows you to select the type of documentation and the language, if you have
defined additional languages for the product.

For more information on the documentation editor toolbar see the online Help.

3.6.2 How to Add Documentation to Your Process
Use the Documentation editor to add one of these types of documentation to your process.

• Documentation: This is the documentation the process participants see using the
Process Workspace application.

• Use case documentation: This is the documentation that process analysts and process
developers see when updating a business process.

To add documentation to a flow element in a process

1. Open the process where you want to add documentation.

2. From the Window menu select Documentation.

3. Select the flow object within your process that you want to document.

4. From the drop-down list, select the type of documentation you want to add.

5. Enter your documentation.

6. From the File menu select Save to save your changes.

3.6.3 Generating Process Reports for Your Project
You can generate reports that list each process in your project and show detailed information
about each process.

Chapter 3
Documenting Your Process

3-15

• Detailed Business Process

• Business Requirements

• Issues and Comments

• Data Objects

• Process vs Data

• Data vs Process

• Human Tasks vs Process

• Service vs Process

• User Tasks

• Process image

• RACI (responsible, accountable, consulted, and informed)

To generate a process report:

1. Right-click on the process and select process report or right-click on the project
and select BPM, Process Report.

The Process Report dialog is displayed.

Figure 3-6 Process Report Dialog

2. Select the following report details, then click OK:

• Select report type

• Show Documentation - Select to show descriptions

• Show Business Properties

• Select output file type

For more information about these reports, see Documenting Your Process.

Chapter 3
Documenting Your Process

3-16

Part II
Modeling a Process

Get a general overview of the application and learn how to use Oracle BPM Studio to model
your business processes. Understand Oracle's BPMN 2.0 implementation from the chapter
and topics in this part.

• Modeling Your Organization

• Handling Information in Your Process Design

4
Modeling Your Organization

Add organizations to your BPM project, define role in your BPMN processes and model your
business organization using Oracle BPM.

• Introduction to Organizations

• Introduction to Roles

• Introduction to Organizational Charts

• Introduction to Business Parameters

4.1 Introduction to Organizations
Using Oracle BPM, you can create a model that represents the people, roles, and other
aspects of your real-world organization. During deployment of your project, the components
of the modeled organization are mapped to your real-world organization.

Oracle BPM organizations include:

• Roles

• Organizational Chart

• Business Parameters

• Holidays

• Calendars

Organizations are defined at the project level. You can export organizational information to be
used within other projects.

Note:

You cannot create organizational charts, calendars, or holidays using Business
Process Composer. You can define roles and assign them to swimlanes.

4.1.1 Introduction to the Organization Editor
Use the Organization Editor to create and edit the components within an organization. It
contains tabbed pains for each of these components. Figure 4-1shows an example of the
Organization editor with the Roles tab selected.

4-1

Figure 4-1 The Organization Editor

4.2 Introduction to Roles
Roles define who is responsible for performing the activities and tasks in your process.
Adding members to a role identifies the members of your real-world organization who
are responsible for the activities and tasks. If your process-based application requires
human interaction, you will have to define at least one role within your project.

Roles are abstract and help define and mimic responsibilities of an individual in the
Enterprise. They need to be mapped to Participants.

The Order demo example process defines several roles including: Approvers and
Sales Rep. These represent the types of people that perform the work within your
process rather than specific people within your organization. Roles are assigned to the
vertical swimlanes that show graphically the roles responsible for completing activities
and tasks within your process. Roles also contain members which correspond to the
end users responsible for using the actual process-based business application.

4.2.1 How to Create a New Role
User tasks require you to define roles before you can add them to a process model.

To create a new role:

1. In the Project Navigator, expand the project where you want to create a new role.

2. Right-click Organization, then select Open.

3. In the Organization Editor window, select the Roles tab.

4. Click the Add icon, then supply a name for your role.

5. Click OK.

4.2.2 How to Add Members to a Role
Before performing this task, you should ensure that you have configured a connection
to your application server.

Chapter 4
Introduction to Roles

4-2

Note:

Before performing this task, you should ensure that you have created an Identity
Service connection.

To add members to a role:

1. In the Project Navigator, expand the project where you want to create a new role.

2. Right-click Organization, then select Open.

3. In the Organization Editor window, select the Roles tab.

4. Click the Add Role icon.

5. Select the type of application server and realm.

6. Enter a search pattern, then click the search icon.

7. Select the appropriate user from the search results, then click Select.

8. Click OK.

4.3 Introduction to Organizational Charts
An organizational chart models the structure of your organization.

Each project contains one organizational chart that can be divided into multiple organizational
units that reflect the structure and hierarchy of an organization.

4.4 Introduction to Organizational Units
Organizational units define the structure of your organization An organizational chart contains
one top level and may contain multiple levels of nested organizational units. Figure 4-2 shows
how an organization can be structured using organizational units.

Figure 4-2 Example of Nested Organizational Units

In this example, MyCompany is the top-level organizational unit. Beneath MyCompany are
various levels of nested organizational units.

For each organizational unit, you can assign members that represent the people within your
organization. These are defined in Oracle WebLogic Server and are assigned using the
Oracle Identity Service.

The following: members can be defined:

Chapter 4
Introduction to Organizational Charts

4-3

• Users: The individual participants or users

• Groups: Groups of participants. These are defined

• Application Roles

4.4.1 How to Create an Organizational Unit
You can create multiple organizational units within an organization.

To create an organizational unit:

1. In the Project Navigator, expand the project where you want to create a new role.

2. Right-click Organization, then select Open.

3. In the Organization Editor window, select the Organizational Chart tab.

4. Select Organizational Chart, then click the Add icon.

5. Provide a name for your organizational unit, then click OK.

This defines the top-level organizational unit.

6. If you want to add a hierarchical structure to your organization, select the
organizational unit you just created, then click the Add icon.

7. Provide a name for the organizational unit, then click OK.

You can repeat steps 6 and 7 if you need to add additional levels to your
organization.

8. If you want to add an optional calendar rule, select the appropriate rule from the
drop-down list.

9. When you are finished, select Save from the File menu to save your
organizational chart.

4.5 Introduction to Calendars
Calendars specify when resources in your organization are available to work, when
they are on holiday, and so on. Calendars include:

• The working days within a week.

• The start and finish times for each day.

• The time zone.

• An optional holiday rule.

You can specify a calendar rule for each organization unit. This allows you to model
how your organization is structured across time zones and geographical regions.

4.5.1 How to Create a Calendar
You can create calendars that can be assigned to an organizational unit.

To create a calendar:

1. In the Project Navigator, expand the project where you want to create a new role.

2. Right-click Organization, then select Open.

Chapter 4
Introduction to Calendars

4-4

3. In the Organization Editor window, select the Calendar tab, then click the Add icon.

4. Provide a name, then click OK.

5. Select the calendar rule from the list.

6. Select the check box next to each day of the week you want to include.

7. Specify the start and end time for each day.

8. If you want to include an optional holiday rule, select the appropriate holiday rule from the
drop-down list.

9. When you are finished, select Save from the File menu to save your organizational chart.

4.6 Introduction to Holidays
Holidays specify the non-working days for a calendar rule. You can define an optional holiday
rule for each calendar rule in your organization. These can be viewed as exceptions to the
normal working days that you define in a calendar rule.

You can define two types of holidays:

• Fixed: holidays that occur on the same date every year.

• Common: holidays that do not occur on the same date every year.

4.6.1 How to Create Holidays
You can create holiday rules that can be assigned to a calendar.

To create a holiday rule:

1. In the Project Navigator, expand the project where you want to create a new role.

2. Right-click Organization, then select Open.

3. In the Organization Editor window, select the Holiday tab, then click the Add icon.

4. Provide a name, then click OK.

5. Select the holiday rule from the list, then click the Add icon.

6. Provide the following for the holiday rule, then click OK.

• Description: A description of the holiday rule.

• Type: Select the type of holiday you want to create. See Introduction to Holidays for
information on the types of holidays.

• Date: The date for this holiday rule. To specify a range, you must create a new entry
for each day.

7. Click OK.

4.7 Introduction to Business Parameters
Business parameters are global variables that specify information. Any process in a BPM
project can use global variables.

For example, your company has a business process that requires approval for any employee
to work more than 40 hours in a week. A business parameter MAX_WORKED_HOURS is

Chapter 4
Introduction to Holidays

4-5

defined and set to 40. The business parameter is used to drive your process flow.
Suppose one month your the company has an unusual influx of work. You decide that
all employees can work 45 hours in a week without requiring approval. The process
owner monitoring the process changes the value of MAX_WORKED_HOURS to 45 to
effect the change. You do not have to redeploy or modify the process.

Business parameters can be modified while a process is deployed and running,
without changing the design of the process. Changing the value of a business
parameter affects the process behavior without having to change the process definition
and without having to re-deploy the process.

4.7.1 How to Add a Business Parameter
Business parameters enable you to create variables to drive the process flow that you
can modify while the process is running.

To add a business parameter:

1. In the Applications window, double-click the Organization node.

The Organization editor opens.

2. Click the Business Parameters tab.

The Business Parameters page appears.

3. Click the Add button.

The Add Business Parameter dialog box appears.

4. Enter a name to identify the business parameter.

The business parameter name must be in uppercase.

5. From the Type list, select a type for the business parameter.

Available types are: string, boolean, int, and double.

6. Enter a default value.

This is the value the business parameter uses when you deploy the BPM project.

7. Click OK.

The business parameter appear in the Business Parameters table.

4.7.2 How to Assign a Value to a Business Parameter
You can assign a value to a business parameter in the following ways:

• Using data associations

The business parameter appears in the input and output arguments section of the
data association. To view the business parameters, expand the Business
Parameters node. For more information on how to use data associations, see
Introduction to Data Associations.

• Using BPM Scripts

You can use BPM scripts to assign a value to a business parameter. For more
information, see How to Work with Business Parameters.

Chapter 4
Introduction to Business Parameters

4-6

5
Handling Information in Your Process Design

You can handle the information in your process using data objects and project data objects.
Pass that information along the process and transform it when necessary.

• Introduction to Handling Information in Your Process Design

• Introduction to Data Objects

• Working with Process Data Objects

• Introduction to Activity Instance Attributes

• Working with Activity Instance Attributes

• Introduction to Subprocess Data Objects

• Working with Subprocess Data Objects

• Introduction to Project Data Objects

• Working with Project Data Objects

• Introduction to Arguments

• Naming Conventions

• Scope and Access

• Introduction to Data Associations

• Introduction to Transformations

• Defining Transformations

5.1 Introduction to Handling Information in Your Process Design
Processes make use of information and also generate information from their tasks. Process
flows can be affected by information values.

Oracle BPM supports the following data structures to keep track of this information:

• Process Data Objects

• Subprocess Data Objects

• Project Data Objects

• Arguments

Additionally, you can pass information between the different elements of a process using data
associations. Data associations enable you to map the values of project and process data
objects to the input and output arguments of the flow object implementations.

The Structure window shows the different data structures in your project: data objects, project
data objects, and business indicators. For callable process it also shows arguments.

Figure 5-1 Shows the Structure window for a process that defines business indicators and
process data objects.

5-1

Figure 5-1 Structure Window

5.1.1 Basic Data Objects versus Complex Data Objects
Basic data objects are defined using basic data types such as int, boolean or string.

Complex data objects are defined using business objects and can group data. See
Modeling Business Objects for more information on how to define business objects.

Business objects include data structures based on basic data objects. For example,
you can create a complex data object called employee that contains different data
types for employee name, ID, and salary.

The structure of complex data objects is the same for all the process instances of a
process. However the data values they contain are specific to each instance of a
process.

Figure 5-2 shows the relationship between basic data objects and complex data
objects.

Chapter 5
Introduction to Handling Information in Your Process Design

5-2

Figure 5-2 Basic Data Objects versus Complex Data Objects

5.2 Introduction to Data Objects
The main elements of a business process are tasks and information related to those tasks.
The information in a process instance changes as the process executes. The information in a
process instance defines the state of the process instance at any given time.

This information also determines how a process behaves and can change its flow of
execution. You can monitor this information or store it to an external system.

The Sales Quote example process uses the following information:

• Approval flow

• Approval terms outcome

• Quote

Oracle BPM uses data objects to store the information related to the process. The value of
these variables may or may not change as you run the process.

Oracle BPM data objects have the following characteristics:

• A name that identifies the data object

• A data type that determines the type of data that can be stored in the variable.

Chapter 5
Introduction to Data Objects

5-3

Data objects store information related to each process instance you create. The value
of these data objects is different for every instance in the process. However the
structure of the data object is the same for all process instances.

When you define a process you must define the data object to store information. You
must also define in which part of the process you assign a value to these data objects.
The value of data objects may come from the user input, from external systems or
might be calculated based on other data objects.

When you create an instance, the Process Engine assigns Null as the default value for
all the data objects defined for that process. Later on the activities in the process
assign values to these variables.

In the purchase order process each order has its own total amount, payment type and
customer ID. You can model this data by defining data objects that store this process
information.

5.2.1 Supported Data Types for Data Objects
Data objects can be of the following data types:

• string

• int

• boolean

• double

• decimal

• time

• duration

• base64Binary

• Component (enables you to select a complex data type)

Note:

The binary data type is only used to map elements of an XML schema type.
You cannot perform any operations with binary data types, but they can be
passed between different components and flow objects.

5.2.2 Default Values
If you configure a data object to initialize automatically, the BPMN Engine assigns it a
default value. The default value varies according to the type of the data object.

Table 5-1 shows the default values for the supported data types.

Table 5-1 Default Values

Data Type Default Value

string ""

Chapter 5
Introduction to Data Objects

5-4

Table 5-1 (Cont.) Default Values

Data Type Default Value

time, date 'now'

int, double,decimal 0

boolean false

duration '0'

5.3 Working with Process Data Objects
Typically the services in your process modify the value of the data objects in your process,
but you might assign them an initial value, or change their value during the process.

You can add new process data objects to the process you are working on. You can also edit
or delete them.

5.3.1 How to Add a Process Data Object
You can add a process data object to store a value to use in your BPMN process.

To add a process data object:

1. In the Applications window, select the process where you want to add the data object.

2. In the Structure window, right-click the Process Data Objects node.

3. Select New.

4. Enter a name to identify the data object.

5. Select a type from the Type list.

To use a complex type, select <Component>.

6. If you selected <Component>, select a complex type:

a. Click the Browse Types button.

The Browse Types dialog box appears.

b. Select a type from the list or create a Business Object by clicking the New button
next to the search list.

To locate a type, enter the name in the Search text box. If the type does not exist, the
name you typed appears in red.

c. Click OK.

The Browse Types dialog box closes and the complete name of the type you selected
appears in the field next to the Browse Types button.

7. Optionally, check Auto Initialize to initialize the data object with a default value.

8. Click OK.

Chapter 5
Working with Process Data Objects

5-5

Note:

You can also add process data object from the Data Object tree in the
Simple Expression Builder, XPath Expression Builder, and Data Association
Dialog.

5.3.2 How to Edit a Process Data Object
You can modify the name and type of an existing process data object.

To edit a process data object:

1. In the Applications window, select the process that contains the data object you
want to edit.

2. In the Structure window, expand the Process Data Objects node.

3. Right-click the data object you wan to edit.

4. Select Edit.

A dialog box to edit the data object name and type appears.

5. Make the changes you want.

6. Click OK.

5.3.3 How to Delete a Data Object
You can delete a data object that you do not need or use.

To delete a data object:

1. In the Applications window, select the process that contains the data object you
want to delete.

2. In the Structure window, expand the Process Data Objects node.

3. Right-click the data object you want to edit.

4. Select Delete.

5.3.4 How to Assign a Value to a Process Data Object
You can assign values to process data objects using a script task.

To assign a value to a process data object:

1. In the Process Editor, add a script task to the process.

2. Edit the implementation properties of the script task.

3. Define the data association or transformation to assign the value to the process
data object.

See Introduction to Data Associations for information on how to define a data
association.

Chapter 5
Working with Process Data Objects

5-6

See Introduction to Transformations for information on how to define a transformation.

5.4 Introduction to Activity Instance Attributes
Some data, like the status of the process, applies to all the processes you define. You can
use this data to trigger an event based on its value, or to provide it as input to a service. In
both cases the process flow depends on the value of this data. Oracle BPM tracks this data
using a predefined set of activity instance attributes.

You can access these activity instance attributes in the same way you access regular data
objects, but you cannot assign them new values.

You can access activity instance attribute from the following components:

• Data associations

• Simple Expression Builder

• XPath Expression Builder

Table 5-2 provides detailed information about the activity instance attributes available for the
different elements of a process.

Table 5-2 Activity Instance Attributes

Name Type Description Availability

state string Specifies the state of the
instance.

Possible values are:

• none
• ready
• active
• canceled
• aborted
• completing
• completed

In complex gateways

loopCounter int Specifies the number of times the
engine ran this activity. The
Process Engine updates this
variable each time it runs a new
loop.

In activities with loop marker.

loopCounter int Specifies the sequence number
that identifies each of the
activations of this activity. The
BPMN Engine assigns this
number to each activation when
it runs the activity.

In activities with multi-instance
marker.

numberOfInstances int .Specifies the number of
activations created for a multi-
instance activity. You can only
access this value from the main
instance.

In activities with multi-instance
marker.

Chapter 5
Introduction to Activity Instance Attributes

5-7

Table 5-2 (Cont.) Activity Instance Attributes

Name Type Description Availability

numberOfActiveInsta
nces

int Specifies the number of active
inner instances for a multi-
instance activity. You can only
access this value from the main
instance.

For sequential multi-instance
activities this value is either 1 or
0.

For parallel multi-instance
activities this value is smaller or
equal to the value specified by
the predefined data object
numberOfInstances.

In activities with multi-instance
marker.

numberOfCompletedI
nstances

int Specifies the number of
completed inner instances for a a
multi-instance activity. You can
only access this value from the
main instance.

In activities with multi-instance
marker.

numberOfTerminatedI
nstances

int Specifies the number of
terminated inner instances for a a
multi-instance activity. You can
only access this value from the
main instance.

In activities with multi-instance
marker.

activationCount int Specifies the number of tokens in
the incoming sequence flow of
the gateway.

In complex gateways.

5.5 Working with Activity Instance Attributes
Some process elements support activity instance attributes. You can use these activity
instance attributes to control the flow of a process.

Generally the Process Engine assigns the values of activity instance attributes,
however some of them require you to assign them a value.

5.6 Introduction to Subprocess Data Objects
You can define data objects for a certain subprocess. These data objects are available
only when the subprocess is running. When the instance leaves the subprocess the
value of subprocess data objects is lost.

Using subprocess data objects is a good practice because:

• It reduces the number of unnecessary data objects in the main process, making it
simpler and easier to read.

• By reducing the number of process data objects, it reduces the amount of memory
each process instance occupies.

• It makes the subprocess easier to understand.

Chapter 5
Working with Activity Instance Attributes

5-8

5.7 Working with Subprocess Data Objects
From within a subprocess you can access process data objects and subprocess data objects.
If the name of a subprocess data object matches the name of a process data object, then
when you access the data object you obtain the value of the subprocess data object.

You can add new project data objects to subprocesses. If necessary you can edit or delete
them.

5.7.1 Adding a Data Object to a Subprocess
You can add data object to a subprocess. You can only access this data objects from within
the subprocess.

To add a data object to a subprocess:

1. In the Applications window, select the process that contains the subprocess where you
want to add a data object.

2. In the Structure window, expand the Activities node.

The expanded node shows the subnodes Activities, Events and Gateways.

3. Expand the Activities subnode.

4. Expand the node that corresponds to the subprocess.

5. Right-click the Data Objects node located under the subprocess node.

6. Select New.

7. Provide a name to identify the new data object.

8. From the Type list, select a type.

To use a complex type, select <Component>.

9. If you selected <Component>, select a complex type:

a. Click the Browse Types button.

The Browse Types dialog box appears.

b. Select a type from the list or create a Business Object by clicking the New button
next to the search list.

To locate a type, enter the name in the Search text box. If the type does not exist, the
name you typed appears in red.

c. Click OK.

The Browse Types dialog box closes and the complete name of the type you selected
appears in the field next to the Browse Types button.

10. Optionally, check Auto Initialize to initialize the data object with a default value.

11. Click OK.

5.7.2 Editing a Data Object in a Subprocess
You can modify the name and type of an existing subprocess data object.

Chapter 5
Working with Subprocess Data Objects

5-9

To edit a data object in a subprocess:

1. In the Applications window, select the process that contains the subprocess with
the data object you want to edit.

2. In the Structure window, expand the Activities node.

The expanded node shows the subnodes Activities, Events and Gateways.

3. Expand the Activities subnode.

4. Expand the node that corresponds to the subprocess.

5. Expand the Data Objects node located under the subprocess node.

6. Right-click the data object you want to edit.

7. Select Edit.

A dialog box to edit the data object name and type appears.

8. Make the changes you want.

9. Click OK.

5.7.3 Deleting a Data Object from a Subprocess
You delete a subprocess data object that you do not need or use. If there are flow
objects in your subprocess that use the removed data object, then you must remove
these references manually.

To delete a data object from a subprocess:

1. In the Applications window, select the process that contains the subprocess with
the data object you want to delete.

2. In the Structure window, expand the Activities node.

The expanded node shows the subnodes Activities, Events and Gateways.

3. Expand the Activities subnode.

4. Expand the node that corresponds to the subprocess.

5. Expand the Data Objects node located under the subprocess node.

6. Right-click the data object you want to delete.

7. Select Delete.

5.8 Introduction to Project Data Objects
Project data objects allow you to ensure that all the processes in a certain project keep
track of a set of data. Then each process has to assign and update the value of this
data.

The processes in a BPM project often have a set of data they share. For example, the
Purchase Order process and the Request Approval process may both track the value
of the employee that created the request, or the priority of the request. The value of
this data is different for every instance in each of those processes, they only share the
necessity to keep track of that data.

Chapter 5
Introduction to Project Data Objects

5-10

The processes in a BPM project only share the data definition of project data objects, not
their actual values. Each BPMN process has its own copy of the project data object with a
value that might or might not be different.

5.8.1 Business Indicators
When you mark a project data object as a business indicator the Process Engine stores its
value in the Process Analytics databases. You can use this information to monitor the
performance of your business processes.

For more information about Process Analytics, see Using Process Analytics.

5.8.2 Supported Data Types for Project Data Objects
You can set the type of a project data object to the following data types:

• string

• int

• boolean

• double

• decimal

• time

• duration

• base64Binary

• Component

5.9 Working with Project Data Objects
The main benefit of defining project data objects is that after publishing your project you can
configure Process Workspace views to show the values of those variables. This is only
possible if you use project data objects.

Another benefit is that if you change the definition of a data object, then you only have to do it
one time, as opposed to having to make those changes in all the processes in the project that
define the same data object.

You can add new project data objects to the project you are working on. You can also edit or
delete them.

Note:

It is not advisable to change the data type of a project data object after deploying a
BPM Project. This can cause problems when the Process Workspace tries to
render the value of the instances created before changing the data type.

Chapter 5
Working with Project Data Objects

5-11

Note:

Avoid naming a project data object with the same name used for a process
data object. If you name a process data object and a project data object with
the same name, then the data associations editor does not allow you to
access the project data object.

5.9.1 How to Add a Project Data Object
To add a project data object:

1. In the Applications window, select a process from the Project whose project data
object you want to edit.

2. In the Structure window, right-click the Project Data Objects node.

3. Select New.

4. Provide a name to identify the new project data object.

Note:

You cannot use the name of existing process data objects.

5. Select a type.

Available types are: string, int, double, decimal, boolean, time.

6. Optionally, check Auto Initialize to initialize the project data object with a default
value.

7. Click OK.

Note:

You can also add process data object from the Data Object tree in the
Simple Expression Builder, XPath Expression Builder, and Data Association
Dialog.

5.9.2 How to Edit a Project Data Object
You can modify the name and type of an existing project data object.

To edit a project data object:

1. In the Applications window, select a process from the Project whose project data
object you want to edit.

2. In the Structure window, expand the Project Data Objects node.

3. Right-click the project data object you want to edit.

Chapter 5
Working with Project Data Objects

5-12

4. Select Edit.

A dialog box to edit the project data object properties appears.

5. Make the changes you want.

6. Click OK.

5.9.3 How to Delete a Project Data Object
You can delete a project data object that you do not use or need. If there are processes in
your project that use the deleted project data object, then you must remove these references
manually.

How to delete a project data object:

1. In the Applications window, select a process from the Project whose project data object
you want to edit.

2. In the Applications window, select a project.

3. In the Structure windows, expand the Project Data Objects node.

4. Right-click the project data object you want to delete.

5.9.4 How to Assign a Value to a Project Data Object
You can assign a value to a project data object using a script task.

To assign a value to a project data object:

1. In the Process Editor, add a script task to the process.

2. Edit the implementation properties of the script task.

3. Define the data association or transformation to assign the value to the project data
object.

See Introduction to Data Associations for information on how to define a data association.

See Introduction to Transformations for information on how to define a transformation.

5.10 Introduction to Arguments
Use arguments to pass data between the different components in a process.

A component may require you to provide certain data when you invoke it. To pass this data
you use input arguments. When you run a component, it provides results through its output
arguments.

The process components that may have arguments are:

• Service Operations: may require data to process and may provide data that contains the
results of running them, the input and output arguments of the component represent this
data.

• Human Tasks: may require data to run and may provide data that contains the results of
running them, the input and output arguments of the Human Task represent this data.

Chapter 5
Introduction to Arguments

5-13

• Business Rules: require an input that they use to evaluate the rules they contain,
they return the result of this evaluation using output arguments. When you run a
Business Rule using a business rule task it uses the input and output arguments to
invoke the selected decision function.

• Message Start Events: enable you to define input arguments. You can add input
arguments to a start event when a process is used as a subprocess and it
receives data from the invoking process. These input arguments represent the
data that a process requires when another process invokes it.

• Message End Events: enable you to define output arguments. You can add input
arguments to an end event, when a process is used as a subprocess and passes
information to the process that invokes it. These output arguments represent the
data that result from running the process.

• Catch Events: allow you to define input and output arguments that define the
process interface. If the operation they expose is asynchronous, then you can only
define input arguments. If the operation they expose is synchronous, then you can
define input and output arguments.

• Throw Events: enable you to define input and output arguments that define the
process interface.If the operation they expose is asynchronous, then you can only
define output arguments. If the operation they expose is synchronous, then you
can define input and output arguments.

5.11 Naming Conventions
Names of process data objects, projects data objects, and arguments should follow
certain conventions.

You should respect the following rules:

• Use one or more nouns, or nouns modified by adjectives.

• Do not start the name with a digit.

• Use capital letters only to distinguish internal words.

• Keep names simple and descriptive.

• Use whole words, avoid using acronyms, unless they are widely known.

• Avoid using the same name for a process data object and a project data object.

5.12 Scope and Access
The scope and access to process data objects, subprocess data objects, project data
objects, and arguments varies according to the structure used to store information.

• Process Data Objects: You can access them from any task within the process.
The Process Engine creates them when it creates an instance in the process.
Generally the process data objects have different values for each instance in the
process. After the instance arrives to the end event, you cannot access process
data objects anymore.

• Subprocess Data Objects: You can access them from any task within a
subprocess. The Process Engine creates them when the subprocess is triggered.
After the instance leaves the subprocess, these data objects are no longer
available.

Chapter 5
Naming Conventions

5-14

• Project Data Objects: You can define project data objects at a project level. However,
the scope of project data objects is a process. Project data objects are predefined for all
the processes in a BPM project. The value of a project data object may vary between
processes. Generally project data objects have different values for each instance in the
process. You can access project data objects from any process in a project, however the
value assigned to it during a process is lost when the process finishes running. Figure
7-12 shows the difference between the scope and the life span of project data objects.

• Arguments: You can only access arguments from within data associations. You use
arguments to pass information between processes or process components. When the
Process Engine runs a process or a process element that contains a data association, it
maps the value of the arguments to the data objects defined in the data association.

Figure 5-3 shows the scope of input arguments, process data objects, subprocess data
objects and output arguments. The image shows a BPMN process and the red bars with the
variables name show the scope where those variables are available.

Figure 5-3 Scope of the Data Structures in a Process

Figure 5-4 shows the scope and life span of project data object. The image the various
BPMN processes in a BPM project, above them there is a red bar that indicates the scope of
the project data objects, below each process there is a green bar that indicates their life span.

Figure 5-4 Scope and Life Span of Project Data Objects

Chapter 5
Scope and Access

5-15

5.13 Introduction to Data Associations
Data associations are used to pass the information stored in data objects in the certain
contexts.

Data associations can be used to pass data:

• To and from another process or service invoked from a BPMN process

• To and from a Human Task service

• To and from an Oracle Business Rule

• To and from a script task. This BPMN flow object is used to pass data objects
through data associations

Table Figure 5-4 lists the flow objects where you can define data associations. It also
lists the objects implemented.

Table 5-3 Flow Objects that Accept Data Associations

Flow Objects Implementation

Message start and end events Services and other BPMN processes

Message throw and catch events Services and other BPMN processes

Send and receive tasks Services and other BPMN processes

Script tasks Do not contain an implementation, are used to pass
data objects through data associations.

User tasks Oracle Human Tasks

Business rule tasks Oracle Business Rules

Service Tasks Services and BPMN processes

Error events Exception

Signal events Event

You can use data associations to define the input and output from a flow object to an
external service or process.

It is important to note that although the inputs and outputs are defined in the data
associations for a flow object, the defined values are passed to the implemented
systems and services.

You can use expressions to evaluate and change the input and output values

5.13.1 Introduction to the Data Association Editor
The data associations editor enables you to configure the input and output values
passed between a flow object and a its implementation.

Figure 5-5 shows the data association for the Enter Quote user task in the Sales
Quote example.

Chapter 5
Introduction to Data Associations

5-16

Figure 5-5 The Data Association Editor

Table 5-4 describes the different areas of the data association editor.

Table 5-4 The Data Association Editor User Interface

UI Area Description

Input Tab Contains text boxes that display the data objects assigned as inputs to the
service or process implemented in the flow object. Next to each text box is
an icon that launches the expression editor

Output Tab Contains text boxes that display the data objects assigned as outputs from
the service or process implemented in the flow object.

Flow Object Tree Contains an Arguments node that lists all the expected argument. According
to the tab you selected it lists input or output arguments. You can expand
complex data objects to map to specific basic data objects within a complex
data object.

Data Objects Tree Displays all the data objects. This tree contains process data objects,
predefined data objects and project data objects.You can expand complex
data objects to map to specific basic data objects within a complex data
object.

5.14 Introduction to Transformations
You can use XSL transformations to transform the values of a data object in the process
before they are passed to a flow object as input arguments. XSL transformations can also

Chapter 5
Introduction to Transformations

5-17

transform the values of the output arguments of a flow object before you assign them
to the data objects in the process.

You can combine the use of transformations with the use of data associations only if
you apply them over different arguments.

Note:

You must not use transformations and data associations to map the value of
an argument simultaneously.

5.15 Defining Transformations
When you define the transformation you can only use as sources data objects that are
based on an business object created using an XML schema or type.

You can edit the transformations you create using the SOA XLS Editor. See
Developing SOA Applications with Oracle SOA Suite for more information on how to
use the SOA XLS Editor.

5.15.1 How to Define a Transformation
You can define an XSLT transformation to transform the data you pass to and from the
implementation of a flow object.

To Define a transformation:

1. Edit the flow object implementation properties.

2. Click the Data Associations link.

The Data Associations dialog box appears.

3. Click the Transformations button located in the upper right corner and drag it to
the target node.

4. Drop the transformation in the target node.

The Create Transformation dialog box appears.

5. From the Sources List, select a source.

The sources list only contains data objects that are based on a business object
created using an XML schema or type.

6. Click Add.

The source appears in the Selected Elements list.

7. From the Target list, select a target to assign the result of the transformation.

8. In the Transformation section select a way to define the transformation:

• Create: creates a new transformation and opens the SOA transformation
editor for you to define the transformation.

• Use Existing: enables you to select an existing transformation that you copied
to the project XSL directory.

Chapter 5
Defining Transformations

5-18

5.15.2 What Happens When You Define a Transformation
The BPMN Service Engine uses the specified XSL transformation to assign the values of the
input an output arguments of a flow object. The XSL transformation modifies the values
before assigning them.

Chapter 5
Defining Transformations

5-19

Part III
Analyzing Process Performance

Use simulations and Process Analytics to analyze the performance of your business process.

• Running Simulations in Oracle BPM

• Using Process Analytics

6
Running Simulations in Oracle BPM

Use simulations to predict the behavior of business processes under specified conditions,
and also to verify that the output meets the metric objectives and identify any bottlenecks.
Run simulations to test the effects of changes on an existing process design.

• Introduction to Running Simulations in Oracle BPM

• Creating Simulation Models

• Configuring Boundary Events

• Creating Simulation Definitions

• Running Simulations

• Analyzing the Results of a Simulation

6.1 Introduction to Running Simulations in Oracle BPM
Run user-defined simulation in Oracle BPM to determine the efficiency of your processes.
Your simulation can reflect either real or anticipated data.

You can:

• Define multiple models for a given process so that different conditions can be analyzed

• Run multi-process simulations to learn how working in different business processes can
affect shared resources, such as human participants

6.1.1 Simulation Models and Simulation Definitions
Before you run a simulation, you must specify the behavior of each element of your process.
To define a simulation you must create and configure the following elements in your BPM
Project:

• Simulation model

Enables you to define the behavior for an individual process model. Note that, for any
given process model, you can have multiple simulation models, so that you can mimic a
variety of scenarios.

• Simulation definition

Enables you to define the processes and resources that define a simulation scenario.In a
simulation definition you specify the processes that participate in the simulation by
selecting the simulation models associated to those processes. A process may have
multiple simulation models defined for it. If a process has multiple simulations models
defined, then you must select one of those models to use in the simulation definition.

Simulations do not call each individual task within a process. For example, they do not run
the service associated to a service task, variables are not assigned values, and external
resources are not updated.

6-1

However, simulations mimic the behavior of an activity using the following simulation
variables that you can define using the Simulation Editor:

• duration

• resources

• cost

• queue information

• probability of the instance passing through an outgoing flow

6.2 Creating Simulation Models
Simulation models enable you to simulate the behavior of an individual process. They
enable you to define how a process behaves as part of a simulation definition.

You can define multiple simulation models for each process, creating different
simulations based on different combinations of resource allocation and activity
behavior.

You can create the simulation model based on a process using the Simulation Wizard
or create from scratch.

6.2.1 How to Create a Simulation Model from a Business Process
To create a simulation model from a business process:

1. In the Applications window expand the BPMN Processes node.

2. Right-click the business process to use for the simulation.

3. Select New Simulation and then select Wizard.

The Simulation Wizard appears.

4. Enter a name to identify the simulation model.

5. If you want to limit the number of instances to create, select Specify Number of
Process Instances to Be Created and then specify the number of instances
using the field below.

6. In the User Tasks section, customize the distribution, fixed resources and fixed
based costs.

7. Click Next.

The Simulation Definition wizard page appears.

8. Enter a name for the simulation definition.

9. Enter a duration for the simulation.

10. Select a start time using the arrow buttons or click the Calendar button next to the
Start Time field.

11. To configure the simulation to wait for all instances to finish before ending, select
Left In-Flight Instances Finish Before Simulation Ends.

12. Click Next.

13. Select the actions to perform after creating the simulation.

Chapter 6
Creating Simulation Models

6-2

Available options are:

• Open Simulation Model

• Open Simulation Definition

• Start Simulation

14. Click Finish.

6.2.2 How to Create and Configure a Simulation Model
To create and configure a simulation model:

1. In the Applications window, expand the Simulations node.

2. Right-click the Simulation Models node.

3. Select New and then select From Gallery.

The New Gallery dialog box appears.

4. In the Categories section, expand the BPM Tier node and select the Simulations node.

5. In the Items section, select BPMN Process Model Simulation and click OK.

The Select Process dialog box appears.

6. Select a process.

The Model Simulation dialog box appears.

7. Enter a name for the simulation model.

8. Click OK.

The simulation model appears under the Simulation Models node in the Applications
window, and the Simulation Model editor opens.

9. Specify the number of instances to create during the simulation:

a. Select Specify number of process instances to be created.

b. Specify the number of instances to create during the simulation.

Note:

The process simulation runs until the completes the specified duration or
reaches the maximum number of instances.

10. In the Flow Nodes tree, select an activity.

Depending on which type of activity you select, the following tab pages appear on the
right of the Flow Nodes tree:

• Duration: defines the distribution that determines the time an activity takes to
complete.

• Resources: specifies the number of participants assigned to a particular role. You can
define this parameter in the simulation model or at a global project level in the project
simulation definition.

• Cost: specifies the cost of processing the activity. For user tasks it also specifies the
cost of the resources assigned to the user task. Measured in salary per hour.

Chapter 6
Creating Simulation Models

6-3

• Queue Info: defines the simulated behavior of how process instances are
queued for a given activity.

• Outgoing Flows: determines the probability percentage of instances routed
through the different outgoing sequence flows.

• Threads: specifies the number of threads running this flow object. This tab is
only available for flow objects that do not involve human interaction.

• Instance Creation: enables you to specify the distribution curve to use to
create instances for the simulation. This tab is only available for start events.

11. Configure each activity as follows:

a. In the Duration page, in the Instance Execution Duration section, specify the
Distribution Type. Options are listed and described in Table 6-1.

Table 6-1 Options in the Simulation Model Flow Nodes Duration Page

Option Description

Constant Specifies that the simulation model uses the value specifies in the Period
property to calculate the completion time for all the activities in the
process.

Uniform Determines the period required to complete an activity consistently,
taking into account the variation specified in the delta property. When
you select this option, you are prompted to specify each of the following:

• Mean: Determines the mean time it takes to complete an activity
• Delta: Defines the upper and lower limit variation of the mean

parameter when determining how long it takes to complete a
simulated activity

Exponential Determines how long it takes to complete a simulated activity by
specifying how many instances are completed within a specific period.
When you select this option, you are prompted to specify:

• Average Frequency: Determines the average number of instances
processed within the interval defined by the Every property

• Every: Defines the interval used for exponential distribution

Normal Uses the Gauss Bell distribution to determine how long a simulated
activity takes to complete. You must specify the mean and standard
distribution. When you select this option, you are prompted to specify:

• Mean: The mean period required to perform an activity
• Standard Deviation: The standard deviation of the mean period

required to perform an activity

Real Enables you to specify the amount of time required to complete a
simulated activity for a specific time interval. When you select this option,
you must specify:

• Distribution Criteria: determines the time interval for determining
how long a simulated activity takes to complete

• Interval: specifies the period during which the simulation runs.
• Mean: defines the mean time to complete an activity
• Standard Deviation: defines the standard deviation of the mean

parameter

b. In the Cost page, specify the following:

Chapter 6
Creating Simulation Models

6-4

Table 6-2 Properties in the Simulation Model Flow Nodes Cost Page

Property Description

Fixed Base Cost Defines the cost required to perform the simulated activity

Fixed Base Cost Plus
Resource Cost

Calculated based on the defined cost per hour and the time it takes
the resource to execute the instance. This property is only available
for user tasks.

c. In the Queue Info page, in the Queue Warning Size field specify the number of
incoming instances that can be waiting for an activity simultaneously.

d. In the Outgoing Flows page, move the slider to specify the probability of each
outgoing sequence flow occurring.

If the activity contains boundary events, then the flows of the boundary events
appear in this page. For more information about configuring boundary events, see
Configuring Boundary Events.

6.3 Configuring Boundary Events
If the BPMN process you want to simulate contains boundary events, then you must specify
the probability of these events happening.

You can specify the probabilities for the different boundary events in the Outgoing Flows
page.

The way you specify the probability of a boundary event varies according to the type of the
event:

• Interrupting Boundary Message and Error Events

The probabilities of all the interrupting boundary message and error events for an activity
are related. If you add these probabilities the result must always be 1.

The simulation model editor displays a set of sliders to configure these activities. If you
move a slider, the values in the other sliders automatically adjust. You can lock the values
by clicking the lock icon next to the slider. When you lock a value the simulations model
editor does not modify it when you move the other sliders. The simulation model editor
forces you to leave at least two values unlocked.

• Non-Interrupting Boundary Message and Error Events

The probability of a non-interrupting boundary message or error event is independent
from the probability of other events happening. This value of this probability can vary
between 0 and 1.

The simulation model editor displays a slider for each non-interrupting boundary
message or error event. You can move this slider to specify any value between 0 and 1.

• Timer Events

To specify the probability of a boundary timer event, you must define the time interval
between occurrences of the event. If the implementation of the timer event in the BPMN
process uses an expression, then you must define a fixed time interval to use during the
simulation. If the implementation of the timer event in the BPMN processes uses a fixed
time interval, then redefining the time interval is optional because you can use the interval
defined in the BPMN process for the simulation.

Chapter 6
Configuring Boundary Events

6-5

The simulation model editor displays a table for interrupting timer events and
another one for non-interrupting timer events. You can redefine the time intervals
for each of the events using these tables.

Figure 6-1 shows the Approve Quote user task with different types of boundary events.
Figure 6-2 shows the simulation configuration page for the Approve Quote user task.

Figure 6-1 The Approve Quote user task with multiple boundary events

Figure 6-2 Outgoing Flows tab page for the Approve Quote task

Chapter 6
Configuring Boundary Events

6-6

6.4 Creating Simulation Definitions
You can create a simulation definition to represent a simulation scenario for a group of
simulation models. You can select which simulations model to run from the group of
simulation model contained in the simulation definition.

You can also create a simulation definition after you create a simulation model using the
Simulation Wizard. For more information on how to create a simulation model and a
simulation definition using the Simulation Wizard, see How to Create a Simulation Model from
a Business Process.

6.4.1 How to Create a Simulation Definition
In a simulation definition, you can customize the following parameters to see how they
influence the performance of your project:

• Start time and duration of the simulation

• Which process simulation models you want to include in the project simulationThe
participant resources you want to include in the simulation

To create and configure a simulation definition:

1. In the Applications window, expand the Simulations node.

2. Right-click the Simulation Models node.

3. Select New and then select From Gallery.

The New Gallery dialog box appears.

4. In the Categories section, expand the BPM Tier node and select the Simulations node.

5. In the Items section, select BPM Project Simulation and click OK.

The Create Simulation Definition dialog box appears.

6. Enter a name for the simulation definition.

7. Click OK.

The simulation definition appears under the Simulation Definitions node and the
Simulation Definition editor opens. Figure 6-3 shows the Simulation Definition editor.

Chapter 6
Creating Simulation Definitions

6-7

Figure 6-3 Simulation Definitions Project Page

8. Specify the general parameters for this simulation as described in Table 6-3.

Table 6-3 General Parameters for Simulation Definitions

Parameter Description

Start Time Defines the start time for the simulation. This time is used only for
logging. It is not used for scheduling purposes.

Duration Defines the period the simulation runs. This interval is specified in
months, days, hours, minutes, and seconds.

Let in-flight
instances finish
before simulation
ends

If selected, simulation ends only when the specified number of
instances completes. If unselected, simulation stops after the simulation
duration is completed. At that point, all incomplete instances are shown
in either “in-process" or “queue" status.

9. The Project page contains a table that lists all of the processes within the current
project. For each process, you can select which simulation model you want to use.
Also, you must specify which processes to include in the simulation.

Specify the parameters in the Project page as described in Table 6-4.

Table 6-4 Project Parameters for Simulation Definitions

Parameter Description

Process Lists the processes that you can include in this simulation.

Model For each process, lists the model specified in How to Create and
Configure a Simulation Model

Include in
Simulation

Enables you to specify whether to include the process in the simulation

After you specified the parameters in the Project page, select the Resources tab.

10. In the Resources page, you can define the resources to use within the simulation.

All processes included in the simulation share these resources. The cost of each
resource is defined per hour.

Chapter 6
Creating Simulation Definitions

6-8

To define the resources click the following buttons:

• Add Resource: adds a resource to the simulation definition

• Delete Resource: deletes the selected resource from the simulation definition

Figure 6-4 shows an example of the Resources page.

Figure 6-4 Simulation Definitions Resources Page

11. Click Save.

Note:

Ensure you saved the changes before running the simulation. If you do not
save the changes, then the simulation engine does not use them when you run
the simulation.

6.5 Running Simulations
When you run a simulation, the animation appears in the project editor.

You can pause, stop, or run a simulation to the end. If you stop the simulation, you must
restart it from the beginning.

6.5.1 How to Run a Simulation
To run a simulation, you must have created simulation models and at least one simulation
definition.

To run a simulation:

1. In the Applications window:

a. Open the Simulation view.

b. From the Simulation list, select the simulation definition you want to run.

Chapter 6
Running Simulations

6-9

c. Click Run Simulation.

The simulation begins.

6.5.2 What Happens When You Run a Simulation
The animation of the simulation appears in the project editor, and the results appear
according to your specifications in the Simulation page.

Note:

If you place the mouse pointer over a column in the chart, a tooltip with the
value of the activity or indicator appears.

6.5.3 Understanding the Simulation View
The simulation view enables you to configure and run a simulation. Figure 6-5 shows a
simulation view.

Figure 6-5 Example of a Simulations Page

The toolbar on the Simulations view enables you to:

• Select which simulation to run from the Simulation list.

• Start, stop, and pause the simulation, or run it to the end by clicking the
appropriate button. If you choose to run the simulation to the end, the simulation
runs in the background with no animation making the simulation faster.

Note:

If you stop a simulation, you must restart it from the beginning.

Chapter 6
Running Simulations

6-10

• Select the speed at which to run the simulation from the Speed list. In normal speed,
instances are created at rate of one per second.

The toolbar on the Chart tab enables you to:

• Change the type of graphic to display the results

• Drill up and drill down

• Decrease and increase the font size

6.6 Analyzing the Results of a Simulation
You can display simulation results either as a chart or as a log file by clicking either the Chart
tab or the Log tab in the Simulations window.

The Log tab displays a log that tracks the movements of all the instances in the simulated
process. Each line in the log contains the following information:

• Date and Time

• Process

• Instance

• Instance path

6.6.1 How to Analyze the Results of a Simulation Using a Chart
The Chart tab enables you to select a type of chart to display the result of the simulation. You
can configure this chart to display the resources to monitor. You can also select the units the
chart uses to measure the resources use.

In the Chart tab you can configure how to display the chart with the results of the simulation
by configuring the following:

• Type of chart

• Activities or resources to monitor

• Indicators

Figure 6-6 shows the toolbar for a sample Chart page.

Figure 6-6 Simulations Chart Page

To analyze the results of the simulation using a chart:

1. From the list below the Chart tab, select the type of chart to display.

They available types are:

• Column

• Bar

Chapter 6
Analyzing the Results of a Simulation

6-11

• Bar 3D

• Column 3D

• Table

2. Click the Configure icon located on the right hand side of the Charts tab.

A Configuration dialog box appears.

3. Select a resource or an activity to monitor.

4. Select the axis where to display the activities or resources.

5. From the list below the Show list, select the activities or resources to monitor in the
simulation.

6. From the Indicators list, select the type of indicators to monitor.

The available types of indicators are:

• Cost

• Time

• Units

7. From the list below the indicators list, select the indicators to monitor.

The chart displays the variables and indicators you selected.

8. Click Close.

9. Optionally, click the drill up and drill down icons located next to the Types list to
increase or reduce the level of detail in the chart.

6.6.2 How to Generate a Simulation Report
You can generate a simulation report that contains the result of the simulation.

To generate a simulation report:

1. Run the simulation.

For more information on how to run a simulation, see How to Run a Simulation.

2. Click the Generate Documentation icon.

The Simulation Report dialog box appears.

3. In the Directory Location field, enter a directory to store the report or click the
button next to it to browse the file system and select a directory.

4. Edit the report name in the Name column of the Report Parts table.

5. If you want to generate multiple reports, click the Add button to add a new report
part.

6. In the Activities tab, select an option:

• Summary

• Details

7. In the tree below, select the activities to include in the report.

You can specify which activities to include using the following options:

• Select All to include all the processes in the simulation definition.

Chapter 6
Analyzing the Results of a Simulation

6-12

• Select a process to include all the activities in the selected process.

• Individually select the activities to include.

8. In the indicators tab, select an option:

• Summary

• Details

9. In the tree below, select the indicators to include in the report.

You can individually select which indicators to display in the report, or select a type of
indicator to display all the indicators of that type.

10. Select the type of graphic to use in the report.

The preview are shows an example of the graphic you chose.

11. Click OK.

6.6.3 What Happens when You Generate a Simulation Report
Oracle BPM Studio creates a directory using the name and location you selected. This
directory contains an HTML file for each of the processes in the simulation.

The HTML file contains:

• a graphic that displays the result of the simulation

• a link to a CSV file with the simulation data

• a link to a CSV file with the simulation resources data

You can view the CSV files with the simulation data and resources data in a spreadsheet
application.

Chapter 6
Analyzing the Results of a Simulation

6-13

7
Using Process Analytics

Configure and use BPM Process Analytics to monitor the activity of the processes in your
project. Process Analytics enable you to obtain performance and workload metrics of the
processes in your project. You can use these metrics to make decisions about your process.

• Introduction to Process Analytics

• Typical Process Analytics Workflow

• Configuring Projects, Processes, and Activities to Generate Sampling Points

• Adding Business Indicators to Projects

• Adding Measurement Marks to Processes

• Adding Counters to the Activities in a Process

• Defining Analytics View Identifier

• Configuring BAM 12c Process Metrics Generation in a Project

• Enabling Oracle BAM 11g in a Project

7.1 Introduction to Process Analytics
Business Process Analytics enables you to monitor the performance of your deployed
processes. It measures the key performance indicators in your project and stores them in a
database. Process analysts can view the metrics stored in the BAM 12c using Process
Workspace dashboards or Oracle BAM 12c Process Analytics dashboards.

Process analysts can monitor standard pre-defined metrics and process specific user-defined
metrics. Process developers can define process specific metrics using Business Indicators.
Business Indicators can be bound to project data objects. Once bound, the BPMN service
engine publishes the business indicator values to process analytics stores when it runs the
BPMN processes.

Process developers define the key performance indicators you want to monitor while
developing your process. Business analysts will use the out-of-the-box process analytics
dashboards as-is or customize them. Additionally, custom metrics defined by custom
business indicators in a process are exposed in the BAM 12c process-specific data object at
deployment. Business analysts can also create custom dashboards and views off these
process-specific data objects.

Process Analytics track:

• Process and Activity Performance Metrics

• Case Metrics

• Human Task Metrics

In addition, you can store the key performance indicators in your process using business
indicators. By default the BPMN Service Engine publishes the values of pre-defined
measures and dimensions that are common to all BPMN processes.

7-1

Following are some of the measures and dimensions columns available in BAM 12c
PROCESS and ACTIVITY logical data objects.

The supported pre-defined measures are:

• Number of days since the last process

• Process cycle time in days

• Number of days since the processes started

• Estimated completion time in days

• Estimated completion time in hours

• Process cycle time in hours

• Process open time in hours

• Process running tim in milliseconds

• Process suspend time in milliseconds

• COUNT of ALL, closed, open, open today, closed today, overdue instances, and
so on.

The supported pre-defined dimensions are:

• Composite name

• Domain name

• Revision process name

• Process display name

• Fault type

• Process instance status

• Process start time

You can also define custom measures according to your needs. To define custom
measures you use business indicators. The different types of business indicators
enable you to measure specific values, keep track of categories or count the times an
instance completes one or more activities.

Oracle BPM provides BAM 12c Process Metrics that you can use to store the Process
Analytics data.You can also store the data to BAM 11g monitor express or use both
systems simultaneously.

7.1.1 Process and Activity Performance Metrics
Process analytics track the time a process takes to complete and the average time
each of the flow objects in that process take to complete.

• The BAM 12c Process data object tracks the time an instance takes to run that
process from the start to the end event.

• The BAM 12c Activity data object tracks the time that passes from the moment the
process instance arrives at a flow object until it moves to the next flow object in the
process.

Chapter 7
Introduction to Process Analytics

7-2

Note:

Information about active and completed activity, measurement intervals, marks, and
counter instances are stored in the Activity data object.

When the flow object invokes a synchronous service operation, activity performance metrics
include the time it takes to run the synchronous service operation because the process
instance does not leave the flow object until it receives an answer from the service. However
when the invoked service operation is asynchronous, activity performance metrics do not
include the time it takes to run the service operation because the process instance leaves the
process after invoking the service without waiting for the service to complete.

7.1.2 Workload Metrics
Process analytics track the number of instances sitting in each activity at a certain time. You
can view the workload for a certain process, activity or instance.

Workload and performance metrics for the Process and Activity are based on the BAM 12c
Process and Activity data objects, respectively.

7.1.3 Human Resource Metrics
You can view performance and workload metrics filtered by participant. This enables you to
monitor the workload and performance of the different participants in the BPMN process.
Workload and performance metrics for the Participant are based on the BAM 12c HWF
Assignment data object.

7.2 Typical Process Analytics Workflow
The typical process analytics workflow has several tasks, including configuring the process to
use BAM 12c Process Metrics or BAM 11g monitor express, or both.

The following list describes the typical tasks you perform when you use Process Analytics in
a BPM Project:

• Create a BPM project and one or more BPMN processes.

• Configure the sampling points generation for the project or process.

• Configure the project to use BAM 12c Process Metrics or BAM 11g monitor express, or
both.

• Add Project data objects to your project.

• Assign values to the Project data object.

• Define Business indicators and bind them to the appropriate Project data objects.

• Add measurement marks or counter marks in the processes where you want to track the
value of the business indicators.

• Deploy your project. See How to Enable Global Flags for Publishing Analytics for
information about what you have to do before you can deploy a project.

• Use BAM 12c composer or BAM 11g Architect to configure custom dashboards.

Chapter 7
Typical Process Analytics Workflow

7-3

Figure 7-1 shows the cycle the process analytics data goes through after deploying
and running a BPMN process.

Figure 7-1 Process Analytics Data Cycle

7.2.1 How to Enable Global Flags for Publishing Analytics
Before you can deploy a project, make sure that the target BAM 12c or BAM 11g
server is up and available, and that the global flags for analytics publish are enabled.

Note:

If you deploy a BPM 12c composite configured with a BAM12c analytics data
target before you enable global analytics flags or when the BAM 12c server
is down, then all data published to the BAM 12c Process star schema from
that composite is permanently disabled. If the BAM 12c server went down,
the disabling remains in effect even when the BAM 12c server comes back
up.

The disabling happens because some mandatory artifacts required for
enabling run time analytics population cannot be created in BAM 12c during
composite deployment time. To allow these composites to publish data to
BAM 12c Process star schema, the BPM 12c composites should be
(re)deployed with the global analytics flag enabled with the BAM 12c server
in running state.

Ensure that the Global Flags for Analytics Publish are Enabled

1. Log in to the Fusion Middleware Control console.

2. In the Target Navigation pane, expand the Weblogic Domain node.

3. Select the domain where the Oracle SOA 12c server is installed.

For example, the domain might be soainfra or base_domain.

4. Right-click the domain and select System MBean Browser.

The System MBean Browser displays.

5. In the System MBean Browser, expand the Application Defined MBeans node.

6. Under Application Defined MBeans, expand the oracle.as.soainfra.config node.

7. Under oracle.as.soainfra.config, expand the Server: server_name node.

8. Under Server: server_name, expand the AnalyticsConfig node.

9. Under AnalyticsConfig, click analytics.

A list of the analytics attributes displays.

Chapter 7
Typical Process Analytics Workflow

7-4

10. Ensure that disableAnalytics is set to false.

11. If BAM 12c is the analytics target where information needs to be published, ensure that
disableProcessMetrics is set to false.

12. If BAM 11g is the analytics target where information needs to be published, ensure that
disableMonitorExpress is set to false.

7.3 Configuring Projects, Processes, and Activities to Generate
Sampling Points

When the BPMN Service Engine runs the activity in the process, it stores data about the
process to the BAM 12c Process Metrics. This data comes from the sampling points defined
in the project. You can configure which processes or activities in your project generate
sampling points in these databases.

By default, Process, Activity, HWF task events, and CASE life cycle events are available for
measurements. You measure any of these points by specifying override behavior a the
Project, Process, and Activity levels. The measurements capture all dimensions, attributes,
and measure for Process and Activity standard sampling. The default project-level setting for
BPM projects is to generate Interactives and for SOA projects is to not generate Interactives.
By default, the project is configured to generate sampling points only for interactive activities.

You can configure the sampling point generation at the following levels:

• Project

• Process

• Activity

You can configure your project to generate sampling points for all the activities in the
processes it contains or only for interactive activities. You can also choose not to generate
sampling points for the processes in this project. BPMN processes use this value when they
are configured to use the project default settings.

You can configure your processes to use a setting for sampling point generation different
from the one defined by the project. Generally you do this to improve the performance of the
project. For example, if your project contains a process that contains multiple activities and
you are not interested in obtaining process metrics for this process, then you might choose to
configure the process to not generate sampling points. Another example is if you are
interested in measuring only one process within your project, then you might choose to
configure the project to not generate sampling points and configure that particular process to
generate sampling points.

By default, the process is configured to use the project sampling point configuration.

You can also configure one or more of the activities in your process to use a sampling point
setting different from the one used in your process. For example, you might choose to
configure all the gateway activities in your process to not generate sampling points because
you consider these metrics do not provide relevant information.

By default activities are configured to use the process sampling point configuration. If in turn,
the process is configured to use the project configuration, then the activities use the
configuration the project specifies.

Chapter 7
Configuring Projects, Processes, and Activities to Generate Sampling Points

7-5

7.3.1 User-Defined Measurements
You can define single, counter mark, and interval measurements.

A single measurement enables you to sample indicators at a specific point in the
process. Single measurements are specified on the transition, capture only the
measures specified in the definition, and capture all dimensions and attributes.

A counter mark measurement enables you to define a counter on an activity. Counter
mark measures sample the counters specified in the definition and capture all
dimensions and attributes.

An interval measurement enables you to define a logical activity with a start and an
end point. Interval measurements capture only the measures specified in the definition
and all dimensions and attributes.

7.3.2 Enable HWF and Case Measurements
To enable measurements for HWF, edit the Process Analytics Summary section of the
BPM Project preferences and set the Project Sampling Points value to Generate for
Interactive(s). For more information on how to configure the sampling point generation
of a project, see How to Configure the Sampling Point Generation of a Project.

To enable case measurements, edit the Process Analytics Summary section of the
BPM Project preferences and set the Project Sampling Points value to Generate for
Case. Not that this option only appears when you define a case for your BPM project.
For more information on how to configure the sampling point generation of a project,
see How to Configure the Sampling Point Generation of a Project.

7.3.3 How to Configure the Sampling Point Generation of a Project
You can configure the sampling point generation at the project level.

To configure the sampling point generation of a project:

1. Right-click the project and select Project Preferences.

2. Click the Process Analytics Summary tab.

3. In the Process Sampling Points section, select an option:

Option Description

Generate for Process(es) Enable process events only.

Generate for Interactive(s) Enable HWF task and assignment events, user task
activity events, and process events.

Generate for case (BPM
projects only)

Enable CASE events, HWF task and assignment events,
user task activity events, and process events.

This option is available only after you define a case for
your BPM project.

Generate for All Enable all events.

Do Not Generate Disable all events.

4. Click OK.

Chapter 7
Configuring Projects, Processes, and Activities to Generate Sampling Points

7-6

7.3.4 What Happens When You Configure a Project To Generate Sampling
Points

All the processes you create within a project use the sampling point configuration defined for
that project, unless you edit the process properties to use a different configuration for that
specific process.

7.3.5 How to Configure the Sampling Point Generation for an Activity
You can configure the sampling point generation at the activity level.

To configure the sampling point generation for an activity:

1. Right-click the activity you want to configure.

2. Select Properties.

3. Click the Basic tab.

4. Expand the Sampling Points section.

5. Select an option. Available options are:

Option Description

Inherit Process Default The BPMN Service Engine uses the process sampling point
configuration to decide if it generates sampling points for this
activity.

Generate Generate sampling points for this activity.

Do Not Generate Do not generate sampling points for this activity.

6. Click OK.

7.3.6 What Happens When You Configure the Sampling Points for an
Activity

The BPMN Service Engine uses the activity sampling point configuration to decide whether to
store the Process Analytics information, regardless of what the project and process sampling
point configurations indicate.

7.4 Adding Business Indicators to Projects
Business indicators are used to capture the key performance indicators for your process.
Business indicators can be bound to project data objects.

You can use the business indicator binding or the project data object node in the structure
pane to bind a business indicator to a project data object. For your convenience business
indicators have their own entry in the structure window.

Key performance indicators represent relevant information in your process that can help you
determine if your process is running as expected.

The following are examples of common business indicators:

Chapter 7
Adding Business Indicators to Projects

7-7

• Order Amount

• Product Stock

• Elapsed Time

• Shipping Status

You can use business indicators to store the value of an indicator you want to measure
in your process, or to store a category you want to use to group the values you
measured in your process.

According to the type of information you want to store, you can define your business
indicator as a:

• Measure

• Dimension

• Counter

• Attribute

Note:

Use dimension business indicators for indicators with low cardinality. For
example, customer type or order status. For business indicators with high
cardinality such as identifications keys, whose value is unique for each
instance, use Attribute business indicators.

The type of business indicator determines the available data types you can use.
Table 7-1 shows the available data types for each business indicator type.

Table 7-1 Available Data Types for Business Indicator Types

Business Indicator Type Allowed Data Types

Dimension • string
• boolean
• time
• int (with ranges)
• double (with ranges)
• decimal (with ranges)

Measure • int
• double
• decimal

Counter • int

Attribute • string
• boolean
• time
• int
• double
• decimal

Chapter 7
Adding Business Indicators to Projects

7-8

Measures

Measures store the value of a key performance indicator that you can measure. Measures
only allow data types that are continuous. You must use them with measurement marks. The
deal amount and the discount percentage are examples of measures in the Sales Quote
process.

Dimensions

Dimension store the value of a key performance indicator that you can use to group the
values of the measure business indicators in your process. If you use a continuous data
value to define a dimension, then you must add it at least one range. The Process Analytics
database only stores the range value if the data value is a continuous one. The deal range
and the industry type are examples of dimensions in the Sales Quote process.

Counters

Counters keep track of the number of times an instance completes a certain activity. You
must use them with counter marks. The counter business indicator does not store the actual
value, its value is always 1. The value that specifies the number of times an instance
completes an activity is updated directly in the Process Analytics databases. To monitor the
value of a counter business indicator, you must create a dashboard based on a counter mark
that is configured to track this counter business indicator. For more information on how to
configure counters, see Adding Counters to the Activities in a Process.

Attributes

Attribute business indicators enable you to capture high cardinality values that do not classify
as dimension or measures, but enable you to filter information or to make reference to other
information. Generally you use Attribute business indicators to store the value of identification
keys such as the order ID or the service request ID.

7.4.1 How to Add a Business Indicator to a Project
The process of adding a business indicator to a project involves the following steps:

1. Create the Business Indicator

2. Bind Business Indicators to a Project Data Object

3. Create Data Associations for a Project Data Object.

7.4.1.1 Create the Business Indicator
Business indicators enable you to define the key performance indicators to measure in your
project. You can use any of the following ways to add a business indicator to a project.

• Use the Business Indicator Editor

• Use the Project Structure pane

• Use a User-Defined Measurement Marks User Interface

Use the Business Indicator Editor

1. In the Application Navigator pane, double click Business Indicators.

Chapter 7
Adding Business Indicators to Projects

7-9

The Business Indicator screen displays with a list of the different types of business
indicators. Available options are: Counters, Measures, Attributes, Dimension.

2. In the Business Indicator screen, click the Add (+) button for the type of business
indicator that you want to add.

The Create dialog box appears.

3. Enter a name to identify the business indicator.

The maximum length for the name is 28 characters.

4. From the Type list, select a data type.

Note:

The available data types vary according to the type of business indicator
you selected. Table 7-1 shows the available data types for each business
indicator type.

5. If you selected a continuous data type and selected Dimension as its business
indicator type, then add at least one range.

6. Click OK.

The Create Business Indicator dialog box closes and saves the business indicator
you created.

Use the Project Structure pane

1. In the Structure window, expand the business indicator bindings node and right-
click the business indicator type.

Available options are: Counters, Measures, Attributes, Dimension.

The Bind business Indicator dialog box displays.

2. In the Bind Business Indicator dialog box, click the Add (+) button.

The Create Business Indicator dialog box displays.

3. In the Create Business Indicator dialog box, enter a name to identify the business
indicator.

The maximum length for the name is 28 characters.

4. From the Type list, select a data type.

Note:

The available data types vary according to the type of business indicator
you selected. Table 7-1 shows the available data types for each business
indicator type.

5. If you selected a continuous data type and selected Dimension as its business
indicator type, then add at least one range.

6. Click OK.

Chapter 7
Adding Business Indicators to Projects

7-10

The Create Business Indicator dialog box closes and saves the business indicator you
created.

Use a User-Defined Measurement Marks User Interface

Be aware that only measure type business indicators can be created from the user-defined
Measurement Mark Properties user interface.

1. In the user-defined Measurement Mark user interface, select and right click a user-
defined measurement and click Properties.

The Measure Mark Properties dialog box displays.

2. In the Measurement Mark Properties dialog box, select a Measurement Type and provide
a Name.

3. Click the Add (+) button.

The Bind Measure dialog box displays.

4. In the Bind Measure dialog, click the Add (+) button.

The Create Measure dialog box displays.

5. In the Create dialog box, enter a name to identify the business indicator.

The maximum length for the name is 28 characters.

6. From the Type list, select a data type.

Note:

The available data types vary according to the type of business indicator you
selected. Table 7-1 shows the available data types for each business indicator
type.

7. If you selected a continuous data type and selected Dimension as its business indicator
type, then add at least one range.

8. Optionally, check Auto Initialize to initialize the business indicator with a default value.

For more information about default values, see Default Values.

9. Click OK.

The Create Business Indicator dialog box closes and saves the business indicator you
created.

7.4.1.2 Bind Business Indicators to a Project Data Object
Once you create a business indicator, you must bind (map) the business indicator to a project
data object. At run time, BPM determines the value of a business indicator from its
associated data object. Use the Project Structure pane in either of the following nodes to bind
a business indicator to a project data object.

• Business Indicator Bindings Node

• Project Data Objects Node

Chapter 7
Adding Business Indicators to Projects

7-11

Business Indicator Bindings Node

1. In the Business Indicator Bindings node, right click the business indicator type and
click New.

The Bind Business Indicator dialog box displays.

2. In the Bind Business Indicator dialog box, select or create a business indicator and
bind it to a new project data object.

You can also change the name of new project data object to any other unique new
name, if needed.

3. Optional. Check Auto Initialize to initialize the business indicator with a default
value.

See Default Values for more information about default values.

4. Click OK.

The business indicator binding and a new project data object are added.

Project Data Objects Node

1. In the Project Data Objects node, right click the data object, select Bind to
Business Indicator, and select a business indicator.

The Bind Business Indicator dialog box displays.

2. In the Bind Business Indicator dialog box, select or create a business indicator.

3. Optional. Check Auto Initialize to initialize the business indicator with a default
value.

See Default Values for more information about default values.

4. Click Ok.

The business indicator binding is added.

7.4.1.3 Create Data Associations for a Project Data Object.
The next step is to define data associations of the project data object. The business
indicators bound to the project data object get their run time values from the project
data objects.

You perform BPM process data association on the Activity. To launch the Data
Associations user interface, do the following:

1. Right-click an activity.

2. Select Properties.

3. Select the Implementation tab.

4. Click Data Associations.

7.4.2 What Happens When You Add a Business Indicator to a Process
You can use the business indicators that you added to your project to store data about
the processes you want to monitor.

Chapter 7
Adding Business Indicators to Projects

7-12

Some business indicators require you to add different artifacts to your process to indicate the
BPMN Service Engine must store their values in the Process Analytics databases.

• Dimensions

The BPMN Service Engine automatically stores the dimension business indicators data
at pre-defined and custom sampling points defined for your process to process analytics
databases. The dimension business objects are written to the BAM Process Star schema
data objects.

• Measures

Pre-defined measures are always measured in every flow element that is configured to
produce sampling points.

You can add a measurement mark to specify the point, or process sections where you
want the BPMN Service Engine to measure and store a custom business indicator of type
measurement. For information on how to add a measurement mark, see Adding
Measurement Marks to Processes.

• Counters

You must add a counter mark to those activities where you want the BPMN Service
Engine to store the value of the counter business indicator. For information on how to add
a counter mark, see Adding Counters to the Activities in a Process.

• Attributes

The BPMN Service Engine automatically stores the data in the attribute business
indicators using the pre-defined and custom sampling points defined for your process.

7.5 Adding Measurement Marks to Processes
Measurement marks enable you to measure a business indicator of type measure at a certain
point in the process or in a section of the process.

You can use one measurement mark to measure multiple business indicators.

Measurement marks store the following data into the Process Analytics databases:

• The value of the process default measures

• The value of the measure business indicators associated to that measurement mark

• The value of the dimensions defined in the process

When storing the value of a measure business indicator, the BPMN Service Engine also
stores the value of the dimensions you defined in your process. Later on, when you build the
dashboards to monitor your process, you can use these dimensions to group the values into
different categories. For example, in the Sales Quote process you might want to view the total
amount of quotes approved by region.

The types of measurement marks you can define are:

• Single Measurement

• Interval Start

• Interval Stop

Measurement marks are associated to a flow element. Measurement marks of type interval
start track the value of business indicators before running the flow elements that proceeds
them. Counter marks, measurement marks of type interval stop and single measurement

Chapter 7
Adding Measurement Marks to Processes

7-13

marks track the value of business indicators after running the flow element that
precedes them.

Single Measurements

If you defined measure business indicators in your process, then you must add single
measurement marks in those points in the process where you want to measure those
business indicators. Single measurement marks indicate the BPMN Service Engine
that at that point in the process it has to store the value of the measure business
indicators associated to that measurement mark. The BPMN Service Engine also
stores the values of the default process measures and the dimension business
indicators at this point in the process.

Figure 7-2 Single Measurement Mark

Interval Start and Interval Stop

If you want to measure a business indicator in a section of your process, then you
must use an interval start measurement mark to indicate the start of the section and an
interval stop measurement mark to indicate the end of the section. These
measurement marks enable you to measure the default business indicators or
business indicators you defined in a a section of the process. Generally you use these
measurement marks to monitor critical sections of your process. For example, you
might want to monitor the amount of instances in a part of the process you identified
as a bottle-neck.

Chapter 7
Adding Measurement Marks to Processes

7-14

Figure 7-3 Interval Start and Interval Stop Measurement Marks

7.5.1 How to Add Single Measurement Marks to a Process
You can use single measurement marks to measure business indicators in a specific point in
your process.

To add a single measurement mark to a process:

1. Open the BPMN process.

2. In the Component Palette, expand the Artifacts section and select Measurement.

3. Place the measurement mark near the sequence flow where you want to measure a
business indicator. When the sequence flow turns blue, drop the measurement mark.

4. Right-click the measurement mark and select Properties.

5. Select Single Measurement.

6. In the Name text-field, enter a name to identify the measurement mark.

7. In the Business Indicators section, select a business indicator from the Available list and
move it to the Selected list using the arrows between the two lists.

Figure 7-4 show the Measurement Mark Properties dialog box.

Note:

You can measure multiple business indicators in the same measurement mark.

Note:

If you do not select a business indicator, then Oracle BPM Studio displays a
warning message. If you want to add a business indicator without leaving the
Measurement Mark Properties dialog box, then you can click the New button
under the Selected list.

8. Click OK.

Chapter 7
Adding Measurement Marks to Processes

7-15

Figure 7-4 Measurement Mark Properties Dialog

7.5.2 What Happens When You Add a Single Measurement to a
Process

When the BPMN Service Engine runs a single measurement mark, it stores the
current value of the following business indicators in the Process Analytics databases:

• Business indicators associated to the measurement mark

• Default measurements

• Dimensions defined for the process

• Attributes defined for the process

Note:

Information about active and completed activity, measurement intervals,
marks, and counter instances are stored in the Activity data object.

Chapter 7
Adding Measurement Marks to Processes

7-16

7.5.3 How to Measure a Business Indicator in a Process Section Using
Measurement Marks

You can use measurement marks to define a section in your process in which to measure
certain business indicators.

Note:

You must only define one interval stop measurement mark for each interval start
measurement mark. Defining multiple interval stop measurement marks is not
supported and may cause unexpected behavior.

To measure a business indicator in a process section:

1. Open the BPMN process.

2. In the Component Palette, expand the Artifacts section and select Measurement.

3. Place the measurement mark near the sequence flow where the section of the process
begins. When the sequence flow turns blue, drop the measurement mark.

4. Right-click the measurement mark and select Properties.

5. Select Interval Start.

6. In the Name text-field, enter a name to identify the measurement mark.

7. In the Business Indicators section, select a business indicator from the Available list and
move it to the Selected list using the arrows between the two lists.

Note:

You can measure multiple business indicators in the same measurement mark.

Note:

If you do not select a business indicator, then Oracle BPM Studio displays a
warning message. If you want to add a business indicator without leaving the
Measurement Mark Properties dialog box, then you can click the New button
under the Selected list.

8. Click OK.

9. In the Component Palette, expand the Artifacts section and select Measurement.

10. Place the measurement mark near the sequence flow where the section of the process
ends. When the sequence flow turns blue, drop the measurement mark.

11. Right-click the measurement mark and select Properties.

12. Select Interval Stop.

Chapter 7
Adding Measurement Marks to Processes

7-17

The Start Measurements list replaces the Name text-field.

13. From the Start Measurements list choose the measurement mark that indicates
where the process section begins.

14. Click OK.

7.5.4 What Happens When You Use Measurement Marks to Measure
Business Indicator Values for a Section of a Process

The BPMN Service Engine stores the values of the measure business indicators
associated with the pair of measurement marks to the Process Analytics databases. It
also stores the values for the Dimensions, Attributes, and Default Measures for that
process section. The default measures that contain average values provide
information about the average value for that section of the process.

7.6 Adding Counters to the Activities in a Process
Counter marks enable you to update the value of the counter business indicators
defined for your process.

A counter mark may update multiple counter mark business indicators.

When a token arrives at an activity that has a counter mark defined, the BPM Service
Engine publishes an event containing the value of its associated counters to Process
Analytics databases.

Note:

The actual value of the counter variable is stored in the Process Analytics
databases. You must not use the counter variable in your process to perform
any calculations because its default value never changes. The value of the
counter variable is always equal to 1.

Generally you use counter marks for the following:

• Auditing: The number of activities the instance completed combined with other
performance measurements are important information for auditing the process.

• Identifying performance issues: You can use a counter to identify performance
issues within your process. Your process might be taking longer than expected
because the instances are following a different path than expected or because the
loop in an activity is running more times than it should. You can identify these
situations by comparing the actual number of completed activities to the number
you expected.

• Identifying the process path the instance followed: You can mark different
paths using different counter business indicators. When the instance reaches the
end of the process, the path the instance followed has the greatest number of
completed activities.

Typically you define one counter business indicator for each of the process paths you
want to monitor. Then you add counter marks in all the activities that are part of that

Chapter 7
Adding Counters to the Activities in a Process

7-18

process path. Finally you associate the counter business indicators that correspond to the
paths that activity is part of, to the counter mark.

7.6.1 How to Add a Counter Mark to an Activity in a Process
You can add a counter mark to an activity to track the number of times the instance runs this
activity.

To add a counter to an activity in your process:

1. Add a business indicator of type counter to your process.

For more information on how to add a business indicator, see Adding Business Indicators
to Projects.

2. Open the BPMN process.

3. Right-click the activity to which you want to add the counter and click Add counter mark.

4. In the Available list, select the counter business indicator that you want to record as part
of the counter mark.

You can add multiple counter business indicators to the same counter mark.

5. Click OK.

7.6.2 What Happens When You Add a Counter Mark to an Activity in a
Process

When the BPMN Service Engine runs an activity with a counter mark, it publishes an event
that contains the value of its associated counters to the Process Analytics databases.

7.6.3 How to Delete a Counter Mark
You can delete a counter mark that you do not use or need.

To delete a counter mark:

1. Open the BPMN process that contains the counter mark.

2. Right-click the activity that contains the counter mark.

3. Select Delete Counter Mark.

7.6.4 What Happens When You Delete a Counter Mark
After you remove the counter mark, when you right-click the activity it does not show the
option Delete Counter anymore. Instead, it shows the option New Counter Mark.

Because you removed the counter mark, when an instance passes through that activity the
BPMN Service Engine does not publish event with counter business indicator values to the
Process Analytics databases.

7.7 Defining Analytics View Identifier
Analytics view identifier identifies the process analytics view that provides data across all the
existing versions of a composite.

Chapter 7
Defining Analytics View Identifier

7-19

This identifier must be unique across all deployed processes. If you use the same
identifier for more than one process, then the process deployment fails.You create an
Analytics View identifier so that you can query the view with Oracle SQL.

The purpose of creating an Analytics View identifier is so you can have Oracle SQL
access to Process Metrics by querying that view. See Process Star Schema Views for
format information.

7.7.1 How to Define the Analytics View Identifier
You can define an analytics view identifier to use across all the existing versions of a
process.

To define the analytics view identifier:

1. In Application Navigator, right-click the Project.

2. Select BPM > Preferences.

3. Enter a view identifier in the Analytics View Identifier field.

7.8 Configuring BAM 12c Process Metrics Generation in a
Project

Oracle Business Activity Monitoring (BAM) 12c provides a set of predefined Process
star schema and dashboards that you can use to monitor the activity of your
processes.

At the composite level, the BPM composite publishes to BAM 12c by default. At the
system (global) level, population to BAM 12c is disabled by default, and this default
setting overrides the composite-level setting. To enable the BAM 12c process star
schema data population at the system level, set the DisableProcessMetrics
parameter of the AnalyticsConfig Mbean to false.

You can view the data stored in BAM 12c Process star schema data objects with the
out-of-the-box BAM 12c Process analytics dashboards.

7.8.1 BAM 12c Process Metrics
BAM 12c Process Metrics enable process analysts to analyze the process metrics
from different perspectives. The perspectives are defined when defining the process.
Measures are numeric facts that you can categorize by dimensions. For example, in
the Sales Quote example process, you must define a dimension for the product and a
measure for the deal amount to analyze the deal amount by product.

BAM 12c Process Metrics support the following dimensions:

• Activity

• Process

• Participant

They also support the following measures:

• Completion time for a specific process

• Completion time for a specific activity

Chapter 7
Configuring BAM 12c Process Metrics Generation in a Project

7-20

• Number of tasks by participant

BAM 12c Process Metrics store the data related to activities in the ACTIVITY data object. It
stores the data related to processes in the PROCESS data object. It also stores the data related
to processes in the Process performance (BPM_CUBE_PROCESSPERFORMANCE) and
Workload(BPM_CUBE_WORKLOAD) tables. It stores the data related to participants in HWF
ASSIGNMENT data object

PROCESS and ACTIVITY data objects contain data about both completed and inflight process
and activities respectively. The Task and Process performance tables contain data about
completed activities and processes respectively. Similarly, TASK and ASSIGNMENT data object
contains data about both completed and in-progress task assignments to participants.

Data for activity and process data objects is computed and persisted when an activity or
process is started or completed.

All the dimensions and measures are stored for the enabled out of the box sampling points.
Selected dimensions, measures and counters are stored for user-defined sampling points.

7.8.2 How to Configure BAM 12c Process Metrics Generation in a Project
If you use BAM 12c Process Metrics to monitor the performance of your project, then you
must enable the generation of the process metrics at development time. When you deploy
your application, BPM 12c uses this configuration to enable BAM 12c Process Metrics.

To enable BAM 12c Process Metrics in a Project:

1. In the Application Navigator, right click the project.

2. Select BPM > Project Preferences.

3. In the Category tree, select Process Analytics Summary.

4. In the Process Analytics Summary section, click the Data Targets tab.

5. Select Enable BAM 12c to enable BAM 12c Process Metrics generation, or deselect it
otherwise.

6. Click OK.

7.8.3 What Happens When You Enable BAM 12c Process Metrics in a
Project

The BPMN Service Engine publishes analytics information to the pre-defined BAM 12c
process petrics each time it runs an activity or completes a process using the sampling point
configuration you have defined. If you configure a process not to generate sampling points,
then the BPMN Service Engine does not publish this information.

Note:

In order to work together, Oracle BAM and Oracle BPM must reside in the same
WebLogic domain.

Chapter 7
Configuring BAM 12c Process Metrics Generation in a Project

7-21

When a BPM project that is configured with measurement sampling points and
business indicators is deployed, the following actions are performed in the BAM 12c
process star schema:

1. Composite-specific fact data objects are created or updated with columns for each
business indicator defined in the deployed composite. Additionally, if an analytics
view identifier has been specified for the composite, the database view synonyms
are generated for composite-specific physical data objects. See Process Star
Schema Views for information about the names of composite-specific physical
data objects and the database views that are created.

2. Standard Dimensions data objects, such as COMPOSITE_DEFINITION,
ACTIVITY_DEFINITION, PROCESS_DEFINITION, TASK_DEFINITION, and
ROLE_DEFINITION are populated with the appropriate metadata information from
the composite.

7.9 Enabling Oracle BAM 11g in a Project
You can use Oracle BAM 11g to monitor the activity of the process in your project,
leveraging the capabilities of Oracle BAM 11g while using Oracle BPM. You can use
Oracle BAM 11g with predefined Oracle BAM 12c Process metrics, or you can choose
to disable the latter.

7.9.1 How to Enable Oracle BAM 11g in a Project
Before enabling Oracle BAM 11g in your project, you must configure Oracle BAM 11g
correctly. See chapter “Configuring Oracle BPMN Process Service Components and
Engines" in Administering Oracle SOA Suite and Oracle Business Process
Management Suite, for information on how to configure Oracle BAM 11g to work with
Oracle BPM.

When you deploy a BPM project, Oracle BAM 11g automatically creates the custom
and predefined BAM data objects for that BPM project.

To enable Oracle BAM 11g in a project:

1. In the Application Navigator, right-click the project.

2. Select BPM > Project Preferences.

3. In the Category tree, select Process Analytics Summary.

4. In the Process Analytics Summary section, click the Data Targets tab.

5. Select Enable BAM 11g.

6. From the JNDI Name BAM Adapter list, select the name for the BAM adapter.

The BAM Adapter is labeled as eis/bam/soap. The JNDI name specifies the
connection pool the BAM Adapter uses.

7. If you want the BAM adapter to process the requests in batch, then you must
select In Batch.

8. In the Data Objects Path text-field, enter the path to the pre-installed BAM data
objects.

The default path is /Samples/Monitor Express.

9. Click OK.

Chapter 7
Enabling Oracle BAM 11g in a Project

7-22

7.9.2 What Happens When You Enable Oracle BAM 11g
When you run a process that has Oracle BAM 11g enabled, the BPMN Service Engine
populates Oracle BAM 11g Monitor Express data objects with information about the business
indicators measured in that process. The BPMN Service Engine generates this information
based on the Sampling Points preference you defined in your project.

If you enable the data target for BAM 11g, then the BAM 11g data objects are automatically
created when you deploy the process. To use Monitor Express dashboards you must import
the automatically created data objects.

When you deploy the first process a custom business identifier and all the common data
objects are created in the recommended/Samples/Monitor Express folder. In the next
deployments the common data objects are shared by all process and only a new custom
business identifier is created.

Chapter 7
Enabling Oracle BAM 11g in a Project

7-23

Part IV
Working with Business Components

Get an overview of business catalog and also detailed information on each of the
components that you can store in the business catalog.

• Using the Business Catalog

• Sharing BPM Projects Using the Process Asset Manager

• Modeling Business Objects

• Working with Human Tasks

• Working with Services and References

• Using Business Rules

• Sending Notifications

• Using SOA Composites with BPM Projects

8
Using the Business Catalog

Learn how the artifacts in your BPM project are represented in the business catalog and use
the business catalog to store and organize the components needed to implement the
processes in your BPM Project.

• Introduction to the Business Catalog

• Adding a New Module

• Deleting a Module

• Customizing Synthesized Types

• Creating an Enumeration

8.1 Introduction to the Business Catalog
The business catalog is a directory within a BPM project that stores the components you use
to implement some flow objects in BPMN processes. You can share and reuse the assets in
the business catalog across the processes in a BPM project.

The business catalog stores the following types of components:

• Errors

• Events

• Human Tasks

• Business Rules

• Service Adapters

• Synthesized Types

• BPEL Processes and Mediators

• Business Objects

• Business Exceptions

• Enumerations

Depending on the component you can use them for the implementation of a specific activity
or multiple flow objects or to define the data associations of a flow object.

Table 8-1 shows which flow objects use each of the components in the business catalog for
their implementation.

8-1

Table 8-1 Flow Object Implementation

Component Flow Objects

Error • Start error event
• Throw error event
• Catch error event
• End error event

Business exception • Start error event
• Throw error event
• Catch error event
• End Error Event

Event • Start signal event
• Throw signal event
• End signal event

Human Task User task

Business Rule Business rule task

Service Adapter • Service task
• Message throw event
• Message catch event
• Message end event
• Send and receive tasks

Mediator • Service task
• Message throw event
• Message catch event
• Message end event
• Send and receive tasks

BPEL Process • Service task
• Message throw event
• Message catch event
• Message end event
• Send and receive tasks

Business Object You can use them as arguments in the data associations of the
following:

• Service task
• User task
• Business rule task
• Message throw event
• Message catch event
• Message end event
• Send and receive tasks

Enumerations You can use the attribute of an enumeration as arguments in the
data associations of the following:

• Service task
• User task
• Business rule task
• Message throw event
• Message catch event
• Message end event
• Send and receive tasks

Chapter 8
Introduction to the Business Catalog

8-2

Depending on the type of component, the business catalog uses two different ways of storing
them. You can divide the components by the way the business catalog stores them into the
following categories:

• Non-Synthesized Components

• Synthesized Components

8.1.1 Non-Synthesized Components
The business catalog stores a file with information about these components. When you open
a BPM project, the business catalog reads the file it created to load the component.

The following components are not synthesized:

• Business objects

• Exceptions

• Modules

• Customized services and references

• Enumerations

8.1.2 Synthesized Components
The business catalog generates the component structure dynamically based on an SOA
component included in the SOA composite or an XML type or element. You cannot modify
these components. Depending on the type of component they appear on a different
predefined module. You cannot move the component to another module. To modify or store
the component in another module, you must customize the service or the type.

The business catalog does not store any type of file for synthesized components. It generates
the structure of synthesized components dynamically based on the XML or SOA component
they represent.

You cannot modify synthesized components or move them to another module. Because these
components are dynamically generated, they automatically reflect any change you make to
the XML schema or SOA component they are based on.

The following components are synthesized:

• Synthesized Types

• Business Rules

• Human Tasks

• BPEL Processes

• Mediators

8.1.3 Adding Components to the Business Catalog
The way you add a component to the business catalog varies according to the type of
component.

• Errors: When you add a service or a reference to your BPMN Project, if the operations
they contain can generate errors, then these errors appear in the Errors predefined
module.

Chapter 8
Introduction to the Business Catalog

8-3

• Events: When you add events to the SOA Composite, they appear in the Events
predefined module. See Introduction to Communication Between Processes Using
Signal Events, for more information on how to use events in a BPM project.

• Human Tasks: The existing Human Tasks included in the SOA Composite and the
new ones you add automatically appear as components in the HumanTask
predefined module. This component is generated from the Human Task you
added. See Working with Human Tasks for more information.

• Business Rules: The existing Business Rules included in the SOA Composite
and the new ones you add automatically appear as components in the
BusinessRules predefined module. This component is generated from the
Business Rule you added. See Using Business Rules for more information.

• Service Adapters: The existing Service Adapters in the SOA Composite and the
new ones you add, appear in the Services and References predefined modules.
See Working with Services and References for more information.

• BPEL Processes and Mediators: The BPEL Processes and Mediators included
in the SOA Composite and the new ones you add, automatically appear as
components in the Services and References predefined modules. See Introduction
to Oracle Mediator in Oracle BPM and Introduction to BPEL Processes in Oracle
BPM for more information.

• Synthesized Types: When you add a service or a reference that requires one or
more arguments, if the data type of those arguments does not exist in the Types
predefined module, then Studio automatically adds them. See Introduction to
Services and References for more information. You can customize a synthesized
type to change its name and move it to a user-defined module. See Customizing
Synthesized Types for more information on how to customize a synthesized type.

• Business Objects: There are different ways of adding Business Objects to the
business catalog. See Modeling Business Objects for more information.

• Enumerations: You can add enumerations in any custom module in the Business
Catalog. See Creating an Enumeration for more information on how to create
enumerations.

Note:

If you add a component that references resources that are missing or
corrupted, the business catalog shows this missing dependencies with an
error node. The label of the node displays the path of the resource. For more
information on the missing resource place the mouse over the node to
display the tooltip, or build the BPM project. Building the BPM project
enables you to find the component that requires the missing resources.

8.1.4 Using Modules to Organize Business Components
You can organize the Business Objects in the business catalog into different groups
using modules. Generally you group all the related components into a module.

In the Sales Quote example you can create a module named Quotes to store all the
components used to manage the information about the quotes used in the process.

Chapter 8
Introduction to the Business Catalog

8-4

You can nest modules. Nesting modules enables you to create a hierarchical structure that
reflects the organization of your components.

In the Sales Quote example you might want to group all the modules that handle the
information in the project into a single module. To do this you can create a module named
Data that contains modules like Quotes and Contracts.

Organizing components using modules has the following benefits:

• It improves the readability of your project. Ideally the name of the module provides
information about the components it contains.

• It makes it easier to locate a specific component.

• If needed, you can use the same name to identify different components that belong to
different modules.

You cannot add Business Objects in the root level of the business catalog. You must always
create a module where you can store your Business Objects.

It is a good practice to name the modules using a descriptive identifier. This makes it easier
to find a component and makes your project easier to understand for other developers.

8.1.4.1 Predefined Modules
The business catalog contains the following predefined modules:

• Errors: Stores the errors that the operations in the services and references in your
project define.

• Events: Stores the Events that you add to the SOA Composite.

• HumanTasks: Stores the Human Tasks that you add to your project.

• References: Stores the interfaces you can use to define the interface of your BPMN
process.

• Rules: Stores the Business Rules that you add to your project.

• Services: Stores the components that you can use to implement the flow object in your
BPMN process.

• Types: Stores the types that Studio generates when you add a service or a reference
that require arguments of types that do not exist in the business catalog.

These modules are a permanent part of the business catalog and you cannot remove or
rename them. Studio does not allow you to create new top level modules with these names.

You cannot create new modules within these predefined modules. Because the components
stored in them are synthesized, you cannot rename them or move them to other modules.

Chapter 8
Introduction to the Business Catalog

8-5

Figure 8-1 Custom and Predefined Modules

8.2 Adding a New Module
The business catalog enables you to create new modules to store and organize the
Business Objects in your project.

You can add a module at the root level of the business catalog or within another
module.

8.2.1 How to Add a New Module
You can create a new module to store the new components you create and the
customized services and references.

To add a new module:

1. In the Applications window, right-click the Components node or a user-defined
existing module.

2. Select New.

3. Select Module.

4. Enter a name to identify the module.

5. Click OK.

The new module appears in the business catalog. You can create new business
objects, business exceptions and modules within the new module. You can also
customize services and references.

8.3 Deleting a Module
You can delete the custom modules in the business catalog. You cannot delete the
predefined modules.

When you delete a module, you also delete all the components within the module.

8.3.1 How to Delete a Module
You can delete those modules that you do not use or need.

Chapter 8
Adding a New Module

8-6

To delete a module:

1. In the Applications window, right-click the module you want to remove.

2. Select Delete.

A confirmation message appears.

3. Click OK.

When you delete a module, the module and the components within the module are removed
from the business catalog. If there are any flow objects or components in your project that
use any of the deleted components, then this causes errors when you build your BPM
project.

8.4 Customizing Synthesized Types
You can customize a synthesized type to change its name for a more descriptive name that
helps process analysts and process developers understand the use of the component.

When you customize a type you must also provide a user-defined module in which to store
the customized type.

8.4.1 How to Customize a Synthesized Type
You can customize a synthesized type to change its name and move it to a user defined
module.

To customize a synthesized type:

1. In the Applications window, expand the Types predefined module.

2. Right-click the type you want to customize.

3. Select Customize Type.

The Create Business Object dialog box appears.

4. In the Name field, enter a name for the customized type.

5. In the Destination Module field, enter the name of the module in where you want to store
the customized type, or click the browse button to browse the available modules and
select one.

6. Click OK.

The synthesized type in the Types predefined module disappears and a new business object
appears in the module you selected for the customized type. Oracle BPM Studio
automatically replaces all the references to the synthesized type with references to the
customized type. If you delete the customized type, then the synthesized type appears back
in the Types predefined module.

8.5 Creating an Enumeration
You can use enumerations to model a collection of values of the same type. Enumerations
enable you to check and restrict the values of a certain argument in compile time, avoiding
bugs and errors in runtime.

Chapter 8
Customizing Synthesized Types

8-7

When you type the name of the enumeration the Simple Expression Editor
autocomplete shows you the list of available attributes and their value. From this list
you can select the attribute you want to use.

8.5.1 How to Create an Enumeration
You can create an enumeration to model a collection of values.

To create an enumeration:

1. In the Project Navigator Tree, right click the Business Catalog node.

2. Select New.

3. Select Enumeration.

The Create Enumeration dialog box appears.

4. Enter a name to identify the enumeration.

5. Click the Search button next to the Destination Module field to select the module
where to store the enumeration.

To create a new module you can type the name in the Destination Module field or
create it from the Search dialog box.

6. From the Type list, select the type of the enumeration.

Available types are:

• string

• int

• Double

• Decimal

• Boolean

You can only add one enumeration of each type.

7. Click OK.

The enumeration editor appears.

8. Add attributes to the enumeration.

For more information, see How to Add Attributes to an Enumeration.

8.5.2 How to Add Attributes to an Enumeration
After you create the enumeration you must add the attributes that make part of the
collection you are modeling, and assign them values.

To add an attribute to an Enumeration:

1. Edit the enumeration.

2. Expand the Items module in the Enumeration editor.

3. Click the Add button.

The Create Item dialog box appears.

4. Enter a name to identify the attribute.

Chapter 8
Creating an Enumeration

8-8

The name is unique for each attribute and must not be a Java reserved words, start with
a number, contains spaces or special characters.

5. Enter a value for the attribute.

6. Click OK.

The new attribute appears in the Enumeration Editor.

7. Optionally, click the Edit button next to the Documentation label to add documentation
that describes the attribute.

8.5.3 Using an Enumeration in a Simple Expression
The following sample code shows you how to use an enumeration in a simple expression.
The enumeration in the example is a collection of colors. The code in the example is
accessing the value of the red attribute, a string that represents the color value in the
hexadecimal RGB format:

Example 8-1 Enumeration Use in a Simple Expression

Module.Color.red

Chapter 8
Creating an Enumeration

8-9

9
Sharing BPM Projects Using the Process
Asset Manager

Store business assets in a process asset manager. The process asset manager runs in an
application server that you configure.

• Introduction to the Process Asset Manager

• Working with BPM Projects Stored in the Process Asset Manager

• Working with the Process Asset Manager

9.1 Introduction to the Process Asset Manager
The process asset manager provides a uniform way to manage the different business assets
that are part of a BPM project and Oracle Business Process Architect projects.

You can use the Process Asset Manager to share BPM projects between the different
persons working on the project. Process developers working with Oracle BPM Studio can
share their BPM projects with other process developers, or with process analysts using
Oracle Business Process Composer. For more information about the development life cycle,
see Overview of the Application Development Life Cycle.

After you checkout a project from the process asset manager, the JDeveloper SVN features
are enabled. You can choose between using the process asset manager versioning
functionality of the SVN. For example, you can publish a project using the process asset
manager save action, or the SVN commit action. A project that you checked out from the
process asset manager is an SVN project for JDeveloper.

The process asset manager supports the following:

• Collaboration

It enables multiple users to work on the same project simultaneously.

• Security and Access Control

It provides fine grained security and access control of the business assets. The
application accessing the catalog determines the correct access rights granted to the
principal of the application.

• Versioning

It stores multiple versions of the same business asset.

• Conflict Resolution, Diff and Merge

When a business asset is modified simultaneously by different users, the process asset
manager enables you view the differences between the different versions, resolve the
conflicts between them and merge the changes.

• Life Cycle

9-1

It supports a flexible life cycle model that enables a business asset to mature from
initial brainstorming to development and testing, to integration test and finally
deployment in production.

• Reporting

It provides a detailed reporting of the business assets in the catalog and their
history.

• Backup and Recovery

In the event of hardware failure, software bugs, and human error, you can revert
the changes to a stable version of the project.

9.2 Working with BPM Projects Stored in the Process Asset
Manager

Set up an environment, and add and export BPM projects with Process Asset
Manager.

• Setting up an environment to work with the Process Asset Manager

See How to Set Up an Environment to Work with Projects Stored in the Process
Asset Manager.

• Working with BPM projects stored in the Process Asset Manager

See How to Modify a BPM Project Stored in the Process Asset Manager.

• Adding a BPM project to the Process Asset Manager

How to add a BPM Project to the Process Asset Manager

• Exporting a BPM project from the Process Asset Manager to a zip file

How to Export a BPM Project Stored in the Business Process Manager

9.2.1 How to Set Up an Environment to Work with Projects Stored in
the Process Asset Manager

Before you start working with a BPM project stored in the Process Asset Manager, you
must set up your environment by configuring a connection and checking out the BPM
project.

To set up your environment:

1. Create a Process Asset Manager connection.

See How to Create a Process Asset Manager Connection.

2. Checkout the BPM project from the Process Asset Manager.

See How to Check Out a BPM Project from the Process Asset Manager

3. Modify the BPM project.

4. Save the changes to the Process Asset Manager.

See How to Save a BPM Project to the Process Asset Manager.

Chapter 9
Working with BPM Projects Stored in the Process Asset Manager

9-2

9.2.2 How to Modify a BPM Project Stored in the Process Asset Manager
You can modify a BPM project that you checked out from the Process Asset Manager and
then save the changes to the Process Asset Manager, to share them with other developers.

To modify a BPM project stored in the Process Asset Manager:

1. Update your local copy with the changes from the Process Asset Manager.

See How to Update Local BPM Projects

2. Modify the BPM project.

3. Save the changes to the Process Asset Manager.

See How to Save a BPM Project to the Process Asset Manager.

9.2.3 How to add a BPM Project to the Process Asset Manager
You can add a BPM project that you created and stored locally, to the Process Asset
Manager.

To add a BPM project to the Process Asset Manager

1. If you do not have a Process Asset Manager connection, create one.

See How to Create a Process Asset Manager Connection.

2. Save the BPM project to the Process Asset Manager.

See How to Save a BPM Project to the Process Asset Manager

9.2.4 How to Export a BPM Project Stored in the Business Process
Manager

You can export a BPM project in the process asset manager to a zip file that you can store
locally.

To export a BPM project:

1. Open the Process Asset Manager Navigator.

2. Right-click the BPM project that you want to export.

3. Select Export.

The Export Project from PAM wizard appears.

4. Click Next.

If you want to avoid viewing the welcome page the next time you export a project, select
Skip This Page Next Time.

5. Enter a file name to identify the exported file.

6. Click the Search button next to the Location field, to select a destination where to store
the exported file.

7. Click Next.

Chapter 9
Working with BPM Projects Stored in the Process Asset Manager

9-3

The Included Files page appears. This page shows all the files that are included in
the export file.

8. Click Next.

The Finished page appears. This page shows if the export operation was
successful.

9. Click Finish.

9.3 Working with the Process Asset Manager
The Process Asset Manager supports creating a connection, checking out and saving
a BPM project, updating a BPM project locally, removing projects, and viewing the
change history.

• Creating a connection

See How to Create a Process Asset Manager Connection

• Checking out a BPM project

See How to Check Out a BPM Project from the Process Asset Manager

• Saving a BPM project

See How to Save a BPM Project to the Process Asset Manager

• Updating locally stored BPM projects

See How to Update Local BPM Projects

• Removing BPM projects

See How to Delete a BPM Project from the Process Asset Manager

• Viewing the change history

See How to View the Change History

9.3.1 How to Create a Process Asset Manager Connection
Before you start to work with a process asset manager, you must configure a process
asset manager connection to locate the server where the process asset manager is
stored.

To create a process asset manager connection:

1. Open the Process Asset Manager Navigator window:

a. From the JDeveloper menu, select Window.

b. Select Process Asset Manager Navigator.

The Process Asset Manager Navigator opens on the left of the screen.

2. Right-click the PAM node, and select Create Connection.

The Create Process Asset Manager Connection wizard appears.

3. Click Next.

The Connection Name page appears.

If you want to avoid viewing the welcome page the next time you export a project,
select Skip This Page Next Time.

Chapter 9
Working with the Process Asset Manager

9-4

4. Enter a name to identify the connection.

5. Enter the user name to log in to the process asset manager server.

6. Enter the password to log in to the process asset manager server.

7. Click Next.

8. In the WebLogic Hostname field, enter the URL to locate the process asset manager
server.

9. Optionally, configure the port, SSL port and the Always Use SSL option

10. Click Test Connection to test if the provided information is correct.

The Status field shows if the connection to the process asset manager server is
successful.

11. Click Finish.

The new connection appears in the Process Asset Manager Navigator.

9.3.2 How to Check Out a BPM Project from the Process Asset Manager
You can checkout a specific version of a BPM project from the process asset manager and
store it locally. You can make local modifications to this local project and then check them in
to the process asset manager.

To check out a BPM Project from the process asset manager:

1. In the Process Asset Manager Navigator, expand the connection node and the expand
the space node.

2. Right-click the BPM project to check out.

3. Select Check Out.

The Checkout Project from PAM dialog box appears.

4. Click the Search button next to the Destination field to select a local destination where
to store the checked out project.

5. Click OK.

The Checking Out Project dialog box appears while the Process Asset Manager checks
out the project.

The BPM project that you selected is stored to a local destination and appears in the
Applications window. Note that the BPM project checked out from the Process Asset
Manager shows an icon with the status of the project, to view the status place the cursor
over the node and wait for the tool tip to appear.

9.3.3 How to Save a BPM Project to the Process Asset Manager
You can store a BPM project in the process asset manager to share it with other users and
work together on the same project. You can use this procedure to store a new BPM project or
to save the changes you made to a BPM project already stored in the Process Asset
Manager.

To save a BPM project to the process asset manager:

1. Open the BPM project you want to store in the process asset manager.

Chapter 9
Working with the Process Asset Manager

9-5

2. In the Applications window, right click the BPM project.

3. Select Save to PAM.

You might need to do an update and resolve any possible conflicts before you can
save your changes.

The Select Connection dialog box appears.

4. From the PAM Connections list, select a connection, or click the Add button to
create a new connection.

5. From the Space list, select a space, or click the Add button to create a new space.

6. Click OK.

The Save Project to PAM dialog box appears. This dialog box displays the source
of the BPM project, and the connection and space where to store the BPM project.

7. Enter a comment.

8. Click OK.

The BPM project appears in the Process Asset Manager and is available to other
users using the Process Asset Manager.

Note:

If the project is locked from Business Process Composer you cannot
save your changes. To save your changes, first release the lock from
Business Process Composer.

9.3.4 How to Update Local BPM Projects
You can update your local BPM project with the changes made to the BPM Project in
the Process Asset Manager.

To update local BPM projects:

1. In the Applications window, right-click the BPM project that you want to refresh.

2. Select Update. This item is located under the Save to PAM item.

3. If there are changes in the BPM Project stored in the Process Asset Manager, the
Update Status dialog box appears. Click OK to accept the changes.

The Updating Local Source Dialog appears while the Process Asset Manager
updates the local BPM Project.

Chapter 9
Working with the Process Asset Manager

9-6

Figure 9-1 Update Status Dialog

9.3.5 How to Delete a BPM Project from the Process Asset Manager
You can delete a project from the Process Asset Manager.

To delete a BPM Project from the process asset manager:

1. Open the Process Asset Manager Navigator.

2. Right-click the BPM project that you want to delete.

3. Select Delete.

The Delete Project from BAC dialog box appears.

4. Click Yes.

The Deleting Project dialog box appears while the Process Asset Manager deletes the
project.

9.3.6 How to View the Change History
You can view the history of the changes made to a BPM project since it was added to the
Process Asset Manager, and you can browse the details of each of those changes.

To view the change history:

1. Open the Process Asset Manager Navigator.

2. Right click the BPM project from which you want to see the change history.

3. Select History and Changes.

The History dialog box appears. The history table shows the date, author and comments
for each of the changes in the history of the BPM project. When you select a change the
Affected Components table shows the modified artifacts and files, depending on which
tab you select. Figure 9-2 shows the History dialog box for the BookFlight project.

Chapter 9
Working with the Process Asset Manager

9-7

Figure 9-2 History Dialog

Chapter 9
Working with the Process Asset Manager

9-8

10
Modeling Business Objects

Using business objects in a BPM project help you to manage the data in your process
efficiently and also enable you to reuse existing components. Reuse of existing components,
reduces the complexity of process making it easier to maintain.

• Introduction to Business Objects

• Working with Business Objects

• Using a Business Object in a Process

• Adding Business Objects Based on a XML Schema Element or Type

• Introduction to Business Object Attributes

• Working with Business Object Attributes

• Working with Business Object Methods

• Sharing Business Objects

• Introduction to Business Object Inheritance

• Working with Business Object Inheritance

10.1 Introduction to Business Objects
Business objects allow you to model and develop the business entities that are part of your
process using the Object Oriented paradigm. Using business objects simplifies the
management of the data in your process by encapsulating the data and business behavior
associated with the business entity it represents.

A business object is composed of a set of attributes and a set of methods. Attributes store the
data related to the entity you are modeling. Methods manipulate the value of these attributes,
or perform calculations based on their values.

Typically business objects represent entities in an actual business, but you can also use them
to encapsulate business logic that is not associated to any particular entity.

Generally when your process contains a large number of data objects, you can group those
that describe the same identity in a business object. For example, in the Sales Quote
example you can group the following data in a Quote object:

• Quote Summary

• Quote Request Status

• Recommended Discount

Using business objects to manage a group of related data reduces significantly the
complexity of your process by replacing multiple process data objects by a single data object
of the type of the business object you defined. Additionally it provides you other benefits
described in the Benefits of Modeling Using Business Objects.

In a Sales Quote example you can identify the following business entities:

10-1

• Quote

• License Terms

• Product Item

• Approval Flow

• Contract

Each of these entities groups a set of highly related data. This data is represented in
the attributes of an business object. The attributes define and describe the same
business entity. The value of these attributes defines the state of the business object.

The business objects you define in your BPM project are stored in user-defined
modules in the business catalog. When you open a business object, its editor shows
you its description and the attributes that compose it.

Business objects support inheritance enabling you to reuse the data and behavior they
define. For more information about inheritance, see Introduction to Business Object
Inheritance and Working with Business Object Inheritance.

Oracle BPM Studio provides an editor to view and edit the structure of a business
object. The editor enables you to:

• Add a description

• Add documentation

• Add, edit, and remove attributes.

• View the namespace information

Figure 10-1 shows the Business Object Editor editing a Quote object created manually.

Chapter 10
Introduction to Business Objects

10-2

Figure 10-1 Business Object Editor

10.1.1 Types of Business Objects
The way you create a business object determines its characteristics and functionality.

The following are different ways of creating a business object:

• Manually: You can build a business object manually by creating it and then adding
attributes and documentation.

• Based on an XML schema element or complex type: The resulting business object
contains one or more attributes that map the selected schema element or complex type.
You cannot remove these attributes, but you can add new attributes.

• By customizing a synthetic type in the Types module: You can customize the types
that the business catalog adds to the Types predefined module when you add a Service
or a Reference that require them as arguments. When you customize a type you can
store it in a user-defined module, change its name and add attributes to it.

10.1.2 Benefits of Modeling Using Business Objects
Using business objects to manage the data in your process provides you the following
benefits:

• Simpler Processes: Using business objects reduces the quantity of process data
objects in your process. This makes your process simpler and easier to read.

Chapter 10
Introduction to Business Objects

10-3

• Coupling Reduction: If your process has fewer data objects, the subprocesses
and activities that compose it, require less parameters.

• Re-use: You can use a business object you defined for a particular process in
other processes that do not necessarily belong to the same project. Reusing
business objects can dramatically reduce the development time of your project.
You can also reuse the data and behavior defined in a business object within the
same project, using business object inheritance. For more information about
inheritance, see Introduction to Business Object Inheritance and Working with
Business Object Inheritance.

• Easy Maintenance: If you update or fix a bug in a business object all the
processes using it benefit from those changes.

• Parallel Development: After you agree on a certain interface for the business
objects in your process, some members of your team can work on the
development of those business objects while others work on the development of
the process.

• Unit Testing: You can test each of the business objects in your process
separately. Unit Testing reduces the complexity of your test cases and improves
significantly the quality of your project.

10.1.3 Naming Conventions for Business Objects
When you name a business object you should respect the following rules:

• Use one or more nouns, or nouns modified by adjectives.

• Do not start the name with a number.

• Use capital letters only to distinguish internal words.

• Keep names simple and descriptive.

• Use whole words; avoid using acronyms unless they are widely known.

Note:

Oracle BPM Studio forces the first letter of the name of a business object to
uppercase.

10.2 Working with Business Objects
You can add business objects to your BPM project to store data related to the
processes it contains. The business objects you add are stored in the business
catalog.

For more information about the business catalog, see Using the Business Catalog.

When developing a business object you can modify it, rename it, or delete them. You
can also add documentation that helps you identify the functionality of the business
object or describes how to use it.

Chapter 10
Working with Business Objects

10-4

10.2.1 How to Add a Business Object
You can add business objects to the business catalog to model the business entities to store
the data in your BPMN process.

To add a business object:

1. Right-click a user-defined module in the business catalog.

2. Select New and then select Business Object.

3. Enter a name to identify the new business object.

Note:

You cannot repeat a name within the same module. However you can assign
the same name to business objects in different modules.

4. Click OK.

10.2.2 What Happens When You Add a Business Object
The business object appears in the business catalog. You can use this business object to
define the type of the following elements in your BPMN process:

• Arguments in data associations

• Process data objects

• Project data objects

10.2.3 How to Modify a Business Object
You can modify an existing business object by:

• Adding attributes

See How to Add a Business Object Attribute

• Removing attributes

See How to Remove a Business Object Attribute

• Adding methods

See How to Add a Business Object Method

• Removing methods

See How to Remove a Business Object Method

• Adding documentation

See How to Document a Business Object Attribute

See How to Document a Business Object Method

Chapter 10
Working with Business Objects

10-5

10.2.4 How to Delete a Business Object
You can delete a business object that you do not use or need. If your project contains
flow objects or data associations that use the deleted business object, then you must
remove them manually.

To delete a business object:

1. In the Applications window, right-click the business object you want to delete.

2. Select Delete.

A confirmation message appears.

3. Click OK.

10.2.5 What Happens When You Delete a Business Object
Oracle BPM Studio removes the business object from the business catalog. If there
are any flow objects in your process that use the removed business object, then you
must remove these references manually.

10.2.6 How to Document a Business Object
You can add documentation to a business object for other process developers to
understand its functionality and data structure.

To Document a business object:

1. Edit the business object.

2. In the business object editor, in the business object Editor, click the Edit button
next to the Documentation field.

3. Add the documentation for the business object.

See Introduction to the Documentation Editor, for details on how to create and edit
documentation.

4. Click Close.

10.2.7 What Happens When You Document a Business Object
The documentation is available for other process developers to read and modify.

10.3 Using a Business Object in a Process
Business objects store data related to your process. You can update the information in
this data object from any of the activities in the process.

To use a business object in your project, add a process data object to your process
and set its type to the business object you created.

Chapter 10
Using a Business Object in a Process

10-6

10.3.1 How to Use a Business Object in a Process
You can create a complex data object in your process that defines its type using a business
object.

To use a business object in a Process:

1. Add a process data object to your process. Use the business object as the type of the
data object.

See How to Add a Process Data Object, for information on how to add a process data
object.

Note:

When selecting the type of the data object use the Browse More Types... button
to display the complete list of types. Then select <Component> to display the
list of available business objects.

2. Initialize the value of the data object in the process using a Script Task or Data
Associations.

10.3.2 What Happens When You Use a Business Object in a Process
The data object you defined has the structure defined in the business object. The type of the
data object is the name of the business object. For example, if you define a business object
SalesQuote and then create a data object that uses this business object as its type, then the
type of the data object is SalesQuote.

You can assign values to the data objects that use these types using data associations and
script tasks.

10.4 Adding Business Objects Based on a XML Schema
Element or Type

You can create a business object based on an XML schema element or complex type. The
XML schema element or complex type you use to create your business object has to be part
of your BPM Project.

You can add an XML schema that contains the element or complex type to your project, or
you can use a use a type defined inline in a WSDL file. For the latter you must add the WSDL
file to your project by adding an SOA Adapter of type Web Service.

The business objects are based on an XSD schema and business object elements are
initialized based on their XSD definition. The default data values are applicable only to
process data object and not business object. If we apply default data values on business
objects, the schema definition is not honoured.

When you create a business object using an XML schema element, the selected element
becomes an attribute of the resulting business object.

Chapter 10
Adding Business Objects Based on a XML Schema Element or Type

10-7

When you create a business object using an XML schema element, the selected
element becomes an attribute of the resulting business object.

If you create a business object based on a schema contained in a WSDL file, then you
cannot use the resulting business object as the type of an attribute of another business
object.

10.4.1 How to Add a Business Object Based on a XML Schema
Element or Type

Before following this procedure ensure that the business catalog contains the XML
schema you want to use as a base for your business object.

To add a business object based on an XML schema or complex type:

1. Right-click a user-defined module.

2. Select New and then select Business Object.

The Create Business Object Dialog appears.

3. Enter a name to identify the new business object.

4. Select Based on External Type.

5. Click the Browse button next to the External Type field or add a new XML
schema following the procedure described in How to add an XML Schema to Your
BPM Project.

6. Select the external type from which to create the new business object.

10.4.2 What Happens When You Create a Business Object Based on
an XML Schema Element or Type

You cannot modify or add attributes to the business object. The structure of the
business object is based on the structure of the XML schema element or type.

10.4.3 How to add an XML Schema to Your BPM Project
From the Create Business Object dialog box you can add an XML schema to your
project.

To add an XML schema to your BPM project:

1. In the Create Business Object Dialog, select the Based on External Schema
option.

2. Click the Schema Browser button.

The Type Chooser dialog box appears.

3. In the upper right corner, click the Import Schema Files button.

The Import Schema File dialog box appears.

4. Click the Browse Resources button next to the URL field.

The SOA Resource Browser appears.

5. Browse your file system and select a schema file.

Chapter 10
Adding Business Objects Based on a XML Schema Element or Type

10-8

6. Select Copy to Project.

7. Click OK.

If the XML schema contains references to other types a dialog box to confirm their import
appears.

The Browse Resources dialog box closes and the Type Chooser dialog box appears.

8. Select an element to use as the base of your business object.

10.4.4 What Happens When You Add a Schema File to Your Project
The Schema Browser copies the selected XML schema to the Schemas directory in your
project. You can use it to create new business objects without having to re-add it

10.5 Introduction to Business Object Attributes
Attributes store data that defines and describes the business object. The attributes in a
business object are equivalent to instance variables in Object Orientation.

In the Sales Quote example you can identify the following attributes in the Quote object:

• Summary

• Product Items

• Quote Request Status

• License Terms

• Recommended Discount

These attributes describe the product and are relevant to the process. The ID or SKU serves
to identify the chosen product. The description is probably used to show the user what the
product does. And the price is used to show the customer how much the product costs and
later in the process to calculate the total amount due.

When you define an attribute you must specify:

• Name: used to identify the attribute.

• Type: that defines the type of data you can store in the attribute. Attributes support simple
types or other defined business objects.

Additionally you can define the following:

• Description: provides details about the attribute that help other process developers to
understand its use.

• Documentation. See How to Document a Business Object Attribute.

• Custom default value

• Not null constraint.

10.5.1 Supported Data Types for Business Object Attributes
The following table describes the supported data types for an attribute in a business object:

Chapter 10
Introduction to Business Object Attributes

10-9

Table 10-1 Supported Data Types

Data Type Description

string Alphanumeric values

int Integer numbers

boolean True or false values

double Double numbers

decimal Decimal numbers with defined precision

dateTime Unit of time, stores the date and the time

long Long numbers

duration Intervals of time

base64Binary Binary values (For example: images, files)

float Float numbers

byte An 8-bit signed two's complement integer

short A 16-bit signed two's complement integer

date Unit of time, stores the date only

time Unit of time, stores the time only

Array A collection of elements of a specified data type

Complex Types Other business objects

10.5.2 Naming Conventions for Business Object Attributes
When you name a attribute of a business object you should respect the following rules:

• Use one or more nouns, or nouns modified by adjectives

• Use capital letters only to distinguish internal words

• Keep names simple and descriptive

• Use whole words; avoid using acronyms unless they are widely known

• Do not start the name with symbols

• Use short but meaningful names

• Avoid using one-character names

Note:

Studio forces the first letter of the name of an attribute to lowercase.

10.6 Working with Business Object Attributes
To model a business object you must add its attributes. These attributes store the data
related to your process.

Chapter 10
Working with Business Object Attributes

10-10

You can add, modify and delete attributes as necessary. You can also add them to
documentation that describes the data they store and provides any necessary information to
the user of the business object.

10.6.1 How to Add a Business Object Attribute
To model a business object that you created from the start, you must add attributes.

To add an attribute to an existing business object:

1. In the Applications window right-click the business object where you want to add the
attribute.

2. Select New and then select Attribute.

Note:

Another alternative for the previous steps is editing the business object and
clicking the Add button in the Attributes section.

3. Enter a name to identify the new attribute.

Note:

You cannot use the following reserved words for attribute names.

abstract, any, as, assert, boolean, break, byte, case, catch, char, class, const,
continue, def, default, do, double, else, enum, extends, false, final, finally, float,
for, goto, if, implements, import, instanceof, int, interface, long, native, new, null,
package, private, protected, public, return, short, static, strictfp, super, switch,
synchronized, this, threadsafe, throw, throws, transient, true, try, void, volatile,
while

4. From the type list, select a type for the new attribute, or click the Browse More Types
button to select a complex type.

Note:

To use the array type, click the Browse More Types button, select the type of
the array and select the Array check box.

5. Click OK.

10.6.2 How to Remove a Business Object Attribute
You can delete a business object that is no longer useful to your project.

To delete an attribute from an existing BPM Object:

1. Edit the business object that contains the attribute you want to remove.

Chapter 10
Working with Business Object Attributes

10-11

2. In the Attributes section, select the attribute you want to remove.

3. Click the Remove button at the top of the table.

A confirmation message appears.

4. Click OK.

10.6.3 How to Document a Business Object Attribute
You can add documentation to a business object attribute for other process developers
to understand its functionality.

To document a business object Attribute:

1. Edit the business object that contains the attribute you want document.

2. In the Attributes section, expand the business object attribute you want to
document.

3. Click the Edit Documentation button next to the Description field.

The Documentation Dialog appears.

4. Add the text to document the functionality of the selected attribute.

See Introduction to the Documentation Editor, for details on how to create and edit
documentation.

10.6.4 What Happens When You Document a Business Object
Attribute

The documentation is available for other process developers to read and modify

10.7 Working with Business Object Methods
A business object can contain methods that manipulate and perform operations with
the data it contains. These methods represent the behavior of the business object.

You can add, modify and delete attributes as necessary. You can also add them
todocumentation that describes the operations they perform and provides any
necessary information to the user of the business object.

10.7.1 How to Add a Business Object Method
You can define business objects methods to manipulate and perform operations based
on the data of the business object.

To add a business object method:

1. Open the business object.

2. In the Methods section, click the Add Method button.

The Method dialog box appears.

3. Enter a name to identify the method.

4. Click OK.

Chapter 10
Working with Business Object Methods

10-12

The new method appears in the Methods section.

5. Expand the method and add the script code in the text area that appears.

For more information on BPM Scripting, see Writing BPM Scripts.

6. Optionally you can change the signature, see How to Change the Signature of Business
Object Method.

10.7.2 How to Change the Signature of Business Object Method
You can change the signature of a business object method by changing the name or the
return type, or by modifying the input arguments.

To change the signature of a business object method:

1. Open the business object that contains the method in the Business Object editor.

2. Expand the Methods section.

3. Expand the method that you want to modify.

4. Click the Change Signature button located next to the Remove button.

The Change Signature dialog box appears.

5. You can edit the following elements of the method signature:

• the name of the method

• the type of the return parameter

• add, remove or modify input arguments

10.7.3 How to Remove a Business Object Method
You can remove a business object method that you no longer use.

To remove a business object method:

1. Open the business object that contains the method you want to remove, in the Business
Object editor.

2. Expand the Methods section.

3. Click the Remove button for the method you want to remove.

10.7.4 How to Document a Business Object Method
You can add documentation to a business object method for other process developers to
understand its functionality.

To document a business object Attribute:

1. Edit the business object that contains the method you want document.

2. In the Methods section, expand the business object method you want to document.

3. Click the Edit Documentation button next to the Description field.

The Documentation Dialog appears.

4. Add the text to document the functionality of the selected method.

Chapter 10
Working with Business Object Methods

10-13

See Introduction to the Documentation Editor, for details on how to create and edit
documentation.

10.8 Sharing Business Objects
You can share business objects between different projects by exporting them to a file
and then importing them.

You can choose to export a single business objects or multiple business objects. When
exporting multiple business objects you can also export exceptions. The file that
contains the exported business object has the extension .bob. If the business object
depends on other business objects, then those dependencies are also included in the
export file.

You can import the business objects from the export file in any other project. When you
import a business object, Studio also imports the module where it was stored if the
module does not exist already.

10.8.1 How to Export a Business Object
You can export a business object to share it with other developers.

To export a business object:

1. In the Applications window, right-click the business object.

2. Select Export.

The Select Object File dialog box appears.

3. Select a directory where to store the exported business object.

4. In the File Name field, enter a name for the exported business object.

5. Click Save.

The exported business object file is stored to the selected directory.

10.8.2 How to Import Business Objects from a File
You can import a business object that was exported from another project.

To import business objects from a file:

1. In the Applications window, right-click the Business Catalog node.

2. Select Import Business Objects.

The Select Object File dialog box appears.

3. Select the file that contains the exported business objects.

4. Click Open.

The business objects contained in the selected file appear in the business catalog.

Chapter 10
Sharing Business Objects

10-14

10.9 Introduction to Business Object Inheritance
Inheritance enables you to reuse the data and behavior defined in a business object. This
avoids duplicating data structures and scripts, making maintenance easier and less error-
prone.

To use inheritance you create a business object as the child of another business object that
defines the attributes and methods that you want to reuse. The latter is called the parent
object.

The child object has access to the attributes and methods of the parent objects as if it defined
them.

In a business process that manages the payroll of a company, you can define a business
object Employee and then a child business object Manager that inherits the data and
methods of Employee and re-defines some of them.

10.9.1 Method Overloading
The child business object can re-define the methods defined in the parent object, assigning
them a different behavior specific to that child business object. The input arguments and
return parameters of the re-defined method must match the ones in the method from the
parent object.

10.9.2 Polymorphism
The child business object is a sub-type of the parent business object. This means that you
can define a data object using the type of the parent business object and then assign it an
instance of the child business object. When you do this, you only have access to the
attributes and methods defined in the parent business object. However, those methods that
were re-defined in the child business object, behave in the way they were defined in the child
object.

10.9.3 Method Overriding
A business object can have multiple methods with the same name but different sets of
arguments. The runtime engine decides which method to run based on the arguments
passed when invoking the method.

10.9.4 Attribute Shadowing
The child business object can define an attribute of the same name and type of an attribute
defined in the parent object.

10.9.5 Abstract Business Objects
You can mark a business object as abstract to indicate that it only defines data and methods
to reuse in child business objects, but it does not make sense to create an instance of this
business object. Marking it as abstract ensures that you cannot create an instance of this
business object.

Chapter 10
Introduction to Business Object Inheritance

10-15

10.10 Working with Business Object Inheritance
You can use business object inheritance to reuse data and methods, avoiding code
duplication and making maintenance easier.

This section describes how to create a child business object and how to mark an
object as abstract.

10.10.1 How to Create a Child Business Object
You can create a child business object to reuse the attributes and methods defined in
a business object.

To create a child business object:

1. In the Applications window, right-click the business object you want to use as the
parent business object.

2. Select Create Child Object.

The Create Business Object dialog box appears.

3. Enter a name and select a destination module.

4. Click OK.

The Business Object editor with the child business object opens. Note that there is
a parent field that indicates which is the parent object.

Note:

You can also define a child object by selecting its parent object for an
existing business object.

The child object can use the attributes and methods defined in the parent business
object.

10.10.2 How to Mark a Business Object as Abstract
You can mark a business object as abstract to indicate that it only defines behavior
and data.

To create an abstract business object:

1. Open the business object you want to mark as abstract in the Business Object
editor.

2. Select the Abstract check box.

You can mark a business object as abstract to indicate that it only defines behavior
and data for child objects to reuse. You cannot instantiate an abstract business object,
you can only use it to define the type of a data object and then assign it an instance of
a child business object.

Chapter 10
Working with Business Object Inheritance

10-16

11
Working with Human Tasks

Business catalog displays and handles human tasks. You can update a user task using the
update task.

• Introduction to Human Tasks in BPM

• Using Human Task Patterns in Oracle BPM

• Updating User Tasks Using Update Tasks

For detailed information on how to create, edit, and configure human tasks, see Designing
Human Tasks in Oracle BPM.

11.1 Introduction to Human Tasks in BPM
Human Tasks are interactive steps performed by the end user and are used to implement
user tasks. Human Tasks contain a payload (data associated to the Human Task), forms, and
policies to define escalation, notifications and reminders.

The implementation of user tasks requires you to define a Human Task. You can use an
existing Human Task or define a new one.

If your project contains Human Tasks, then they automatically appear in the business catalog
under the HumanTasks predefined module.

You can add new Human tasks to your project in the following ways:

• Using the simplified interface Oracle BPM Studio provides

• From the SOA New Gallery

• From the SOA Composite Editor

When you double click a Human Task component in the business catalog, Oracle BPM
Studio opens the SOA Human Task editor. You can edit the Human Task using this editor.

Figure 11-1 shows a Human Task component in the Sales Quote example.

11-1

Figure 11-1 Human Task components in the Business Catalog

You can define the participants in a Human Task using swimlanes in the BPMN
process or dynamically by evaluation and expression based on process data. The
workflow pattern used for the human tasks defines the number of participants. For
more information about workflow patterns, see Using Human Task Patterns in Oracle
BPM.

At run time, when a token arrives at a user task control is passed from the BPMN
process to the Oracle Human Workflow. Although both are part of Oracle BPM run
time, control is not passed back to the BPMN process until the Human Tasks is
completed.

After the workflow is complete, control is passed back the BPMN process, any
required data objects are passed back to the user task, and the token moves to the
next sequence flow of the process.

However human tasks are independent from BPMN processes. If you terminate a
BPMN process while it runs a user task, the associated human tasks keeps running
independently. For more information see Understanding the Relationship Between
SOA Composites and SOA Components.

If the process instance leaves the user task before the human tasks is completed, the
human task continues running and can you can still access it. This is because human
tasks are independent from the BPMN process. Any changes you make to a human
task after the process instance left the corresponding user task, do not appear in the
audit trail.

Note:

When you define a human task in BPM the callback is implicitly defined.

11.2 Using Human Task Patterns in Oracle BPM
Human task patterns allow you to use a predefined flow to create the Human Task.
These predefined patterns contain standard process flows that are common to all
business processes.

Chapter 11
Using Human Task Patterns in Oracle BPM

11-2

Oracle BPM supports the following Human Tasks patterns:

• Complex: combines different routing patterns, each pattern represents a different stage.

• FYI: notifies the participants, the process does not wait for this task to complete before
running the following tasks in the process flow.

• Group

• Initiator: the process starts when the end user fills in a form.

• Management: assignees perform the work in a serial sequence based on a management
chain.

• User: a single assignee performs the work.

• Parallel: assignees perform work in parallel.

• Manual: these are tasks performed by humans that are not managed by the BPM
runtime.

You can add a Human Tasks that uses patterns by selecting the specific user task in the
Interactive Activities section in the Component Palette, or you can add a generic user task
and when you create the Human Task select the pattern you want to use.

For more information about Human Task patterns, see Using Approval Management.

11.3 Updating User Tasks Using Update Tasks
Update tasks enable you to update certain properties of specific user tasks in your process.
You can choose to update a specific user task, all user tasks or to dynamically generate the
ID of the user task to update using an expression. Update tasks do not require you to specify
the taskId or the context.

You can use user tasks to perform the update operations based on the status of your process
or the different paths the process instance takes. Update tasks enable you to model the
updating sequence in your business process making the process flow easier to understand.

You can only update active user tasks. If the user task is completed or did not start yet, then
you cannot update it using the update task.

11.3.1 Update Task Operations
Update tasks enable you to change the value of some of the properties of the human task
used to implement the user task. For a description of the properties involved in the different
operations, see Creating a Human Task from Oracle BPM Studio.

Update tasks support the following operations:

• Update Outcome: updates the outcome of the human task used to implement the
specified user task. You must specify the new outcome using an expression. You can
choose to write the expression using literals, simple expressions or XPath expressions.

• Update Priority: updates the priority of the human task used to implement the specified
user task. You must specify the new priority using an expression. You can choose to write
the expression using literals, simple expressions or XPath expressions.

• Withdraw: withdraws the task from the task list shown to other assignees.

• Suspend: suspends the task.

• Resume: resumes the task.

Chapter 11
Updating User Tasks Using Update Tasks

11-3

• Escalate: escalates the task using the escalation hierarchy or escalation callbacks
specified in the human task that implements the specified user task.

• Reassign: reassigns the human task used to implement the specified user task, to
a new user. You must specify the new user using an expression. You can choose
to write the expression using literals, simple expressions or XPath expressions

• Suspend Timers: suspends the timers that are running over the human tasks that
implements the specified user task. Suspending the timers results in the
suspension of the expiration policies defined for the human task.

11.3.2 How to Update a User Task Using Update Tasks
You can update different parameters of user tasks from your business process using
an update task.

To update user tasks using update tasks:

1. Open the business process that contains the user task.

2. Add an update task.

3. Configure the update task.

11.3.3 How to Configure Update Tasks
You can configure an update task to perform different operations over the user tasks
you specify.

To configure an update task:

1. Right-click the update task.

2. Select Properties.

3. Click the Implementation tab.

4. From the target list select how to specify the target user task.

The available options are:

• Select a specific user task: The user tasks in your process appear in this list,
you can select any of them and update it using this update task.

• All User Tasks: This option enables you to update all the user tasks in the
process.

• Task Id: This option enables you to specify a task Id that identifies the user
task, using an expression. When you select this option the Task Id field
appears.

5. From the Operation list, select an operation.

For more information about the available operations, see Update Task Operations.

Chapter 11
Updating User Tasks Using Update Tasks

11-4

12
Working with Services and References

Learn about different service and reference components that you can use in Oracle BPM.
Also learn how these components appear in the business catalog and how the components in
the business catalog relate to the SOA composite that defines these services and references.
You can also customize these components to make them easier to understand and more
appropriate for business analysts.

• Introduction to Services and References

• Introduction to Service Adapters in Oracle BPM

• Introduction to Oracle Mediator in Oracle BPM

• Introduction to BPEL Processes in Oracle BPM

• Using Services in Oracle BPM

• Using References in Oracle BPM

• Customizing Services and References

12.1 Introduction to Services and References
Some flow objects, such as Service Task, Send Task and Receive task, require you to define
a service or a reference to implement them. You can define service interfaces using the
BPMN Editor or use existing interfaces from the Business Catalog.

The business catalog displays the services, components, and references that appear in the
SOA composite. When you add a new component in the Exposed Services or External
References areas in the composite, it automatically appears in the corresponding predefined
module in the business catalog.

The following SOA components appear as services or references in the business catalog:

• Adapters

• SOA mediators

• BPEL processes

Note:

When you define a web service to implement a service task, message events, or
send and receive tasks, ensure that the operations it contains do not define
arguments of XML types defined within a WSDL. The arguments in the operations
in the web service must be primitive types or types defined within an XSD file.

12-1

12.1.1 Introduction to Services
Services are those components that you can use to implement certain activities and
events in your BPMN process.

The Services predefined module stores the components that display a service handle
in the SOA Composite.

You can use services to implement the following flow objects:

• Service tasks

• Message events

• Send and receive tasks

12.1.2 Introduction to References
References are the interfaces that you can use to define the interface of your BPMN
processes.

The References predefined module stores the components that display a reference
handle in the SOA composite.

You can use references to define the process interface using the following flow
objects:

• Message events

• Send and receive tasks

12.1.3 Introduction to Callbacks
If a service is asynchronous and contains a callback interface, then the component in
the business catalog contains a callback inner component. The callback inner
component groups all the callback operations in the service.

After selecting the service component in the business catalog, you can view a list of
the operations in the callback component in the Structure window.

The implementation of message events and receive tasks configured to wait for a
callback from the service only enable you to select an operation from the callback
inner component of the corresponding service.

Figure 12-1 shows a service with a callback interface in the business catalog.

Chapter 12
Introduction to Services and References

12-2

Figure 12-1 Service with Callback Interface

12.2 Introduction to Service Adapters in Oracle BPM
Service adapters enable you to integrate with other applications and external services. Oracle
BPM supports the use of service adapters to integrate your BPMN process with external
applications, legacy applications, and external services such as FTP or databases.

Oracle BPM supports service adapters for the following technologies:

• ADF-BC Service

• Advanced Queuing

• B2B

• Oracle BAM Adapter

• Coherence

• A variety of databases

• Direct binding

• EJB service

• Files

• FTP

• Healthcare

• HTTP

• JMS

• LDAP

• MFT Binding

Chapter 12
Introduction to Service Adapters in Oracle BPM

12-3

• MQSeries

• MSMQ

• Oracle applications

• REST Binding

• Sockets

• Third-party adapters

• User Messaging Service

• Web services

For a detailed description of service adapters see:

• Getting Started with Binding Components in Developing SOA Applications with
Oracle SOA Suite.

• Introduction to Oracle JCA Adapters and other chapters in Understanding
Technology Adapters.

When you add a SOA service adapter to the SOA composite of a BPM project, the
service adapter automatically appears in the business catalog. The business catalog
stores the SOA service adapters in different modules depending on the swimlane of
the SOA composite where you added the SOA service adapter:

• If you add the service adapter in the External References swimlane, then the
business catalog displays this adapter in the Services predefined module.

• If you add the Service Adapter in the Exposed Services swimlane, then the
business catalog displays this adapter in the References predefined module.

Depending on the nature of the service adapter, the SOA composite enables you to
add the components in the different swimlanes. For example, you must add a file
adapter that contains a read operation in the Exposed Services swimlane, but if the file
adapter contains a write operation, then you must add it in the External References
swimlane.

Figure 12-2 shows a SOA composite that contains a file adapter with read operation
and a file adapter with a write operation. Note that the file adapter that contains the
write operation appears under the Services predefined module in the business catalog,
while the file adapter that contains the read operation appears under the References
predefined module.

Chapter 12
Introduction to Service Adapters in Oracle BPM

12-4

Figure 12-2 Adapter Services in Oracle BPM

The business catalog stores service adapters under the External module within the Services
or References predefined modules. The service adapter is represented as a node. If you
select a service adapter in the Applications window, then the Structure window displays the
operations it contains. If the service adapter is configured as asynchronous, then the
Structure window also displays the callback inner object.

Note:

The operations in the service adapters that do not return output arguments may
define an element structure Empty as the output argument. This element structure
appears in the data association of the flow object that uses the service adapter.
Defining output data associations is optional, so are not required to provide a
mapping for this element structure.

12.3 Introduction to Oracle Mediator in Oracle BPM
Oracle Mediator facilitates the communication among the components within a composite
application. These components include BPMN processes.

You can use Mediator in a BPM project in the following use cases:

• BPMN processes can invoke other components in the SOA composite through a
Mediator component. The BPMN process invokes the mediator with certain input data.
The mediator transforms this data to adjust to the requirements of the other component
and invokes the component.

• The components in the SOA Composite can invoke a BPMN process through a Mediator
component. If the mediator exposes an interface, then external components can also
invoke a BPMN process through the mediator. The component or external component
invokes the mediator with certain input data. The mediator transforms this data to adjust
to the requirements of the BPMN process and in turn invokes the component.

Chapter 12
Introduction to Oracle Mediator in Oracle BPM

12-5

Figure 12-3 Mediator Components in the Business Catalog

Figure 12-4 shows a BPEL process that invokes a BPMN process through a mediator.
Note that the service handle of the mediator connects to the BPEL process and the
reference handle connects to the BPMN process.

Chapter 12
Introduction to Oracle Mediator in Oracle BPM

12-6

Figure 12-4 BPEL Process Using a Mediator to Invoke a BPMN Process

The Mediator Service

When you add a mediator to the SOA composite the business catalog generates a mediator
service.

This component represents the mediator service. It contains the operations you invoke to
communicate with the mediator. You can invoke the operations defined in this service using
service tasks, message events, or send and receive tasks, depending on the type of
operation.

The business catalog stores mediator services in the Mediator module located in the Services
predefined module. It creates a separate module for each of the mediator service
components. The name of this module is the name of the component.

Item 1 in Figure 12-3 shows the exposed service Mediator_ep for the mediator component
shown in the SOA composite

The Mediator Interface

If you select the SOA binding option when creating the mediator, then Oracle JDeveloper
creates the service interface. This interface defines the signature of the operations you can
use to access the mediator from outside the SOA composite. You can configure your BPMN
process to use this interface, so that the BPMN and the mediator have the same interface.

The business catalog stores service interfaces in the Externals module located in the
References predefined module.

Item 1 in Figure 12-3 shows the exposed service interface component Mediator_ep for the
mediator component shown in the SOA composite.

For information on how to use an interface to define the process interface, see Using
Message Events with an Interface from the Business Catalog to Define Your Process
Interface and Using Send and Receive Tasks with an Interface from the Business Catalog to
Define Your Process Interface.

Chapter 12
Introduction to Oracle Mediator in Oracle BPM

12-7

The Reference Interfaces

The SOA composite shows an interface for each component the Mediator adapts.

The business catalog stores service interfaces in the Mediator module located in the
References predefined module. It creates a separate module for each of the Mediator
service components. The name of this module is the name of the component

Item 3 in Figure 12-3 shows the reference interface component ProcessService for the
mediator component shown in the SOA composite.

For more information on SOA mediators, see part "Using the Oracle Mediator Service
Component" in Developing SOA Applications with Oracle SOA Suite.

12.4 Introduction to BPEL Processes in Oracle BPM
BPEL processes enable you to model a business process using a standard different
from BPMN. Depending on the nature of the process, some processes might be easier
to implement in a certain technology. Oracle BPM enables you to integrate the BPEL
and BPMN processes in your project, getting the best of the two standards.

Figure 12-5 shows an SOA composite that contains multiple BPEL processes and how
the business catalog displays them.

Figure 12-5 BPEL Process Components in Business Catalog

The BPEL Service Component

When you add a BPEL process to the SOA composite, the BPEL service component
appears in the business catalog.

This component represents the BPEL process service. You can use this component to
implement service tasks or message events, or send and receive tasks, depending if
the BPEL process is synchronous or asynchronous.

Chapter 12
Introduction to BPEL Processes in Oracle BPM

12-8

Figure 12-5 shows how the business catalog displays a BPEL process and its corresponding
exposed service interface.

The business catalog shows the BPEL process service in the BPEL module located in the
Services predefined module. It creates a separate module for each of the BPEL process
service components. The name of this module is the name of the BPEL process.

Oracle BPM treats BPEL processes as services. It does not make a distinction between other
types of services and BPEL processes.

For more information on how to invoke synchronous and asynchronous services from a
BPMN process, see Introduction to Communication with Other BPMN Processes and
Services.

The Exposed Interface

If you selected the SOA binding option when creating the BPEL process, then the exposed
interface appears in the business catalog.

This interface enables external components to invoke BPEL processes. If you are designing
a BPMN process to replace a BPEL process, then you might want to use this interface to
define a BPMN process to ensure that you can replace one for the other.

For information on how to use an interface to define the process interface, see Using
Message Events with an Interface from the Business Catalog to Define Your Process
Interface and Using Send and Receive Tasks with an Interface from the Business Catalog to
Define Your Process Interface.

For more information on BPEL Processes, see Using the BPEL Process Service Component
in Developing SOA Applications with Oracle SOA Suite.

12.5 Using Services in Oracle BPM
The service tasks, message events, and send and receive tasks require you to define a
service to implement them.

The following flow objects require you to define a service to implement them:

• Service tasks

Service tasks enable you to invoke synchronous services. To implement a service task
you must specify a synchronous service in the implementation properties. See Using
Service Tasks to Invoke Synchronous Operations in Services and BPMN Processes for
information on how to invoke a synchronous service using a service task.

• Message events

Message events enable you to invoke asynchronous services. To implement message
events you must specify an asynchronous service in the implementation properties. See
Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN
Processes for information on how to invoke an asynchronous service using a message
events.

• Send and receive tasks

Send and receive tasks enable you to invoke asynchronous services. To implement a
send task or a receive task, you must specify an asynchronous service in the
implementation properties. See Using Send and Receive Tasks to Invoke Asynchronous
Services and Asynchronous BPMN Processes for information on how to invoke a
synchronous service using a service task.

Chapter 12
Using Services in Oracle BPM

12-9

12.6 Using References in Oracle BPM
The message events and receive tasks flow objects enable you to define an interface
using a reference component from the business catalog.

• Message events

See Using Message Events with an Interface from the Business Catalog to Define
Your Process Interface for more information on how to use an interface from the
business catalog to define a process interface using message events.

• Receive task

See Using Send and Receive Tasks with an Interface from the Business Catalog
to Define Your Process Interface for more information on how to use an interface
from the business catalog to define a process interface using receive tasks.

12.7 Customizing Services and References
The interfaces of some services and references you use in your process might be too
complex or use names that do not clearly convey their use. These interfaces are not
appropriate for a process analyst. You can customize these services and references to
hide their complexity and make them more suitable for a business analyst. You might
also customize a service or a reference to make your process easier to understand for
other process developers.

Customizing a service or a reference enables you to:

• Change the name of the service or reference

• Store the service or reference in a user-defined module

• Add a description for the service or reference

• Hide the operations that you do not use

• Add a display name for each of the operations

• Add a description for each of the operations

When you customize a service or a reference, the service or reference disappears
from the predefined modules where they were stored and Oracle BPM Studio replaces
their uses by the customized component.

If you delete the customized service or reference, then the service or reference
appears back in the corresponding predefined module, unless you remove either of
them from the SOA composite.

Note:

If you delete the original service or reference, Oracle BPM Studio does not
delete the customized service or reference. You must delete the customized
service or reference manually or create a new service or reference with the
same name as the one you deleted.

Chapter 12
Using References in Oracle BPM

12-10

12.7.1 How to Customize a Service or a Reference
You can customize a service or a reference to make it more suitable for a business analyst
and easier to understand for process developers.

To customize a service or a reference:

1. In the Applications window, right-click the service or the reference.

2. Select Customize Service.

The Customize Adapter Service dialog box appears.

3. In the Name field, enter a name for the customized service or reference.

4. Click Browse and select a module to store the customized service or reference.

5. Optionally, enter a description for the customized service or reference.

6. From the operations list, select the operations to appear in the customized service or
reference.

7. Edit the operations to customize them.

See How to Customize an Operation for information on how to customize an operation.

8. Click OK.

12.7.2 How to Customize an Operation
When you customize a service or a reference, optionally you can customize the operations it
contains.

To customize an operation:

1. From the Operations table, select an operation.

2. Click Edit.

The Edit Operations dialog box appears.

3. In the Display Name field, enter the customized name for the operation.

4. In the Description field, enter a description for the operation.

5. If the operation requires input or output arguments, then you can provide a description for
them.

6. Click OK.

12.7.3 What Happens When You Customize a Service or a Reference
The customized service or reference appears in the module you chose to store it in. The
component in the Services or References predefined module disappears.

If there are any BPMN processes that use the component you customized, Oracle BPM
Studio automatically updates the implementation of the activities in those processes to use
the customized service or reference.

If you delete the customized service or reference, then it appears back in the corresponding
predefined module.

Chapter 12
Customizing Services and References

12-11

13
Using Business Rules

Learn how to implement business rule tasks in Oracle BPM. You can use an existing
business rule component created using the SOA Business Rule editor, or you can create a
new business rule component using the simplified interface Oracle BPM Studio provides.

• Introduction to Business Rules in Oracle BPM

• Assigning an Existing Business Rule to a Business Rule Task

• Creating a Business Rule from Oracle BPM Studio

For detailed information about Oracle Business Rules, see Designing Business Rules with
Oracle Business Process Management.

13.1 Introduction to Business Rules in Oracle BPM
The business rule task requires you to define a business rule to implement it. You can use an
existing business rule or define a new one.

If your project contains business rules, then they automatically appear in the business
catalog.

You can add new business rules to the business catalog in the following ways:

• Using Oracle BPM

• From the SOA New Gallery

• From the SOA Composite editor

The business catalog displays the business rules in your project in the predefined module
Rules. It stores each rule in a module named as the package of the business rule dictionary.

When you double-click a business rule component in the business catalog, Oracle BPM
Studio opens the SOA Business Rules editor. You can edit the business rule using this editor.

Figure 13-1 shows a business rule component in the Sales Quote example.

Figure 13-1 Business Rules Components in the Business Catalog

13-1

13.1.1 Using Business Rules in a BPMN Process
Business rules enable you to determine the flow of your processes based on a group
of rules you define.

The business rule task enables you to associate the following:

• Data object values to the input arguments of a business rule

• The output arguments of a business rule component to data objects

When a token arrives at a business rule task, the BPMN Service Engine invokes
Oracle Business Rules Engine using the input arguments defined in the data
association of the business rule task. The business rules engine evaluates the defined
rules and returns output that contains the result. The BPMN Service Engine maps the
output from the business rules engine to the data objects in the process using the data
association defined for the business rule task.

After a business rule task, you can add an exclusive gateway that determines the flow
of the process based on the value of a data object that contains the result of running
the business rule task.

In the Sales Quote example, the business rule task determines the approval flow for
each sales quote in the following way:

• The business rule task invokes the business rule component providing a Quote
business object as an input argument.

• The business rule component evaluates the defined rules using the provided input.

• The business rule component returns an ApprovalFlow business object that
contains the result of evaluating the defined rules.

• The business rule task data association maps the result of running the business
rule to the ApprovalFlow process data object.

• The exclusive gateway Is Business Practices Review Required determines the
flow based on the value of the ApprovalFlow process data object.

Figure 13-2 shows a business rule task in the Sales Quote example.

Figure 13-2 Business Rule Task in the Sales Quote Example

Chapter 13
Introduction to Business Rules in Oracle BPM

13-2

13.2 Assigning an Existing Business Rule to a Business Rule
Task

You can assign existing business rules to a business rule task. You can implement a business
rule task using a business rule that you created using the Business Rule wizard or that
existed in the SOA project you used as the basis for the BPM project.

All the business rule components that your project contains appear in the Rules predefined
module in the business catalog. They also appear in the SOA composite. If there are
business rule tasks in your BPMN processes that use a business rule component, then the
SOA composite shows a wire between them.

13.2.1 How to Assign an Existing Business Rule to a Business Rule Task
You can reuse existing business rules to implement the business rules tasks in your BPMN
processes.

To assign an existing business rule to a business rule task:

1. Right-click the business rule task.

2. Select Properties.

3. Click the Implementation tab.

4. Click the Browse button next to the Business Rule field.

The Type dialog box appears.

5. Select a business rule from the list or enter the name or part of the name in the Search
field to search for a business rule.

6. Click OK.

The Type dialog box closes, and the Business Rule field shows the business rule you
selected.

7. From the Decision Function list, select a decision function.

8. Click OK.

The Business Rule Task Properties dialog box closes and saves the implementation you
selected for the business rule task.

13.2.2 What Happens When You Assign an Existing Business Rule to a
Business Rule Task

The business rule task implementation uses the selected business rule component and the
selected decision function.

When the BPMN Service Engine runs the business rule task, it invokes the Oracle Business
Rules Engine using the input arguments defined in the business rule task data association.
The Oracle Business Rules Engine evaluates the rules using the provided input argument
and returns an output argument that contains the result of this evaluation.

Chapter 13
Assigning an Existing Business Rule to a Business Rule Task

13-3

13.2.3 How to Edit the Business Rule Associated to a Business Rule
Task

You can launch the Business Rule Editor from a business rule task, to edit the
associated business rule.

To edit the business rule associated to a business rule task:

1. Right-click the business rule task.

2. Select Open Business Rule.

The Business Rule Editor appears.

13.3 Creating a Business Rule from Oracle BPM Studio
You can create a business rule using the simplified interface Oracle BPM Studio
provides. You can access this interface from the business rule task configuration
dialog box.

The simplified business rule creation interface enables you to create a business rule
with one decision function. When you create the business rule, you can configure the
following properties:

• Name of the Business Rule

Oracle BPM Studio uses this name to create the business rule component.

• Input and output

Specifies the input and output parameters for the default decision function Oracle
BPM Studio automatically adds to the business rule component.

Oracle BPM Studio uses these parameters to create the data association for the
business rule task. The parameters of the decision function must be simple types
or complex data objects created based on an XML schema. The XML schema
must contain only one element. You must not use types from the WSDL.

• Dictionary package

Specifies the Java package to which your rule dictionary belongs, for example,
com.example.

• Name of the decision function

Oracle BPM Studio uses this name to add a default decision function to the
business rule you create.

After you create the business rule with the simplified interface you can edit it using the
editor included in Oracle SOA Suite.

13.3.1 How to Create a Business Rule from Oracle BPM Studio
You can create a business rule component from Oracle BPM Studio from the
Implementation Properties dialog box of a business rule task.

Chapter 13
Creating a Business Rule from Oracle BPM Studio

13-4

To create a business rule from Oracle BPM Studio:

1. Right-click the Business Rule task.

2. Select Properties.

3. Click the Implementation tab.

4. Click the Add button next to the Business Rule field.

The Create Business Rule dialog box appears.

5. In the Name field, enter a name to identify the business rule.

6. Configure the input and output of the business rule.

See How to Add Input and Output Arguments When Creating a Business Rule
Component for more information on how to configure the input and output of a business
rule.

7. Optionally, configure the advanced properties of the business rule.

See How to Configure the Advanced Properties When Creating a Business Rule
Component for more information on how to configure the advanced properties of a
business rule.

8. Click OK.

The Create Business Rule closes and creates the business rule. The Business Rule
field in the Business Rules Task Properties dialog box shows the business rule you
created.

9. From the Decision Function list, select a decision function.

10. Click OK.

The Business Rule Task Properties dialog box, closes and saves the implementation you
created for the business rule task.

13.3.2 How to Add Input and Output Arguments When Creating a Business
Rule Component

The data objects you add as input or output arguments must use business objects based on
external types as their types.

To add input and output arguments when creating a business rule component:

1. In the Input and Output Data Objects section, click the Add button.

2. Select the type of argument you want to add.

The Data Object dialog box appears.

3. Select a data object from the Data Object dialog box and drag it to the table.

The input or output argument appears in the table.

The data associations are automatically created mapping the existing data objects to
arguments.

Chapter 13
Creating a Business Rule from Oracle BPM Studio

13-5

13.3.3 How to Configure the Advanced Properties When Creating a
Business Rule Component

To configure the advanced properties when creating a business rule component:

1. Click the Advanced tab.

2. In the Package field, enter the name of the package in which to store the rules
dictionary.

3. In the Decision Function field, enter a name for the decision function that the
simplified interface creates in the business rule component.

13.3.4 What Happens When You Create a Business Rule Task from
Oracle BPM

Oracle BPM Studio creates a business rule component. You can edit this business rule
component using the SOA Business Rule editor in the same way you edit a
component created using Oracle SOA Suite.

The business rule task uses the business rule component for its implementation.

Chapter 13
Creating a Business Rule from Oracle BPM Studio

13-6

14
Sending Notifications

Understand different types of notification tasks and learn how to configure them, and learn
how to use the notification task to communicate with end users of the business process.

• Introduction to Notifications

• Sending Email Notifications

• Sending a User Notification

• Sending an SMS Notification

• Sending an IM Notification

14.1 Introduction to Notifications
The notification task allows you to send different types of notifications to the users of the
application.

It supports the following types of notifications:

• Email

• User

• SMS

• IM

This tasks uses the Oracle Notification Service.

To configure this task you must provide expressions for the different fields of the notification
and in some cases you can use the Identity Lookup browser to select one or more users.
When you write the expressions you can use any variables accessible from the notification
task context such as process data objects or predefined data objects.

14.2 Sending Email Notifications
Using the notification service, you can send an email message to users at a certain point in
the business process.

You can use the Identity Lookup browser to select one or more users.

14.2.1 How to Send an Email Notification
To send an email notification:

1. Open your BPMN business process.

2. Add a Mail Notification task.

3. Right-click the Mail Notification task.

4. Select Properties.

14-1

5. Click the Implementation tab.

6. In the General tab configure the properties described in How to Configure Email
Notification General Properties

7. Click the Content tab to configure the properties described in How to Configure
Email Notification Content Properties.

8. Click the Attachments tab to configure the properties described in How to
Configure Email Notification Attachment Properties.

9. Click the Headers tab to configure the properties described in How to Configure
Email Notification Header Properties.

10. Click OK.

14.2.2 How to Configure Email Notification General Properties
Use the following table to configure the general properties of an email notification.
Note that some of the properties are optional.

Table 14-1 Email Notification General Properties

Property Data
Type

Optional Description

From string No Specifies the email address used to send the email notification.

To string No Specifies the email addresses of the receivers of the email notification. You can
specify these email addresses using expressions or using the Identity Lookup
browser.

Bc string Yes Specifies the email addresses of the additional receivers of the email
notification. You can specify these email addresses using expressions or using
the Identity Lookup browser.

Bcc string Yes Specifies the email addresses of the hidden additional receivers of the email
notification.ou can specify these email addresses using expressions or using
the Identity Lookup browser

Reply string Yes Specifies the email addresses to use when replying the email notification. You
can specify this email address using expressions or using the Identity Lookup
browser

14.2.3 How to Configure Email Notification Content Properties
Use the following table to configure the content properties of an email notification.

Table 14-2 Email Notification Content Properties

Property Data
Type

Optional Description

Subject string No Specifies the subject of the email notification. You must specify this value using
expressions.

If you are creating an actionable email, avoid using '&' in the subject. It can
cause truncated subject lines in some email clients including some versions of
Outlook.

Chapter 14
Sending Email Notifications

14-2

Table 14-2 (Cont.) Email Notification Content Properties

Property Data
Type

Optional Description

Body string No Specifies the body of the email notification. You must specify this value using
expressions.

14.2.4 How to Configure Email Notification Attachment Properties
Use the following table to configure the attachment properties of an email notification. Note
that some of the properties are optional.

Table 14-3 Email Notification Attachment Properties

Property Data
Type

Optional Description

Name string No Specifies the name of the attachment. You must specify this value using
expressions. The default value is "attachment" followed by a number.

Mime
Type

string No Specifies the attachment content type. You must specify this value using
expressions. The default value is "text/html".

Encoding string Yes Specifies the encoding of the email notification. You must specify this value
using expressions.

Value Any No Specifies the attachment file. You must specify this value using expressions.

14.2.5 How to Configure Email Notification Header Properties
To configure the header properties you can add one or more headers. Note that configuring
header properties is optional.

To add a header:

1. Click the Add button.

The Create Header dialog box appears.

2. Provide the name and value properties.

Table 14-4 Header Properties

Property Data Type Description

Name string Specifies the name of the header. You must specify this value using
expressions.

Value string Specifies the value of the header. You must specify this value using
expressions.

3. Click OK.

Chapter 14
Sending Email Notifications

14-3

14.3 Sending a User Notification
User notification allows you to send a message to the users in a certain point of the
process.

You must use the communication media defined for that user.

14.3.1 How to Send a User Notification

To send an email notification:

1. Open your BPMN business process.

2. Add a User Notification task.

3. Right-click the User Notification task.

4. Select Properties.

5. Click the Implementation tab.

6. In the General tab configure the properties described in How to Configure User
Notification General Properties.

7. Click the Properties tab to configure the properties described in How to Configure
User Notification Properties.

8. Click OK.

14.3.2 How to Configure User Notification General Properties
Use the following table to configure the general properties of a user notification. Note
that some of the properties are optional.

Table 14-5 Email Notification General Properties

Property Data
Type

Optional Description

To string No Specifies the email addresses of the receivers of the user notification. You can
specify these email addresses using expressions or using the Identity Lookup
browser.

Subject string Yes Specifies the subject of the user notification. You must specify this using
expressions.

Message string Yes Specifies the message to send using the user notification. You must specify this
using expressions.

14.3.3 How to Configure User Notification Properties
You can add one or more properties. Note that configuring properties is optional.

To add a header:

1. Click the Add button.

Chapter 14
Sending a User Notification

14-4

The Create Property dialog box appears.

2. Provide the name and value properties.

Table 14-6 Properties

Property Data Type Description

Name string Specifies the name of the property. You must specify this value
using expressions.

Value string Specifies the value of the property. You must specify this value using
expressions.

3. Click OK.

14.4 Sending an SMS Notification
Using the notification service, you can send an SMS a message to users in a certain point of
the business process.

You can use the Identity Lookup browser to select one or more users.

14.4.1 How to Send an SMS Notification

To send an email notification:

1. Open your BPMN business process.

2. Add a SMS Notification task.

3. Right-click the Mail Notification task.

4. Select Properties.

5. Click the Implementation tab.

6. Configure the General Properties described in How to Configure SMS Notification
General Properties.

7. Click OK.

14.4.2 How to Configure SMS Notification General Properties
Use the following table to configure the general properties of an SMS notification. Note that
some of the properties are optional.

Table 14-7 Email Notification General Properties

Property Data
Type

Optional Description

From # string No Specifies the cellphone number used to send the SMS notification.

To # string No Specifies the cellphone numbers of the receivers of the SMS notification. You
can specify these cellphone numbers using expressions or using the Identity
Lookup browser.

Chapter 14
Sending an SMS Notification

14-5

Table 14-7 (Cont.) Email Notification General Properties

Property Data
Type

Optional Description

Subject string Yes Specifies the subject of the SMS notification. You must specify this using
expressions.

Body string Yes Specifies the body of the SMS notification. You must specify this using
expressions.

14.5 Sending an IM Notification
Using the notification service, you can send an Instant Message to users in a certain
point of the business process.

You can use the Identity Lookup browser to select one or more users.

14.5.1 How to Send an IM Notification

To send an email notification:

1. Open your BPMN business process.

2. Add a IM Notification task.

3. Right-click the Mail Notification task.

4. Select Properties.

5. Click the Implementation tab.

6. Configure the General Properties described in How to Configure IM Notification
General Properties.

7. Click OK.

14.5.2 How to Configure IM Notification General Properties
Use the following table to configure the general properties of an IM notification. Note
that some of the properties are optional.

Table 14-8 Email Notification General Properties

Property Data
Type

Optional Description

To string No Specifies the user IDs of the receivers of the IM notification. You can specify
these user IDs using expressions or using the Identity Lookup browser.

Body string Yes Specifies the body of the IM notification. You must specify this using
expressions.

Chapter 14
Sending an IM Notification

14-6

15
Using SOA Composites with BPM Projects

SOA Composites show the dependencies between a BPMN process and the other
components of your BPM project. Use SOA Composites to design a BPMN process and
integrate it with other SOA components.

• Introduction to SOA Composites

• Opening the SOA Composite in a BPM Project

• Opening BPMN Processes from the SOA Composite in a BPM Project

• Adding a BPMN Process from the SOA Composite Editor

• Integrating with BPEL Processes Using the SOA Composite

• Adding a BPMN Process as a Partner Link in a BPEL Process

• Connecting to a BPMN Process Using Web Services

• Building a BPM Project

15.1 Introduction to SOA Composites
SOA Composites group interrelated components, enabling the integration of different
technologies into a single application. The composite provides a single deployment and
management model, end-to-end data security, and unified metadata management to the
components it contains.

BPM projects use the SOA technology. They are a SOA composite project that also includes
BPMN component types and the configuration related to BPMN components such as
calendars and organizational units. They use this composite to store information that
describes the relationship between the different components in your BPM project and the
services they expose.

BPMN processes are a component in the SOA Composite. You can view how a BPMN
process relates to the rest of the components in the SOA Composite, using the SOA
Composite editor.

The SOA Composite of a BPM project shows the following:

• The available SOA components to use in your BPM project

• The BPMN and BPEL processes in your BPM project

• The relationship between the SOA components and the processes

If the SOA Composite contains components or external references that expose services, then
these appear in the business catalog. See Using the Business Catalog, for more information
about the business catalog.

When you add a component to the SOA Composite, it automatically appears in the business
catalog so that you can use it in your BPM project.

Reusable processes do not appear in the SOA Composite. When you modify a business
process and transform it into a reusable process, it disappears from the SOA Composite. For

15-1

more information about reusable subprocesses, see Introduction to Invoking a Process
Using Call Activities.

The SOA Composite is the unit that you use to deploy your BPM project. The
components and dependencies that appear in the SOA Composite specify how to
deploy a project. If you remove a process or a wire from the SOA Composite, then
even if they still appear in the BPM Project they are ignored when you deploy the
project.

15.1.1 Understanding the Relationship Between SOA Composites and
SOA Components

When you run a BPM project the SOA engine creates a SOA composite instance. The
SOA composite instance contains instances of the SOA components. However the
references components are not created automatically. The instances linked to services
are created when the service is invoked and consequently a composite is created. In
the case of a human task with a wire to a BPMN process, the BPMN process instance
is created when the BPMN process is triggered.

15.1.2 Working with SOA Components
All the SOA components and external references that are exposed as services in the
SOA Composite appear in the business catalog in your Business Project.

If you created your BPM project based on an existing SOA project, then all the
components and external references exposed as services in your SOA project
automatically appear in the business catalog.

If there are activities in your BPMN process that use a component in their
implementation, then the SOA Composite shows a wire between the BPMN process
and the component.

Wires represent a relationship between a service and a reference. When you save a
BPMN process Oracle BPM Studio automatically updates the wires between the
BPMN process and the components it uses. Services represent the interface a
component exposes. References represent the service interfaces a component
requires.

Some of the activities in your BPMN process require you to assign them an SOA
component to implement them. For most of these components you can choose to add
them from the Oracle BPM Studio user interface, or you can use the SOA Composite
editor. From the SOA Composite editor you can add the following SOA components to
your BPM Project:

• Service Adapters

• Human Tasks

• Business Rules

• Mediators

• BPEL Processes

Mediators and BPEL Processes are only available from the SOA Composite editor.

If the SOA component that you added to the SOA Composite exposes itself as a
service, then the Component appears in the business catalog. You can use any of the

Chapter 15
Introduction to SOA Composites

15-2

components in the business catalog to implement the activities in your BPMN Process. For
more information about how to implement BPMN activities, see the chapters in the following
parts:

• Working with Business Components

• Controlling the Process Flow

Figure 15-1 BPMN process in an SOA Composite

15.1.3 BPMN Process in SOA Composites
When you add a BPMN process it is automatically added to the SOA Composite. The BPM
process appears as a component in the SOA Composite.

If the BPMN process contains a start event of type message, then the interface of the
process appears as an exposed service.

The SOA Composite shows how your process depends on the different components your
BPM Project uses. If an activity in your project uses a service exposed by an SOA
component for its implementation, then the SOA component shows a line between the
exposed service and the BPMN process. This line represents the wire that links the BPMN
Process and the exposed service.

15.1.4 How Do BPMN Errors Affect the SOA Composite Status
The status of the components in the SOA composite determine the status of the SOA
composite. If an exception occurs in a BPMN process, then the status of the SOA composite
is marked as faulted. Even is the BPMN process handles the exception and finishes running
successfully, the status of the SOA composite is marked as faulted.

Chapter 15
Introduction to SOA Composites

15-3

15.2 Opening the SOA Composite in a BPM Project
BPM projects are layered on top of a SOA project. The SOA project contains a SOA
Composite. You must use the SOA Composite editor to add SOA components to your
BPM project.

The SOA components you add to the SOA Composite automatically appear in the
business catalog of your BPM project.

15.2.1 How to Open the SOA Composite in a BPM Project
You can open the SOA Composite contained in your BPM project to add new SOA
components or edit the existing ones.

To open the SOA Composite in a BPM project:

1. Select the Applications window.

2. Double-click the composite file located in the SOA directory of your project.

The composite file name matches the name of your project.

The SOA Composite editor opens.

15.3 Opening BPMN Processes from the SOA Composite in
a BPM Project

BPM projects use the SOA technology, therefore they contain a SOA Composite. You
can use the SOA Composite editor to view the dependencies of your BPM processes
with other components in your BPM project.

You can also add new components to your BPM project.

15.3.1 How to Open a BPMN Process from the SOA Composite in a
BMP Project

You can open a BPMN process from the SOA Composite without having to switch to
the Applications window.

To open a BPMN process from SOA Composite in a BPM Project:

1. Open the SOA Composite editor.

2. Double-click the BPMN process you want to open.

The BPMN process editor appears. Any changes you make to a process appear
on the SOA Composite.

Chapter 15
Opening the SOA Composite in a BPM Project

15-4

15.4 Adding a BPMN Process from the SOA Composite Editor
You can add new BPMN processes directly from the SOA Composite editor. You do not have
to switch to the Applications window.

When you add a BPMN Process, the BPMN process appears as a component in the SOA
Composite editor. The new process appears in the Processes folder in the Applications
window. You can right-click and select edit, or double click the BPMN process to edit once it
is created.

15.4.1 How to Add a BPMN Process from the SOA Composite Editor
If you identify the need of a BPMN process while analyzing the business application
infrastructure, then you can directly add it without leaving the SOA Composite editor.

To add a BPMN process from the SOA Composite Editor:

1. Open the SOA Composite editor.

2. Select BPMN Process from the Components section in the Components window.

3. Drag the selected component to the Components area in the SOA Composite editor.

The BPMN 2.0 Process wizard appears.

15.5 Integrating with BPEL Processes Using the SOA
Composite

The SOA Composite editor shows the BPEL processes and the BPMN processes in your
project. You can use the Composite editor to design the integration between a BPEL process
and a BPMN process.

To use a BPMN process from a BPEL process you must add the BPMN process as a partner
link in the BPEL process. To add the BPM process as a partner link in the BPEL process you
must use the SOA Composite editor. After adding the BPMN process as a partner link, you
can use the BPEL editor to link the BPMN process to the activities in the BPEL process.

To use a BPEL process from a BPMN process you must add the BPEL process to the SOA
Composite. After you do this the BPEL process appears in the business catalog. You can use
the BPEL processes in the business catalog to implement the activities in your BPMN
process.

Chapter 15
Adding a BPMN Process from the SOA Composite Editor

15-5

Figure 15-2 BPMN Process as a Partner Link in a BPEL Process

15.6 Adding a BPMN Process as a Partner Link in a BPEL
Process

To use a BPMN process from a BPEL process you must add it as a partner link.

You can then use the BPEL editor to invoke the BPMN process from the activities in
the BPEL process.

15.6.1 How to Add a BPMN Process as a Partner Link in a BPEL
Process

To use a BPMN process from a BPEL process, you must first add the BPMN process
as a partner link in the BPEL process.

To add a BPMN process as a partner link in a BPEL process:

1. Open the SOA Composite editor.

2. Place the mouse pointer over the BPEL process component.

Orange arrows appear to the sides of the BPEL process component. The arrow on
the left enables you to add a new service. The arrow on the right enables you to
add a new reference.

3. Click the right arrow and drag.

A green link appears and all the services exposed by the components in the
composite, including those exposed by BPMN processes, turn green.

4. Drop the link on the service of the BPMN process you want to add as a partner
link.

The BPMN process appears as a partner link in the BPEL process and you can invoke
the BPMN process from the BPEL process.

Chapter 15
Adding a BPMN Process as a Partner Link in a BPEL Process

15-6

15.7 Connecting to a BPMN Process Using Web Services
If a BPMN process defines a process interface, then you can connect to that process using
web services. All the BPMN processes that define a process interface appear in the SOA
Composite.

For more information about defining a process interface, see Defining the Process Interface.

To connect to a BPMN process using a custom web service client you must log in to Oracle
Enterprise Manager and vie the dashboard page for the composite. This page contains a link
to the WSDL URL. The WSDL contains the service location information needed to connect to
the BPMN process.

15.8 Building a BPM Project
When you deploy a BPM project to the SOA runtime, it automatically builds your project. If
the build fails then the deployment fails too.

You can build your BPM project from Oracle JDeveloper to view the errors in the build and fix
them.

After you build the BPM project, the Compiler Log window displays the results.

If there are any errors, you can select the Compiler tab and click the errors to open the
corresponding editor and correct them.

15.8.1 How to Build a BPM Project
To build a BPM project:

1. Open the BPM project.

2. Select the Applications window.

3. Right-click the file that corresponds to your project.

4. Select Make Project.

Oracle JDeveloper compiles the BPM Project. The Compiler Log window displays the
results of the compilation.

Chapter 15
Connecting to a BPMN Process Using Web Services

15-7

Part V
Controlling the Process Flow

Learn how to implement the different BPMN flow objects that you can use to control the
process flow and also learn how to communicate with other BPMN processes and external
services.

• Controlling the Process Flow

• Adding Delays, Deadlines, and Time-Based Cycles to a Process

• Handling Errors

• Using Fault Handling in BPM

• Communicating With Other BPMN Processes and Services

• Defining the Process Interface

• Communicating Business Processes Using Correlations

• Defining Conversations

• Writing Expressions

• Writing BPM Scripts

• Debugging a BPM Project

16
Controlling the Process Flow

Learn about different flow objects that you can use to control flow in a process and also learn
about markers that you can define for subprocesses.

• Introduction to Controlling the Process Flow

• Introduction to Loop and Multi-Instance Markers in Subprocesses

• Suspending the Current Process Flow to Run an Alternative Process Flow

16.1 Introduction to Controlling the Process Flow
Oracle BPM provides different structures to control the flow of a process. These structures
enable you to decide which path a process instance takes based on different conditions.

The structures that allow you to control the flow of a process are:

• Gateways

• Timer Events

• Errors

• Message Events

• Send and Receive Tasks

• Loop Markers

• Multi-Instance Markers

16.1.1 Gateways
Gateways are flow objects that enable you to fork the flow of a process. Depending on the
type of gateway the instance follows one ore more outgoing sequence flows coming out of a
gateway, or multiple copies are created to run these branches in parallel.

For more information about gateways, see "BPMN Flow Object Reference" in the Developing
Business Processes with Oracle Business Process Composer.

16.1.2 Timer Events
Timer events enable you to define the path a process instance takes based on a time
condition. For more information about timer events, see Adding Delays, Deadlines, and Time-
Based Cycles to a Process.

16.1.3 Errors
Error events enable you to define how a process handles an abnormal situation. You can use
error events to define different process flows for each of the errors that may occur in a
business process. For more information about error events, see Handling Errors.

16-1

16.1.4 Message Events
Message events enable you to define a process flow based on the occurrence of a
certain event. Generally you use message events to asynchronously invoke a BPMN
process (asynchronous inter-process communication) or an external service such as a
BPEL process. For more information about message events, see Communicating With
Other BPMN Processes and Services.

16.1.5 Send and Receive Tasks
Message events enable you to define a process flow based on the occurrence of a
certain event. Generally you use message events to asynchronously invoke an
external service or another BPMN process. For more information about message
events, see Communicating With Other BPMN Processes and Services.

16.1.6 Loop Markers
Loop markers enable you to run a subprocess multiple times based on a certain
condition. For more information about loop markers, see Introduction to Loop and
Multi-Instance Markers in Subprocesses.

16.1.7 Multi-Instance Loop Markers
Multi-instance loop markers enable you to run a subprocess for each of the elements
in a set of data. For more information about loop markers, see Introduction to Loop
and Multi-Instance Markers in Subprocesses

16.1.8 Suspending the Current Process Flow
You can suspend a flow object, a subprocess or a process. For more information about
suspending the current process flow, see Suspending the Current Process Flow to
Run an Alternative Process Flow.

16.2 Introduction to Loop and Multi-Instance Markers in
Subprocesses

You can configure subprocesses to run multiple times using loop and multi-instance
markers. To configure loop and multi-instance makers you must define expressions
and conditions that specify how to repeat the subprocess.

Loop Markers

Loop markers enable you to run a subprocess multiple times based on condition. You
can configure the loop marker to evaluate the condition before or after running the
subprocess. You can also configure the loop marker to stop after a certain number of
repetitions.

To configure a loop maker you must write a Loop Condition that determines if the
BPMN Service Engine must continue to repeat the subprocess.

Chapter 16
Introduction to Loop and Multi-Instance Markers in Subprocesses

16-2

Multi-Instance Markers

Multi-Instance markers enable you to run a subprocess for each of the elements on a set of
data. When the BPMN Service Engine runs a subprocess with a multi-instance loop marker it
creates a set of instances, one for each element on the set of data. You can configure the
multi-instance marker to process these instances in parallel or sequentially.

The following fields in a multi-instance loop marker require you to write an expression:

• Loop Cardinality

This expression defines the number of tokens to create in the subprocess.

• Completion Condition

This expression determines when to stop repeating the subprocess. The BPM Service
Engine evaluates this condition every time a token completes the subprocess. If the
condition evaluates to true, it considers the subprocess completed and the instance
moves to the next flow object in the process.

16.2.1 How to Configure Loop Markers
You can configure a loop marker to run a subprocess multiple times.

To configure loop markers:

1. Right-click the subprocess.

2. Select Properties.

3. Click the Loop Characteristics tab.

4. Select Loop.

5. Specify the Loop Condition:

a. Select the expression language.

Possible options are Simple or XPath.

b. In the text area below, write the condition that drives the loop.

Optionally you can write the condition using the Expression Builder. To launch the
Expression Builder click the Expression Builder button next to the text area.

6. Optionally, you can specify a maximum number of times for the loop to run:

a. Select Loop Maximum.

b. Specify a number.

7. Select before to evaluate the condition before running the flow object, or deselect it to
evaluate the condition after running the flow object.

8. Click OK.

16.2.2 How to Configure Multi-Instance Markers
You can configure a multi-instance marker to run a subprocess multiple times based on a set
of data.

Chapter 16
Introduction to Loop and Multi-Instance Markers in Subprocesses

16-3

To configure multi-instance markers:

1. Right-click the subprocess.

2. Select Properties.

3. Click the Loop Characteristics tab.

4. Select MultiInstance.

5. Select the mode:

• Sequential: specifies that the each token must complete the subprocess
before the next token starts to run the subprocess.

• Parallel: specifies that tokens run in parallel

Note:

When using parallel mode consider that using process data objects to
store information that results from running the subprocess may result in
instances overwriting the information. To avoid this use subprocess data
objects.

6. Specify the Loop Cardinality:

a. Select the expression language.

Possible options are Simple or XPath.

b. In the text area below, write the specifies the loop cardinality.

Optionally you can write the condition using the Expression Builder. To launch
the Expression Builder click the Expression Builder button next to the text
area.

7. Optionally, you can specify the Completion Condition:

a. Select the expression language.

Possible options are Simple or XPath.

b. In the text area below, write the condition that determines if the loop is
completed.

Optionally you can write the condition using the Expression Builder. To launch
the Expression Builder click the Expression Builder button next to the text
area.

8. Click the Browse button next to the Loop Data Output field, to specify the data
output.

You can select a data object or an attribute in a complex data object to pass to the
subprocess. Generally the selected data object is a collection of items.

9. Click the Browse button next to the Loop Data Input field, to specify the data
input.

Select a data object or an attribute in a complex data object to assign the result of
the subprocess.

10. Click OK.

Chapter 16
Introduction to Loop and Multi-Instance Markers in Subprocesses

16-4

16.3 Suspending the Current Process Flow to Run an
Alternative Process Flow

To suspend a process you must configure an existing start event of a subprocess or add a
new one. When the process instance arrives to the start event of the event subprocess, the
main process flow is suspended and the BPM runtime runs the process flow in the even
subprocess.

To suspend a flow object or a sub-process you must configure an existing boundary event or
add a new one. The boundary event can be a message event, a timer event or a signal
event. When the process instance reaches the flow object with the boundary event, the main
process flow is suspended and the BPM runtime runs the event handler sequence flow, the
alternative sequence flow.

16.3.1 How to Configure a Flow Object to Suspend the Current Process
Flow

You can configure boundary events and event subprocesses to suspend the current process
flow.

To configure a flow object to suspend the current process flow:

1. Open the BPMN process.

2. Right-click the boundary event or subprocess that you want to use to suspend the
process flow.

3. Select Properties.

4. Select the Implementation tab.

5. Select the Suspending Event option.

16.3.2 How to Resume the Suspended Process Flow
To resume the process flow you must set the value of the predefined variable action to one of
the following values:

• RESUME

Resumes the suspended process flow.

• SEND

Moves the process instance to the next flow object in the process flow that caught the
suspension. The suspended scope is canceled.

You can set the value of the predefined variable action in following ways:

• Using data associations

For more information, see Introduction to Data Associations.

• Using BPM scripts

For more information, see Writing BPM Scripts.

Chapter 16
Suspending the Current Process Flow to Run an Alternative Process Flow

16-5

After running a task in an alternative sequence flow, the BPM runtime checks the value
of the predefined variable action. If the value of the predefined variable action is
RESUME or SEND, it resumes the main process flow and cancels the event handler
sequence flow.

Chapter 16
Suspending the Current Process Flow to Run an Alternative Process Flow

16-6

17
Adding Delays, Deadlines, and Time-Based
Cycles to a Process

Use timer events to add time conditions like adding delays and deadlines, running additional
activities to your BPMN process.

• Introduction to Timer Events

• Adding a Delay to the Process Flow

• Designing a Process to Start Based on a Time Condition

• Configuring a Deadline for an Activity

• Configuring a Deadline for a BPMN Process

• Running Additional Activities

• Configuring Timer Events

17.1 Introduction to Timer Events
Timer events enable you to control the flow of your process using a time condition. Timer
events are not based on the business calendar definitions.

You can use timer events for:

• Creating a delay before running an activity

• Configuring a deadline for an activity

• Configuring a deadline for a process

• Triggering additional activities after an elapsed time

• Start a process

• Trigger a process periodically

Oracle BPM enables you to configure timers using:

• A specific date and time

You can configure a timer event to fire on a certain date. You can specify a specific date
or use a function to calculate the it.

• A relative time

You can configure a timer event to fire after an elapsed time. You can specify the elapsed
time or use a function to calculate it. If the timer event is a start event or a non-
interrupting boundary event, then it fires multiple times.

When you define a timer event as a boundary event you can choose to configure it as
interrupting or non-interrupting.

17-1

When an interrupting timer event fires, the token leaves the main process flow to
follow the flow the timer defines. The flow an interrupting event defines, can resume
the main process flow

When an non-interrupting event fires, the BPMN Service Engine creates a copy of the
token that is running the main process flow and routes that copy through the flow the
timer event defines. The flow a non-interrupting event defines cannot resume the main
process flow.

Note:

Make changes to calendar only at design time as runtime changes to
calendar are not supported. The technical reason behind this is, because
there is no a calendar cache, accessing the database for calendars causes
performance issues.

17.2 Adding a Delay to the Process Flow
You can add a delay to the process flow by adding an intermediate timer catch event.
When the token arrives to the timer event it waits the time specified in the timer event
before moving to the next activity in the process.

For example, in a process that updates multiple data bases you might want to add a
timer activity that delays the process a few minutes, to ensure that all databases are
updated when the process continues.

You can configure the intermediate timer catch event to wait until a specific date or to
wait for a certain period. In both cases you can choose to use a fixed value or to use
an expression that specifies the corresponding date or interval.

When you configure a timer intermediate event as a cycle, the timer event only runs
one time. It waits until the specified interval passes and then the token continues
moving through the rest of the process flow.

Figure 17-1 Delaying the Process Flow

17.2.1 How to Add a Delay to the Process Flow
You can add a delay between two flow objects.

To create a delay until a specified date in the process flow:

1. Locate the point in your process where you want to add the delay.

2. From the Component Palette, from the Catch Events section, select Timer.

3. Drop the timer event in the point where you want to add the delay.

Chapter 17
Adding a Delay to the Process Flow

17-2

4. If you want to delay the process until a specific date, then you must configure the timer
event as time date. See How to Configure a Timer Event To Use a Specific Date and
Time.

If you want to delay the process for a certain period, then you must configure the timer
start event as cycle. See How to Configure a Timer Event to Use an Interval.

If you want the timer to run using a specific schedule, then you must configure the timer
as schedule. See How to Configure a Timer Event to Run Periodically.

A token that arrives to the intermediate timer event remains in the timer event until the time
specified by the timer event arrives. If you configure the timer event to use a date, then the
token remains in the timer event until the specified date. If you configure the timer event to
use a cycle, then the token remains in the timer event until the specified time passes.

17.3 Designing a Process to Start Based on a Time Condition
You can add a timer start event to your process to configure it to be triggered based on a time
condition. When the time condition specified in the timer start event evaluates to true, the
BPMN Service Engine creates a new instance in the process.

For example, in a process to report working hours you can add a timer start event that
creates an instance in the process one time a day.

You can configure your process to start on a specific date or to periodically create an
instance. In both cases you can choose to use a fixed value or to use an expression that
specifies the corresponding date or interval

When deploying a process containing a timer start event specifying a past date, the BPMN
Service Engine automatically creates an instance of the process.

Figure 17-2 Starting a Process Based on a Time Condition

17.3.1 How to Design a Process to Start Based on a Time Condition
You can design your process to start when a specific date arrives or to periodically start after
a certain elapsed time.

To design a process to start based on a time condition:

1. Open the BPMN process.

2. If you want your process to have a single start event, then you must right-click the start
event and select Change Trigger Type and then Timer.

If you want your process to have multiple start events, then you must select a timer start
event from the Start Events section in the Component Palette. Drop the timer start event
on you process. Right-click the timer start event and select Properties.

Chapter 17
Designing a Process to Start Based on a Time Condition

17-3

3. If you want the process to start on a specific date, then you must configure the
timer event as time date. See How to Configure a Timer Event To Use a Specific
Date and Time.

If you want the process to start after a certain period, then you must configure the
timer start event as cycle. See How to Configure a Timer Event to Use an Interval.

If you want the process to start based on a specific schedule, then you must
configure the timer as schedule. See How to Configure a Timer Event to Run
Periodically.

The BPMN Service Engine creates an instance in the process each time the time
condition in the timer start event evaluates to true. If you configure the timer start event
to use a specific date, then the BPMN Service Engine creates an instance when the
specified date arrives. If you configure the timer start event to use a cycle, then the
BPMN Service Engine periodically creates an instance in the process.

17.4 Configuring a Deadline for an Activity
You can configure a deadline for an activity using an interrupting timer catch event
configured as a boundary interrupting event that leads to another point of the process.
If the token remains in the activity for longer than expected or beyond a certain date,
then the timer catch event gets triggered and interrupts the process flow.

You can configure the deadline to happen on a specific date, or after the token spends
a certain time in the activity. In both cases you can specify a fixed date or interval or an
expression that calculates the corresponding date or interval.

For example, in an purchase order process, you might want to configure the activity
that gets the credit card approval to wait the approval for a day. And if the approval
takes longer, then direct the token to an activity that sends a message to the customer.

Figure 17-3 Activity Deadline

17.4.1 How to Configure a Deadline for an Activity
You can configure a deadline for an activity so that the token moves to another activity
after the deadline expires. You can specify to which activity the token moves after the
deadline expires.

To configure a deadline for an activity:

1. Locate the activity in your process for which you want to configure a deadline.

2. From the Component Palette, from the Catch Events section, select Timer.

3. Drop the timer event over the activity.

Chapter 17
Configuring a Deadline for an Activity

17-4

The timer event becomes a boundary event. A sequence flow coming out from the
boundary timer catch event appears.

4. Place the cursor over an end event and click to drop the sequence flow there.

5. If you want the deadline to happen on a specific date, then you must configure the
boundary timer catch event as time date. See How to Configure a Timer Event To Use a
Specific Date and Time.

If you want the deadline to happen after a certain period, then you must configure the
boundary timer catch event as cycle. See How to Configure a Timer Event to Use an
Interval.

If you want to set the deadline using a specific schedule, then you must configure the
timer as schedule. See How to Configure a Timer Event to Run Periodically

6. In the Implementation tab, in the Timer Properties dialog box, select Interrupting Event.

If the activity is still running when the timer event fires, then the token quits the activity and
move to a different point in the process. The timer event fires because a certain date arrives
or because the specified period passes, depending on how you configured the timer event.

17.5 Configuring a Deadline for a BPMN Process
You can configure a process deadline for your process using an event subprocess that starts
with an interrupting timer start. After a certain time passes or a date arrives, the timer event
fires. If the token is still in the process then it moves to the event subprocess.

The timer event is only active while the token remains in the process.

You can configure the deadline to happen on a specific date, or after the token spends a
certain time in the activity. In both cases you can specify a fixed date or interval or an
expression that calculates the corresponding date or interval.

For example, in a purchase order process, you can configure the process so that if the token
stays in the process for more than three months, then it automatically ends the process.

You might want to use an error end event in the event subprocess, so that the process does
not finish running successfully.

Figure 17-4 Process Deadline

Chapter 17
Configuring a Deadline for a BPMN Process

17-5

17.5.1 How to Configure a Deadline for a BPMN Process
You can configure a deadline for a BPMN process. You can choose to terminate the
process flow or to run a group of flow object when the deadline expires.

To configure a deadline for a BPMN process:

1. Open the BPMN process.

2. From the Component Palette, from the Activities section, select Event
Subprocess.

3. Drop the event subprocess in the process.

4. Configure the start event in the event subprocess to be a timer event:

a. Right-click the start event in the event subprocess.

b. Select Properties.

c. Click the Implementation tab.

d. From the Implementation Type list, select Timer.

e. Select Interrupting Event.

f. If you want the deadline to happen on a specific date, then you must configure
the timer event as time date. See How to Configure a Timer Event To Use a
Specific Date and Time.

If you want the deadline to happen after a certain period, then you must
configure the timer event as cycle. See How to Configure a Timer Event to
Use an Interval.

If you want to set the deadline using a specific schedule, then you must
configure the timer as schedule. See How to Configure a Timer Event to Run
Periodically

If the token stays in the process longer than specified by the interrupting timer event,
then the timer event fires. When the timer start event in the event subprocess fires the
token leaves the process and moves to the event subprocess.

17.6 Running Additional Activities
While running an activity or a process you can run additional activities based on a time
condition. You can choose to trigger the additional activities periodically or on a certain
date.

Typically you run additional activities when the activity you are currently running takes
a long time to finish. For example, if you run a service that takes twenty hours to
update a database, then you might want to send an email to inform progress of the
update to the interested parties.

The timer event is only active while the token remains in the activity.

You can also run additional activities while a process is running. These activities run in
parallel to the main process flow.

Chapter 17
Running Additional Activities

17-6

Figure 17-5 Running Additional Activities While an Activity is Running

Figure 17-6

17.6.1 How to Run Additional Activities While an Activity is Running
You can run a parallel process flow while an activity is running. Generally you design a
parallel process flow to trigger after a certain time when you know that the main activity might
take long to complete.

To run additional activities while an activity is running:

1. Locate the activity to run in parallel to the additional activities.

2. Create an additional process flow by adding activities connected by sequence flows,
outside the main process flow.

3. Add a timer event as a boundary to the activity.

A sequence flow for you to connect to an activity appears.

4. Connect the sequence flow to the additional process flow you created.

If the token is still in the activity when the non-interrupting fires, then the BPMN Service
Engine creates a copy of that token and routes it through the flow that the timer event
defines. The timer might fire multiple times while the activity in the main process flow is
running.

Chapter 17
Running Additional Activities

17-7

17.6.2 How to Run Additional Activities While a Process is Running
You can run additional activities while the main process flow is running. Generally you
design a parallel process flow to trigger after a certain time when you know your
process might take a long time to complete.

To run additional activities while a process is running:

1. Add a subprocess event to your process.

2. Right-click the start event in the subprocess event.

3. Select Properties.

4. Click the Implementation tab.

5. From the Implementation Type list, select Timer.

6. Verify that the Interrupting Event option is not selected.

7. If you want the additional activities to run on a specific date, then you must
configure the timer event as time date. See How to Configure a Timer Event To
Use a Specific Date and Time

If you want the additional activities to run periodically, then you must configure the
timer event as cycle. See How to Configure a Timer Event to Use an Interval.

If you want to run additional activities using a specific schedule, then you must
configure the timer as schedule. See How to Configure a Timer Event to Run
Periodically

8. Add the additional activities to the subprocess event.

When the timer start event in the event subprocess fires, the BPMN Service Engine
creates a copy of the token in the main process flow. The copy of the token in the main
process flow follows the additional process flow the subprocess event defines. The
timer start event may fire multiple times while the main process flow is running.

17.7 Configuring Timer Events
You can configure timer events to fire on a specific date and time, or to fire after a
certain time passes. In both cases you can choose to provide a fixed time value or an
expression that calculates it.

You can also configure a timer event to run periodically. The different supported
granularities are daily, weekly and monthly. In all these cases you can configure the
timer event to calculate the dates using the calendar rules defined for that project and
to reschedule any event that matches a holiday.

17.7.1 How to Configure a Timer Event To Use a Specific Date and
Time

You can configure a timer event to use a specific date and time. You can provide the
date and time or use an expression to calculate it.

To configure a timer event to use a specific date and time:

1. Right-click the timer event.

Chapter 17
Configuring Timer Events

17-8

2. Select Properties.

3. Click the Implementation tab.

4. Select Time Date.

5. Provide a date.

The following options are available to provide a date:

• Click the calendar button next to the Date field. Select a date and enter a time and
close the calendar dialog box.

• Enter the date in the Date field. For example: Jan. 18, 2010 4:31:10 PM

• Select Use Expression and provide an expression that returns a Date.

See Writing Expressions in Timer Events in Adding Delays, Deadlines, and Time-
Based Cycles to a Process for more information.

Note:

The date and time you specify correspond to the time zone the BPMN Service
Engine uses.

6. Click OK.

The timer event fires on the specified date and time. If you used an expression to specify the
date and time, then the engine evaluates this expression to determine when to fire the timer
event.

17.7.2 How to Configure a Timer Event to Use an Interval
You can configure a timer event to use an interval. You can specify the interval or use an
expression to calculate it.

To configure a timer event to use an interval:

1. Right-click the timer event.

2. Select Properties.

3. Click the Implementation tab.

4. Select Time Cycle.

5. Provide a time interval or select Use Expression and write an expression that returns an
Interval.

See Writing Expressions in Timer Events for more information

6. Click OK.

The timer event fires periodically, waiting the time the interval specifies. If the timer event is a
start event or a non-interrupting boundary event, then it fires multiple times. If the timer event
is an intermediate timer event or an interrupting boundary event, then it waits for the specified
interval before firing, but it fires only one time.

Chapter 17
Configuring Timer Events

17-9

17.7.3 How to Configure a Timer Event to Run Periodically
You can configure a timer event to run daily, weekly or monthly at one or more
specified times. You can also configure it to schedule the event using the calendar
rules defined for the organization and to use a specified policy for rescheduling the
event in case it falls on a holiday our outside the work schedule.

To configure a timer event to run periodically:

1. Right-click the timer event.

2. Select Properties.

3. Click the Implementation tab.

4. Select Time Schedule.

5. Select the tab that corresponds to the period you want to define.

The available options are:

• Daily

• Weekly

• Monthly

6. Click the Add button to specify the exact time the event happens.

You may configure the event to run multiple times during a day, a week or a
month.

Table 17-1 shows how to specify the time according to the period you selected.

Table 17-1 Time Definition According to Selected Period

Selected
Period

Time Definition

Daily You must define the hour of the day.

Weekly You must specify the days of the week and the hour.

Monthly You must specify the month, the week, the day and the hour.

To configure the event to run on a specific day of the month, select Day
of Month in the Week column and the Day column allows you to specify
the day of the month.

To configure an event to run every month, select All in the Month
column.

7. Additionally you can configure the following optional settings:

• Run from: enables you to define the date and time for the event to start
running.

• Run to: enables you to define the date and time for the event to stop running.

• Repetitions: enables you to define the number of times the event runs. After
the event runs the number of times you defined, it stops running.

• Use Calendar Rules: specifies that the event runs based on the calendar
rules defined for the organization.

Chapter 17
Configuring Timer Events

17-10

If you select this option, then you must define how to reschedule the event in case it
is scheduled to run on a holiday or outside the work schedule. The available
rescheduling options are:

Rescheduling
Option

Description

No Reschedule The event does not run and it is not rescheduled.

As soon as
possible

The event is rescheduled for the next available working hour.

As soon as
possible but at
the same hour

The event is rescheduled for the next available working day at the same
time

8. Click OK.

Chapter 17
Configuring Timer Events

17-11

18
Handling Errors

Oracle BPM provides you with an exception component that enables you to model errors and
multiple BPMN structures that you can use to handle those errors while running the process.
Learn how to handle errors that occur when running a business process.

• Introduction to Error Handling

• Using Business Exceptions

• Using System Exceptions

• Typical Flow of an Exception

• Handling Exceptions in a Business Process

• Configuring Catch Events to Recover from an Exception

• Throwing Exceptions in Subprocesses or Reusable Processes

• Handling Exceptions in Subprocesses

• Handling Errors in a Peer Process Using Message Events

18.1 Introduction to Error Handling
There are two types of errors: system errors and process errors. System errors are the
consequence of a failure in the software or hardware infrastructure on which the BPMN
Service Engine is running, while process errors are unexpected situations within the process
flow itself.

A system error can have many causes. The following are examples of problems that can
cause a system error:

• Failure in the database connection

• Connectivity loss

• Problem with the hard disk

To recover from system errors within the process flow you can use system exceptions.

If you do not handle a system exception in your process, you can recover from them using
the fault recovery system provided by Oracle Enterprise Manager. For more information, see
in Recovering From Faults in the Error Hospital in Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

Process errors are problems that interfere with the regular development of your process. For
example, in a purchase order process, if there is no stock for the requested item then you
cannot continue with the regular process flow. You can handle these unexpected situations
within the process flow. One way to handle the situation in this example by letting the
customer cancel the order or save it for later.

The following are typical examples of unexpected situations within a process:

• Lack of stock

18-1

• Workload limit exceeded

• Expense limit exceeded

• Feedback past due

• Credit card authentication problems

When an exception occurs in a process, it affects the state of the SOA composite that
contains that BPMN process. For more information on how exceptions affect the state
of the SOA composite, see How Do BPMN Errors Affect the SOA Composite Status.

You can configure activities and events to force the BPM runtime to add a checkpoint
after completing them. To do this you must select the Force Commit After Execution
option. This is similar to the Dehydrate action in BPEL. You can use this option to
avoid re-running non-idempotent activities on recovery, which in case of an error rolls
back the transaction.

18.1.1 Handling Errors Using Exceptions
Oracle BPM uses business exceptions to represent unexpected situations that can
occur while running a business process.

You can design how to handle an exception as part of the business process, but it is
something that occurs outside of the usual flow of a process. The use of business
exceptions enables you to create less complicated processes where the main flow
follows the typical use cases, and there is a separate flow to handle the process
exception.

18.2 Using Business Exceptions
Business exceptions are considered a normal part of the process design, rather than
an error. When you add a component to the business catalog, if the services in the
component specify that they can produce errors, then these errors appear as business
exceptions in the business catalog in the Errors predefined module.

An exception can arise when you invoke a service. You can handle these exceptions
using a boundary error catch event or an event subprocess.

You can also define business exceptions in the business catalog. Then, you can use
those business exceptions in an error end event that is triggered under a certain
condition. The error end event generates the exception, and the parent process can
handle the exception.

18.3 Using System Exceptions
System exceptions represent low level errors that may occur while running a process.
In some cases you may require to handle this low level errors within your process. To
handle a system exception within the process flow you must catch the exception and
configure the error catch event to use system exceptions.

System exceptions may occur while running a service or another BPMN process. You
also design your process to throw certain system exceptions. The only exception that
you can use in a throw or end event is Rollback. All the other supported system
exceptions are only available for start of catch error events.

Chapter 18
Using Business Exceptions

18-2

System exceptions contain an errorInfo attribute of type Any. You can assign any value to this
attribute. Because its type is Any this value can belong to any type. Generally you use this
attribute to store the cause of the exception or important information for troubleshooting the
application.

You can only view the list of available system exceptions from the Implementation Properties
of an error event.

Table 18-1 describes the supported system exceptions. It also specifies the module where
the system exception resides and the error events that can use the specified system
exception.

Table 18-1 System Exceptions

System
Exceptio
n

Module Description Error
Event

AssertFail
ure

Bpel Indicates that the specified assertion failed. Catch,
Start

BindingFa
ult

Bpel Indicates that the preparation of the operation invoked in a flow object failed. For
example, the WSD loading failed. You cannot retry the invocation after a
BindingFault, recovering from this error generally requires human intervention.

Catch,
Start

InvalidVari
ables

Bpel Indicated that the variables used are not valid. Catch,
Start

RemoteF
ault

Bpel Indicates that there was a problem invoking a service in a flow object. For
example, the remote service returned a SOAP fault.

Catch,
Start

Timeout Soap Indicates that the service exceeded the response time out period. Catch,
Start

Conflictin
gReceive

Soap Indicates that there are multiple receive activities to respond to the invoked
operation.

Catch,
Start

Conflictin
gRequest

Soap Indicates that there are multiple requests on the same partner link for the
invoked operation.

Catch,
Start

Correlatio
nViolation

Soap Indicates that the message does not provide the required correlation
information.

Catch,
Start

ForcedTer
mination

Soap Indicates the service terminated because a SOAP fault occurred. Catch,
End

InvalidRe
ply

Soap Indicates that the reply does not contain the correlation information required by
the corresponding receive.

Catch,
Start

Mismatch
edAssign
mentFailu
re

Soap Indicates the assigned types are incompatible. Catch,
Start

Repeated
Compens
ation

Soap Specifies that a compensation handler is invoked multiple times. Catch,
Start

Selection
Failure

Soap Indicates there was an error running a selection operation. Catch,
Start

Uninitializ
edVariabl
e

Soap Indicates that the variable you are accessing is not initialized. Catch,
Start

Rollback Soap Enables the receiver of the exception to rollback the current JTA transaction
from within the process flow.

Throw,
End

Chapter 18
Using System Exceptions

18-3

18.4 Typical Flow of an Exception
The flow of a system or a business exception depends on where the exception
occurred.

Exceptions can occur while running the following:

• a task

• a subprocess

• a reusable process

18.4.1 Typical Flow of an Exception Thrown in a Task
The following describes what happens when the BPMN Service Engine runs a task
that causes an exception.

1. The BPMN Service Engine runs a task that starts a service that can throw an
exception.

2. The task fails with a SOAP error that the BPMN Service Engine converts into an
exception.

3. If the task has a boundary catch error event attached, then the instance follows the
flow defined by the boundary catch error event to handle the exception. The
exception handling flow may resume the main process flow. If it does not resume
the main process flow, then the process ends in the boundary catch error event.

If the task does not have a boundary catch error event associated with it, then the
exception propagates to the process level.

4. At the process level, the following options are possible:

• If the process does not contain an event subprocess that can catch the
exception and you did not define a fault policy, then the BPM Service Engine
logs this error to the Oracle Enterprise Manager fault recovery system.

• If the process contains an event subprocess with a start event of type error
configured to catch that exception, then the instance continues through the
exception handling flow. When the instance completes the exception handling
flow, the process ends.

18.4.2 Typical Flow of an Exception in a Subprocess
The following sequence describes what happens when the BPMN Service Engine runs
a subprocess that causes an exception.

1. The BPM Service Engine runs a subprocess that contains a task that invokes a
service that can throw an exception, or an end error event.

2. One of these events happens:

• The task throws an exception.

• The subprocess ends with an error event.

3. If the exception occurs in a task and the task has a boundary catch error event or
the subprocess contains an event subprocess that can handle the exception, then
the exception is not propagated to the parent process.

Chapter 18
Typical Flow of an Exception

18-4

If the subprocess ends with an error event, or the exception occurs in a task and is not
handled, then the exception propagates to the parent process.

4. The parent process can handle the exception if:

• The subprocess has a boundary catch event attached.

• It contains an event subprocess configured to catch the exception.

If the parent process cannot handle the exception, then it propagates it to its parent
process. If there is no parent process, then the exception is logged to the Enterprise
Manager fault recovery system.

18.4.3 Typical Flow of an Exception in a Reusable Process
The following sequence describes what happens when the BPMN Service Engine runs a call
activity that invokes a reusable subprocess that causes an exception.

1. The BPM Service Engine runs a reusable process that contains a task that invokes a
service that can throw an exception, or an end error event.

2. One of these events happens:

• The task throws an exception.

• The reusable process ends with an error event.

3. If the exception occurs in a task and the task has a boundary catch error event or the
reusable process contains an event subprocess that can handle the exception, then the
exception is not propagated to the parent process.

If the subprocess ends with an error event, or the exception occurs in a task and is not
handled, then the exception propagates to the parent process.

4. The parent process can handle the exception if:

• The call activity has a boundary catch event attached.

• It contains an event subprocess configured to catch the exception.

If the parent process cannot handle the exception, then it propagates it to its parent
process. If there is no parent process, then the exception is logged to the Enterprise
Manager fault recovery system.

18.5 Handling Exceptions in a Business Process
You can handle the exceptions that occur in an activity using a boundary error catch event or
an event subprocess. Boundary error catch events enable you to resume the main process
flow after handling the exception. If you want to reuse the exception handling flow for multiple
tasks in your process, then event subprocesses are more efficient than boundary catch
events.

Event subprocesses enable you to define a cleaner process with less effort because the
catch error event is located within the event subprocess. To reuse an exception handling flow
using boundary catch events, you must define a boundary catch event for each of the tasks,
and then connect those boundary events to the exception handling flow.

Figure 18-1 shows a process that handles an error using a boundary error catch event.

Chapter 18
Handling Exceptions in a Business Process

18-5

Figure 18-1 Boundary Error Catch Event

Event subprocesses also enable you to define data objects that you can access only
from within the event subprocess, in the same way that subprocesses enable you to
define their own data objects.

Figure 18-2 shows a process that handles an error using a an event subprocess.

Figure 18-2 Event Subprocess with a Start Error Event

18.5.1 How to Handle an Exception Using a Boundary Error Catch
Event

If you know that running a flow object can cause an exception, then you can design
your process to handle the exception using a boundary error catch event.

Chapter 18
Handling Exceptions in a Business Process

18-6

To handle an exception using a boundary error catch event:

1. Create an exception handling flow.

After handling the exception, this flow can resume the main process or end the process.

2. From the Component window, from the Catch Events section select Error Event.

3. Drop the error event over the task that throws the exception.

You can place the event in any part of the border of the task.

When you drop the error event, a sequence flow appears that you can connect to the
exception handling flow.

4. Connect the sequence flow to the exception handling flow.

5. Right-click the boundary catch error event.

6. Select Properties.

7. Click the Implementation tab.

8. Configure the implementation properties to catch a business or system exception.

For information on how to configure the implementation properties to catch business
exceptions, see How to Configure an Error Event to Catch Business Exceptions.

For information on how to configure the implementation properties to catch system
exceptions, see How to Configure a Catch Event to Catch System Exceptions.

If the BPMN Service Engine encounters an error while running a task that has a boundary
error catch event attached, then it follows the flow defined by the boundary error catch event.
The exception handling flow defined by the boundary error catch event can re-join the main
process flow or end the process.

18.5.2 How to Handle an Exception Using an Event Subprocess
You can use an event subprocess to handle an exception that can occur while running any of
the flow objects in your BPMN process.

To handle an exception using an event subprocess:

1. From the Component window, from the Activities section, select Event Subprocess.

2. Drop the event subprocess in the process.

3. Right-click the start event of the event subprocess.

4. Select Properties.

5. Click the Implementation tab.

6. From the Implementation Type list, select Error.

7. Configure the implementation properties to catch a business or system exception.

For information on how to configure the implementation properties to catch business
exceptions, see How to Configure an Error Event to Catch Business Exceptions.

For information on how to configure the implementation properties to catch system
exceptions, see How to Configure a Catch Event to Catch System Exceptions.

Chapter 18
Handling Exceptions in a Business Process

18-7

If the exception handled in the event subprocess occurs while running any of the tasks
in the process, then the BPMN Service Engine continues running the exception
handling flow defined in the event subprocess.

18.5.3 How to Configure an Error Event to Catch Business Exceptions
You can configure an error event to catch business exceptions. To configure an error
event to catch business exceptions you must edit the error event implementation
properties.

To configure the implementation properties of an error event to catch business
exceptions:

1. If you want to handle all the business exceptions that can occur while running this
process, then select Catch All Business Exceptions.

If you want to catch a specific business exception:

a. In the Type section, select By Error.

b. From the By Error list, select Browse.

The Browse Types dialog box appears.

c. Deselect the Show System Faults option.

d. Enter the name of the exception or select it from the tree.

e. Optionally, you can configure the error event to recover from the exception, to
do this select the Recoverable Error option.

To recover from an error, you must set a value to the predefined variable
action. For more information, see Configuring Catch Events to Recover from
an Exception.

f. Click OK.

The Browse Types dialog box closes and the selected exception appears in
the Exception field.

18.5.4 How to Configure a Catch Event to Catch System Exceptions
You can configure an error event to catch system exceptions. To configure an error
event to catch system exceptions you must edit the error event implementation
properties.

To configure the implementation properties of an error event to catch system
exceptions:

1. If you want to handle all the system exceptions that can occur while running this
process, then select Catch All System Exceptions.

If you want to catch a specific business exception:

a. In the Type section, select By Error.

b. From the By Error list, select Browse.

The Browse Types dialog box appears.

c. Select Show System Faults.

Chapter 18
Handling Exceptions in a Business Process

18-8

The tree shows the available system faults. For a list of the supported exception for
the different error events, see Table 18-1.

d. Enter the name of the exception or select it from the tree.

e. Optionally, you can configure the error event to recover from the exception, to do this
select the Recoverable Error option.

To recover from an error, you must set a value to the predefined variable action. For
more information, see Configuring Catch Events to Recover from an Exception.

f. Click OK.

The Browse Types dialog box closes and the selected exception appears in the
Exception field.

18.6 Configuring Catch Events to Recover from an Exception
When an exception occurs while running a process flow, you can choose to retry running the
flow object that caused that process flow or to move the process instance to the next flow
object in the main process flow.

You can define this by setting a specific value to the predefined variable action. You can set
the value of the predefined variable action in the following ways:

• Using data associations

For more information, see Introduction to Data Associations.

• Using BPM scripts

For more information, see Writing BPM Scripts.

The available values for the action predefined variable are:

• OK

This is the default value for the action variable. When the action variable has this value, if
an exception occurs then the process instance moves to the next flow object in the
exception handling flow. The process flow that was running when the exception occurred
is canceled. The faulted scope will be canceled. Using this action can be thought as a try-
catch where the activity is in the try block and the handler in the catch block.

To assign this value to the action predefined variable use the string “send".

• BACK

When the action variable has this value, if an exception occurs then the process instance
moves back to the flow object where the exception occurred to retry running the failed
flow object. In some cases the circumstances that caused the exception might change so
when you retry running the flow object it succeeds. For example, you try establish a
phone call and the line is busy so you try again after a few minutes.

To assign this value to the action predefined variable use the string “back".

• SKIP:

When the action variable has this value, if an exception occurs then the process instance
moves to the next activity in the main process flow.

To assign this value to the action predefined variable use the string “skip".

Chapter 18
Configuring Catch Events to Recover from an Exception

18-9

18.7 Throwing Exceptions in Subprocesses or Reusable
Processes

You can only throw business exceptions using an error end event, thus only parent
processes can catch these exceptions. You can configure your process to throw
custom high level exceptions instead of throwing the low-level exceptions that occur
while running the task.

To throw a high level exception, connect the boundary events in your activities to the
end event that throws the error, or finish the subprocess event with an error end event.

18.7.1 How to Throw an Exception
You can use an error end event to configure your BPMN process to throw a business
exception.

To throw an exception:

1. If you want to throw a custom exception, create a business exception.

You can also throw existing business exceptions or system exceptions.

See How to Create a Business Exception for more information on how to create a
business exception.

2. Identify the point in your process where you want to throw the exception.

3. Branch the flow of the process using one of these options:

• Add a gateway to create a branch in the flow of the process.

• Add a boundary event.

4. From the Components window, drag Error End Event and drop it in the process.

5. Add a sequence flow to link the gateway or boundary event, and the error end
event.

6. Right-click the error end event.

7. Select Properties.

8. Click the Implementation tab.

9. Click the Browse button next to the Exception field.

The Browse Type dialog box appears.

10. If you want to throw a system exception, Select Show System Faults.

The tree shows the available system faults. For a list of the supported exception
for the different error events, see Table 18-1.

11. Enter the name of the exception or select it from the tree.

12. Click OK.

The Browse Types dialog box closes and the selected exception appears in the
Exception field.

13. Optionally, select the Force Commit After Execution option if you want the BPM
runtime to add a checkpoint with the information from running the error end event.

Chapter 18
Throwing Exceptions in Subprocesses or Reusable Processes

18-10

14. Click OK.

The BPMN Service Engine interrupts the process and throws the exception to the parent
process. If the subprocess has an error catch boundary event attached or the parent process
has an event subprocess that can handle the error event, then the parent process can handle
the exception. Otherwise the parent process throws the exception to its parent process. If it
does not have a parent process, then the BPMN Service Engine logs the exception to the
Oracle Enterprise Manager fault handling system.

18.7.2 How to Create a Business Exception
You can create a business exception and use it to implement the error events in your BPMN
process.

To create a business exception:

1. In the Applications window, right-click a module in the Business Components node.

If the Business Component node does not contain a module, then you must create one.

2. Select New.

3. Select Exception.

The Create Business Exception dialog box appears.

4. Enter a name to identify the exception.

5. Click the Browse button next to the Destination Module text field.

The Browse Module dialog box appears.

6. Enter the name of the exception or select it from the tree.

7. Click OK.

The Business Exception Editor opens.

The exception appears in the business catalog in the module you selected. You can configure
an error end event in your process to throw this exception, or you can configure a boundary
error catch event to handle this exception.

18.8 Handling Exceptions in Subprocesses
Event subprocesses enable you to define a cleaner process with less effort because the
catch error event is located within the event subprocess.

You can handle exceptions that occur in a subprocess in the same way you handle the
exceptions in any other BPMN activity.

18.9 Handling Errors in a Peer Process Using Message Events
When a process communicates with another peer process, running any of the flow objects in
the peer process may result in an error. For synchronic operations, the correct form of
propagating these errors to the invoking peer process is using message events configured as
errors.

A message event configured as an error communicates to the invoking peer process that an
error occurred while running the process. However the audit trail indicates that the process
ran successfully because this is an expected error.

Chapter 18
Handling Exceptions in Subprocesses

18-11

You must define how the invoking peer process handles the exception using one of
these options:

• Add a boundary error catch event to the flow object that invokes the peer process.

• Add an event subprocess that handles the exception to the invoking peer process.

If you do not handle the error in the invoking peer process, the error propagates and
the process running does not complete successfully.

Note:

You must always define a path for the instance to follow if there are no error.
If you do not define a path for the case where there are no errors the project
does not build successfully.

Difference Between Using Error Events and Error Message Events

Using error end or throw events to handle errors during inter process communication is
not a good practice. You must only use error events for internal errors that might be
handled within the process or propagated to the next level. These errors are not
meaningful outside of this process.

The exceptions occurred while running a peer process do not propagate to the
invoking peer process. Eventually the invoking peer process receives a time out
notification because the peer process stopped responding.

18.9.1 How to Handle Errors in a Peer Process Using Message Events
If you know running an operation in a process that is used for inter-process
communication may result in an error, it is advisable to add a message end or throw
event to propagate the error to the invoking peer process.

The message error implementation requires you to select a business exception. If your
project does not define business exceptions, then you must create a business
exception. For more information about business exceptions, see Using Business
Exceptions.

To handle errors in a peer process using message events:

1. Edit the peer BPMN process.

2. Add a message end or throw event.

3. Add a sequence flow from the flow object that can produce an error to the
message end event.

4. Right-click the message end event.

5. Select Properties.

6. Click the Implementation tab.

7. From the Implementation Type list, select Error.

8. Click the Exception list and select Browse, to browse the available business
exceptions.

The Browse Types dialog box appears.

Chapter 18
Handling Errors in a Peer Process Using Message Events

18-12

9. Select an exception.

10. Click OK.

The select exception appears in the Exception list.

11. Click OK.

If there is an error in the invoked peer process, the error is communicated to the process that
invoked it. The invoking peer process must handle the error using error events or the error is
propagated to the next level.

After running the invoked peer process, its status appears as successfully ran because the
error message event is part of the expected flow of the process.

Chapter 18
Handling Errors in a Peer Process Using Message Events

18-13

19
Using Fault Handling in BPM

Learn how to use the SOA fault management framework with Oracle BPM.

• Handling Faults with the Fault Management Framework

• Designing Fault Policies for Oracle BPM Suite

19.1 Handling Faults with the Fault Management Framework
Oracle SOA Suite provides a generic fault management framework for handling faults. If a
fault occurs during runtime, the framework catches the fault and performs a user-specified
action defined in a fault policy file. If a fault results in a condition in which human intervention
is the prescribed action, you perform recovery actions from Oracle Enterprise Manager
Fusion Middleware Control. You can also use the fault management framework with Oracle
BPM Suite.

For more information about the fault management framework, see Handling Faults with the
Fault Management Framework in Developing SOA Applications with Oracle SOA Suite.

19.2 Designing Fault Policies for Oracle BPM Suite
You can design and execute fault policies for Oracle BPM Suite. The fault policies file defines
fault conditions and their corresponding fault recovery actions.

The fault policy bindings file associates the policies defined in the fault policies file with one of
the following:

• Composite with a BPMN process

• Oracle BPMN process service component

• Reference binding component (for example, another BPMN process or a JCA adapter)

The following fault recovery actions are supported in the fault policies file for Oracle BPM
Suite:

• Retry

• Human intervention

• Terminate

• Java code

• Replay scope

• Rethrow fault

19-1

Note:

For more information about the supported fault recovery actions, see
"Creating a Fault Policy File for Automated Fault Recovery" in Developing
SOA Applications with Oracle SOA Suite.

19.2.1 Designing Composite Level Fault Policies
Figure 19-1 shows a composite that includes BPMN process service components
named Process and FaultThrower.

Figure 19-1 Composite with Process and FaultThrower BPMN Process Service Components

Example 19-1 shows the fault conditions and their corresponding fault recovery
actions defined in the fault-policies.xml file. A condition catches faults and
transfers them to actions for recovering from the faults during runtime.

Example 19-2 shows the fault policy bindings file that associates the fault recovery
policies defined in the fault-policies.xml file with the entire composite.

Example 19-1 Fault Policies File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <faultPolicy version="0.0.1" id="ravi_faultPolicy"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <!-- catches all -->
 <faultName>
 <condition>
 <action ref="Action-Retry"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="Action-Abort">
 <abort/>
 </Action>

Chapter 19
Designing Fault Policies for Oracle BPM Suite

19-2

 <Action id="Action-Retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>10</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="Action-human-intervention"/>
 </retry>
 </Action>
 <Action id="Action-human-intervention">
 <humanIntervention/>
 </Action>
 </Actions>
 </faultPolicy>
</faultPolicies>

Example 19-2 Fault Policy Bindings File

<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicyBindings version="0.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="ravi_faultPolicy"/>
</faultPolicyBindings>

19.2.2 Designing Service Component Level Fault Policies
Figure 19-2 shows a composite in which a BPMN service component named
BPMNThatFails invokes a reference binding component (for this example, a file adapter).

Figure 19-2 Composite with BPMN Process Service Component

Example 19-3 shows the fault conditions and their corresponding fault recovery actions
defined in the fault-policies.xml file. A condition catches faults and transfers them to
actions for recovering from the faults during runtime.

Example 19-4 shows the fault policy bindings file that associates the fault recovery policies
defined in the fault-policies.xml file with the BPMNThatFails BPMN service component.

Example 19-3 Fault Policies File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <faultPolicy version="0.0.1" id="FailsTrulyPolicy"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Conditions>
 <!-- catches all -->
 <faultName>

Chapter 19
Designing Fault Policies for Oracle BPM Suite

19-3

 <condition>
 <action ref="Action-human-intervention"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="Action-Abort">
 <abort/>
 </Action>
 <Action id="Action-Retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 </retry>
 </Action>
 <Action id="Action-human-intervention">
 <humanIntervention/>
 </Action>
 </Actions>
 </faultPolicy>
</faultPolicies>

Example 19-4 Fault Policy Bindings File

<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicyBindings version="0.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <component faultPolicy="FailsTrulyPolicy">
 <name>BPMNThatFails</name>
 </component>
</faultPolicyBindings>

19.2.3 Designing Reference Level Fault Policies (Calling a BPM
Process)

Figure 19-3 shows a composite in which a BPMN process named Caller invokes
another BPMN process named ProcessService1 as a reference.

Figure 19-3 Composite with Caller BPM Process

Example 19-5 shows the fault conditions and their corresponding fault recovery
actions defined in the fault-policies.xml file. A condition catches all faults and
transfers them to an action that requires human intervention to recover from the fault.

Example 19-6 shows the fault-bindings.xml file that associates the fault policies
defined in fault-policies.xml with the reference.

Chapter 19
Designing Fault Policies for Oracle BPM Suite

19-4

When a process is called using a service reference, the reference used is not the BPMN
process reference, but rather the reference created to call the BPMN process
(ProcessService1 in Figure 19-3) named
Services.Externals.ProcessService1.reference. The reference name is created as
follows:

• Services.Externals. is prefixed to the reference name of ProcessService1.

• .reference is appended to the reference name of ProcessService1.

You can obtain the reference name to specify in the fault-bindings.xml file from either of
the following files:

• From the reference section of the process_name.componentType file, as shown in
Example 19-7.

• From the wire section of the composite.xml file, as shown in Example 19-8.

This reference calls a BPMN process, but it can also invoke an FTP server, an EJB
component, or something else.

Example 19-5 Fault Policies File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <faultPolicy version="0.0.1" id="Policy0"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <!-- catches all -->
 <faultName>
 <condition>
 <action ref="Action-human-intervention"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="Action-human-intervention">
 <humanIntervention/>
 </Action>
 </Actions>
 </faultPolicy>
</faultPolicies>

Example 19-6 Fault Policy Bindings File

<faultPolicyBindings version="0.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <!-- reference ProcessService1 calls BPMN component Process -->
 <reference faultPolicy="Policy0">
 <name>Services.Externals.ProcessService1.reference</name>
 </reference>
</faultPolicyBindings>

Chapter 19
Designing Fault Policies for Oracle BPM Suite

19-5

Example 19-7 Reference Name in componentType File

<componentType
. . .
. . .
 <reference name="Services.Externals.ProcessService1.reference"
 . . .
 . . .
 </reference>
</componentType>

Example 19-8 Reference Name in the composite.xml File

<wire>
<source.uri>Caller/Services.Externals.ProcessService1.reference
 </source.uri>
. . .
</wire>

19.2.4 Designing Reference Level Fault Policies (Calling a File
Adapter)

Figure 19-4 shows a composite in which a BPMN process named Caller invokes a file
adapter named FolderListing as a reference.

Figure 19-4 Composite with Caller BPM Process

Example 19-9 shows the fault conditions and their corresponding fault recovery
actions defined in the fault-policies.xml file. A condition catches all faults and
transfers them to an action that requires human intervention to recover from the fault.

Example 19-10 shows the fault-bindings.xml file that associates the fault policies
defined in fault-policies.xml with the reference.

Example 19-9 Fault Policies File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <faultPolicy version="0.0.1" id="Policy0"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <!-- catches all -->
 <faultName>
 <condition>
 <action ref="Action-human-intervention"/>
 </condition>

Chapter 19
Designing Fault Policies for Oracle BPM Suite

19-6

 </faultName>
 </Conditions>
 <Actions>
 <Action id="Action-human-intervention">
 <humanIntervention/>
 </Action>
 </Actions>
 </faultPolicy>
</faultPolicies>

Example 19-10 Fault Policy Bindings File

<faultPolicyBindings version="0.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <!-- reference FolderListing is a reference to a file adapter -->
 <reference faultPolicy="Policy0">
 <name>Services.Externals.FolderListing.reference</name>
 </reference>
</faultPolicyBindings>

19.2.5 What You May Need to Know About the Difference Between
Reference Naming Conventions in Oracle SOA Suite and Oracle BPM
Suite

For external services, the reference name used in the fault policy bindings file is different
between Oracle SOA Suite and Oracle BPM Suite. Table 19-1 provides details.

Table 19-1 Naming Conventions for References in the .componentType and Fault Policy
Binding Files

Reference Naming Convention Entry in .componentType File Entry in Fault Policy Bindings File

For Oracle BPM Suite, the naming
convention is as follows:

• Services.Externals. is
prefixed to the reference name.

• .reference is appended to the
reference name.

The naming convention in the
BPMN_process_name.componentTy
pe file for a reference named
Synch_read is as follows:

<reference name=
"Services.Externals.Synch_read.
 reference"

ui:wsdlLocation="synch_read.wsdl
">
 <interface.wsdl interface=
 "http://xmlns.oracle.com/
pcbpel/
 adapter/file/UpdateTaskApps/
 FaultPolicyApp/synch_read#

wsdl.interface(SynchRead_ptt)"/>
</reference>

For Oracle BPM Suite, specify
Services.Externals.Synch_rea
d.reference:

<reference
faultPolicy="Policy0">
<name>Services.Externals.Synch_
read.reference</name>

For more information, see
Example 19-6 and Example 19-10.

Chapter 19
Designing Fault Policies for Oracle BPM Suite

19-7

Table 19-1 (Cont.) Naming Conventions for References in the .componentType and Fault Policy
Binding Files

Reference Naming Convention Entry in .componentType File Entry in Fault Policy Bindings File

For Oracle SOA Suite, no names are
prefixed or appended to the
reference name.

The naming convention in the
BPEL_process_name.componentTy
pe file for a reference named
Synch_read is as follows:

<reference name="Synch_read"

ui:wsdlLocation="synch_read.wsdl
">
 <interface.wsdl interface=
 "http://xmlns.oracle.com/
pcbpel/
 adapter/file/UpdateTaskApps/
 FaultPolicyApp/synch_read#

wsdl.interface(SynchRead_ptt)"/>
</reference>

For Oracle SOA Suite, specify
Synch_read:

<reference
faultPolicy="Policy0">
 <name>Synch_read</name>

Note:

You can also define a single fault policy bindings file to catch faults from both
Oracle BPM Suite and Oracle SOA Suite.

Chapter 19
Designing Fault Policies for Oracle BPM Suite

19-8

20
Communicating With Other BPMN Processes
and Services

Learn how to develop a BPMN process that communicates with other BPMN processes and
services. Also learn how to invoke other processes or services and how to broadcast a
message to multiple process and how to configure your process to wait for a specific
broadcast message.

• Introduction to Communication with Other BPMN Processes and Services

• Communicating With Other BPMN Processes and Services Using Message Events

• Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN
Processes

• Using Message Events Configured as Boundary Events

• Using Service Tasks to Invoke Synchronous Operations in Services and BPMN
Processes

• Communicating With Other BPMN Processes and Services Using Send and Receive
Tasks

• Using Send and Receive Tasks to Invoke Asynchronous Services and Asynchronous
BPMN Processes

• Introduction to Invoking a Process Using Call Activities

• Invoking a Process Using Call Activities

• Introduction to Communication Between Processes Using Signal Events

• Communicating Between Processes Using Signal Events

20.1 Introduction to Communication with Other BPMN
Processes and Services

Oracle BPM provides multiple ways for BPMN processes to communicate with other
processes or services, such as messages,send and receive tasks, and signal events.

• Messages

They enable you to invoke asynchronous services or asynchronous BPMN processes.
You can also use them to define the interface your process exposes to other processes
or services.

See Communicating With Other BPMN Processes and Services Using Message Events,
for more information about message events.

• Send and Receive Tasks

They are very similar to message events. You can choose to use one or the other.

The only difference they have with message events is that they support boundary events.

20-1

They enable you to invoke asynchronous services or asynchronous BPMN
processes. You can also use them to define the interface your process exposes to
other processes or services.

See Communicating With Other BPMN Processes and Services Using Send and
Receive Tasks, for more information about send and receive tasks.

• Signal Events

They enable you to broadcast a message to multiple process. The processes
waiting for that specific message react to it.

See Communicating Between Processes Using Signal Events, for more
information about signal events.

20.1.1 Introduction to Synchronous and Asynchronous Operations
Message events, send and receive tasks, and service task use operations to
communicate with other BPMN processes or services. These operations can be
synchronous or asynchronous.

The main difference between a synchronous and an asynchronous operation is how
the process invoking the service or operation responds when invoking the service or
operation.

When you invoke a synchronous operation, you send a message and then wait for a
response before proceeding with the process flow.

When you invoke an asynchronous operation, you send a message but do not wait for
an answer to proceed with the process flow. The asynchronous operation receives the
message and starts running. You can obtain the answer of an asynchronous operation
by invoking a callback operation. If you invoke the callback operation before the
asynchronous operation finishes running, then you must wait for it to complete before
getting the answer.

Message events and send and receive task require you to specify how to associate an
operation with its corresponding callback. Conversations allow you to group one or
more operations with their callback. A conversation may define multiple operations that
you can use to access a BPMN process.

20.2 Communicating With Other BPMN Processes and
Services Using Message Events

Message events enable you to communicate with the other BPMN processes and
services in your project.

You can use message events to:

• Invoke an asynchronous service.

• Invoke an asynchronous BPMN process.

• Define an interface for other processes to communicate with your process.

Chapter 20
Communicating With Other BPMN Processes and Services Using Message Events

20-2

Note:

The send and receive tasks perform similar functionality to the throw and catch
message events. However, it is recommended that you do not mix both within a
single process.

The implementation of the different message events varies according to the type of event and
their role in the conversation. Table 20-1describes the different implementation of message
events.

You can configure message start events in a subprocess to suspend the main process flow.
For more information, see Suspending the Current Process Flow to Run an Alternative
Process Flow.

Table 20-1 Message Event Implementation

Event Initiates Conversation Continues Conversation

Messag
e Start

• Define the interface of the operation
• Use an interface from the business

catalog

Not Available

Messag
e Throw

• Invoke a Service
• Invoke a BPMN Process

If it continues a start event or a catch event
that defines an interface:

• Define the callback interface for an
asynchronous operation

• Define the output for a synchronous
operation

• Define an exception for a synchronous
operation

If it continues a message throw that invokes a
service or a BPMN process:

• Invoke an operation from the same
service or BPMN process it continues.

Messag
e Catch

• Define the interface of the operation
• Use an interface from the business

catalog

If it continues a start event or a catch event
that define an interface:

• Use the interface of the initiator event
• Define the interface of the operation
If it continues a throw event that invokes a
service or a BPMN process:

• Invoke the callback of the service or the
BPMN process

Chapter 20
Communicating With Other BPMN Processes and Services Using Message Events

20-3

Table 20-1 (Cont.) Message Event Implementation

Event Initiates Conversation Continues Conversation

Messag
e End

Not Available If it continues a start event or a catch event
that define an interface:

• Define callback for an asynchronous
operation

• Define the output for a synchronous
operation

• Define an exception for a synchronous
operation

If it continues a throw event that invokes a
service or a BPMN process:

• Invoke an operation from the same
service or BPMN process it continues.

20.3 Using Message Events to Invoke Asynchronous
Services and Asynchronous BPMN Processes

You can use message events to invoke asynchronous services and asynchronous
BPMN processes.

To invoke an asynchronous operation from service or BPMN process you must use an
intermediate throw message event configured to initiate a conversation.

When the BPMN Service Engine runs the message throw event, it creates an XML
message based on:

• the asynchronous operation

• the input required by the asynchronous operation

• the data association defined for the message throw event

Then it sends the XML message to the service or BPMN process, and continues
running the rest of the process flow. It does not wait for the asynchronous service or
BPM process to answer.

The asynchronous service or BPMN process receives the message and runs the
requested operation. When it finishes it sends a message with the result of the
operation to the BPMN process that invoked it. This message is the callback operation
of the asynchronous service or BPMN process.

The BPMN process that invoked the asynchronous operation must wait for the
callback operation to obtain its results. The BPMN process must define a message
catch event that waits for the callback operation. This message catch event continues
the conversation and uses the message throw event that invoked the operation as the
initiator event.

When a token arrives to the message catch event it might receive an immediate
answer if the asynchronous process completed, or might have to wait until the
asynchronous process completes to get an answer.

Chapter 20
Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN Processes

20-4

Figure 20-1 Invoking an Asynchronous Service or BPMN Process Using Message
Events

20.3.1 How to Invoke Asynchronous Service Operation Using Message
Events

You can invoke an asynchronous service operation using message events.

To invoke an asynchronous service operation using message events:

1. Edit the BPM process where you want to invoke the asynchronous service operation.

2. Locate the point in your process where you want to invoke the asynchronous service
operation.

3. Add a message throw event in the point you located in your process.

4. Right-click the message throw event.

5. Select Properties.

6. Click the Implementation tab.

7. In the Message Exchange section, click Browse.

The Conversation dialog box appears.

8. Click the New button, next to the Search field.

The Create Conversation dialog box appears.

9. From the Type list, select Service Call.

You must ensure that the service you select is an asynchronous service.

10. In the Definition section, click the Browse button next to the Service field.

The Service dialog box appears.

11. Select the asynchronous service you want to invoke.

12. Click OK.

13. From the Operation list, select the operation to invoke from the asynchronous service.

14. If the asynchronous service requires arguments, configure the message throw event data
association.

See Introduction to Data Associations, for more information on how to configure data
associations.

Chapter 20
Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN Processes

20-5

15. Click OK.

16. Follow the procedure described in How to Receive the Callback Operation of an
Asynchronous Service Using Message Events to invoke the callback operation of
the asynchronous process.

20.3.2 How to Receive the Callback Operation of an Asynchronous
Service Using Message Events

You can receive the callback operation that pairs with an asynchronous operation
using message events.

To receive the callback operation of an asynchronous service using message
events:

1. Edit the BPM process where you want to receive the callback of the asynchronous
service.

2. Locate the point in your process where you want to receive the callback operation
of the asynchronous service.

3. Add a message catch event in the point you located in your process.

4. Right-click the message catch event.

5. Select Properties.

6. Click the Implementation tab.

7. In the Message Exchange section, click Browse.

The Conversation dialog box appears.

8. Select the conversation you want to use.

9. Click OK.

The Message Exchange section changes.

10. From the Target Node list, select the callback operation.

11. If the asynchronous service requires arguments, configure the message throw
event data association.

See Introduction to Data Associations, for more information on how to configure
data associations.

12. Click OK.

20.3.3 What Happens When You Invoke an Asynchronous Service
Operation Using Message Events

When you invoke an asynchronous service operation using a message throw event,
the BPMN Service Engine does not wait for the service to answer. It continues running
the flow objects that follow to the message throw event.

The BPMN process can obtain the response of the asynchronous service by invoking
the service callback operation using a message catch event.

Even if the service finishes running, the BPMN process does not receive the service
response until it invokes the callback operation using a message catch event.

Chapter 20
Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN Processes

20-6

If the service is still running when the BPMN Service Engine runs the message catch event,
then the engine waits for the service operation to complete before passing the token to the
next flow object in the process.

20.3.4 How to Invoke an Asynchronous BPMN Process Operation Using
Message Events

You can invoke a node in an asynchronous BPMN process using message events.

To invoke an asynchronous BPMN process operation using message events:

1. Edit the BPM process where you want to invoke the asynchronous BPMN process.

2. Locate the point in your process where you want to invoke the asynchronous BPMN
process.

3. Add a message throw event in the point you located in your process.

4. Right-click the message throw event.

5. Select Properties.

6. Click the Implementation tab.

7. In the Message Exchange section, select New.

The Conversation dialog box appears.

8. Click the New button.

9. From the Type list, select Process Call.

10. Click the Browse button next to the Process field.

The Type dialog box appears.

11. Select the asynchronous BPMN process you want to invoke.

12. Click OK.

13. From the Target Conversation list, select the conversation from the asynchronous
BPMN process.

14. If the asynchronous BPMN process requires arguments, configure the message throw
event data association.

See Introduction to Data Associations, for more information on how to configure data
associations.

15. Click OK.

16. Follow the procedure described in How to Invoke the Callback Operation of an
Asynchronous BPMN Process Using Message Events to invoke the callback operation of
the asynchronous process.

20.3.5 How to Invoke the Callback Operation of an Asynchronous BPMN
Process Using Message Events

You can invoke the callback operation that paris with an asynchronous node in a BPMN
process using message events.

Chapter 20
Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN Processes

20-7

To invoke the callback operation of an asynchronous BPMN process using
message events:

1. Edit the BPM process where you want to invoke the callback of the asynchronous
BPMN process.

2. Locate the point in your process where you want to invoke the callback operation
of the asynchronous BPMN process.

3. Add a message catch event in the point you located in your process.

4. Right-click the message catch event.

5. Select Properties.

6. Click the Implementation tab.

7. Click the Browse button, next to the Conversation field.

The Conversation dialog box appears.

8. Select the conversation you want to use.

9. Click OK.

The Message Exchange section changes.

10. From the Target Conversation list, select the conversation in your process to
invoke the asynchronous process.

11. Click OK.

12. If the asynchronous BPMN process requires arguments, configure the message
throw event data association.

See Introduction to Data Associations, for more information on how to configure
data associations.

13. Click OK.

20.3.6 What Happens When You Invoke an Asynchronous BPMN
Process Using Message Events

When you invoke an asynchronous BPMN process using a message throw event, the
BPMN Service Engine does not wait for the BPMN process to answer. It continues
running the flow objects that follow to the message throw event.

The invoking BPMN process can obtain the response of the asynchronous BPMN
process by invoking the service callback operation using a message catch event.

Even if the asynchronous BPMN process finishes running, the invoking BPMN process
does not receive the response until it reaches a message catch event that receives a
message from the asynchronous BPMN process.

If the asynchronous BPMN process is still running when the BPMN Service Engine
runs the message catch event, then the engine waits for the asynchronous BPMN
process to complete before passing the token to the next flow object in the process.

Chapter 20
Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN Processes

20-8

20.4 Using Message Events Configured as Boundary Events
You can use message catch events configured as boundary events to wait for an event while
an activity is running. If the message arrives after the activity finishes running, then the event
is not triggered.

You can configure a boundary message catch event as interrupting or non-interrupting.

Interrupting boundary message catch events stop running the activity when the expected
message arrives. Then the engine starts running the flow defined for the message catch
event. The flow defined for interrupting boundary message catch events may resume the
main process flow.

Non-interrupting boundary catch events do not stop running the current activity. When the
expected message arrives the engine starts running the flow defined for the message catch
event in parallel to the current activity. The flow defined for non-interrupting boundary
message catch events cannot resume the main process flow.

You can configure boundary events to suspend the flow object or subprocess they are
associated to. For more information, see Suspending the Current Process Flow to Run an
Alternative Process Flow.

20.5 Using Service Tasks to Invoke Synchronous Operations in
Services and BPMN Processes

Service tasks enable you to invoke synchronous operations in services and BPMN
processes.

When the BPMN Service Engine runs a service task, it invokes the operation specified in the
service task and waits for a response. The BPMN Service Engine does not move the token to
the next activity until it receives a response from the synchronous service or BPMN process.

The services you can use from a service task include BPEL processes, SOA mediators and
SOA adapters that expose synchronous operations. You can also use service tasks to invoke
other BPMN processes that expose synchronous operations.

See Using Message Events to Define a Synchronous Operation in a BPMN Processes
Interface or Using Send and Receive Tasks to Define a Synchronous Operation in a BPMN
Process for more information on how to define synchronous operations in a BPMN process.

Figure 20-2 Invoking a Synchronous BPMN Process or Service Using a Service Task

Chapter 20
Using Message Events Configured as Boundary Events

20-9

20.5.1 How to Invoke a Synchronous Service Operation Using a
Service Task

To invoke a synchronous service operation you must use a service task.

To invoke a synchronous service operation using a service task:

1. Edit the BPMN process.

2. Locate the point in your process where you want to invoke the synchronous
service operation.

3. Add a service task in the point you located in your process.

4. Right-click the service task.

5. Select Properties.

6. Click the Implementation tab.

7. In the Message Exchange section from the Type list, select Service Call.

8. Click the Browse button next to the Service field and select the service you want
to use.

9. From the Operation list, select the operation from the synchronous service to
invoke.

10. If the synchronous service requires input data or returns output data, then you
must specify how the data objects in the project map to this data, by configuring
the service task data association.

See Introduction to Data Associations, for more information on how to configure
data associations.

11. Click OK.

20.5.2 What Happens When You Invoke a Synchronous Service
Operation Using a Service Task

When the BPMN Service Engine runs a service task, it waits for the service to respond
before continuing with the process flow. When the service finishes running, it sends
the response to the service task.

If the service operation returns output data, then this data is mapped to the data
objects in the project using the service task data association.

20.5.3 How to Invoke a Synchronous BPMN Process Operation Using
a Service Task

You must invoke a synchronous BPMN process operation using a service task.

To invoke a synchronous BPMN process operation using a service task:

1. Edit the BPMN process.

Chapter 20
Using Service Tasks to Invoke Synchronous Operations in Services and BPMN Processes

20-10

2. Locate the point in your process where you want to invoke the synchronous BPMN
process.

3. Add a service task in the point you located in your process.

4. Right-click the service task.

5. Select Properties.

6. Click the Implementation tab.

7. In the Message Exchange section, from the Type list, select Process Call.

Note:

Service tasks only support outbound conversations.

8. Click the Browse button next to the Process field to select the process to invoke.

9. From the Target Node list, select the flow object to invoke.

10. If the synchronous BPMN process requires input data or returns output data, then you
must specify how the data objects in the project map to this data, by configuring the
service task data association.

See Introduction to Data Associations, for more information on how to configure data
associations.

11. Click OK.

20.5.4 What Happens When You Invoke a Synchronous BPMN Process
Operation Using a Service Task

When the BPMN Service Engine runs a service task, it waits for the synchronous BPMN
process to respond before continuing with the process flow. When the synchronous BPMN
process finishes running, it sends the response to the service task.

If the synchronous BPMN process returns output data, then this data is mapped to the data
objects in the project using the service task data association.

20.6 Communicating With Other BPMN Processes and Services
Using Send and Receive Tasks

Send and receive tasks enable you to communicate with the other BPMN processes and
services in your project.

The only difference between message events and send and receive tasks is that you can add
boundary events to the latter. If you are invoking an asynchronous service and you want to
add a deadline using a timer event configured as boundary, then you must use a send and a
receive task instead of using message events.

You can use send and receive tasks to:

• Invoke an asynchronous service.

• Invoke an asynchronous BPMN process.

Chapter 20
Communicating With Other BPMN Processes and Services Using Send and Receive Tasks

20-11

• Define an interface for other processes to communicate with your process.

To use a receive task to define the start operation of a process, you must locate it after
a none start event and configure it to create instances.

The implementation of the different message events varies according to the type of
event and their role in the conversation. Table 20-1describes the different
implementation of message events.

Note:

The send and receive tasks perform similar functionality to the throw and
catch message events. However, it is recommended that you do not mix both
within a single process.

Table 20-2 Send and Receive Tasks Implementation

Task Initiates Conversation Continues Conversation

Send
Task

• Invoke a Service
• Invoke a BPMN Process

If it continues a receive task that defines
an interface:

• Define the callback interface for an
asynchronous operation

• Define the output for a synchronous
operation

• Define an exception for a
synchronous operation

Receive
Task

• Define the interface of the operation
• Use an interface from the business

catalog

If it continues a receive task that defines
an interface:

• Use the interface of the receive task
it continues

• Define the interface of the operation
If it continues a sent task that invokes a
service or a BPMN process:

• Invoke the callback of the service or
the BPMN process

20.7 Using Send and Receive Tasks to Invoke
Asynchronous Services and Asynchronous BPMN
Processes

You can use send and receive tasks to invoke asynchronous operations in services
and BPMN processes.

To invoke an asynchronous operation from service or BPMN process you must use a
send task configured to initiate a conversation.

When the BPMN Service Engine runs the send task, it creates an XML message
based on:

• the asynchronous operation

Chapter 20
Using Send and Receive Tasks to Invoke Asynchronous Services and Asynchronous BPMN Processes

20-12

• the input required by the asynchronous operation

• the data association defined for the message throw event

Then it sends the XML message to the service or BPMN process, and continues running the
rest of the process flow. It does not wait for the asynchronous service or BPM process to
answer.

The asynchronous service or BPMN process receives the message and runs the requested
operation. When it finishes it sends a message with the result of the operation to the BPMN
process that invoked it. This message is the callback operation of the asynchronous service
or BPMN process.

The BPMN process that invoked the asynchronous operation must invoke the callback
operation to obtain its results. When it invokes the callback operation it might receive and
immediate answer if the asynchronous process completed or might have to wait until the
asynchronous process completes to get an answer.

Figure 20-3 Invoking an asynchronous service or BPMN process using send and
receive tasks

20.7.1 How to Use a Send Task to Invoke an Asynchronous Service
Operation

You can invoke an asynchronous service operation using a send task.

To invoke an asynchronous service operation using the send task:

1. Edit the BPM process where you want to invoke the asynchronous service.

2. Locate the point in your process where you want to invoke the asynchronous service.

3. Add a send task in the point you located in your process.

4. Right-click the send task.

5. Select Properties.

6. Click the Implementation tab.

7. In the Message Exchange section, from the Type list, select Service Call.

8. Click the Browse button next to the Service field.

9. Select the service from the Service screen and click OK.

10. From the Operation list, select the operation from the asynchronous service to invoke.

Chapter 20
Using Send and Receive Tasks to Invoke Asynchronous Services and Asynchronous BPMN Processes

20-13

11. If the asynchronous service requires input data, then you must specify how the
data objects in the project map to this input data, by configuring the send task data
association.

See Introduction to Data Associations, for more information on how to configure
data associations.

12. Click OK.

13. Follow the procedure described in How to Use the Receive Task to Invoke the
Callback Operation of an Asynchronous Service to invoke the callback operation
of the asynchronous process.

20.7.2 How to Use the Receive Task to get Callbacks from the Invoked
Asynchronous Service

You can get the callback operation that pairs with an asynchronous service operation
using a receive task.

To get the callback operation of an asynchronous service:

1. Edit the BPM process where you want to get callback operation of the
asynchronous service.

2. Locate the point in your process where you want to invoke the callback operation
of the asynchronous service.

3. Add a receive task in the point you located in your process.

4. Right-click the receive task.

5. Select Properties.

6. Click the Implementation tab.

7. In the Message Exchange section, from the Type list, select Service Call.

8. Click the Browse button next to the Service field.

9. Select the service you want to use and click OK.

10. From the Operation list, select the callback operation.

11. If the callback operation requires input data, then you must specify how the data
objects in the project map to this input data, by configuring the receive task data
association.

See Introduction to Data Associations, for more information on how to configure
data associations.

12. Click OK.

20.7.3 What Happens When You Invoke an Asynchronous Service
Using Send and Receive Tasks

When you invoke an asynchronous service operation using a send task, the BPMN
Service Engine does not wait for the service to answer. It continues running the flow
objects that follow to the send task.

The BPMN process can obtain the response of the asynchronous service by invoking
the service callback operation using a receive task.

Chapter 20
Using Send and Receive Tasks to Invoke Asynchronous Services and Asynchronous BPMN Processes

20-14

Even if the service finishes running, the BPMN process does not receive the service
response until it invokes the callback operation using a receive task

If the service is still running when the BPMN Service Engine runs the receive task, then the
engine waits for the service operation to complete before passing the token to the next flow
object in the process.

20.7.4 How to Use the Send Task to Invoke an Asynchronous BPMN
Process Operation

You can use a send task to invoke an asynchronous BPMN process operation.

To invoke an asynchronous BPMN process operation:

1. Edit the BPM process where you want to invoke the asynchronous BPMN process.

2. Locate the point in your process where you want to invoke the asynchronous BPMN
process.

3. Add a send task in the point you located in your process.

4. Right-click the send task.

5. Select Properties.

6. Click the Implementation tab.

7. In the Message Exchange section, from the Type list, select Process Call.

8. Click the Browse button next to the Process field.

9. Select the asynchronous BPMN process you want to invoke and click OK.

10. From the Target Node list, select the operation from the asynchronous BPMN process.

11. If the asynchronous BPMN process requires input data, then you must specify how the
data objects in the project map to this input data, by configuring the send task data
association.

See Introduction to Data Associations, for more information on how to configure data
associations.

12. Click OK.

13. Follow the procedure described in How to Use a Receive Task to Invoke the Callback
Operation of an Asynchronous BPMN Process to invoke the callback operation of the
asynchronous process.

20.7.5 How to Use a Receive Task to get the Callback operation of an
Invoked Asynchronous BPMN Process

You can use a receive task to get the callback operation that pairs with an asynchronous
process operation.

To get the callback operation of an asynchronous BPMN process:

1. Edit the BPM process where you want to invoke the callback of the asynchronous BPMN
process.

2. Locate the point in your process where you want to invoke the callback operation of the
asynchronous BPMN process.

Chapter 20
Using Send and Receive Tasks to Invoke Asynchronous Services and Asynchronous BPMN Processes

20-15

3. Add a receive task in the point you located in your process.

4. Right-click the receive task.

5. Select Properties.

6. Click the Implementation tab.

7. In the Message Exchange section, from the Type list, select Process Call.

8. Click the Browse button next to the Process field.

9. Select the process and click OK.

10. From the Target Node list, select the callback operation to invoke.

11. If the asynchronous callback operation requires input data, then you must specify
how the data objects in the process map to this input data, by configuring the
receive task data association.

See Introduction to Data Associations, for more information on how to configure
data associations.

12. Click OK.

20.7.6 What Happens When You Invoke an Asynchronous BPMN
Process Using Send and Receive Tasks

When you invoke an asynchronous service operation using a send task, the BPMN
Service Engine does not wait for the service to answer. It continues running the flow
objects that follow to the send task.

The BPMN process can obtain the response of the asynchronous service by invoking
the service callback operation using a receive task.

Even if the service finishes running, the BPMN process does not receive the service
response until it invokes the callback operation using a receive task.

If the service is still running when the BPMN Service Engine runs the receive task,
then the engine waits for the service operation to complete before passing the token to
the next flow object in the process.

20.8 Introduction to Invoking a Process Using Call Activities
You can invoke a process from another process using call activities. The invoked
process is a child of the process invoking it.

When you run a call activity, the engine does not create a new token for the reusable
process. The token in the parent process passes to the reusable process. When the
token completes the child process, it returns to the parent process to continue running
the activities that follow the call activity.

The child process must be a reusable process. Reusable processes can be invoked
from multiple processes. You can only start a reusable process by invoking it from a
call activity.

You cannot access reusable process from other SOA components because they are
not part of the SOA composite.

Chapter 20
Introduction to Invoking a Process Using Call Activities

20-16

The start event of a reusable process must always be of type none. The end event can be a
error or a message event.

20.9 Invoking a Process Using Call Activities
You can use call activities to invoke a process from another process. The child process must
be a reusable process.

You can invoke a reusable process from multiple processes within your BPM project.

20.9.1 How to Invoke a Process Using Call Activities
You can invoke a process from another process using call activities. The invoked process
must be a reusable process.

To invoke a process using call activities:

1. Add a call activity to your process.

2. Right-click the call activity.

3. Select Properties.

4. Click the Implementation tab.

5. From the Process list, select a reusable process.

For information on how to create a reusable process, see How to Create a New Business
Process.

6. If necessary, configure data associations or transformations.

For more information on data associations, see Introduction to Data Associations.

For more information on transformations, see Introduction to Transformations.

7. Click OK.

20.10 Introduction to Communication Between Processes Using
Signal Events

Signal events allow you to broadcast a message to all the processes in a BPM project. Only
the processes configured to listen to that signal react.

In the Sales Quote example you might want to trigger a signal when a quote gets approved to
trigger all the process that depend on the approval of a quote.

Mediators and BPEL processes also react when a BPMN process broadcasts a signal and
they can also trigger a BPMN process by broadcasting a signal.

Oracle BPM uses Oracle Event Delivery Network (EDN) to send and receive signals. For
more information about Oracle EDN see “Using Business Events and the Event Delivery
Network" in Developing SOA Applications with Oracle SOA Suite.

For information on how to access Event in Oracle BPM, see Introduction to the Business
Catalog.

Chapter 20
Invoking a Process Using Call Activities

20-17

The EDN events your SOA project defines automatically appear in the business
catalog in the Events predefined module Events. When you add a signal event you
can choose which of the events in the business catalog the signal event broadcasts or
reacts to.

You can broadcast a signal from a throw intermediate signal event or from a signal end
event. In a BPMN process you can only receive a signal in a a signal start event in
another process.

The process that broadcasts the message has no information about the receivers. You
might add or remove processes that react to a signal without impacting the process
that broadcasts the signal.

In a similar way, the process that reacts to a specific message has no information
about the processes that broadcast that message. If you add a process that broadcast
a message to your project, all the process waiting for that specific message react to it
without you having to modify them.

The events you use to broadcast a signal contain a payload that you can use to send
information to all the processes configured to react to this specific signal. To assign
values to the payload in the event you must configure the signal throw event data
association. This data association enables you to pass the relevant data stored in the
process and project data objects to the event. When the corresponding processes
receive the signal, they must obtain the data in the event using another data
association. This data association defines which data objects store the data in the
event received in the signal start event.

Note:

Use signal events to communicate with other processes. The process that
broadcasts the signal event does not include itself in the broadcast list.

Chapter 20
Introduction to Communication Between Processes Using Signal Events

20-18

Figure 20-4 Signal Broadcast

20.11 Communicating Between Processes Using Signal Events
You can use signal events to communicate a message to all the processes that are
configured to wait for that message.

You can broadcast a signal from a throw intermediate signal event or from a signal end event.
In a BPMN process you can only receive a signal in a a signal start event in another process.

20.11.1 How to Broadcast a Signal to Multiple Processes
Before following this procedure you must add the events you want to broadcast, to your SOA
project.

To broadcast a signal to multiple processes:

1. Locate the point in your process where you want to broadcast the signal.

2. From the Component Palette, from the Throw Events section, select Signal.

If you want to broadcast the signal immediately after the process finished, change the
implementation type of the existing end event to signal or add new end event of type
signal.

3. Drop the signal event in your process.

4. Right-click the signal event.

5. Select Properties.

6. Click the Implementation tab.

7. Click the Browse button next to the event field.

Chapter 20
Communicating Between Processes Using Signal Events

20-19

The Type dialog box appears.

8. Select an event.

9. Click OK.

The Type dialog box disappears and the type name appears in the type field.

10. Click OK.

When the BPMN Engine runs a throw or an end signal event, it published an event to
Oracle EDN. Oracle EDN delivers this event to all SOA components configured to
listen to that specific signal.

20.11.2 How to Configure Your Process to React to a Specific Signal
Before following this procedure you must add the events you want to react to, to your
SOA project.

To configure your process to react to a specific signal:

1. Change the implementation type of the process start event to signal, or add a new
signal start event to your process.

2. Right-click the start event.

3. Select Properties.

4. Click the Implementation tab.

5. Click the Browse button next to the event field.

The Type dialog box appears.

6. Select an event.

7. Click OK.

The Type dialog box disappears and the type name appears in the type field.

8. Click OK.

The process does not start until another BPMN process or SOA component
broadcasts a specific signal. When a BPMN process or an SOA component
broadcasts this signal using Oracle EDN, the process gets triggered by this signal.

Chapter 20
Communicating Between Processes Using Signal Events

20-20

21
Defining the Process Interface

Learn how to configure a BPMN process to expose it as a service for other processes or
services to invoke it. Oracle BPM enables you to expose the flow objects in the BPMN
process as process operations. Other BPMN processes and services can invoke these
operations.

• Defining the Process Interface

• Using Message Events to Define the BPMN Process Interface

• Using Message Events to Define Asynchronous Operations in a BPMN Processes

• Using Message Events to Define a Synchronous Operation in a BPMN Processes
Interface

• Using Message Events with an Interface from the Business Catalog to Define Your
Process Interface

• Defining the BPMN Process Interface Using Send and Receive Tasks

• Defining Asynchronous Processes Operations Using Send and Receive Tasks

• Using Send and Receive Tasks to Define a Synchronous Operation in a BPMN Process

• Using Send and Receive Tasks with an Interface from the Business Catalog to Define
Your Process Interface

• Defining the Process Input and Output

21.1 Defining the Process Interface
The process interface is a group of operations that a BPMN process exposes for other
processes or services to use. The SOA Composite shows the BPMN process interface in the
Exposed Services section. You must define an interface for your BPMN process if you want
other processes and services to use it. The interface you define contains the operations other
processes and services can invoke.

Synchronous process operations define input and output arguments.

When you define an asynchronous processes operation you must also define its
corresponding callback operation. The asynchronous operation defines the input arguments
and the callback operation defines the output arguments.

You can define the process interface by defining operations in your BPMN Process or you
can choose to use an existing interface from the business catalog. You can implement any of
these options using message events or send and receive tasks.

21.2 Using Message Events to Define the BPMN Process
Interface

The process interface contains the operations that other services and processes can invoke
to interact with a BPMN process. These operations may be synchronous or asynchronous.

21-1

You can define the process interface using message events or send and receive tasks.

To expose an operation in a BPMN process you can use a message start or message
catch event configured as initiators. These message events enable you to define if the
operation is synchronous or asynchronous. They also enable you to define the
process input.

The process interface must always contain an operation that exposes the start event
of a BPMN process. A process or service that invokes this BPMN process must
always invoke the operation that corresponds to the start event before invoking any of
the operations in the process.

To define the process output, you must configure the message throw or message end
event that continue the event that defines the operation. If the operation is
asynchronous, then these events also define the callback operation.

If an interface contains an asynchronous operation, then it must also define the
callback operation that returns the result of this operation. See Using Message Events
to Define the Callback Interface for BPMN Processes for more information on how to
define a callback operation in a BPMN Process.

Figure 21-1 shows a BPMN process that exposes a message start message event in
its interface. It also shows how the SOA Composite editor displays this operation.

Figure 21-1 BPMN Process that exposes a message start event as an operation

In addition, the process interface may contain the operations exposed by the catch
message events in the process. Before invoking an operation that corresponds to a
catch message event, you must always invoke the operation that corresponds to the
message start event.

Figure 21-2 shows a BPMN process that exposes a catch message event in its
interface in addition to the message start message event. It also shows how the SOA
Composite editor displays this operation.

Chapter 21
Using Message Events to Define the BPMN Process Interface

21-2

Figure 21-2 BPMN process that exposes a message start and a message catch event
in its interface

21.2.1 Using Message Events to Define the Callback Interface for BPMN
Processes

A BPMN process must expose a callback operation for each of the asynchronous operations
it defines.

The callback operation returns the response to the service or process that invoked the
asynchronous operation. The callback operation may define output arguments. If it defines
output arguments you must map their values to the data objects in the process using data
associations.

You can define a callback operation using a message throw event or a message end event.

See Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN
Processes, for information on how invoke an asynchronous BPMN process from another
BPMN process.

Figure 21-3 shows an end event that exposes the BPMN process callback operation. It also
shows how the callback operation appears in the SOA Composite editor.

Note:

If you used a send task to expose an operation, then you must use a receive task to
define the callback operation. See Defining Asynchronous Processes Operations
Using Send and Receive Tasks for more information on how to define a callback
operation using send events.

Chapter 21
Using Message Events to Define the BPMN Process Interface

21-3

Figure 21-3 Asynchronous BPMN process that exposes a start operation an its corresponding
callback

21.3 Using Message Events to Define Asynchronous
Operations in a BPMN Processes

You can define asynchronous operations in a BPMN Process using message events. If
you expose an asynchronous operation, then you must also expose a start operation.
The client invoking the asynchronous service must invoke the start operation first to
create an instance in the process. The asynchronous operation runs over the created
instance.

You must also specify a callback operation for each of the asynchronous operations
you define.

21.3.1 How to Configure the Start Operation of a BPMN Process as
Asynchronous Using Message Events

You can expose the start event of a BPMN process as an asynchronous operation.

To configure the start operation of a BPMN process as asynchronous:

1. Edit the BPMN process.

2. Right-click the start activity.

3. Select Properties.

4. Click the Implementation tab.

5. If the Implementation Type is not message, then change it to Message.

The Message Exchange section appears.

6. In the Conversation Properties section, select Define Interface from the
Implementation list.

Chapter 21
Using Message Events to Define Asynchronous Operations in a BPMN Processes

21-4

7. If your asynchronous BPMN process requires input data, then you must define the
process input in the Arguments Definition section.

For more information on how to define the process input see Defining the Process Input
and Output.

8. Expand the Advanced section.

9. Select Asynchronous.

10. Enter a name for the start operation.

The SOA Composite uses the name you specify for the operation to display it in the SOA
Composite.

11. Click OK.

12. Follow the procedure described in How to Define a Callback Operation Using Message
Events, to define the callback operation of the asynchronous BPMN process.

21.3.2 How to Define a Callback Operation Using Message Events
You can expose a callback operation that pairs with an asynchronous operation using
message events.

To define the callback operation:

1. Edit the BPMN process.

2. Locate the point in your process where you want to return the answer of the
corresponding operation.

3. To return the answer before the process finishes, then add an intermediate message
throw event to your process.

Note:

To return the answer when the processes finishes, then add a message end
event or change the implementation type of the end to message

4. Right-click the message throw event or the message end event.

5. Select Properties.

6. Click the Implementation tab.

7. If you are editing a throw message event, in the Message Exchange section, select
Continues. If you are editing an end message event this is the default selection and you
cannot change it.

8. From the Initiator list, select the event to associate with the callback.

9. If you want your asynchronous process to return output data, then you must define the
process output in the Argument Definition section.

For more information on how to define the process output, see Defining the Process Input
and Output.

10. Expand the Advanced section.

11. To change the name of the callback operation, then enter a name.

Chapter 21
Using Message Events to Define Asynchronous Operations in a BPMN Processes

21-5

The SOA Composite uses the name you specify for the operation to display it in
the SOA Composite.

12. Click OK.

21.3.3 What Happens When You Configure a BPMN Process Start
Operation as Asynchronous Using Message Events

When you invoke the process start event you must not wait for a response before
continuing with the process flow. To obtain the response you must invoke the process
callback operation.

You can invoke asynchronous BPMN processes using message events or send and
receive tasks.

See Using Message Events to Invoke Asynchronous Services and Asynchronous
BPMN Processes and Using Send and Receive Tasks to Invoke Asynchronous
Services and Asynchronous BPMN Processes, for more information on how to invoke
an asynchronous BPMN process.

In the SOA Composite, the interface of an asynchronous process shows at least two
operations: the operation to start the process and its callback operation.

21.3.4 How to Add an Asynchronous Operation to a BPMN Process
Interface Using Intermediate Message Events

You can expose an intermediate message event as an asynchronous operation.

To add an asynchronous operation to a BPMN process interface:

1. Edit the BPMN process.

2. Locate the point in your process where you want to add the new operation.

3. Add an intermediate catch message event.

4. Right-click the catch message event.

5. Select Properties.

6. Click the Implementation tab.

7. In the Message Exchange section, select Initiates.

8. In the Properties section, select Define Interface from the Implementation list.

9. If your want your operation to have output arguments, then define input
arguments.

For more information on how to define output arguments see Defining the Process
Input and Output.

10. Expand the Advanced section.

11. Select Asynchronous.

12. To change the name of the callback operation, then enter a name in the Operation
Name field.

13. Click OK.

Chapter 21
Using Message Events to Define Asynchronous Operations in a BPMN Processes

21-6

14. Follow the procedure described in How to Define a Callback Operation Using Message
Events, to define the callback operation for this asynchronous operation.

When you add an Asynchronous Operation to a BPMN Process Interface Using Message
Events, the asynchronous operation and the corresponding callback operation are available
for other processes to invoke them. The SOA Composite shows the asynchronous operation
and its callback in the BPMN process interface.

21.4 Using Message Events to Define a Synchronous Operation
in a BPMN Processes Interface

You can define a synchronous operation in your BPMN process using message events. You
define the synchronous operation using a message start or catch event, and a message
throw or catch that continue the first. The message start or catch event defines the process
input. The message throw or end event defines the process output.

If you use a message catch event to define a synchronous operation, then you must also
define a start operation. You must invoke the start operation before invoking the synchronous
operation, to create an instance in the process. The synchronous operation runs over the
created instance.

See Using Service Tasks to Invoke Synchronous Operations in Services and BPMN
Processes, for more information on how to invoke a synchronous BPMN process.

Message events enable you to send error message when you define synchronous
operations. For more information about error message events, see Handling Errors in a Peer
Process Using Message Events.

21.4.1 How to Configure the Start Operation of a BPMN Process as
Synchronous Using Message Events

You can expose the message start event of a BPMN process as a synchronous operation.

To configure the start operation of a BPMN process as synchronous using message
events:

1. Edit the BPMN process.

2. Right-click the start activity.

3. Select Properties.

4. Click the Implementation tab.

5. If the Implementation Type is not message, then change it to Message.

The Message Exchange section appears.

6. In the Conversation Properties section, select Define Interface from the Implementation
list.

7. If your synchronous BPMN process requires input data, then you must define the process
input in the Argument Definition section.

For more information on how to define the process input, see Defining the Process Input
and Output.

8. Expand the Advanced section.

Chapter 21
Using Message Events to Define a Synchronous Operation in a BPMN Processes Interface

21-7

9. Select Synchronous.

10. Enter a name for the start operation.

The SOA Composite uses the name you specify for the operation to display it in
the SOA Composite.

11. Click OK.

12. Configure the end event following the procedure described in How to Configure
the End Event of a Synchronous Process.

Note:

When adding a synchronous start event, you must also add an end or catch
message event that is part of the same conversation. The end or catch
message event continue the start event thus they are also synchronous.

21.4.2 How to Configure the End Event of a Synchronous Process
When you expose a start event as a synchronous operation, you must configure the
end event of the process as synchronous.

To Configure the end event of a synchronous process:

1. Right-click the end event.

2. Select Properties.

3. Click the Implementation tab.

4. If the Implementation Type is not message, then change it to Message.

The Message Exchange section appears.

5. If there is no Initiator Node selected, then select the start event of your process
from the Initiator Node list.

The sub-section to define the interface appears in the Properties section.

6. If your synchronous BPMN process returns output data, then you must define the
process output in the Argument Definition section.

For more information on how to define the process output, see Defining the
Process Input and Output.

7. If your synchronous BPMN process returns output data, then you must specify
how the data objects in your project map to the process output.

For more information on how to configure data associations, see Introduction to
Data Associations.

8. Click OK.

21.4.3 What Happens When You Configure the Start Operation of a
BPMN Process as Synchronous Using Message Events

The process start event exposes a synchronous operation. When you invoke the
process start event from a client, you must wait for a response before continuing with

Chapter 21
Using Message Events to Define a Synchronous Operation in a BPMN Processes Interface

21-8

the process flow. The service task that invokes the synchronous process waits for the
synchronous process to finish before the token moves to the next activity in the process.

You must invoke synchronous operations in a BPMN processes using a service tasks.

See Using Service Tasks to Invoke Synchronous Operations in Services and BPMN
Processes, for more information on how to invoke a synchronous BPMN process.

In the SOA Composite, the interface of a synchronous process only shows one operation for
the start event.

21.5 Using Message Events with an Interface from the Business
Catalog to Define Your Process Interface

When configuring the message events that define the interface of your process, you can
choose to use an existing interface instead of defining an interface.

You can choose any of the operations from the References predefined module in the
business catalog and use it as the interface for your process operations.

The operation from the reference that you choose to define the interface of your operation,
determines if your operation is synchronous or asynchronous.

If you define a message start or a message catch event using an interface from the business
catalog, then the associated message throw or message end event must also use an
interface from the business catalog. If the operation you are defining is asynchronous, then
the message throw or message end events can only use callback operations.

Generally you define the process interface using an interface from the business catalog to
use a interface that exists in the composite and later on add a wire from this interface to the
BPMN process.

You might provide multiple implementations of the same interface. For example you might
implement an existing interface in BPEL and BPMN technologies. To implement the BPMN
interface you must define the process using an interface from the business catalog.

Figure 21-4 shows how a BPMN process can reuse the interface of a BPEL process to
provide a parallel implementation in BPMN. The BPMN process uses the interface of the
BPEL process that appears in the business catalog to define its operations. It also shows
how the SOA Composite editor indicates that a BPMN process uses another SOA
Component to define its interface.

Chapter 21
Using Message Events with an Interface from the Business Catalog to Define Your Process Interface

21-9

Figure 21-4 Process That Uses an Interface from the Business Catalog

21.5.1 How to Use an Interface from the Business Catalog to Define
an Operation in a BPMN Process Interface Using Message Start and
Catch Events

You can use an interface from the business catalog to define the interface of your
BPMN process.

To use an interface from the business catalog to define an operation:

1. Edit your BPMN process.

2. Add the start event or catch event to use to define the process interface.

3. Right-click the start or catch event.

4. Select Properties.

5. Click the Implementation tab.

6. If you are editing a catch message event, in the Message Exchange section,
select Initiates. If you are editing a start event this is the default selection and you
cannot change it.

7. In the Properties section, select Interface from Catalog from the Implementation
list.

The Properties section changes and the Name and Operation appear.

8. Click the Browse button next to the Name field.

The Type dialog box appears.

9. Select the reference you want to use as the process interface.

10. Click OK.

11. From the Operation list, select the operation you want to use as the process
interface.

Chapter 21
Using Message Events with an Interface from the Business Catalog to Define Your Process Interface

21-10

12. If the interface you selected requires input data, then you must specify how the data
objects in the project map to this input data, by configuring the message event data
association.

For more information on how to configure data associations, see Introduction to Data
Associations.

13. Click OK.

14. Configure an existing message end or message throw event to use an interface from the
business catalog or add a new event and configure it, following the procedure described
in How to Configure a Message End or a Message Throw Event to Use an Interface from
the Business Catalog Using Message Events.

21.5.2 How to Configure a Message End or a Message Throw Event to
Use an Interface from the Business Catalog Using Message Events

You can use an interface from the business catalog to define the interface of your BPMN
process.

To configure a message end or message throw event to use an interface from the
business catalog:

1. Edit the BPMN process.

2. Right-click the message end or message throw event.

3. Select Properties.

4. Click the Implementation tab.

5. In the Message Exchange section, select Continues.

The Properties section changes, the Initiator Node, Name and Operation fields appear.

6. From the Initiator Node list, select the message start or message catch event that defines
the process interface.

7. Click the Browse button next to the Name field.

The Type dialog box appears.

8. Select the component you want to use as the message catch or message end interface.

9. Click OK.

10. From the Operation list, select the operation you want to use as the as the message
catch or message end interface.

11. If the interface you selected requires output data, then you must specify how the data
objects in the project map to this output data, by configuring the message event data
association.

See Introduction to Data Associations, for more information on how to configure data
associations.

12. Click OK.

Chapter 21
Using Message Events with an Interface from the Business Catalog to Define Your Process Interface

21-11

21.5.3 What Happens When You Use an Interface from the Business
Catalog to Define an Operation

The operation you define uses the signature of the operation form the interface in the
business catalog. To invoke the operation in the BPMN process you must use the
same operation name and input that you use to invoke the operation in the interface
from the business catalog. The operation in the BPMN process returns the same
output that the operation in the interface from the business catalog.

The SOA composite shows a wire between the BPMN process and the interface used
to define its operations.

If you define all the process operations using interfaces from the business catalog,
then JDeveloper asks you if it should delete the BPMN process WSDL. Because the
BPMN process does not define an interface, but uses existing interfaces, its WSDL is
no longer necessary and you can delete it.

21.6 Defining the BPMN Process Interface Using Send and
Receive Tasks

The process interface contains the operations that other services and processes can
invoke to run a BPMN process. These operations may be synchronous or
asynchronous.

You can define the process interface using message events or send and receive tasks.

See Using Message Events to Define the BPMN Process Interface , for more
information on how to define the process interface using message events.

To expose an operation in a BPMN process you can use a receive task. The receive
task enables you to define if the operation is synchronous or asynchronous. It also
enables you to define the process input.

The process interface must always contain an operation that exposes a receive task
that creates an instance. A process or service that invokes this BPMN process must
always invoke this operation before invoking any of the operations in the process.

To define the process output, you must configure the send task that continues the
receive that defines the operation. If the operation is asynchronous, then the send task
also defines the callback operation.

If an interface contains an asynchronous operation, then it must also define the
callback operation that returns the result of this operation. See Defining the Callback
Interface for BPMN Processes Using a Send Task for more information on how to
define a callback operation in a BPMN Process.

In addition, the process interface may contain the operations exposed by the receive
tasks in the process. Before invoking an operation that corresponds to a receive task,
you must always invoke the operation that corresponds to the received task configured
to create an instance.

Figure 21-5 shows a BPMN process that exposes a receive task in its interface in
addition to the receive tasks that creates the instance. It also shows how the SOA
Composite editor displays these operations.

Chapter 21
Defining the BPMN Process Interface Using Send and Receive Tasks

21-12

Figure 21-5 BPMN process that exposes an asynchronous operation defined using send and a
receive task

If you used a send task to expose an operation, then you must use a receive task to define
the callback operation. See Defining the Callback Interface for BPMN Processes Using a
Send Task for more information on how to define a callback operation using send events.

21.6.1 Defining the Callback Interface for BPMN Processes Using a Send
Task

A BPMN process must expose a callback operation for each of the asynchronous operations
it defines. You can define a callback operation using a send task.

The callback operation returns the response to the service or process that invoked the
asynchronous operation. If the service or process is waiting for the answer, then they receive
it immediately. If the service or process is not waiting for the answer yet, then they receive it
when they get to the part of the process or code that waits for the answer.

The callback operation may define output arguments. If it defines output arguments you must
map their values to the data objects in the process using data associations.

Figure 21-5 shows a receive task that exposes the BPMN process callback operation.

Chapter 21
Defining the BPMN Process Interface Using Send and Receive Tasks

21-13

21.7 Defining Asynchronous Processes Operations Using
Send and Receive Tasks

You can define asynchronous operations in a BPMN Process using send and receive
tasks. If you expose an asynchronous operation, then you must expose a start
operation. The process invoking the asynchronous service must invoke the start
operation first to create an instance in the process. The asynchronous operation runs
over the created instance.

You must also specify a callback operation for each of the asynchronous operations
you define.

21.7.1 How to Define an Asynchronous Process Operation Using
Send and Receive Tasks

You can define an asynchronous process operation using send and receive tasks.

To define an asynchronous process operation using send and receive tasks:

1. Edit the BPMN process.

2. Change the trigger of the start and end events to None:

a. Right-click the event.

b. Select Properties.

c. Click the Implementation tab.

d. From the Implementation Type list, select None.

e. Click OK.

3. Add a receive task immediately after the start event.

4. Right-click the receive task.

5. Select Properties.

6. Click the Implementation tab.

7. Select Create Instance.

8. In the Message Exchange section, select Initiates.

9. In the Conversation Properties section, select Define Interface.

10. If your asynchronous BPMN process requires input data, then you must define the
process input in the Argument Definition section.

For more information on how to define the process output, see Defining the
Process Input and Output.

11. Expand the Advanced section.

12. Select Asynchronous.

13. Enter a name for the start operation.

The SOA Composite uses the name you specify for the operation to display it in
the SOA Composite.

Chapter 21
Defining Asynchronous Processes Operations Using Send and Receive Tasks

21-14

14. Click OK.

15. Follow the procedure described in How to Define a Callback Process Operation Using a
Send Task, to define the callback operation of the asynchronous BPMN process.

21.7.2 How to Add an Asynchronous Process Operation to the Process
Interface Using a Receive Task

You can expose a receive task as an asynchronous process operation.

To add an asynchronous process operation using a receive task:

1. Edit the BPMN process.

2. Locate the point in your process where you want to add the new operation.

3. Add a receive task in the point you located.

4. Right-click the receive task.

5. Select Properties.

6. Click the Implementation tab.

7. In the Message Exchange section, select Initiates.

8. In the Conversation Properties section, select Define Interface.

9. If your asynchronous BPMN process requires input data, then you must define the
process input in the Argument Definition section.

For more information on how to define the process output, see Defining the Process Input
and Output.

10. Expand the Advanced section.

11. Select Asynchronous.

12. Enter a name for the start operation.

The SOA Composite uses the name you specify for the operation to display it in the SOA
Composite.

13. Click OK.

21.7.3 How to Define a Callback Process Operation Using a Send Task
You can expose a send task as the callback operation that pairs with an asynchronous
process operation.

How to define the callback operation for an asynchronous process using a send task:

1. Edit the BPMN process.

2. Locate the point in your process where you want to return the answer of the
corresponding operation.

3. Add a send task to the point you located in your process.

You must place the send task after the receive task in the process flow.

4. Right-click the send task.

5. Select Properties.

Chapter 21
Defining Asynchronous Processes Operations Using Send and Receive Tasks

21-15

6. Click the Implementation tab.

7. In the Message Exchange section, select Continues.

8. From the Initiator list, select the receive task to associate with the callback.

9. If you want your asynchronous process to return output data, then you must define
the process output in the Argument Definition section.

For more information on how to define the process output, see Defining the
Process Input and Output.

10. Expand the Advanced section.

11. Select Synchronous or Asynchronous.

12. To change the name of the start operation, then enter a name.

The SOA Composite uses the name you specify for the operation to display it in
the SOA Composite.

13. Click OK.

21.7.4 What Happens When You Define an Asynchronous Operation
Using Send and Receive Tasks

The asynchronous operation and the corresponding callback operation are available
for other processes to invoke them.

When you invoke the process asynchronous operation you defined, you must not wait
for a response before continuing with the process flow. To obtain the response you
must invoke the process callback operation.

The SOA Composite shows the asynchronous operation and its callback in the BPMN
process interface.

You can invoke asynchronous BPMN processes using message events or send and
receive tasks.

See Using Message Events to Invoke Asynchronous Services and Asynchronous
BPMN Processes and Using Send and Receive Tasks to Invoke Asynchronous
Services and Asynchronous BPMN Processes, for more information on how to invoke
an asynchronous BPMN process.

21.8 Using Send and Receive Tasks to Define a
Synchronous Operation in a BPMN Process

You can define a synchronous operation in your BPMN process using send and
receive tasks. You define the synchronous operation using a receive task and send
tasks that continues the receive task. The receive task defines the process input and
the send task defines the process output.

If you use a send task to define a synchronous operation, then you must also define a
start operation. You must invoke the start operation before invoking the synchronous
operation, to create an instance in the process. The synchronous operation runs over
the created instance.

Chapter 21
Using Send and Receive Tasks to Define a Synchronous Operation in a BPMN Process

21-16

See Using Service Tasks to Invoke Synchronous Operations in Services and BPMN
Processes, for information on how to invoke a synchronous operation in a BPMN process
from another BPMN process.

21.8.1 How to Configure a Process Operation as Synchronous Using Send
and Receive Tasks

You can expose send and receive tasks as a synchronous process operation.

To configure a process operation as synchronous:

1. Edit the BPMN process.

2. Change the trigger of the start and end events to None:

a. Right-click the event.

b. Select Properties.

c. Click the Implementation tab.

d. From the Implementation Type list, select None.

e. Click OK.

3. Add a receive task after the start event.

4. Right-click the receive task.

5. Select Properties.

6. Click the Implementation tab.

7. Select Create Instance.

8. In the Conversation Properties section, select Define Interface.

9. If your synchronous BPMN process requires input data, then you must define the process
input in the Argument Definition section.

For more information on how to define the process input, see Defining the Process Input
and Output.

10. Expand the Advanced section.

11. Select Synchronous.

12. Enter a name for the start operation.

The SOA Composite uses the name you specify for the operation to display it in the SOA
Composite.

13. Click OK.

21.8.2 What Happens When You Define a Synchronous Operation Using
Send and Receive Tasks

The asynchronous operation and the corresponding callback operation are available for other
processes to invoke them.

You must invoke synchronous operations in a BPMN processes using a service tasks.

Chapter 21
Using Send and Receive Tasks to Define a Synchronous Operation in a BPMN Process

21-17

See Using Service Tasks to Invoke Synchronous Operations in Services and BPMN
Processes, for more information on how to invoke a synchronous BPMN process.

In the SOA Composite, the interface of a synchronous process only shows one
operation for the receive task.

21.9 Using Send and Receive Tasks with an Interface from
the Business Catalog to Define Your Process Interface

When configuring the receive tasks that define the interface of your process, you can
choose to use an existing interface instead of defining an interface.

You can choose any of the operations from the components in the business catalog
and use it as the interface for your process operations.

The operation from the component in the business catalog that you choose to define
the interface of your operation, determines if your operation is synchronous or
asynchronous.

If you define a receive task using an interface from the business catalog, then the
associated send task must also use an interface from the business catalog. If the
operation you are defining is asynchronous, then the message send task can only use
callback operations.

Figure 21-6 shows a process that uses a BPEL process from the business catalog to
define its operations. It also shows how the SOA Composite editor indicates that a
BPMN process uses another SOA Component to define its interface.

Figure 21-6 BPMN Process that uses an interface from the Business Catalog defined using
send and receive tasks

Chapter 21
Using Send and Receive Tasks with an Interface from the Business Catalog to Define Your Process Interface

21-18

21.9.1 How to Use an Interface from the Business Catalog to Define an
Operation in a BPMN Process Interface Using Send and Receive Tasks

You can use an interface from the business catalog to define your BPMN process interface.

To use an interface from the business catalog to define an operation:

1. Edit your BPMN process.

2. Add the start event or catch event to use to define the process interface.

3. Right-click the start or catch event.

4. Select Properties.

5. Click the Implementation tab.

6. If you are editing a catch message event, in the Message Exchange section, select
Continues. If you are editing a start event this is the default selection and you cannot
change it.

7. In the Properties section, select Interface from Catalog.

The Properties section changes and the Name and Operation appear.

8. Click the Browse button next to the Name field.

The Type dialog box appears.

9. Select the component you want to use as the process interface.

10. Click OK.

11. From the Operation list, select the operation you want to use as the process interface.

12. If the interface you selected requires input data, then you must specify how the data
objects in the project map to this input data, by configuring the message event data
association.

For more information on how to configure data associations, see Introduction to Data
Associations.

13. Click OK.

14. Configure an existing message end or message throw event to use an interface from the
business catalog or add a new event and configure it, following the procedure described
in How to Configure a Message End or a Message Throw Event to Use an Interface from
the Business Catalog Using Message Events.

21.9.2 How to Configure a Message End or a Message Throw Event to
Use an Interface from the Business Catalog Using Send and Receive
Tasks

You can use an interface from the business catalog to define your BPMN process interface.

To configure a message end or message throw event to use an interface from the
business catalog:

1. Edit the BPMN process.

Chapter 21
Using Send and Receive Tasks with an Interface from the Business Catalog to Define Your Process Interface

21-19

2. Right-click the message end or message throw event.

3. Select Properties.

4. Click the Implementation tab.

5. In the Message Exchange section, select Continues.

The Properties section changes, the Initiator Node, Name and Operation fields
appear.

6. From the Initiator Node list, select the message start or message catch event that
defines the process interface.

7. Click the Browse button next to the Name field.

The Type dialog box appears.

8. Select the component you want to use as the message catch or message end
interface.

9. Click OK.

10. From the Operation list, select the operation you want to use as the as the
message catch or message end interface.

11. If the interface you selected requires input data, then you must specify how the
data objects in the project map to this input data, by configuring the message
event data association.

See Introduction to Data Associations, for more information on how to configure
data associations.

12. Click OK.

21.9.3 What Happens When You Use Send and Receive Tasks with
an Interface from the Business Catalog to Define an Operation

The operation you define uses the signature of the operation from the interface in the
business catalog. To invoke the operation in the BPMN process you must use the
same operation name and input that you use to invoke the operation in the interface
from the business catalog. The operation in the BPMN process returns the same
output that the operation in the interface from the business catalog.

The SOA composite shows a wire between the BPMN process and the interface used
to define its operations.

If you define all the process operations using interfaces from the business catalog,
then JDeveloper asks if it should delete the BPMN process WSDL. Because the
BPMN process does not define an interface, but uses existing interfaces, its WSDL is
no longer necessary and you can delete it.

21.10 Defining the Process Input and Output
When you add operations to a BPMN process, you are defining points in the process
that other processes or services can use to communicate with it.

The communication between processes and other processes or services generally
requires an input and returns an output.

Chapter 21
Defining the Process Input and Output

21-20

The flow events that you use you to define the BPMN process operations enable you to
define input and output arguments. These input and output arguments define the process
input and output.

21.10.1 How to Add Input and Output Arguments to a BPMN Process
When you expose operations using message start and end events, or send and receive
tasks, you can define the input and output argument they require.

To add input and output arguments to a BPMN process:

1. In the Argument Definition section, click the Add button.

The Create Argument dialog box appears.

2. Enter a name to identify the argument.

3. Click the Browse More Types Button.

The Browse Type dialog box appears.

4. From the Type list, select a basic data type or select <Component> to use a complex
data type.

5. If you selected <Component> then select a component from the list of available complex
data types.

6. Click OK.

The Browse Type dialog box disappears and the data type you selected appears in the
Type field in the Create Argument Dialog.

7. Click OK.

The argument appears in the Argument Definition table.

21.10.2 How to Edit the Input and Output Arguments of a BPMN Process
You can change the name and the types of the arguments of a BPMN Process.

To edit the input and output arguments of a BPMN process:

1. From the Argument Definition table, select an argument.

2. In the Argument Definition section, click the Edit button.

The Edit Argument dialog box appears.

3. Change the name of the type.

4. Click OK.

The argument in the Argument Definition table shows the updated name and type.

21.10.3 How to Delete an Input or Output Argument of a BPMN Process
You can delete input and output arguments that you do not use or need.

To delete an input or output argument:

1. From the Argument Definition table, select an argument.

2. In the Argument Definition section, click the Remove button.

Chapter 21
Defining the Process Input and Output

21-21

The select argument is removed from the Argument Definition table.

Chapter 21
Defining the Process Input and Output

21-22

22
Communicating Business Processes Using
Correlations

Learn how to develop a BPMN process that communicates with other BPMN processes and
services using correlations. Correlations are used to identify the instance that receives the
message in the peer process.

• Introduction to Correlations

• Understanding the Components of a Correlation

• Typical Design Workflow

• Defining Correlations for a BPMN Element

• Creating Correlations Keys

22.1 Introduction to Correlations
Correlations enable business processes to communicate with each other based on the state
of an instance. The state of all the process data objects in a process defines the state of the
instance.

Defining a correlation for a business process enables you to identify an instance in another
process through the instance state and send a message to that specific instance.

For example you can use correlations to communicate a sales process with the
corresponding shipping and mailing processes. When the customer confirms an order, the
shipping process sends a message to the shipping and mailing processes using a correlation
that defines that it uses the order ID to locate the instances in both processes.

After you initialize a correlation you cannot change its value because the Service Engine
uses this value to locate the instance. If you try to assign a new value to the correlation this
produces a Correlation ViolationError.

You can define and initialize multiple correlations for a flow object. The flow object that sends
the message can use just one correlation or all the correlations defined for that flow object. If
it uses all the existing correlations, then all of the values it sends together with the message
must lead to the identification of the same instance.

Some flow objects, like the service task, define two types of correlations: input and output. In
those cases you can initialize and use a correlation in the same activity.

The scope of the correlation is the instance of the process or subprocess where it is defined.
In the case of subprocess with multi-instance loop conditions the scope of the correlation is
each instance of the multi-instance subprocess.

22-1

Note:

Use correlations to communicate with a subprocess in a single flow. If the
flow is parallel, then you must use conversations. For more information about
conversations, see Defining Conversations.

Note:

There is no check for duplicate correlation IDs, so Oracle BPM does not
throw an error during initialization if a correlation ID is already used.

22.2 Understanding the Components of a Correlation
Components of a correlation include a definition, keys, property, and property alias.

The following list describes the different components of a correlation:

• Correlation Definition

Contains the set of correlation keys defined for a flow object.

• Correlation Keys

Define the properties to use in the correlation. When you define a correlation key
you provide a name to identify it. The scope of the correlation key is the project,
which means that after you define a correlation key you can use it for the
correlation definition of any flow object in that project.

If your BPM project contains BPEL processes, then the correlation keys defined in
that BPEL process automatically appear for you to reuse them in your BPM
Projects.

• Correlation Property

Properties are abstractions for very representative attributes in the process, like
the order ID, the customer name or the social security number. Properties contain
a name to identify the attribute and a data type. Properties only support basic data
types.

• Correlation Property Alias

Enable you to define how to assign a value to the correlation property using
expressions. You can use the arguments and predefined variables of the activity to
assign values to the correlation property alias.

22.3 Typical Design Workflow
This workflow describes the typical procedures you perform when you design a project
that contains business processes that communicate with each other using correlations.

1. Design the processes that communicate with each other.

2. In the calling process, add the flow object that sends a message to the other
process.

Chapter 22
Understanding the Components of a Correlation

22-2

3. Define a correlation for the flow object that sends the message and configure it to initiate
the property aliases.

For more information on how to define the correlation, see Defining Correlations for a
BPMN Element.

4. In the invoked process, add the flow object that receives the message.

5. Configure the flow object that receives the message to use the correlation you defined
and assign a value to the property aliases.

For more information on how to define the correlation, see Defining Correlations for a
BPMN Element.

22.4 Defining Correlations for a BPMN Element
You can define multiple correlations for a single flow object. The flow object that sends the
message can choose to use just one correlation or use all of them. In the latter it the values it
uses to invoke the correlation lead to the identification of the same instance.

You can define correlations for the following BPMN flow objects that you use to communicate
business processes:

• Message Events

• Send and Receive Tasks

• Signal Events

Note:

The use of a multicast subscription impacts all message based correlations. If you
define a multi-cast subscription for Oracle EDN, then all message based
correlations are multi-cast.

22.4.1 How to Define a Correlation for a Flow Object
You can define a correlation while you are defining the properties of a flow object. Studio
provides two modes for defining correlations: simple and advanced. To define a correlation
that contains just one property use the simple mode. If the correlation you define contains
more that one correlation key each with multiple properties, then use advanced mode.

To define a correlation for a flow object:

1. Right-click the BPMN element.

The Properties dialog box appears.

2. Click the Implementation tab.

3. Click the Correlations link.

The Correlation Definition dialog box appears.

4. Define the correlation using one of the following modes:

• Simple Mode: Follow the procedure described in How to Define a Correlation Using
Simple Mode.

Chapter 22
Defining Correlations for a BPMN Element

22-3

• Advanced Mode: Follow the procedure described in How to Define a
Correlation Using Advanced Mode.

22.4.2 How to Define a Correlation Using Simple Mode
Simple mode allows you to define a correlation that contains just one property. This
mode simplifies the definition of the correlation by creating parts of the correlation
automatically based on the information you define for that property.

To define a correlation using simple mode:

1. From the Property list, select a property.

If the Property list is empty, create a new property:

a. Click the New button next to the Property list.

b. Enter a name.

c. Select a type.

Available types are: string, int, double, decimal, boolean, time.

2. If the BPMN element initiates the value of the correlation, select Initiates.

3. In the Correlation Property Alias text box, define an expression to assign values to
the correlation property.

To define a complex expression, click the Expression Builder button next to the
Correlation Property Alias text box. For more information see Writing Expressions.

4. Click OK.

22.4.3 How to Define a Correlation Using Advanced Mode
Advanced mode enables you to define multiple correlation keys with multiple
correlation properties.

To define a correlation using advanced mode:

1. In the Correlation Definition dialog box, click Switch to Advanced Mode.

The Correlation Keys table appears.

2. For each of the correlation keys you want to add to the correlation:

a. Click the Add button.

The Create CorrelationKey dialog box appears.

b. Select an existing correlation key or click the New Correlation Key button to
create a new correlation key.

For more information on how to define a new correlation key, see How to
Configure a Correlation Key.

c. If the BPMN element initiates the value of the correlation, select Initiates.

d. Click OK.

3. In the Correlation Property Aliases section, for each of the listed properties, define
an expression to assign a value to the correlation property.

Chapter 22
Defining Correlations for a BPMN Element

22-4

To define a complex expression, click the Expression Builder button next to the property
text box. For more information see Writing Expressions.

4. Click OK.

The Correlation Definition dialog box closes and the Correlations icon appear in colors
now.

22.5 Creating Correlations Keys
Since you define correlation keys at project level you can reuse correlation keys across the
processes in your project. You can also decide to create correlation keys before adding the
flow objects that use them. For both of these cases you must create correlation keys from the
Structure view.

Note:

Updates to a correlation key made using the runtime interface do not change the
existing subscription, even though the GUI may reflect the change. The change is
applicable to subsequent events in the flow.

22.5.1 How to Create a Correlation Key
You can create a correlation key at a project level and later use that correlation key to define
the correlations of your flow objects.

To create a correlation key:

1. Select a business process.

2. Open the Structure view.

3. Expand the Correlations node in the Structure view.

4. Right-click the Correlations Keys node.

5. Select New.

The Create Correlation Key dialog box appears.

22.5.2 How to Configure a Correlation Key
You can configure the properties that compose the correlation keys you define.

To configure a correlation key:

1. Enter the correlation name.

2. If the Correlation Properties list is empty or the property that you want to use for your
correlation is not defined, you must define a new correlation property. To define a
correlation property:

a. Click the New button.

The Create Correlation Property dialog box appears.

b. Enter a name for the correlation property.

Chapter 22
Creating Correlations Keys

22-5

c. Select a type.

Available types are: string, int, double, decimal, boolean, time.

d. Click OK.

3. Select the correlation properties that define the correlation:

a. From the Correlation Properties list, select the property you want to include
in the correlation.

b. Click the Select button.

The selected property appear in the Selected list.

4. Click OK.

Chapter 22
Creating Correlations Keys

22-6

23
Defining Conversations

Learn how to create and configure conversations in your BPM project and how to view and
use a collaboration diagram.

• Introduction to Conversations

• Understanding the Different Types of Conversations

• Creating Conversations

• Defining Conversations for a BPMN Element

• Viewing the Collaboration Diagram

23.1 Introduction to Conversations
Conversations define the state of a collaboration between two participants. You must use
them when a process needs to have multiple parallel conversations with different instances of
the same process or service, for example within a multi-instance subprocess. Conversations
group the message exchange between two or more processes. The message exchange
between processes is called collaboration.

A process instance may need to communicate with different instances in another process.
For example, a procurement process may need to interact with two different instance in a
supplier process, each representing a different item. You can model this message exchange
using conversations.

Within a process you can define multiple conversations that you can reuse among the flow
objects in that process.

The members of the collaboration are called participants. The participants in a collaboration
can be one of the following:

• BPMN processes

• BPEL processes

• Human Tasks

• Business Rules

• External References

Collaboration diagrams allows you to view the process flow together with the interactions
your process has with other participants in the conversation.

23.1.1 Defining the Default Conversation
Your BPM project defines a conversation by default. If you do not want to define multiple
conversations you must use this default conversation to gather all the message exchange
among the processes in your project.

23-1

You can only define one default conversation per project. However you can modify
your project to use a different default conversation than the one it uses by default. For
more information on how to do this, see How to Create a Conversation.

23.2 Understanding the Different Types of Conversations
The different types of conversations allow you to specify the different types of
interaction your process can establish with other processes or services.

The following list describes the different types of conversations:

• Define Interface: use this type to define the operations that other services and
processes can invoke to interact with a BPMN process.

• Use Interface: use this type to configure your process to use an interface from a
component in the Business Catalog.

• Process Call: use this type to invoke another BPMN process.

• Service Call: use this type to invoke a service defined in your BPM project.

For more information on how to communicate your process with other processes or
services, see the following chapters:

• Communicating With Other BPMN Processes and Services

• Defining the Process Interface

23.3 Creating Conversations
You can create a conversation to model the message exchange between a process
instance and the instances in another process or service.

Conversations enable you to group the message exchange between the processes in
your BPM project.

23.3.1 How to Create a Conversation
To create a conversation:

1. In the Applications window, select a process from the project in which you want
to define the correlation.

2. In the Structure window, right-click the Conversations node.

3. Select New.

The Create Conversation dialog box appears.

4. Enter a name to identify the conversation.

5. If you want this conversation to be the default conversation for this project, select
Default Conversation.

6. From the Type list select the type for this conversation.

Available types are:

• Define Interface

• Use Interface

Chapter 23
Understanding the Different Types of Conversations

23-2

• Process Call

• Service Call

7. If you want to expose this conversation as a SOAP service, select Expose as a SOAP
Service.

8. Click OK.

23.4 Defining Conversations for a BPMN Element
The BPMN elements you use to communicate a process with other processes or services
require you to define a conversation. The defined conversation groups the messages
exchanged between the processes and services within a BPM project.

The BPMN elements that require you to define a conversation are:

• Message Events

• Send and Receive Tasks

• Signal Events

The main reason to define a conversation is to have a process with a multi-instance activity
with an external receive.

23.4.1 How to Define a Conversation for a BPMN Element
You can define a conversation for a BPMN element.

To define a conversation for a BPMN element:

1. Right-click the BPMN element.

The Properties dialog box appears.

2. Click the Implementation tab.

3. Click the Browse button next to the Conversation field.

The Conversation dialog box appears.

4. Select a conversation from the list.

To search for a conversation, enter part of the name or the complete name in the Search
field.

To create a new conversation, click the New button. For more information on how to
create a new conversation, see Creating Conversations.

5. Click OK.

The Message Exchange section displays different fields according to the type of
conversation you selected.

6. Configure the Message Exchange section.

7. Click OK.

When you define a conversation for a BPMN element, you can define conversations at
process or subprocess level, this determines the visibility scope of the conversation from a
specific instance

Chapter 23
Defining Conversations for a BPMN Element

23-3

23.5 Viewing the Collaboration Diagram
The collaboration diagram shows the flow of your process and how that process
interacts with other processes or services in the same diagram.

You can view the collaborations in your process using the collaboration diagram.

23.5.1 How to View the Collaboration Diagram
To view the collaboration diagram:

1. Open the BPMN process.

2. In the BPMN process editor, click the Collaboration tab located at the bottom next
to the Designer tab.

The collaboration diagram for the selected process appears.

23.5.2 How to Hide a Collaboration
You can hide a collaboration so that you are able to focus on the rest of the
collaborations in the diagram.

To hide a collaboration:

1. In the Collaboration Diagram, right click over a participant of the conversation.

2. Select Hide Conversation.

The selected participant disappears from the Collaboration Diagram.

23.5.3 How to Show a Collaboration
You can show a conversation that was previously hidden.

To show a collaboration:

1. In the Collaboration Diagram, right-click a participant of the conversation.

2. Select Show Conversation.

The previously hidden conversation appears from the Collaboration Diagram.

Chapter 23
Viewing the Collaboration Diagram

23-4

24
Writing Expressions

Oracle BPM provides you with two different types of expression editors that adjust to
requirements of different users. Learn how to write expressions and conditions for the BPMN
elements that require them. Also check the expression language used by each of these
expression builders and the operations you can use in the expressions you write.

• Introduction to Expressions in Oracle BPM

• Writing Conditions in Conditional Sequence Flows

• Writing Expressions in Complex Gateways

• Writing Expressions in Timer Events

• Writing Expressions in Data Associations

• Writing Conditions in Loop and Multi-Instance Markers in Subprocesses

• Writing Expressions and Conditions Using the Simple Expression Builder

• Simple Expression Builder Supported Operators

• Simple Expression Builder Supported Functions

• Writing Expressions Using the XPath Expression Builder

• Using Arrays

• Using Literals

• XPath BPM Extension Functions

24.1 Introduction to Expressions in Oracle BPM
Some BPM elements require you to write a condition or an expression that defines their
behavior. For example, you might want to control the flow of your process using a conditional
sequence flow that ensures that all expenses above 500 dollars are approved by a manager.

Oracle BPM provides you two ways of writing these expressions and conditions:

• Using the Simple Expression Builder

• Using the XPATH expression builder

The Simple Expression Builder uses dot notation and its syntax is very similar to Java. The
XPATH Expression Builder uses standard XPATH language.

After writing an expression in simple expression language you can convert it to XPath and
vice versa. When you convert an expression from one language to another, the expression
editor removes any operators and parenthesis that do not affect the meaning of the
expression.

Oracle BPM uses expressions to configure the following BPMN elements:

• Conditional Sequence Flows

• Complex Gateways

24-1

• Timer Events

• Data Associations

• Loop Markers

• Multi-Instance Markers

• User Task Advanced Properties

• Correlations

The results of the expression vary according to the type of element you are
configuring. Table 24-1 describes the expression required by each of the BPM
elements.

Table 24-1 Expression Types

BPMN Element Expression Type

Conditional Sequence Flow Condition that when evaluated results in a boolean value.

Complex Gateway Condition that when evaluated results in a boolean value.

Timer Event Time Date: expression that when evaluated results in a dateTime
value.

Cycle: expression that when evaluated results in an duration
value.

Data Associations Expression that when evaluated results in a value of the same
type as the argument in the data association.

User Task Advanced
Properties

Expression that when evaluated results in a string value.

Loop Marker Condition that when evaluated results in a boolean value.

Multi-Instance Marker Loop Cardinality: expression that when evaluated results in an int
value.

Completion Condition: Condition that when evaluated results in a
boolean value.

The configuration dialogs of the BPM elements that support expressions contain an
embedded expression editor and a button to launch the expression builder. The latter
is more suitable when you are working with long expressions. Both expression builders
enable you to browse the available variables. The XPATH expression builder also
enables you to browse the available functions.

24.2 Writing Conditions in Conditional Sequence Flows
To implement a conditional sequence flow you must provide a condition. When the
token arrives to the conditional sequence flow, the BPMN Server Engine evaluates the
condition in the conditional sequence flow to determine which sequence flow the token
should follow.

Generally the condition is based on the values of the project and process data object,
but this is not a requirement. The condition must result in a boolean value when the
compiler evaluates it. If you write a condition that does not result in a boolean value,
then the Simple Expression Builder prompts an error.

Chapter 24
Writing Conditions in Conditional Sequence Flows

24-2

24.2.1 How to Implement a Conditional Sequence Flow
You must define an expression to implement a conditional sequence flow.

To implement a conditional sequence flow:

1. Right-click the conditional sequence flow.

2. Select Properties.

3. Click the Properties tab.

4. From the Type List, select Condition.

5. In the Expression section, select the type of expression builder to use to write your
condition.

6. If your condition is simple, then you can choose to write it in the provided text area or
launch the expression builder by clicking the Launch Expression Builder button next to
the text area.

If you are working with complex conditions, then you can launch the expression builder
by clicking the Launch Expression Builder button next to the text area.

7. Click OK.

24.3 Writing Expressions in Complex Gateways
To implement a complex gateway you must provide a condition that specifies when the
gateway releases the tokens that arrive to it. Each time a new token arrives to the complex
gateway the BPMN Service Engine evaluates this condition. If the condition evaluates to true,
then the complex gateway releases all the tokens that arrived until that moment.

Generally the condition is based on the number of tokens that arrived to the complex
gateway. For example you might want the gateway to release the tokens after two tokens
arrive to the merge gateway.

Example 24-1 shows a condition that configures the gateway to release the tokens that
arrived to it after two tokens arrive to the merge gateway.

Example 24-1 Condition in a Complex Gateway

activationCount >= 2

24.3.1 How to Implement a Complex Gateway
You must define an expression to implement a gateway.

To implement a complex gateway:

1. Right-click the conditional complex gateway.

2. Select Properties.

3. Click the Implementation tab.

4. In the Expression section, select the type of expression builder to use to write your
condition.

5. If your condition is simple, then you can write it in the provided text area.

Chapter 24
Writing Expressions in Complex Gateways

24-3

If you are working with complex conditions, then you can launch the expression
builder by clicking the Launch Expression Builder button next to the text area.

6. Click OK.

24.4 Writing Expressions in Timer Events
To implement a timer event you can choose to specify a date or an interval, or to write
an expression that calculates the date or the interval.

Generally you use expressions in those cases where the date or the interval are not
fixed.

The following examples show expressions that you can use in a timer event to express
a date:

• 'now' + '30m'

• deadline - '1day'

• arrivalDate.dateTime + '1h'

The following examples show expressions that you can use in a timer event to express
an interval:

• waitToRetry.interval()

• period(deadline)

24.4.1 How to Use an Expression in a Timer Event
You can use an expression to calculate a date or an interval in the implementation of a
timer event.

To use an expression in a timer event:

1. Right-click the timer event.

2. Select Properties.

3. Click the Implementation tab.

4. Select Use Expression.

5. In the Expression section, select the type of expression builder to use to write your
condition.

6. If your expression is simple, then you can write it in the provided text area.

If you are working with complex expressions, then you can launch the expression
builder by clicking the Launch Expression Builder button next to the text area. The
Expression Builder where you can write the expression appears.

7. Click OK.

24.5 Writing Expressions in Data Associations
You can use expressions in data associations to modify the input and output values
before associating them with the activity implementation arguments.

Chapter 24
Writing Expressions in Timer Events

24-4

Generally you use expressions when there is a mismatch between the data objects and the
activity implementation arguments. The following examples describe situations where you
can use expressions in a data association:

• A mismatch between the value of the data object and the argument the service requires.

For example, the service your activity invokes uses a different product ID than the one
you use in the process. In this case you can use an expression to adapt the content of
the product ID data object to the value your services require.

• A mismatch between the data type of the data object and the data type of the argument
the service requires.

For example, the service your activity invokes uses a string to store the state of the order
and your service requires you to specify the state of the order with an int value. In this
case you use an expression that calculates the int value that corresponds to the state the
string specifies.

24.5.1 How to Use an Expression in a Data Association
You can use expressions in data associations to modify the values of the arguments or data
objects before mapping them.

To use an expression in a data association:

1. Right-click the activity whose data association you want to modify.

2. Select Properties.

3. Click the Implementation tab.

4. Click the Data Associations link.

5. Click the Expression button.

The Expression Builder Dialog appears.

6. Type the expression and click OK.

The expression appears in the middle column.

7. Locate the input or output argument you want to modify using an expression and drag it
over the middle column over the expression you created.

8. Click OK.

24.6 Writing Conditions in Loop and Multi-Instance Markers in
Subprocesses

You can configure subprocesses to run multiple times using loop and multi-instance markers.
To configure loop and multi-instance makers you must define expressions and conditions that
specify how to repeat the subprocess.

Loop Markers

Loop markers enable you to run a subprocess multiple times based on condition. You can
configure the loop marker to evaluate the condition before or after running the subprocess.
You can also configure the loop marker to stop after a certain number of repetitions.

Chapter 24
Writing Conditions in Loop and Multi-Instance Markers in Subprocesses

24-5

To configure a loop maker you must write a Loop Condition that determines if the
BPMN Service Engine must continue to repeat the subprocess.

Multi-Instance Markers

Multi-instance markers enable you to run a subprocess for each of the elements on a
set of data. When the BPMN Service Engine runs a subprocess with a multi-instance
loop marker it creates a set of instances, one for each element on the set of data. You
can configure the multi-instance marker to process these instances in parallel or
sequentially.

The following fields in a multi-instance loop marker require you to write an expression:

• Loop Cardinality

This expression defines the number of tokens to create in the subprocess.

• Completion Condition

This expression determines when to stop repeating the subprocess. The BPM
Service Engine evaluates this condition every time a token completes the
subprocess. If the condition evaluates to true, it considers the subprocess
completed and the instance moves to the next flow object in the process.

24.6.1 How to Configure Loop Markers
You can configure a loop marker to run a subprocess multiple times.

To configure loop markers:

1. Right-click the subprocess.

2. Select Properties.

3. Click the Loop Characteristics tab.

4. Select Loop.

5. Specify the Loop Condition:

a. Select the expression language.

Possible options are Simple or XPath.

b. In the text area below, write the condition that drives the loop.

Optionally you can write the condition using the Expression Builder. To launch
the Expression Builder click the Expression Builder button next to the text
area.

6. Optionally, you can specify a maximum number of times for the loop to run:

a. Select Loop Maximum.

b. Specify a number.

7. Select before to evaluate the condition before running the flow object, or deselect
it to evaluate the condition after running the flow object.

8. Click OK.

Chapter 24
Writing Conditions in Loop and Multi-Instance Markers in Subprocesses

24-6

24.6.2 How to Configure Multi-Instance Markers
You can configure a multi-instance marker to run subprocess multiple times based on a set of
data.

To configure multi-instance markers:

1. Right-click the subprocess.

2. Select Properties.

3. Click the Loop Characteristics tab.

4. Select MultiInstance.

5. Specify the Loop Cardinality:

a. Select the expression language.

Possible options are Simple or XPath.

b. In the text area below, write the specifies the loop cardinality.

Optionally you can write the condition using the Expression Builder. To launch the
Expression Builder click the Expression Builder button next to the text area.

6. Optionally, you can specify the Completion Condition:

a. Select the expression language.

Possible options are Simple or XPath.

b. In the text area below, write the condition that determines if the loop is completed.

Optionally you can write the condition using the Expression Builder. To launch the
Expression Builder click the Expression Builder button next to the text area.

7. Click the Browse button next to the Loop Data Output field, to specify the data output.

You can select a data object or an attribute in a complex data object to pass to the
subprocess. Generally the selected data object is a collection of items.

8. Click the Browse button next to the Loop Data Input field, to specify the data input.

Select a data object or an attribute in a complex data object to assign the result of the
subprocess.

9. Optionally, check the Is Sequential check box to specify that the each token must
complete the subprocess before the next token starts to run the subprocess.

10. Click OK.

24.7 Writing Expressions and Conditions Using the Simple
Expression Builder

The Simple Expression Builder contains a text area for you to type the expression and a list
of variables that you can use.

The Simple Expression Builder supports the following features:

• Syntax Highlighting

Chapter 24
Writing Expressions and Conditions Using the Simple Expression Builder

24-7

The Simple Expression Builder highlights the syntax in your expressions to make
them easier to read and understand. It uses different colors for the different data
type values.

• Automatic Code Completion

If you wait a few seconds after you type the dot to invoke a method, then the
Simple Expression Builder shows a list with the available functions that you can
invoke over that data object. If you want the Simple Expression Builder to
complete the expression for you, then you can press Ctrl + Space.

• On-the-fly Error Checking

The Simple Expression Builder checks the expressions as you write. It underlines
with a red waved line those expressions that do not compile. To find out the cause
of the error place the cursor over the red wavy line and wait for a tooltip with the
error description to appear.

Figure 24-1 show the Simple Expression Builder dialog box.

Figure 24-1 Simple Expression Builder

24.7.1 How to Use a Data Object in an Expression
You can use a data objects in your expressions to perform calculations based on them.

Chapter 24
Writing Expressions and Conditions Using the Simple Expression Builder

24-8

To use a data object in an expression:

1. Open the Expression Builder.

2. Place the cursor where you want to insert the data object.

3. From the Variables section, select a data object.

4. Click Insert Into Expression.

The selected data object appears in the Expression text area.

24.7.2 How to Use a Function in an Expression
To use a function in an expression, you can select the expression from the expression list in
the simple expression builder, or you can type the function name in the Expression text area.
If you write part of the name and press Crtl+Space, then the expression builder completes
the name of the function.

To use a function in an expression using the simple expression builder:

1. Open the Expression Builder.

2. Place the cursor where you want to insert the function.

3. From the Functions section, select a type of function.

4. From the Functions list, select a function.

The Description field shows a description of the function.

5. Click Insert Into Expression.

The selected function appears in the Expression text area.

24.8 Simple Expression Builder Supported Operators
The Simple Expression Builder enables you to create expressions using several operator
types.

• Arithmetic Operators

• Unary Operators

• Equality and Relational Operators

• Conditional Operators

You can use these operators to write expressions and conditions to drive your process flow.
Generally these expressions perform their calculations based on the data objects in your
process. You can write expressions and conditions using the value of the data objects, but
you cannot modify their value.

The following examples of expressions use operators:

• totalAmount - discount

• deadlineExpired and orderStatus !=complete

• activationCount > 3

• unitsSold <= 1200

Chapter 24
Simple Expression Builder Supported Operators

24-9

• 'now' + '2m'

• deadline - '1h'

• not formComplete

Table 24-1, Table 24-2, Table 24-3, Table 24-4 and Table 24-5 describe the supported
operators in the Simple Expression Builder.

Table 24-2 Arithmetic Operators

Operat
or

Name Description

+ Addition Adds numeric data types.

Concatenates Strings.

Add an interval value to a dateTime value.

- Subtraction Subtracts numeric data types.

Subtracts an interval value from a dateTime value.

* Multiplication Multiplies numeric data types.

/ Division Divides numeric data types.

rem Remainder Calculates the remainder of a division in which the divisor does not
exactly divide the dividend.

() Precedence Indicates the order of evaluation of an arithmetic expression.

Table 24-3 Unary Operators

Operat
or

Name Description

+ Plus Has no effect on the value of the numeric operand. Use it to indicate
explicitly that a certain value is positive.

- Minus Negates an arithmetic expression. Inverts the sign of a number.

not Not Logical complement operator. Negates the value of a boolean
expression.

Table 24-4 Equality and Relational Operators

Operat
or

Name Description

= Equal Returns true if the first operand equals the second operand.

!= Not Equal Returns true if the first operand is not equal to the second operand.

> Greater
Than

Returns true if the first operand is greater than the second operand.

>= Greater
Than or
Equal to

Returns true if the first operand is greater than or equal to the second
operand.

< Less Than Returns true if the first operand is less than the second operand.

<= Less Than or
Equal to

Returns true if the first operand is less than or equal to the second
operand.

Chapter 24
Simple Expression Builder Supported Operators

24-10

Table 24-5 Conditional Operators

Operato
r

Name Description

and Conditional
And

Returns true if both operands evaluate to true.

or Conditional
Or

Returns true if one operand evaluates to true.

24.8.1 Operators Precedence
The precedence of the operators indicates the order in which the compiler evaluates them.
You can change the precedence of the operators in an expression by using parenthesis.

The precedence of the operators in the Simple Expression Builder is:

• Unary Plus and Unary Minus

• Multiplication, Division, Remainder

• Addition and Subtraction

• Less than, Greater Than, Less Than or Equal to, Greater Than or Equal to

• Equal, Not Equal

• Not

• Conditional And

• Conditional Or

24.9 Simple Expression Builder Supported Functions
The Simple Expression Builder supports functions that you can use to calculate and
manipulate your expressions and conditions.

The following sections describe the functions the Simple Expression Builder supports:

• String Functions

• Numeric Functions

• DateTime and Duration Functions

24.9.1 String Functions
These functions enable you to manipulate string variables and literals, and perform
calculations based on them.

24.9.1.1 length
Returns the number of characters in this string.

Signature:

int length(string stringToMeasure)

Chapter 24
Simple Expression Builder Supported Functions

24-11

Arguments:

string - The string to measure.

Examples:

name.length()

length(name)

name.length

24.9.1.2 concatenation
Concatenates one or more Strings.

Examples:

name + " " + lastName

"Oracle " + "BPM"

24.9.1.3 contains
Returns true if the string contains the specified string.

Signature:

boolean contains(string mainString, string subString)

Arguments:

subString - The string to find.

Examples:

productName.contains("book")

contains(productName, "book")

24.9.1.4 startsWith
Returns true if the string starts with the specified string.

Signature:

boolean startsWith(string mainString, string subString)

Arguments:

subString - The string to find at the beginning of the string.

Example:

productId.startsWith("ABC")

startsWith(productId, "ABC")

Chapter 24
Simple Expression Builder Supported Functions

24-12

24.9.2 Numeric Functions
These functions enable you to perform calculations using numeric data types. The available
numeric data types are double, decimal, and int.

24.9.2.1 floor
Returns the largest int value that is smaller than the numeric value used for invoking this
function. You can use this function with double and decimal data types.

Signature:

int floor(double number)

int floor(decimal number)

Arguments:

double / decimal - The number to use as a base for this function.

Examples:

number.floor()

floor(number)

number.floor

floor(totalAmount/3)

temperature.floor()

24.9.2.2 ceil
Returns the smallest int value that is greater than the numeric value used for invoking this
function. You can use this function with double and decimal data types.

Signature:

int ceil(double number)

int ceil(decimal number)

Arguments:

double / decimal - The number to use as a base for this function.

Examples:

number.ceil()

ceil(number)

number.ceil

Chapter 24
Simple Expression Builder Supported Functions

24-13

24.9.2.3 round
Returns the closest int value to this number. If there are two int values that are equally
close, then it returns the greater one. You can use this function with double and
decimal data types.

Signature:

int round(double number)

int round(decimal number)

Arguments:

double / decimal - The number to use as a base for this function.

Examples:

number.round()

round(number)

number.round

24.9.2.4 abs
Returns the absolute value of this number. You can use this function with int, double,
and decimal data types.

Signature:

int abs(int number)

double abs(double number)

decimal abs(decimal number)

Arguments:

int / double / decimal - The number to use as a base for this function.

Examples:

number.abs()

abs(number)

number.abs

24.9.3 DateTime and Duration Functions
These functions enable you to manipulate time variables and literals, and perform
calculations based on them. The available time data types are dateTime and duration.

24.9.3.1 now
Special notation for the system current date and time.

Chapter 24
Simple Expression Builder Supported Functions

24-14

Examples:

setReceivedDate('now')

24.9.3.2 addition
Adds an interval to a dateTime variable or value.

Examples:

today + '1d3h'

now + 3d

vacationStartingDate + '1M'

24.9.3.3 subtraction
Subtracts an interval to a dateTime variable or value.

Examples:

today - '2d3h25m'

now - age

expirationDate - '7d'

24.9.3.4 year
Returns the year of this dateTime variable.

Signature:

int year(dateTime date)

Arguments:

dateTime - The date to obtain the year from.

Examples:

today.year()

year(today)

today.year

24.9.3.5 month
Returns the month of this dateTime variable.

Signature:

int month(dateTime date)

Chapter 24
Simple Expression Builder Supported Functions

24-15

Arguments:

dateTime - The date to obtain the month from.

Examples:

today.month()

month(today)

today.month

24.9.3.6 day
Returns the day of this dateTime variable.

Signature:

int day(dateTime date)

Arguments:

dateTime - The date to obtain the day from.

Examples:

today.day()

day(today)

today.day

24.9.3.7 hours
Returns the hour of this dateTime variable.

Signature:

int hours(dateTime date)

Arguments:

dateTime - The date to obtain the hours from.

Examples:

today.hours()

hours(today)

today.hours

24.9.3.8 minutes
Returns the minutes of this dateTime variable.

Chapter 24
Simple Expression Builder Supported Functions

24-16

Signature:

int minutes(dateTime date)

Arguments:

dateTime - The date to obtain the minutes from.

Examples:

today.minutes()

minutes(today)

today.minutes

24.9.3.9 seconds
Returns the seconds of this dateTime variable.

Signature:

int seconds(dateTime date)

Arguments:

dateTime - The date to obtain the seconds from.

Examples:

today.seconds()

seconds(today)

today.seconds

24.9.3.10 timezone
Returns an duration value that represents the offset from UTC.

Signature:

duration timezone()

Arguments:

-

Examples:

'1995-02-03 23:30:23-3:30'.timezone()

timezone('1995-02-03 23:30:23-3:30')

'1995-02-03 23:30:23-3:30'.timezone

The result of this example is '-3h30m'.

Chapter 24
Simple Expression Builder Supported Functions

24-17

24.10 Writing Expressions Using the XPath Expression
Builder

Oracle BPM enables you to write expressions using SOA XPath Expression Builder.
This expression builder supports standard XPath language.

The XPath Expression Builder displays a list of the available variables that you can
use in your expression. It also displays a list with the functions you can use in your
expressions. When you select a function you can preview its syntax and description
before adding it to your expression.

For more information about the functions supported for XPath see "Appendix B XPath
Extension Functions" in Developing SOA Applications with Oracle SOA Suite.

Additionally Oracle BPM supports a group of BPM Extension Functions.

Figure 24-2 shows XPath Expression Builder.

Figure 24-2 XPath Expression Builder

Chapter 24
Writing Expressions Using the XPath Expression Builder

24-18

24.10.1 How to Add a Variable to an XPath Expression
You can add variables to an XPath expression to perform calculations based on them.

To add a variable to an XPath expression:

1. Launch the XPath Expression Builder.

2. Place the cursor where you want to insert the variable.

3. From the variables list, select a variable.

4. Click Insert Into Expression.

The selected variable appears in the expression text area.

24.10.2 How to Use a Function in an XPath Expression
You can invoke a function in an XPath expression. The XPath Expression Builder enables
you to brow a list of functions grouped by functionality.

To use a function in an XPath expression:

1. Launch the XPath Expression Builder.

2. Place the cursor where you want to insert the expression.

3. From the Functions list select a function category.

The list of available functions for the selected category appears below the Function list.

4. From the list of available functions, select a function.

5. Click Insert Into Expression.

The selected function appears in the expression text area.

24.11 Using Arrays
Some service operations may require or return arguments of type array. These arrays can be
collections ofsimple types or complex types.

To provide a parameter of type array to a service operation, you can:

• Invoke an operation that returns an array

• Define an array using array literals

For more information about defining array literals, see Using Array Literals.

Generally when a process operation returns an argument of type array you assign one of the
elements of the array or an attribute of one of the elements to a data object using data
association. For more information about data associations, see Introduction to the Data
Association Editor.

Example 24-2 shows an expression that accesses an element of an array. In this example the
name of the array is persons and the element to access is the third element in the array.

Note that the index of the first element in the array is 1. For example to access the first
element in the persons array you must write the following expression: persons[1].

Chapter 24
Using Arrays

24-19

Example 24-2 Expression accessing an element of an array

persons[3]

24.11.1 Accessing an Attribute of an Element Within an Array
Simple expression language also enables you to access the attribute of the elements
within the array. For example you could invoke a service operation that returns an
array of persons and access the name attribute of the first element in the array to a
process data object, using data associations.

Example 24-3 shows an expression that accesses an attribute of an element of an
array. In this example the name of the array is persons, the element to access is the
third element in the array and the attribute to access is the name of the person

Example 24-3 Expression accessing an attribute of an element of an array

persons[1].name

24.11.2 Obtaining the Length of an Array
Simple expression language enables you to obtain the length of an array to use it in
your process logic. This is typical when defining the loop cardinality of multi-instance
markers. For more information about multi-instance markers, see Writing Conditions in
Loop and Multi-Instance Markers in Subprocesses.

To obtain the length of an array you must invoke the length function.

Example 24-3 shows an expression that obtains the length of an array. In this example
the name of the array is persons. Note that even if the example uses parentheses after
the function name but, you can omit them because this function does not require any
parameters.

Example 24-4 Expression obtaining the length of an array

persons.length()

24.12 Using Literals
Literals enable you to express a certain value. You can use literals to assign a value to
data object or to pass a parameter to a method you are invoking. To assign a value to
a data object you can use data associations or a script task.

Simple expression language supports the following types of literals:

• string literals

• time literals

• duration literals

• array literals

24.12.1 Using String Literals
You can assign a value to data object of type string using literals. You can also use
string literals to provide a parameter of type string to a method.

Chapter 24
Using Literals

24-20

To define a string literal you must write a word or a set of words enclosed by double quotes. A
string can also contain numbers.

The following list shows examples of string literals:

• "Wednesday"

• "marie@oracle.com"

• "500 Oracle Parkway"

• "+1.650.506.7000"

24.12.2 Using Time Literals
You can assign a value to a data object of type Time using literals. You can also use time
literals to provide a parameter of type time to a method.

Time literals enable you to define a date using different levels of precision.

The following list uses an example date to show the different time literals that you can use to
specify a variable of type Time:

• '13:30'

• '13:30:23'

• '13:30:23.001023'

• '13:30:23.001023Z'

• '13:30:23.001023-05'

• '13:30:23.001023-3:30'

• '1979-02-19'

• '1979-02-19 13:30'

• '1979-02-19 13:30:23'

• '1979-02-19 13:30:23.001023'

• '1979-02-19 13:30:23.001023Z'

• '1979-02-19 13:30:23.001023-05'

• '1979-02-19 13:30:23.001023-3:30'

• '1979-02-19T13:30'

• '1979-02-19T13:30:23'

• '1979-02-19T13:30:23.001023'

• '1979-02-19T13:30:23.001023Z'

• '1979-02-19T13:30:23.001023-05'

• '1979-02-19T13:30:23.001023-3:30'

• '19790219T'

• '19790219T133023.001023-330'

Chapter 24
Using Literals

24-21

24.12.3 Using Duration Literals
You can assign a value to a data object of type duration interval literals. You can also
use interval literals to provide a parameter of type duration to a method.

Duration literals enable you to define a date using different levels of precision.

To define a time literal you must use a combination of values and followed by their time
unit enclosed by single quotes.

Table 24-6 shows the available time unit fields.

Table 24-6 Time Unit Suffixes

Time Unit Suffix Description

Y Year

M Month

d or D Day

h or H Hour

m Minutes

s or S Seconds

x Microseconds

Table 24-7 shows examples of interval literals:

Table 24-7 Examples of interval literals

Example Description

'1Y1M3h2m1.500s' 1 year, 1 month, 3 hours, 2 minutes and 1.500
milliseconds

'1.5h' 1.5 hours

'3M15d' 3 months and 15 days

24.12.4 Using Array Literals
You can assign a value to a data object of type array using literals. You can also use
array literals to provide a parameter of type array to a method.

To define an array literal you must provide a list of values separated by comas and
enclosed by brackets. You can also specify the values using literals or attributes from
data objects.

The following list shows examples of array literals:

• ["One", "Two", "Three"]

• [1, 2, 3]

• [customer.firstName, customr.lastName]

Chapter 24
Using Literals

24-22

24.13 XPath BPM Extension Functions
The BPM Extension Functions enable you to access various elements using XPath. In XPath
this is the only way of accessing the value of the described elements in your BPMN process.

• Process and Project Data Objects

• Arguments

• Activity Instance Attributes

You can also use the XPath extension functions that Oracle SOA Suite provides. For more
information see appendix XPath Extension Functions, in Developing SOA Applications with
Oracle SOA Suite.

24.13.1 getActivityInstanceAttribute
Returns the value of a specific activity instance attribute. See Introduction to Activity Instance
Attributes for more information about the supported activity instance attributes.

Signature:

bpmn:getActivityInstanceAttribute(activityName, attributeName)

Arguments:

activity name - The name of the activity that contains the activity instance attribute.

attributeName - The name of the activity instance attribute for which you want to find out the
value.

Examples:

bpmn:getActivityInstanceAttribute(userTask, priority)

bpmn:getActivityInstanceAttribute(userTask, title)

24.13.2 getDataInput
Returns the value of a specific input argument in a data association.

Signature:

bpmn:getDataInput(dataInputName)

Arguments:

dataInputName - string that contains the name of the data input argument.

24.13.3 getDataObject
Returns the value of a specific data object.

Signature:

bpmn:getDataObject(dataObjectName)

Chapter 24
XPath BPM Extension Functions

24-23

Arguments:

dataObjectName - string that contains the name of the data object whose value you
want to obtain.

Examples:

bpmn:getDataObject(discount)

bpmn:getDataObject(approveTermsOutcome)

24.13.4 getDataOutput
Returns the value of a specific data output argument in a data association.

Signature:

pmn:getDataOutput(dataOutputName)

Arguments:

dataOutputName - string that contains the name of the data output argument.

24.13.5 getGatewayInstanceAttribute
Returns the value of a specific activity instance attribute in a gateway. See Introduction
to Activity Instance Attributes for more information about the supported activity
instance attributes for gateways.

Signature:

bpmn:getGatewayInstanceAttribute(gatewayName, attributeName)

Arguments:

gatewayName - string that contains the name of the gateway that contains the attribute
whose value you want to obtain.

attributeName - string that contains the name of the attribute whose value you want to
obtain.

24.13.6 getProcessInstanceAttribute
Returns the value that corresponds to a process activity instance attribute. See
Introduction to Activity Instance Attributes for more information about the supported
activity instance attributes.

Signature:

bpmn:getProcessInstanceAttribute(attributeName)

Arguments:

attributeName - string that contains the name of the process instance attribute whose
value you want to find out.

Chapter 24
XPath BPM Extension Functions

24-24

Examples:

bpmn:getProcessInstanceAttribute(owner)

24.13.7 getBusinessParameter
Returns the value that corresponds to a business parameter.

Signature:

bpmn:getBusinessParameter(businessParametername)

Arguments:

businessParameterName - string that contains the name of the business parameter whose
value you want to find out.

Examples:

bpmn:getBusinessParameter(APPROVED_DISCOUNT)

bpmn:getBusinessParameter(businessParameterName)

Chapter 24
XPath BPM Extension Functions

24-25

25
Writing BPM Scripts

Learn how to use BPM scripting to access and modify the data objects in a BPM Project.

• Introduction to BPM Scripting

• Introduction to the BPM Code Editor

• Introduction to the Scripting Catalog

• Importing Custom Libraries

• Working with the Elements of a BPM Project

• Importing Business Objects from the Business Catalog

• Predefined Variables

• Implementing Script Tasks

• Type Description Mapping for XML Schema Types

25.1 Introduction to BPM Scripting
Oracle BPM supports Groovy 2.1 compiler and runtime (with static compilation enabled) as a
scripting language.

Scripting is available in the following contexts:

• Script task

See How to Implement a Script Task

• Business object methods

See Working with Business Object Methods

Within a script block, you can create and use types from the Business Catalog, Java 6 SE
API Library, and from any JAR files included in the BPM project.

25.2 Introduction to the BPM Code Editor
The BPM Code editor provides basic syntax highlighting, error and warnings highlighting, and
code completion.

• Basic Syntax Highlighting

It displays the code in different colors and fonts according to the category of terms.
Syntax highlighting also helps developers find mistakes in their code.

• Error and Warnings Highlighting

It highlights compiling errors and warnings while you are writing the code. It also provides
a description of the problem.

• Code Completion

It predicts a word or phrase that the user wants to type before they finish typing it.

25-1

The Code editor supports the following types of code completion:

• Inherited members (extends/implements)

• Instance members (fields/methods)

• Class members (fields/methods)

• Local variables

• Method parameters

• Primitive types

• Class Names (import will be automatically added if not exists)

The editor displays the options ordered by their relevance. If multiple options have the
same relevance, the editor orders them alphabetically.

Figure 25-1 shows the Script editor with the implementation of a script task.

Figure 25-1 Script Editor

25.3 Introduction to the Scripting Catalog
The Scripting Catalog contains all the libraries available for you to use in your scripts.
These libraries contain components that you can access by instantiating them and
invoking their method. These components are stored in modules.

The Scripting Catalog contains the following components:

• The default Groovy libraries

• The default Java libraries

• The business catalog components

Chapter 25
Introduction to the Scripting Catalog

25-2

• The imported custom libraries

Figure 25-2 Scripting Catalog Window

25.4 Importing Custom Libraries
You can use external Java libraries that contain functions that are useful for your project. This
enables you to benefit from the vast amount of libraries that solve different problems and are
available for Java developers to use.

You can import these Java libraries and invoke them from the Groovy scripts.

After you import a Java library, it becomes part of the Scripting Catalog for that BPM project
and you can use the from the scripts you write.

25.4.1 How to Import a Custom Library
To use an external Java library you must first import it to the BPM project's Scripting Catalog.

To import a custom library:

1. Open the business object or the process where you want to import the library.

2. In the Scripting Catalog window, click Edit Libraries.

The Libraries dialog box opens.

3. Click the Add button.

The Open dialog box opens.

Chapter 25
Importing Custom Libraries

25-3

4. Select a the jar file containing the external library.

5. Click Open.

The select library appears in the Libraries table.

6. Select the library.

7. Click OK.

The selected library appears in the Scripting Catalog and is available for you to
use its classes in your scripts. Note that some libraries may appear in already
existing modules, like org or com.

25.5 Working with the Elements of a BPM Project
You can access the value of some of the elements of a BPM project and you can
manipulate their values or use them to perform operations.

You can access the following elements of a BPM project from a script:

• project data objects

• process data objects

• business parameters

Project and process data objects are available as variables in the script.

25.5.1 How to Work with Business Objects
You can access the attributes and methods of the data objects defined as a business
object, in the same way that you access the attributes and methods of a java object.

For example: You created a business data object that models a person. This business
object contains a name attribute and a promote method.

You also defined a process data object of type Person.

You can access the name attribute using the following code:

person.name;

You can access the promote method using the following code:

person.promote;

To create an instance of a Business Object and store it in a local variable.:

1. Import the business object.

For information on how to import a business object, see Importing Business
Objects from the Business Catalog.

2. Create a variable with the type of the business object and assign it a new instance
of the business object.

The following example imports the Person type, creates a local variable of type
person, assigns a value to its attributes and then assigns the local instance to the
Person process data object:

def localPerson = new Person();
localPerson.firstName = "John";

Chapter 25
Working with the Elements of a BPM Project

25-4

localPerson.lastName = "Cooper"
this.person = localPerson;

25.5.2 How to Work with Business Parameters
After you define a business parameter in the organization you can access it using its getter
method.

For example, if you define a business parameter TAX_CODE, then you can access it using
the following code:

this.getTAXCODE()

25.6 Importing Business Objects from the Business Catalog
You can use the business objects defined in the business catalog in your scripts. To do this
you must first import the business objects.

To import a business object from the business catalog:

1. In the Script Editor, click Select Imports.

The Select Imports dialog box appears.

2. Click the Add button.

A new row appears in the imports table.

3. Start typing the path to the business object.

For example: oracle.scripting.catalog.shipping.ShipOrder

The auto-complete list displays a list of options.

4. Select the business object you want to import from the auto-complete list.

5. Click OK.

The selected import is now available for you to use it in your code.

25.7 Predefined Variables
The variable predef is available in every script task method context. This variable enables
you to access the available predefined variables.

The following table shows the supported predefined variables and how to access them using
Groovy expressions. If the access type of the predefined variable is read/write, then you can
use the Groovy expression to view the value of the predefined variable and to modify it. If the
access type is read-only, then you can only view the value of the predefined variable.

Note:

BPMN only perform the necessity actions on the data and does not check the
authenticity of the data. Predefined variable values must be validated, and right
values must be set by client application.

Chapter 25
Importing Business Objects from the Business Catalog

25-5

Table 25-1 Groovy Expressions to Access Predefined Variables

Predefined Variable Groovy Expression Access Type

Organizational Unit predef.organizationalUnit Read/write

Title predef.title Read/write

Creation Date predef.creationDate Read-only

Modify Date predef.modifyDate Read-only

Instance Number predef.instanceNumber Read-only

Instance ID predef.instanceId Read-only

ECID predef.ecid Read-only

Process DN predef.processDN Read-only

Conversation ID predef.conversationId Read-only

Component Type predef.component.type Read-only

Component Name predef.component.name Read-only

State predef.state Read-only

Composite Name predef.composite.name Read-only

Composite DN predef.composite.dn Read-only

Composite Label predef.composite.label Read-only

Composite Revision predef.composite.revision Read-only

Composite Instance ID predef.composite.instanceId Read-only

Activity Name predef.activity.name Read-only

Priority predef.priority Read/write

Creator predef.creator Read/write

Owner predef.owner Read/write

Owner Type predef.ownerType Read/write

Action predef.action Read/write

Expiration predef.expiration Read/write

Reviewer predef.reviewer Read/write

ReviewerType predef.reviewerType Read/write

DueDate predef.dueDate Read/write

25.8 Implementing Script Tasks
A BPMN script task is an activity that runs a script.

This script is written in Groovy and can access and modify the value of the data
objects defined in a BPM project.

25.8.1 How to Implement a Script Task
Script tasks require you to implement them using Groovy code.

Chapter 25
Implementing Script Tasks

25-6

To implement a script task:

1. Add the script task to your BPMN process.

2. Right-click the script task.

3. Select Go To Script.

The Scripting tab appears. In this tab you can write the script that implements the script
task. To go back to the process editor, select the Designer tab.

25.9 Type Description Mapping for XML Schema Types
This section describes the mapping between the XML schema data types and the type
descriptions used in the scripts.

Table 25-2 Type Description Mapping for XML Schema Types

XML Schema Data Type Type Description

xsd:string java.lang.String

xsd:normalizedString java.lang.String

xsd:token java.lang.String

xsd:Name java.lang.String

xsd:QName java.lang.String

xsd:NCName java.lang.String

xsd:anyURI java.lang.String

xsd:language java.lang.String

xsd:ID java.lang.String

xsd:IDREF java.lang.String

xsd:ENTITY java.lang.String

xsd:NOTATION java.lang.String

xsd:NMTOKEN java.lang.String

xsd:uriReference java.lang.String

xsd:anySimpleType java.lang.String

xsd:IDREFS java.lang.String

xsd:ENTITIES java.lang.String

xsd:NMTOKENS java.lang.String

xsd:timeInstant java.lang.String

xsd:timeDuration java.lang.String

xsd:anyType java.lang.String

xsd:byte java.lang.Byte

xsd:unsignedByte java.lang.Byte

xsd:short java.lang.Short

xsd:unsignedShort java.lang.Short

xsd:int java.lang.Integer

Chapter 25
Type Description Mapping for XML Schema Types

25-7

Table 25-2 (Cont.) Type Description Mapping for XML Schema Types

XML Schema Data Type Type Description

xsd:unsignedInt java.lang.Integer

xsd:gDay java.lang.Integer

xsd:gMonth java.lang.Integer

xsd:gYear java.lang.Integer

xsd:integer java.math.BigInteger

xsd:positiveInteger java.math.BigInteger

xsd:negativeInteger java.math.BigInteger

xsd:nonPositiveInteger java.math.BigInteger

xsd:nonNegativeIntege java.math.BigInteger

xsd.long java.lang.Long

xsd:unsignedLong java.lang.Long

xsd:decimal Decimal

xsd:float java.lang.Float

xsd:double java.lang.Double

xsd:boolean java.lang.Boolean

xsd:dateTime com.oracle.scripting.lib.xml.datatype.XmlCalendar

xsd:time com.oracle.scripting.lib.xml.datatype.XmlCalendar

xsd:date com.oracle.scripting.lib.xml.datatype.XmlCalendar

xsd:gYearMonth com.oracle.scripting.lib.xml.datatype.XmlCalendar

xsd:gMonthDate com.oracle.scripting.lib.xml.datatype.XmlCalendar

xsd:duration com.oracle.scripting.lib.xml.datatype.XmlDuration

xsd:base64Binary byte[]

xsd:hexBinary byte[]

Chapter 25
Type Description Mapping for XML Schema Types

25-8

26
Debugging a BPM Project

Learn how to use Oracle JDeveloper debugger to debug any of the BPMN processes
contained in a BPM project.

• Introduction to Debugging a BPM Project

• Adding a Breakpoint to a BPMN Flow Object

• Adding a Breakpoint to a BPMN Component

• Disabling a Breakpoint

• Debugging a BPM Project

26.1 Introduction to Debugging a BPM Project
You can debug any BPMN process contained in a BPM project using the Oracle JDeveloper
debugger. Debugging a BPMN process enables you to identify and fix any workflow or logical
problems that prevent your process from running correctly.

The debugging process involves adding breakpoints to a SOA composite or a BPMN process
so that the debugger stops running when it reaches one of those breakpoints and you can:

• Trace the SOA composite or the BPMN process workflow

• Inspect or watch the value of the process instance attributes

• Inspect or watch the value of data objects

• Inspect or watch correlation keys

• Inspect or watch conversations

• Step into calls to other components and view the normalized message values sent from
and returned to the BPM component

When a process logical thread runs, it activates different frames. These frames can be
nested, depending on the process flow. Each frame consists of a set of data values that
represents the value of a data objects and a process instance attributes at the specific
declaration level. The nesting of frames conforms the stack frame.

When a process enters a data declaration container, it activates a new frame. The different
declaration containers that can appear when running a BPMN process are:

• The BPMN process itself

• An embedded subprocess

• A callable process

• An event subprocess

Each of these process containers support the declaration of data objects, correlations keys
and conversations. When these process containers are activated the debugger creates a new
frame.

26-1

The debugger builds the stack frame according to how these process containers are
nested. The stack frame is a model that provides data visibility and enables you to
access the data in a BPMN process. For example, a BPMN process that contains an
embedded subprocess which in turn contains call activity to a reusable subprocess,
defines three levels of nesting. The debugger thread running within the reusable
subprocess contains a stack frame with three elements: the frame on the top
corresponds to the reusable process, the last stack element corresponds to the BPMN
process.

For more information about the Oracle JDeveloper debugger, see Running and
Debugging Java Programs in Developing Applications with Oracle JDeveloper.

26.2 Adding a Breakpoint to a BPMN Flow Object
You can add a breakpoint to a BPMN flow object to stop the debugger when the
process flow reaches that BPMN flow object.

Breakpoints define where the debugger stops while running your BPMN process. You
can add breakpoints to multiple BPMN flow objects. When the debugger reaches one
of these breakpoints, it stops allowing you to monitor the values of the different
variables in a project. These values may help you to resolve any problems with the
workflow or logic of your BPMN process.

26.2.1 How to Add a Breakpoint to a BPMN Flow Object
To add a breakpoint to a BPMN flow object:

1. Edit the BPMN process that contains the BPMN flow object where you want to add
a breakpoint.

2. Right click the BPMN flow object where you want to add the breakpoint.

3. Select Toggle Breakpoint.

A red dot appears in the upper right corner of the BPMN flow object to indicate
there is a breakpoint.

A breakpoint of the type BPM Breakpoint appears in the Breakpoints View.

26.3 Adding a Breakpoint to a BPMN Component
You can add a breakpoint to a BPMN component to stop the debugger when the
debugger reaches it while running an SOA composite.

Breakpoints define where the debugger stops while running your BPMN process. You
can add breakpoints to multiple BPMN flow objects. When the debugger reaches one
of these breakpoints, it stops allowing you to monitor the values of the different
variables in a project. These values may help you to resolve any problems with the
workflow or logic of your BPMN process.

26.3.1 How to Add a Breakpoint to a BPMN Component
To add a breakpoint to a BPMN flow object:

1. Edit the SOA composite that contains the BPMN component where you want to
add a breakpoint.

Chapter 26
Adding a Breakpoint to a BPMN Flow Object

26-2

2. Right click the BPMN component where you want to add the breakpoint.

3. Select one of the following:

• Create Breakpoint Pair

To monitor messages entering and exiting the process.

• Create Request Breakpoint

To monitor messages entering the process.

• Create Reply Breakpoint

To monitor messages exiting the process.

A red dot or a couple of red dots appear in the upper left corner of the BPMN component
to indicate there is a breakpoint.

A breakpoint of the type BPM Breakpoint appears in the Breakpoints View.

26.4 Disabling a Breakpoint
You can disable a breakpoint that you do not need at a certain point in your debugging.

As you progress in your debugging session you may need to remove some of the breakpoints
you added and add breakpoints in other places.

26.4.1 How to Disable a Breakpoint
To disable a breakpoint:

1. Right click the BPMN flow object that contains the breakpoint that you want to disable.

2. Select Disable Breakpoint.

26.5 Debugging a BPM Project
You can debug any of the BPMN processes contained in a BPM project.

You use Oracle JDeveloper debugger to troubleshoot any of the processes contained in the
BPM project.

26.5.1 How to Attach a BPM Project to the Debugger
To attach a BPM project to the debugger:

1. In the Applications window, right-click the BPM project you want to debug and select the
Debug action.

2. Configure the server connection.

This is a specific SOA debug connection that you must configure separately. For more
information on how to configure the server connection, see How to Use a Project
Configured for Remote Debugging in Developing Applications with Oracle JDeveloper .

The Deploy Application dialog box appears.

3. Select Deploy to Application Server.

4. Click Next.

Chapter 26
Disabling a Breakpoint

26-3

The Deploy Configuration page appears.

5. Optionally modify the deploy configuration.

6. Click Next.

The Select Server dialog box appears.

7. Select a server or add a new server connection.

8. Click Finish.

The Composite editor and the Debugging window appears.

9. Run the BPMN process step by step.

When the debugger reaches a breakpoint in the BPMN process, it highlights the
BPMN flow object where the breakpoint is.

Chapter 26
Debugging a BPM Project

26-4

Part VI
Using Human Interaction Components

Learn how to use human interaction components in BPM Projects.

• Getting Started with Human Workflow

• Designing Human Tasks in Oracle BPM

• Configuring Human Tasks

• Working with Guided Business Processes

• Building a Guided Business Process Client Application

• Using Approval Management

• Working with Adaptive Case Management

27
Getting Started with Human Workflow

Understand the human workflow concepts, features, and architecture and also check use
cases for human workflow that are provided. Learn how to design your first workflow from
start to finish.

• Introduction to Human Workflow

• Introduction to Human Workflow Concepts

• Introduction to Human Workflow Features

• Introduction to Human Workflow Architecture

• Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle
BPM Suite

WARNING:

You must not modify SOA Human Task database tables directly. Oracle does not
guarantee backward compatibility for the column names and data in these tables.

27.1 Introduction to Human Workflow
Many end-to-end business processes require human interactions with the process. For
example, humans may be needed for approvals, exception management, or performing
activities required to advance the business process.

The human workflow component provides the following features:

• Human interactions with processes, including assignment and routing of tasks to the
correct users or groups

• Deadlines, escalations, notifications, and other features required for ensuring the timely
performance of a task (human activity)

• Presentation of tasks to end users through a variety of mechanisms, including a worklist
application (Oracle BPM Worklist)

• Organization, filtering, prioritization, and other features required for end users to
productively perform their tasks

• Reports, reassignments, load balancing, and other features required by supervisors and
business owners to manage the performance of tasks

Figure 27-1 provides an overview of human workflow.

27-1

Figure 27-1 Human Workflow

In Figure 27-1, the following actions occur:

• A BPEL process invokes a special activity of the human task type when it needs a
human to perform a task.

• This creates a task in the human task service component. The process waits for
the task to complete. It is also possible for the process to watch for other callbacks
from the task and react to them.

• There is metadata associated with the task that is used by the human task service
component to manage the lifecycle of the task. This includes specification of the
following:

– Who performs the task. If multiple people are required to perform the task,
what is the order?

– Who are the other stakeholders?

– When must the task be completed?

– How do users perform the task, what information is presented to them, what
are they expected to provide, and what actions can they take?

• The human task service component uses an identity directory to determine
people's roles and privileges.

You can configure the identity store to use the embedded WebLogic LDAP, Oracle
Virtual Directory, third-party LDAPs and Active Directory RDBMS.

• The human task service component presents tasks to users through a variety of
channels, including the following:

– Oracle BPM Worklist, a role-based application that supports the concept of
supervisors and process owners, and provides functionality for finding,
organizing, managing, and performing tasks.

Chapter 27
Introduction to Human Workflow

27-2

– Worklist functionality is also available as portlets that can be exposed in an enterprise
portal.

– Notifications can be sent by email, phone, SMS, and other channels. Email
notifications can be actionable, enabling users to perform actions on the task from
within the email client without connecting to Oracle BPM Worklist or Oracle WebLogic
Server.

27.2 Introduction to Human Workflow Concepts
Understand key human workflow design time and runtime concepts and also get an overview
of the three main stages of human workflow design.

27.2.1 Introduction to Design and Runtime Concepts
Before designing a human task, it is important to understand the design and runtime
concepts. A typical task consists of a subject, priority, task participants, task parameters or
data, deadlines, notifications or reminders, and task forms. This section provides an overview
of key concepts.

Note:

Human workflow design-time tasks are performed in a graphical editor known as
the Human Task Editor. The tutorial in Developing SOA Applications with Oracle
SOA Suite describes how to use this editor.

• Task Assignment and Routing

• Static, Dynamic, and Rule-Based Task Assignment

• Task Stakeholders

• Task Deadlines

• Task Forms

• Advanced Concepts

• Reports and Audit Trails

27.2.1.1 Task Assignment and Routing
Human workflow supports declarative assignment and routing of tasks. In the simplest case,
a task is assigned to a single participant (user or group). However, there are many situations
in which more detailed task assignment and routing is necessary (for example, when a task
must be approved by a management chain or worked and voted on by a set of people in
parallel, as shown in the figure below). Human workflow provides declarative, pattern-based
support for such scenarios.

Chapter 27
Introduction to Human Workflow Concepts

27-3

Figure 27-2 Participants in a Task

• Participant

• Participant Type

• Ad Hoc Routing

• Outcome-based Completion of Routing Flow

27.2.1.1.1 Participant
A participant is a user or set of users in the assignment and routing policy definition. In
Figure 27-2, each block with an icon representing people is a participant.

27.2.1.1.2 Participant Type
In simple cases, a participant maps to a user, group, or role. However, as discussed in
Task Assignment and Routing, workflow supports declarative patterns for common
routing scenarios such as management chain and group vote. The following
participant types are available:

• Single approver

This is the simple case where a participant maps to a user, group, or role.

For example, a vacation request is assigned to a manager. The manager must act
on the request task three days before the vacation starts. If the manager formally
approves or rejects the request, the employee is notified with the decision. If the
manager does not act on the task, the request is treated as rejected. Notification
actions similar to the formal rejection are taken.

• Parallel

This participant indicates that a set of people must work in parallel. This pattern is
commonly used for voting.

For example, multiple users in a hiring situation must vote to hire or reject an
applicant. You specify the voting percentage that is needed for the outcome to take
effect, such as a majority vote or a unanimous vote.

Chapter 27
Introduction to Human Workflow Concepts

27-4

• Serial

This participant indicates that a set of users must work in sequence. While working in
sequence can be specified in the routing policy by using multiple participants in
sequence, this pattern is useful when the set of people is dynamic. The most common
scenario for this is management chain escalation, which is done by specifying that the list
is based on a management chain within the specification of this pattern.

• FYI (For Your Information)

This participant also maps to a single user, group, or role, just as in single approver.
However, this pattern indicates that the participant just receives a notification task and the
business process does not wait for the participant's response. FYI participants cannot
directly impact the outcome of a task, but in some cases can provide comments or add
attachments.

For example, a regional sales office is notified that a candidate for employment has been
approved for hire by the regional manager and their candidacy is being passed onto the
state wide manager for approval or rejection. FYIs cannot directly impact the outcome of
a task, but in some cases can provide comments or add attachments.

For more information, see Assigning Task Participants.

27.2.1.1.2.1 Participant Assignment

A task is work that must be done by a user. When you create a task, you assign humans to
participate in and act upon the task. Participants can perform actions upon tasks during
runtime from Oracle BPM Worklist, such as approving a vacation request, rejecting a
purchase order, providing feedback on a help desk request, or some other action. There are
three types of participants:

• Users

You can assign individual users to act upon tasks. For example, you may assign users
jlondon or jstein to a particular task. Users are defined in an identity store configured
with the SOA Infrastructure. These users can be in the embedded LDAP of Oracle
WebLogic Server, Oracle Internet Directory, or a third-party LDAP directory.

• Groups

You can assign groups to act upon tasks. Groups contain individual users who can claim
and act upon a task. For example, users jcooper and fkafka may be members of the
group LoanAgentGroup that you assign to act upon the task.

As with users, groups are defined in the identity store of the SOA Infrastructure.

• Application roles

You can assign users who are members of application roles to claim and act upon tasks.

Application roles consist of users or other roles grouped logically for application-level
authorizations. These roles are application-specific and are defined in the application
Java policy store rather than the identity store. These roles are used by the application
directly and are not necessarily known to a Java EE container.

Application roles define policy. Java permissions can be granted to application roles.
Therefore, application roles define a set of permissions granted to them directly or
indirectly through other roles (if a role is granted to a role). The policy can contain grants
of application roles to enterprise groups or users. In the jazn-data.xml file of the file-
based policy store, these roles are defined in <app-role> elements under <policy-
store> and written to system-jazn-data.xml at the farm level during deployment. You
can also define these roles after deployment using Oracle Enterprise Manager Fusion

Chapter 27
Introduction to Human Workflow Concepts

27-5

Middleware Control. You can set a task owner or approver to an application role at
design time if the role has been previously deployed.

For more information about Oracle BPM Worklist, see Task Forms.

27.2.1.1.3 Ad Hoc Routing
In processes dealing with significant variance, you cannot always determine all
participants. Human workflow enables you to specify that a participant can invite other
participants as part of performing the task.

For more information, see Allow All Participants to Invite Other Participants or Edit
New Participants.

27.2.1.1.4 Outcome-based Completion of Routing Flow
By default, a task goes from starting to final participant according to the flow defined in
the routing policy (as shown in Figure 27-2). However, sometimes a certain outcome at
a particular step within a task's routing flow makes it unnecessary or undesirable to
continue presenting the task to the next participants. For example, if an approval is
rejected by the first manager, it does not need to be routed to the second manager.
Human workflow supports specifying that a task or subtask be completed when a
certain outcome occurs.

For more information, see Stopping Routing of a Task to Further Participants.

27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment
There are different methods for assigning users, groups, and application roles to tasks.

• Assign tasks statically

You can assign users, groups, and application roles statically (or by browsing the
identity service). The values can be either of the following:

– A single user, group, or application role (for example, jstein,
CentralLoanRegion, or ApproverRole).

– A delimited string of users, groups, or application roles (for example, jstein,
wfaulk, cdickens).

• Assign tasks dynamically

You can assign users, groups, and application roles dynamically in the following
ways:

– By using a task-assignment pattern. This pattern enables you to do the
following:

* Simply enable participants to claim the task manually. This is the default
behavior. No task-assignment pattern is applied.

* If the participant type is either Single or FYI, then apply a task-assignment
pattern to select a single assignee of a requested type from all potential
assignees in the participant.

For example, suppose that the potential assignees comprise the user
jcooper, the group LoanAgent, and the application role Developers.
Suppose further that the requested type is user. Applying this task-
assignment pattern selects a single user from the user jcooper, and from

Chapter 27
Introduction to Human Workflow Concepts

27-6

all members of the group LoanAgent, and from all users with the application role
Developers.

* If the particulates type is Parallel or Serial, then apply a task-assignment pattern
to select a single assignee of a requested type from each of the potential
assignees in the participant.

For example, suppose that the potential assignees comprise the user jcooper,
the group LoanAgent, and the application role Developers. Suppose further that
the requested type is user. Applying this task-assignment pattern selects the
user jcooper, and one user from the group LoanAgent, and one user with the
application role Developers.

– By using XPath expressions. These expressions enable you to dynamically
determine assignment to users not included in the participant type. Here you create a
list of potential assignees, one of whom must then claim the task.

For example, you may have a business requirement to create a dynamic list of task
approvers specified in a payload variable. The XPath expression can resolve to zero
or more XML nodes. Each node value can be either of the following:

* A single user, group, or application role

* A delimited string of users, groups, or application roles. The default delimiter for
the assignee delimited string is a comma (,).

For example, if the task has a payload message attribute named po within which the
task approvers are stored, you can use the following XPath expression:

* /task:task/task:payload/po:purchaseOrder/po:approvers

* ids:getManager('jstein', 'jazn.com')

This returns the manager of jstein.

* ids:getReportees('jstein', 2, 'jazn.com')

This returns all reportees of jstein up to two levels.

* ids:getUsersInGroup('LoanAgentGroup', false, 'jazn.com')

This returns all direct and indirect users in the group LoanAgentGroup.

You can use both options simultaneously—for example, you can use an XPath
expression to dynamically select a group, and then apply a task-assignment pattern to
dynamically select a user from that group.

• Assign tasks with business rules

You can create the list of task participants with complex expressions. The result of using
business rules is the same as using XPath expressions. You can also apply the task-
assignment pattern to a participant list created using business rules.

27.2.1.3 Task Stakeholders
A task has multiple stakeholders. Participants are the users defined in the assignment and
routing section of the task definition. These users are the primary stakeholders that perform
actions on the task.

In addition to the participants specified in the assignment and routing policy, human workflow
supports additional stakeholders:

• Owner

Chapter 27
Introduction to Human Workflow Concepts

27-7

This participant has business administration privileges on the task. This participant
can be specified as part of the task definition or from the invoking process (and for
a particular instance). The task owner can act upon tasks they own and also on
behalf of any other participant. The task owner can change both the outcome of
the task and the assignments.

For more information, see How to Specify a Task Owner to specify an owner in the
Human Task Editor or Developing SOA Applications with Oracle SOA Suite to
specify an owner in the Advanced tab of the Human Task dialog box.

• Initiator

The person who initiates the process (for example, the initiator files an expense
report for approval). This person can review the status of the task using initiated
task filters. Also, a useful concept is for including the initiator as a potential
candidate for request-for-information from other participants.

For more information, see Developing SOA Applications with Oracle SOA Suite.

• Reviewer

This participant can review the status of the task and add comments and
attachments. You can grant the reviewer role to a participant at runtime using the
process instance attributes reviewer and reviewerType. The reviewer process
attribute stores the name of the reviewer, the default value is "ProcessReviewer"
or the value assigned in the Human Task configuration. The reviewerType process
attribute stores the type of reviewer which can be: user, role or group. You can set
these attributes dynamically to modify the effective reviewer.

• Admin

This participant can view all tasks and take certain actions such as reassigning a
test, suspending a task to handle errors, and so on. The task admin cannot
change the outcome of a task.

While the task admin cannot perform the types of actions that a task participant
can, such as approve, reject, and so on, this participant type is the most powerful
because it can perform actions such as reassign, withdraw, and so on.

• Error Assignee

When an error occurs, the task is assigned to this participant (for example, the
task is assigned to a nonexistent user). The error assignee can perform task
recovery actions from Oracle BPM Worklist, the task form in which you perform
task actions during runtime.

For more information, see How to Configure the Error Assignee and Reviewers.

27.2.1.4 Task Deadlines
Human workflow supports the specification of deadlines associated with a task. You
can associate the following actions with deadlines:

• Reminders:

The task can be reminded multiple times based on the time after the assignment
or the time before the expiration.

• Escalation:

The task is escalated up the management hierarchy.

• Expiration:

Chapter 27
Introduction to Human Workflow Concepts

27-8

The task has expired.

• Renewal:

The task is automatically renewed.

For more information, see Escalating, Renewing, or Ending the Task.

27.2.1.5 Notifications
You can configure your human task to use notifications. Notifications enable you to alert
interested users to changes in the state of a task during the task lifecycle. For example, a
notification is sent to an assignee when a task has been approved or withdrawn.

You can specify for notifications to be sent to different types of participants for different
actions. For example, you can specify the following:

• For the owner of a task to receive a notification message when a task is in error (for
example, sent to a nonexistent user).

• For a task assignee to receive a notification message when a task has been escalated.

You can specify the contents of the notification message and the notification channel to use
for sending the message.

• Email

You can configure email notification messages to be actionable, meaning that a task
assignee can act upon a task from within the email.

• Instant messaging (IM)

• Short message service (SMS)

For example, you may send the message shown in Example 27-1 by email when a task
assignee requests additional information before they can act upon a task:

During runtime, you can mark a message sender's address as spam and also display a list of
bad or invalid addresses. These addresses are automatically added to the bad address list.

For more information about notifications, see the following:

• Developing SOA Applications with Oracle SOA Suite

• Specifying Participant Notification Preferences

Example 27-1 Email Message

For me to approve this task, more information is required to justify the need
 for this business trip.

27.2.1.6 Task Forms
Task forms provide you with a way to interact with a task. Oracle BPM Worklist displays all
worklist tasks that are assigned to task assignees in the task form. When you navigate into a
specific task, the task form displays the contents of the task to the user's worklist. For
example, an expense approval task may show a form with line items for various expenses,
and a help desk task form may show details such as severity, problem location, and so on.

The integrated development environment of Oracle SOA Suite includes Oracle Application
Development Framework (Oracle ADF) for this purpose. With Oracle ADF, you can design a
task form that depicts the human task in the SOA composite application.

Chapter 27
Introduction to Human Workflow Concepts

27-9

ADF-based task forms can be automatically generated. Advanced users can design
their own task forms by using ADF data controls to lay out the content on the page and
connect to the workflow service engine at execution time to retrieve task content and
act on tasks.

You can create task forms in JSF, .NET, or any other client technologies using the
APIs.

For more information, see the following chapters in Developing SOA Applications with
Oracle SOA Suite:

• Designing Task Forms for Human Tasks

• Using Oracle BPM Worklist

Note:

If you are using BPM Composer and building web forms, remember that,
Integrated WebLogic does not support web forms. You might get errors either
during creation of web forms or during the deployment of the BPM project
that contains web forms on Integrated WebLogic. Integrated WebLogic
supports only ADF task forms.

27.2.1.7 Advanced Concepts
Learn about advanced human workflow concepts.

• Rule-based Routing

• Rule-based Participant Assignment

• Stages

• Access Rules

• Callbacks

27.2.1.7.1 Rule-based Routing
You can use Oracle Business Rules to dynamically alter the routing flow. If used, each
time a participant completes their step, the associated rules are invoked and the
routing flow can be overridden from the rules.

For more information, see How to Specify Advanced Task Routing Using Business
Rules.

27.2.1.7.2 Rule-based Participant Assignment
You can use Oracle Business Rules to dynamically build a list of users, groups, and
roles to associate with a participant.

For more information, see Assigning Task Participants.

Chapter 27
Introduction to Human Workflow Concepts

27-10

27.2.1.7.3 Stages
A stage is a way of organizing the approval process for blocks of participant types. You can
have one or more stages in sequence or in parallel. Within each stage, you can have one or
more participant type blocks in sequence or in parallel.

For more information, see Assigning Task Participants.

27.2.1.7.4 Access Rules
You can specify access rules that determine the parts of a task that assignees can view and
update. For example, you can configure the task payload data to be read by assignees. This
action enables only assignees (and nobody else) to have read permissions. No one, including
assignees, has write permissions.

For more information, see How to Specify Access Policies on Task Content.

27.2.1.7.5 Callbacks
While human workflow supports detailed behavior that can be declaratively specified, in some
advanced situations, more extensible behavior may be required. Task callbacks enable such
extensibility; these callbacks can either be handled in the invoking BPEL process or a Java
class.

For more information, see How to Specify Callback Classes on Task Status.

27.2.1.8 Reports and Audit Trails
Oracle BPM Worklist provides several out-of-the-box reports for task analysis:

• Unattended tasks

Analysis of tasks assigned to users' groups or reportees' groups that have not yet been
acquired.

• Tasks priority

Analysis of tasks assigned to a user, reportees, or their groups, based on priority.

• Tasks cycle time

Analysis of the time taken to complete tasks from assignment to completion based on
users' groups or reportees' groups.

• Tasks productivity

Analysis of assigned tasks and completed tasks in a given time period for a user,
reportees, or their groups.

• Tasks time distribution

The time an assignee takes to perform a task.

You can view an audit trail of actions performed by the participants in the task and a snapshot
of the task payload and attachments at various points in the workflow. The short history for a
task lists all versions created by the following tasks:

• Initiate task

• Reinitiate task

Chapter 27
Introduction to Human Workflow Concepts

27-11

• Update outcome of task

• Completion of task

• Erring of task

• Expiration of task

• Withdrawal of task

• Alerting of task to the error assignee

For more information, see the chapter on the BPM Worklist in Developing SOA
Applications with Oracle SOA Suite.

27.2.2 Introduction to the Stages of Human Workflow Design
Human workflow modeling consists of three stages of modeling, as described in
Table 27-1.

Table 27-1 Stages of Human Workflow Modeling

Step Description

1 You create and define contents of the human task in the Human Task Editor, including
defining a participant type, routing policy, escalation and expiration policy, notification,
and so on.

2 You associate the human task definition with a BPEL process. The BPEL process
integrates a series of activities (including the human task activity) and services into
an end-to-end process flow.

3 You create a task form. This form displays the task details on which you act at
runtime in Oracle BPM Worklist.

For more information, see Developing SOA Applications with Oracle SOA Suite.

27.3 Introduction to Human Workflow Features
Understand human workflow through use cases and also learn to design your first
human task from start to finish with the help of a tutorial.

27.3.1 Task Assignment to a User or Role
A vacation request process may start with getting the vacation details from a user and
then routing the request to their manager for approval. User details and the
organizational hierarchy can be looked up from a user directory or identity store. This
scenario is shown in Figure 27-3.

Chapter 27
Introduction to Human Workflow Features

27-12

Figure 27-3 Assigning Tasks to a User or Role from a Directory

27.3.2 Use of the Various Participant Types
A task can be routed through multiple users with a group vote, management chain, or
sequential list of approvers participant type. For example, consider a loan request that is part
of the loan approval flow. The loan request may first be assigned to a loan agent role. After a
specific loan agent acquires and accepts the loan, the loan may be routed further through
multiple levels of management if the loan amount is greater that $100,000. This scenario is
shown in Figure 27-4.

Figure 27-4 Flow Patterns and Routing Policies

You can use these types as building blocks to create complex workflows.

27.3.3 Escalation, Expiration, and Delegation
A high-priority task can be assigned to a certain user or role based on the task type through
use of custom escalation functions. However, if the user does not act on it in a certain time,
the task may expire and in turn be escalated to the manager for further action. As part of the
escalation, you may also notify the users by email or SMS. Similarly, a manager may
delegate tasks from one reportee to another to balance the load between various task
assignees. All tasks defined in BPEL have an associated expiration date. Additionally, you
may specify escalation or renewal policies, as shown in Figure 27-5. For example, consider a
support call, which is part of a help desk service request process. A high-priority task may be

Chapter 27
Introduction to Human Workflow Features

27-13

assigned to a certain user, and if the user does not respond in two days, the task is
routed to the manager for further action.

Figure 27-5 Escalation and Notification

27.3.4 Automatic Assignment and Delegation
A user may decide to have another user perform tasks on their behalf. Tasks can be
explicitly delegated from the Oracle BPM Worklist or can be automatically delegated.
For example, a manager sets up a vacation rule saying that all their high priority tasks
are automatically routed to one of their direct reports while the manager is on vacation.
In some cases, tasks can be routed to different individuals based on the content of the
task. Another example of automatic routing is to allocate tasks among multiple
individuals belonging to a group. For example, a help desk supervisor decides to
allocate all tasks for the western region based on a round robin basis or assign tasks
to the individual with the lowest number of outstanding tasks (the least busy).

27.3.5 Dynamic Assignment of Users Based on Task Content
An employee named James in the human resources department requests new
hardware that costs $5000. The company may have a policy that all hardware
expenses greater than $3000 must go through manager and vice president approval,
and then review by the director of IT. In this scenario, the workflow can be configured
to automatically determine the manager of James, the vice president of the human
resources department, and the director of IT. The purchase order is routed through
these three individuals for approval before the hardware is purchased.

27.4 Introduction to Human Workflow Architecture
Get an overview of human workflow architecture.

The following topics are discussed:

• The services that perform a variety of operations in the lifecycle of a task, such as
querying tasks for a user, retrieving metadata information related to a task, and so
on.

• The two ways to use a human task:

– Associated with a BPEL process service component

Chapter 27
Introduction to Human Workflow Architecture

27-14

– Used in standalone mode

• The role of the service engine in the life of a human task

27.4.1 Human Workflow Services
Starting with release 11g, all human task metadata is stored and managed in the Metadata
Service (MDS) repository. The workflow service consists of many services that handle various
aspects of human interaction with a business process.

Figure 27-6 shows the following workflow service components:

• Task Service:

The task service provides task state management and persistence of tasks. In addition to
these services, the task service exposes operations to update a task, complete a task,
escalate and reassign tasks, and so on. The task service is used by Oracle BPM Worklist
to retrieve tasks assigned to users. This service also determines if notifications are to be
sent to users and groups when the state of the task changes. The task service consists of
the following services.

– Task Routing Service

The task routing service offers services to route, escalate, and reassign the task. The
service makes these decisions by interpreting a declarative specification in the form
of the routing slip.

– Task Query Service

The task query service queries tasks for a user based on a variety of search criterion
such as keyword, category, status, business process, attribute values, history
information of a task, and so on.

– Task Metadata Service

The task metadata service exposes operations to retrieve metadata information
related to a task.

• Identity Service

The identity service is a thin web service layer on top of the Oracle Application Server
11g security infrastructure or any custom user repository. It enables authentication and
authorization of users and the lookup of user properties, roles, group memberships, and
privileges.

• Notification Service

The notification service delivers notifications with the specified content to the specified
user through email,, IM, and SMS channels. See Developing SOA Applications with
Oracle SOA Suite for more information.

• User Metadata Service

The user metadata service manages metadata related to workflow users, such as user
work queues, preferences, vacations, and delegation rules.

• Runtime Config Service

The runtime config service provides methods for managing metadata used in the task
service runtime environment. It principally supports management of task payload mapped
attribute mappings.

• Evidence service

Chapter 27
Introduction to Human Workflow Architecture

27-15

The evidence service supports storage and nonrepudiation of digitally-signed
workflow tasks.

Figure 27-6 Workflow Services Components

Figure 27-7 shows the interactions between the services and the business process.

Chapter 27
Introduction to Human Workflow Architecture

27-16

Figure 27-7 Workflow Services and Business Process Interactions

27.4.2 Use of Human Task
You can use a human task in the following ways:

• Human task associated with a BPEL process

You can associate your human task with a BPEL process. The BPEL process integrates
a series of activities (including the human task activity) and services into an end-to-end
process flow.

• Human task associated with a BPMN process

You can associate your human task with a BPMN process. The BPMN process may
contain other types of BPMN flow objects as part of the flow of the process. The human
task is the implementation of a BPMN user task.

• Standalone human task

You can also create the human task as a standalone component only in the SOA
Composite Editor and not associate it with a BPEL process. Standalone human task

Chapter 27
Introduction to Human Workflow Architecture

27-17

service components are useful for environments in which there is no need for any
automated activity in an application. In the standalone case, the client can create
the task themselves.

27.4.3 Service Engines
During runtime, the business logic and processing rules of the human task service
component are executed by the human workflow service engine. Each service
component (BPEL process, human workflow, decision service (business rules), and
Oracle Mediator) has its own service engine container for performing these tasks. All
human task service components, regardless of the SOA composite application of
which they are a part, are executed in this single human task service engine.

27.5 Human Workflow and Business Rule Differences
Between Oracle SOA Suite and Oracle BPM Suite

Oracle SOA Suite and Oracle Business Process Management (BPM) Suite both
provide support for business rules and human workflow. However, Oracle BPM Suite
provides additional business rules and human workflow features that are not available
in Oracle SOA Suite.

Table 27-2 identifies which business rule and human workflow features are supported
in each suite.

Table 27-2 Business Rule and Human Workflow Features in Oracle SOA Suite
and Oracle BPM Suite

Feature Supported
in Oracle
BPM Suite?

Supported
in Oracle
SOA Suite?

Workspaces, process tracking, standard dashboards, case
management, and applications menu

Yes No

Approval groups (participant list) Yes No

Human workflow and business rules (participant list, routing rules) Yes Yes

Verbal rules Yes No

Rules business phrases Yes No

Oracle BPM Composer - design time rules editing Yes No

Process asset catalog (PAM) for source management between
Oracle BPM Studio and Oracle BPM Composer

Yes No

Rules testing in both Oracle JDeveloper and SOA Composer with
usability enhancements

Yes Yes

Microsoft Excel import/export for rules decision tables Yes Yes

For more information about Oracle BPM Suite, see Developing Business Processes
with Oracle Business Process Management Studio.

Chapter 27
Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle BPM Suite

27-18

28
Designing Human Tasks in Oracle BPM

Learn how to design human tasks using the different editors available in Oracle BPM, and
how to associate human tasks with the user tasks in your BPM project.

• Introduction to Designing Human Tasks in Oracle BPM

• Creating a Human Task from Oracle BPM Studio

• Editing a Human Task from Oracle BPM Studio

• Creating a Human Task from the SOA Composite Editor

• Implementing a User Task with an Existing Human Task

• Editing a Human Task Using the Human Task Editor

• Configuring a Human Task Using the Human Task Editor

• Working with Screenflows

For information on how Oracle BPM shows human tasks in the Business Catalog, see
Working with Human Tasks.

For more information about human tasks, see the chapters in Using the Human Workflow
Service Component in Developing SOA Applications with Oracle SOA Suite.

28.1 Introduction to Designing Human Tasks in Oracle BPM
Human tasks enable you to model the interaction with the end user in a a BPM process. You
must use human tasks to implement the user tasks in your process.

Oracle BPM Suite provides different editors that you can use according to the requirements of
the Human Task you are modeling.

Some human tasks features are only available when using them from Oracle BPM Suite. For
more information about this, see Configuring a Human Task Using the Human Task Editor.

28.1.1 Typical Design Workflow
There are different approaches to working with Human Tasks in Oracle BPM:

• Creating the human task using the Human Task editor

• Creating the human task using the simplified interface Oracle BPM provides

• Use an existing human task

The approach you choose depends on how you plan your work, how you divide it between
the developers in your team and the complexity of the human tasks you are developing.

Creating the Human Task Using the User Task Properties Dialog

• Create a BPMN process

• Add a user task

28-1

• From the user task implementation properties dialog box, create a Human Task

For more information see Creating a Human Task from Oracle BPM Studio.

• Create the corresponding taskflows using SOA Suite

Creating the Human Task Using the Human Task Editor:

• Create a Human Task from the SOA Composite Editor

For more information see Creating a Human Task from the SOA Composite Editor.

• Create the corresponding taskflow using SOA Suite

• Create a BPMN process with user tasks

• Implement the user tasks in the BPMN process using the defined Human Tasks

For more information see Implementing a User Task with an Existing Human
Task .

Using an existing Human Task:

• Create a BPMN process

• Add a user task.

• In the user task implementation properties dialog box, select the existing Human
Task.

For more information, see How to Implement a User Task With an Existing Human
Task .

28.2 Creating a Human Task from Oracle BPM Studio
You can create a simple Human Task using Oracle BPM Studio. The simplified
interface that Oracle BPM Studio provides hides the complexity of the Human Task
editor by exposing the most important fields to configure a Human Task used in a
business process.

After you create the Human Task using the Create Human Task dialog box, you can
edit it using the Human Task editor if needed.

Figure 28-1 shows the Create Human Task dialog box.

Chapter 28
Creating a Human Task from Oracle BPM Studio

28-2

Figure 28-1 Create Human Task Dialog

The Create Human Task dialog box enables you to define the following properties:

• Title

Defines the name of the Human Task that is displayed to end-users in the Oracle Process
Workspace and Oracle BPM Worklist applications.

• Priority

Specifies a priority for the Human Task. Valid values are between 1 (highest priority) and
5 (lowest priority). The default value is 3.

• Outcomes

Specifies the outcome possible outcome arguments of the Human Task. Oracle BPM
Worklist displays the possible outcomes you select as the available tasks to perform at
run time.

• Parameters

Define the Human Task payload. The Human Task data association is based on the
parameters of the Human Task. The data association maps the data objects as input
arguments.

• Outcome Target

Specifies a String data object to store the outcome argument of the Human Task. You can
only select one data object. The value of this outcome is one of the values defined in the
Outcomes property.

28.2.1 How to Create a Human Task from Oracle BPM Studio
You can create a Human Task from the User Task Properties dialog box in Oracle BPM
Studio.

To create a Human Task from Oracle BPM Studio:

1. Edit the BPMN process.

Chapter 28
Creating a Human Task from Oracle BPM Studio

28-3

2. Right-click the user task.

3. Select Properties.

The Properties - User Task dialog box appears.

Figure 28-2 shows the Properties - User Task dialog box.

4. Click the Implementation tab.

5. Click the Add button next to the Human Task field.

The Create Human Task dialog box appears.

Figure 28-1 shows the Create Human Task dialog box.

6. In the name field, enter a name to identify the Human Task.

7. From they Priority List, select a priority.

8. Select a Human Task pattern appropriate for your implementation.

For more information about Human Task patterns, see Using Approval
Management.

9. In the Title Field, enter a title for the task to display in the client application
(Process Workspace and others).

10. Optionally, you can configure the following:

• The outcome

See How to Configure the Outcome of a Human Task for information on how
to configure the outcome of a Human Task.

• The parameters

See How to Add a Parameter to Human Task for information on how to
configure the outcome of a Human Task.

• The outcome target

See How to Configure the Outcome Target of a Human Task for information on
how to configure the outcome of a Human Task.

11. Click OK.

The Create Human Task dialog box closes and the Human Task field in the User
Task Properties dialog box shows the Human Task you created.

12. Click OK.

The User Task Properties closes and saves the implementation you configured for
the user task.

28.2.2 How to Configure the Outcome of a Human Task
When you create a Human Task from Oracle BPM Studio you can configure the
outcome of the Human Task. The outcome values you configure appear as the
available actions of the Human Task in Oracle BPM Worklist.

To configure the outcome of a Human Task:

1. In the Create Human Task dialog box, click the Browse button next to the
Outcomes field.

The Outcomes dialog box appears.

Chapter 28
Creating a Human Task from Oracle BPM Studio

28-4

2. Select one or more outcomes, or click the Add button to add a new custom outcome.

3. Optionally click Outcomes Requiring Comment, to select those outcomes that require
comments.

4. Click OK.

The Outcomes dialog box closes and the selected outcomes appear in the Create
Human Task dialog box, in the Outcomes field.

28.2.3 How to Add a Parameter to Human Task
You can add multiple parameters to a Human Task to build the Human Task payload. Oracle
BPM Studio uses this parameters to create the data association of the user task that uses the
Human Task.

To add a parameter to a Human Task:

1. In the Create Human Task dialog box, click the Add button in the Parameters table.

The Data Objects dialog box appears.

2. Select a data object from the Data Objects dialog box and drop it on the Parameters
table.

The selected data object appears in the Parameters table.

3. Close the Data Objects dialog box.

4. Optionally you can mark the parameter as editable by selecting the Editable column in
the Parameters table.

28.2.4 How to Configure the Outcome Target of a Human Task
When you create a Human Task you must define an outcome target. The outcome target
maps the result of the Human Task to a String data object in your BPM project.You can base
the flow of your process on the value of the outcome target using an exclusive gateway.

To configure the outcome target of a Human Task

1. In the Create Human Task dialog box, click the Add button next to the Outcome Target
field.

The Data Objects dialog box appears.

2. Select a String data object from the Data Objects dialog box and drop it on the Outcome
Target field.

To add a new data object, right-click the Data Objects node and select Add.

The selected data object appears in the Outcome Target field.

3. Close the Data Objects dialog box.

28.2.5 What Happens When You Create a Human Task from Oracle BPM
Studio

The Human Task automatically appears in the HumanTasks predefined module in the
business catalog. You can use the Human Task to implement the user task you are editing or
other user tasks in the BPM project.

Chapter 28
Creating a Human Task from Oracle BPM Studio

28-5

You can edit the created Human Task using the Human Task editor to configure
implementation details.

28.3 Editing a Human Task from Oracle BPM Studio
You can edit a Human Task using the User Task Properties dialog box or the Human
Task editor. Generally you use the Human Task editor for complex human tasks.

Figure 28-2 shows the User Task Properties dialog box.

Figure 28-2 User Task Properties dialog box

The User Task Properties dialog box enables you to define properties using plain text,
simple expressions and XPATH expressions:

• Title

Defines the name of the Human Task that is displayed to end-users in the Oracle
Process Workspace and Oracle BPM Worklist applications.

• Priority

Specifies a priority for the Human Task. Valid values are between 1 (highest
priority) and 5 (lowest priority). The default value is 3.

• Re-Initiate

Restarts the approval process from the beginning.

• Initiator

Chapter 28
Editing a Human Task from Oracle BPM Studio

28-6

Specifies the user who initiates a task. The initiator can view their created tasks from
Oracle BPM Worklist and perform specific tasks, such as withdrawing or suspending a
task.

• Owner

Specifies the User ID of the task owner.

• Identification Key

Defines a user-defined ID for the task. For example, if the task is meant for approving a
purchase order, the purchase order ID can be set as the identification key of the task.
Tasks can be searched from Oracle BPM Worklist using the identification key. This
attribute has no default value.

• Identity Context

This field is required if you are using multiple realms. You cannot have assignees from
multiple realms working on the same task.

• Application Context

Specifies the name of the application that contains the application roles used in the task.
This indicates the context in which the application role operates.

28.3.1 How to Edit a Human Task Using the User Task Properties Dialog
To edit a Human Task using the User Task Properties dialog box:

1. Open the BPMN process that contains the user task implemented with a Human Task.

2. Right-click the user task.

3. Select Properties.

The user task properties dialog box appears.

4. Click the Implementation Tab.

5. Make changes to the properties in the Human Task Attributes and Advanced sections.

28.4 Creating a Human Task from the SOA Composite Editor
You can add a Human Task to your BPM project from the SOA Composite editor.

Typically you do this when you design human tasks before modeling the user tasks in a
BPMN process.

28.4.1 How to Create a Human Task from the SOA Composite Editor
You can add a user task to a BPM project using the SOA Composite editor.

To create a Human Task from the SOA Composite Editor:

1. Select the Application view.

2. Expand the BPM project where you want to add the Human Task.

3. Expand the SOA Content node.

4. Double-click the composite.xml node to open the SOA Composite editor.

5. From the Component Palette grab a Human Task.

Chapter 28
Creating a Human Task from the SOA Composite Editor

28-7

6. Drop the Human Task in the Components area of the SOA Composite.

The Create Human Task dialog box appears.

7. Enter a name to identify the Human Task.

8. Optionally, modify the URL for the Human Task namespace.

9. Optionally, check the Create Composite Service with SOAP Bindings option.

10. Click OK.

The Human Task component appears in the Component area of the SOA
Composite.

When you create a Human Task from the SOA Composite Editor, the Human Task you
created is available to implement the user tasks in your BPM project. For more
information on how to do this, see Implementing a User Task with an Existing Human
Task .

28.5 Implementing a User Task with an Existing Human
Task

You can create a Human Task using the Human Task editor and then assign that
Human Task to the implementation of a user task.

You must also define how the data objects in your BPM process map to the input and
output arguments of the Human Task. You can do this using data associations or
transformation. For more information on data associations and transformations, see
Handling Information in Your Process Design.

28.5.1 How to Implement a User Task With an Existing Human Task
You can implement a user task using an existing Human Task that you created for
another user task or using the Human Task editor.

To implement a user task with an existing Human Task:

1. Open the BPMN process.

2. Right-click the user task.

3. Select Properties.

The Properties - User Task dialog box appears.

4. Click the Implementation tab.

5. Click the Browse button next to the Human Task field.

The Browse Human Tasks dialog box appears.

6. Select a Human Task from the list.

7. Click OK.

The Browse Human Tasks dialog box closes and the selected Human Task
appears in the Human Task field.

8. Click OK.

Chapter 28
Implementing a User Task with an Existing Human Task

28-8

28.5.2 What Happens When You Implement a User Task With an Existing
Human Task

The user task uses the existing Human Task for its implementation.

The SOA Composite displays the relationship between the BPMN process and the Human
task by adding a wire between them.

When the BPMN Service Engine runs the user task implementation it invokes the Human
Workflow Service with the parameters defined in the data association of the user task. When
the Human Workflow Service finishes running the Human Tasks it provides the result to the
BPMN Service Engine using the defined data association.

28.5.3 How to Associate the Process Payload to the Human Task Payload
To associate the process payload to the Human Task payload you must configure the Human
Task, the user task and start events in the BPMN process and create a business object
based on the payload XSD file.

To associate the process payload to the Human Task payload:

1. Create a business object using the Based on External Schema option.

a. Right-click a module.

b. Select New and then select Business Object.

c. Select Based on External Schema.

d. Click the Browse button.

e. Select Copy to Project.

f. Click Browse Resources.

The Type Chooser dialog box opens.

g. Select the type of the business object from the payload XSD file.

2. Edit the start event in your BPMN process.

3. Define a custom argument using the business object you created as its type.

4. Add a process data object to your process using the business object you created as its
type.

5. Define the data associations between the custom argument and data object.

6. In the Human Task editor, click the Data tab.

7. Select Add other payload from the list in the Add button.

8. Select the payload element in the Type Chooser dialog box.

9. In the Process editor, right-click the user task and select Properties.

10. Define the data associations between the process data object and the task payload.

Chapter 28
Implementing a User Task with an Existing Human Task

28-9

28.6 Editing a Human Task Using the Human Task Editor
Configuring complex human tasks usually requires you to use the Human Task Editor
to edit them. This allows you to edit properties that are not displayed when you use the
simplified interface that Oracle BPM provides.

Figure 28-3 shows the Human Task editor.

Figure 28-3 Human Task Editor

28.6.1 How to Edit a Human Task Using the Human Task Editor
You can edit a Human Task used in your BPM project using the Human Task editor.
Generally you use the Human Task editor to edit complex human tasks.

To edit a Human Task using the Human Task Editor:

1. Open the BPMN process that contains the user task implemented with a Human
Task.

2. Right-click the user task.

3. Select Open Human Task.

The Human Task editor appears.

4. Make changes to the Human Task.

Chapter 28
Editing a Human Task Using the Human Task Editor

28-10

28.7 Configuring a Human Task Using the Human Task Editor
Learn how to configure those properties that are only available when using human tasks from
Oracle BPM Suite.

The rest of the properties are shared with Oracle SOA Suite. For more information on how to
configure these properties, see Creating Human Tasks in Developing SOA Applications with
Oracle SOA Suite.

The Human Task editor enables you to configure the following sets of properties:

• General

Enables you to define basic information such as the title, description, priority and owner.

Note that you can localize the title of a Human Task by selecting the Translation option
from the list next to the title field and then clicking Build and Internationalized title. For
more information on how to define the resource bundle, see Specifying Multilingual
Settings and Style Sheets.

For more information on how to configure these properties, see How to Specify the Title,
Description, Outcome, Priority, Category, Owner, and Application Context.

• Data

Enables you to define the message elements that compose the structure of the task
payload.

For more information on how to configure these properties, see How to Specify the Task
Payload Data Structure.

• Assignment

Enables you to assign a participant to the task and to configure routing policies to drive
the task through the defined workflow.

For more information on how to configure these properties, see Assigning Task
Participants.

• Presentation

Enables you to configure the presentation used to display the Human Task, using
stylesheets and multilingual settings.

For more information on how to configure these properties, see Specifying Multilingual
Settings and Style Sheets.

• Deadlines

Enables you to specify the duration and expiration of a task.

For more information on how to configure these properties, see Escalating, Renewing, or
Ending the Task.

• Notification

Enables you to configure how to notify the user when the status of the task changes.

For more information on how to configure these properties, see Specifying Participant
Notification Preferences.

For information on how to specify an email address for the recipient of the notification,
see How to Specify an E-mail Address for the Recipient of a Notification.

Chapter 28
Configuring a Human Task Using the Human Task Editor

28-11

• Access

Enables you to configure access policies and restrictions for the content of the
Human Task.

For more information on how to configure these properties, see Specifying Access
Policies and Task Actions on Task Content.

• Events

Enables you to specify how to handle BPEL callbacks.d

For more information on how to configure these properties, see Specifying Java or
Business Event Callbacks.

• Documents

Enables you to configure the Human Task to store task attachments in Oracle
UCM Repository. For more information, see How to Configure Oracle UCM
Repository to Store Task Attachments.

Some human tasks features are only available when using humans tasks from an
Oracle BPM Suite Installation.

When you use human tasks from an Oracle BPM Suite installation you must take into
account the following considerations:

• When you create a Human Task using Oracle BPM Suite, the enableAutoClaim
property is set to true by default.

• The owner property in the process context is set using the participant assigned to
the user task that contains the Human Task.

• If your process contains an initiator task the creator attribute in the process context
is automatically set using the participant assigned to the initiator task.

• When you specify the completion criteria for a parallel participant you can set the
default outcome as one of the previous outcomes.

28.7.1 How to Specify an E-mail Address for the Recipient of a
Notification

When using the Human Task editor in a BPM Suite installation, you can specify an
email address for the recipient of a Notification.

To specify an email address for the recipient of a notification:

1. Open the Human Task editor.

2. Click the Notification tab.

3. Double-click the Recipient list.

The Recipient list is an editable list, when you double click it, it becomes a text
field.

4. Enter the recipient's email address.

Optionally you can use the buttons next to the Recipient text field to look up the
email address in an application server or to specify the email address using XPath.

Chapter 28
Configuring a Human Task Using the Human Task Editor

28-12

Note:

When sending a notification to a recipient specified using an email address, the
notification service uses the user context of an assignee to obtain the task
information to include in the notification.

28.7.2 How to Configure Oracle UCM Repository to Store Task
Attachments

You can configure Human Tasks to store attachments in the UCM repository. These
attachments may contain one or more metadata properties. You can assign values to these
properties or configure them to allow the user to provide the value.

Note:

When a file is attached from the Process Tracking page, it goes to the BPM
repository and not to the UCM repository. Hence, even if the UCM repository is
unavailable, the Process Tracking page allows you to upload files. However, when
the UCM repository is configured and Human Tasks are designed to upload
attachment to the UCM repository, the Tasks page uploads files to the UCM
repository. However, the Process Tracking page always uploads the files to BPM
repository.

To configure Oracle UCM Repository for task attachments:

1. In the Project Navigator tree, expand the Business Catalog node.

2. Expand the Human Tasks node.

3. Double-click the Human Task you want to configure.

The Human Task Editor appears.

4. Click the Documents tab.

5. Select Use Document Package.

A section to configure metadata properties appears. The table already contains the
mandatory standard metadata: Security Group and Document Type.

6. Optionally add new standard or custom metadata properties:

a. Click the Add button.

b. Click the Name column to select a standard property from the list or to enter a
custom name.

c. Click the Value column to assign a value to the property. Select By Name to provide
the text to assign the value to the property, or By Expression to provide an
expression.

d. Click the Display column to select a display mode:

Editable: the user can provide a value in the task form when uploading the
attachment.

Chapter 28
Configuring a Human Task Using the Human Task Editor

28-13

Hidden: the value does not appear in the task form

Read-Only: the value appears in the task form but the user cannot modify it

Note:

Custom metadata does not appear in the task form, so you must map
the value to a task payload or provide a static value.

28.8 Working with Screenflows
Screenflows enable users to work on all of the tasks in a process in sequence.

For example, when a user completes a task in a process, and if the next task is
assigned to the same user, then the next task is automatically shown in the same flow,
without the user having to return to the task list.

28.8.1 Creating a Screenflow
Screenflows are created in HumanTask projects to create a task that automatically
flows from screen to screen.

To create a screenflow, add a ScreenFlowMode entry in the HumanTask project
before deploying it. Add this entry to all of the Human Tasks that are to be part of the
screenflow, except for the last task of the screenflow. After creating a screenflow in
BPM Studio, enable it in Enterprise Manager, and then test it in Workspace.

1. In BPM Studio, add an entry for ScreenFlowMode in the hwtaskflow.xml file.

2. In Enterprise Manager, enable the Process Broker service:

a. Log in to Enterprise Manager as an administrator, and navigate to soa-infra >
Administration > System MBean Browser.

b. Navigate to Application Defined MBeans > oracle.as.soainfra.config >
BPMNConfig > bpmn or search for the disableProcessBroker parameter.

c. Set the disableProcessBroker parameter to false and click Apply.

d. Restart the SOA/BPM WebLogic server.

Chapter 28
Working with Screenflows

28-14

29
Configuring Human Tasks

Learn how to configure the different properties like task payload data structure, participant
assignment, routing policies, localization, escalation, notification preferences, access policies
and task actions, restrictions and Java and business event callbacks along with basis
properties of a human task.

• Accessing the Sections of the Human Task Editor

• Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application
Context

• Specifying the Task Payload Data Structure

• Assigning Task Participants

• Selecting a Routing Policy

• Specifying Multilingual Settings and Style Sheets

• Specifying What to Show in Task Details in the Worklist

• Escalating, Renewing, or Ending the Task

• Specifying Participant Notification Preferences

• Specifying Access Policies and Task Actions on Task Content

• Creating and Implementing Digital Certificates

• Specifying Restrictions on Task Assignments

• Specifying Java or Business Event Callbacks

• Storing Documents in Oracle Enterprise Content Management

For information about troubleshooting human workflow issues, see Human Workflow
Troubleshooting in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

29.1 Accessing the Sections of the Human Task Editor
Learn how to access the sections of the Human Task Editor and also understand each
section and references using the additional information that is provided.

29.1.1 How to Access the Sections of the Human Task Editor

To access the sections of the Human Task Editor:

• Double-click the Human Task icon in the SOA Composite Editor or double-click the
Human Task icon in Oracle BPEL Designer.

The Human Task Editor consists of the main sections shown on the left side in
Figure 29-1. These sections enable you to design the metadata of a human task.

29-1

Figure 29-1 Human Task Editor

Instructions for using these main sections of the Human Task Editor to create a
workflow task are listed in Table 29-1.

Table 29-1 Human Task Editor

Section Description See...

General
(title, description,
outcomes, category,
priority, owner, and
application context)

Enables you to define task details
such as title, task outcomes, owner,
and other attributes.

Specifying the Title,
Description, Outcome,
Priority, Category, Owner,
and Application Context

Data Enables you to define the structure
(message elements) of the task
payload (the data in the task).

Specifying the Task Payload
Data Structure

Assignment Enables you to assign participants to
the task and create a policy for
routing the task through the workflow.

Assigning Task Participants

Selecting a Routing Policy

Presentation Enables you to specify the following
settings:

• Multilingual settings
• WordML and custom style sheets

for attachments

Specifying Multilingual
Settings and Style Sheets

Deadlines Enables you to specify the expiration
duration of a task, custom escalation
Java classes, and due dates.

Escalating, Renewing, or
Ending the Task

Notification Enables you to create and send
notifications when a user is assigned
a task or informed that the status of
the task has changed.

Specifying Participant
Notification Preferences

Chapter 29
Accessing the Sections of the Human Task Editor

29-2

Table 29-1 (Cont.) Human Task Editor

Section Description See...

Access Enables you to specify access rules
for task content and task actions,
workflow signature policies, and
assignment restrictions.

Specifying Access Policies
and Task Actions on Task
Content

How to Specify a Workflow
Digital Signature Policy

Specifying Restrictions on
Task Assignments

Events Enables you to specify callback
classes and task and routing
assignments in BPEL callbacks.

Specifying Java or Business
Event Callbacks

Documents - Storing Documents in Oracle
Enterprise Content
Management

29.2 Specifying the Title, Description, Outcome, Priority,
Category, Owner, and Application Context

Specify details such as the task title, description, task outcomes, task category, task priority,
and task owner.

This section contains these topics:

• How to Specify the Title, Description, Outcome, Priority, Category, Owner, and
Application Context

• How to Specify a Task Title

• How to Specify a Task Description

• How to Specify a Task Outcome

• How to Specify a Task Priority

• How to Specify a Task Category

• How to Specify a Task Owner

• How To Specify an Application Context

For more information related to the topics, see How to Define the Human Task Activity Title,
Initiator, Priority, and Parameter Variables in Developing SOA Applications with Oracle SOA
Suite.

29.2.1 How to Specify the Title, Description, Outcome, Priority, Category,
Owner, and Application Context

To specify the title, description, outcome, priority, category, owner, and application
context:

• Click the General tab.

Figure 29-2 shows the General section of the Human Task Editor.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-3

This section enables you to specify details such as the task title, description, task
outcomes, task category, task priority, and task owner.

Figure 29-2 Human Task Editor — General Section

Instructions for configuring the following subsections of the General section are
listed in Table 29-2:

Table 29-2 Human Task Editor — General Section

For This Subsection... See...

Title How to Specify a Task Title

Description How to Specify a Task Description

Outcomes How to Specify a Task Outcome

Priority How to Specify a Task Priority

Category How to Specify a Task Category

Owner How to Specify a Task Owner

Application Context How To Specify an Application Context

29.2.2 How to Specify a Task Title
To specify a task title:

Enter an optional task title. The title defaults to this value only if the initiated task does
not have a title set in it. The title provides a visual identifier for the task. The task title
displays in Oracle BPM Worklist. You can also search on titles in Oracle BPM Worklist.

• In the Task Title field of the General section, select a method for specifying a task
title:

• Plain Text: Manually enter a name (for example, Vacation Request
Approved).

• Text and XPath: Enter a combination of manual text and a dynamic
expression. After manually entering a portion of the title (for example,
Approval Required for Order Id:), place the cursor one blank space to the
right of the text and click the icon to the right of this field. This displays the

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-4

Expression Builder for dynamically creating the remaining portion of the title. After
completing the dynamic portion of the name, click OK to return to this field. The
complete name is displayed. For example:

Approval Required for Order Id: <%/task:task/task:payload/task:orderId%>

The expression is resolved during runtime with the exact order ID value from the task
payload.

• Translation: Click the Lookup button and locate a translation bundle to use to specify
the title.

• Resource Xpath: Click the Lookup button and locate a resource bundle to use to
specify the title.

If you entered a title in the Task Title field of the General tab of the Create Human Task
dialog box, the title you enter here is overridden.

29.2.3 How to Specify a Task Description
You can optionally specify a description of the task in the Description field of the General
section. The description enables you to provide additional details about a task. For example,
if the task title is Computer Upgrade Request, you can provide additional details in this field,
such as the model of the computer, amount of CPU, amount of RAM, and so on. The
description does not display in Oracle BPM Worklist.

To add a task description:

1. Select the drop-down menu and choose either Plain Text or Translation.

2. Provide the description:

Plain text:

a. Type a description into the dialog box.

b. Click Ok.

Translation:

a. Click the Lookup button.

b. Locate a resource bundle and provide a description.

c. Click Ok.

29.2.4 How to Specify a Task Outcome
Task outcomes capture the possible outcomes of a task. Oracle BPM Worklist displays the
outcomes you specify here as the possible task actions to perform during runtime.
Figure 29-3 provides details.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-5

Figure 29-3 Outcomes in Oracle BPM Worklist

You can specify the following types of task outcomes:

• Select a seeded outcome

• Enter a custom outcome

The task outcomes can also have runtime display values that are different from the
actual outcome value specified here. This permits outcomes to be displayed in a
different language in Oracle BPM Worklist. For more information about
internationalization, see How to Specify Multilingual Settings.

To specify a task outcome:

1. To the right of the Outcomes field in the General section, click the Search icon.

The Outcomes dialog box shown in Figure 29-4 displays the possible outcomes for
tasks. APPROVE and REJECT are selected by default.

Figure 29-4 Outcomes Dialog

2. Enter the information shown in Table 29-3.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-6

Table 29-3 Outcomes Dialog

Field Description

Select one or more
outcomes

Select additional task outcomes or deselect the default outcomes.

Add icon Click to invoke a dialog box for adding custom outcomes.

In the Name field of the dialog box, enter a custom name, and click
OK. Your outcome displays in the Outcomes field.

Notes: Be aware of the following naming restrictions:

• Do not specify a custom name that matches a name listed in
the Actions tab of the Access section of the Human Task
Editor (for example, do not specify Delete). Specifying the
same name can cause problems at runtime.

• Do not specify a custom name with blank spaces (for example,
On Hold). This causes an error when the custom outcome is
accessed in Oracle BPM Worklist. If you must specify an
outcome with spaces, use a resource bundle.

• A custom task outcome must begin with a letter of the alphabet,
either upper or lower case. It should contain only letters of the
alphabet and the numbers zero (0) through nine (9).

Outcomes Requiring
Comment

Click to select an outcome to which an assignee adds comments in
Oracle BPM Worklist at runtime. The assignee must add the
comments and perform the action without saving the task at
runtime.

Default Outcome Select the default outcome for this outcome.

The seeded and custom outcomes selected here display for selection in the Majority
Voted Outcome section of the parallel participant type.

3. For more information, see Specifying the Voting Outcome.

29.2.5 How to Specify a Task Priority
Specify the priority of the tasks. Priority can be 1 through 5, with 1 being the highest. By
default, the priority of a task is 3. This priority value is overridden by any priority value you
select in the General tab of the Create Human Task dialog box. You can filter tasks based on
priority and create views on priorities in Oracle BPM Worklist.

To specify a task priority:

• From the Priority list in the General section, select a priority for the task.

29.2.6 How to Specify a Task Category
You can optionally specify a task category in the Category field of the General section. This
categorizes tasks created in a system. For example, in a help desk environment, you may
categorize customer requests as either software-related or hardware-related. The category
displays in Oracle BPM Worklist. You can filter tasks based on category and create views on
categories in Oracle BPM Worklist.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-7

To specify a task category:

• Select a method for specifying a task category in the Category field of the
General section:

• By Name: Manually enter a name.

• By Expression: Click the icon to the right of this field to display the
Expression Builder for dynamically creating a category.

• Translation: If the composite contains a resource bundle file, then use the
Lookup button to locate the resource bundle file and to specify a category.

29.2.7 How to Specify a Task Owner
The task owner can view the tasks belonging to business processes they own and
perform operations on behalf of any of the assigned task participant types. Additionally,
the owner can also reassign, withdraw, or escalate tasks. The task owner can be
considered the business administrator for a task. The task owner can also be specified
in the Advanced tab of the Create Human Task dialog box. The task owner specified
in the Advanced tab overrides any task owner you enter here.

For more information about the task owner, see Task Stakeholders.

To specify a task owner:

• Select a method for specifying the task owner:

• Statically through the identity service user directory or the list of application
roles

• Dynamically through an XPath expression

For example:

– If the task has a payload message attribute named po within which the
owner is stored, you can specify an XPath expression such as: /
task:task/task:payload/po:purchaseOrder/po:owner

– ids:getManager('jstein', 'jazn.com')

The manager of jstein is the task owner.

For more information about users, groups, and application roles, see Participant
Assignment.

29.2.7.1 Specifying a Task Owner Statically Through the User Directory or a
List of Application Roles

Task owners can be selected by browsing the user directory (Oracle Internet Directory,
Java AuthoriZatioN (JAZN)/XML, LDAP, and so on) or a list of application roles
configured for use with Oracle SOA Suite.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-8

To specify a task owner statically through the user directory or a list of application
roles:

1. In the first list to the right of the Owner field in the General section, select User, Group,
or Application Role as the type of task owner. Figure 29-5 provides details.

Note:

By default, group names in human tasks are case sensitive. Therefore, if you
select Group and enter a name in upper case text (for example,
LOANAGENTGROUP), no task is displayed under the Administrative Tasks tab in
Oracle BPM Worklist. To enable group names to be case agnostic (case
insensitive), you must set the caseSensitiveGroups property to false in the
System MBeans Browser. For information, see Enabling Case Agnostic Group
Names in Human Tasks in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

Figure 29-5 Specify a Task Owner By Browsing the User Directory or Application
Roles

2. In the second list to the right of the Owner field in the General section, select Static.

3. See the step in Table 29-4 based on the type of owner you selected.

Table 29-4 Type of Owner

If You Selected... See Step...

User or Group 4

Application Role 5

4. If you selected User or Group, the Identity Lookup dialog box shown in Figure 29-6
appears.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-9

Figure 29-6 Identity Lookup Dialog

To select a user or group, you must first create an application server connection by
clicking the Add icon. Note the following restrictions:

• Do not create an application server connection to an Oracle WebLogic
Administration Server from which to retrieve the list of identity service realms.
This is because there is no identity service running on the Administration
Server. Therefore, no realm information displays and no users display when
performing a search with a search pattern in the Identity Lookup dialog box.
Instead, create an application server connection to a managed Oracle
WebLogic Server.

• You must select an application server connection configured with the complete
domain name (for example, myhost.us.example.com). If you select a
connection configured only with the hostname (for example, myhost), the
Realm list may not display the available realms. If the existing connection
does not include the domain name, perform the following steps:

– In the Resource Palette, right-click the application server connection.

– Select Properties.

– In the Configuration tab, add the appropriate domain to the hostname.

– Return to the Identity Lookup dialog box and reselect the connection.

a. Select or create an application server connection to display the realms for
selection. A realm provides access to a policy store of users and roles
(groups).

b. Search for the owner by entering a search string such as jcooper, j*, *,
and so on. Clicking the Lookup icon to the right of the User Name field

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-10

fetches all the users that match the search criteria. Figure 29-7 provides details. One
or more users or groups can be highlighted and selected by clicking Select.

Figure 29-7 Identity Lookup with Realm Selected

c. View the hierarchy of a user by highlighting the user and clicking Hierarchy.
Similarly, clicking Reportees displays the reportees of a selected user or group.
Figure 29-8 provides details.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-11

Figure 29-8 User Hierarchy in Identity Lookup Dialog

d. View the details of a user or group by highlighting the user or group and
clicking Detail. Figure 29-9 provides details.

Figure 29-9 User or Group Details

e. Click OK to return to the Identity Lookup dialog box.

f. Click Select to add the user to the Selected User section.

g. Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

5. If you selected Application Role, the Select an Application Role dialog box
appears.

a. In the Application Server list, select the type of application server that
contains the application role or click the Add icon to launch the Create
Application Server Connection wizard to create a connection.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-12

b. In the Application list, select the application that contains the application roles (for
example, a custom application or soa-infra for the SOA Infrastructure application).

c. In the Available section, select appropriate application roles and click the > button.
To select all, click the >> button. Figure 29-10 provides details.

Figure 29-10 Application Role

d. Click OK.

29.2.7.2 Specifying a Task Owner Dynamically Through an XPath Expression
Task owners can be selected dynamically in the Expression Builder dialog box.

To specify a task owner dynamically:

1. In the first list to the right of the Owner field in the General section, select User, Group,
or Application Role as the type of task owner. Figure 29-11 provides details.

Figure 29-11 Specify a Task Owner Dynamically

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-13

2. In the second list to the right of the Owner field in the General section, select
XPath.

3. Click the icon to launch the Expression Builder.

This displays the Expression Builder dialog box shown in Figure 29-12:

Figure 29-12 Expression Builder

4. Browse the available variable schemas and functions to create a task owner.

5. Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

For more information, see the following:

• Click Help for instructions on using the Expression Builder dialog box and
XPath Building Assistant

• See XPath Extension Functions in Developing SOA Applications with Oracle
SOA Suite for information about workflow service dynamic assignment
functions, identity service functions, and instructions on using the XPath
Building Assistant

29.2.8 How To Specify an Application Context
You can specify the name of the application that contains the application roles used in
the task. This indicates the context in which the application role operates. If you do not
explicitly create a task, but end up having one, you can set up the context.

Chapter 29
Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-14

Note:

An application context is required to be set in the task definition in order to be able
to reassign the task to an application role in the Oracle Process Workspace and
Oracle BPM Worklist applications.

• In the Application Context field of the General section, enter the name.

29.3 Specifying the Task Payload Data Structure
Specify the structure (message elements) of the task payload (the data in the task) defined in
the XSD file.

Figure 29-13 shows the Data section of the Human Task Editor.

You create parameters to represent the elements in the XSD file. This makes the payload
data available to the workflow task. For example:

• You create a parameter for an order ID element for placing an order from a store front
application.

• You create parameters for the location, type, problem description, severity, status, and
resolution elements for creating a help desk request.

Task payload data consists of one or more elements or types. Based on your selections, an
XML schema definition is created for the task payload.

Figure 29-13 Human Task Editor — Parameters Section

29.3.1 How to Specify the Task Payload Data Structure
To specify the task payload data structure:

1. Click the Data tab.

2. Click the Add icon and select a payload type:

• String

• Integer

• Boolean

• Other

The Add Task Parameter dialog box is displayed, as shown in Figure 29-14.

Chapter 29
Specifying the Task Payload Data Structure

29-15

Figure 29-14 Add Task Parameter Dialog

3. Enter the details described in Table 29-5:

Table 29-5 Add Task Parameter Dialog Fields and Values

Field Description

Parameter Type Select Type or Element and click the Search icon to display
the Type Chooser dialog box for selecting the task parameter.

Parameter Name Accept the default name or enter a custom name. This field
only displays if Type is the selected parameter type.

Editable via worklist Select this check box to enable users to edit this part of the
task payload in Oracle BPM Worklist. For example, for a loan
approval task, the APR attribute may need to be updated by
the user reviewing the task, but the SSN field may not be
editable.

You can also specify access rules that determine the parts of a
task that participants can view and update. For more
information, see How to Specify Access Policies on Task
Content.

Use Collections If a task uses collections, then define this parameter to use
collections. Click the Add button to provide the collection name
and the Xpath expression for the collection type. Use
Expression Builder to look up the collection type from the
schema.

Chapter 29
Specifying the Task Payload Data Structure

29-16

Note:

You can only define payload mapped attributes (previously known as flex field
mappings) in Oracle BPM Worklist for payload parameters that are simple XML
types (string, integer, and so on) or complex types (for example, a purchase
order, and so on). If you must search tasks using keywords or define views or
delegation rules based on task content, then you must use payload parameters
based on simple XML types. These simple types can be mapped to flex
columns in Oracle BPM Worklist.

4. Select the type, as shown in Figure 29-15.

Figure 29-15 Parameter Type

5. Click OK to return to the Human Task Editor.

Your selection displays in the Data section.

6. To edit your selection, select it and click the Edit icon in the upper right part of the Data
section.

29.4 Assigning Task Participants
Select a participant type that meets your business requirements. While configuring the
participant type, build lists of users, groups, and application roles to act upon tasks.

Figure 29-16 shows the Assignment section of the Human Task Editor.

Chapter 29
Assigning Task Participants

29-17

Figure 29-16 Human Task Editor — Assignment Section

You can easily mix and match participant types to create simple or complex workflow
routing policies. You can also extend the functionality of a previously configured
human task to model more complex workflows.

A participant type is grouped in a block under a stage (for example, named Stage1 in
Figure 29-16). A stage is a way of organizing the approval process for blocks of
participant types. You can have one or more stages in sequence or in parallel. Within
each stage, you can have one or more participant type blocks in sequence or in
parallel. The up and down keys enable you to rearrange the order of your participant
type blocks.

For example:

• You can create all participant type blocks in a single stage (for example, a
purchase order request in which the entire contents of the order are approved or
rejected as a whole).

• You can create more complex approval tasks that may include one or more
stages. For example, you can place one group of participant type blocks in one
stage and another block in a second stage. The list of approvers in the first stage
handles line entry approvals and the list of approvers in the second stage handles
header entry approvals.

Each of the participant types has an associated editor that you use for configuration
tasks. The sequence in which the assignees are added indicates the execution
sequence.

To specify a different stage name or have a business requirement that requires you to
create additional stages, perform the following steps. Creating additional stages is an
advanced requirement that may not be necessary for your environment.

This section contains these topics:

• How to Specify a Stage Name and Add Parallel and Sequential Blocks

• How to Assign Task Participants

Chapter 29
Assigning Task Participants

29-18

• How to Configure the Single Participant Type

• How to Configure the Parallel Participant Type

• How to Configure the Serial Participant Type

• How to Configure the FYI Participant Type

For more information about participant types, see Task Assignment and Routing.

29.4.1 How to Specify a Stage Name and Add Parallel and Sequential
Blocks

To specify a stage name and add parallel and sequential blocks:

The stage is named Stage1 by default, however you can change the name.

1. Double-click the name.

The Edit dialog box displays.

Stage: The name of the stage. Non-Repeating: Do not stage in parallel for each item in
the collection. Repeated: Stage in parallel for each item in a collection. Choose one
collection from the drop-down list to specify which collection type to use for the repeated
stages.

2. In the Edit dialog box, Enter a stage name, selected Non-Repeating or Repeated as
applicable, and click OK.

3. Select the stage and its participant type block, as shown in Figure 29-17.

4. Drag and drop the Participant of type Stage to the right of the current stage.

You can select the participant of type Stage from the workflow editor on the component
pallet.

5. Click the Add icon.

Figure 29-17 Add a Second Stage

6. Select an option from the list (for example, Parallel stage).

A second stage is added in parallel to the first stage, as shown in Figure 29-18.

Chapter 29
Assigning Task Participants

29-19

Figure 29-18 Parallel Stage

7. Drag and drop the Stage participant from the Components window below Stage 1.

When you bring the new stage below the current stage, four green dots display
around the current stage. Choose the green dot that is below the current stage.

If you do not select the second stage (for this example, named Stage1 in
Figure 29-19) and instead select only the participant type block (for example,
named Edit Participant in Figure 29-19), all options under the Add icon are
disabled.

8. Select Sequential stage.

A sequential stage is added below the selected block.

Figure 29-19 Sequential Stage

You create participant types within these blocks.

29.4.2 How to Assign Task Participants
To assign task participants:

1. In the Assignment section, perform one of the following tasks:

a. Drag and drop Participants from the Components window onto Stage. The first
time you create a task participant, the box is labeled <Edit Participant>.

or

Chapter 29
Assigning Task Participants

29-20

b. Double-click the participant box.

The Edit Participant Type dialog box appears. This dialog box enables you to select a
specific participant type.

2. From the Type list, select a participant type shown in Figure 29-20.

Figure 29-20 Type List

3. See the section shown in Table 29-6 based on your selection.

Table 29-6 Participant Types

Participant Type For a Description of this
Participant Type, See...

For Instructions on Configuring this Participant
Type, See...

• Single
• Parallel
• Serial
• FYI

Participant Type How to Configure the Single Participant Type

How to Configure the Parallel Participant Type

How to Configure the Serial Participant Type

How to Configure the FYI Participant Type

Disable Task Participants and Task Stages

You can disable the participants or the stages that you added to the task. When you need to
make temporary changes to the tasks, use this disable feature instead of deleting and adding
the entire stage or participant again. To disable the task participants or the task stages,
deselect the check boxes next to participants or the stage.

If the changes are permanent, delete the task participants and stages. To delete, select the
participant or the stage node and press the Delete button on keyboard.

29.4.3 How to Configure the Single Participant Type
Figure 29-21 shows the Edit Participant Type dialog box for the single participant type.
Figure 29-22 shows the expanded Advanced section.

Chapter 29
Assigning Task Participants

29-21

Figure 29-21 Edit Participant Type — Single Type

Chapter 29
Assigning Task Participants

29-22

Figure 29-22 Edit Participant Type — Advanced Tab

To be dynamically assigned to a task, a single participant can be selected from a group, an
application role, or a participant list.

To configure the single participant type:

• In the Label field, enter a recognizable label for this participant. This label must be
unique among all the participants in the task definition (for example, Approval Manager,
Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog
box for the single participant type are listed in Table 29-7:

Table 29-7 Edit Participant Type — Single Type

For This Subsection... See...

Participant List Creating a Single Task Participant List

Limit allocated duration to (under the
Advanced section)

Specifying a Time Limit for Acting on a Task

Allow this participant to invite other
participants (under the Advanced section)

Inviting Additional Participants to a Task

Specify skip rule (under the Advanced
section)

Bypassing a Task Participant

Chapter 29
Assigning Task Participants

29-23

Table 29-7 (Cont.) Edit Participant Type — Single Type

For This Subsection... See...

Assignment Control (under the Advanced
section)

If this participant is associated with a particular
assignment context, then add that name here.
Use the Add button to add new entry. Use the
drop-down list to select the assignment context
Name and provide a value for this assignment
context.

Let participants manually claim task (under
the General section)

Creating Participant Lists Consisting of Value-
Based Names and Expressions

Auto assign task to a single user/group/
application role (under the General section)

Creating Participant Lists Consisting of Value-
Based Names and Expressions

29.4.3.1 Creating a Single Task Participant List
Users assigned to a participant list can act upon tasks. In a single-task participant list,
only one user is required to act on the task. You can specify either a single user or a
list of users, groups, or application roles for this pattern. If a list is specified, then all
users on the list are assigned the task. You can specify either that one of them must
manually claim and act upon the task, or that one user from the list is automatically
selected by an assignment pattern. When one user acts on the task, the task is
withdrawn from the task list of other assignees.

You can create several types of lists for the single user participant, and for the parallel,
serial, and FYI user participants, for example:

• Value-based name and expression lists

These lists enable you to statically or dynamically select users, groups, or
application roles as task assignees.

• Value-based management chain lists

Management chains are typically used for serial approvals through multiple users
in a management chain hierarchy. Therefore, this list is most likely useful with the
serial participant type. This is typically the case if you want all users in the
hierarchy to act upon the task. Management chains can also be used with the
single participant type. In this case, however, all users in the hierarchy get the task
assigned at the same time. As soon as one user acts on the task, it is withdrawn
from the other users.

For example, a purchase order is assigned to a manager. If the manager approves
the order, it is assigned to their manager. If that manager approves it, it is assigned
to their manager, and so on until three managers approve the order. If any
managers reject the request or the request expires, the order is rejected if you
specify an abrupt termination condition. Otherwise, the task flow continues to be
routed.

• Rule-based names and expression lists and management chain lists

Business rules enable you to create the list of task participants with complex
expressions. For example, you create a business rule in which a purchase order
request below $5000 is sent to a manager for approval. However, if the purchase
order request exceeds $5000, the request is sent to the manager of the manager
for approval. Two key features of business rules are facts and action types, which
are described in How to Specify Advanced Task Routing Using Business Rules.

Chapter 29
Assigning Task Participants

29-24

When you select a participant type, a dialog box enables you to choose an option for building
your list of task participant assignees (users, groups, or application roles), as shown in
Figure 29-23. The three selections described above are available: Names and expressions,
Management Chain, and Rule-based.

Figure 29-23 Build a List of Participants

After selecting an option, you dynamically assign task participant assignees (users, groups,
or application roles) and a data type, as shown in Figure 29-24.

Figure 29-24 Assignment of Task Assignees

Chapter 29
Assigning Task Participants

29-25

This section describes how to create these lists of participants.

29.4.3.1.1 Creating Participant Lists Consisting of Value-Based Names and Expressions

Select a method for statically or dynamically assigning a user, group, or application
role as a task participant. If the participant list contains a user, the selecting a group or
an application role causes the dynamic assignment to fail.

For conceptual information about:

• users, groups, or application roles, see Participant Assignment.

• statically and dynamically assigning task participants, see Static, Dynamic, and
Rule-Based Task Assignment.

To create participant lists consisting of value-based names and expressions:

1. From the Build a list of participants using list, select Names and expressions.

2. Do either of the following:

• Select Let participants manually claim the task. If you select this option,
then the task is assigned to all participants in the list. An individual user from
the task assignees can then manually claim the task to work on it.

• Select Auto-assign to a single list, select User, Group, or Application Role,
then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it,
click Assignment Pattern. The Assignment Pattern dialog box appears.
Figure 29-25 shows an example of an Assignment Pattern dialog box.

Figure 29-25 Selecting and Configuring an Assignment Pattern

Chapter 29
Assigning Task Participants

29-26

When you specify an application server connection in the Application Server field, the
assignment patterns are loaded into the Assignment Pattern list. When you select
one of the patterns from the Assignment Pattern list, a description of your selection
appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use
tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers
only this task type when determining the selected user. For example, to assign a
vacation request task to the least busy user, and you select Use tasks of all types
to evaluate pattern criteria, then all assigned tasks are taken into consideration
when determining the least busy user. If you do not select Use tasks of all types to
evaluate pattern criteria, then only assigned vacation request tasks are considered
when determining the least busy user.

A particular pattern may enable you to specify input parameters that control how the
pattern is evaluated. For example, as shown in Figure 29-25, the Most Productive
pattern enables you to specify the Time Period (in days) over which the productivity is
calculated. Input values can be static, or can be dynamically set by using an XPath
expression. Not all patterns accept parameters.

3. From the Specify attributes using list, select Value-based.

The dialog box refreshes to display the fields shown in Figure 29-26.

Figure 29-26 Value-Based Names and Expressions

4. Click the Add icon and select a user, group, or application role as a task participant.

The Identification Type column of the Participant Names table displays your selection
of user, group, or application role.

5. To change your selection in the Identification Type column, click it to invoke a drop-
down list.

6. In the Data Type column, click your selection to invoke a drop-down list to assign a
value:

• By Name: If your identification type is a user or group, click the Browse icon (the
dots) on the right to display a dialog box for selecting a user or group configured
through the identity service. The identity service enables the lookup of user
properties, roles, and group memberships. User information is obtained from an
LDAP server such as Oracle Internet Directory. You can use wild cards (*) to search
for IDs.

If your selection is an application role, click the Browse icon to display the Select an
Application Role dialog box for selecting an application role. To search for application

Chapter 29
Assigning Task Participants

29-27

roles, you must first create a connection to the application server. When
searching, you must specify the application name to find the name of the role.
The task definition can refer to only one application name. You cannot use
application roles from different applications as assignees or task owners.

• By Expression: For a user, group, or application role, click the Browse icon
to dynamically select a task assignee in the Expression Builder dialog box.
Use the bpws:getVariableData(...) expression or the ids:getManager()
XPath function.

The Value column displays the value you specified.

7. To manually enter a value, click the field in the Value column and specify a value.

29.4.3.1.2 Creating Participant Lists Consisting of Value-Based Management Chains
Select a method for statically or dynamically assigning management chain parameters
as task participants.

For conceptual information about:

• users, groups, or application roles, see Participant Assignment.

• statically and dynamically assigning task participants, see Static, Dynamic, and
Rule-Based Task Assignment.

• management chains, see Creating a Single Task Participant List.

To create participant lists based on value-based management chains:

1. From the Build a list of participants using list, select Management Chain.

2. Do either of the following:

• Select Let participants manually claim the task. If you select this option,
then the task is assigned to all participants in the list. An individual user from
the task assignees can then manually claim the task to work on it.

• Select Auto-assign to a single list, select User, then select an assignment
pattern.

To find out more about each assignment pattern, and to select and configure it,
click Assignment Pattern. The Assignment Pattern dialog box appears.
Figure 29-25 shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server
field, the assignment patterns are loaded into the Assignment Pattern list.
When you select one of the patterns from the Assignment Pattern list, a
description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select
Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern
considers only this task type when determining the selected user. For
example, to assign a vacation request task to the least busy user, and you
select Use tasks of all types to evaluate pattern criteria, then all assigned
tasks are taken into consideration when determining the least busy user. If you
do not select Use tasks of all types to evaluate pattern criteria, then only
assigned vacation request tasks are considered when determining the least
busy user.

A particular pattern may enable you to specify input parameters that control
how the pattern is evaluated. For example, as shown in Figure 29-25, the Most

Chapter 29
Assigning Task Participants

29-28

Productive pattern enables you to specify the Time Period (in days) over which the
productivity is calculated. Input values can be static, or can be dynamically set by
using an XPath expression. Not all patterns accept parameters.

3. From the Specify attributes using list, select Value-based.

The dialog box refreshes to display the fields shown in Figure 29-27.

Figure 29-27 Value-Based Management Chains

4. See Creating a Single Task Participant List for instructions on assigning a user, group, or
application role to a list in the Starting Participant table.

5. In the Top Participant list, select a method for assigning the number of task participant
levels:

• By Title: Select the title of the last (highest) approver in the management chain.

• XPath: Select to dynamically enter a top participant through the Expression Builder
dialog box.

6. In the Number of Levels list, select a method for assigning a top participant:

• By Number: Enter a value for the number of levels in the management chain to
include in this task. For example, if you enter 2 and the task is initially assigned to
user jcooper, both the user jstein (manager of jcooper) and the user wfaulk
(manager of jstein) are included in the list (apart from jcooper, the initial assignee).

• XPath: Select to dynamically enter a value through the Expression Builder dialog
box.

Chapter 29
Assigning Task Participants

29-29

29.4.3.1.3 Creating Participant Lists Consisting of Rulesets

A ruleset provides a unit of execution for rules and for decision tables. In addition,
rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets
can be executed in order. This is called rule flow. The ruleset stack determines the
order. The order can be manipulated by rule actions that push and pop rulesets on the
stack. In rulesets, the priority of rules applies to specify the order of firing of rules in the
ruleset. Rulesets also provide an effective date specification that identifies that the
ruleset is always active, or that the ruleset is restricted based on a time and date
range, or a starting or ending time and date.

The method by which you create a ruleset is based on how you access it. This is
described in the following section.

Note:

You cannot update facts after the rule dictionary is created.

To specify participant lists based on rulesets:

Business rules can define the participant list. There are two options for using business
rules:

• Rules define parameters of a specific list builder (such as Names and
Expressions or Management Chain). In this case, the task routing pattern is
modeled to use a specific list builder. In the list builder, the parameters are listed
as coming from rules. Rules return the list builder of the same type as the one
modeled in Oracle JDeveloper.

1. From the Build a list of participants using list, select Names and
expressions or Management Chain.

2. From the Specify attributes using list, select Rule-based.

3. In the List Ruleset field, enter a ruleset name.

Figure 29-28 provides details.

Chapter 29
Assigning Task Participants

29-30

Figure 29-28 Rulesets

4. Do either of the following:

– Select Let participants manually claim the task. If you select this option, then
the task is assigned to all participants in the list. An individual user from the task
assignees can then manually claim the task to work on it.

– Select Auto-assign to a single list, select User, Group, or Application Role,
then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it,
click Assignment Pattern. The Assignment Pattern dialog box appears.
Figure 29-25 shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server
field, the assignment patterns are loaded into the Assignment Pattern list. When
you select one of the patterns from the Assignment Pattern list, a description of
your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use
tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers
only this task type when determining the selected user. For example, to assign a
vacation request task to the least busy user, and you select Use tasks of all
types to evaluate pattern criteria, then all assigned tasks are taken into
consideration when determining the least busy user. If you do not select Use
tasks of all types to evaluate pattern criteria, then only assigned vacation
request tasks are considered when determining the least busy user.

Chapter 29
Assigning Task Participants

29-31

A particular pattern may enable you to specify input parameters that
control how the pattern is evaluated. For example, as shown in
Figure 29-25, the Most Productive pattern enables you to specify the Time
Period (in days) over which the productivity is calculated. Input values can
be static, or can be dynamically set by using an XPath expression. Not all
patterns accept parameters.

5. Click OK.

• Rules define the list builder and the list builder parameters. In this case, the list
itself is built using rules. The rules define the list builder and the parameters.

1. From the Build a list of participants using list, select Rule-based.

2. In the List Ruleset field, enter a ruleset name.

Figure 29-29 provides details.

Figure 29-29 Rulesets

3. Do either of the following:

– Select Let participants manually claim the task. If you select this
option, then the task is assigned to all participants in the list. An individual
user from the task assignees can then manually claim the task to work on
it.

– Select Auto-assign to a single list, select User, Group, or Application
Role, then select an assignment pattern.

Chapter 29
Assigning Task Participants

29-32

To find out more about each assignment pattern, and to select and configure it,
click Assignment Pattern. The Assignment Pattern dialog box appears.
Figure 29-25 shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server
field, the assignment patterns are loaded into the Assignment Pattern list. When
you select one of the patterns from the Assignment Pattern list, a description of
your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use
tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers
only this task type when determining the selected user. For example, to assign a
vacation request task to the least busy user, and you select Use tasks of all
types to evaluate pattern criteria, then all assigned tasks are taken into
consideration when determining the least busy user. If you do not select Use
tasks of all types to evaluate pattern criteria, then only assigned vacation
request tasks are considered when determining the least busy user.

4. Click OK.

Both options create a rule dictionary, if one is not already created, and pre-seed several rule
functions and facts for easy specifications of the participant list. In the rule dictionary, the
following rule functions are seeded to create participant lists:

• CreateResourceList

• CreateManagementChainList

The Task fact is asserted by the task service for basing rule conditions.

After the rule dictionary is created, the Oracle Business Rules Designer is displayed.

1. Model your rule conditions. In the action part, call one of the above functions to complete
building your lists. Figure 29-30 provides details.

Figure 29-30 Business Rules

The parameters for the rule functions are similar to the ones in Oracle JDeveloper
modeling. In addition to the configurations in Oracle JDeveloper, some additional options
are available in the Oracle Business Rules Designer for the following attributes:

• responseType: If the response type is REQUIRED, the assignee must act on the
task. Otherwise, the assignment is converted to an FYI assignment.

• ruleName: The rule name can create reasons for assignments.

Chapter 29
Assigning Task Participants

29-33

• lists: This object is a holder for the lists that are built. Clicking this option
shows a pre-asserted fact Lists object to use as the parameter.

An example of rules specifying management chain-based participants is shown in
Figure 29-31.

Figure 29-31 Business Rules

If multiple rules are fired, the list builder created by the rule with the highest priority
is selected.

29.4.3.2 Specifying a Time Limit for Acting on a Task
You can specify the amount of time a user, group, or application role receives to act on
a task. If the user, group, or role does not act in the time specified, the global
escalation and renewal policies that you set in the Deadlines section (known as the
routing slip level) of the Human Task Editor are applied. For example, if the global
policy is set to escalate the task and this participant does not act in the duration
provided, the task is escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:

1. Expand the Advanced section of the Edit Participant Type dialog box for the
single type, as shown in Figure 29-32.

Figure 29-32 Advanced Section of Edit Participant Type — Single Type

2. Select Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in
the Deadlines section of the Human Task Editor, see Escalating, Renewing, or
Ending the Task.

Chapter 29
Assigning Task Participants

29-34

29.4.3.3 Inviting Additional Participants to a Task
You can allow a task assignee to invite other participants into the workflow before routing it to
the next assignee in this workflow. For example, assume the approval workflow goes from
James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first
route it to Irving Stone before it goes to John Steinbeck.

This is also known as ad hoc routing. If this option is selected, Adhoc Route is added to the
Actions list in Oracle BPM Worklist at runtime.

Note:

Do not add adhoc assignees either above or below an FYI participant.

To invite additional participants to a task:

1. Expand the Advanced section of the Edit Participant Type dialog box for the single type,
as shown in Figure 29-32.

2. Select Allow this participant to invite other participants.

29.4.3.4 Bypassing a Task Participant
You can bypass a task participant (user, group, or application role) if a specific condition is
satisfied. For example, if a user submits a business trip expense report that is under a
specific amount, no approval is required by their manager.

To bypass a task:

1. Expand the Advanced section of the Edit Participant Type dialog box for the single type,
as shown in Figure 29-32.

2. Select Specify skip rule.

This action displays an icon for accessing the Expression Builder dialog box for building a
condition.

The expression to bypass a task participant must evaluate to a boolean value. For
example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath
expression for skipping a participant.

For more information about creating dynamic rule conditions, see How to Specify
Advanced Task Routing Using Business Rules.

29.4.4 How to Configure the Parallel Participant Type
Figure 29-33 and Figure 29-34 display the upper and lower sections of the Parallel dialog
box.

This participant type is used when multiple users, working in parallel, must act
simultaneously, such as in a hiring situation when multiple users vote to hire or reject an
applicant. You specify the voting percentage that is needed for the outcome to take effect,
such as a majority vote or a unanimous vote.

Chapter 29
Assigning Task Participants

29-35

For example, a business process collects the feedback from all interviewers in the
hiring process, consolidates it, and assigns a hire or reject request to each of the
interviewers. At the end, the candidate is hired if the majority of interviewers vote for
hiring instead of rejecting.

Figure 29-33 Edit Participant Type — Parallel Type (Upper Section of Dialog)

Figure 29-34 Edit Participant Type — Parallel Type (Lower Section of Dialog)

To assign participants to the parallel participant type:

• In the Label field, enter a recognizable label for this participant. This label must be
unique among all the participants in the task definition (for example, Approval
Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type
dialog box for the parallel participant type are listed in Table 29-8:

Chapter 29
Assigning Task Participants

29-36

Table 29-8 Edit Participant Type — Parallel Type

For This Subsection... See...

Vote Outcome Specifying the Voting Outcome

Participant List Creating a Parallel Task Participant List

Limit allocated duration to (under the
Advanced section)

Specifying a Time Limit for Acting on a Task

Allow this participant to invite other
participants (under the Advanced section)

Inviting Additional Participants to a Task

Specify skip rule (under the Advanced
section)

Bypassing a Task Participant

Add Assignment Context (under the
Advanced section)

If this participant is associated with a particular
assignment context, then add that name here.
Use the Add button to add a new entry. Use the
drop-down list to select an assignment context
Name and to provide a value for this assignment
context.

29.4.4.1 Specifying the Voting Outcome
You can specify a voted-upon outcome that overrides the default outcome selected in the
Default Outcome list. This outcome takes effect if the required percentage is reached.
Outcomes are evaluated in the order listed in the table.

To specify group voting details:

1. Go to the Vote Outcome section of the Edit Participant Type dialog box for the parallel
type.

2. From the list in the Voted Outcomes column, select an outcome for the task (for
example, Any, ACCEPT, REJECT, or any other outcome specified in How to Specify a
Task Outcome).

The Any outcome enables you to determine the outcome dynamically at runtime. For
example, if you select Any and set the outcome percentage to 60, then at runtime,
whichever outcome reaches 60% becomes the final voted outcome. If 60% of assignees
vote to reject the outcome, then it is rejected.

3. From the list in the Outcome Type column, select a method for determining the outcome
of the final task.

• By Expression: Dynamically specify the details with an XPath expression.

• By Percentage: Specify a percentage value that determines when the outcome of
this task takes effect.

4. From the list in the Value column, specify a value based on your selection in Step 3.

• If you selected By Expression, click the Browse icon to the right of the field to
display the Expression Builder dialog box for creating an expression.

• If you selected By Percentage, enter a percentage value required for the outcome of
this task to take effect (for example, a majority vote (51) or a unanimous vote (100)).
For example, assume there are two possible outcomes (ACCEPT and REJECT) and
five subtasks. If two subtasks are accepted and three are rejected, and the required
acceptance percentage is 50%, the outcome of the task is rejected. Figure 29-35
provides details.

Chapter 29
Assigning Task Participants

29-37

This functionality is nondeterministic. For example, selecting a percentage of
30% when there are two subtasks does not make sense.

Figure 29-35 Vote Outcomes Section

5. Click the Add icon to specify additional outcomes.

6. In the Default Outcome list, select the default outcome or enter an XPath
expression for this task to take effect if the consensus percentage value is not
satisfied. This happens if there is a tie or if all participants do not respond before
the task expires. Seeded and custom outcomes that you entered in the Outcomes
dialog box in How to Specify a Task Outcome display in this list.

7. Specify additional group voting details:

• Immediately trigger voted outcome when minimum percentage is met

If selected, the outcome of the task can be computed early with the outcomes
of the completed subtasks, enabling the pending subtasks to be withdrawn.
For example, assume four users are assigned to act on a task, the default
outcome is APPROVE, and the consensus percentage is set at 50. If the first
two users approve the task, the third and fourth users do not need to act on
the task, since the consensus percentage value has been satisfied.

• Wait until all votes are in before triggering outcome

If selected, the workflow waits for all responses before an outcome is initiated.

8. To share comments and attachments with all group collaborators or workflow
participants for a task, select Share attachments and comments. This
information typically displays in the footer region of Oracle BPM Worklist.

29.4.4.2 Creating a Parallel Task Participant List
Users assigned to the list of participants can act upon tasks. You can create several
types of lists:

• Value-based name and expression lists

• Value-based management chain lists

• Rule-based names and expression lists

• Rule-based management chain lists

• Rule-based links

For information about creating these lists of participants, see section Creating a Single
Task Participant List.

Chapter 29
Assigning Task Participants

29-38

29.4.4.3 Specifying a Time Limit for Acting on a Task
You can specify the amount of time a user, group, or application role receives to act on a
task. If the user, group, or role does not act in the time specified, the global escalation and
renewal policies that you set in the Deadlines section (known as the routing slip level) of the
Human Task Editor are applied. For example, if the global policy is set to escalate the task
and this participant does not act in the duration provided, the task is escalated to the
manager or another user, as appropriate.

To specify a time limit for acting on a task:

1. In the Advanced section of the Edit Participant Type dialog box for the parallel type, click
the Advanced tab to expand the section shown in Figure 29-34.

2. Select Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in the
Deadlines section of the Human Task Editor, see Escalating, Renewing, or Ending the Task.

29.4.4.4 Inviting Additional Participants to a Task
You can allow a task assignee to invite other participants into the workflow before routing it to
the next assignee in this workflow. For example, assume the approval workflow goes from
James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first
route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:

1. In the Advanced section of the Edit Participant Type dialog box for the parallel type, click
the Advanced icon to expand the section (if not expanded).

2. Select Allow this participant to invite other participants.

29.4.4.5 Bypassing a Task Participant
You can bypass a task participant (user, group, or application role) if a specific condition is
satisfied. For example, if a user submits a business trip expense report that is under a
specific amount, no approval is required by their manager.

To bypass a task participant:

• In the Edit Participant Type dialog box for the parallel type, select the Specify skip rule
check box.

This action displays an icon for accessing the Expression Builder dialog box for building a
condition. The expression must evaluate to a boolean value.

For information about a valid XPath expression for skipping a participant, see Bypassing
a Task Participant.

29.4.5 How to Configure the Serial Participant Type
Figure 29-36 displays the Serial dialog box. Figure 29-37 shows the expanded Advanced
section.

Chapter 29
Assigning Task Participants

29-39

This participant type enables you to create a list of sequential participants for a
workflow. For example, if you want a document to be reviewed by John, Mary, and
Scott in sequence, use this participant type. For the serial participant type, they can be
any list of users or groups.

Figure 29-36 Edit Participant Type — Serial Type

Chapter 29
Assigning Task Participants

29-40

Figure 29-37 Edit Participant Type — Serial Type (Advanced Tab)

To configure the serial participant type:

• In the Label field, enter a recognizable label for this participant. This label must be
unique among all the participants in the task definition (for example, Approval Manager,
Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog
box for the serial participant type are listed in Table 29-9.

Table 29-9 Edit Participant Type — Serial Type

For This Subsection... See...

Participant List Creating a Serial Task Participant List

Limit allocated duration to (under the
Advanced section)

Specifying a Time Limit for Acting on a Task

Note that if you specify the task expiry time at
the level of a serial participant, then, when that
time expires, the task does not move to the next
participant in the series. Rather, the entire task
expires.

Allow this participant to invite other
participants (under the Advanced section)

Inviting Additional Participants to a Task

Chapter 29
Assigning Task Participants

29-41

Table 29-9 (Cont.) Edit Participant Type — Serial Type

For This Subsection... See...

Specify skip rule (under the Advanced
section)

Bypassing a Task Participant

Assignment Context (under the Advanced
section)

If this participant is associated with a particular
assignment context, then add that name here.
Use the Add button to add a new entry. Use the
drop-down list to select assignment context
Name and to provide a value for this assignment
context.

29.4.5.1 Creating a Serial Task Participant List
Users assigned to the list of participants can act upon tasks. You can create several
types of lists:

• Value-based name and expression lists

• Value-based management chain lists

• Rule-based names and expression lists

• Rule-based management chain lists

• Rule-based lists

See section Creating a Single Task Participant List for instructions on creating these
lists of participants.

29.4.5.2 Specifying a Time Limit for Acting on a Task
You can specify the amount of time a user, group, or application role receives to act on
a task. If the user, group, or role does not act in the time specified, the global
escalation and renewal policies that you set in the Deadlines section (known as the
routing slip level) of the Human Task Editor are applied. For example, if the global
policy is set to escalate the task and this participant does not act in the duration
provided, the task is escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:

1. In the Advanced tab of the Edit Participant Type dialog box for the serial type,
click the Advanced icon to expand the section shown in Figure 29-36.

2. Click Limit allocated duration to.

3. Specify the amount of time.

Note:

If you specify the task expiry time at the level of a serial participant, then,
when that specified time limit is reached, the task does not move to the
next participant in the series. Rather, the entire task expires.

Chapter 29
Assigning Task Participants

29-42

For more information about setting the global escalation and renewal policies in the
Deadlines section of the Human Task Editor, see Escalating, Renewing, or Ending the
Task.

29.4.5.3 Inviting Additional Participants to a Task
You can allow a task assignee to invite other participants into the workflow before routing it to
the next assignee in this workflow. For example, assume the approval workflow goes from
James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first
route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:

1. In the Advanced section of the Edit Participant Type dialog box for the serial type, click
the Advanced icon to expand the section (if not already expanded).

2. Select Allow this participant to invite other participants.

Note:

For the serial participant type, additional participants can be invited as follows:

• Globally specifying that the ad hoc participants can be invited at anytime. In
this case, even in a sequential workflow, approvers can invite other
participants at any level in the sequential workflow.

• Specifying that an ad hoc invitation of other participants can be done only in
specific points in the workflow. In this case, other ad hoc participants are
invited only when a series is complete.

29.4.5.4 Bypassing a Task Participant
You can bypass a task participant (user, group, or application role) if a specific condition is
satisfied. For example, if a user submits a business trip expense report that is under a
specific amount, no approval is required by their manager.

To bypass a task participant:

• In the Advanced section of the Edit Participant Type dialog box for the serial type, select
the Specify skip rule check box.

This action displays an icon for accessing the Expression Builder dialog box for building a
condition. The expression must evaluate to a boolean value.

For more information about a valid XPath expression for skipping a participant, see
Bypassing a Task Participant.

29.4.6 How to Configure the FYI Participant Type
Figure 29-38 displays the Edit Participant Type dialog box for the FYI type. This dialog box
also includes a Participants Exclusion List at the bottom that is not displayed in
Figure 29-38.

Chapter 29
Assigning Task Participants

29-43

This participant type is used when a task is sent to a user, but the business process
does not wait for a user response; it just continues. FYIs cannot directly impact the
outcome of a task, but in some cases can provide comments or add attachments.

For example, a magazine subscription is due for renewal. If the user does not cancel
the current subscription before the expiration date, the subscription is renewed. This
user is reminded weekly until the request expires or the user acts on it.

Figure 29-38 Edit Participant Type — FYI Type

To configure the FYI participant type:

1. In the Label field, enter a recognizable label for this participant. This label must be
unique among all the participants in the task definition (for example, Approval
Manager, Primary Reviewers, and so on).

29.4.6.1 Creating an FYI Task Participant List
Users assigned to the list of participants can act upon tasks. You can create several
types of lists:

• Value-based name and expression lists

• Value-based management chain lists

• Rule-based names and expression lists

• Rule-based management chain lists

• Rule-based lists

See section Creating a Single Task Participant List for instructions on creating these
lists of participants.

29.5 Selecting a Routing Policy
Route tasks to participants in a certain order and enable participants to invite others.

After you configure a participant type and are returned to the Human Task Editor, click
the Task will go from starting to final participant icon, as shown in Figure 29-39.

Chapter 29
Selecting a Routing Policy

29-44

Figure 29-39 Human Task Editor — Assignment Section

This displays the Configure Assignment dialog box shown in Figure 29-40 for specifying a
method for routing your task through the workflow.

Figure 29-40 Configure Assignment

Table 29-10 describes the routing policy methods provided.

Chapter 29
Selecting a Routing Policy

29-45

Table 29-10 Routing Policy Method

Routing Policy Selection Use This Policy In Environments
Where...

Section

• Allow all participants to
invite other participants

A participant can select users or
groups as the next assignee (ad hoc)
when approving the task.

Allow All Participants to Invite Other
Participants or Edit New Participants

• Complete task when a
participant chooses:
<outcome>

A participant in a task can accept or
reject it, thus ending the workflow
without the task being sent to any other
participant. For example, a manager
rejects a purchase order, meaning that
purchase order is not sent to their
manager for review.

Stopping Routing of a Task to Further
Participants

• Enable early completion in
parallel subtasks

Note: This option is for environments
in which you have multiple stages and
participants working in parallel.

Participants perform subtasks in
parallel, and one group's rejection or
approval of a subtask does not cause
the other group's subtask to also be
rejected or approved.

Enabling Early Completion in Parallel
Subtasks

• Complete parent tasks of
early completing subtasks

Note: This option is for environments
in which you have multiple stages and
participants working in parallel.

Participants perform subtasks in
parallel, and one group's rejection or
approval of a subtask causes the other
group's subtask to also be rejected or
approved.

Completing Parent Subtasks of Early
Completing Subtasks

Use Advanced Rules The participants to whom the task is
routed are determined by the business
rule logic that you model. For example,
a loan application task is designed to
go through a loan agent, their
manager, and then the senior
manager. If the loan agent approves
the loan, but their manager rejects it,
the task is returned to the loan agent.

How to Specify Advanced Task
Routing Using Business Rules

Use External Routing The participants in a task are
dynamically determined. For example,
a company's rules may require the task
participants to be determined and then
retrieved from a back-end database
during runtime.

How to Use External Routing

Assignment tab A participant is assigned a failed task
for the purposes of recovery.

How to Configure the Error Assignee
and Reviewers

29.5.1 How to Route Tasks to All Participants in the Specified Order
You can select to have a task reviewed by all selected participants. This is known as
default routing because the task is routed to each of the participants in the order in
which they appear. This type of routing differs from state machine-based routing.

Chapter 29
Selecting a Routing Policy

29-46

To route tasks to all participants in the specified order:

1. In the Assignment section, click the icon to the right of Task will go from starting to
final participant.

2. Select Route task to all participants, in order specified from the list shown in
Figure 29-41.

Figure 29-41 Route a Task to All Participants

See the following tasks to define a routing policy:

• Allowing all participants to invite other participants

• Completing a task when a participant chooses

• Enabling early completion in parallel subtasks

• Completing parent subtasks of early completing subtasks

29.5.1.1 Allow All Participants to Invite Other Participants or Edit New Participants
This check box is the equivalent of the ad hoc workflow pattern of pre-10.1.3 Oracle BPEL
Process Manager releases. This applies when there is at least one participant. In this case,
each user selects users or groups as the next assignee when approving the task.

To allow all participants to invite other participants:

1. Select Route task to all participants, in order specified.

2. Under Adhoc Routing, select the Allow all participants to invite other participants
check box for this task assignee to invite other participants into the workflow before
routing it to the next assignee in this workflow.

3. Select the Allow participants to edit new participants check box for this task assignee
to edit other adhoc participants that were added to the routing slip.

Chapter 29
Selecting a Routing Policy

29-47

Note:

Do not add adhoc assignees either above or below an FYI participant.

29.5.1.2 Allow Initiator to Add Participants
Under Adhoc Routing, select the Allow all initiator to add participants check box
so this task initiator can invite other participants into the workflow before routing to the
next assignee in this workflow.

29.5.1.3 Stopping Routing of a Task to Further Participants
You can specify conditions under which to complete a task early, regardless of the
other participants in the workflow.

For example, assume an expense report goes to the manager, and then the director. If
the first participant (manager) rejects it, you can end the workflow without sending it to
the next participant (director).

To abruptly complete a condition:

1. Under Early Completion, select the Complete task when a participant chooses:
<outcome> check box.

The Abrupt Completion Details dialog box appears.

There are two methods for specifying the abrupt completion of a task:

• Outcomes

• XPath expression routing condition

If outcomes are specified, any time the selected task outcome occurs, the task
completes. If both outcome and routing condition are specified, the workflow
service performs a logical OR operation on the two.

2. Select appropriate outcomes and click the > button, as shown in Figure 29-42. To
select all, click the >> button.

Figure 29-42 Abrupt Completion Details

Chapter 29
Selecting a Routing Policy

29-48

3. To the right of the Routing Condition field, click the icon to display the Expression
Builder dialog box for dynamically creating a condition under which to complete this task
early. For example, if a user submits a business trip expense report that is under a
specific amount, no approval is required by their manager.

An early completion XPath expression is not evaluated until at least one user has acted
upon the task.

4. To enable early completion, click Enable early completion in parallel with subtasks.
For more information, see Enabling Early Completion in Parallel Subtasks.

5. To enable early completion of parent tasks, click Complete parent tasks of early
completing subtasks. For more information, see Completing Parent Subtasks of Early
Completing Subtasks.

6. Click OK to return to the Human Task Editor.

You can click the icon to the right of the Complete task when a participant chooses:
<outcome> check box to edit this information.

29.5.1.4 Enabling Early Completion in Parallel Subtasks
You can use this option in the following environments:

• Multiple stages and groups of participants perform subtasks in parallel.

• A participant in one group approves or rejects a subtask, which causes the other
participants in that same group to stop acting upon the task. However, this does not
cause the other parallel group to stop acting upon subtasks. That group continues taking
actions on tasks.

For example, assume there are two parallel subgroups, each in separate stages. One group
acts upon lines of a purchase order. The other group acts upon headers of the same
purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all
other task participants in the first group stop acting upon tasks. However, the second parallel
group continues to act upon headers in the purchase order. In this scenario, the entire task
does not complete early. Figure 29-43 provides details.

Figure 29-43 Early Completion of Parallel Subtasks

Chapter 29
Selecting a Routing Policy

29-49

29.5.1.5 Completing Parent Subtasks of Early Completing Subtasks
You can use this option in the following environments:

• Multiple stages and groups of participants perform subtasks in parallel.

• A participant in one group approves or rejects a subtask, which causes the other
participants in that same group to stop acting upon the task. This also causes the
other parallel group to stop acting upon subtasks.

For example, assume there are two parallel subgroups, each in separate stages, as
shown in Figure 29-43. One group acts upon lines of a purchase order. The other
group acts upon headers of the same purchase order. If participant
ApproveLines.Participant2 of the first group rejects a line, all other task participants
in the first group stop acting upon tasks. In addition, the second parallel group stops
acting upon headers in the purchase order. In this scenario, the entire task completes
early.

29.5.2 How to Specify Advanced Task Routing Using Business Rules
Use advanced routing rules to create complex workflow routing scenarios. The
participant types (single, parallel, serial, and FYI) are used to create a linear flow from
one set of users to another with basic conditions such as abrupt termination, skipping
assignees, and so on. However, there is often a need to perform more complex back
and forth routing between multiple individuals in a workflow. One option is to use the
BPEL process as the orchestrator of these tasks. Another option is to specify it
declaratively using business rules. This section describes how you can model such
complex interactions by using business rules with the Human Task Editor.

29.5.2.1 Introduction to Advanced Task Routing Using Business Rules
You can define state machine routing rules using Oracle Business Rules. This action
enables you to create Oracle Business Rules that are evaluated:

• After a routing slip task participant sets the outcome of the task

• Before the task is assigned to the next routing slip participant

This action enables you to override the standard task routing slip method described in
How to Route Tasks to All Participants in the Specified Order and build complex
routing behavior into tasks.

Using Oracle Business Rules, you define a set of rules (called a ruleset) that relies on
business objects, called facts, to determine which action to take.

29.5.2.2 Facts
A fact is an object with certain business data. Each time a routing slip assignee sets
the outcome of a task, instead of automatically routing the task to the next assignee,
the task service performs the following steps:

• Asserts facts into the decision service

• Executes the advanced routing ruleset

Rules can test values in the asserted facts and specify the routing behavior by setting
values in a TaskAction fact type.

Chapter 29
Selecting a Routing Policy

29-50

Table 29-11 describes the fact types asserted by the task service.

Table 29-11 Fact Types Asserted By the Task Service

Fact Type Description

Task This fact contains the current state of the workflow task instance. All task
attributes can be tested against it. The task fact also contains the current task
payload. This fact enables you to construct tests against payload values and task
attribute values.

PreviousOutcome This fact describes the previous task outcome and the assignee who set the
outcome. The previous outcome fact contains the following attributes:

• actualParticipant: The name of the participant who set the task
outcome (for example, jstein)

• logicalParticipant: The logical name (or label) for the routing slip
participant responsible for setting the task outcome (for example,
assignee1)

• outcome: The outcome that was set (for example, approve or reject)
• level: If the previous participant was part of a management chain, then this

attribute records their level in the chain, where 1 is the first level in the chain.
For other participant types, the value is -1.

• totalNumberOfApprovals: The total number of users that have now set
the outcome of the task.

TaskAction This fact is not intended for writing rule tests against it. Instead, it is updated by
the ruleset, and returned to the task service to indicate how the task should be
routed. Rules should not directly update the TaskAction fact. Instead, they
should call one of the RL functions described in Action Types. These functions
handle updating the TaskAction fact with the appropriate values.

Some fact types can only be used in workflow routing rules, while others can only be used in
workflow participant rules. Table 29-12 describes where you can use each type.

Table 29-12 Use of Fact Types

Fact Type Can Use in Routing Rules? Can Use in Participant Rules?

Task Yes Yes

PreviousOutcome Yes No

TaskAction Yes No

Lists No Yes

RoutingSlipObjectFactory No Yes

ResourceListType No Yes

ManagementChainListType No Yes

ResourceType No Yes

ParameterType No Yes

AutoActionType No Yes

ResponseType No Yes

Chapter 29
Selecting a Routing Policy

29-51

29.5.2.3 Action Types
To instruct the task service on how to route the task, rules can specify one of many
task actions. This is done by updating the TaskAction fact asserted into the rule
session. However, rules should not directly update the TaskAction fact. Instead, rules
should call one of the action RL functions, passing the TaskAction fact as a
parameter. These functions handle the actual updates to the fact. For example, to
specify an action of go forward, you must add a call GO_FORWARD(TaskAction) to the
action part of the rule.

Each time a state machine routing rule is evaluated, the rule takes one of the actions
shown in Table 29-13:

Table 29-13 Business Rule Actions

Action Description Parameters

GO_FORWARD Goes to the next participant in the routing
slip (default behavior).

None

PUSHBACK Goes back to the previous participant in
the routing slip (the participant before the
one that just set the task outcome).

Note: Pushback is designed to work with
single approvers and not with group votes.
Pushback from a stage with group vote (or
parallel) scenario to another stage is not
allowed. Similarly, you cannot push back
from a single assignee to a group vote (or
parallel) scenario.

None

GOTO Goes to a specific participant in the routing
slip.

participant'

A string that identifies the
label of the participant (for
example, Approver1) to
which to route the task.

COMPLETE Finishes routing and completes the task.
The task is marked as completed, and no
further routing is required.

None

ESCALATE Escalates and reassigns the task
according to the task escalation policy
(usually to the manager of the current
assignee).

None

29.5.2.4 Sample Ruleset
You can use rules to implement custom routing behavior with a simple example. A
human workflow task is created for managing approvals of expense requests. The
outcomes for the task are approve and reject. The task definition includes an
ExpenseRequest payload element. One of the fields of ExpenseRequest is the total
amount of the expense request. The routing slip for the task consists of three single
participants (assignee1, assignee2, and assignee3).

By default, the task gets routed to each of the assignees, with each assignee choosing
to approve or reject the task.

Chapter 29
Selecting a Routing Policy

29-52

Instead of this behavior, the necessary routing behavior is as follows:

• If the total amount of the expense request is less than $100, approval is only required
from one of the participants. Otherwise, it must be approved by all three.

• If an expense request is rejected by any of the participants, it must be returned to the
previous participant for re-evaluation. If it is rejected by the first participant, the expense
request is rejected and marked as completed.

This behavior is implemented using the following rules. When a rule dictionary is generated
for advanced routing rules, it is created with a template rule that implements the default
GO_FORWARD behavior. You can edit this rule, and make copies of the template rule by right-
clicking and selecting Copy Rule in the Oracle Business Rules Designer.

If the amount is greater than $100 and the previous assignee approved the task, it is not
necessary to provide a rule for routing a task to each of the assignees in turn. This is the
default behavior that is reverted to if none of the rules in the ruleset are triggered:

• Early approval rule:

Figure 29-44 Early Approval Rule

• Push back on the rejected rule:

Figure 29-45 Push Back On The Rejected Rule

• Complete the Assignee1 rejected rule:

Chapter 29
Selecting a Routing Policy

29-53

Figure 29-46 Completion of the Assignee1 Rejected Rule

29.5.2.5 Linked Dictionary Support
For human workflow, business rule artifacts are now stored in two rules dictionaries.
This is useful for scenarios in which you must customize your applications. For
example, you create and ship version 1 of an application to a customer. The customer
then customizes the rulesets in the application with Oracle SOA Composer. Those
customizations are now stored in a different rules dictionary than the base rules
dictionary. The rules dictionary that stores the customized rulesets links with the rules
in the base dictionary. When you later ship version 2 of the application, the base rule
dictionary may contain additional changes introduced in the product. The ruleset
customization changes previously performed by the customer are preserved and
available with the new changes in the base dictionary. When an existing application
containing a task using rules is opened, if the rules are in the old format using one
dictionary, they are automatically upgraded and divided into two rules dictionaries:

• Base dictionary

• Custom dictionary

For more information about customizations, see Customizing SOA Composite
Applications in Developing SOA Applications with Oracle SOA Suite.

29.5.2.6 Creating Advanced Routing Rules

To create advanced routing rules:

1. In the Assignment section, click the icon to the right of Task will go from
starting to final participant.

2. Select Use Advanced Rules from the list.

3. Select Dynamic Routing Rules.

The Use Advanced Rules edit box displays.

4. To the right of Rules Dictionary, click the Edit icon, as shown in Figure 29-47.

Chapter 29
Selecting a Routing Policy

29-54

Figure 29-47 Creating a Rules Dictionary

This starts the Oracle Business Rules Designer with a pre-seeded repository containing
all necessary fact definitions, as shown in Figure 29-48. A decision service component is
created for the dictionary, and is associated with the task service component.

Figure 29-48 Human Task Rule Dictionary

5. Define state machine routing rules for your task using Oracle Business Rules.

This automatically creates a fully-wired decision service in the human task and the
associated rule repository and data model.

29.5.3 How to Use External Routing
You configure an external routing service that dynamically determines the participants in the
workflow. If this routing policy is specified, all other participant types are ignored. It is
assumed that the external routing service provides a list of participant types (single approver,
serial approver, parallel approver, and so on) at runtime to determine the routing of the task.

Use this option if you do not want to use any of the routing rules to determine task assignees.
In this case, all the logic of task assignment is delegated to the external routing service.

Chapter 29
Selecting a Routing Policy

29-55

Note:

If you select Use External Routing in the Configure Assignment dialog box,
specify a Java class, and click OK to exit, the next time you open this dialog
box, the other two selections (Route task to all participants, in order
specified and Use Advanced Rules) no longer appear in the drop-down list.
To access all three selections again, you must delete the entire assignment.

To use external routing

1. Drag and drop External Routing Service from the Workflow Editor Components
window.

The Use External Routing edit box displays.

2. Click the Edit icon.

The External Routing dialog box appears, as shown in Figure 29-49.

Figure 29-49 Use External Routing Dialog

3. In the Class Name field, enter the fully qualified class file name (for example, the
org.mycompany.tasks.RoutingService class name). This class must implement
the following interface:

oracle.bpel.services.workflow.task.IAssignmentService

4. Add name and pair value parameters by name or XPath expression that can be
passed to the external service, as shown in Table 29-14.

Table 29-14 External Routing

Field Description

By Name Enter a name in the Name field and a value in the Value field.

Chapter 29
Selecting a Routing Policy

29-56

Table 29-14 (Cont.) External Routing

Field Description

By Expression Enter a name and dynamically enter a value by clicking the
icon to the right of the field to display the Expression Builder
dialog box.

5. Click the Add icon to add additional name and pair value parameters.

29.5.4 How to Configure the Error Assignee and Reviewers
Tasks can error for reasons such as incorrect assignments. When such errors occur, the task
is assigned to the error assignee, who can perform corrective actions. Recoverable errors are
as follows:

• Invalid user and group for all participants

• Invalid XPath expressions that are related to assignees and expiration duration

• Escalation on expiration errors

• Evaluating escalation policy

• Evaluating renewal policy

• Computing a management chain

• Evaluating dynamic assignment rules. The task is not currently in error, but is still left as
assigned to the current user and is therefore recoverable.

• Dynamic assignment cyclic assignment (for example, user A > user B > user A). The task
is not currently in error, but is still left as assigned to the last user in the chain and is
therefore recoverable.

The following errors are not recoverable. In these cases, the task is moved to the terminating
state ERRORED.

• Invalid task metadata

• Unable to read task metadata

• Invalid GOTO participant from state machine rules

• Assignment service not found

• Any errors from assignment service

• Evaluating custom escalate functions

• Invalid XPath and values for parallel default outcome and percentage values

During modeling of workflow tasks, you can specify error assignees for the workflow. If error
assignees are specified, they are evaluated and the task is assigned to them. If no error
assignee is specified at runtime, an administration user is discovered and is assigned the
alerted task. The error assignee can perform one of the following actions:

• Ad hoc route

Route the task to the actual users assigned to the task. Ad hoc routing allows the task to
be routed to users in sequence, parallel, and so on. Note: Do not add adhoc assignees
either above or below a FYI participant.

• Reassign

Chapter 29
Selecting a Routing Policy

29-57

Reassign the task to the actual users assigned to this task

• Error task

Indicate that this task cannot be rectified.

If there are any errors in evaluating the error assignees, the task is marked as being in
error.

This dialog box enables you to specify the users or groups to whom the task is
assigned if an error in assignment has occurred.

To configure the error assignee:

1. Click the Add icon to assign reviewers or error assignees, as shown in
Figure 29-50.

Figure 29-50 Error Assignment Details

2. Click the Add icon and select a user, group, or application role to participate in this
task.

The Identification Type column of the Starting Participant table displays your
selection of user, group, or application role.

3. See Step 5 through 7 of Creating a Single Task Participant List for instructions on
selecting a user, group, or application role.

4. If you are using parallel participant types, you can specify where to store the
subtask payload with the following options.

• Use server settings

The SharePayloadAcrossAllParallelApprovers System MBean Browser
boolean property in Oracle Enterprise Manager Fusion Middleware Control
determines whether to share the payload of subtasks in the root task. By
default, this property is set to true. If set to true, the All task participants share
the same payload (better performance and less storage space) option is used.
If this property is set to false, the Each parallel participant has a local copy
of the payload option is used. To change this property, perform the following
steps:

a. Right-click soa-infra and select Administration > System MBean
Browser.

Chapter 29
Selecting a Routing Policy

29-58

b. Expand Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowConfig > human-workflow.

c. Click SharePayloadAcrossAllParallelApprovers.

d. Change this property in the list, and click Apply.

• All task participants share the same payload (better performance and less
storage space)

The payload for the subtasks is stored in their root task. This situation means that the
payload of the root task is shared across all its subtasks. Internally, this option
provides better performance and storage space consumption. Less storage space is
consumed because the payload of the root task is shared across all its subtasks.

• Each parallel participant has a local copy of the payload

Each subtask has its own copy of the payload. Internally, this option provides lesser
performance and storage space consumption because more storage space is
consumed.

5. Click OK.

For more information about users, groups, or application roles, see Participant Assignment.

29.6 Specifying Multilingual Settings and Style Sheets
You can specify resource bundle for displaying task details in different languages.

The Presentation section shown in Figure 29-51 enables you to specify resource bundles for
displaying task details in different languages in Oracle BPM Worklist and WordML and
custom style sheets for attachments.

Figure 29-51 Presentation Section

29.6.1 How to Specify WordML and Other Style Sheets for Attachments
To specify WordML style sheets for attachments:

1. In the Stylesheet for Attachments list of the Presentation section, select one of the
following options:

• Word ML: This option dynamically creates Microsoft Word documents for sending as
email attachments using a WordML XSLT style sheet. The XSLT style sheet is
applied on the task document.

Chapter 29
Specifying Multilingual Settings and Style Sheets

29-59

• Other: This option creates email attachments using an XSLT style sheet. The
XSLT style sheet is applied on the task document.

2. Click the Search icon to select the style sheet as an attachment.

29.6.2 How to Specify Multilingual Settings
You can specify resource bundles for displaying task details in different languages in
Oracle BPM Worklist. Resource bundles are supported for the following task details:

• Displaying the value for task outcomes in plain text or with the message(key)
format.

• Making email notification messages available in different languages. At runtime,
you specify the hwf:getTaskResourceBundleString(taskId, key, locale?)
XPath extension function to obtain the internationalized string from the specified
resource bundle. The locale of the notification recipient can be retrieved with the
function hwf:getNotificationProperty(propertyName).

Resource bundles can also simply be property files. For example, a resource bundle
that configures a display name for task outcomes can look as follows:

• APPROVE=Approve

• REJECT=Reject

To specify multilingual settings:

1. In the Presentation section, click the Add icon across from Resource Bundle.

The Resource Details dialog box shown in Figure 29-52 appears.

Figure 29-52 Resource Details Dialog

2. In the Resource Name field, enter the name of the resource used in the resource
bundle. This should be a .properties-based resource bundle file.

3. In the Resource Location field, click the Search icon to select the JAR or ZIP
resource bundle file to use. The resource bundle is part of your system archive
(SAR) file.

Chapter 29
Specifying Multilingual Settings and Style Sheets

29-60

If the resource bundle is outside of the composite project, you are prompted to place a
local copy in SCA-INF/lib.

If the resource bundle file is not in the composite class loader (directly under SCA-INF/
classes or in a JAR file in SCA-INF/lib), you must specify its location. For example, if the
resource bundle is accessible from a location outside of the composite class loader (for
example, an HTTP location such as http://host:port/bundleApp/taskBundles.jar),
then this location must be specified in this field.

4. Click OK to return to the Human Task Editor.

For more information, see How to Configure Notification Messages in Different
Languages in Developing SOA Applications with Oracle SOA Suite.

29.7 Specifying What to Show in Task Details in the Worklist
The Presentation section enables you to specify the records in the runtime history section of
the task details form in worklistapp.

Merge repeating stages: Select this option to view one aggregated entry for all repeating
stages. The Worklist UI also provides an option to set or unset this option.

Show future participants: Select this option to see details about all future participants in the
task.

Show only user performed actions: By default, task history details contain records for
Admin and system actions, such as root task updates. Select this option to not see only user-
performed action updates in the task details.

29.8 Escalating, Renewing, or Ending the Task
You can specify the expiration duration of a task in this global policy section (also known as
the routing slip level).

If the expiration duration is specified at the routing slip level instead of at the participant type
level, then this duration is the expiration duration of the task across all the participants.
However, if you specify expiration duration at the participant type level (through the Limit
allocated duration to check box), then those settings take precedence over settings
specified in the Deadlines section (routing slip level).

Figure 29-53 shows the Deadlines section of the Human Task Editor.

You can also specify that a task be escalated to a user's manager after a specified time
period. For more information, see Specifying a Time Limit for Acting on a Task.

Chapter 29
Specifying What to Show in Task Details in the Worklist

29-61

Figure 29-53 Human Task Editor — Deadlines Section

29.8.1 Introduction to Escalation and Expiration Policy
This section provides an overview of how specifying the expiration duration at this
level makes this setting the expiration duration of the task across all the participants.

For example, participant LoanAgentGroup and participant Supervisor have three
days to act on the task between them, as shown in Figure 29-54:

Figure 29-54 Expire After Policy

If there is no expiration specified at either the participant level or this routing slip level,
then that task has no expiration duration.

If expiration duration is specified at any level of the participants, then for that
participant, the participant expiration duration is used. However, the global expiration
duration is still used for the participants that do not have participant level expiration
duration. The global expiration duration is always decremented by the time elapsed in
the task.

The policy for interpreting the participant level expiration for the participants is
described as follows:

• Serial

Each assignment in the management chain gets the same expiration duration as
the one specified in the serial. The duration is not for all the assignments resulting
from this assignment. If the task expires at any of the assignments in the
management chain, the escalation and renewal policy is applied.

Chapter 29
Escalating, Renewing, or Ending the Task

29-62

• Parallel:

– In a parallel workflow, if the parallel participants are specified as a resource, a routing
slip is created for each of the resources. The expiration duration of each created
routing slip follows these rules:

* The expiration duration equals the expiration duration of the parallel participant if
it has an expiration duration specified.

* The expiration duration that is left on the task if it was specified at the routing slip
level.

* Otherwise, there is no expiration duration.

– If parallel participants are specified as routing slips, then the expiration duration for
the parallel participants is determined by the routing slip.

Note:

When the parent task expires in a parallel task, the subtasks are withdrawn if those
tasks have not expired or completed.

29.8.2 How to Specify a Policy to Never Expire
You can specify for a task to never expire.

To specify a policy to never expire:

• In the drop-down list in the Deadlines section, as shown in Figure 29-53, select Never
Expire.

29.8.3 How to Specify a Policy to Expire
You can specify for a task to expire. When the task expires, either the escalation policy or the
renewal policy at the routing slip level is applied. If neither is specified, the task expires. The
expiration policy at the routing slip level is common to all the participants.

To specify for a task to expire:

1. In the drop-down list of the Deadlines section, select Expire after, as shown in
Figure 29-55.

2. Specify the maximum time period for the task to remain open.

The expiration policy for parallel participants is interpreted as follows:

• If parallel participants are specified as resources in parallel elements, there is no
expiration policy for each of those participants.

• If parallel participants are specified as routing slips, then the expiration policy for the
routing slip applies to the parallel participants.

Figure 29-55 indicates that the task expires in three days.

Chapter 29
Escalating, Renewing, or Ending the Task

29-63

Figure 29-55 Expire After Policy

29.8.4 How to Extend an Expiration Policy Period
You can extend the expiration period when the user does not respond within the
allotted time. You do this by specifying the number of times the task can be renewed
upon expiration (for example, renew it an additional three times) and the duration of
each renewal (for example, three days for each renewal period).

To extend an expiration policy period:

1. In the drop-down list of the Deadlines section, select Renew after, as shown in
Figure 29-56.

2. Specify the maximum number of times to continue renewing this task.

In Figure 29-56, when the task expires, it is renewed at most three times. It does
not matter if the task expired at the LoanAgentGroup participant or the
Supervisor participant.

Figure 29-56 Renew After Policy

29.8.5 How to Escalate a Task Policy
You can escalate a task if a user does not respond within the allotted time. For
example, if you are using the escalation hierarchy configured in your user directory, the
task can be escalated to the user's manager. If you are using escalation callbacks, the
task is escalated to whoever you have defined. When a task has been escalated the
maximum number of times, it stops escalating. An escalated task can remain in a user
inbox even after the task has expired.

Chapter 29
Escalating, Renewing, or Ending the Task

29-64

To escalate a task policy:

1. In the drop-down list of the Deadlines section, select Escalate after, as shown in
Figure 29-57.

2. Specify the following additional values. When both are set, the escalation policy is more
restrictive.

• Maximum Escalation Levels

Number of management levels to which to escalate the task. This field is required.

• Highest Approver Title

The title of the highest approver (for example, self, manager, director, or CEO).
These titles are compared against the title of the task assignee in the corresponding
user repository. This field is optional.

The escalation policy specifies the number of times the task can be escalated on
expiration and the renewal duration. In Figure 29-57, when the task expires, it is
escalated at most three times. It does not matter if the task expired at the
LoanAgentGroup participant or the Supervisor participant.

Figure 29-57 Escalate After Policy

29.8.6 How to Specify Escalation Rules
This option allows a custom escalation rule to be plugged in for a particular workflow. For
example, to assign the task to a current user's department manager on task expiration, you
can write a custom task escalation function, register it with the workflow service, and use that
function in task definitions.

The default escalation rule is to assign a task to the manager of the current user. To add a
new escalation rule, follow these steps.

To specify escalation rules:

1. Implement the following interface:

oracle.bpel.services.workflow.assignment.dynamic.IDynamicTaskEscalationFunction

This implementation must be available in the class path for the server.

2. Log in to Oracle Enterprise Manager Fusion Middleware Control.

3. Expand the SOA folder in the navigator.

4. Right-click soa-infra, and select SOA Administration > Workflow Config > Task tab.

The Workflow Task Service Properties page appears.

Chapter 29
Escalating, Renewing, or Ending the Task

29-65

5. Add a new function. For example:

• Function name: DepartmentSupervisor

• Classpath:
oracle.bpel.services.workflow.assignment.dynamic.patterns.Departmen
tSupervisor

• Function parameter name

• Function parameter value

6. In the Custom Escalation Java Class field of the Deadlines section, enter the
function name as defined in the Workflow Task Service Properties page for the
escalation rule.

For more information, see Custom Escalation Function in Developing SOA
Applications with Oracle SOA Suite.

29.8.7 How to Specify a Due Date
A due date indicates the date by which the task should be completed. The due date is
different from the expiration date. When a task expires it is either marked expired or
automatically escalated or renewed based on the escalation policy. The due date is
generally a date earlier than the expiration date and an indication to the user that the
task is about to expire.

You can enter a due date for a task, as shown in Figure 29-53. A task is considered
overdue after it is past the specified due date. This date is in addition to the expiration
policy. A due date can be specified irrespective of whether an expiration policy has
been specified. The due date enables Oracle BPM Worklist to display a due date, list
overdue tasks, filter overdue tasks in the inbox, and so on. Overdue tasks can be
queried using a predicate on the TaskQueryService.queryTask(...) API.

To specify a due date:

1. In the Deadlines section, select the Action Requested Before check box.

2. Select By Duration to enter a time duration or select By Expression to
dynamically enter a value as an XPath expression.

Note the following details:

• The due date can be set on both the task (using the Create ToDo Task dialog
box in Oracle BPM Worklist) and in the .task file (using the Human Task
Editor). This is to allow to-do tasks without task definitions to set a due date
during initiation of the task. A due date that is set in the task (a runtime object)
overrides a due date that is set in the .task file.

• In the task definition, the due date can only be specified at the global level,
and not for each participant.

• If the due date is set on the task, the due date in the .task file is ignored.

• If the due date is not set on the task, the due date in the .task file is evaluated
and set on the task.

• If there is no due date on either the task or in the .task file, there is no due
date on the task.

Chapter 29
Escalating, Renewing, or Ending the Task

29-66

Note:

You cannot specify business rules for to-do tasks.

For more information on how to create a ToDo task, see Developing SOA Applications with
Oracle SOA Suite.

29.9 Specifying Participant Notification Preferences
Notifications indicate when a user or group is assigned a task or informed that the status of
the task has changed. Notifications can be sent through email, instant message, or SMS.

Figure 29-58 shows the General tab of the Notification section of the Human Task Editor
(when fully expanded).

Notifications are sent to different types of participants for different actions. Notifications are
configured by default with default messages. For example, a notification message is sent to
indicate that a task has completed and closed. You can create your own or modify existing
configurations.

Note:

Embedded LDAP does not support group email addresses. Therefore, when a task
is assigned to a group ID, emails are sent to all of its members instead of to the
group email address.

Figure 29-58 Human Task Editor — General Tab of Notification Section

To specify participant notification preferences:

1. Click the Notification tab (displays as shown in Figure 29-58).

Instructions for configuring the following subsections of the General tab of the
Notification section are listed in Table 29-15.

Chapter 29
Specifying Participant Notification Preferences

29-67

Table 29-15 Human Task Editor — General Tab of Notification Section

For This Subsection... See...

Task Status
Recipient

How to Notify Recipients of Changes to Task
Status

Notification Header How to Edit the Notification Message

For information about the notification service, see the section on notifications in
Developing SOA Applications with Oracle SOA Suite.

2. In the Notification section, click the Advanced tab. Figure 29-59 provides details.

Figure 29-59 Notification Section - Advanced Tab

Instructions for configuring the following subsections of the Advanced tab of the
Notification section are listed in Table 29-16.

Table 29-16 Human Task Editor — Advanced Tab of Notification Section

For This Subsection... See...

Reminders How to Set Up Reminders

Encoding How to Change the Character Set Encoding

Make notifications secure (exclude
details)

How to Secure Notifications to Exclude
Details

Show worklist URL in notifications How to Display the Oracle BPM Worklist
URL in Notifications

Make notifications actionable How to Make Email Messages Actionable

Send task attachments with email
notifications

How to Send Task Attachments with Email
Notifications

Chapter 29
Specifying Participant Notification Preferences

29-68

Table 29-16 (Cont.) Human Task Editor — Advanced Tab of Notification
Section

For This Subsection... See...

Group notification configuration How to Send Email Notifications to Groups
and Application Roles

Notification header attributes How to Customize Notification Headers

29.9.1 How to Notify Recipients of Changes to Task Status
Three default status types display in the Task Status column: Assign, Complete, and Error.
You can select other status types for which to receive notification messages.

To notify recipients of changes to task status:

1. In the Notification section, click the General tab.

2. In the Task Status column, click a type to display the complete list of task types:

• Alerted

When a task is in an alerted state, you can notify recipients. However, none of the
notification recipients (assignees, approvers, owner, initiator, or reviewer) can move
the task from an alerted state to an error state; they only receive an FYI notification of
the alerted state. The owner can reassign, withdraw, delete, or purge the task, or ask
the error assignee to move the task to an error state if the error cannot be resolved.
Only the error assignee can move a task from an alerted state to an error state.

You configure the error assignee on the Assignment tab of the Configure
Assignment dialog box under the Task will go from starting to final participant
icon in the Assignment section. For more information, see How to Configure the
Error Assignee and Reviewers.

• Assign

When the task is assigned to users or a group. This captures the following actions:

– Task is assigned to a user

– Task is assigned to a new user in a serial workflow

– Task is renewed

– Task is delegated

– Task is reassigned

– Task is escalated

– Information for a task is submitted

• Complete

• Error

• Expire

• Request Info

• Resume

• Suspend

• Update

Chapter 29
Specifying Participant Notification Preferences

29-69

– Task payload is updated

– Task is updated

– Comments are added

– Attachments are added and updated

• Update Outcome

• Withdraw

• All Other Actions

– Any action not covered in the above task types. This includes acquiring a
task.

3. Select a task status type.

Notifications can be sent to users involved in the task in various capacities. This
includes when the task is assigned to a group, each user in the group is sent a
notification if there is no notification endpoint available for the group.

4. In the Recipient column, click an entry to display a list of possible recipients for
the notification message:

• Assignees

The users or groups to whom the task is currently assigned.

• Initiator

The user who created the task.

• Approvers

The users who have acted on the task up to this point. This applies in a serial
participant type in which multiple users have approved the task and a
notification must be sent to all of them.

• Owner

The task owner

• Reviewer

The user who can add comments and attachments to a task.

For more information, see Using the Notification Service in Developing SOA
Applications with Oracle SOA Suite.

29.9.2 How to Edit the Notification Message
A default notification message is available for delivery to the selected recipient. If you
want, you can modify the default message text.

To edit the notification message:

1. In the Notification section, click the General tab.

2. In the Notification Header column, click the Edit icon to modify the default
notification message in the Edit Notification Message dialog box.

This message applies to all the supported notification channels: email, instant
messaging, and SMS. Email messages can also include the worklist task detail

Chapter 29
Specifying Participant Notification Preferences

29-70

defined in this message. The channel by which the message is delivered is based upon
the notification preferences you specify.

3. Modify the message wording as necessary.

4. Click OK to return to the Human Task Editor.

29.9.3 How to Set Up Reminders
You can send task reminders, which can be based on the time the task was assigned to a
user or the expiration time of a task. The number of reminders and the interval between the
reminders can also be configured.

To set up reminders:

1. In the Notification section, click the Advanced tab.

2. From the list, select the number of reminders to send.

3. If you selected to remind the assignee one, two, or three times, select the interval
between reminders, and whether to send the reminder before or after the assignment.

For more information, see How to Send Reminders in Developing SOA Applications with
Oracle SOA Suite.

29.9.4 How to Change the Character Set Encoding
Unicode is a universally-encoded character set that enables information from any language to
be stored using a single character set. Unicode provides a unique code value for every
character, regardless of the platform, program, or language. You can use the default setting
of UTF-8 or you can specify a character set with a Java class.

To change the character set encoding

1. In the Notification section, click the Advanced tab.

2. From the Encoding list, select Specify by Java Class.

3. Enter the Java class to use.

29.9.5 How to Secure Notifications to Exclude Details
To secure notifications, make messages actionable, and send attachments:

1. In the Notification section, click the Advanced tab.

2. Select Make notifications secure (exclude details).

If selected, a default notification message is used. There are no HTML worklist task
details, attachments, or actionable links in the email. Only the task number is in the
message.

For more information, see the section on notifications in Developing SOA Applications
with Oracle SOA Suite.

29.9.6 How to Display the Oracle BPM Worklist URL in Notifications
You can configure whether to display the Oracle BPM Worklist URL in email notification
messages.

Chapter 29
Specifying Participant Notification Preferences

29-71

To display the Oracle BPM Worklist URL in notifications:

1. In the Notification section, click the Advanced tab.

2. Select the Show worklist URL in notifications check box to display the Oracle
BPM Worklist URL in email notification messages. If this check box is not selected,
the URL is not displayed.

29.9.7 How to Make Email Messages Actionable
To make email messages actionable:

1. In the Notification section, click the Advanced tab.

2. Select Make notification actionable. This action enables you to perform task
actions through email.

Note:

FYI tasks are not actionable and cannot be acknowledged from email
messages.

For more information about additional configuration details, see the section on
actionable messages in How to Send Actionable Messages in Developing SOA
Applications with Oracle SOA Suite.

29.9.8 How to Send Task Attachments with Email Notifications
You can send task attachments with email notifications.

To send task attachments with email notifications:

1. In the Notification section, click the Advanced tab.

2. Select Send task attachments with email notifications.

29.9.9 How to Send Email Notifications to Groups and Application
Roles

You can send email notifications to groups and application roles to which tasks are
assigned.

To send email notifications to groups and application roles:

1. In the Notification section, click the Advanced tab.

2. From the Group notification configuration list, select one of the following
options.

• Send individual emails

Each user in the group or application role receives an individual email
notification. This is the default selection.

Chapter 29
Specifying Participant Notification Preferences

29-72

In addition, the Use separate task forms based on locale check box is
automatically selected.

– When selected, this sends individual emails with a separate task form based on
the language locale.

– When not selected, this sends individual emails and reuses (shares) the task
form.

• Send one email containing all user addresses

A shared notification email is generated once for a user locale in a group or
application role, thereby saving time in notification email content generation. The
email is sent to all users in the group or application role.

Note:

– Since all (or a subset of) users receive the same email, the users in the
group or application role are expected to have the same privilege. This
ensures that the user does not see task details to which they are not
entitled.

– When sending one email to all users, the maximum number of
characters allowed in the address field is 2000. If the limit is exceeded,
email is sent to only those user addresses contained within the
maximum limit.

29.9.10 How to Customize Notification Headers
Custom notification headers are used to specify name and value pairs to identify key fields
within the notification. These entries can be used by users to define delivery preferences for
their notifications. For example, you can set Name to ApprovalType and value to Expense
or Name to Priority and value to High.Users can then specify delivery preferences in Oracle
BPM Worklist. These preferences can be based on the contents of the notification.

The rule-based notification service is only used to identify the preferred notification channel to
use. The address for the preferred channel is still obtained from the identity service.

To customize notification headers:

1. In the Notification section, click the Advanced tab.

2. Expand Notification Header Attributes.

3. Add name and pair value parameters by name or XPath expression.

For more information about preferences, see How to Create Custom Notification Headers
in Developing SOA Applications with Oracle SOA Suite

29.10 Specifying Access Policies and Task Actions on Task
Content

You can specify access rules on task content and actions to perform on that content.

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-73

This includes specifying access policies on task content and how to specify a workflow
digital signature policy.

29.10.1 How to Specify Access Policies on Task Content
You can specify access rules that determine the parts of a task that participants can
view and update. Access rules are enforced by the workflow service by applying rules
on the task object during the retrieval and update of the task.

Note:

Task content access rules and task actions access rules exist independently
of one another.

29.10.1.1 Introduction to Access Rules
Access rules are computed based on the following details:

• Any attribute configured with access rules declines any permissions for roles not
configured against it. For example, assume you configure the payload to be read
by assignees. This action enables only assignees and nobody else to have read
permissions. No one, including assignees, has write permissions.

• Any attribute not configured with access rules has all permissions.

• If any payload message attribute is configured with access rules, any
configurations for the payload itself are ignored due to potential conflicts. In this
case, the returned map by the API does not contain any entry for the payload.
Write permissions automatically provide read permissions.

• If only a subset of message attributes is configured with access rules, all message
attributes not involved have all permissions.

• Only comments and attachments have add permissions.

• Write permissions on certain attributes are meaningless. For example, write
permissions on history do not grant or decline any privileges on history.

• The following date attributes are configured as one in the Human Task Editor. The
map returned by TaskMetadataService.getVisibilityRules() contains one key
for each. Similarly, if the participant does not have read permissions on DATES, the
task does not contain any of the following task attributes:

– START_DATE

– END_DATE

– ASSIGNED_DATE

– SYSTEM_END_DATE

– CREATED_DATE

– EXPIRATION_DATE

– ALL_UPDATED_DATE

• The following assignee attributes are configured as one in the Human Task Editor.
The map returned by TaskMetadataService.getVisibilityRules() contains one

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-74

key for each of the following. Similarly, if the participant does not have read permissions
on ASSIGNEES, the task does not contain any of the following task attributes:

– ASSIGNEES

– ASSIGNEE_USERS

– ASSIGNEE_GROUPS

– ACQUIRED_BY

• Mapped attributes do not have individual representation in the map returned by
TaskMetadataService.getVisibilityRules().

• All message attributes in the map returned by
TaskMetadataService.getVisibilityRules() are prefixed by
ITaskMetadataService.TASK_VISIBILITY_ATTRIBUTE_PAYLOAD_MESSAGE_ATTR_PREFIX
(PAYLOAD).

An application can also create pages to display or not display task attributes based on the
access rules. This can be achieved by retrieving a participant's access rules by calling the
API on oracle.bpel.services.workflow.metadata.ITaskMetadataService. Example 29-1
provides details.

For more information about this method, see Workflow Services Java API Reference for
Oracle SOA Suite.

Example 29-1 API Call

public Map<String, IPrivilege> getTaskVisibilityRules(IWorkflowContext context,
 String taskId)
 throws TaskMetadataServiceException;

29.10.1.2 Specifying User Privileges for Acting on Task Content
You can specify the privileges that specific users (such as the task creator or owner) have for
acting on specific task content (such as a payload).

To specify user privileges for acting on task content:

1. Click the Access tab.

2. Click the Content tab.

3. Select the task content for which to specify access privileges, as shown in Figure 29-60.

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-75

Figure 29-60 Configure Task Content Access

4. Assign privileges (read, write, or no access) to users to act upon task content. A
user cannot be assigned a privilege above their highest level. For example, an
ADMIN user cannot be assigned write access on the PAYLOAD task content.
Table 29-17 shows the maximum privilege each user has on task content.

Table 29-17 Highest Privilege Levels for Users of Task Content

Task Content Individual with Read Access Individual with Write Access

Assignees Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Attachments Admin, Approvers Assignees, Creator, Owner,
Reviewers

Comments Admin, Approvers Assignees, Creator, Owner,
Reviewers

Dates Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Flexfields Admin, Approvers, Reviewers Assignees, Creator, Owner

History Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Payload Admin, Approvers, Reviewers Assignees, Creator, Owner

Reviewers Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Payload
elements

Inherited from payload Inherited from payload

For example, if you accept the default setting of ASSIGNEES, CREATOR, and
OWNER with write access, ADMIN, APPROVERS, and REVIEWERS with read
access, and PUBLIC with no access to the PAYLOAD task content, the dialog box
appears as shown in Figure 29-60.

5. Select the method for displaying task content in this dialog box. Choosing the
currently unselected option causes all settings to reset to their default values.

• Coarse grained (default)

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-76

Displays the task content as a whole (for example, displays only one payload or
reviewer).

• Fine grained

Displays the content as individual elements (for example, displays all payloads (such
as p1, p2, and p3) and all reviewers assigned to this task (such as jstein, wfaulk,
and cdickens).

Note:

Access rules are always applied on top of what the system permits, depending on
who is performing the action and the current state of the task.

29.10.1.3 Specifying Actions for Acting Upon Tasks
You can specify the actions (either access or no access) that specific users (such as the task
creator or owner) have for acting on the task content (such as a payload) that you specified in
the Configure Task Content Access dialog box.

To specify actions for acting upon tasks:

1. Click the Access tab.

2. Click the Actions tab.

3. Select the task action for which to specify users, as shown in Figure 29-61.

Figure 29-61 Selection of Add Action Access Rule

4. Select if participants can or cannot perform the selected actions.

5. Select the method for displaying task actions in this dialog box. Choosing the currently
unselected option causes all settings to reset to their default values.

• Coarse grained (default)

Displays the task actions as a whole (for example, displays only one approval or
rejection).

Chapter 29
Specifying Access Policies and Task Actions on Task Content

29-77

• Fine grained

Displays the content actions as individual elements. (for example, displays all
approvals or rejections).

29.11 Creating and Implementing Digital Certificates
Learn how to create and implement digital certificates.

Note:

Signing tasks using digital signature is not supported on Google Chrome and
Apple Safari browsers.

Tasks for creating and implementing digital certificates

• How to Create a Digital Certificate Authority

• How to Create Digital User Certificates

• How to Generate Digital Certificate Revocation List

• How to Specify a Certificate Authority

• How to Specify a Workflow Digital Signature Policy

29.11.1 How to Create a Digital Certificate Authority
You must create a digital certificate authority that issues individual user certificates.

Create a digital certificate authority that issues individual user certificates. To create a
digital certificate authority, login as user root, open a Linux terminal window, and then
enter the following commands sequentially.

1. Create a Certificate Authority’s Certificate Signing Request (CA's CSR) file.

openssl req -passout pass:<password> -subj "/C=<Country Code>/
ST=<State Code>/L=<Company Location>/O=<Company Name>/OU=<IT
Security Division>/CN=<Name of security Authority>/
emailAddress=<Email ID of the certificate Authority>" -new >
<Certificate Authority Name>.cert.csr

For example, openssl req -passout pass:welcome1 -subj "/C=AU/ST=QLD/
L=Brisbane/O=Ozayr Syed Security Incorporated/OU=Oz Security Division/
CN=Ozayr Syed Certificate Authority/emailAddress=ozayr.syed@oz.com" -
new > OzayrSyedCA.cert.csr

2. Create a key file to store the private key.

openssl rsa -passin pass:<password> -in privkey.pem -out <Key
Name>.ca.key

For example, openssl rsa -passin pass:welcome1 -in privkey.pem -out
OzCertificateAuthority.ca.key

Chapter 29
Creating and Implementing Digital Certificates

29-78

3. Create an X.509 digital certificate from the above-mentioned certificate request.

openssl x509 -in < Certificate Authority Name>.cert.csr -out
<CertificateAuthority>.ca.cert -req -signkey <Key Name>.ca.key -days 365

For example, openssl x509 -in OzayrSyedCA.cert.csr -out
OzCertificateAuthority.ca.cert -req -signkey OzCertificateAuthority.ca.key -
days 365

4. Create a PKCS#12-encoded file with the certificate and private key.

openssl pkcs12 -passout pass:<password> -export -nokeys -cacerts -
<CertificateAuthority>.ca.cert -out <CertificateAuthority>.ca.cert.p12 -
inkey <Key Name>.ca.key

For example, openssl pkcs12 -passout pass:welcome1 -export -nokeys -cacerts -
in OzCertificateAuthority.ca.cert -out OzCertificateAuthority.ca.cert.p12 -
inkey OzCertificateAuthority.ca.key

Certificate Authority certificate is created (OzCertificateAuthority.ca.cert). Use the Certificate
Authority to create digital certificates for users.

29.11.2 How to Create Digital User Certificates
Use the Certificate Authority to create digital certificates for users.

Create individual user certificates. To create a digital user certificate, login as user root, open
a Linux terminal window, and then enter the following commands sequentially.

1. Create a Certificate Signing Request (CSR) file for the user.

openssl req -passout pass:<password> -subj "/C=<Country Code>/ST=<State
Code>/L=<Company Location>/O=<Company Name>/OU=<IT Security Division>/
CN=<approver>/emailAddress=<Email ID of the approver>" -new > <approver
ID>.cert.csr

For example, openssl req -passout pass:welcome1 -subj "/C=AU/ST=QLD/
L=Brisbane/O=Oz Motor Corporation/OU=ICT Approvals/CN=approver/
emailAddress=approver@oz.com" -new > approver.cert.csr

2. Create a private key file for the user.

openssl rsa -passin pass:<password> -in privkey.pem -out <approver ID>.key

For example, openssl rsa -passin pass:welcome1 -in privkey.pem -out
approver.key

3. Create a X.509 certificate for the user.

openssl x509 -req -in <approver ID>.cert.csr -out approver.cert -signkey
approver.key -CA <certificate authority>.ca.cert -CAkey <Key ID>.ca.key -
CAcreateserial -days 365

Chapter 29
Creating and Implementing Digital Certificates

29-79

For example, openssl x509 -req -in approver.cert.csr -out approver.cert
-signkey approver.key -CA OzCertificateAuthority.ca.cert -CAkey
OzCertificateAuthority.ca.key -CAcreateserial -days 365

4. Create a PKCS#12-encoded file.

openssl pkcs12 -passout pass:<password> -export -in approver.cert -
out approver.cert.p12 -inkey approver.key

29.11.3 How to Generate Digital Certificate Revocation List
To generate digital certificate revocation list:

1. Run the following command.

run, openssl ca -gencrl -out <certificate authority
name>.crl.pem.crl

For example, openssl ca -gencrl -out OzCertificateAuthority.crl.pem.crl

2. Correct errors, if any. (Optional step)

If the following error occurs.

Using configuration from /etc/pki/tls/openssl.cnf
Error opening CA private key /etc/pki/CA/private/cakey.pem
139903336728392:error:02001002:system library:fopen:No such file or
directory:bss_file.c:398:fopen('/etc/pki/CA/private/cakey.pem','r')
139903336728392:error:20074002:BIO routines:FILE_CTRL:system
lib:bss_file.c:400:
unable to load CA private key

Fix for the error by inserting the following content in crlnumber.

cp <Key ID>.ca.key /etc/pki/CA/private/cakey.pem
cp <certificate authority>.ca.cert /etc/pki/CA/cacert.pem
touch /etc/pki/CA/index.txt
touch /etc/pki/CA/crlnumber

Note:

Navigate to /etc/pki/CA/crlnumber and insert 01 in first line and
press the enter key (for a separate line), and only then edit the file.

3. Convert PEM to DER format by running the following commands..

openssl crl -inform PEM -in <certificate authority
name>.crl.pem.crl -outform DER -out <certificate authority
name>.crl.der.crl
openssl ca -gencrl -out <certificate authority name>.crl.pem.crl

(Optional) Enter the result of the procedure here.

Chapter 29
Creating and Implementing Digital Certificates

29-80

29.11.4 How to Specify a Certificate Authority
To use digital signatures, you must specify CAs you consider trustworthy in the System
MBean Browser in Oracle Enterprise Manager Fusion Middleware Control. Only certificates
issued from such CAs are considered valid by human workflow. To specify a certificate
authority:

1. From the SOA Infrastructure menu, select Administration > System MBean Browser.

2. Select Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowConfig > human.workflow.

3. Click the Operations tab.

4. Click AddTrustedCA.

5. In the Value fields for CaName and CaURL, specify appropriate values.

6. Click Invoke.

7. Click Return.

You must validate these values before using them.

29.11.5 How to Specify a Workflow Digital Signature Policy
Digital signatures provide a mechanism for the nonrepudiation of digitally-signed human
tasks. This ability to mandate that a participant acting on a task signs the details and their
action before the task is updated ensures that they cannot repudiate it later.

Note:

If digital signatures are enabled for a task, actionable emails are not sent during
runtime. This is the case even if actionable emails are enabled during design time.

To specify a workflow digital signature policy:

1. Click the Access tab.

2. From the Signature Policy list, select Configure Policy, as shown in Figure 29-62.

Chapter 29
Creating and Implementing Digital Certificates

29-81

Figure 29-62 Digital Signatures

3. Specify the signature policy for task participants to use:

• No signature required

Participants can send and act upon tasks without providing a signature. This is
the default policy.

• Password required

Participants specify a signature before sending tasks to the next participant.
Participants must reenter their password while acting on a task. The password
is used to generate the digital signature. A digital signature authenticates the
identity of the message sender or document signer. This ensures that the
original content of the sent message is unchanged.

• Digital certificate required

Participants must possess a digital certificate for the nonrepudiation of
digitally-signed human tasks. A digital certificate establishes the participant's
credentials. It is issued by a certification authority (CA). It contains the
following:

– Your name

– A serial number

– Expiration dates

– A copy of the certificate holder's public key (used for encrypting messages
and digital signatures)

– Digital signature of the certificate-issuing authority so that message
authenticity can be established

The CA names and CA CRL and URLs of the issuing authorities must be
configured separately.

4. Click OK.

For more information, see the section on the evidence store in Developing SOA
Applications with Oracle SOA Suite.

Chapter 29
Creating and Implementing Digital Certificates

29-82

29.12 Specifying Restrictions on Task Assignments
You can restrict the users to which a task can be reassigned or routed by using a callback
class.

The user community seeded in a typical LDAP directory can represent the whole company or
division. However, it may be necessary at times to limit the potential list of users to associate
with a task based on the scope or importance of the task or associated data. For example, in
a large company with thousands of users, only a few people have the ability to approve and
create purchase orders. Specifically for such tasks, the users that can be chosen for ad hoc
routing and reassignment should not be the whole company. Instead, only a few users who
are relevant or have the right privilege should be chosen. This can be achieved by the
restricted assignment functionality. This is implemented as a callback class that can
implement the logic to choose the right set of users dynamically based on the task object that
is passed containing the instance data.

Note:

Certain functions, such as restricted task reassignment, are available only when a
single task is selected. If multiple tasks that use restricted reassignment are
selected, then the restricted reassignment algorithm is not invoked. In that case, the
complete list of users gets returned as though restricted reassignment had not been
specified.

29.12.1 How to Specify Restrictions on Task Assignments
To specify restrictions on task assignments:

1. In the Access section, click Configure Restricted Assignments.

The Configure Restricted Assignment dialog box appears.

2. Enter the class name. The class must implement the
oracle.bpel.services.workflow.task.IRestrictedAssignmentCallback interface.

3. Click the Add icon to add name and value pairs for the property map passed to invoke
the callback.

4. Click OK.

29.13 Specifying Java or Business Event Callbacks
You can specify Java or business event callbacks.

Note:

If you implemented a callback, then the user callback implementation overrides any
other form of restricted assignment. When you perform a search, the result only
shows the users that the user callback returns.

Chapter 29
Specifying Restrictions on Task Assignments

29-83

29.13.1 How to Specify Callback Classes on Task Status
You can register callbacks for the workflow service to call when a particular stage is
reached during the lifecycle of a task.

Two types of callbacks are supported:

• Java callbacks: The callback class must implement the interface
oracle.bpel.services.workflow.task.IRoutingSlipCallback. Make the
callback class available in the class path of the server.

• Business event callbacks: You can have business events raised when the state of
a human task changes. You do not need to develop and register a Java class. The
caller implements the callback using an Oracle Mediator service component to
subscribe to the applicable business event to be informed of the current state of an
approval transaction.

To specify callback classes on task status:

1. Click the Events tab.

The following state change callbacks are available for selection:

• OnAssigned

Select if the callback class must be called on any assignment change,
including standard routing, reassignment, delegation, escalation, and so on. If
a callback is required when a task has an outcome update (that is, one of the
approvers in a chain approves or rejects the task), this option must be
selected.

• OnUpdated

Select if the callback class must be called on any update (including payload,
comments, attachments, priority, and so on).

• OnCompleted

Select if the callback class must finally be called when the task is completed
and control is about to be passed to the initiator (such as the BPEL process
initiating the task).

• OnStageCompleted

Select if the callback class must be called to enable business event callbacks
in a human workflow task. When the event is raised, it contains the name of
the completed stage, the outcome for the completed stage, and a snapshot of
the task when the callback is invoked.

• OnSubtaskUpdated

Select if the callback class must be called on any update (including payload,
comments, attachments, priority, and so on) on a subtask (one of the tasks in
a parallel-and-parallel scenario).

If your Oracle JDeveloper installation is updated to include both the BPEL and
BPM extensions, then the following content callbacks are also available for
selection:

• Comments Callback

Chapter 29
Specifying Java or Business Event Callbacks

29-84

Select if the callback class must be called to store the comments in a schema other
than the WFCOMMENTS column. The callback class must implement the
oracle.bpel.services.workflow.callback.NotesStore interface.

• Attachment Call Back

Select if the callback class must be called to store the attachments in a schema other
than the WFATTACHMENT table in the soa-infra schema. The callback class must
implement the oracle.bpel.services.workflow.callback.AttachmentStore
interface.

• Validation Callback

Select if the callback class must be called to validate either the task or payload
before updating, approving, and so on. The callback class must implement the
oracle.bpel.services.workflow.task.ITaskValidationCallback interface.

2. See the following sections based on the type of callback to perform:

• Specifying Java Callbacks

• Specifying Business Event Callbacks

29.13.1.1 Specifying Java Callbacks

To specify Java callbacks:

1. In the State column of the Events section, select a task state.

2. In the Java Class column, click the empty field to enter a value. This value is the
complete class name of the Java class that implements
oracle.bpel.services.workflow.task.IRoutingSlipCallback. Figure 29-63 provides
details.

Figure 29-63 CallBack Details Dialog with Java Selected

3. Click OK.

Chapter 29
Specifying Java or Business Event Callbacks

29-85

29.13.1.2 Specifying Business Event Callbacks

To specify business event callbacks:

1. In the State column of the Events section, select a task state.

2. Leave the Java Class field empty.

3. Select the Trigger Workflow Event check box. This action disables the Java
Class column, as shown in Figure 29-64. Each callback, such as OnAssigned,
corresponds to a business event point. When a business event is fired, the event
details contain the task object and a set of properties that are populated based on
the context of the event being fired.

Figure 29-64 CallBack Details Dialog with Business Events Selected

A pre-seeded, static event definition language (EDL) file
(JDev_Home\jdeveloper\integration\seed\soa\shared\workflow\HumanTaskEve
nt.edl) provides the list of available business events to which to subscribe. These
business events correspond to the callbacks you select in the Callback Details
dialog box. You must now create an Oracle Mediator service component in which
you reference the EDL file and subscribe to the appropriate business event.

Note:

A file-based MDS connection is required so that the EDL file can be
located. The location for the file-based MDS is
JDev_Home\jdeveloper\integration\seed.

4. Create an Oracle Mediator service component in the same or a different SOA
composite application that can subscribe to the event.

Chapter 29
Specifying Java or Business Event Callbacks

29-86

5. In the Template list during Oracle Mediator creation, select Subscribe to Events.

6. Click the Add icon to subscribe to a new event.

7. To the right of the Event Definition field, click the Browse icon to select the EDL file.

The SOA Resource Browser dialog box appears.

8. Select the previously created file-based MDS connection.

9. From the list at the top, select Resource Palette.

10. Select SOA > Shared > Workflow > HumanTaskEvent.edl.

11. Click OK.

The Event Chooser is now populated with EDL file business events available for
selection.

12. In the Event field, select the event to which to subscribe. Figure 29-65 provides details.

Figure 29-65 Event Callbacks

You can have multiple human tasks available for subscribing to the event. For example,
assume you performed the following:

• Configured a human task named TaskA to subscribe to the event (for example,
OnAssigned)

• Configured a human task named TaskB to subscribe to the same event

To distinguish between events for TaskA and TaskB and ensure that an event is
processed only by the intended Oracle Mediator, you can add a static routing filter:

xpath20:compare(med:getComponentName(), 'TaskA')

This only invokes this routing when the sending component is TaskA.

13. If the EDL file was not selected from the file-based MDS connection, accept to import the
dependent XSD files when prompted, and click OK. If the EDL file was selected from the
file-based MDS connection, you are not prompted.

The Oracle Mediator service component is now populated with the business event to
which to subscribe. You can also subscribe to other business events defined in the same
EDL file now or at a later time.

Chapter 29
Specifying Java or Business Event Callbacks

29-87

For additional details about business events and callbacks, see Using Business
Events and the Event Delivery Network in Developing SOA Applications with Oracle
SOA Suite.

29.13.2 How to Specify Task and Routing Customizations in BPEL
Callbacks

In general, the BPEL process calls into the workflow component to assign tasks to
users. When the workflow is complete, the human workflow service calls back into the
BPEL process. However, if you want fine-grained callbacks (for example,
onTaskUpdate or onTaskEscalated) to be sent to the BPEL process, you can use the
Allow task and routing customization in BPEL callbacks option.

Make sure to manually refresh the BPEL diagram for this callback setting.

To specify task and routing customizations in BPEL callbacks:

1. In the Events section, select the Allow task and routing customization in BPEL
callbacks check box.

2. Return to Oracle BPEL Designer.

3. Open the task activity dialog box.

4. Click OK.

This creates the while, pick, and onMessage branch of a pick activity for BPEL
callback customizations inside the task scope activity.

For more information about specifying task and routing customizations, see
Developing SOA Applications with Oracle SOA Suite.

29.13.3 How to Disable BPEL Callbacks
A user talk activity (in Oracle BPEL Designer) has an invoke activity followed by a
receive or pick activity. Deselecting the Disable BPEL callbacks check box enables
you to invoke the task service without waiting for a reply.

To disable BPEL callbacks:

1. In the Events section, deselect the Disable BPEL callbacks check box.

2. Click OK.

29.14 Storing Documents in Oracle Enterprise Content
Management

Oracle Enterprise Content Management can be used to process store documents.

Figure 29-66 shows the Documents section of the Human Task Editor.

Chapter 29
Storing Documents in Oracle Enterprise Content Management

29-88

Figure 29-66 Human Task Editor — Documents Section

29.14.1 How to Configure Oracle UCM Repository to Store Task
Attachments

You can configure Human Tasks to store attachments in the UCM repository. These
attachments may contain one or more metadata properties. You can assign values to these
properties or configure them to allow the user to provide the value.

Note:

When a file is attached from the Process Tracking page, it goes to the BPM
repository and not to the UCM repository. Hence, even if the UCM repository is
unavailable, the Process Tracking page allows you to upload files. However, when
the UCM repository is configured and Human Tasks are designed to upload
attachment to the UCM repository, the Tasks page uploads files to the UCM
repository. However, the Process Tracking page always uploads the files to BPM
repository.

To configure Oracle UCM Repository for task attachments:

1. In the Project Navigator tree, expand the Business Catalog node.

2. Expand the Human Tasks node.

3. Double-click the Human Task you want to configure.

The Human Task Editor appears.

4. Click the Documents tab.

5. Select Use Document Package.

A section to configure metadata properties appears. The table already contains the
mandatory standard metadata: Security Group and Document Type.

6. Optionally add new standard or custom metadata properties:

a. Click the Add button.

b. Click the Name column to select a standard property from the list or to enter a
custom name.

Chapter 29
Storing Documents in Oracle Enterprise Content Management

29-89

c. Click the Value column to assign a value to the property. Select By Name to
provide the text to assign the value to the property, or By Expression to
provide an expression.

d. Click the Display column to select a display mode:

Editable: the user can provide a value in the task form when uploading the
attachment.

Hidden: the value does not appear in the task form

Read-Only: the value appears in the task form but the user cannot modify it

Note:

Custom metadata does not appear in the task form, so you must map
the value to a task payload or provide a static value.

Chapter 29
Storing Documents in Oracle Enterprise Content Management

29-90

30
Working with Guided Business Processes

Use Guided Business Processes to organize the activities in your process into milestones.
You can use milestones to make your process easier to run for inexperienced users. Guided
Business Processes hide the complexity of the process and guide the end-user through the
tasks that are relevant to them.

• Introduction to Guided Business Processes

• Guided Business Process Use Cases

• The Typical Flow of Developing a Guided Business Process

• Introduction to Developing a Guided Business Process

• Developing a BPMN Guided Business Process

• Configuring Activity Guide Properties

• Deploying an Guided Business Process to Oracle WebLogic Server

• Testing Guided Business Processes

30.1 Introduction to Guided Business Processes
Guided Business Processes enable you to group the interactive activities in your BPM
process into a set of milestones that are meaningful to the process participants. They outline
the steps the process participants have to complete, hiding the complexity of the business
process.

Guided Business Processes must be deployed to a standalone Oracle WebLogic Server.

Guided Business Processes provide a guided visual representation of a process flow,
improving the user experience by providing end users with an encapsulated hierarchical view
of the business process.

Guided Business Processes enable directing end users to complete a business process
through a guided set of steps associated with the process. By following the steps outlined in a
Guided Business Process, end users require less training to complete a business process,
and the results of the process are more predictable.

A Guided Business Process is modeled as an activity guide that is based on a business
process. The Activity Guide includes a set of Milestones. A milestone is a contained set of
tasks that the end user has to complete. A milestone is complete when the user successfully
runs a specific set of tasks in the milestone.

Each milestone is a specific set of human workflow tasks. Each human workflow task is itself
a task flow that may require the collaboration of multiple participants in various roles.
Depending on the nature of the task flows, a participant may save an unfinished task flow and
resume it at a later time.

30-1

Figure 30-1 An Activity Guide

Chapter 30
Introduction to Guided Business Processes

30-2

Figure 30-2 An Example of a Guided Business Process

Leveraging Service-Oriented Architecture

Service-Oriented Architecture is the foundation for Guided Business Processes. Guided
Business Processes use SOA composite processes, leveraging the following SOA
functionality:

• Reuse of existing investments: Oracle SOA Suite provides a foundation for and access
to re-usable services. Composite processes leverage existing investments by running on
the SOA platform and accessing existing services provided by the platform. By enabling
the use of existing systems, Oracle SOA Infrastructure increases the usefulness and
value of these systems.

• Process-oriented software: Service-Oriented Architecture combined with process
orchestration infrastructure act as the controlling agent for the business process across
multiple disparate systems.

When to Use Guided Business Processes

Guided Business Processes enable running large-scale, long-running, multiuser processes
that consume and reuse taskflows built by other teams. For example, the finance and human
resources departments of an organization may access the same human taskflows in different
business processes. Using Guided Business Processes enables re-using existing taskflows
in a large composite, creating a more meaningful business process for end users.

Chapter 30
Introduction to Guided Business Processes

30-3

Note:

Guided Business Processes are not available in Adaptive Case Management
projects. Case milestones provide a similar structure to Guided Business
Processes. See Working with Adaptive Case Management.

Oracle SOA infrastructure provides access to re-usable services that you can use in
your business processes. Guided Business Processes leverage existing services,
processes and task flows to create long-running, multiuser processes.

Guided Business Processes provide the following functions and features:

• Re-using tasks and taskflows within a large composite, to avoid redesigning and
re-coding tasks and activities.

• Using SOA infrastructure to orchestrate tasks, creating a flow of business
processes.

• Using Milestones to modularize tasks into manageable chunks, while presenting to
end users a set of related, guided tasks.

For example, a long process with one hundred tasks can be broken down into ten
or twenty Milestones. End users need only step through a few Milestones rather
than, say, one hundred individual tasks.

Guided Business Processes: Design Time and Runtime

Guided Business Processes consist of both design time components and runtime
interfaces.

30.1.1 Guided Business Process Design Time Architecture
Guided Business Processes use Oracle Business Process Management to provide a
comprehensive, standards-based, easy-to-use solution for creating, deploying, and
managing composite application business processes with both automated and human
workflow steps—all in a service-oriented architecture.

Guided Business Processes leverage features of Oracle Fusion Middleware, such as
security, scalability and high availability. The following features enable composite
processes to be exposed as Guided Business Processes:

• Technology abstraction. By using metadata, the actual implementation of
business logic need not rely on any one technology.

• Declarative development. Using metadata to define business logic and business
processes eliminates the need for coding when creating a Guided Business
Process.

Developing Guided Business Processes involves creating a composite application
which contains a SOA project with a BPM Project. The BPM process exposed as a
Guided Business Process, consists of an Activity Guide that contains milestone
activities. A separate client application must also be developed as an end user
interface for the Guided Business Process.

Chapter 30
Introduction to Guided Business Processes

30-4

Figure 30-3 Guided Business Process Design Time Architecture

You can develop a user interface for Guided Business Processes using any of the following:

• Oracle ADF

• Oracle WebCenter Portal: Framework

• Guided Business Process Runtime Services.

30.1.2 Components of a Guided Business Process
A Guided Business Process is a BPMN process that orchestrates a set of human tasks and
provides a common user interface to complete and track these tasks. To define a Guided
Business Process you create an Activity Guide that comprises the following components:

• Milestone: A milestone is a group of human tasks which must be completed to
accomplish a particular goal. A milestone is complete when its human tasks have been
completed. Similarly, an Activity Guide is complete when a specific set of milestones are
completed. A milestone can contain Human Task activities and other BPMN activities.

• Human Tasks: It is possible to invoke an ADF task flow from an Activity Guide. To do so,
a Human Task component is placed in the Activity Guide and bound to an ADF task flow.

• Other Tasks: Activity Guides can include other tasks such as service calls. However,
these automated tasks do not appear in the Activity Guide tree at runtime.

Activity Guides with a simple, sequential process execution must complete all milestones.
Similarly, all Human Task components within a milestone must be completed to complete the
milestone.

Activity Guides containing branching and conditional logic may sometimes complete
execution without necessarily completing all milestones. Similarly, some Human Task
components within these milestones may be skipped as well.

30.1.3 Guided Business Process Runtime Architecture
Guided Business Processes rely on Oracle Business Process Management to orchestrate
tasks, combining Oracle Business Process Management, worklist applications, and human
task flows to link disparate human tasks to a greater long-running process.

At runtime, Guided Business Processes manifest as BPMN process instances orchestrating
ADF task flows within Milestones. The runtime engine for BPMN guided business processes

Chapter 30
Introduction to Guided Business Processes

30-5

is the BPMN Service Engine. The BPMN engine delegates all human task operations
to Human Workflow services.

You can view the process instances organized into an Activity Guide using a custom
application developed with Oracle ADF UI, Oracle WebCenter Portal UI or Guided
Business Process access APIs. The process instances that you view in an Guided
Business Process client also appear in the Oracle BPM Worklist application, but they
are not organized into milestones.

As shown in Figure 30-4, the Guided Business Process runtime architecture is
composed of the client, business logic and data tiers.

Figure 30-4 Guided Business Process Runtime Architecture

Chapter 30
Introduction to Guided Business Processes

30-6

Runtime support includes the Guided Business Process Query, Guided Business Process
Metadata and Guided Business Process Instance Management services. The runtime
components interface with Oracle Business Process Management and the Human Workflow
Service.

You can use any of the following as a basis for a Guided Business Process client application:

• Oracle BPM Worklist application

• Oracle ADF

• Oracle WebCenter Portal: Framework

• Guided Business Process Runtime Services.

30.1.3.1 Client Tier
The Guided Business Process runtime front end, or client application, enables end users to
follow the task flow defined at design time in the Activity Guide. Using the client application,
end users can:

• Expand a milestone and drill down to the tasks it includes

• Complete the tasks defined in the milestones

• View the status and percent completion of the business process as the Guided Business
Process runs.

You can manage and access a Guided Business Process using the following:

• Customized Client Application: You can create customized client applications to
display the Guided Business Process to end users using Oracle ADF UI, Oracle
WebCenter Portal UI or Guided Business Process APIs.

• Oracle Business Process Management Workspace: An out-of-the-box interface for
displaying the tasks in a Guided Business Process, to users completing the guided tasks.

• Oracle Enterprise Manager Fusion Middleware Control: A platform for administering and
monitoring Guided Business Process instances. The console is also useful for testing
Guided Business Processes following development.

Features of the Runtime User Interface

Following are some features of the runtime user interface:

• Auto Focus: Once a Guided Business Process is deployed, you can generate a new
Guided Business Process instance with milestone nodes and task nodes. When you
access the Guided Business Process instance from the user interface, auto focus selects
the first uncompleted task in the process. On completion of a task, auto focus selects the
next uncompleted task in the process. Auto focus also supports optional tasks, when you
skip an optional task it selects the next uncompleted task in the process.

• Future Milestones and Tasks: When accessing a Guided Business Process, the
Milestones display in the Activity Guide tree. The Activity Guide also displays the
milestones and tasks to be completed in the future. This provides users with a holistic
view of the tasks and milestones to be completed. If the Guided Business Process is to
be executed sequentially, future tasks and milestones are grayed out. Future tasks and
milestones may be viewed, but not executed.

• Branching: Branching involves placing a switch in the business process flow which
enables splitting the process into two or more branches.

Chapter 30
Introduction to Guided Business Processes

30-7

Conditions are set to determine which branch executes. If the flow branching is
determined by a condition, then the milestone branching node displays as an
ellipsis ("...") in the Activity Guide tree. The milestones to be completed for the
selected branch display only when the switch executes at real time.

• Parallel Milestones: Parallel milestones are milestones that can be completed at
any time, in any order without following a specific sequence, if previous milestones
have completed.

• Disabling Completed Tasks: When the end user completes a task, the link to the
task is grayed out to avoid distracting the user with links that are no longer active.

• Progress Indicator: The progress indicator provides feedback to the end user
about their progress completing the entire Guided Business Process. The
progress is shown using a bar graphic with the completion percentage of the
Guided Business Process.

• Completed Tasks: Shows the completed number of tasks out of a total number of
tasks.

• Filtering: Enables to filter the tasks within a milestone based on their functional
state. The possible functional states to use when filtering tasks are: All, In
Progress, Completed, Required, Optional.

• Explicit Refresh: Activity Guides automatically refresh task flows when you
complete a task using Activity Guides. If you complete the task from another
application such as Process Workspace or a custom UI client, you must explicitly
refresh the Activity Guide. Explicit refresh is not available by default. To enable
explicit refresh you must enable the ShowRefreshButton property.

For more information on how to configure the ShowRefreshButton property, see
Configuring Activity Guide Properties.

30.1.3.2 Business Logic Tier
The business logic tier includes the following components:

• Guided Business Process Metadata Service

• Guided Business Process Query Service

• Guided Business Process Instance Management

• Guided Business Process Instance Schema

• Human Workflow Service

Guided Business Process Metadata Service

The SOA composite associated with an Guided Business Process drives it at runtime.
As such, no runtime environment data is stored in the Guided Business Process
metadata. The Guided Business Process Metadata Service locates and retrieves the
Guided Business Process definition at runtime from the Metadata Service (MDS).

Guided Business Process Query Service

The Guided Business Process query service retrieves the Guided Business Process
instance information based on specified search criteria. The query service uses the
existing workflow service to query Guided Business Process data. The Guided
Business Process query service is registered to the workflow service locator as an
additional workflow service.

Chapter 30
Introduction to Guided Business Processes

30-8

Guided Business Process Instance Management

Guided Business Process runtime states are maintained as separate objects, enabling
Guided Business Processes to have a state separate from the SOA composites with which
they are associated. The related SOA composite instances are managed by an SOA
composite runtime manager.

Guided Business Process Instance Schema

A schema defines the structure of Guided Business Process instances. The schema
represents Guided Business Process data persisted to the database at runtime.

Human Workflow Service

Workflow services enable you to interleave human interactions with connectivity to systems
and services within an end-to-end process flow. In BPMN workflow services are linked to the
BPMN process using a user task. The process assigns a task to a user or role and waits for a
response. The users act on the task using Oracle BPM Worklist. The Human Workflow
Service is responsible for handling all interactions with users or groups participating in the
business process. It does this by creating and tracking tasks for the appropriate users in the
organization. Users typically access tasks through a variety of clients, including Oracle BPM
Worklist application, Process Workspace, email, portals, or custom applications.

For more information about the Human Workflow Service, see the chapters in Using the
Human Workflow Service Component in Developing SOA Applications with Oracle SOA
Suite.

30.1.3.3 Data Tier
Oracle Business Process Management persists Guided Business Processes, BPMN process
and task instances to the database at runtime. Oracle Metadata Repository (MDS) stores the
schemas of available services, including BPMN processes, task and Guided Business
Process metadata. The schemas are used when instantiating a Guided Business Process.

30.2 Guided Business Process Use Cases
Guided business processes can be used for online public sector form processing and an
online loan application procedure.

The following use cases show you different situations where to use Guided Business
Processes:

• Online Public Sector Form Processing

• Online Loan Application Procedure

30.2.1 Online Public Sector Form Processing
Many public sector organizations process forms manually, a labor intensive and
environmentally wasteful procedure.

For example, a state agency must provide, collect and process various forms to issue fishing
and hunting licenses. The state agency hires additional outside contractors for the summer
and fall season to handle the increase of license applications more efficiently while avoiding
information loss or negligence.

Chapter 30
Guided Business Process Use Cases

30-9

Rather than manually processing the license applications, the end-to-end form
processing procedure can be modeled as a Guided Business Process with two
Milestones.

The following outline of an example form processing using Guided Business Process
is generic, and can be adapted to enable end-to-end processing of similar forms:

Milestone 1: Filling in and Submitting an Application

Applicants on the state Web site for the Department of Fishing and Hunting can click
the Apply button to fill in and submit an application for a fishing or hunting license.

The milestone includes the following tasks:

1. Personal details: Applicants must fill in personal details such as name, address,
and so on.

2. License selection: Applicants select a fishing or hunting license.

3. Form submission: Applicants click the Submit button to send the forms to the state
fishing and hunting department. The workflow selects an application approver and
e-mails the approver a request for review and follow-up.

Milestone 2: Application Processing and Result Notification

Applications for hunting licenses require review and manual approval or rejection.

The milestone includes the following tasks:

1. Approval/Rejection of application: The license application approver navigates the
approval/rejection flow.

2. Status notification: The workflow sends the applicant a notification regarding the
status of the license application.

With its intuitive guided user experience, the Guided Business Process maximizes the
efficiency of the license application process while increasing the productivity of license
approvers. In addition, the Guided Business Process enables monitoring the end-to-
end application process at both the front- and back-end levels.

30.2.2 Online Loan Application Procedure
In the loan-origination industry, banks must consider several business factors: process
consolidation, regulatory compliance and faster product delivery, for example. Loan
products change frequently, often depending on state or region where the loan is
offered.

The following example focuses on a subset of loan origination. As such, only specific
processes are illustrated.

Business Process Flow

In this example, the business process flow for an online loan application procedure is
as follows:

1. Application or registration: The customer enters qualification information for a loan
product.

2. Processing or locking of a loan: The customer agrees to a specific product and
rate. This stage of the procedure spawns several sub-processes that gather

Chapter 30
Guided Business Process Use Cases

30-10

additional information on the customer. This information enables the underwriters to
decide on the loan.

3. Underwriting the loan: An underwriter uses the information gathered to approve or reject
the loan.

4. Closing: The organization selling the loan closes the loan application and grant process.

These processes rely on several interrelated services and procedures, as illustrated in
Figure 30-5.

Figure 30-5 Interwoven Loan Processing Services and Procedures

• Origination: The process of acquiring customer data and related data, making decisions
based on processing the data and requesting data from third-party services.

• Third-party services: These are used to retrieve data on the customer and the item to be
purchased with the loan.

• Secondary processes: These are processes that execute while the main process runs.
This example focuses on pricing for various mortgage products.

• Servicing: Following origination, loans are either booked on the bank or sold on the
secondary market, for example at other banks or by other loan vendors.

Although these processes appear simple, completing them involves many business
challenges.

Increasingly, the interactions between real human actors in software must be coordinated.
Humans are key participants in almost every software system, especially in collaborative
processes and composite applications. Some common challenges are presented when
involving humans interaction with structured workflow systems.

Deciding whether to grant a loan might entail working through a large set of rules based on
the customer's credit history, income and other factors. These factors must be coordinated
with several business process determined by the bank. Underwriters are alerted to approve
or reject an applicant, depending on several factors, including the applicant's personal details
and external data requests from third-party services.

Chapter 30
Guided Business Process Use Cases

30-11

A mortgage application Guided Business Process might include several milestones.
The following Guided Business Process outline illustrates a mortgage application
procedure.

Milestone 1: Loan Application

A potential customer registers on the loan provider Web site and applies for the loan
through a series of guided tasks.

1. Registration: The applicant registers on the bank's Web site.

2. Product selection: The applicant selects a loan based on the type of product
required and the products available regionally.

3. Application: The applicant enters the personal details required to apply for a loan.

Milestone 2: Application Processing

Once the loan application process has completed, the loan is processed and reviewed
for approval.

1. Information retrieval: Various services are used to access information regarding
the loan and the applicant's finances and personal details.

2. Review: An underwriter must manually review the loan application.

3. Approval: Based on the data reviewed, the approver must approve or reject the
loan.

Milestone 3: Closing

Once the loan has been approved it is ready for closing.

The milestone includes the following tasks:

1. Closing appointment: The title company or closing attorney sets an appointment
with the customer.

2. Closing documents: The loan closer gives the loan documents to the closing agent
and provides to the customer any required documents, and as the final closing

30.3 The Typical Flow of Developing a Guided Business
Process

Understand main workflow of developing a Guided Business Process.

1. Develop the Guided Business Process:

a. Develop a BPMN process and configure it as a Guided Business Process.

b. Configure Milestones and associated tasks.

c. Develop a task flow.

d. Deploy, instantiate, and test the Guided Business Process.

2. Develop a Guided Business Process front end for use at runtime. To develop a
front end, you can:

• Develop a client application with Oracle ADF UI or Oracle WebCenter Portal
UI.

Chapter 30
The Typical Flow of Developing a Guided Business Process

30-12

• Use Oracle Business Process Management Workspace application as a client
application.

• Develop a custom UI with Guided Business Process runtime services.

3. Deploy the Guided Business Process client application.

4. Monitor Guided Business Process instances using the Oracle Enterprise Manager
Application Server Control console.

30.4 Introduction to Developing a Guided Business Process
Guided Business Processes allow you to organize your processes into milestones. These
milestones are meaningful to the end-user and hide the complexity of the process by showing
them only relevant information to their tasks.

You can create a Guided Business Process and organize the tasks in your process into a set
of milestones. Using milestones enables you to run your process and track its completion in a
more efficient way.

The following list describes some features you can use:

• Branching: Branching involves placing a switch in the business process flow which
enables splitting the process into two or more branches.

Conditions are set to determine which branch executes. If the flow branching is
determined by a condition, the milestone branching node displays as an ellipsis ("...") in
the Activity Guide tree. The milestones to be completed for the selected branch display
only when the switch executes at real time.

• Optional/Required Tasks: By default, sequential tasks are required, unless configured
otherwise. Tasks that are required for the completion of the Guided Business Process
display with an asterisk (*). Required tasks cannot be skipped. Optional tasks are not
required for the completion of the Guided Business Process. The user has the option to
run optional tasks but they can choose to skip them. An example use for an optional task
might be a survey that end users can optionally fill out after completing required tasks in
an Guided Business Process.

Configuring tasks as required or optional enables task filtering by required or optional
task type at runtime.

• Parallel flow: Parallel flows enable Guided Business Processes to perform multiple tasks
at the same time, which is useful when you must perform several time-consuming and
independent tasks.

If previous milestones have completed, then end users can complete parallel milestones
in any order.

• Future Milestones and Tasks: When accessing a Guided Business Process, the
Milestones display in the Activity Guide tree. The Activity Guide also displays the
milestones and tasks to be completed in the future. This provides users with a holistic
view of the tasks and milestones to be completed. If the Activity Guide is to be executed
sequentially, future tasks and milestones are grayed out. Future tasks and milestones
may be viewed, but not executed.

• Internationalization: Guided Business Processes support internationalization using
resource bundles. Resource bundles separate text, labels, messages and other locale-
sensitive objects from the core source code, maintaining a single code base for all
localized versions of Activity Guides. To enable internationalization for an Activity Guide,
see How to Localize a BPMN Guided Business Process.

Chapter 30
Introduction to Developing a Guided Business Process

30-13

30.5 Developing a BPMN Guided Business Process
To develop a BPMN Guided Business Process you must first create a BPMN process.
Then you can develop the Guided Business Process based on the BPMN process.

You can only define one Guided Business Process per project. The Guided Business
Process is based on a BPMN process in the project. This process is the root process.

30.5.1 How to Develop a BPMN Guided Business Process
You can develop a Guided Business Process based on a BPMN process.

To develop a BPMN Guided Business Process:

1. Create a BPMN process or use an existing BPMN process.

2. In the Applications window, expand the project that contains your BPMN process.

3. Right-click the Activity Guide node.

4. Select Configure.

5. In the Title text-field, enter a title to identify the Guided Business Process.

6. From the Root Process list, select the BPMN process you want to transform into a
Guided Business Process.

7. Click OK.

30.5.2 What Happens When You Develop a BPMN Guided Business
Process

You can add the user tasks in the BPMN process to the milestones in the Guided
Business Process. When you finish building the Guided Business Process, you can
access the BPMN process using a Guided Business Process client.

30.5.3 How to Add a New Milestone to a Guided Business Process
You can add a new milestone to an existing Guided Business Process.

To add a new milestone to a Guided Business Process:

1. In the Applications window, select the Activity Guide node.

2. In the Structure window, right-click the Activity Guide node.

3. Select New Milestone.

The New Milestone dialog box appears.

4. Enter a title for the milestone.

5. Enter the number of tasks the user has to complete to consider this milestone
completed in the Tasks Remaining field.

At runtime, the activity guide tree uses this value to show the percentage of
completed tasks over the total tasks, in the progress indicator.

6. Click OK.

Chapter 30
Developing a BPMN Guided Business Process

30-14

30.5.4 What Happens When You Add a Milestone to a Guided Business
Process

The Guided Business Process displays a new milestone. You can add the user tasks in the
root process to the new milestone.

30.5.5 How to Add a User Task to a Milestone
You can add a user task to a milestone in the Guided Business Process.

To add a user task to a milestone:

1. Open the root process.

2. Right-click the user task.

3. Select Add to Milestone.

The Add User Task to Milestone dialog box appears.

4. From the Milestone list, select the milestone to which you want to add the user task.

If you did not create the milestone, you can create it using the Add button next to the
Milestone list.

5. If the user task is the last task in the milestone, select the Last Task in Milestone check
box.

6. Click OK.

30.5.6 What Happens When You Add a User Task to a Milestone
You can run the user task from a Guided Business Process client. The user task appears
under the milestone in the activity guide tree.

30.5.7 How to Move a User Task to Another Milestone
Ensure that your Guided Business Process contains at least two milestones. If it contains
only one milestone, the Move to Milestone option is grayed out.

To move a user task to another milestone:

1. In the Applications window, select the Activity Guide node.

2. In the Structure window, right-click the user task.

3. Select Move To Milestone.

The Move to Milestone dialog box appears.

4. From the Milestones list, select the milestone where you want to move the user task.

5. Click OK.

30.5.8 What Happens When You Move a User Task to Another Milestone
The previous milestone does not list the user task anymore. The user task appears in the
new milestone.

Chapter 30
Developing a BPMN Guided Business Process

30-15

30.5.9 How to Order the Milestones in a BPMN Guided Business
Process

Ensure that your Guided Business Process contains at least two milestones. If it
contains only one milestone, the Move to Milestone option is grayed out.

To order the milestones in a BPMN Guided Business Process:

1. In the Applications window, select the Activity Guide node.

2. In the Structure window, expand the Activity Guide node.

3. Move each milestone to the right position:

a. Right-click the milestone.

b. Select Move-Up or Move-Down according to where you want to move the
milestone.

30.5.10 What Happens When You Order the Milestones in a Guided
Business Process

The milestones appear in the order you arranged them in the activity guide tree.

30.5.11 How to Delete a Task from a Guided Business Process
You can delete a task from a Guided Business Process.

To delete a task from a Guided Business Process:

1. In the Applications window, select the Activity Guide node.

2. In the Structure window, expand the Activity Guide node.

3. If the milestone that contains the task you want to remove is collapsed, then you
must expand it.

4. Right-click the task you want to remove.

5. Select Delete.

A confirmation message appears.

6. Click OK.

30.5.12 What Happens When You Delete a Task from a Guided
Business Process

You cannot access that task from the Guided Business Process. The milestone that
contained it does not list that task anymore.

30.5.13 How to Delete a Milestone
You can delete a milestone that you do not use or need from the Guided Business
Process.

Chapter 30
Developing a BPMN Guided Business Process

30-16

To delete a milestone:

1. In the Applications window, select the Activity Guide node.

2. In the Structure window, expand the Activity Guide node.

3. Right-click the milestone you want to remove.

4. Select Delete.

A confirmation message appears.

5. Click OK.

30.5.14 What Happens When You Delete Milestone
The milestone does not appear in the Guided Business Process. All the user tasks in the
milestone are deleted from the Guided Business Process. You cannot access these tasks
from the Guided Business Process anymore.

30.5.15 How to Configure an Optional Task
You can configure a task as optional so that it is not required to complete the Guided
Business Process.

To configure an optional task:

1. In the Applications window, select the Activity Guide node.

2. In the Structure window, expand the Activity Guide node.

3. Expand the milestone that contains the task.

4. Right-click the task.

5. Select Edit.

The Edit User Task dialog box appears.

6. Select Show Task as Optional.

7. Click OK.

30.5.16 What Happens When You Configure an Optional Task
By default all tasks are required unless you configure them to be optional.You must configure
a skip button for the tasks you configure as optional.

When a group of users is assigned to a certain task, anybody in the group can claim that
task. If after claiming the task the user decides not to complete it, then he can skip the task.
When a user skips a task, the tasks is assigned back to the group so that the other users in
the group can claim it and complete it.

Chapter 30
Developing a BPMN Guided Business Process

30-17

30.5.17 How to Configure a Parallel Task Flow in a BPMN Guided
Business Process

To configure a parallel task flow you must use gateways in the BPMN process. “BPMN
Flow Object Reference" in the Developing Business Processes with Oracle Business
Process Composer for more information on how to use gateways.

30.5.18 How to Branch the Task Flow in a BPMN Guided Business
Process

To branch the task flow you must use gateways and conditional sequence flows in the
BPMN process. See "BPMN Flow Object Reference" in the Developing Business
Processes with Oracle Business Process Composer for more information on how to
use gateways and conditional sequence flows.

30.5.19 How to Configure a Task to Display a Blocked Icon
You can configure a task to display a blocked icon and message when it is not
available for the end user to run it.

To configure a task to display a blocked icon and message:

1. In the Applications window, select the Activity Guide node.

2. In the Structure window, expand the Activity Guide node.

3. Expand the milestone that contains the task.

4. Select Edit.

The Edit User Task dialog box appears.

5. Select the Display Blocked Icon and Text check box.

6. If you want the Guided Business Process to display a message explaining it is
blocked, enter the message in the field.

7. Click OK.

30.5.20 What Happens When You Configure a Task to Display a
Blocked Icon and Message

When the current task is completed and the next task is not instantiated, the activity
guide tree displays a blocked icon. If you defined an explanation message, it appears
as a tooltip when you locate the cursor over the blocked icon.

30.5.21 How to Configure an Icon for a Guided Business Process
You can configure a custom icon for the Activity Guide tree to display next to the
Activity Guide node.

To configure an icon for a Guided Business Process:

1. In the Applications window, right-click the Activity Guide node.

Chapter 30
Developing a BPMN Guided Business Process

30-18

2. Select Configure.

3. Click the Browse button, next to the Icon Location field.

The Browse Icons dialog box appears.

4. Select an icon from your file system.

5. Click Open.

The icon path appears in the Edit Activity Guide dialog box.

6. Click OK.

30.5.22 What Happens When You Configure an Icon for a Guided
Business Process

The activity guide tree uses this icon to identify the activity guide node. If you do not specify
an icon, then the activity guide node does not display an icon.

30.5.23 How to Configure an Icon for a Milestone
You can configure a custom icon for the Activity Guide tree to display next to each milestone.

To configure an icon for a milestone:

1. In the Applications window, select the Activity Guide node.

2. In the Structure window, expand the Activity Guide node.

3. Right-click the milestone.

4. Select Edit.

5. Click the Browse button, next to the Icon Location field.

The Browse Icons dialog box appears.

6. Select an icon from your file system.

7. Click Open.

The icon path appears in the Edit Milestone dialog box.

8. Click OK.

30.5.24 What Happens When You Configure an Icon for a Milestone
The activity guide tree uses this icon to identify the milestone nodes. If you do not specify an
icon, then the milestone nodes do not display an icon.

30.5.25 How to Configure the Display Mode for a Guided Business
Process

You can configure the display mode for a Guided Business Process to specify how to display
the milestone and task links.

To configure the display mode for a Guided Business Process:

1. In the Applications window, right-click the Activity Guide node.

Chapter 30
Developing a BPMN Guided Business Process

30-19

2. Select Edit.

3. From the Display Mode list, select an option from the following:

Display Mode Description

Always Always display the milestone and task links for all the milestones in this
Guided Business Process.

When
Instantiated

Display the milestone and task links only when one or more of the user
tasks in the milestone are instantiated, for all the milestones in the
Guided Business Process.

4. Click OK.

30.5.26 What Happens When You Configure the Display Mode for a
Guided Business Process

The milestones and tasks within the Guided Business Process use this configuration
to display the milestone and tasks links. If the milestone and tasks are configured to
used another configuration then the Guided Business Process configuration is ignored.

30.5.27 How to Configure the Display Mode for a Milestone
You can configure the display mode for a milestone, to specify how to display the
milestone and tasks links.

1. In the Applications window, right-click the Activity Guide node.

2. Select Edit.

3. From the Display Mode list, select an option from the following:

Display Mode Description

Default Use the Guided Business Process configuration.

Always Always display the milestone link.

When
Instantiated

Display the milestone link only when one or more of the user tasks in
the milestone are instantiated.

Use this mode for milestones located after a conditional gateway so that
the activity guide tree does not display the milestone until the BPM
Service Engine evaluates the condition.

4. Click OK.

30.5.28 What Happens When You Configure the Display Mode for a
Milestone

The milestone links are displayed according to this configuration, regardless of the
Guided Business Process configuration.

Chapter 30
Developing a BPMN Guided Business Process

30-20

30.5.29 How to Configure the Display Mode for a User Task
You can configure the display mode for a user task to specify how to display the task link.

To configure the display mode for a user task:

1. In the Applications window, select the Activity Guide node.

2. In the Structure window, expand the milestone that contains the user task.

3. Right-click the user task.

4. Select Edit.

5. From the Display Mode list, select an option from the following:

Display Mode Description

Default Use the milestone configuration.

Always Always display the task link when the milestone that contains it is visible. If the
user task is not instantiated, then the link is grayed out.

When Instantiated Display tasks only when the user task is instantiated.

Use this mode for user tasks located after a conditional gateway so that the
activity guide tree does not display the user task until the BPM Service Engine
evaluates the condition.

6. Click OK.

30.5.30 What Happens When You Configure the Display Mode for a User
Task

The task links are displayed according to this configuration, regardless of the Guided
Business Process configuration and the milestone configuration. The tasks links appear when
the milestone is visible.

30.5.31 How to Configure the Task Access Mode for a Guided Business
Process

You can configure the task access mode for a Guided Business Process to specify when to
display the task links enabled.

To configure the task access mode for a Guided Business Process:

1. In the Applications window, right-click the Activity Guide node.

2. Select Edit.

3. In the Task Access list select an option from the following:

Task Access
Mode

Description

Active Only The link to the task is enabled only when the task is active and the user can
update it. When you complete the task the link to the task is grayed out.

Chapter 30
Developing a BPMN Guided Business Process

30-21

Task Access
Mode

Description

Any State The link to the task is always enabled after you instantiate the task, even after
you complete the task.

4. Click OK.

30.5.32 What Happens When You Configure the Task Access Mode
for a Guided Business Process

After the task is completed, the Guided Business Process uses this configuration to
display the links. If the task mode is active only, the tasks links are grayed out. If the
task mode is any state, the tasks links remain enabled and a message appears when
you try to run the task.

30.5.33 How to Localize a BPMN Guided Business Process
You can localize a BPMN Guided Business Process so that the client can display it in
different locales.

To localize a BPMN Guided Business Process:

1. In the Applications window, select the Activity Guide node.

2. In the Structure window, right-click the Activity Guide node.

3. Select Edit.

4. From the Title list, select Translation.

5. Click the Translation icon, next to the title field.

The Edit Translatable Strings dialog box appears.

6. Click Create Resource Bundle.

The Create Resource Bundle dialog box appears.

7. Enter a name to identify the resource bundle.

8. Click OK.

The Edit Translatable Strings dialog box shows the resource bundle you created.

9. Click the Add icon next to the key list to add a new translation key.

The Create a New Key dialog box appears.

10. In the Name field, enter a name to identify the translation key.

11. In the Translatable Text field, enter the title.

12. Click OK.

13. From the Description list, select Translation.

14. Click the Translation icon, next to the description field.

The Edit Translatable Strings dialog box appears.

15. Click the Add icon next to the key list to add a new translation key.

The Create a New Key dialog box appears.

Chapter 30
Developing a BPMN Guided Business Process

30-22

16. In the Name field, enter a name to identify the translation key.

17. In the Translatable Text field, enter the description.

18. Click OK.

19. In the Edit Activity Guide dialog box, click OK.

20. Localize the milestones that compose the Guided Business Process.

30.5.34 How to Localize a Milestone
You can localize a milestone so that the client can display it in different locales.

To localize a milestone:

1. In the Applications window, select the Activity Guide node.

2. In the Structure window, right-click the Activity Guide node.

3. Select Edit.

4. From the Title list, select Translation.

5. Click the Translation icon, next to the title field.

The Edit Translatable Strings dialog box appears.

6. Click the Add icon next to the key list to add a new translation key.

The Create a New Key dialog box appears.

7. In the Name field, enter a name to identify the translation key.

8. In the Translatable Text field, enter the title.

9. Click OK.

10. From the Description list, select Translation.

11. Click the Translation icon, next to the description field.

The Edit Translatable Strings dialog box appears.

12. Click the Add icon next to the key list to add a new translation key.

The Create a New Key dialog box appears.

13. In the Name field, enter a name to identify the translation key.

14. In the Translatable Text field, enter the description.

15. Click OK.

16. In the Edit Activity Guide dialog box, click OK.

17. If the milestone contains user tasks configured to display blocked icon and text, localize
the user tasks that compose the milestone.

30.5.35 How to Localize a User Task
In a user task you can localize the following elements:

• Title

• Description

• Blocked Text

Chapter 30
Developing a BPMN Guided Business Process

30-23

This procedure shows you how to localize the blocked text. You can also localize the
title and description of the user task following the standard procedure for localizing
flow objects.

To localize a user task:

1. In the Applications window, select the Activity Guide node.

2. In the Structure window, expand the Activity Guide node.

3. If the milestone that contains the task you want to remove is collapsed, then
expand the milestone.

4. Right-click the task.

5. Select Edit.

6. From the Display Block Icon and Text list, select translation.

7. Click the Translation icon, next to the title field.

The Edit Translatable Strings dialog box appears.

8. Click the Add icon next to the key list to add a new translation key.

The Create a New Key dialog box appears.

9. In the Name field, enter a name to identify the translation key.

10. In the Translatable Text field, enter the title.

11. Click OK.

30.5.36 What Happens When You Localize a Guided Business
Process

The title and description of the Guided Business Process, milestones and tasks are
displayed in the locale specified in the Guided Business Process client.

30.6 Configuring Activity Guide Properties
You can customize Activity Guides behavior by configuring their properties. To
configure these properties you must edit the Activity Guide properties file.

Generally you name this file activityguide.properties. If you choose another name
then you must provide its value to the ag-tasktree-task-flow using the parameter
AGPropsBeanName.

Table 30-1 shows the properties you can specify in this file.

Example 30-1 shows a typical Activity Guide properties file:

Table 30-1 Activity Guide Properties

Property Description Possible Values

ServerConnectionMode Specifies the mode for the transmission of
data.

• SOAP
• REMOTE

Chapter 30
Configuring Activity Guide Properties

30-24

Table 30-1 (Cont.) Activity Guide Properties

Property Description Possible Values

WorklistHttpURL Only required when using digital signatures.
Specifies the URL to access the Oracle BPM
Worklist application.

http://host:port/integration/worklisapp

SelectionFilter Specifies the filter used to filter the
processes in an activity guide.

• MY
• PREVIOUS
• REPORTEES
• ADMIN

AGDefinitionFilter Specifies the definition ID used to filter the
process in an activity guide. The activity
guide only displays those processes that
match this ID.

activity guide definition ID

AGInstanceOrdering Specifies the order used to display the
processes in the activity guide.

For example: CREATION_DATE:ASC

• column_name:ASC
• column_name:DESC
Default value: ASC

AGInstanceID Specifies the instance ID used to display the
activity guide tree.

For example: 10001

activity guide instance ID

CustomPredicate1 Specifies an additional predicate to filter the
list of processes in an activity guide.

For example: CREATOR, EQ, jstein

column name, operator, value

CustomPredicate2 Specifies a different additional predicate to
filter the list of processes in an activity guide.
This predicate is used with
CustomPredicate1

column name, operator, value

ShowAllAGTreeNodesProp
erties

Specifies if the activity guide shows a section
at the top that describes the properties of
activity guides, milestones and tasks.

• true
• false
Default value: true

ShowRefreshButton Specifies if the regional area displays a
refresh button.

• true
• false
Default value: false

AGTasksPopupTaskFlowID Specifies the content to display in the task
pop-up.

fully qualified TaskFlow ID

HideAGTreeRootNode Hides the Guided Business Process title on
the Activity Guide Tree root node.

• true
• false
Default value: false

ShowCustomBlockedIcon Specifies if the Guided Business Process
shows the custom task blocked icon.

• true
• false
Default value: false

Example 30-1 An Activity Guide Properties File

#ActivityGuide Properties
ServerConnectionMode=SOAP
SelectionFilter=MY
ShowRefreshButton=true
#ShowAllAGTreeNodesProperties=true
Sample value for AGDefinitionFilter: default/BPMAGPrj2!
2.0*31fcd931-6263-4b58-97cf-6fb084addabc

Chapter 30
Configuring Activity Guide Properties

30-25

#AGDefinitionFilter=
#AGInstanceID=110003
#AGInstanceOrdering=CIKEY:DESC
#CustomPredicate1=STATE,EQ,OPEN
#CustomPredicate2=STATUS,EQ,In Progress
Example Value for AGTasksPopupTaskflowID is /WEB-INF/ag-popup-task-
flow.xml#ag-popup-task-flow
#AGTasksPopupTaskflowID=
#ShowCustomBlockedIcon=true
#HideAGTreeRootNode=false
##WorklistHttpURL is required only for digital signatures
#WorklistHttpURL=http://host:port/integration/worklistapp

30.7 Deploying a Guided Business Process to Oracle
WebLogic Server

Guided Business Process are deployed to the application server in the same way as a
SOA composite process.

However, Guided Business Processes must be deployed to a standalone instance of
Oracle WebLogic Server rather than the embedded Oracle WebLogic Server included
with JDeveloper.

30.7.1 How to Deploy a Guided Business Process
Deploying a Guided Business Process to Oracle WebLogic Server involves the
following main steps:

• Creating a connection to Oracle WebLogic Server

• Using JDeveloper or an Ant script to deploy the Guided Business Process

To deploy an Guided Business Process:

Following are the main steps in deploying an Guided Business Process:

1. Create a connection to Oracle WebLogic Server.

a. Use connection type Weblogic 10.3.

b. Enter a name for the WLS Domain.

2. Deploy the Guided Business Process through JDeveloper or using an Ant script:

To deploy a Guided Business Process using JDeveloper:

• Right-click the SOA composite associated with the Guided Business Process
and select Deploy, then select the name of the SOA composite and the name
of the server connection configured in the previous step.

To deploy a Guided Business Process using an Ant script:

• Right-click the SOA composite and select Deploy, the name of the SOA
composite and to JAR.

• Run the command shown in Example 30-2:

When you deploy a Guided Business Process to Oracle WebLogic Server, the Guided
Business Process runs on WLS. You can view the Guided Business Process using
Oracle Enterprise Manager Application Server Control console.

Chapter 30
Deploying a Guided Business Process to Oracle WebLogic Server

30-26

For more information about deploying an SOA composite to the application server, see
"Deploying SOA Applications with Enterprise Manager" in Developing SOA Applications with
Oracle SOA Suite.

Example 30-2 Deploying a Guided Business Process Using an Ant Script

ant -f $ORACLE_HOME/bin/ant-sca-deploy.xml -DsarLocation <location of
sca_composite.jar> -DserverURL <soa server url> - Duser <administrator user name> -
Dpassword <administrator password>

30.8 Testing Guided Business Processes
You can create an instance of the deployed Guided Business Process in the Oracle
Enterprise Manager Fusion Middleware Control Console. This is useful for testing purposes.

To create a Guided Business Process instance:

1. In a Web browser, enter the URL of the Oracle Enterprise Manager Fusion Middleware
Control Console as follows:

2. Browse for the application and click the SOA composite you created.

3. Select Actions > Test service - client.

4. Test the Guided Business Process by entering sample data and invoking the composite.

5. Refresh Fusion Middleware Control Console and verify that the SOA composite instance
has been created. Check that the business process completed.

After you create an instance in a Guided Business Process, the Guided Business Process
state changes to 'In Progress' and you can view the Activity Guide tree in the client
application.

Example 30-3 Oracle Enterprise Manager Fusion Middleware Control Console URL

http://<hostname of Weblogic standalone server>:<port>/em

Chapter 30
Testing Guided Business Processes

30-27

31
Building a Guided Business Process Client
Application

Build a client application to display your process instances using the milestones you defined
when creating your Guided Business Process.

• Introduction to Building a Guided Business Process Client Application

• Developing a Guided Business Process Client Application with Oracle ADF

• Securing the Guided Business Process Client Application

• Localizing a Guided Business Process Client Application

• Guided Business Process Runtime APIs

• Developing an Example of a User Interface for Guided Business Process Tasks Using
Guided Business Process Runtime Services

• Using Guided Business Process Logging

31.1 Introduction to Building a Guided Business Process Client
Application

Guided Business Processes provide you with predefined ADF taskflows that you can use to
build an ADF application to display and run Guided Business Processes.

If the provided ADF taskflows do not satisfy your requirements, then you can use the set of
APIs that Guided Business Processes provide, to obtain the information that your UI client
applications displays. These APIs allow you to obtain data about the milestones and tasks
using web services and Enterprise Java Beans.

31.2 Developing a Guided Business Process Client Application
with Oracle ADF

A Guided Business Process client application provides a user interface for the Guided
Business Process task flow. The client application can be developed in a simple ADF JSPX
page in any configuration.

Typically, a client application includes a region displaying the Activity Guide tree and another
region displaying the details of the specific node selected from the tree. One way to display
these two regions is to include a dynamic region on the left side of a JSPX page and a
human task flow on the right. However, any configuration is possible.

31.2.1 How to Develop a Guided Business Process Client Application

31-1

To develop a Guided Business Process client application:

1. In JDeveloper, create a new application.

2. Right-click the ViewController Project and then select Project Properties.

3. Select Libraries and Classpath.

4. Click Add JAR/Directory.

A file browser dialog box opens.

5. Select the oracle.bpm.activityguide-ui.jar file located under <JDEV_HOME>/
jdeveloper/soa/modules.

6. Click Select.

7. Add the runtime shared library references oracle.soa.bpel. and
oracle.soa.workflow.wc to the weblogic-application.xml file by adding the following
code:

<library-ref>
 <library-name>oracle.soa.bpel</library-name></library-ref><library-ref>
 <library-name>oracle.soa.workflow.wc</library-name>
</library-ref>

8. Create a new JSF Page (.jspx) in which to display the Activity Guide.

9. Drag and drop the following task flows onto the JSF Page (.jspx):

• ag-tasktree-task-flow: for displaying the Activity Guide tree

• ag-humantask-task-flow: for displaying the individual Activity Guide node

Note:

Dragging and dropping a task flow automatically creates a region for that
task flow.

10. Create a file with the Activity Guide properties.

Note:

Generally you name this file activityguide.properties. If you choose
another name then you must provide its value to the ag-tasktree-task-
flow using the parameter AGPropsBeanName.

For more information on Activity Guide properties, see Configuring Activity Guide
Properties.

If using identity propagation to secure the Activity Guide, then the properties
WorkflowAdminUser and WorkflowAdminPassword are not required.

11. To enable a task flow popup with summary information, include the following
properties in the Activity Guide properties file:

AGTasksPopupTaskFlowID: Use this parameter to display a task flow summary in
ADF dynamic regions. Enter the relevant task flow ID.

Chapter 31
Developing a Guided Business Process Client Application with Oracle ADF

31-2

If this parameter is not set then the popup shows the value of OutputText as the default
task summary.

If you provide an invalid task flow region ID, then the Guided Business Process does not
render the region and logs a message in the server log.

12. Configure the Activity Guide to display a refresh button in the Activity Guide tree., using
the following alternative methods:

• In the Activity Guide properties file, add the parameter ShowRefreshButton. Set its
value to true to enable the display of a refresh button, and false or any other value to
disable the refresh button.

• In the Activity Guide tree task flow, add the parameter ShowRefreshButton and set its
value to true. This task flow parameter overrides the value of the parameter set in the
Activity Guide properties file.

If the value of the ShowRefreshButton parameter is 'empty' or 'null', then the
property ShowRefreshButton in the file activityguide.properties defines if the
refresh button is shown. If the activityguide.properties file does not specify a
value for this property then the refresh button is not shown in the client.

Example 31-1 illustrates adding a ShowRefreshButton parameter to the tree task
flow.

13. Edit the file adfc-config.xml to include the location of the activity.properties file.
This should be the absolute path to the activityguide.properties file.

An example adfc-config.xml is shown in Example 31-2.

14. Create a Workflow Service client configuration file. An example is shown in
Example 31-3.

Example 31-1 Add the ShowRefreshButton Parameter to the Tree Task Flow

<taskFlow id="dynamicRegion1"
 taskFlowId="${backingBeanScope.dynamicLeft.dynamicTaskFlowId}"
 xmlns="http://xmlns.oracle.com/adf/controller/binding" >
 <parameters>
 <parameter id="ShowRefreshButton" value="true"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
</taskFlow>

Example 31-2 adfc-config.xml File with Reference to activityguide.properties File

<managed-bean id="__10">
 <managed-bean-name id="__12">agProps</managed-bean-name>
 <managed-bean-class
id="__11">oracle.bpel.activityguide.ui.beans.model.AGProperties</managed-bean-class>
 <managed-bean-scope id="__9">session</managed-bean-scope>
 <managed-property id="__15">
 <property-name>agPropsFilePath</property-name>
 <property-class>java.lang.String</property-class>
 <value id="__14"><!-- relative path or absolute path should be given here-->/
activityguide.properties</value>
 </managed-property>
 </managed-bean>

Example 31-3 Workflow Services Client Configuration File

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workflowServicesClientConfiguration xmlns="http://xmlns.oracle.com/bpel/services/client">

Chapter 31
Developing a Guided Business Process Client Application with Oracle ADF

31-3

 <server default="true" name="default">
 <localClient>
 <participateInClientTransaction>false</participateInClientTransaction>
 </localClient>
 <remoteClient>
 <serverURL>t3://host:port</serverURL>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory</initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient>
 <soapClient>
 <rootEndPointURL>http://host:port</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>
 </server>

31.2.2 What Happens When You Develop a Guided Business Process
Application with Oracle ADF

A JDeveloper application with an ADF Web project is created. The application includes
the following:

• JSF page with two regions, one for the Activity Guide tree and the other for Activity
Guide node details.

• An activityguide.properties file.

31.2.3 What Happens at Runtime: How a Guided Business Process
Application Is Developed with Oracle ADF

At runtime, the Oracle ADF application displays the Guided Business Process
developed at design time. A contextual event mechanism in the common ADF layer
handles communication between the Activity Guide tree and Activity Guide node
details, respectively.

When you select a Guided Business Process instance, the Activity Guide tree displays
the information for the Activity Guides, milestones, and tasks in that Guided Business
Process instance.

Alternatively, you can configure the AGInstanceID property in the
activityguide.properties file for the JSF Page to render the following information for a
particular Guided Business Process instance:

• Activity Guide

• Milestones

• Tasks

When selecting a milestone node in the Activity Guide tree, it retrieves or refreshes the
sub-tree beneath the milestone.

When selecting a task node in the Activity Guide tree, it displays detailed task
information for the task.

Chapter 31
Developing a Guided Business Process Client Application with Oracle ADF

31-4

31.3 Securing the Guided Business Process Client Application
Securing the Guided Business Process client application ensures that only users with proper
credentials can complete the tasks outlined in the Guided Business Process.

Security features include authentication, authorization and policy enforcement.

31.4 Localizing a Guided Business Process Client Application
If you localize a Guided Business Process client application then you can run the client in all
the supported languages you defined.

If you want to localize a Guided Business Process application you must localize the following
components when you design a Guided Business Process:

• AG Title

• AG Description

• Milestone Title

• Milestone Description

• Task blocked explanation text

The Guided Business Process automatically translates String that are part of the user
interface, such as "display title" or Description. Guided Business Processes support the
following locales:

• French

• German

• Italian

• Spanish

• Brazilian

• Japanese

• Korean

• Simplified Chinese

• Traditional Chinese

• Arabic

• Czech

• Danish

• Dutch

• Finnish

• Greek

• Hebrew

• Hungarian

• Norwegian

Chapter 31
Securing the Guided Business Process Client Application

31-5

• Polish

• Portuguese

• Romanian

• Russian

• Slovak

• Swedish

• Thai

• Turkish

See How to Configure the Supported Locales for a Guided Business Process Client
Application for more information on how to localize a Guided Business Process.

31.4.1 How to Configure the Supported Locales for a Guided Business
Process Client Application

Before configuring a Guided Business Process application to support additional
locales, ensure that you provided the required bundles for those locales when
developing the Guided Business Process.

To configure the supported locales for a Guided Business Process Client
application:

1. Open the client application in Oracle JDeveloper.

2. Open the jspx client page.

3. Select Source View and modify the locale using the following code:

<f:view locale= #{view.locale}>

4. Edit the faces-config.xml file located under Project_Root /public_html/WEB-
INF.

5. Click the Overview tab in the editor window.

6. In the editor window, select Application.

7. In the Locale Config area, click New to open the Property Inspector to add the
supported locales.

8. Add the supported locales.

Example 31-4 shows how the faces-config.xml file looks after adding a set of
supported locales.

9. Set the browser locale to a supported locale.

10. Run the client page.

Example 31-4 faces-config.xml file

<locale-config>
 <default-locale>en</default-locale>
 <supported-locale>ar</supported-locale>
 <supported-locale>ca</supported-locale>
 <supported-locale>cs</supported-locale>
 <supported-locale>da</supported-locale>
 <supported-locale>de</supported-locale>

Chapter 31
Localizing a Guided Business Process Client Application

31-6

 <supported-locale>zh_CN</supported-locale>
</locale-config>

31.5 Guided Business Process Runtime APIs
Guided Business Processes provide you a set of APIs that enable you to get details about
the available milestones and the tasks that compose them.

If the predefined Activity Guide ADF taskflows do not satisfy your requirements then you can
use these APIs to obtain the information that you display in the client application.

31.5.1 Guided Business Process query Service API
This API is designed to support the following user navigation scenarios in an application
displaying a Guided Business Process:

Display a list of Guided Business Process instances using a filter. Available filters are:

• MY: Guided Business Process instances containing active tasks assigned to the user.

• REPORTEES: Guided Business Process instances containing active tasks assigned to
reportees to the current user.

• PREVIOUS: Guided Business Process instances containing completed tasks assigned to
the user, and instances in which a particular task is reassigned to another user.

• ADMIN: Guided Business Process instances visible to the Guided Business Process
administrator. Active instances can be assigned to any user.

Note:

The BPMAGAdmin role maps to a user with an Administrator role assigned. This
role enables the user to query for all the Guided Business Process instances
available in the server, including completed, active, and instances with errors. The
configuration file located in $DOMAIN_HOME/config/fmwconfig/system-jazn-
data.xml contains the definition of this role.

Note:

The Guided Business Process APIs enables retrieving detailed task information by
providing the task ID, but do not retrieve the task information. Other APIs, such as
the Workflow service APIs, are required for this purpose.

For more information about Workflow services, see "Introduction to Human
Workflow Services" in Developing SOA Applications with Oracle SOA Suite.

Chapter 31
Guided Business Process Runtime APIs

31-7

Table 31-1 Guided Business Process Query Service API

Method Description

List
queryAGDisplayInfos(String
bpmProcessType,IWorkflowCont
ext ctx,List
agDisplayColumns,AGAssignmen
tFilter
agAssignmentFilter,Predicate
predicate,Ordering
ordering,int startRow,int
endRow)

Returns a list of AGDisplayInfo objects with fields
defined in displayColumns, meeting the criteria
defined by assignmentFilter and predicate, in the
order specified by order, and with row numbers
between startRow and endRow.

The AGDisplayInfo objects contain both metadata and
runtime data of the Guided Business Process instances
involved, which you can use to render the Guided
Business Process instance views in Process Workspace
or custom applications.

You can assign the String parameter bpmProcessType
the following values:

• IAGQueryService.AG_PROCESS_TYPE_BPM
• IAGQueryService.AG_PROCESS_TYPE_BPEL
• IAGQueryService.AG_PROCESS_TYPE_ANY
As milestones and tasks are not visible from the Activity
Guide instance views, it is recommended not to include
the MILESTONE_STATE column in displayColumns to
avoid unnecessary performance overhead.

AGDisplayInfo
getAGDisplayInfoDetailsById(
String
bpmProcessType,IWorkflowCont
ext ctx,long ciKey,List
taskDisplayColumns,String
agAssignmentFilter)

Returns the AGDisplayInfo object specified by the
Activity Guide instance ID.

The AGDisplayInfo object returned includes both
milestone and task information, which you can use to
render the Activity Guide tree structure in the custom
application.

You can assign the String parameter bpmProcessType
the following values:

• IAGQueryService.AG_PROCESS_TYPE_BPM
• IAGQueryService.AG_PROCESS_TYPE_BPEL
• IAGQueryService.AG_PROCESS_TYPE_ANY
The String parameter agAssignmentFilter enables
specifying a filter for this method. The following
IAGQueryService parameters can be used as values
this parameter:

• IAGQueryService.AGASSIGNMENT_FILTER_MY
• IAGQueryService.AGASSIGNMENT_FILTER_REPO

RTEES
• IAGQueryService.AGASSIGNMENT_FILTER_PREV

IOUS
• IAGQueryService.AGASSIGNMENT_FILTER_ADMI

N

Chapter 31
Guided Business Process Runtime APIs

31-8

Table 31-1 (Cont.) Guided Business Process Query Service API

Method Description

MilestoneDisplayInfo
getMilestoneDisplayInfo(Stri
ng
bpmProcessType,IWorkflowCont
ext ctx,long cikey,String
milestoneName,List
taskDisplayColumns,String
agAssignmentFilter)

Returns the display information for a milestone in an
Activity Guide instance.

The MilestoneDisplayInfo object returned contains
the metadata and runtime data of the specified
milestone and the tasks in the milestone. You can use
these to refresh the milestone sub-tree in a custom
application when an end-user clicks the milestone.

You can assign the String parameter bpmProcessType
the following values:

• IAGQueryService.AG_PROCESS_TYPE_BPM
• IAGQueryService.AG_PROCESS_TYPE_BPEL
• IAGQueryService.AG_PROCESS_TYPE_ANY
The String parameter agAssignmentFilter enables
specifying a filter for this method. The following
IAGQueryService parameters can be used as values
for this parameter:

• IAGQueryService.AGASSIGNMENT_FILTER_MY
• IAGQueryService.AGASSIGNMENT_FILTER_REPO

RTEES
• IAGQueryService.AGASSIGNMENT_FILTER_PREV

IOUS
• IAGQueryService.AGASSIGNMENT_FILTER_ADMI

N

31.5.2 JNDI Names for the Guided Business Process Enterprise Java
Beans

The following table describes the JNDI names for the Guided Business Process Enterprise
Java Beans.

Service Name JNDI Names for the Enterprise JavaBeans

Activity Guide MetaData Store ejb/bpel/services/workflow/AGMetadataService

Activity Guide Query Service ejb/bpel/services/workflow/AGQueryService

31.6 Developing an Example of a User Interface for Guided
Business Process Tasks Using Guided Business Process
Runtime Services

APIs enable accessing the Guided Business Process query and Metadata Services from
within a custom application.

The following example illustrates the use of Java APIs to access Guided Business Process
runtime services:

Chapter 31
Developing an Example of a User Interface for Guided Business Process Tasks Using Guided Business Process Runtime Services

31-9

Example 31-5 Accessing the Guided Business Process Runtime Service Using
EJB

package client;
import com.oracle.bpel.activityguide.metadata.definition.model.AGDefinition;
import java.util.ArrayList;
import java.util.List;
import oracle.bpel.services.workflow.IWorkflowConstants;
import oracle.bpel.services.workflow.task.model.Task;
import oracle.bpel.services.workflow.verification.IWorkflowContext;
import oracle.bpel.services.workflow.client.IWorkflowServiceClient;
import oracle.bpel.services.workflow.client.IWorkflowServiceClientConstants;
import oracle.bpel.services.workflow.client.WorkflowServiceClientFactory;
import oracle.bpel.services.workflow.query.ITaskQueryService;
import oracle.bpel.services.workflow.query.impl.TaskQueryService;
import oracle.bpel.services.workflow.client.WorkflowServiceClientContext;
import oracle.bpel.services.workflow.metadata.config.ResourceBundleInfo;
import oracle.bpel.services.workflow.activityguide.query.IAGQueryService;
import oracle.bpel.services.workflow.activityguide.query.impl.AGQueryService;
import oracle.bpel.services.workflow.activityguide.query.model.AGDisplayInfo;
import
oracle.bpel.services.workflow.activityguide.query.model.MilestoneDisplayInfo;
import oracle.bpel.services.workflow.activityguide.metadata.IAGMetadataService;
import
oracle.bpel.services.workflow.activityguide.metadata.impl.AGMetadataService;
import sun.security.util.Password;
public class AGServiceSampleCode {

 private static String USERNAME = "jcooper";
 private static String PASSWORD = "welcome1";
 private static IWorkflowServiceClient wfSvcClient;
 private static IWorkflowContext sJCooperCtx;

 public static void main(String[] args)
 {
 try {

 testSetUp();

 // GetAGDefinition API requires an AG instance as input, which is not
easily accessible in customer's env.
 // As a result, the sample code for invoking this API is not provided.
 //testGetAGDefinition();

 testGetAGDefinitionById();
 testGetAGResourceBundleInfo();

 testQueryAGDisplayInfos();
 testQueryAGDisplayInfoDetailsById();
 testQueryAGMilestoneDisplayInfo();

 } catch (Exception e) {

 e.printStackTrace();
 }
 }

 private static void testSetUp()
 throws Exception
 {
 wfSvcClient =

Chapter 31
Developing an Example of a User Interface for Guided Business Process Tasks Using Guided Business Process Runtime

Services

31-10

WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.REMO
TE_CLIENT);

 sJCooperCtx =
 wfSvcClient.getTaskQueryService().authenticate(USERNAME, PASSWORD, null);
 }

 private static void testGetAGDefinitionById()
 throws Exception
 {
 String agDefinitionId = "HelpDeskRequestSCAApp/HelpDeskRequestComposite!
1.0*2007-10-22_13-32-50_536//HelpDeskRequestProcess//HelpDeskRequestProcess.ag"; //
Need to supply a valid AG definition id here

 AGDefinition agDefinition =
 wfSvcClient.getAGMetadataService().getAGDefinitionById (sJCooperCtx,
agDefinitionId);

 if (agDefinition != null)
 {
 System.out.println("ag def obtained");
 System.out.println("ag def name: " + agDefinition.getName());
 System.out.println("ag def milestone display mode: " +
agDefinition.getMilestoneDisplayMode());
 }
 }

 private static void testGetAGResourceBundleInfo()
 throws Exception
 {
 String agDefinitionId = "HelpDeskRequestSCAApp/HelpDeskRequestComposite!
1.0*2007-10-22_13-32-50_536//HelpDeskRequestProcess//HelpDeskRequestProcess.ag"; //
Need to supply a valid AG definition id here

 ResourceBundleInfo resourceBundleInfo =
wfSvcClient.getAGMetadataService().getResourceBundleInfo(sJCooperCtx, agDefinitionId,
sJCooperCtx.getLocale());

 System.out.println("bundle name: " + resourceBundleInfo.getName());
 }

 private static void testQueryAGDisplayInfos()
 throws Exception
 {
 List agQueryColumns = new ArrayList();
 agQueryColumns.add("MILESTONE_STATE");
 agQueryColumns.add("DEFINITION_ID");

 // Query for all AG instances belonging to user jcooper
 List agDisplayInfoList =
 wfSvcClient.getAGQueryService().queryAGDisplayInfos(sJCooperCtx,
 agQueryColumns,
 IAGQueryService.AGAssignmentFilter.MY,
 null, //agPredicate,
 null, //ordering,
 0,
 0);

 System.out.println("ag display info list size:" + agDisplayInfoList.size());
 if (agDisplayInfoList.size() > 0)

Chapter 31
Developing an Example of a User Interface for Guided Business Process Tasks Using Guided Business Process Runtime Services

31-11

 {
 AGDisplayInfo agDisplayInfo = (AGDisplayInfo) agDisplayInfoList.get(0);
 System.out.println("AG title:" + agDisplayInfo.getTitle());
 System.out.println("milestone display info list size:" +
agDisplayInfo.getMilestoneDisplayInfo().size());
 for (int i=0; i< agDisplayInfo.getMilestoneDisplayInfo().size(); i++)
 {
 System.out.println("i = " + i + " milestone display info:" +
((MilestoneDisplayInfo)
agDisplayInfo.getMilestoneDisplayInfo().get(i)).getMilestoneInstance().getName())
;
 }
 }
 }

 private static void testQueryAGDisplayInfoDetailsById()
 throws Exception
 {
 long cikey = 1; // Need to supply a valid AG cikey here

 List taskQueryColumns = new ArrayList();
 taskQueryColumns.add("TASKID");
 taskQueryColumns.add("TITLE");
 taskQueryColumns.add("OUTCOME");

 AGDisplayInfo agDisplayInfo =
 wfSvcClient.getAGQueryService().getAGDisplayInfoDetailsById
(sJCooperCtx, cikey, taskQueryColumns);
 System.out.println("AG display info status:" +
agDisplayInfo.getAGInstanceInfo().getStatus());
 System.out.println("AG display info bpel status:" +
agDisplayInfo.getAGInstanceInfo().getBpelStatus());
 }

 private static void testQueryAGMilestoneDisplayInfo()
 throws Exception
 {
 long cikey = 1; // Need to supply a valid AG cikey here
 String milestoneName = "ApprovePricing"; // Need to supply a valid AG
milestone name here

 List taskQueryColumns = new ArrayList();
 taskQueryColumns.add("TASKID");
 taskQueryColumns.add("TITLE");
 taskQueryColumns.add("OUTCOME");

 MilestoneDisplayInfo milestoneDisplayInfo = null;

 milestoneDisplayInfo =
 wfSvcClient.getAGQueryService().getMilestoneDisplayInfo (sJCooperCtx,
cikey, milestoneName, taskQueryColumns);

 System.out.println("milestone display info name:" +
milestoneDisplayInfo.getMilestoneInstance().getName());
 System.out.println("milestone display info title:" +
milestoneDisplayInfo.getTitle());
 System.out.println("milestone display info task list size:" +
milestoneDisplayInfo.getTask().size());
 }

}

Chapter 31
Developing an Example of a User Interface for Guided Business Process Tasks Using Guided Business Process Runtime

Services

31-12

For more information regarding the EJB and Web Service APIS, see the Javadoc.

31.7 Using Guided Business Process Logging
Guided Business Processes use a log file to store information about the different operations
they perform. This file contains log messages that track the application behavior and possible
errors that might occur while running the application.

You can use the information in this log file to find out the cause of an unexpected behavior in
your application.

The importance of the log messages varies according to their level. The level of the
messages used for debugging purposes is different to the level of the messages that contain
warnings or errors.

You can configure Guided Business Process Logging to log only certain level of messages
according to your needs.

31.7.1 How to Enable Client Side Logging
You can configure Guided Business Processes to generate a log file on the client side.

To enable client side logging:

1. Locate the logging.xml file in the directory <DOMAIN_HOME>/config/fmwconfig/servers/
Server Name

2. Open the logging.xml file for editing.

3. Add the following entry in the <loggers> element:

<logger name="oracle.bpel.activityguide.ui" level="NOTIFICATION:1"
useParentHandlers='false'>
 <handler name="odl-handler"/>
</logger>

4. Save the changes.

5. Re-start Web Logic Server.

31.7.2 How to Enable Server-Side Logging
You can configure Guided Business Processes to generate a log on the server side.

To enable server-side logging:

1. Locate the logging.xml file in the directory <DOMAIN_HOME>/config/fmwconfig/servers/
Server Name

2. Open the logging.xml file for editing.

3. Add the following entry to the <loggers> element:

<logger name="oracle.bpm.services.activityguide.query"
level="NOTIFICATION:1" useParentHandlers='true'>

4. Save the changes.

5. Re-start Web Logic Server.

Chapter 31
Using Guided Business Process Logging

31-13

31.7.3 Configuring Log Levels
Log messages contain a level that identifies the severity of the problem.

Table 28-3 shows the available log levels. The Severity column describes the common
term used to identify a certain severity. The Log Level Value common specifies the
value that you must use in the logging.xml file.

Table 31-2 Log Level Values

Severit
y

Log Level Value Description

Fatal INCIDENT_ERR
OR:1

Indicates a serious problem caused by unknown reasons. Users
cannot fix the problem by themselves, they must contact Oracle
Support.

Severe ERROR:1 Indicates a serious problem that requires immediate attention
from the System Administrator

Warning WARNING:1 Indicates a potential problem. The System Administrator should
review these log messages.

Informat
ion

NOTIFICATION:1 Indicates a major lifecycle event such as the activation or
deactivation of a primary sub-component or feature.

Configu
ration

NOTIFICATION:1
6

Specifies a normal event occurred at a lower level.

Fine TRACE:1 Specifies trace or debug information for events that are
meaningful to end users of the product, such as public API entry/
exit points.

Finer TRACE:16 Specifies a detailed trace or debug information that can help
Oracle Support diagnose problems with a particular subsystem.

You can configure Guided Business Process Logging to specify the level of detail of
the information stored in the Guided Business Process logs.

To set the log level must change the value of the attribute level in the logger element in
the logging.xml file.

When you set the log level to a certain severity, all the messages that correspond to
higher severities are also stored. For example, if you set the log level to severe, then
the log messages of severity fatal are also logged.

31.7.4 How to View Guided Business Process Log Messages
Log messages are stored in the following file: <DOMAIN HOME>/servers/<Server
Name>/logs/Server Name-diagnostic.log

You can view the file that contains the log messages using a text editor.

31.7.5 Understanding Guided Business Process Log Messages
A log message contains information that helps you identify the problems in your
Guided Business Process application.

Table 28-3 describes the items that compose a log message.

Chapter 31
Using Guided Business Process Logging

31-14

Table 31-3 Log Message Items

Log Message Item Description

Date and Time Specifies the date and time when this log message was generated.

Message Type Specifies the severity of the message.

Execution Context ID (ECID) A global unique identifier and a sequence number that correspond to
the thread where the originating component is running. You can use it
to correlate messages from multiple components that may be involved
in the same thread.

Application Name Specifies the name of the application that generated the log message.

Class Package Name Specifies the package of the class that generated the log message.

Message ID Specifies a short identifier that uniquely identifies the message.

Message Text Describes the event. This message is localized, thus it displays in the
language that corresponds to the locale of your system.

When you read a log file you must look for the message text, this text describes what
happened. The message type helps you identify how serious the problem is. For more
information about the different message types, see Table 31-2.

You can use the date and time of the log message to identify the action that caused the
problem.

Note:

before contacting Oracle Support make sure you can provide them the message ID
and the execution context ID.

Example 31-6 Log Message Example

DefaultServer-diagnostic.log:[2009-07-10T17:39:35.220-07:00] [DefaultServer]
[NOTIFICATION] [AGU-12605] [oracle.bpel.activityguide.ui.beans] [tid:
[ACTIVE].ExecuteThread: '1' for queue: 'weblogic.kernel.Default (self-tuning)']
[userId: jstein] [ecid: 0000I9bG2R3DScQ6ube9UH1ALxd1000007,0] [APP:
AGNonUIshellApp#V2.0] [arg: jstein] Setting user, jstein as the loginUserId in server
interfacing bean.[[

Example 28-12 shows a notification log message that contains information about a
loginUserId change. In this example the different log message items are:

• Date and Time: 2009-07-10T17:39:35.220-07:00

• Message Type: NOTIFICATION

• Execution Context ID: ecid: 0000I9bG2R3DScQ6ube9UH1ALxd1000007,0

• Application Name: APP: AGNonUIshellApp#V2.0

• Class Package Name: oracle.bpel.activityguide.ui.beans

• Message ID: AGU-12605

• Message Text: Setting user, jstein as the loginUserId in server interfacing bean.

Chapter 31
Using Guided Business Process Logging

31-15

32
Using Approval Management

Get an overview of the approval management extensions that are available for the human
workflow services of Oracle SOA Suite. The human workflow service handles all interactions
with users or groups who participate in the business process by creating and tracking tasks
for the appropriate users in the organization.

Users typically access tasks through a variety of clients, including Oracle BPM Worklist,
email, portals, or custom applications. Approval management extensions enable you to
define complex task routing slips for human workflow by taking into account business
documents and associated rules to determine the approval hierarchy for a work item.
Additionally, approval management extensions let you define multi-stage approvals with
associated list builders based on supervisor or position hierarchies. You define the approval
task in the Human Task Editor of Oracle JDeveloper, and associate the task with a BPEL
process.

For more information about human tasks, see the chapters in Using the Human Workflow
Service Component in Developing SOA Applications with Oracle SOA Suite.

This chapter includes the following sections:

• Introduction to Approval Management

• Understanding Approval Management Concepts

• Designing Approval Management Tasks in Oracle JDeveloper

• Using the End-to-End Approval Management Samples

• Using the User Metadata Migration Utility

32.1 Introduction to Approval Management
Approval Management extensions (AMX) extend human workflow services with complex
approval patterns. It serves as a sophisticated “Assignment Manager" for human workflow.

Some of the key workflow features include:

• Declarative modeling of approval management processes.

• The ability to define complex multi-stage approval with static and dynamic approval list.

• A Workflow Editor to define task parameters, assignment and routing policies, escalation
and expiration settings, and notification settings.

• Policy-based task assignment, which allows users to define approval rules based on
business documents.

• The ability to design a task form to render contents of the approval task and associated
task operations.

• The ability to define email and instant messaging (IM) notifications for various participants
in the workflow.

• A web-based worklist application for task assignees, process owners, and administrators.

32-1

• The ability to look up users and roles in various user directories, including Oracle
Internet Directory, LDAP, and third-party directories.

AMX provides the following additional features:

• Attributes derived from ADF view object in transactional applications.

• The ability to retrieve various job, position, and supervisory hierarchies from HR
systems using hierarchy provider plug-ins.

• The ability to define rules for controlling approval lists and hierarchy
configurations.

32.1.1 AMX Components
The following figure shows the key AMX and human task integration components.
These components are described in subsequent sections of this chapter.

Figure 32-1 Overall Architecture

The human workflow service enables users to model human interactions as part of a
business process. The human workflow service handles requests based on task and
rules metadata. It consists of the following set of core services:

• Task service

• Task query service

• User metadata service

• Task metadata service

• Identity service

Chapter 32
Introduction to Approval Management

32-2

• Notification service

• Assignment manager

These services are described in detail in Introduction to Human Workflow Services in
Developing SOA Applications with Oracle SOA Suite. AMX serves as a sophisticated
assignment manager within human workflow allowing you to model complex approval
patterns based on business rules.

The core components required for approval management include the following:

• Human Task Editor in JDeveloper

This task editor is used to define the metadata for a human task and the routing slip. The
task editor lets you define such things as task parameters, outcomes, expiration and
escalation, and notification settings. Some of the components added by AMX include the
ability to do the following:

– Define multi-stage approvals and associated approval list builders in JDeveloper.

– Determine the approval hierarchy based on business documents (ADF objects) and
business rules. This is done through Rules Designer in JDeveloper

• Human workflow services

Some of the key services that are required for handling complex approvals include the
following:

– Task Service - Responsible for creating and managing tasks in the dehydration store

– Identity Service - Responsible for authentication and authorization of users and
groups. The service can look up various user directories for authorization and contact
information for users.

– Task Query Service - Responsible for retrieving tasks for the web-based worklist
application

– Decision Service - Responsible for executing business rules related to approvals

• Oracle BPM Worklist

Oracle BPM Worklist is a web-based application that lets users access tasks assigned to
them and perform actions based on their roles in the approval process. Oracle BPM
Worklist supports the following profiles:

– Work assignee - An end user who is assigned a task. These users can view tasks
assigned to them and perform actions, and also can define custom views and define
routing rules for their tasks.

– Process owner - Typically a business analyst responsible for managing certain types
of approvals. These users can manage tasks for the processes they own, define
approval groups, and change approval policies

– Workflow administrator - Typically a system administrator responsible for managing
errored tasks, and administering and monitoring work queues. This user also may
use Oracle Enterprise Manager to monitor the health of the workflow services.

32.2 Understanding Approval Management Concepts
AMX extends human workflow services with additional functionality to handle complex
approval patterns.

Some human workflow concepts with which you must be familiar are the following:

Chapter 32
Understanding Approval Management Concepts

32-3

• Human Task Editor in JDeveloper

• Task metadata (task parameters, allowed operations, and patterns) and routing
slip

• ADF task flow based on task forms

• Oracle BPM Worklist

These concepts are described in the chapters in Using the Human Workflow Service
Component in Developing SOA Applications with Oracle SOA Suite.

The following sections describe concepts to handle complex approvals:

• Task

• Service Data Objects

• Stages

• List Builders

• Task Operations

• Business Rules for Approval

32.2.1 Task
A task handles approvals. A different task is created for each approval requirement
based on the business served by it. For example, an approve new expense report task
or an approve new purchase order task.

Some of the standard metadata for a task include the following:

• Task attributes such as title, outcomes (approve, reject, and so on) priority,
expiration and others

• Task parameters that may be based on simple primitive types, XML elements, or
external entities such as ADF view objects

• A complex approval task that may include one or more stages to identify the key
milestones within the approval sequence. For more information see Stages.

• Expiration and escalation policy

• Notification settings for notifying various participants

• List builders within stages, which are based on names and expression,
management chain, supervisory, position, job-level hierarchy, or approval groups.
For more information, see List Builders.

• Approval task configurations, including policies for substitution and modification of
approvers, configuration of self-approval, and repeated approvers. For more
information, see Task.

The following figure shows the various stages in a sample approval pattern.

Chapter 32
Understanding Approval Management Concepts

32-4

Figure 32-2 Approval List Structure

The approval pattern consists of four stages:

• Header approval

• Line approval

• Receipt verification

• Payment

Header approval runs in parallel with line approval and receipt verification. After these stages
run, the payment stage runs.

Each of the four stages has list builders. Multiple list builders in a stage can run in serial or
parallel to one another. One or more approvers can exist within each list builder. The
following figure illustrates these concepts.

Chapter 32
Understanding Approval Management Concepts

32-5

Figure 32-3 Stages and Their List Builders

These concepts are described in the sections that follow.

32.2.2 Service Data Objects
ADF Business Components objects can be exposed easily as Service Data Objects
(SDOs) through the service interface. This provides a flexible way to accept business
entities. Subsequently, supporting SDOs natively enables accepting multiple business
entities. This also lays the foundation for future Flexfield SDO support. Since an SDO
is a structured XML, you can pass it in as static XML through the task payload.

A collection is defined in an entity parameter for the task. It enables access to a
portion of the business entity as an XML fragment retrieved by an XPATH expression.
Keys allow us to identify the primary keys in this fragment.

An entity parameter is the definition that tells us how to access an SDO or a static
XML. An entity parameter captures the following information for an SDO:

• Identity of a reference in the overall SCA process, including the Web service
definition language (WSDL) for the SDO web service

• Method to invoke

• Input message to the web service

• Output message to the web service

Chapter 32
Understanding Approval Management Concepts

32-6

• Collections

An entity parameter captures the following information for a static XML:

• XSD for the static XML

• Collections

For example, an expense voucher can have hierarchical groupings of header, lines, and cost
centers. For approval policy purposes, you may only define a collection on header and lines if
these are the only components required for determining the set approvers. It is not necessary
to map as collections those parts of the business document that are not necessary to define
rules.

For more information, see Implementing Business Services with Application Modules and
Creating SOAP Web Services with Application Modules in Developing Fusion Web
Applications with Oracle Application Development Framework.

32.2.3 Stages
A stage is a set of approvals related to a collection. The same collection can be associated
with multiple approval stages.

The following figure illustrates the mapping of stages and collections.

Figure 32-4 Mapping of Stages and Collections

Each approval stage is associated with a collection. In the figure, there are four stages in the
approval.

• Header Approval is associated with the Expense Header collection.

• Receipt Verification is associated with the Expense Header collection.

• Payment is associated with the Expense Header collection.

• Line Approval is associated with the Expense Lines collection.

A compound approval may consist of multiple stages and then can be modeled in serial or
parallel with each other. Each stage consists of list builders to determine the list of approvers.

Chapter 32
Understanding Approval Management Concepts

32-7

Optionally, each list builder can be associated with an approval policy, that is, a set of
rules. At runtime, the appropriate set of approvals are returned based on the list
builders used within the stage and on the associated policies.

32.2.4 List Builders
As described in Stages, each approval stage consists of list builders to determine the
actual list of approvers. The following list builders are supported.

• Names and Expressions

Enables you to construct a list using static names, or names coming from XPath
expressions.

• Approval Groups

Includes predefined approver groups in the approver list. Approval groups can be
static or dynamic.

• Job Level

Ascends the supervisory hierarchy, starting at a given approver and continuing
until an approver with a sufficient job level is found.

• Position

Ascends the position hierarchy, starting at a given approver's position and
continuing until a position with a sufficient job level is found.

• Supervisory

Ascends the primary supervisory hierarchy, starting at the requester or at a given
approver, and generates a chain that has a fixed number of approvers in it.

• Management Chain

Enables you to construct a list based on management relationships in the
corresponding user directory.

The management chain participant type only supports parallel routing when the
first assignee in the management chain is a single user. You cannot specify
parallel participants such as a set of users or a group, as the initial assignees in
the management chain.

• Rule-based

Enables you to model rules that return different list-builder types based on different
conditions. For example, if you model a supervisory list builder with rules, the rule
can return only the supervisory list builder. If you model a rule-based list builder,
the rule can return different list builder types.

Note:

The Approval Groups, Job Level, Position, and Supervisory list builders are
specific to AMX, and are described in detail in How to Model and Configure
List Builders.

For information about the Names and expressions, Management Chain, and
Rule-based list builders, see Creating a Single Task Participant List in
Developing SOA Applications with Oracle SOA Suite.

Chapter 32
Understanding Approval Management Concepts

32-8

32.2.5 Task Operations
Most of the standard human task operations also are available on AMX-based tasks. Some of
the common operations include the following:

• User-defined outcomes - Business outcomes, such as "Approve" and Reject," that are
associated with a task. When a user performs these types of actions, the task is removed
from the user's "Inbox" and is marked as completed or moved to the next approver.

• Delegate - Allows a user to assign a task to another person or role to act on his or her
behalf.

• Escalate - Allows a user or an administrator to escalate a task to the user's supervisor.

• Reassign - Allows users to transfer a task to another user. From that point on, the new
user's hierarchy is used for supervisor or other organization-based approvals.

• Withdraw - Allows the task initiator or administrator to cancel or withdraw the task after
the approval has started.

• Request for Information - Allows a task approver to request information from any prior
participant or the task initiator.

• Pushback - Allows the task approver to push back the task to the previous approver to
review it again.

• Adhoc Insertions - Allows any task assignee to insert approvers in the generated
approval list.

Note:

The position list builder does not allow the approver to reassign, delegate, escalate
or perform adhoc insertions.

For a complete list of actions, see Acting on Tasks: The Task Details Page in Developing
SOA Applications with Oracle SOA Suite.

32.2.6 Business Rules for Approval
Approvers of a task can be defined either inline in a task definition or by using business rules
to specify the list builders that identify the actual approvers of a task. In addition, you can use
business rules to specify approver substitution and list modifications. These rules are defined
with the help of Oracle Business Rules and can vary between organizations. Typically,
however, they are defined by the customer.

Business rules are a combination of conditions and actions. Optionally, priority and validity
periods can be defined for these rules. In Human Workflow rules, rule conditions are defined
using fact types that correspond to the task, and to the task message and entity attributes
(which are XML representations of SDO objects). Rule actions consist of approver list
builders and their parameters. Approver list builders move up a particular hierarchy and
construct or modify the approver list according to the parameters defined. Approver list
builders are implemented as XML (JAXB) fact types.

For more information about these concepts, see Using the Business Rules Service
Component in Developing SOA Applications with Oracle SOA Suite.

Chapter 32
Understanding Approval Management Concepts

32-9

32.2.6.1 List Creation
A list creation policy includes rule conditions and actions that create the list builders.

The following example rules illustrate the configuration of the Supervisory list-builder
parameters that create an approver list based on an SDO-based fact type.

For more information, see How to Create Lists.

Example 32-1 Rule 1

IF
ExpenseItems.ReceiptAmount < 200
THEN
call CreateSupervisoryList(levels:1,
startingPoint:HierarchyBuilder.getPrinicipal("jstein",-1,"",""),
uptoApprover:HierarchyBuilder.getPrinicipal("wfaulk",-1,"",""),
autoActionEnabled:false,autoAction:null,
responseType:ResponseType.REQUIRED,ruleName:"Rule_1",lists:Lists)

Example 32-2 Rule 2

IF
xpenseItems.ReceiptAmount >= 200
THEN
call CreateSupervisoryList(levels:1,
startingPoint:HierarchyBuilder.getPrinicipal("wfaulk",-1,"",""),
uptoApprover:HierarchyBuilder.getPrinicipal("cdickens",-1,"",""),
autoActionEnabled:false,autoAction:null,
responseType:ResponseType.REQUIRED,ruleName:"Rule_2",lists:Lists)

32.2.6.2 Approver Substitution
Users, groups, and application roles appearing in a list can be substituted using list
substitution. List substitution is available from Rules Designer and does not require
any configuration in JDeveloper.

The following example rule illustrates approver-substitution usage.

This rule implies that if the expense item amount is less than 4000, then substitute
approver "jcooper," if present in the approver list, with approver "jstein."

For more information, see How to Make Approver Substitutions.

Example 32-3 Approver-Substitution Usage

IF
ExpenseItems.ReceiptAmount < new BigDecimal(4000)
THEN
call Substitute(fromId:"jcooper", toId:"jstein", ruleName:"Substituted",
substitutionRules: SubstitutionRules)

32.2.6.3 List Modification
Job Level and Position lists can be extended or truncated from rules. List modification
is applied after list creation.

The following example rule illustrates list-modification usage.

Chapter 32
Understanding Approval Management Concepts

32-10

This rule implies that if the expense item amount is greater than 3000, and if the final
approver in the approver list is of Job Level 3, then extend the approver list by at least two
relative levels.

For more information, see How to Make List Modifications.

Example 32-4 List-Modification Usage

IF
ExpenseItems.ReceiptAmount > new BigDecimal(3000)
THEN
Call Extend(ifFinalApproverLevel:3, extendBy:2,ruleName:"Modified",lists:Lists)

32.3 Designing Approval Management Tasks in Oracle
JDeveloper

You design approval management tasks by defining a human task that provides the ability to
model multi-stage approvals and determine the appropriate approvers based on approval
policies for a business object and the associated HR hierarchy provider.

This section describes the overall modeling process and the specifics of the process you use
to model approval management tasks in JDeveloper.

32.3.1 Introduction to the Modeling Process
The modeling process for designing approval management tasks includes the following:

• Creating a human task definition

• Creating a task display form using the Human Task Editor

Creating a human task definition includes the following tasks:

• Specifying general information, such as task title and task-title globalization, outcomes,
priority, owner, and category

• Specifying task parameters, including those with service data object (SDO) references

• Specifying mapped attributes

• Modeling task routing by specifying stages and list builders, and modeling any business
rules that define the list builders

• Defining escalation and renewal policies

• Specifying notification settings

• Modeling any advanced settings like callbacks, security access rules, and restricted
assignment

For more information, see the chapters in Using the Human Workflow Service Component in
Developing SOA Applications with Oracle SOA Suite.

32.3.2 Before You Begin
Before designing approval management tasks, you must satisfy the following prerequisites:

• You must have deployed SDO services.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-11

• You must have created a human task service component in which to design the
approval task.

32.3.3 Specifying General Information
Some general information, including task title, outcomes, priority, owner, and category,
is not specific to AMX.

For more information, see How to Define the Human Task Activity Title, Initiator,
Priority, and Parameter Variables in Developing SOA Applications with Oracle SOA
Suite.

32.3.3.1 Task-Title Globalization
The title attribute of the task object contains a user-friendly value that mainly is
descriptive in nature. In AMX, the task title can be globalized so that it renders in the
user's preferred language.

Title is defined in the *.task file for design time and in the WorkflowTask.xsd file for
runtime. Currently, the definition of these elements in both of these files are simple
xsd:string types. For globalization, the structure and usage of these elements change
to accommodate a mechanism that provides translatable, formatted strings.

The design-time metadata for these elements is enhanced to contain a value element
and an optional set of parameters. Messages defined as an XPath expression or static
have their information stored in the value element and require no parameters.
Messages defined that rely on information in a resource bundle have a key stored in
the value element with some parameters also defined.

The Human Task Editor provides a mechanism in the Expression Builder to enable the
user to specify the resource key and parameters and, at the same time, generate the
appropriate design time XML in the taskDefinition.

The following figure shows the globalization icon in the Human Task Editor.

Figure 32-5 Title Globalization Icon

The following procedure explains how to add translatable strings. It assumes that a
resource bundle has been specified.

1. Select Translation from the drop-down list.

The Global icon displays.

2. Click the icon to display the Edit Translatable Strings dialog box.

3. Select a key from the drop-down list or click the plus sign (+) to create one.

The following Create a New Key dialog box, displays when you click the plus sign
(+) on the Edit Translatable Strings dialog box.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-12

Figure 32-6 Create a New Key Dialog

4. Enter a name, the translatable text, and click OK.

The New Key added dialog box shows the Edit Translatable Strings dialog box after a
new key has been added.

Figure 32-7 New Key Added

5. Use the Expression Builder to add values.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-13

The Translatable Text and Values dialog box shows the completed Edit
Translatable Strings dialog box.

Figure 32-8 Translatable Text and Values

Note:

The title value, or a definition of the title value can be set in two places:
in the TaskDefinition XML (.task) file, or in the bpel file. When set in the
bpel file, this value takes precedence over the definition in the
TaskDefinition. However, the value in the bpel file is not translatable.

6. Click OK to close the dialog box.

32.3.4 Specifying Task Parameters
Specifying task parameters includes the following tasks:

• Creating SDO references

• Defining entity parameters

• Defining collections

32.3.4.1 How to Create Service Data Object (SDO) References
An SDO service can be invoked from workflow services to retrieve the SDO as XML.
This invocation is in the form of a SOA web service call. When the SDO service WSDL

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-14

URL is available, a web service reference should be added using the Create Web Service
dialog box.

To create a reference, enter the WSDL URL and select the port type from the available port
types, as shown in the following figure.

Figure 32-9 Web Service Reference

For information about creating SDOs, see topics in Designing an SDO-Based Enterprise
JavaBeans Application in Developing SOA Applications with Oracle SOA Suite.

32.3.4.2 How to Define Entity Parameters
The following procedure enables you to accept a service data object (SDO).

1. Create a Service reference in the composite.

This allows Fabric to create all the necessary wiring to a specific URL that points to a
WSDL.

2. Define the task payload as external and specify which workflow retrieves the SDO object.

This creates task parameters representing the input and output to the SDO web service.

3. Choose Entity.

4. Select a reference.

5. Set the collection for the stage.

6. Click OK.

The following procedure enables you to accept static XML.

1. Provide the XSD where the schema is defined.

2. Define the task payload parameter as static XML.

3. Define the collection, its XPATH expression, and its keys.

4. Set the collection for the stage.

5. Click OK.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-15

32.3.4.3 How to Define Collections
Collections are references to specific parts of a task message attribute, both static-
XML based and entity attributes. After defined, collections can then be associated with
stages to identify a stage as acting on a collection.

Defining a collection involves defining the name of the collection and the XPath to the
collection element. If the collection is defined for an entity attribute, the keys for the
collection element have to be specified as well. Each key has to be a direct child of the
collection element. The following figure shows how collections are defined.

Figure 32-10 Defining Collections

When you define a collection, JDeveloper automatically determines if it should be
repeating element or not. This information is used when collections are associated
with a stage. A non-repeating collection can be associated with a singular stage. A
repeating collection, when associated with a stage, repeats the stage in parallel for
each element in the collection at runtime. For information about how the collection
information is used in a stage, see How to Model and Configure Stages.

32.3.5 Specifying Mapped Attributes
Human workflow provides task-message attributes that you can use for storing use-
case-specific data, such as data extracted from a task's payload. These attributes are
also known as flexfield attributes or mapped flexfield attributes.

Mapped flexfield attributes allow payload values to be displayed as columns in the task
listing, rather than being hidden in the task details. These values are stored in the
human workflow database schema, and you can use them in queries, view definitions,
and assignment rule definitions.

There are two types of message attributes:

• public - attributes mapped to specific task components at runtime. These
mappings can be changed at any time, and must be re-created when a task

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-16

component is redeployed. For more information see Using Mapped Attributes (Flex
Fields) in Developing SOA Applications with Oracle SOA Suite.

• protected - AMX-specific mappings between a task component and protected flexfield
attributes defined at design time. They cannot be changed at runtime, and are deployed
along with the task component.

Table 32-1 summarizes the 60 available protected flexfield attributes.

Table 32-1 Protected Flexfield Attributes

Name Description

ProtectedTextAttribute1 -
ProtectedTextAttribute20

Stores text data, up to 2000 characters. The content in
these fields is checked during keyword searches in the
Oracle BPM Worklist and through the task-query service.

ProtectedFormAttribute1 -
ProtectedFormAttribute10

Stores text data, up to 2000 characters. The content in
these fields is not checked during keyword searches in
the Oracle BPM Worklist.

ProtectedURLAttribute1 -
ProtectedURLAttribute10

Stores text data, up to 200 characters. The content in
these fields is not checked during keyword searches in
the Oracle BPM Worklist.

ProtectedDateAttribute1 -
ProtectedDateAttribute10

Stores date information.

ProtectedNumberAttribute1 -
ProtectedNumberAttribute10

Stores number information.

32.3.5.1 About Attribute Labels and Attribute-Label Mappings
Attribute labels are user-defined properties that allow a meaningful string to be applied to a
particular flexfield attribute. The label should reflect the data to store in the attribute. For
example, “CustomerName" for “ProtectedTextAttribute1," “OrderNumber" for
“ProtectedNumberAttribute2," or “OrderDate" for “ProtectedDateAttribute1."

A flexfield attribute can have multiple attribute labels defined for it. For example, the attribute
“ProtectedTextAttribute1" could have the labels “CusomerName," “PartId" and
“EmployeeDepartment".

Attribute-label mappings for protected attributes are defined at design time in the Human
Task Editor. They define a mapping between a particular task component and an attribute
label, and also specify how the value of the attribute should be populated. The same attribute
label can be re-used in multiple mappings. This allows task components to map data having
the same semantic meaning into a common attribute identified by a common label.

For example, PurchaseOrder, LoanRequest and ServiceRequest tasks all could define
mappings to the “CustomerName" label. By sharing the same attribute labels across multiple
task components, it is possible to construct worklist queries that query multiple task types and
display or filter values from the common attribute labels. For example, it would be possible to
construct a query that selected PurchaseOrder, LoanRequest, and ServiceRequest tasks,
and then displayed the “CustomerName" as a column in the worklist task listing.

32.3.5.2 How to Define Attribute-Label Mappings
You define attribute-label mappings in the Mapped Attributes section of the Human Task
Editor, as shown in the following figure.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-17

Figure 32-11 Mapped Attributes Section

Use the following procedure to define attribute-label mappings:

1. Click the Add icon to display the Add Mapped Attribute dialog box.

Figure 32-12 Add Mapped Attribute Dialog

2. Perform one of these options:

• From the drop-down list, select the application server that contains the
protected-attribute labels.

• Click the Add icon to create a connection.

• Click the Edit icon to edit an existing connection.

The Attribute drop-down list populates with the available attribute labels from the
specified server.

3. From the drop-down list, select an attribute.

Note:

The list does not include any labels for flexfield attributes to which this
task component is being mapped.

4. At the Value field, specify a value using one of these options:

• Enter an XPath expression that determines the value to be stored in the
attribute.

• Click the icon to create a value in the Expression Builder.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-18

• Leave the field blank to allow the value to be determined at runtime.

Usually, this XPath expression selects a value from the tasks's payload, but you can
specify any valid expression that evaluates to a simple type, such as a string, a date, or a
number.

Be aware that specifying an XPath expression is not mandatory. You may prefer to set
the value of the underlying flexfield-attribute value yourself. For example, you can add a
custom assign activity to the BPEL process that initiates the task, or manipulate the Task
object through the workflow service APIs.

5. Enter a description. This is optional.

6. Click OK.

32.3.6 Specifying Routing and Approval Policies
Specifying routing and approval policies includes the following tasks:

• Modeling and configuring stages

• Modeling task participants

• Modeling and configuring list builders

• Defining business rules

• Using business rules to specify list builders

• Using assignment-context information

• Aggregating task approvals

32.3.6.1 How to Model and Configure Stages
Based on functional needs, you can add and arrange multiple stages in a structure that can
be a combination of sequential and parallel stages. This section describes how to create
sequential and parallel stages.

Use the following procedure to create a stage:

1. In the Assignment and Routing section of the Human Task Editor, select a stage.

2. Drag the stage from the palette on the right side to a specific location on the canvass.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-19

Figure 32-13 Create Stage

If you chose to create a sequential stage, the Assignment and Routing section
looks like the following figure.

Figure 32-14 Add Sequential Stage

If you chose to create a parallel stage, the Assignment and Routing section
looks like the following figure.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-20

Figure 32-15 Add Parallel Stage

3. Double-click the stage you just created.

The Edit dialog box displays, as shown in the following figure.

Figure 32-16 Edit Stage Dialog

4. Enter a name for the stage.

5. Choose one of these options:

• Non Repeating - specifies that there is only one stage in parallel for each element in
a collection

• Repeat Stage in parallel for each item in a collection - specifies that the stage to
repeat in parallel for each element in a collection. For example, if a purchase order
contain 10 lines, the stage is repeated 10 times in parallel.

6. From the drop-down list, select a collection.

7. According to your selection, use one of these options:

• If you selected Non Repeating, click OK to close the Edit dialog box.

• If you selected Repeat Stage in parallel for each item in a collection, additional
options display, as shown in the following figure.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-21

Figure 32-17 Edit Stage Dialog: Repeat Stage

Do the following:

– Select a default outcome.

– Select a consensus percentage.

– Choose either to trigger the outcome immediately or wait until all the votes
are in before triggering the outcome.

– Check the Share attachments and comments check box.

– Click OK to close the Edit dialog box.

32.3.6.2 How to Model Task Participants
Inside each stage you either can edit the default task participant or add new task
participants. Task participants are assigned based on routing patterns, which can be
any of the following:

• Single

• Parallel

• Serial

• FYI

After selecting a routing pattern, you also must select and model a list builder. This
process is discussed in more detail in How to Model and Configure List Builders.

32.3.6.3 How to Model and Configure List Builders
Stages use a combination of list builders to generate the approver list. For more
information, see Stages and List Builders. You can use each type of list builder only

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-22

one time per stage. You can arrange these approver list builders in either sequential or
parallel order. The order you select governs the order in which those approvers included in
approver lists that are generated by list builders are assigned an approval task.

The following list builders are specific to Approval Management extensions (AMX):

• Approval Groups (see How to Model an Approval Groups List Builder)

• Job Level (see How to Model a Job Level List Builder)

• Position (see How to Model a Position List Builder)

• Supervisory (see How to Model a Supervisory List Builder)

In the List Builder dialog, you can select to specify attributes in two ways: value-based (using
the List Builder dialog) or rule-based (using the Rule Editor):

• Value-based: Specifies constraints to build the list of participants based on provided
values in the List Builder dialog. Does not apply to a Position list builder.

• Rule-based: Specifies constraints to build the list of participants based on rules that are
defined in the Rule Editor. Applies to all list builders.

Table 32-2 List Builder Options

Option Name Description List Builder

Name The name of the approval group to use. Approval Groups

Allow Empty Groups When selected, allows the use of approval groups with
no members.

• Not selected: When an approval group has no
members or is empty, the rules engine generates an
error notification that the approval group is empty.

• Selected: When an approval group has no members
or is empty, the rules engine does not generate an
error and continues to evaluate other rules and
participants.

Approval Groups

Starting Participant The first participant in a list, usually a manager. Job Level

Position (rule-based only)

Supervisory

Top Participant The last participant in the approval. Approval does not
go beyond this participant in a hierarchy.

Job Level

Position (rule-based only)

Supervisory

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-23

Table 32-2 (Cont.) List Builder Options

Option Name Description List Builder

Number of Levels A positive number specifying the lowest and highest job
level (for Job Level), or the number of levels to traverse
(for Supervisory). This number can be an absolute
value, or a value relative to the starting point or creator.

Settings for Job Level:

• At least: Referred to as x1 here.
– This assigns approvers as long as the job level

‘<’ x1. As soon as x1 is ‘=’ or ‘>’ approver-job-
level, it will stop assigning approvers. It checks
the job level of the current user and then
assigns if the condition matches.

– The At least action is more stringent than the
At most action. Therefore, the At least
condition must be fulfilled first and then At
most will continue from where At least ended.

• At most: Referred to as x2 here.
– This assigns approvers as long as the

approver’s manager's job level is ‘<’ or ‘=’ x2. It
will not assign any approvers ‘>’ x2. It checks
the job level of the user to be assigned and if
the condition matches the request, it goes to
approver’s manager.

See Example Job Level Settings for Number of Levels
Option following this table.

Settings for Supervisory:

In the context of the Supervisory list builder, the Number
of Levels parameter is a way to limit the hierarchy
traversal. The other parameter that governs the
hierarchy traversal is Top Participant. If either of the
conditions set by Number of Levels or Top Participant is
reached or met, the hierarchy traversal is stopped.

• XPath: An expression that evaluates to a positive
integer. For example, Task.payload.noOfLevels.

• By Number: A positive number specifying the
number of levels to traverse for Supervisory.

Job Level

Position (rule-based only)

Supervisory

Relative to A positive number specifying the number of levels to
traverse for Supervisory, or the number of job level for
Job Level and Position. Possible values are: starting
point, creator and absolute.

Job Level

Position (rule-based only)

Include all managers
at last level

If the job level equals that of the previously calculated
last participant in the list then it includes the next
manager in the list.

Job Level

Utilized Participants Utilizes only the participants specified in this option from
the calculated list of participants. Available options are:
Everyone, First and Last manager, Last manager.

Job Level

Position (rule-based only)

Auto Action Enabled Specifies if the list builder automatically acts on task
based on the next option.

Job Level

Supervisory (rule-based only)

Position (rule-based only)

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-24

Table 32-2 (Cont.) List Builder Options

Option Name Description List Builder

Auto Action Specifies the outcome to be set. It can be null if auto
action is not enabled.

Job Level

Supervisory (rule-based only)

Position (rule-based only)

Example Job Level Settings for Number of Levels Option

Example 1: At least < At most

Settings:

• At least = 3 (absolute)

• At most = 5 (absolute)

• Creator = JL1 (level = 1)

• Starting Participant = manager

• Include all managers at last level = no

• Top Participant = JL9 (level=9)

Results:

• Starting point is always considered in the approval flow: JL2

• Evaluation of At least begins first and per At least = 3 condition: JL2 and JL3 are
eligible, but JL2 has already been evaluated as part of the starting point condition,
therefore the only At least condition match is JL3.

• At most evaluation begins and per At most = 5 condition: JL2, JL3, JL4, and JL5 are
eligible, but JL2 and JL3 are already evaluated as part of the starting point and At least
condition, therefore the only At most condition match are JL4 and JL5.

• All Approvers: Starting point (JL2) + At least (JL3) + At most (JL4, JL5) = JL2, JL3,
JL4, JL5

Example 2: At least = At most

Settings:

• At least = 4 (absolute)

• At most = 4 (absolute)

• Creator = JL1 (level = 1)

• Starting Participant = manager

• Include all managers at last level = no

• Top Participant = JL9 (level=9)

Results:

• Starting point is always considered in the approval flow: JL2

• Evaluation of At least begins first and per At least = 4 condition: JL2, JL3, and JL4 are
eligible, but JL2 has already been evaluated as part of the starting point condition,
therefore the only At least condition match is JL3 and JL4.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-25

• At most evaluation begins and per At most = 4 condition: JL2, JL3, and JL4 are
eligible, but JL2, JL3, and JL4 are already evaluated as part of the starting point
and At least condition, therefore there is no match for the At most condition.

• All Approvers: Starting point (JL2) + At least (JL3, JL4) + At most (no match) =
JL2, JL3, JL4

Configuring the Hierarchy Provider Plug-In

If you do not configure the hierarchy provider plug-in, then the Position list builder does
not work.

When you define a hierarchy extension, if you do not define the property
mustUseSpecifiedProvider, then its default value is true.

You can configure the Supervisory and Job Level list builders to not throw an
exception when there is a problem with the hierarchy plug in. To configure the list
builders, you must add the mustUseSpecifiedProvider property to the workflow-
identity-config.xml configuration file, and set the value attribute to false.

By default, the workflow-identity-config.xml file does not include the
mustUseSpecifiedProvider property. If this property is present and its value is false,
then the Supervisory and Job Level list builders use the LDAP management chain
when there is a problem with the hierarchy plugin.

The following example shows a workflow-identity-config.xml file that specifies the
mustUseSpecifiedProvider property. The value of this property is set to true so that
the Supervisory and Job Level builders fail when the hierarchy plug in is not available.

<ISConfiguration xmlns="http://www.oracle.com/pcbpel/identityservice/isconfig">
 <configurations>
 <configuration realmName="jazn.com">
 <provider providerType="JPS" name="JpsProvider" service="Identity">
 <property name="jpsContextName" value="default"/>
 <property name="IdentityServiceExtension"
 value="HCMIdentityServiceExtension"/>
 </provider>
 </configuration>
 </configurations>
 <property name="caseSensitive" value="false"/>
 <property name="mustUseSpecifiedProvider" value="true"/> <!-- Fail when the
hierarchy plug ins are not available-->
 <serviceExtensions>
...
</ISConfiguration>

32.3.6.3.1 How to Model an Approval Groups List Builder
Approval groups are a statically defined or a dynamically generated list of approvers.
Approval groups usually are configured by the process owner using the worklist
application. Typically, they are used to model subject matter experts outside the
transaction's managerial chain of authority, such as human resources or legal counsel,
that must act on a task before or after management approval.

Static approval groups are predetermined lists of approvers, while dynamic approval
groups generate approver lists at runtime. Dynamic approval groups require:

• Delivery of an implementation according to the dynamic approver list interface by
the developer

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-26

• Registration of the above implementation as a dynamic approval group using the Oracle
BPM Worklist's UI by the IT department

• Availability of the class file in a globally well-known directory that is part of the SOA class
path

Use dynamic approval groups when you need to calculate the approval group dynamically
based on the task payload. Specially in line level approval where each line may require
different approval group. For example, each cost center may require the approval of a
different cost center owner. Each line may have different cost centers that require the
approval of different cost center owners. When the number of cost centers is greater than one
hundred, this may become difficult to manage with business rules.

Two views of the Approval Groups list builder are shown in the following figures.

Figure 32-18 Value-Based Approval Groups List Builder Dialog

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-27

Figure 32-19 Rule-Based Approval Groups List Builder Dialog

To model an Approval Groups list builder, first specify if the list builder's attributes are
to be value-based or rule-based, and then select the options on the corresponding
dialog box. For information about the options, see Table 32-2.

Note:

If you configure the resource list with a group, then it behaves as a single
type participant regardless of the serial or parallel type configuration.

32.3.6.3.2 How to Model a Job Level List Builder
The Job Level list builder ascends the supervisory hierarchy, starting at a given
approver and continuing until an approver with a sufficient job level is found.

Two views of the Job Level list builder are shown in the following figures.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-28

Figure 32-20 Value-Based Job Level List Builder Dialog

Figure 32-21 Rule-Based Job Level List Builder Dialog

To model a Job Level list builder, first specify if the list builder's attributes are to be value-
based or rule-based, and then select the options on the corresponding dialog box. For
information about the options, see Table 32-2.

32.3.6.3.3 How to Model a Position List Builder
The Position list builder ascends the position hierarchy, starting at the requester's or at a
given approver's position, and goes up a specified number of levels or to a specific position.

The following figure shows a view of the Position list builder.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-29

Figure 32-22 Rule-Based Position List Builder Dialog

To model a Position list builder, first specify if the list builder's attributes are to be
value-based or rule-based, and then select the options on the corresponding dialog
box. For information about the options, see Table 32-2.

32.3.6.3.4 How to Model a Supervisory List Builder
The Supervisory list builder ascends the primary supervisory hierarchy, starting at the
requester or at a given approver, and generates a chain that has a fixed number of
approvers in it.

Two views of the Position list builder are shown in the following figures.

Figure 32-23 Value-Based Supervisory List Builder Dialog

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-30

Figure 32-24 Rule-Based Supervisory List Builder Dialog

To model a Supervisory list builder, first specify if the list builder's attributes are to be value-
based or rule-based, and then select the options on the corresponding dialog box. For
information about the options, see Table 32-2.

32.3.6.4 How to Use Business Rules to Specify List Builders
Approvers of a task can be defined either inline in a task definition or by using business rules
to specify the list builders that identify the actual approvers of a task. In addition, you can use
business rules to specify approver substitution and list modifications. These rules are defined
with the help of Oracle Business Rules and can vary between organizations. Typically,
however, they are defined by the customer.

Business rules are a combination of conditions and actions. Optionally, priority and validity
periods can be defined for these rules. In Human Workflow rules, rule conditions are defined
using fact types that correspond to the task, and to the task message and entity attributes
(which are XML representation of SDO objects). Rule actions consist of approver list builders
and their parameters. Approver list builders move up a particular hierarchy and construct or
modify the approver list according to the parameters defined. Approver list builders are
implemented as XML (JAXB) fact types.

For more information about these concepts, see the chapters in Using the Business Rules
Service Component in Developing SOA Applications with Oracle SOA Suite.

The sections that follow explain list creation, approver substitution, list modification, and
repeating node attributes using Oracle Business Rules.

32.3.6.4.1 How to Create Lists
You can use business rules to define the list builders you want to use. There are two types of
business rules:

• Rules that define the parameters of a specific list builder. In this case, the task routing
pattern dialog box is modeled to use a specific list builder. The parameters in the list
builder come from rules. With this option, rules should return a list builder of the same
type as the one modeled in JDeveloper. The following figure shows a sample
configuration.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-31

Figure 32-25 Specific List Builder Configuration

• Rules that define the list builder and the list builder parameters. In this case, the
list itself is built using rules. The following figure shows a sample configuration.

Figure 32-26 List Builder and Parameters Configuration

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-32

In the rule dictionary, rule functions are seeded to facilitate the creation of list builders. The
list builder functions are:

• CreateResourceList

• CreateSupervisoryList

• CreateManagementChainList

• CreateApprovalGroupList

• CreateJobLevelList

• CreatePositionList

In Rules Designer, model your conditions and, in the action part, call one of the functions
above to complete building your lists, as shown in the following figure.

Figure 32-27 Modeling Conditions in Rules Designer

The parameters for the rule functions are similar to those in JDeveloper modeling. In addition
to the configurations in JDeveloper, some additional options are available in Rules Designer:

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-33

Parameter Description

startingPoint
topApprover

In JDeveloper, starting point and top approver are specified as users. In
Rules Designer, you can build a hierarchy principal as the starting point and
top approver using the HierarchyBuilder function, as shown in the
following figure.

Note: If you want to leave the job level attribute undefined when using the
HierarchyBuilder function, then you must set its value to a negative
integer.

HierarchyBuilder has a number of functions including getManager,
getPrincipal, and getManagerOfHierarchyPrincipal.

• HierarchyBuilder.getManager builds an approval list using the
following parameters:
– ListbuilderType (string). Valid values: "supervisory",

"joblevel", "position"
– ReferenceUser (string). For example, Task.creator
– AssignmentID (long). The default value is -1, otherwise it is set

to the user.
– EffectiveDate (string). For example, "2021–06–15"
– HierarchyType (string). The type of manager to look for when

the list is built. Example values are: "LINE_MANAGER",
"RESOURCE_MANAGER", "CORPORATE_MANAGER",
"PROJECT_MANAGER"

Example:
HierarchyBuilder.getManager("supervisory",Task.creator,
-1,"2021–06–15","LINE_MANAGER")

• HierarchyBuilder.getPrincipal locates an approval list member
and can be used, for example, to identify the top approver in an
approval list. It takes the following parameters:
– PrincipalName (string). Valid values: "supervisory",

"joblevel", "position"
– AssignmentID (long). The default value is -1, otherwise it is set

to the user.
– EffectiveDate (string). For example, "2021–06–15"
– HierarchyType (string). The type of manager to look for when

the list is built. Default: "LINE_MANAGER". Other possible values

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-34

Parameter Description

are: "RESOURCE_MANAGER", "CORPORATE_MANAGER",
"PROJECT_MANAGER"

allowEmptyApp
rovalGroup

In Rules Designer, you can specify whether or not to allow the use of
approval groups with no members using the CreateApprovalGroupList
function, as shown in the following figure.

Valid values:

• false: When an approval group has no members or is empty, the rules
engine generates an error notification that the approval group is empty.

• true: When an approval group has no members or is empty, the rules
engine does not generate an error and continues to evaluate other
rules and participants.

autoActionEna
bled
autoAction

In Rules Designer, you can configure that the users resulting from a
particular list builder can act automatically on the task.

Valid values for autoAction: null | Approve | Reject

responseType If the response type is REQUIRED, the assignee has to act on the task;
otherwise, the assignment is converted to an FYI assignment.
Valid values: REQUIRED | NOT_REQUIRED

ruleName Rule name is used to create an assignment reason. The
rule_set_name_rule_name is used as a key to look up the resource
bundle for a translatable reason for assignment. This resource is looked up
first in the project resource bundle, then in the custom resource bundle, and
last in the system resource bundle.

Valid values: any valid string

lists This is an object that is a holder for all the lists that are built. Clicking this
option shows a pre-asserted fact that a Lists object is used as the
parameter.

The following figures show examples of rules.

Figure 32-28 Example Rules (1)

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-35

Figure 32-29 Example Rules (2)

Note:

If multiple rules fire, the list builder created by the rule with the highest
priority is selected.

If the rules have the same priority, they are fired in random order, the first
one fired is selected.

WARNING:

An improper or incomplete rules definition in a list-creation rule set can cause
runtime errors. Errors can be caused by the following:

• No rule was defined in the rule set.

• None of the conditions defined in the rule was met.

Ensure that rules are properly defined to handle all conditions.

32.3.6.4.2 How to Make Approver Substitutions
List substitution enables you to substitute users, groups, and application roles that
appear in a list. List substitution is available from Rules Designer and does not require
any configuration in JDeveloper. In each rule dictionary there is a pre-seeded rule set
named "SubstitutionRules." Also in the rule dictionary, a "Substitute" rule function is
seeded to configure list substitutions. Table 32-3 lists the "Substitute" functions and
their parameters.

Table 32-3 "Substitute" Function Parameters

Parameter Description

fromId The ID of the user/group/application role from which to substitute.

toId The ID of the user/group/application role which to substitute to.

ruleName Used to create an assignment reason. Rule set name + "_" + rule
name is used as a key to look up the resource bundle for a translatable
reason for assignment. This resource is looked up first in the project
resource bundle, then in the custom resource bundle, and last in the
system resource bundle.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-36

Table 32-3 (Cont.) "Substitute" Function Parameters

Parameter Description

substitutionRules An object that is a holder for all the substitutions. Clicking this option
shows a pre-asserted fact 'SubstitutionRules' object to be used as the
parameter.

Note:

In a Human Task with a substitution rule, the resulting approval list might have a
duplicate participant. It is not possible to edit the duplicate approvers in the Future
Participants list.

The following figure shows a sample approver-substitution action.

Figure 32-30 Sample Approver-Substitution Action

32.3.6.4.3 How to Make List Modifications
List modification enables you to extend or truncate the Job Level and Position list builders
from rules. List modification is applied after the list is created. This feature does not require
any configuration from JDeveloper. In each rule dictionary there is a pre-seeded rule set
named "ModificationRules." This rule set is called only when the Job Level and Position list
builders are asserted in the list that created the rule sets. Only the highest priority applicable
rule is applied.

In Rules Designer, rule functions are seeded to facilitate list modifications. These functions
are the following:

• Extend

• Truncate

These rule functions are shown in the following figure.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-37

Figure 32-31 Rule Functions

Extend and truncate parameters are listed in Table 32-4 and Table 32-5.

Table 32-4 "Extend" Function Parameters

Parameter Description

ifFinalApproverLevel The level at which final approver is at or below.

extendBy The number of levels to add to the final job level.

ruleName Used to create an assignment reason. Rule set name + "_" + rule
name is used as a key to look up the resource bundle for a
translatable reason for assignment. This resource is looked up
first in the project resource bundle, then in the custom resource
bundle, and last in the system resource bundle.

lists An object that is a holder for all the lists that are built. Clicking this
option shows a pre-asserted fact 'Lists' object to be used as the
parameter.

Table 32-5 "Truncate" Function Parameters

Parameter Description

afterLevel The level after which to truncate.

ruleName Used to create an assignment reason. Rule set name + "_" + rule
name is used as a key to look up the resource bundle for a
translatable reason for assignment. This resource is looked up
first in the project resource bundle, then in the custom resource
bundle, and last in the system resource bundle.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-38

Table 32-5 (Cont.) "Truncate" Function Parameters

Parameter Description

lists An object that is a holder for all the lists that are built. Clicking this
option shows a pre-asserted fact 'Lists' object to be used as the
parameter.

The following figure shows a sample list-modification action.

Figure 32-32 Sample List-Modification Action

32.3.6.4.4 How to Define Repeating-Node Attributes of a Business Rule Condition
When defining a business rule, you can base a rule condition on an attribute that comes from
a repeating node. For example, there can be multiple line items for each purchase-order
header in a purchase-order scenario. In this case, PurchaseOrderHeader is a non-repeating
node, and PurchaseOrderLines is a repeating node.

When defining a rule like the following:

IF line item's amount is <50000, THEN create supervisory list containing jcooper up to two
levels

the amount is an attribute of line, that is, it is an attribute of a repeating node.

Use the following procedure to define repeating-node attributes:

1. In Base Dictionary, select Facts.

In the Humantask1RulesBase rules tab, a list of facts displays as follows.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-39

Figure 32-33 Facts List

2. Edit each appropriate fact to ensure that it is visible, as shown in the following
figure.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-40

Figure 32-34 Edit XML Fact Dialog

3. Decide whether you want to add a generic rule, a decision table, or a verbal rule. Once
you decide, click the Add (+) button. In Rules Designer, select a rule and click Add icon
(+).

The following rule-definition section displays.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-41

Figure 32-35 Rule-Definition Section

4. Click the double down arrows to the left of the rule name to show advanced
settings, as shown in the following figure.

Figure 32-36 Advanced Settings

5. Select Tree Mode, then click <fact type> to display a list of options from which to
choose a ROOT, as shown in the following figure.

Figure 32-37 ROOT Options

6. Define the rule conditions.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-42

32.3.6.5 How to Use Assignment Context
Assignment context is information that is present in the task. During a task's life cycle, it
progresses through various assignees. As the context of the task assignees changes, the
assignment-context value also changes.

When browsing through the history of a task, you can see the various assignment contexts
that the task contained during its life cycle. The Oracle BPM Worklist uses assignment
context when it displays task history.

32.3.6.5.1 Configuring Assignment Context
You configure assignment context in the Add (or Edit) Participant Type dialog box in
JDeveloper in the following ways:

• Select the Rule-based option in the Participant Type section.

In this case, the assignment context is configured implicitly, behind the scenes. The
Rules layer resolves the list of assignees based on the rule. As the task progresses
through the various assignees, the assignment context value is computed based on the
rule.

Assignment context can also be assigned in value-based context. See Assigning Task
Participants for more information.

• Select the Advanced finger tab to configure any number of assignment contexts.

In this case, you can customize assignment contexts by entering your own information
into the Assignment Context fields. the following figure shows the fields.

Figure 32-38 Assignment Context Section

Table 32-6 contains field descriptions.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-43

Table 32-6 Assignment-Context Field Descriptions

Field Description

Name Assignment-context name, which can be whatever you choose. This is a
string field.

Value Assignment-context value, which can be whatever you choose. This is a
string field.

Type Associated with the Value field.

Possible values are:

– By name - A user-provided Value parameter.
– By Expression - A Value parameter created by the Expression

Builder.

32.3.6.6 How to Aggregate Task Approvals
A task can be assigned multiple times to one user during the task life cycle. The
Human Task Editor enables you to configure how often a user sees the task.

The following procedure explains how to configure task-approval aggregation.

1. Click Configure in the top.

The Task Properties window displays as follows.

Figure 32-39 Task Properties

2. Select a task-aggregation option from the drop-down list:

• None - Indicates there is no approval aggregation, which means the user sees
the task as many times as it is assigned to him or her.

• Stage - A user sees the task only one time in a stage.

• Task - A user sees the task only one time in the task life cycle.

3. Click OK.

When the task is aggregated and assigned to a user, the task has a collection table in
the Oracle BPM Worklist that displays all the collections in the task the user is
approving. After the user performs an action, the action is recorded and then replayed
to all the user's assignments, either in the stage or task.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-44

An aggregated task is a proxy task for all the regular assignments.

Aggregated tasks are business tasks and show the actions approve and reject. If you can
aggregate FYI tasks, then they show the approve and reject actions. In this case the approve
and reject actions are treated as an acknowledgement.

Note:

Aggregation is available only when the assignees are from the same set. For
example, if you assign a task to user A and another to both user A and user B; then
user A sees two separate tasks. The two assignments are not aggregated because
the assignees are not exactly the same.

32.3.7 Defining Escalation and Renewal Policies
This feature is not specific to AMX. For more information, see Escalating, Renewing, or
Ending the Task in Developing SOA Applications with Oracle SOA Suite.

Note:

Escalation is only applicable to management chain.

32.3.8 Specifying Notification Settings
This feature is not specific to AMX. For more information, see Specifying Participant
Notification Preferences in Developing SOA Applications with Oracle SOA Suite.

32.3.9 Using Advanced Settings
Using advanced settings includes the following tasks:

• Specifying callbacks for notes, attachments, and validation

• Defining security access rules

32.3.9.1 How to Add Callbacks for Notes, Attachments, and Validation
Callbacks are mechanisms that allow you to do the following:

• Access notes and attachments associated with business objects from external content-
management systems or custom schemas

• Perform custom validation of workflow tasks at various points in a task life cycle by
defining validation logic for each task action

Use the following procedure to add callbacks:

1. From the Task Editor, select the 4 finger tab to configure the callbacks.

The Callback Details dialog box opens as follows.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-45

Figure 32-40 Callback Details Dialog

2. Use one of these options:

• In the Comments Callback field, enter the appropriate Java class for the notes
callback.

• In the Attachments Callback field, enter the appropriate Java class for the
attachments callback.

• In the Validation Callback field, enter the appropriate Java classes, separated
by commas, for the validation callback.

3. Click OK.

32.3.9.2 How to Define Security Access Rules
Access rules restrict the actions that a user can perform by overriding default actions
and permissions. At runtime, the system checks every operation in a task against any
defined access rules to see if a user is permitted to make changes, such as approve,
add, delete, and so on If the user is not permitted to make changes, the operation
errors out with an appropriate error message.

In AMX, access rules can be defined for Groups and Application Roles. For example, if
an access rule is defined to restrict the "Withdraw" action for a group called Operators,
then any user belonging to that group is not allowed to withdraw the task. Similarly, if
an access rule is defined to restrict the "Withdraw" action for an application role called
SOAAuditViewer, then any user who has been granted the SOAAuditViewer
application role is not allowed to withdraw the task.

To define a security access rule:

1. Select the Access finger tab to display security access rules.

2. Click Configure Visibility.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-46

The Configure Task Content Access dialog box displays, as shown in the following figure.

Figure 32-41 Configure Task Content Access Dialog (1)

3. Click the Task Content or Task Actions tab. (This procedure assumes the Task
Content tab has been selected.)

4. Look up the appropriate content and role in the grid.

5. From the drop-down list, select the appropriate privilege or action.

6. Click OK to close the dialog box.

Use the same procedure to define access rules for Application Groups, with the following
exceptions:

• Click the Task Actions tab to select it.

• Select Application from the drop-down list.

• Select application roles to include in the access rule from the Select an Application Role
dialog box, as shown in the following figure.

See Figure 29-61 in Specifying Access Policies and Task Actions on Task Content for
more information.

For more information, see Specifying Access Policies and Task Actions on Task Content in
Developing SOA Applications with Oracle SOA Suite.

Chapter 32
Designing Approval Management Tasks in Oracle JDeveloper

32-47

32.4 Using the End-to-End Approval Management Samples
You can use samples of end-to-end approval management.

Table 32-7 shows the end-to-end workflow examples included in the
ORACLE_HOME\samples\soa-infra\workflow\amx directory.

In addition to the demonstration features listed in the table, all samples show the use
of worklist applications and workflow notifications.

Table 32-7 End-to-End Samples

Sample Description Location

Expense Line
Approval

Illustrates line-level approval with
approval policy defined.

ORACLE_HOME\samples\soa-infra\workflow\amx
\amx-101-expense-line

Employee Hiring Illustrates ad-hoc insertion
capabilities for an approval
having two stages - Approval
Group List Builder in "Order"
voting regime and a Supervisory
list builder.

ORACLE_HOME\samples\soa-infra\workflow\amx
\amx-102-hiring-approval-group

Purchase Order
Approval

Illustrates the Purchase Order
approval scenario with header
and line-level approvals.

ORACLE_HOME\samples\soa-infra\workflow\amx
\amx-103-purchaseOrder-2dimensions

Employee Transfer Illustrates the Employee Transfer
scenario from one team to
another through parallel job level
participants.

ORACLE_HOME\samples\soa-
infra\workflow\amx\amx-104-employee-
transfer

Self Approval Illustrates how to implement self-
approval through auto-action
rules.

ORACLE_HOME\samples\soa-
infra\workflow\amx\amx-105-self-approval

Position List Builder Illustrates the use of the Position
list builder.

ORACLE_HOME\samples\soa-infra\workflow\amx\
amx-108-position-list

32.5 Using the User Metadata Migration Utility
The user metadata migration utility, hwfMigrator, automates the process of migrating
Workflow user-configurable data from one SOA server to another by executing a shell
script.

For more information about the user metadata migration utility, see Moving Human
Workflow Data from a Test to a Production Environment in Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

Chapter 32
Using the End-to-End Approval Management Samples

32-48

33
Working with Adaptive Case Management

Learn how to create and configure a case management definition.

• Introduction to Adaptive Case Management

• Creating a Case

• Configuring a Case

• Configuring Case General Properties

• Configuring Case Data and Documents

• Configuring Case User Events

• Defining Case Stakeholders and Permissions

• Defining Case Tag Permissions

• Localizing a Case

• Case Activities and Sub Cases

• Defining Input Parameters for Case Activities

• Defining Output Parameters for Case Activities

• Configuring Case Activities

• Creating a Global Case Activity

• Using Business Rules with Cases

• Closing Cases

• Integrating with Oracle BPM

• Schema Reference

33.1 Introduction to Adaptive Case Management
Adaptive case management is a way of modeling very flexible and data intensive business
processes.

Use adaptive case management to model a pattern of work with the following characteristics:

• Complex interaction of people, content and policies

• Complex decision making and judgments

• The progress of the case depends on user decisions, actions, events, and policies

• Changes at runtime, for example, adding new stakeholders enables new actions

• Context-driven assignments, for example, assignments based on the number of cases
resolved by a certain analyst and the time it took them to resolve them

Case management enables you to handle unstructured ad-hoc processes. It relies on the
content and information of the process so that the user can make informed business

33-1

decisions. It focuses on unpredictable business processes which rely on worker
knowledge and involve human participants.

Case management involves:

• People, often referred to as case workers or knowledge workers

• Data

• Documents

• Collaboration

• Reporting

• History

• Events

• Policies

• Processes

A case is a collection of information, processes, tasks, rules, services. It requires the
worker's knowledge, their involvement and active collaboration to move the case
forward.

Adaptive case management enables you to define only the activities a user performs
to achieve a goal without defining the workflow process. However, it does supports
dynamic workflows, structured processes and a combination of both.

A case definition contains various case activities that represent the different work that
users can perform in the context of a case. Oracle BPM allows you to define case
activities based on:

• a Human Task

• a BPMN process

• a custom Java class

33.1.1 Differences Between Adaptive Case Management and
Business Processes

Adaptive case management allows the end user to define the case flow at runtime,
while business processes require you to define the flow at design time. Adaptive case
management uses documents and contextual information to determine the flow of the
case at runtime.

Table 33-1 illustrates the differences between adaptive case management and
business processes.

Table 33-1 Differences between adaptive case management and business
processes

Adaptive Case Management Business Process

Data centric Process centric

Adhoc, unstructured progress of a case from
creation to its final state

The process instance follows a predefined
workflow

Chapter 33
Introduction to Adaptive Case Management

33-2

Table 33-1 (Cont.) Differences between adaptive case management and
business processes

Adaptive Case Management Business Process

Non-deterministic - the case flow is
dynamically determined at runtime

The process flow logic is defined at design
time

The case consists of a collection of processes
and isolated tasks

The flow logic is expressed in a process model

The flow is determined by objectives, the case
workers choose actions to meet a certain goal

The flow is designed to automate and improve
processes to increase efficiency

Knowledge work based Routine work based

Collaborative environment Collaboration requirements are not a priority

Strongly relies on documents Uses structure data

33.1.2 Adaptive Case Management Artifacts
The key artifacts in adaptive case management are:

• Case: a collection of structured, semi-structured, un-structured processes, information
and interactions used to make a business decision.

• Case Model: models the definition of the case. The case has multiple attributes such as
name, type, various milestones. It also has associations like the behavior container and
root folder. The definition of the case is the collection of these attributes and associations.

• Case Instance: a collection of documents, data and case activities that are used to
process the case and audit the progress of the case.

• Case Folder: the folder(s) in the Content Management System where the case
information is stored.

• Case Data: the data for the case stored in the BPM database.

• Case Lifecycle: the case lifecycle is reflected by the case state, which can be one of
active, stale, suspended, aborted, or closed.

• Milestones: checkpoints that indicate the progress of a case and represent the
completion of a deliverable or a set of related deliverables. Stakeholders can use
milestones to obtain a high level view of the status of the case.

• Case Activity: the work that can be performed in the context of a case. Case activities
have various properties that define their behavior. Case activities can be mandatory,
conditional, or optional. Case activities can be manual or automatic. Manual case
activities require a case worker to initiate them while automatic case activities are
initiated by the case runtime. You implement case activities using a BPMN process, a
Human Task or a custom java class.

• Sub Case: a child task of a case, used when additional activities must be spawned as
part of the processing of the parent case. Sub cases are instantiated at run time and are
similar to case activities, except that they only inherit data from the parent case.

• Case Event: include case lifecycle changes, case milestone changes, case activity
changes and other manual case events. Manual case events are events modeled in the
case corresponding to various manual actions that can occur during the case processing.

Chapter 33
Introduction to Adaptive Case Management

33-3

33.1.3 Use Cases
Adaptive case management is suitable to model business processes in many different
industries and scenarios:

• Financial Services: loan origination, credit and debit card dispute management,
financial crime management (suspicious activity reporting), wealth management,
brokerage, trading, new business account opening, e-bank account opening,
accounts payable, accounts receivable, and B2B order management.

• Insurance: P&C claims processing, policy management, policy servicing,
underwriting, fraud prevention, customer on-boarding.

• Health Care: payer claims processing, policy and procedure management, virtual
patient records management, member service management, provider service
management, group sales management, health plan insight, clinical and
operational insight.

• Energy & Utilities: process safety management, FERC e-tariff, transmittal
process, SOP processing.

• Public Sector: citizen benefits eligibility and benefit's enrollment, grant
management, public safety, tax and custom filling, court solution and judicial
matters.

• Human Resources: employee on-boarding, employee off-boarding, employee
performance review, employee benefits administration.

• Legal: contract management, legal matter management, auditing and compliance.

• Customer Service: customer correspondence, call center, constituent services.

33.1.4 Case State Model
The following diagram shows the lifecycle of a case through its various states, from
creation to closure.

Chapter 33
Introduction to Adaptive Case Management

33-4

Figure 33-1 Case State Model

33.2 Creating a Case
A case can be added to an already existing BPM project that doesn't already include one, or
you can create a new BPM project for a case.

You can define only one case per BPM project.

33.2.1 How to Create a Case
To create a case you must open or create a BPM project and then create the case. For more
information on how to create a BPM project, see Creating and Working with Projects.

To create a case:

1. Select File.

2. Select New.

3. Select BPM Tier.

4. Select Create Case Management.

The Create Case Management dialog box appears.

5. Enter a name to identify the case.

6. Optionally, enter a namespace.

7. Click OK.

BPM Studio creates the new case and displays it in the Case Management editor so that
you can configure it.

Chapter 33
Creating a Case

33-5

33.3 Configuring a Case
Use the Case Management editor to configure cases.

Figure 33-2 shows the Case Management Editor.

Figure 33-2 Case Management Editor

33.3.1 How to Edit a Case
Edit cases using the Case Management editor. Newly created cases are displayed in
the Case Management editor automatically. To edit an existing case, open the case file
as described below.

To edit a case:

1. Select the Application Navigator.

2. Expand the project that contains the BPMN process.

3. Expand the BPMN Content folder.

4. Double click the case file.

The case file has the .case extension. There is only one case file per BPM project.

5. Edit the case. See:

Chapter 33
Configuring a Case

33-6

• Configuring Case General Properties

• How to Configure Case Data

• Configuring Case User Events

• How to Add Case Stakeholders

• Localizing a Case

33.4 Configuring Case General Properties
Use the General tab to configure the general properties of a case.

The General tab includes the following sections:

• General properties - use this section to configure properties for a case including Title,
Summary, a text summary of what the case does, Priority, a value from 1 (high) through 5
(low), and a Category, set as Plain Text or Translation. See How to Configure the Case
General Properties

• Due Time - specifies the case due date using the Duration value.

The Duration can be expressed as a static value (select By Value) or as an XPath
expression (select By Expression). The case due date is calculated from when a case
starts.

If Use Business Calendar is selected, and an organizational unit is specified (see below),
the case due date is calculated using the business calendar associated with the
organizational unit. Otherwise the normal calendar is used. See Case Deadlines.

• Organizational Unit - select an organizational unit to be associated with the case. It can
be expressed as a static value (select By Value) or as an XPath expression (select By
Expression). Only members of the organizational unit specified are able to access the
case, even if they are also specified as stakeholders.

• Milestones - specifies milestones and their properties for the case.

Milestones represent the completion of a deliverable or a set of related deliverables. They
are checkpoints that indicate the progress of a case. Stakeholders can use them to
obtain a high level idea of the status of the case.

There is no direct activity or work associated with milestones.

Use the Can Be Revoked checkbox to indicate that a milestone can be revoked. Only
milestones that have been achieved can be revoked. This does not affect other achieved
milestones for the case.

The milestone Duration can be set using a value or an XPath expression. This is used to
calculate the milestone deadline, based on when the milestone started. See Case
Deadlines.

Add, edit, delete, and re-order milestones using the controls in the panel. Use the panel
to configure the Name, Can be Revoked value, Duration Type, and Duration for
milestones. See How to Add Case Milestones.

• Outcomes - create, edit, and delete case outcomes in this section.

Outcomes are user-defined values that are assigned to the case when it is completed.
For example in a medical treatment case, possible outcomes might be: admitted,
discharged, referred.

Each outcome includes a name, and a display name. See How to Define Case Outcomes

Chapter 33
Configuring Case General Properties

33-7

33.4.1 Case Deadlines
Cases support two types of deadlines - case due dates, and milestone deadlines. Both
of these are expressed as a duration, specified as either a value or an XPath
expression. Durations are configured in the General tab in the Case Management
editor.

Case due dates are calculated using the value specified in the Duration field in the
Due Time panel, based on the starting date and time of the case. When the case due
date is reached, a case deadline event is raised.

If Use Business Calendar is selected, and an organizational unit is specified, the case
due date is calculated using the business calendar associated with the organizational
unit. Otherwise the normal calendar is used.

Milestone deadlines are calculated using value specified in the Duration field for the
milestone in the Milestones panel, based on the starting date and time of the
milestone. If a milestone is still active when the milestone deadline is reached, a
milestone deadline event is raised.

33.4.2 How to Configure the Case General Properties
Specify general case information using the General tab of the Case Management
editor.

To configure the general properties:

1. Edit the case.

2. Select the General tab.

3. Provide a title for the case.

4. From the Priority list, select a priority.

The value of the priority varies from 1 to 5, being 1 the highest and 5 the lowest.

Priority indicates the importance of the case so that the case worker can prioritize
their work.

5. Enter a category.

Categories enable you to group similar cases together.

33.4.3 How to Add Case Milestones
Create milestones to track progress in cases. Do not include spaces in milestone
names.

To add a milestone:

1. Edit the case.

2. Select the General tab.

3. Expand the Milestones section.

4. Click Add.

5. Enter the name of the milestone.

Chapter 33
Configuring Case General Properties

33-8

6. Click OK.

33.4.4 How to Define Case Outcomes

To define a case outcome

1. Edit the case.

2. Select the General tab.

3. Expand the Outcomes section.

4. Click Add.

5. Enter the name of the milestone.

6. Click OK.

33.5 Configuring Case Data and Documents
Data and document storage is configured in the Data & Documents tab in the Case
Management editor.

Cases can be configured to store documents in an enterprise content manager.

33.5.1 Case Document Operations
A case can contain one or more related documents. Stakeholders can upload case
documents that only other stakeholders with the appropriate permissions can view or delete.

To perform operations on documents, use the CaseStreamService as described in the Oracle
Fusion Middleware Business Process Management Suite Java API Reference.

33.5.2 Specifying Permission Tags for Case Documents
You can configure who can read and update documents using permission tags. For more
information about permission tags, see Defining Case Tag Permissions.

You can specify permission tags in the following situations:

• When creating a new document using the method uploadDocument() from the
CaseDocumentStreamService class.

• By changing the permission on an existing document using the method
setPermissionTag() from the CaseService class, passing the appropriate value in the
permission tag parameter.

The support for permission tags on documents depends on the type of document store:

• Non Oracle Content Management Systems

This feature is not supported for content management systems that are not Oracle
WebCenter Content.

• BPM Database

If you use BPM DB as the document store, then you can set permission tags on case
documents without having to configure anything. See Using the BPM Database for Data
Storage.

Chapter 33
Configuring Case Data and Documents

33-9

• Oracle WebCenter Content

When you set a permission tag for a document this value is stored in the metadata
information field for the CaseManagementPermissionTag. You must create the
CaseManagementPermissionTag information field before using permission tags on
a document. To create the field, see Creating Case Fields in Oracle WebCenter
Content. When you try to set a permission tag on an existing document, it fails.

33.5.3 Using the BPM Database for Data Storage
There are some differences in behavior when using the BPM database for data
storage:

• If the parent root folder and the instance folder are not specified in the case
design, the folder used to store documents is shown as a slash, similar to a root
folder (for example, /).

• If the parent root folder and the instance folder are not specified in the case
design, and while invoking the case, you override the use of the ecmFolder tag in
the caseHeader payload (for example, caseroot), the folder used to store
documents is shown as a folder under the root (for example, /caseroot).

• If the parent and instance folders are specified in the case design, the folder used
to store documents is /parentFolderName/InstanceFolderName. However, if the
parent and instance folders are overridden from the payload, the folder specified in
the payload is shown.

33.5.4 Case Links in WebCenter Case Documents
Case documents stored in WebCenter can be include a web browser link to view the
details of the originating case.

Before using this facility, you must create a custom attribute named
CaseManagementLink in WebCenter. See Creating Case Fields in Oracle
WebCenter Content.

When case documents are uploaded to WebCenter, the CaseManagementLink is
populated.

33.5.5 Customizing Case Links in WebCenter Case Documents
The value of the CaseManagementLink property can be changed in Enterprise
Manager in the Workflow property configuration to support different usages in custom
Case Management user interfaces.

Placeholders can be used for live values to be substituted in when documents are
stored and the CaseManagementLink property is populated. For example, $host could
be used to represent the host name and $port could be used to represent the port
number. These placeholder values must be defined in mdm-url-resolver.xml.

The values $caseId and $caseNumber will be replaced with their respective values
without any additional configuration in mdm-url-resolver.xml.

Chapter 33
Configuring Case Data and Documents

33-10

33.5.6 Creating Case Fields in Oracle WebCenter Content
You must create the fields to support case information in Oracle WebCenter before using
them. This applies to the CaseManagementPermissionTag and CaseManagement Link fields.
See Specifying Permission Tags for Case Documents and Case Links in WebCenter Case
Documents.

To create a field in Oracle WebCenter Content:

1. Start the Configuration Manager applet from the Admin Applets Page.

2. Click on the Add… button.

3. Specify the name in the Metadata Field Name field, for example,
CaseManagementPermissionTag or CaseManagementLink.

4. Click OK.

5. Ensure that the Require Value checkbox is not selected, then click OK to keep the
default values.

The new information field appears.

6. Click Update Database Design to save the changes.

33.5.7 How to Configure Case Data
The data represents the payload of the case and defines the input parameters of the case.
The data represents part of the information in the case.

Note:

• Case data created based on a XSD or a business object is not initialized with
the default values defined in the XSD or business object.

• Basing case data on system schema types or on system types such as
StartCaseInputMessage is not supported. This can cause corruption of the
Adaptive Case Management project.

To configure the case data:

1. Edit the case.

2. Select the Data & Documents tab.

3. Expand the Data section.

4. Click Add.

The Add Data Dialog appears.

5. Enter a name to identify the case data.

The name is not unique. Different case data can have the same name.

6. Select an element or a type.

Chapter 33
Configuring Case Data and Documents

33-11

Note:

• Case data does not support simple data types, thus they do not
appear in the list.

• Only the case or case activity forms data of the projects that are
created in ADF appears in the list.

• Ensure that the case data input message uses names and types as
defined in the case model. Initialization of rule facts, and
corresponding rule execution, happens correctly only when case
data object names and case data object types match .

• If dateTime element is chosen in the schema, the case activity and
case data form shows only the date and not the time.

7. If you want make the case data editable, select the Editable checkbox.

8. Click OK.

33.5.8 Configuring Case Flex Fields
You can configure flex fields to map to case payload data. Use the Flex Fields section
of the Data & Documents tab of the Case Management editor to create and edit flex
field mappings that link flex field variables with data in the case.

Flex fields can be set to be unchangeable by clearing the Updatable checkbox to
support data that does not change after creation, such as a serial number.

When case data is persisted, flex field mappings are checked and the linked data is
also persisted.

You must map a flex field to a task field in the run-time task configuration as well as
create the mapping to the case payload data.

33.5.9 How to Create a Case Flex Field

To create a case flex field mapping:

1. Edit the case.

2. Select the Data & Documents tab.

3. Expand the Flex Fields section.

4. Click Add.

The Create Flex Field Dialog appears.

5. Enter appropriate information for the Name, Type, Column Name, and Source.

The Type can be String, Number or Date.

6. Specify the Source. To use an XPath expression for the Source, click XPath to
launch the Expression Builder dialog box.

7. If the flex field data can be changed after creation, select Updatable. For
unchanging data, such as a Customer ID, or serial number, leave it unchecked.

Chapter 33
Configuring Case Data and Documents

33-12

8. Click OK.

33.5.10 How to Configure the Document Location
Use the Documents section of the Data & Documents tab of the Case Management editor
to configure document locations. The document location is the folder in the enterprise content
management system where all the documents related to the case instance are stored. This
folder may contain other folders.

The case document folder name is created by concatenating the parent folder name and the
case instance folder name you provide. You must provide a case instance folder name, or an
exception is triggered at runtime.

To configure the documents location:

1. Edit the case.

2. Select the Data & Documents tab.

3. Expand the Documents section.

4. In the Parent Folder field, specify a base folder name for the case, using one of the
following options:

• Select By Name to provide the parent folder location using static text.

• Select By Expression to provide the parent folder location using an XPATH
expression.

Note:

The folder you provide must already exist.

5. In the Case Instance Folder field, specify a folder name for each case instance, using
one of the following options:

• Select By Name to provide the parent folder location using static text.

• Select By Expression to provide the parent folder location using an XPATH
expression.

In general, this is done using an XPATH expression.

Note:

The folder you provide must already exist.

6. Optionally, select Create Case Instance Folder for Oracle BPM Suite to create a case
folder in Enterprise Content Management store.

Chapter 33
Configuring Case Data and Documents

33-13

Note:

Ensure that you configure content management systems after creating
and specifying the Case Instance Folder and Parent Folder. Case
does not get created if CMS is not configured.

7. To add document properties, click Add in the Document Properties panel.

Specify the Name, Value type (By Value or By Expression), and the Value (either a
value or an XPath expression) and click OK.

33.5.11 How to Configure Enterprise Content Management
By default Oracle BPM Suite is configured to use an Oracle Database document store.
You can use the default configuration while developing your project if you do not have
access to an enterprise content manager. This does not require any configuration in
the Oracle SOA Server.

You can use the following enterprise content managers for storing case documents:

• Oracle WebCenter

• Alfresco CMIS

To use this content managers you must manually configure them using EM after
installing BPM.

The following list shows the configuration for the supported enterprise content
managers:

• Oracle WebCenter

The endpoint URL must have the following format idc://ucm_host:4444

The administrator user can be weblogic

• Alfresco CMIS

The endpoint URL must have the following format http://alfresco_host:8080/
alfresco/cmisatom

The administrator user can be weblogic

33.6 Configuring Case User Events
You can define custom user events that represent manual actions that occur while
processing the case.

Case workers raise events to indicate that something occurred. The occurrence of an
event may trigger the activation of a case activity or mark a milestone as completed.
For example, if waiting for a fax is part of a case, when it arrives, the case worker can
raise an appropriate event to indicate this has occurred.

33.6.1 How to Add User Events

Chapter 33
Configuring Case User Events

33-14

To add an event:

1. Edit the case.

2. Select the User Events tab.

3. In the User Events section of the dialog, click Add.

The Create User Event dialog box appears.

4. Provide a Name and a Display Name to identify the event.

5. Click OK.

The new event appears in the Events section.

33.6.2 How to Publish Case User Events
The case management engine publishes events to Oracle EDN. These events capture
system and user events in the case. System events include case lifecycle, case activity
lifecycle, milestone, document, and comment related events.

You can design your process to listen to these events and react to them. For more
information on how to use events in Oracle BPM, see How to Configure Your Process React
to a Specific Signal.

To publish case events:

1. Open the case in the Case Management editor.

2. Select the User Events tab.

3. Select Publish Case Events.

Note:

The case event definition is available at oramds:/soa/shared/casemgmt/
CaseEvent.edl

To view the case event schema, see CaseEvent.edl.

33.7 Defining Case Stakeholders and Permissions
Use the Stakeholders & Permissions tab of the Case Management editor to create, edit,
and delete stakeholders and their associated permissions. The permission model enables
you to define both stakeholder permissions and tag permissions.

You can define multiple stakeholders for each case you define. Only stakeholders can
perform actions on case objects. Note that if an organizational unit is specified for the case,
only members of the organizational unit are able to access the case, even if they are also
specified as stakeholders.

Stakeholder Member Types can be configured to be Users, Groups, Application Roles, or
Process Roles. The Value for these stakeholders are appropriate to the Member Type. For
example, a User stakeholder might specify a particular user ID, whereas a Group stakeholder
might specify a particular user group from your LDAP directory.

Chapter 33
Defining Case Stakeholders and Permissions

33-15

Stakeholder Values can be specified by providing a specific value, or by XPATH
expression.

The administrator decides which actions each stakeholder can perform. By default,
during deployment Oracle BPM grants stakeholders all the available permissions. After
deployment the administrator can remove non-relevant permissions.

Note:

weblogic stakeholder is a part of BPMOrganizationAdmin role and has all
permissions. Any user who is part of this role has administrator privileges.
weblogic stakeholder will be able to see the case and perform actions on
the case even if the user is not added to the case.

Future redeployments of a case project may add new stakeholder application roles
and new permission tag roles, but existing ones will not be affected if this happens.
Undeploying a case does not affect any grants or application roles.

Table 33-2 shows the default permissions by case object.

Table 33-2 Permissions by Case Object

Number Resource (Case Object) Allowed Actions

1 CASE READ, UPDATE

2 COMMENT READ, UPDATE

3 DOCUMENT READ, UPDATE

4 DATA READ, UPDATE

5 EVENT INVOKE

6 ACTIVITY INVOKE

7 MILESTONE READ, UPDATE

8 STAKEHOLDER READ, UPDATE

Chapter 33
Defining Case Stakeholders and Permissions

33-16

Table 33-2 (Cont.) Permissions by Case Object

Number Resource (Case Object) Allowed Actions

9 HEADER READ, UPDATE

N

o

t

e

:

T
h
e
R
E
A
D
p
e
r
m
i
s
s
i
o
n
f
o
r
c
a
s
e
h
e
a
d
e
r
i
s
n
o
t
u
s
e
d
a
n

Chapter 33
Defining Case Stakeholders and Permissions

33-17

Table 33-2 (Cont.) Permissions by Case Object

Number Resource (Case Object) Allowed Actions

y
w
h
e
r
e
,
a
n
d
c
h
a
n
g
i
n
g
t
h
e
p
e
r
m
i
s
s
i
o
n
d
o
e
s
n
o
t
a
f
f
e
c
t
a
n
y
t
h
i
n

Chapter 33
Defining Case Stakeholders and Permissions

33-18

Table 33-2 (Cont.) Permissions by Case Object

Number Resource (Case Object) Allowed Actions

g
.

33.7.1 How to Add Case Stakeholders
The stakeholders are the different persons involved in the processing of the case. They are
case workers that can view the case and work on it.

Figure 33-3 shows the Stakeholders and Permissions tab in the Case Management Editor.

To add a stakeholder:

1. Edit the case.

2. Select the Stakeholders and Permissions tab.

3. Click Add.

The Create Stakeholder dialog box appears.

4. Enter a Name and a Display Name to identify the stakeholder and click OK.

5. Click Add for the newly created Stakeholder to add a member and select from Add User,
Add Group, Add Application Role, or Add Process Role.

6. From the Member Type list, select a member type.

7. From the Value Type list, select how to define the value field - either By Value or By
Expression.

8. Specify a Value, appropriate to the Value Type selection - either a static string or an
XPath expression.

Value specifies the actual user acting as a stakeholder. It specifies the actual user, group
or role processing the case.

Note:

When you remove a case stakeholder definition, the underlying user, role, group or
role in the organization is not removed.

Chapter 33
Defining Case Stakeholders and Permissions

33-19

Figure 33-3 Stakeholder Tab in Case Management Editor

33.7.2 How to Add Case Permissions
Use the Permissions section of the Stakeholders and Permissions tab of the Case
Management editor to define permissions specific to a case.

You specify which users can update the case by tagging case objects with appropriate
permission values. Only users with read/write OPSS permission can see or update
case objects tagged with permissions.

You can attach permissions to case objects such as documents and data.

You can define your own set of permissions. The UI shows the default permissions
PUBLIC and RESTRICTED. You can modify these default permissions.

Some examples of regularly used permissions are: internal, public, press release.

Note:

E-mail and simple workflow are global case activities thus their permission
tag is global.

To add a permission:

1. Edit the case.

2. Select the Stakeholders & Permissions tab.

Chapter 33
Defining Case Stakeholders and Permissions

33-20

3. Expand the Permissions section.

4. Click Add.

5. Enter a Name and a Display Name to identify the permission.

6. Click OK.

33.7.3 How to Manage Case Permissions
You can manage the permissions assigned to each stakeholder using Oracle Enterprise
Manager.

To manage permissions:

1. In Oracle Enterprise manager from Weblogic Domain, right click soainfra, then select
Security and then select Application Policies.

2. In the Application Policies page, run a search with the following search criteria:

a. In the Application Stripe field, enter OracleBPMPRocessRolesApp.

b. In the Principal Type field, enter Application Role.

c. In the Name Starts With field, enter the name of the case or leave it blank.

3. From the search result, select one of the application roles corresponding to the
stakeholder whose permissions you want to edit.

4. Click the Edit button.

The Edit Application Grant dialog box appears.

5. From the Permissions table, select a permission and click Edit.

Note:

Oracle Enterprise Manager does not validate action strings so you must provide the
exact action string.

Note:

To assign multiple actions, separate them with commas without spaces. For
example: READ,UPDATE.

33.8 Defining Case Tag Permissions
Stakeholders can assign additional permissions to case objects during runtime. For this
option to be available, you must create permission tags when you design the case in Oracle
BPM Studio.

For example, you can define a case with the following permission tags: PUBLIC,
RESTRICTED, HIGHLY_CONFIDENTIAL.

Chapter 33
Defining Case Tag Permissions

33-21

During deployment Oracle Business Process Manager creates the application roles
that correspond to the permission tags defined in the case.

For example, in a case named EURent, if you use the
EURent.RESTRICTED.UPDATE action to grant a user the role
EURent.RESTRICTED.UPDATE.Role, you can assign a document the RESTRICTED
permission tag. Only users with the role EURent.RESTRICTED.READ.Role can
access that document.

Note:

Tag permissions work together with stakeholder permissions. For example,
to read or update a case object a stakeholder must have the READ/UPDATE
permission and the case object must have the appropriate tags that allow
reading or updating it.

For more information about stakeholder permissions, see Defining Case
Stakeholders and Permissions.

33.8.1 How to Manage Case Tag Permissions

1. In Oracle Enterprise manager, from Weblogic Domain, right click soainfra, then
select Security and then select Application Policies.

2. In the Application Policies page provide the following:

a. In the Application Stripe field, enter OracleBPMPRocessRolesApp.

b. In the Name Starts With field, enter the name of the case or leave it blank.

3. In the Application Roles page, select a permission tag role then click Edit.

The Edit Application Role dialog box appears.

4. Click Add to add user, groups, or application role members to this application role.

33.9 Localizing a Case
You can configure a case to use different languages for display at run-time.

The following case artifacts can be localized:

• case title

• case category

• milestone name

• outcome

• data

• user event

• stakeholder

• permission

Chapter 33
Localizing a Case

33-22

You can define display names for all the above artifacts except case title, and case
categories. Display names are stored in the default locale resource bundle.

Note:

Multiple artifacts can be configured to have the same display name. However, it is a
good practice to use unique display names that are descriptive and help the user
quickly identify the displayed data.

Figure 33-4 shows the creation dialog box for a milestone that enables you to configure the
display name.

Figure 33-4 Display Name Configuration When Creating a Milestone

Case Title

You can specify the case title using plain text or the translation option. When you choose the
translation option you must define the following:

• the key in the resource bundle

• the text to translate

• the parameters to make the title dynamic, if applicable

Figure 33-5 shows a title specified using the translation option. In this example the key in the
resource bundle is CaseTitle. The text to be translated contains two parameters: Car rental
for %0 %1. The parameter values are specified in the Argument table.

Chapter 33
Localizing a Case

33-23

Figure 33-5 Localizing the Case Title

Case Category

You can specify the case category using plain text or the translation option. The
translation option only supports a simple translation string.

33.9.1 How to Configure Case Localization
You can specify and localize each of the keys defined in a case.

To add a localization key:

1. Edit the case.

2. Select the Translation tab.

3. Expand the Translation section.

The Translation editor appears.

Figure 33-6 shows the Translation editor.

4. Click Add.

Chapter 33
Localizing a Case

33-24

5. Enter a name to identify the key.

6. Enter a value for the default language.

7. Enter a translation for the specified languages.

Figure 33-6 Translation Editor

33.9.2 Localizing Case Objects
The following classes are types of the class CaseObject:

• CaseData

• CaseDocumentObject

• CaseEvent

• CaseHeader

• CaseMilestone

• CaseStakeHolder

• Comment

• DatabaseDocument

The class CaseObject contains the following attributes that are shared with its types:

• Id

• CaseId

• ObjectName

• ObjectDisplayName

• ObjectType

• UpdatedBy

• UpdatedByDisplayName

Chapter 33
Localizing a Case

33-25

• UpdatedDate

• PermissionTag

From this list, ObjectDisplayName contains the localized value of ObjectName, and
UpdatedByDisplayName contains the localized value of UpdatedBy

Note:

Initially UpdateBy and UpdatedByDisplayName contain the name of the user
that created the CaseObject. After the user updates the case, these fields
contain the name of the user that last updated the case.

33.10 Case Activities and Sub Cases
Case activities model tasks that can be executed by the end user as part of a case.
Case activities can be human tasks, BPMN processes or a custom case activities. A
case activity represents a specific piece of work that case workers must perform.

Case activities can model Sub Cases. See Creating Sub Cases.

Cases are composed of various case activities. You can create these case activities
based on a BPM process, or a Human Task, or you can create a custom case activity.

You can create case activities by:

• promoting a BPMN process to a case activity

See How to Promote a BPMN Process to a Case Activity.

• promoting a Human Task to a case activity

See How to Promote a Human Task to a Case Activity.

• creating a custom case activity

See How to Create a Custom Case Activity.

33.10.1 Case Activity and Sub Case Attributes
Case activities and sub cases are defined by the following attributes:

• Manually Activated/Automatically Activated

Manually activated case activities are available in the case and can be invoked by
users. Automatically activated case activities are invoked by the system.

• Required

Required activities must be invoked at least once before a case is closed.

• Repeatable

Repeatable case activities can be invoked more than once in a case. Non
repeatable case activities can be invoked only once. Already invoked manual case
activities do not appear in the library.

• Conditionally Available

Chapter 33
Case Activities and Sub Cases

33-26

Conditionally available manual activities are available in the library if they are activated
through a business rule. Non-conditionally available manual activities are available in the
library by default until you invoke them.

After invocation, repeatable activities are still shown in the library. Non conditional
automatic activities are invoked after Oracle BPM starts a case.

• Permission

The Permission value specifies access to the case activity, for example, PUBLIC or
PRIVATE.

You can specify input and output parameters for case activities. For additional information,
see How to Add a Case Activity Input Parameter and How to Add a Case Activity Output
Parameter.

Note that sub cases do not support data mapping - they inherit data only from their parent
case. See Creating Sub Cases

33.10.2 Predefined Case Activities
By default the cases contain the following case activities:

• Simple Workflow

You can use this activity to create simple human tasks. You can configure the task title,
priority, due date, comment, assignment type and assignees. The supported assignment
types are: simple, sequential, parallel, FYI.

You must pass the payload input to the method initiateCaseActivity with the key
SimpleWFActivityPayload. You must use a payload from the schema in Simple Workflow
Payload Schema.

• Email Notifications

You can use this activity to send an email notification. You must configure the workflow
notification with EMAIL for email notifications to work properly.

You must pass the payload input to the method initiateCaseActivity with the key
EmailActivityPayload. You must use a payload from the schema in Email Notification
Payload Schema.

Note:

You can only send case documents as attachments in global case activity email
notification activities. Documents located in your file system are not supported.

33.10.3 Specifying the Order of Case Activities
If you want a case activity to run after another case activity, then you must define a condition
in the second activity that indicates it runs after the first activity completes.

For more information on defining conditions, see Using Business Rules with Cases.

Chapter 33
Case Activities and Sub Cases

33-27

33.10.4 How to Promote a BPMN Process to a Case Activity
You can create a case activity based on a BPMN process. This exposes the BPMN
process as a case activity. A case activity is one single item that the case worker can
perform.

When you create a case activity Oracle BPM Studio generates output arguments for
all the arguments in the multiple end points of the BPMN process. However if you want
to cover the input arguments of a process that contains multiple start points, then you
must create a case activity for each of the start points.

The BPMN process must already exist. You can use synchronous and asynchronous
BPMN processes. The case activity only supports message start and end points.

To promote a BPMN process to case activity:

1. Select the Application Navigator.

2. Expand the project that contains the BPMN process.

3. Expand the BPMN Content folder.

4. Expand the processes folder.

5. Right-click the BPMN process you want to promote to case activity.

6. Select Promote as Case Activity.

The Create Case Activity dialog box appears.

7. Enter a name to identify the case activity.

8. Enter a display name to show in the case user interface.

9. From the Operation Name list, select a start operation.

10. To make the case activity synchronous, select the Synchronous check box.

11. Click OK.

BPM Studio creates the case activity and opens it in the Case Activity editor so
that you can configure it.

By default Oracle BPM Studio creates the input and output parameters based on
the BPMN process input and output arguments. If the BPMN process contains
multiple end points, then it creates an output parameter for each of the output
arguments of the multiple end points.

Note:

The case activity can pass input parameters to the underlying BPMN
process. You can also configure the case activity to read the output
arguments of the BPMN process and store their value.

For more information, see Defining Input Parameters for Case Activitiesand
Defining Output Parameters for Case Activities.

Chapter 33
Case Activities and Sub Cases

33-28

33.10.5 How to View the BPMN Process
The Advanced tab shows the service reference and the operation used to create the case
activity.

To view the human task operation:

1. Open the case.

2. Select the Advanced tab.

Figure 33-7 shows the Advanced tab for a BPMN process based case activity.

3. To open the BPMN process, click the service reference.

4. To change the operation, click the Refresh button.

Figure 33-7 Advanced Tab of a BPMN Process Based Case Activity

33.10.6 How to Promote a Human Task to a Case Activity
You can create case activities based on a Human Task.

The Human Task must already exist.

To promote a BPMN process to case activity:

1. Select the Application Navigator.

2. Expand the project that contains the Human Task.

3. Expand the SOA Content folder.

4. Right-click the Human Task you want to promote to case activity.

5. Select Promote as Case Activity.

The Create Case Activity dialog box appears.

6. Enter a name to identify the case activity.

7. Enter a display name to show in the case user interface.

8. Click OK.

BPM Studio creates the case activity and opens it in the Case Activity editor so that you
can configure it.

By default Oracle BPM Studio creates the input and output parameters based on the
Human Task payload arguments.

Chapter 33
Case Activities and Sub Cases

33-29

Note:

The case activity can pass input parameters to the underlying Human Task.
You can also configure the case activity to read the output parameters of the
Human Task and store their value.

For more information, see Defining Input Parameters for Case Activitiesand
Defining Output Parameters for Case Activities.

33.10.7 How to View the Human Task
The Advanced tab shows the Human Task used to create the case activity.

To view the human task operation:

1. Open the case.

2. Select the Advanced tab.

3. To open the Human Task, click the service reference.

33.10.8 How to Create a Custom Case Activity
You can create a custom case activity based on a Java class.

Custom case activities enable users to create their own case activities, for example a
scheduler. To the end user there is no difference from the other types of case activities.

To create a case activity:

1. Select File.

2. Select New.

The New Gallery dialog box appears.

3. Select BPM Tier.

4. Select Custom Case Activity.

The Create Custom Case Activity dialog box appears.

5. Enter a name to identify the case activity.

6. Enter a display name to show in the case user interface.

7. In the Class Name field, enter the name of the Java callback class.

The Java class must implement the
oracle.bpm.casemgmt.caseactivity.ICaseActivityCallback interface.

The callback class must be part of the composite, or must add it to the workflow
customization classpath.

8. Click OK.

BPM Studio creates the case activity and opens it in the Case Activity editor so
that you can configure it.

Chapter 33
Case Activities and Sub Cases

33-30

Note:

You can add input and output parameters to a custom case activity. You can assign
input parameters the value of case data or user input. You can choose to store the
value of output parameters as case data.

33.10.9 Creating Sub Cases
Use sub cases to manage activities that contribute to the resolution of a parent case. Sub
cases are similar to case activities, are instantiated at runtime within the context of a parent
case.

For example, a power outage case might have a sub case for a line repair. As the parent
power outrage case evolves one or a number of line repair sub cases might be kicked off to
facilitate needed repairs that are discovered as the parent case is worked.

Sub cases are deployed as a separate composite from the parent case project. They are
linked to the parent using the case link mechanism. The sub case composite version is
always the active version of the parent composite.

Sub cases do not support data mapping - they inherit data only from their parent case.

When a sub case completes, an activity completion event is raised. The same the constraints
that apply to case activities also apply to sub case activities.

33.10.10 How to Create a Sub Case

To create a Sub Case:

1. Select File.

2. Select New from Gallery.

The New Gallery dialog box appears.

3. Select BPM Tier.

4. Select Sub Case.

The Create Case Activity dialog box appears.

5. Specify the Name, Project Name, and Case Name values.

6. Click OK.

BPM Studio creates the sub case activity and opens it in the Case Activity editor. See
Case Activity and Sub Case Attributes.

33.11 Defining Input Parameters for Case Activities
Input parameters can be case data or user input.

By default, input parameters take their values from case data. You can change this so that
they take their values from user input.

Chapter 33
Defining Input Parameters for Case Activities

33-31

You must also define the case data in the .case file. If you do not define the case data,
Oracle BPM Studio creates a new case data of the required type when you create the
case activity.

You must define case activity input parameters in the same order of the BPMN
process or Human Task input arguments.

If the input parameter is of the type user input, you can save this value as case data.

Figure 33-8 shows the input arguments of a BPMN process based case activity input
parameters and the arguments of the start event of a BPMN process. Note that the
name of the input parameters of the case activity matches the name of the arguments
in the BPMN process.

Figure 33-8 BPMN Process Based Case Activity Input Parameters

33.11.1 How to Add a Case Activity Input Parameter
You can define the input parameters for a case activity.

Chapter 33
Defining Input Parameters for Case Activities

33-32

To add a case activity input parameter:

1. Expand the Case Activity Input section.

2. Click Add.

3. Enter a name to identify the parameter.

4. Optionally select the Store Data option.

Note:

When you regenerate the activity form after adding Case Activity Input
parameters, only data control is generated. Regeneration Data Control option
does not generate jspx to protect customizations to the jspx.

33.12 Defining Output Parameters for Case Activities
By default Oracle BPM Studio creates the output arguments based on the BPMN process or
Human Task arguments. Only editable human workflow arguments appear as output
arguments in a case activity.

You can save the value of output parameters as case data.To do this, the name of the case
activity output parameter must match the root element name of the BPMN process or Human
Task argument. After you create the case, you can change the name of the output
parameters.

Figure 33-9 shows the output arguments of a BPMN process based case activity output
parameters and the arguments of the end event of a BPMN process. Note that the name of
the output parameters of the case activity matches the name of the arguments in the BPMN
process.

You can save the output as case data. By default the Case Activity editor populates the case
data fields, if a case data of the same type is not available. Otherwise the Case Activity editor
creates a new case data of the type in the .case file.

Chapter 33
Defining Output Parameters for Case Activities

33-33

Figure 33-9 BPMN Process Based Case Activity Output Parameters

33.12.1 How to Add a Case Activity Output Parameter
You can define the output parameters for a case activity.

To add an output parameter:

1. Expand the Output section.

2. Click Add.

3. Enter a name to identify the parameter.

4. Enter a namespace.

5. Optionally select the Store Data option.

Chapter 33
Defining Output Parameters for Case Activities

33-34

33.13 Configuring Case Activities
After you create a case activity BPM Studio opens the case in the Case Activity editor for you
to configure it.

You can configure a case activity to behave in different ways during the case workflow by
configuring the case activity properties.

33.13.1 How to Edit a Case Activity
To edit a case activity:

1. Select the Application Navigator.

2. Expand the project that contains the BPMN process.

3. Expand the BPMN Content folder.

4. Double click the case activity file.

The case file has the .caseactivity extension.

The Case Activity editor appears.

5. The Case Activity editor allows you to configure the following:

• Configuring Case Activity Basic Properties

• How to Add a Case Activity Input Parameter

• How to Add a Case Activity Output Parameter

33.13.2 Configuring Case Activity Basic Properties
You can configure the following basic properties for the case activity you created:

• Automatic

• Required

• Repeatable

• Conditionally Available

For a detailed description of these attributes, see Case Activity and Sub Case Attributes.

You can also add input and output parameters for the case activity. See How to Add a Case
Activity Input Parameter and How to Add a Case Activity Output Parameter.

33.14 Creating a Global Case Activity
Global case activities are custom case activities that are global in scope and not part of any
composite. They apply to all cases regardless of their type.

They are identified by global flag true. You cannot design global activities using Oracle BPM
Studio.

You must add the callback Java class for a global activity to the workflow customization
classpath.

Chapter 33
Configuring Case Activities

33-35

Example of Global Case Activity Metadata Schemashows an example of the metadata
for a global activity metadata. Note that the value of the isGlobal attribute is set to true.

After creating the global case activity you must register it using the
registerCaseActivity class from the Oracle Fusion Middleware Business Process
Management Suite Java API Reference. To do this you must unmarshall the case
activity document and pass the CaseActivity as a parameter.

Example 33-1 shows how to register a global case activity.

Example 33-1 Registering a Global Case Activity

InputStream is = classLoader.getResourceAsStream(<file>);

public static CaseActivity unmarshall(InputStream inputStream)
throws JAXBException, IOException {
 try {
 // create a document
 DOMParser p = new DOMParser();
 p.retainCDATASection(true);
 p.parse(inputStream);
 Document doc = p.getDocument();

 JAXBContext jaxbContext = JAXBContext.newInstance(JAXB_CONTEXT);

 //return unmarshal(doc);
 return (CaseActivity) jaxbContext.createUnmarshaller().unmarshal(doc);

 } catch (oracle.xml.parser.v2.XMLParseException e) {
 throw new JAXBException(e);
 } catch (org.xml.sax.SAXException e) {
 throw new JAXBException(e);
 }
}

private static final String JAXB_CONTEXT =
"oracle.bpm.casemgmt.metadata.activity.model";

33.15 Using Business Rules with Cases
You can use business rules to decide which case activities to activate for automatic or
manual initiation, or to withdraw manual case activities. You can also use rules to mark
a milestone as achieved or revoked.

When you create a case, Oracle BPM Studio automatically generates an associated
business rule dictionary.

It is a good practice to define case management rules on events. Case management
rules are fired on an event in rules. Hence it is advisable to define rules which happen
on an event instead of a condition.

Oracle BPM fires business rules on every case event. Case events are logical events
that occur while running the case. The following list enumerates the available case
events:

• Life cycle events

• Milestone events

• Activity events

Chapter 33
Using Business Rules with Cases

33-36

• Data events

• Document events

• Comment events

• User events

Note:

Model rules in the following sequence

1. Event Type

2. Activity Name

3. Activity State

33.15.1 Defining the Condition of a Case Business Rule
You can define the condition of the business rule base on the following:

• The event that fired the business rule

Table 33-3 describes the different events that can fire a business rule.

• The case instance

• Case data

The case data configured in the case is available as facts in the business rule dictionary.
You can create rules based on case data combined with case management related facts.

Table 33-3 Case Events

Name Description Attributes

CaseLifeCycleEvent Life cycle event state, lifecycleEvent

CaseMilestoneEvent Milestone event milestone, type

CaseActivityEvent Activity event activityName, type

CaseDataEvent Data event dataName

CaseDocumentEvent Document event document, documentName, type

CaseCommentEvent Comment event comment

UserDefinedEvent User event eventName, event

Figure 33-10 shows the facts you can use to define the condition of a business rule based on
a case Management system related data.

Chapter 33
Using Business Rules with Cases

33-37

Figure 33-10 Business rule facts

33.15.2 Understanding the Case Business Rule Dictionary
The business rule dictionary created when you create the case is linked to a common
base dictionary in Oracle MDS. The common base dictionary includes all the facts
show in Figure 33-10. The base dictionary name is CaseManagementBaseDictionary.

The business rule dictionary of a case supports the following operations:

• Automatically invoke conditional automatic activities from a business rule

• Publish conditional manual activities to the case from a business rule

• Withdraw an activity from a business rule

Note:

Non-conditional manual activity cannot be withdrawn. You can withdraw
only conditional manual activity.

• Achieve and revoke milestones from a business rule

For a detailed description of the functions used to perform these operations, see
Table 33-4.

Chapter 33
Using Business Rules with Cases

33-38

33.15.3 How to Generate a Case Business Rule Dictionary
When you create a case, Oracle BPM automatically generates an associated business rule
dictionary. This case business rule dictionary enables you to define business rules with rule
conditions based on the case.

To generate a case business rule dictionary:

1. Create a case.

For information on how to create a case, see How to Create a Case.

The case rule dictionary appears.

2. Open the case business rule dictionary.

3. Create business rules according to your business requirements.

Table 33-4 shows the different functions you can use when creating the business rule
conditions.

Table 33-4 Rule Functions

Rule Function Description Parameters

activateActivity(String
activityName)

Invokes conditional automatic
case activities and conditional
manual case activities.

activityName: the name of
the activity to invoke.

withdrawActivity(String
activityName)

Withdraws a case activity. activityName: the name of
the activity to withdraw.

setActivityRelevance(String
activityName, String comments,
tActivityRelevance relevance,
tCaseActivityStatus caseAction)

Rates a case activity,
including a reason for the
rating.

activityName: the name of
the activity to withdraw.

comments: reason for the
rating.

relevance: rating of the case
activity (NONE, LOW,
NORMAL or HIGH)

caseAction: populated by
the function on return

setActivityRepeatability(String
activityName, Bool value,
tCaseActivityStatus caseAction)

Sets the repeatability (true,
false) of a case activity.

activityName: the name of
the case activity.

value: TRUE - case activity
can be repeated, FALSE -
case activity can not be
repeated.

caseAction: populated by
the function on return

setActivityRequirement(String
activityName, Bool value,
tCaseActivityStatus caseAction)

Sets whether a case activity
is required or not.

activityName: the name of
the case activity.

value: TRUE - required case
activity, FALSE, not required

caseAction: populated by
the function on return

Chapter 33
Using Business Rules with Cases

33-39

Table 33-4 (Cont.) Rule Functions

Rule Function Description Parameters

setActivityInitiationModel(Stri
ng activityName, Bool value,
tCaseActivityStatus caseAction)

Sets whether a case activity
is automatically initiated or
not.

activityName: the name of
the case activity.

value: TRUE - initiate
automatically, FALSE, initiate
manually

caseAction: populated by
the function on return

reachMilestone(String
milestoneName, String comments)

Marks a milestone as
achieved.

milestoneName: the name
of the milestone to mark as
achieved.

comments: a comment
stating the reason to mark
this milestone as achieved.

revokeMilestone(String
milestoneName, String comments)

Revokes a milestone. milestoneName: the name
of the milestone to revoke.

comments: a comment
stating the reason to revoke
this milestone.

33.16 Closing Cases
Any stakeholder can close a case, if all required activities in the case are completed.
Users with additional privileges can force closure of a case even if there are pending
required activities.

Closing a case is a logical operation that marks its status as closed. You can close a
case by invoking the closeCase method in the CaseInstanceService class. You can
provide an optional outcome parameter and a comment when you close a case.

You can close a case regardless of its current state and the state of its case activities.

Closing a case sets it state to CLOSED. The list of cases for a user that you obtain
using the queryCase API it includes closed cases.

Note:

You can still achieve and revoke milestones after you close or suspend a
case.

33.17 Integrating with Oracle BPM
You can integrate with Oracle BPM by invoking a case from a BPMN process or by
publishing case events to Oracle EDN.

You then create a process that reacts to these events.

Chapter 33
Closing Cases

33-40

33.17.1 Invoking a Case From a BPMN Process
You can invoke a case from BPMN process.

To invoke a case from a BPMN process:

1. Add a service task to the BPM process.

2. Right-click the service task.

3. Select Properties.

4. Click the Implementation tab.

5. In the Service Call section, click the browse button next to the Service field.

6. Select the case.

7. Select an operation from the Operation list.

Available operations are: abortCase, closeCase, reopenCase, suspendCase,
resumeCase, attainMilestone, revokeMilestone

8. Using data associations, assign a value to the attributes case ID and comment. In the
case of milestone operations, also assign a value to the milestone attribute.

For more information about data associations, see Introduction to the Data Association
Editor.

Note:

The case ID is available as a predefined variable that is automatically assigned
a value when you invoke a BPMN process from a case.

33.17.2 How to Use Correlations with Case Events
If you want to use correlations with a particular event, then you can trigger a BPMN process
from a BPMN based case activity. You must pass the caseId to the message that initiates the
process and use it as a correlation key.

To use correlations with case events:

1. Create a BPMN process that contains a send task that triggers another process.

2. Edit the data association of the process you created to assign the value of the predefined
variable caseId to the argument of the send task.

3. Promote the BPMN process to a case activity.

4. Create a BPMN process that listens to the correlated events.

You can start this process with a message start event and use a message catch to
receive the correlated event.

5. Edit the properties of the message start event and define an argument CaseId.

6. Edit the correlation definition and configure it to use the argument CaseId. Select the
initiates option.

Chapter 33
Integrating with Oracle BPM

33-41

7. Edit the properties of the message catch event and configure the correlation
definition to use the CaseId variable.

33.18 Schema Reference
This section contains the simple workflow schema, the email notification schema, and
an example of a global case activity metadata schema.

• Simple Workflow Payload Schema

This schema contains the list of payloads that you can pass to the method
initiateCaseActivity to create a simple human task. For more information, see
Predefined Case Activities.

• Email Notification Payload Schema

This schema contains the list of payloads that you can pass to the method
initiateCaseActivity to send an email notification. For more information, see
Predefined Case Activities.

• Example of Global Case Activity Metadata Schema

This schema is an example of the metadata for a global activity. For more
information on global activities, see Creating a Global Case Activity.

• CaseEvent.edl

This schema defines the case events that you can publish to Oracle EDN. For
more information, see How to Publish Case User Events.

33.18.1 Simple Workflow Payload Schema
Example 33-2 Simple Workflow Payload Schema

<?xml version="1.0" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:extension="http://xmlns.oracle.com/bpm/case/metadata/extension"
 xmlns="http://xmlns.oracle.com/bpm/case/activity/custom"
 targetNamespace="http://xmlns.oracle.com/bpm/case/activity/custom"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb" jaxb:version="2.0"
 elementFormDefault="qualified" blockDefault="#all">
 <xsd:annotation>
 <xsd:documentation>Simple WF Activity Schema</xsd:documentation>
 <xsd:appinfo>
 <jaxb:schemaBindings>
 <jaxb:package name="oracle.bpm.casemgmt.customactivity.simplewf.model"/>
 </jaxb:schemaBindings>
 <jaxb:globalBindings generateElementClass="true" generateIsSetMethod="true">
 <jaxb:serializable uid="123456"/>
 </jaxb:globalBindings>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:import namespace="http://xmlns.oracle.com/bpm/case/metadata/extension"
 schemaLocation="ExtensibleElements.xsd"/>

<xsd:element name="SimpleWorkflowPayload" type="tSimpleWorkflowPayload"/>

<xsd:complexType name="tSimpleWorkflowPayload">
 <xsd:complexContent>
 <xsd:extension base="extension:tExtensibleElements">
 <xsd:sequence>

Chapter 33
Schema Reference

33-42

 <xsd:choice minOccurs="1" maxOccurs="1">
 <xsd:element name="simpleAssignmentType" type="tSimpleAssignmentType"/>
 <xsd:element name="sequentialAssignmentType" type="tSequentialAssignmentType"/>
 <xsd:element name="parallelAssignmentType" type="tParallelAssignmentType"/>
 <xsd:element name="fyiAssignmentType" type="tFyiAssignmentType"/>
 </xsd:choice>
 <xsd:element name="title" type="xsd:string" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="dueDate" type="xsd:date" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="priority" type="xsd:integer" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="comment" type="xsd:string" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="payloadType" type="tPayloadType" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tSimpleAssignmentType">
 <xsd:complexContent>
 <xsd:extension base="extension:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="assigneeType" type="tAssigneeType" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tSequentialAssignmentType">
 <xsd:complexContent>
 <xsd:extension base="extension:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="assigneeType" type="tAssigneeType" minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tFyiAssignmentType">
 <xsd:complexContent>
 <xsd:extension base="extension:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="assigneeType" type="tAssigneeType" minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tParallelAssignmentType">
 <xsd:complexContent>
 <xsd:extension base="extension:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="assigneeType" type="tAssigneeType" minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="defaultOutcome" type="tOutcomeTypeEnum" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="completionCriteriaType" type="tCompletionCriteriaType" minOccurs="1"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="waitForAllVotes" type="xsd:boolean"/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tCompletionCriteriaType">

Chapter 33
Schema Reference

33-43

 <xsd:complexContent>
 <xsd:extension base="extension:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="outcome" type="tOutcomeTypeEnum" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="outcomePercentage" type="xsd:integer" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tOutcomeTypeEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="APPROVE"/>
 <xsd:enumeration value="REJECT"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="tAssigneeType">
 <xsd:complexContent>
 <xsd:extension base="extension:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="identityName" type="xsd:string" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="identityType" type="tIdentityTypeEnum" minOccurs="1"
maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tIdentityTypeEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="USER"/>
 <xsd:enumeration value="GROUP"/>
 <xsd:enumeration value="APPROLE"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="tPayloadType">
 <xsd:complexContent>
 <xsd:extension base="extension:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="parameter" type="tParameterType" minOccurs="1"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tParameterType">
 <xsd:complexContent>
 <xsd:extension base="extension:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="value" type="xsd:string" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Chapter 33
Schema Reference

33-44

</xsd:schema>

33.18.2 Email Notification Payload Schema
Example 33-3 Email Notification Payload Schema

<?xml version="1.0" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:extension="http://xmlns.oracle.com/bpm/case/metadata/extension"
 xmlns="http://xmlns.oracle.com/bpm/case/activity/custom"
 targetNamespace="http://xmlns.oracle.com/bpm/case/activity/custom"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb" jaxb:version="2.0"
 elementFormDefault="qualified" blockDefault="#all">
 <xsd:annotation>
 <xsd:documentation>Email Activity Schema</xsd:documentation>
 <xsd:appinfo>
 <jaxb:schemaBindings>
 <jaxb:package name="oracle.bpm.casemgmt.customactivity.notification.model"/>
 </jaxb:schemaBindings>
 <jaxb:globalBindings generateElementClass="true" generateIsSetMethod="true">
 <jaxb:serializable uid="123456"/>
 </jaxb:globalBindings>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:import namespace="http://xmlns.oracle.com/bpm/case/metadata/extension"
 schemaLocation="ExtensibleElements.xsd"/>

 <xsd:element name="emailPayload" type="tEmailPayload"/>
 <xsd:complexType name="tEmailPayload">
 <xsd:complexContent>
 <xsd:extension base="extension:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="from" type="xsd:string" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="to" type="xsd:string" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="replyTo" type="xsd:string" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="cc" type="xsd:string" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="bcc" type="xsd:string" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="ject" type="xsd:string" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="message" type="xsd:string" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="attachments" type="tAttachment" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tAttachment">
 <xsd:complexContent>
 <xsd:extension base="extension:tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="mimeType" type="xsd:string" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:schema>

Chapter 33
Schema Reference

33-45

33.18.3 Example of Global Case Activity Metadata Schema
Example 33-4 Example of Global Case Activity Metadata Schema

<caseActivity targetNamespace="http://xmlns.oracle.com/bpm/case/activity"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/bpm/case/activity ../../../../../
interface/src/main/resources/schemas/CaseActivity.xsd"
 xmlns="http://xmlns.oracle.com/bpm/case/activity">
 <documentation xmlns="http://xmlns.oracle.com/bpm/case/metadata/extension"/>
 <name>SimpleWorkflowActivity</name>
 <activityDefinitionId>http://xmlns.oracle.com/bpm/case/activity/SimpleWFActivityDefinition</
activityDefinitionId>
 <activityType>CUSTOM</activityType>
 <repeatable>true</repeatable>
 <required>false</required>
 <manual>true</manual>
 <isGlobal>true</isGlobal>
 <isConditional>false</isConditional>
 <caseAssociations>
 <documentation xmlns="http://xmlns.oracle.com/bpm/case/metadata/extension"/>
 <allCases/>
 </caseAssociations>
 <globalActivity>
 <definition>
 <documentation xmlns="http://xmlns.oracle.com/bpm/case/metadata/extension"/>
 <className>oracle.bpm.casemgmt.customactivity.simplewf.SimpleWFActivityCallback</className>
 </definition>
 </globalActivity>
</caseActivity>

33.18.4 CaseEvent.edl
Example 33-5 CaseEvent.edl

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions xmlns="http://schemas.oracle.com/events/edl"
targetNamespace="http://xmlns.oracle.com/bpm/case/event">
 <schema-import location="oramds:/soa/shared/casemgmt/CaseEvent.xsd"
namespace="http://xmlns.oracle.com/bpm/case/event"/>
 <event-definition name="CaseEvent">
 <content xmlns:ns0="http://xmlns.oracle.com/bpm/case/event"
element="ns0:caseEvent"/>
 </event-definition>
</definitions>

Chapter 33
Schema Reference

33-46

Part VII
Appendices

This part contains appendices that describe administrative features of Oracle BPM.

• Process Star Schema Views

• Oracle BPM Studio Accessibility Features

A
Process Star Schema Views

Process Star schema data objects are created in BAM 12c. You can use Oracle SQL to
access Process Star schema data objects by their database view synonyms. You can then
use the views to integrate a Process Star schema with any external business intelligence
tool. You can use the BAM 12c composer to browse the individual columns of the Process
Star schema data objects.

• Standard Data Objects

• Composite-Specific Data Objects

A.1 Standard Data Objects
The following table lists each of the standard physical data objects and its corresponding
database view synonym name.

Table A-1 Standard Data Objects to DB View Synonym Name Mapping

Sno Display Name Internal Name DB View
Synonym Name

Star
Schema
Member
Type

1 oracle/processanalytics/
internal/physical/Composite
Definition (physical)

ORACLE_PROCESSANALY
TICS_COMPOSITE_DEFINI
TION

BPM_PV_COMPO
SITE_DEFINITION
_V

Dimensi
on

2 oracle/processanalytics/
internal/physical/Process
Definition (physical)

ORACLE_PROCESSANALY
TICS_PROCESS_DEFINITIO
N

M_PV_PROCESS
_DEFINITION_V

Dimensi
on

3 oracle/processanalytics/
internal/physical/Activity
Definition (physical)

ORACLE_PROCESSANALY
TICS_ACTIVITY_DEFINITIO

BPM_PV_ACTIVIT
Y_DEFINITION_V

Dimensi
on

4 oracle/processanalytics/
internal/physical/Role
Definition (physical)

ORACLE_PROCESSANALY
TICS_ROLE_DEFINITION

PM_PV_ROLE_DE
FINITION_V

Dimensi
on

5 oracle/processanalytics/
internal/physical/CM Case
Activity Definition

ORACLE_PROCESSANALY
TICS_CASE_ACTIVITY_DEF

BPM_PV_CASE_A
CTIVITY_DEF_V

Dimensi
on

6 oracle/processanalytics/
internal/physical/CM Case
Definition

ORACLE_PROCESSANALY
TICS_CASE_DEFINITION

N/A Dimensi
on

7 oracle/processanalytics/
internal/physical/HWF Task
Definition

ORACLE_PROCESSANALY
TICS_TASK_DEFINITION

BPM_PV_HWF_TA
SK_DEFINITION_
V

Dimensi
on

8 oracle/processanalytics/
internal/physical/Process
(physical)

ORACLE_PROCESSANALY
TICS_PROCESS

BPM_PV_PROCE
SS_V

Fact

A-1

Table A-1 (Cont.) Standard Data Objects to DB View Synonym Name Mapping

Sno Display Name Internal Name DB View
Synonym Name

Star
Schema
Member
Type

9 oracle/processanalytics/
internal/physical/Activity
(physical)

ORACLE_PROCESSANALY
TICS_ACTIVITY

BPM_PV_ACTIVIT
Y_V

Fact

10 oracle/processanalytics/
internal/physical/HWF
Assignment (physical)

ORACLE_PROCESSANALY
TICS_ASSIGNMENT

BPM_PV_HWF_A
SSIGNMENT_V

Fact

11 oracle/processanalytics/
internal/physical/HWF Task
(physical)

ORACLE_PROCESSANALY
TICS_TASK

BPM_PV_HWF_TA
SK_V

Fact

12 oracle/processanalytics/
internal/physical/CM Case

ORACLE_PROCESSANALY
TICS_CASE

BPM_PV_CASE_V Fact

13 Oracle/processanalytics/
internal/physical/CM Case
Activity

ORACLE_PROCESSANALY
TICS_CASE_ACTIVITY

BPM_PV_CASE_A
CTIVITY_V

Fact

14 oracle/processanalytics/
internal/physical/CM Case
Stake Holder

ORACLE_PROCESSANALY
TICS_CASE_STAKE_HOLD
ER

BPM_PV_CASE_S
TAKE_HOLDER_V

Fact

15 oracle/processanalytics/
internal/physical/CM Case
Stake Holder Member

ORACLE_PROCESSANALY
TICS_CASE_STAKE_HOLD
ER_MEMBER

BPM_PV_CASE_S
TAKE_HOLDER_M
EM_V

Fact

A.2 Composite-Specific Data Objects
The following table lists each of the composite-specific physical data objects and its
corresponding database view synonym name. If you enable the BAM 12c analytics
data target, then composite-specific data objects are created when the composite is
deployed.

Note:

<In the following table, <COMPOSITENAME> is the composite name truncated to
70 chars, and <IDENTIFIER> is the analytics view identifier specified for the
composite.

The maximum is 10 chars. No database view synonyms are created when
the analytics view identifier is not specified for a composite.

Appendix A
Composite-Specific Data Objects

A-2

Table A-2 Composite-Specific Data Objects to DB View Synonym Mapping

Sno Display Name Internal Name DB View
Synonym Name

Star
Schema
Member
Type

1 oracle/processanalytics/
internal/physical/
<COMPOSITE NAME>
Process (physical)

ORACLE_PROCESSANALY
TICS_<COMPOSITENAME>
_PROCESS

BPM_PV_PRCS_<
IDENTIFIER>_V

Fact

2 oracle/processanalytics/
internal/physical/
<COMPOSITE NAME>
Activity (physical

ORACLE_PROCESSANALY
TICS_<COMPOSITENAME>
_ACTIVITY

BPM_PV_ACTV_<
IDENTIFIER>_V

Fact

Appendix A
Composite-Specific Data Objects

A-3

B
Oracle BPM Studio Accessibility Features

Learn the various accessibility features of Oracle BPM Studio.

Topics

• Oracle BPM Studio Keyboard Navigation

B.1 Oracle BPM Studio Keyboard Navigation
This section describes the keyboard navigation in Oracle BPM Studio.

Keyboard Shortcuts to Create Oracle BPM Process and Application

Table B-1 Keyboard Shortcuts to Create Oracle BPM Process and Application

Activity Keyboard Shortcut (s)

Create new BPM
Application

1. In the JDeveloper window, type Alt+F.

New File screen appears

2. Use arrow keys to navigate to New, Application and press the Enter
key.

3. In the next screen, use the tab key to go to application list and then use
arrow keys to select BPM Application and press the Enter key.

4. Follow the wizard to create a new BPM Application and Project.

Keyboard Shortcuts in Oracle BPM Process Editor

Table B-2 Keyboard shortcuts in Oracle BPM Process Editor

Activity Keyboard Shortcut (s)

Go to start activity. S

Go to end activity. E

Go to next activity or
next flow.

N

When the selected node is an activity, pressing N selects the outgoing flow
from the activity, and if the flow is selected, thenN takes you to activity.
Successive N commands take you from start activity to the end activity.

Add activities and
gateways.

Navigate using N key and when the focus is on the connector next to the
activity or gateway, press the R key to bring up the context sensitive menu
for the connector and from the menu select the activity to be inserted.

Edit and activity or
gateway.

When the focus is on the activity or gateway, Enter key brings up the
properties dialog for the activity or gateway and you can edit the activity or
gateway.

B-1

Table B-2 (Cont.) Keyboard shortcuts in Oracle BPM Process Editor

Activity Keyboard Shortcut (s)

Delete an activity or
gateway.

When the focus is on the activity or gateway, Delete key delete the activity
or gateway.

Right Click R

When the focus is on a flow, this key brings up the insert menu so that you
can insert.

Go to next branch. T

Useful when there are multiple outgoing flows from an activity.

Bring up activity
selection dialog.

O

When the focus is on an activity in the process diagram, this key shows all
the activities that can be connected to the selected activity. When you select
an activity from the list, the selected activity is joined with the activity that
has the focus in the process diagram.

Right Click on the
canvas.

I

Brings the context menu of the canvas.

Keyboard Shortcuts in Oracle BPM Task Editor

Table B-3 Keyboard shortcuts in Oracle BPM Task Editor

Activity Keyboard Shortcut (s)

Go To first stage in the
assignment.

G

Insert a serial node. S

If the selected node is a stage node, inserts a new stage node so that
the new node is serial to the current selected stage node. If the
selected node is a participant node, inserts a new participant node so
that the new node is serial to the current selected participant node.

Go to the next node. N

If the selected node is a stage node, the next stage node is selected. If
the selected node is a participant node, the next participant node is
selected.

Insert a parallel node. P

If the selected node is a stage node, inserts a new stage node so that
the new node is parallel to the current selected stage node. If the
selected node is a participant node, inserts a new participant node so
that the new node is parallel to the current selected participant node.

Inserts node into an
empty stage

F

Uses this combination to insert a participant node into an empty stage
node

Appendix B
Oracle BPM Studio Keyboard Navigation

B-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Using Oracle Business Process Management Studio
	1 Introduction to Oracle Business Process Management Studio
	1.1 Working with Oracle Business Process Management Suite
	1.2 Overview of the Application Development Life Cycle
	1.3 Introduction to the Oracle Business Process Management Studio User Interface
	1.3.1 Applications Window
	1.3.2 BPMN Process Editor
	1.3.3 Components Window
	1.3.4 Process Asset Manager Navigator
	1.3.5 Structure View
	1.3.6 Thumbnail View
	1.3.7 Simulation View
	1.3.8 Log Window
	1.3.9 Documentation Window

	2 Working with Business Process Management Projects
	2.1 Introduction to BPM Projects
	2.1.1 Introduction to Project Resources
	2.1.2 Sharing Projects Between Oracle BPM Users

	2.2 Creating and Working with Projects
	2.2.1 How to Create a New Project
	2.2.2 How to Open a Project from the File System
	2.2.3 How to Export a Project
	2.2.4 How to Import a Previously Exported Project
	2.2.5 How to Edit Project Preferences

	3 Working with Processes and the Process Editor
	3.1 Getting Started with Processes
	3.1.1 Introduction to Business Processes
	3.1.1.1 Types of Processes

	3.1.2 How to Create a New Business Process
	3.1.3 How to Open a Business Process
	3.1.4 How to Delete a Business Process
	3.1.4.1 What You Need to Know About Deleting a Business Process

	3.2 Introduction to the Process Editor
	3.3 Working with Processes
	3.3.1 How to Export a Process As an Image
	3.3.2 How to Change the Highlight Level for Messages in a Process
	3.3.3 How to Change the Zoom Level in a Process
	3.3.4 How to Configure Layout Properties and Use a Grid in a Process

	3.4 Working with Flow Objects in Your Process
	3.4.1 How to Add Flow Objects from the Component Window
	3.4.2 How to Add Flow Objects from the Process Editor Toolbar
	3.4.3 How to Add Flow Objects from a Context Menu
	3.4.4 How to Edit Flow Object Properties
	3.4.5 How to Display and Fix Errors or Warnings in Flow Objects
	3.4.6 How to Mark and Unmark a Flow Object as Draft
	3.4.7 How to Copy and Paste Flow Objects
	3.4.8 How to Add and Use Sequence Flows

	3.5 Working with Draft Processes
	3.5.1 Introduction to Draft Processes
	3.5.2 How to Mark a Flow Object as Draft

	3.6 Documenting Your Process
	3.6.1 Introduction to the Documentation Editor
	3.6.2 How to Add Documentation to Your Process
	3.6.3 Generating Process Reports for Your Project

	Part II Modeling a Process
	4 Modeling Your Organization
	4.1 Introduction to Organizations
	4.1.1 Introduction to the Organization Editor

	4.2 Introduction to Roles
	4.2.1 How to Create a New Role
	4.2.2 How to Add Members to a Role

	4.3 Introduction to Organizational Charts
	4.4 Introduction to Organizational Units
	4.4.1 How to Create an Organizational Unit

	4.5 Introduction to Calendars
	4.5.1 How to Create a Calendar

	4.6 Introduction to Holidays
	4.6.1 How to Create Holidays

	4.7 Introduction to Business Parameters
	4.7.1 How to Add a Business Parameter
	4.7.2 How to Assign a Value to a Business Parameter

	5 Handling Information in Your Process Design
	5.1 Introduction to Handling Information in Your Process Design
	5.1.1 Basic Data Objects versus Complex Data Objects

	5.2 Introduction to Data Objects
	5.2.1 Supported Data Types for Data Objects
	5.2.2 Default Values

	5.3 Working with Process Data Objects
	5.3.1 How to Add a Process Data Object
	5.3.2 How to Edit a Process Data Object
	5.3.3 How to Delete a Data Object
	5.3.4 How to Assign a Value to a Process Data Object

	5.4 Introduction to Activity Instance Attributes
	5.5 Working with Activity Instance Attributes
	5.6 Introduction to Subprocess Data Objects
	5.7 Working with Subprocess Data Objects
	5.7.1 Adding a Data Object to a Subprocess
	5.7.2 Editing a Data Object in a Subprocess
	5.7.3 Deleting a Data Object from a Subprocess

	5.8 Introduction to Project Data Objects
	5.8.1 Business Indicators
	5.8.2 Supported Data Types for Project Data Objects

	5.9 Working with Project Data Objects
	5.9.1 How to Add a Project Data Object
	5.9.2 How to Edit a Project Data Object
	5.9.3 How to Delete a Project Data Object
	5.9.4 How to Assign a Value to a Project Data Object

	5.10 Introduction to Arguments
	5.11 Naming Conventions
	5.12 Scope and Access
	5.13 Introduction to Data Associations
	5.13.1 Introduction to the Data Association Editor

	5.14 Introduction to Transformations
	5.15 Defining Transformations
	5.15.1 How to Define a Transformation
	5.15.2 What Happens When You Define a Transformation

	Part III Analyzing Process Performance
	6 Running Simulations in Oracle BPM
	6.1 Introduction to Running Simulations in Oracle BPM
	6.1.1 Simulation Models and Simulation Definitions

	6.2 Creating Simulation Models
	6.2.1 How to Create a Simulation Model from a Business Process
	6.2.2 How to Create and Configure a Simulation Model

	6.3 Configuring Boundary Events
	6.4 Creating Simulation Definitions
	6.4.1 How to Create a Simulation Definition

	6.5 Running Simulations
	6.5.1 How to Run a Simulation
	6.5.2 What Happens When You Run a Simulation
	6.5.3 Understanding the Simulation View

	6.6 Analyzing the Results of a Simulation
	6.6.1 How to Analyze the Results of a Simulation Using a Chart
	6.6.2 How to Generate a Simulation Report
	6.6.3 What Happens when You Generate a Simulation Report

	7 Using Process Analytics
	7.1 Introduction to Process Analytics
	7.1.1 Process and Activity Performance Metrics
	7.1.2 Workload Metrics
	7.1.3 Human Resource Metrics

	7.2 Typical Process Analytics Workflow
	7.2.1 How to Enable Global Flags for Publishing Analytics

	7.3 Configuring Projects, Processes, and Activities to Generate Sampling Points
	7.3.1 User-Defined Measurements
	7.3.2 Enable HWF and Case Measurements
	7.3.3 How to Configure the Sampling Point Generation of a Project
	7.3.4 What Happens When You Configure a Project To Generate Sampling Points
	7.3.5 How to Configure the Sampling Point Generation for an Activity
	7.3.6 What Happens When You Configure the Sampling Points for an Activity

	7.4 Adding Business Indicators to Projects
	7.4.1 How to Add a Business Indicator to a Project
	7.4.1.1 Create the Business Indicator
	7.4.1.2 Bind Business Indicators to a Project Data Object
	7.4.1.3 Create Data Associations for a Project Data Object.

	7.4.2 What Happens When You Add a Business Indicator to a Process

	7.5 Adding Measurement Marks to Processes
	7.5.1 How to Add Single Measurement Marks to a Process
	7.5.2 What Happens When You Add a Single Measurement to a Process
	7.5.3 How to Measure a Business Indicator in a Process Section Using Measurement Marks
	7.5.4 What Happens When You Use Measurement Marks to Measure Business Indicator Values for a Section of a Process

	7.6 Adding Counters to the Activities in a Process
	7.6.1 How to Add a Counter Mark to an Activity in a Process
	7.6.2 What Happens When You Add a Counter Mark to an Activity in a Process
	7.6.3 How to Delete a Counter Mark
	7.6.4 What Happens When You Delete a Counter Mark

	7.7 Defining Analytics View Identifier
	7.7.1 How to Define the Analytics View Identifier

	7.8 Configuring BAM 12c Process Metrics Generation in a Project
	7.8.1 BAM 12c Process Metrics
	7.8.2 How to Configure BAM 12c Process Metrics Generation in a Project
	7.8.3 What Happens When You Enable BAM 12c Process Metrics in a Project

	7.9 Enabling Oracle BAM 11g in a Project
	7.9.1 How to Enable Oracle BAM 11g in a Project
	7.9.2 What Happens When You Enable Oracle BAM 11g

	Part IV Working with Business Components
	8 Using the Business Catalog
	8.1 Introduction to the Business Catalog
	8.1.1 Non-Synthesized Components
	8.1.2 Synthesized Components
	8.1.3 Adding Components to the Business Catalog
	8.1.4 Using Modules to Organize Business Components
	8.1.4.1 Predefined Modules

	8.2 Adding a New Module
	8.2.1 How to Add a New Module

	8.3 Deleting a Module
	8.3.1 How to Delete a Module

	8.4 Customizing Synthesized Types
	8.4.1 How to Customize a Synthesized Type

	8.5 Creating an Enumeration
	8.5.1 How to Create an Enumeration
	8.5.2 How to Add Attributes to an Enumeration
	8.5.3 Using an Enumeration in a Simple Expression

	9 Sharing BPM Projects Using the Process Asset Manager
	9.1 Introduction to the Process Asset Manager
	9.2 Working with BPM Projects Stored in the Process Asset Manager
	9.2.1 How to Set Up an Environment to Work with Projects Stored in the Process Asset Manager
	9.2.2 How to Modify a BPM Project Stored in the Process Asset Manager
	9.2.3 How to add a BPM Project to the Process Asset Manager
	9.2.4 How to Export a BPM Project Stored in the Business Process Manager

	9.3 Working with the Process Asset Manager
	9.3.1 How to Create a Process Asset Manager Connection
	9.3.2 How to Check Out a BPM Project from the Process Asset Manager
	9.3.3 How to Save a BPM Project to the Process Asset Manager
	9.3.4 How to Update Local BPM Projects
	9.3.5 How to Delete a BPM Project from the Process Asset Manager
	9.3.6 How to View the Change History

	10 Modeling Business Objects
	10.1 Introduction to Business Objects
	10.1.1 Types of Business Objects
	10.1.2 Benefits of Modeling Using Business Objects
	10.1.3 Naming Conventions for Business Objects

	10.2 Working with Business Objects
	10.2.1 How to Add a Business Object
	10.2.2 What Happens When You Add a Business Object
	10.2.3 How to Modify a Business Object
	10.2.4 How to Delete a Business Object
	10.2.5 What Happens When You Delete a Business Object
	10.2.6 How to Document a Business Object
	10.2.7 What Happens When You Document a Business Object

	10.3 Using a Business Object in a Process
	10.3.1 How to Use a Business Object in a Process
	10.3.2 What Happens When You Use a Business Object in a Process

	10.4 Adding Business Objects Based on a XML Schema Element or Type
	10.4.1 How to Add a Business Object Based on a XML Schema Element or Type
	10.4.2 What Happens When You Create a Business Object Based on an XML Schema Element or Type
	10.4.3 How to add an XML Schema to Your BPM Project
	10.4.4 What Happens When You Add a Schema File to Your Project

	10.5 Introduction to Business Object Attributes
	10.5.1 Supported Data Types for Business Object Attributes
	10.5.2 Naming Conventions for Business Object Attributes

	10.6 Working with Business Object Attributes
	10.6.1 How to Add a Business Object Attribute
	10.6.2 How to Remove a Business Object Attribute
	10.6.3 How to Document a Business Object Attribute
	10.6.4 What Happens When You Document a Business Object Attribute

	10.7 Working with Business Object Methods
	10.7.1 How to Add a Business Object Method
	10.7.2 How to Change the Signature of Business Object Method
	10.7.3 How to Remove a Business Object Method
	10.7.4 How to Document a Business Object Method

	10.8 Sharing Business Objects
	10.8.1 How to Export a Business Object
	10.8.2 How to Import Business Objects from a File

	10.9 Introduction to Business Object Inheritance
	10.9.1 Method Overloading
	10.9.2 Polymorphism
	10.9.3 Method Overriding
	10.9.4 Attribute Shadowing
	10.9.5 Abstract Business Objects

	10.10 Working with Business Object Inheritance
	10.10.1 How to Create a Child Business Object
	10.10.2 How to Mark a Business Object as Abstract

	11 Working with Human Tasks
	11.1 Introduction to Human Tasks in BPM
	11.2 Using Human Task Patterns in Oracle BPM
	11.3 Updating User Tasks Using Update Tasks
	11.3.1 Update Task Operations
	11.3.2 How to Update a User Task Using Update Tasks
	11.3.3 How to Configure Update Tasks

	12 Working with Services and References
	12.1 Introduction to Services and References
	12.1.1 Introduction to Services
	12.1.2 Introduction to References
	12.1.3 Introduction to Callbacks

	12.2 Introduction to Service Adapters in Oracle BPM
	12.3 Introduction to Oracle Mediator in Oracle BPM
	12.4 Introduction to BPEL Processes in Oracle BPM
	12.5 Using Services in Oracle BPM
	12.6 Using References in Oracle BPM
	12.7 Customizing Services and References
	12.7.1 How to Customize a Service or a Reference
	12.7.2 How to Customize an Operation
	12.7.3 What Happens When You Customize a Service or a Reference

	13 Using Business Rules
	13.1 Introduction to Business Rules in Oracle BPM
	13.1.1 Using Business Rules in a BPMN Process

	13.2 Assigning an Existing Business Rule to a Business Rule Task
	13.2.1 How to Assign an Existing Business Rule to a Business Rule Task
	13.2.2 What Happens When You Assign an Existing Business Rule to a Business Rule Task
	13.2.3 How to Edit the Business Rule Associated to a Business Rule Task

	13.3 Creating a Business Rule from Oracle BPM Studio
	13.3.1 How to Create a Business Rule from Oracle BPM Studio
	13.3.2 How to Add Input and Output Arguments When Creating a Business Rule Component
	13.3.3 How to Configure the Advanced Properties When Creating a Business Rule Component
	13.3.4 What Happens When You Create a Business Rule Task from Oracle BPM

	14 Sending Notifications
	14.1 Introduction to Notifications
	14.2 Sending Email Notifications
	14.2.1 How to Send an Email Notification
	14.2.2 How to Configure Email Notification General Properties
	14.2.3 How to Configure Email Notification Content Properties
	14.2.4 How to Configure Email Notification Attachment Properties
	14.2.5 How to Configure Email Notification Header Properties

	14.3 Sending a User Notification
	14.3.1 How to Send a User Notification
	14.3.2 How to Configure User Notification General Properties
	14.3.3 How to Configure User Notification Properties

	14.4 Sending an SMS Notification
	14.4.1 How to Send an SMS Notification
	14.4.2 How to Configure SMS Notification General Properties

	14.5 Sending an IM Notification
	14.5.1 How to Send an IM Notification
	14.5.2 How to Configure IM Notification General Properties

	15 Using SOA Composites with BPM Projects
	15.1 Introduction to SOA Composites
	15.1.1 Understanding the Relationship Between SOA Composites and SOA Components
	15.1.2 Working with SOA Components
	15.1.3 BPMN Process in SOA Composites
	15.1.4 How Do BPMN Errors Affect the SOA Composite Status

	15.2 Opening the SOA Composite in a BPM Project
	15.2.1 How to Open the SOA Composite in a BPM Project

	15.3 Opening BPMN Processes from the SOA Composite in a BPM Project
	15.3.1 How to Open a BPMN Process from the SOA Composite in a BMP Project

	15.4 Adding a BPMN Process from the SOA Composite Editor
	15.4.1 How to Add a BPMN Process from the SOA Composite Editor

	15.5 Integrating with BPEL Processes Using the SOA Composite
	15.6 Adding a BPMN Process as a Partner Link in a BPEL Process
	15.6.1 How to Add a BPMN Process as a Partner Link in a BPEL Process

	15.7 Connecting to a BPMN Process Using Web Services
	15.8 Building a BPM Project
	15.8.1 How to Build a BPM Project

	Part V Controlling the Process Flow
	16 Controlling the Process Flow
	16.1 Introduction to Controlling the Process Flow
	16.1.1 Gateways
	16.1.2 Timer Events
	16.1.3 Errors
	16.1.4 Message Events
	16.1.5 Send and Receive Tasks
	16.1.6 Loop Markers
	16.1.7 Multi-Instance Loop Markers
	16.1.8 Suspending the Current Process Flow

	16.2 Introduction to Loop and Multi-Instance Markers in Subprocesses
	16.2.1 How to Configure Loop Markers
	16.2.2 How to Configure Multi-Instance Markers

	16.3 Suspending the Current Process Flow to Run an Alternative Process Flow
	16.3.1 How to Configure a Flow Object to Suspend the Current Process Flow
	16.3.2 How to Resume the Suspended Process Flow

	17 Adding Delays, Deadlines, and Time-Based Cycles to a Process
	17.1 Introduction to Timer Events
	17.2 Adding a Delay to the Process Flow
	17.2.1 How to Add a Delay to the Process Flow

	17.3 Designing a Process to Start Based on a Time Condition
	17.3.1 How to Design a Process to Start Based on a Time Condition

	17.4 Configuring a Deadline for an Activity
	17.4.1 How to Configure a Deadline for an Activity

	17.5 Configuring a Deadline for a BPMN Process
	17.5.1 How to Configure a Deadline for a BPMN Process

	17.6 Running Additional Activities
	17.6.1 How to Run Additional Activities While an Activity is Running
	17.6.2 How to Run Additional Activities While a Process is Running

	17.7 Configuring Timer Events
	17.7.1 How to Configure a Timer Event To Use a Specific Date and Time
	17.7.2 How to Configure a Timer Event to Use an Interval
	17.7.3 How to Configure a Timer Event to Run Periodically

	18 Handling Errors
	18.1 Introduction to Error Handling
	18.1.1 Handling Errors Using Exceptions

	18.2 Using Business Exceptions
	18.3 Using System Exceptions
	18.4 Typical Flow of an Exception
	18.4.1 Typical Flow of an Exception Thrown in a Task
	18.4.2 Typical Flow of an Exception in a Subprocess
	18.4.3 Typical Flow of an Exception in a Reusable Process

	18.5 Handling Exceptions in a Business Process
	18.5.1 How to Handle an Exception Using a Boundary Error Catch Event
	18.5.2 How to Handle an Exception Using an Event Subprocess
	18.5.3 How to Configure an Error Event to Catch Business Exceptions
	18.5.4 How to Configure a Catch Event to Catch System Exceptions

	18.6 Configuring Catch Events to Recover from an Exception
	18.7 Throwing Exceptions in Subprocesses or Reusable Processes
	18.7.1 How to Throw an Exception
	18.7.2 How to Create a Business Exception

	18.8 Handling Exceptions in Subprocesses
	18.9 Handling Errors in a Peer Process Using Message Events
	18.9.1 How to Handle Errors in a Peer Process Using Message Events

	19 Using Fault Handling in BPM
	19.1 Handling Faults with the Fault Management Framework
	19.2 Designing Fault Policies for Oracle BPM Suite
	19.2.1 Designing Composite Level Fault Policies
	19.2.2 Designing Service Component Level Fault Policies
	19.2.3 Designing Reference Level Fault Policies (Calling a BPM Process)
	19.2.4 Designing Reference Level Fault Policies (Calling a File Adapter)
	19.2.5 What You May Need to Know About the Difference Between Reference Naming Conventions in Oracle SOA Suite and Oracle BPM Suite

	20 Communicating With Other BPMN Processes and Services
	20.1 Introduction to Communication with Other BPMN Processes and Services
	20.1.1 Introduction to Synchronous and Asynchronous Operations

	20.2 Communicating With Other BPMN Processes and Services Using Message Events
	20.3 Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN Processes
	20.3.1 How to Invoke Asynchronous Service Operation Using Message Events
	20.3.2 How to Receive the Callback Operation of an Asynchronous Service Using Message Events
	20.3.3 What Happens When You Invoke an Asynchronous Service Operation Using Message Events
	20.3.4 How to Invoke an Asynchronous BPMN Process Operation Using Message Events
	20.3.5 How to Invoke the Callback Operation of an Asynchronous BPMN Process Using Message Events
	20.3.6 What Happens When You Invoke an Asynchronous BPMN Process Using Message Events

	20.4 Using Message Events Configured as Boundary Events
	20.5 Using Service Tasks to Invoke Synchronous Operations in Services and BPMN Processes
	20.5.1 How to Invoke a Synchronous Service Operation Using a Service Task
	20.5.2 What Happens When You Invoke a Synchronous Service Operation Using a Service Task
	20.5.3 How to Invoke a Synchronous BPMN Process Operation Using a Service Task
	20.5.4 What Happens When You Invoke a Synchronous BPMN Process Operation Using a Service Task

	20.6 Communicating With Other BPMN Processes and Services Using Send and Receive Tasks
	20.7 Using Send and Receive Tasks to Invoke Asynchronous Services and Asynchronous BPMN Processes
	20.7.1 How to Use a Send Task to Invoke an Asynchronous Service Operation
	20.7.2 How to Use the Receive Task to get Callbacks from the Invoked Asynchronous Service
	20.7.3 What Happens When You Invoke an Asynchronous Service Using Send and Receive Tasks
	20.7.4 How to Use the Send Task to Invoke an Asynchronous BPMN Process Operation
	20.7.5 How to Use a Receive Task to get the Callback operation of an Invoked Asynchronous BPMN Process
	20.7.6 What Happens When You Invoke an Asynchronous BPMN Process Using Send and Receive Tasks

	20.8 Introduction to Invoking a Process Using Call Activities
	20.9 Invoking a Process Using Call Activities
	20.9.1 How to Invoke a Process Using Call Activities

	20.10 Introduction to Communication Between Processes Using Signal Events
	20.11 Communicating Between Processes Using Signal Events
	20.11.1 How to Broadcast a Signal to Multiple Processes
	20.11.2 How to Configure Your Process to React to a Specific Signal

	21 Defining the Process Interface
	21.1 Defining the Process Interface
	21.2 Using Message Events to Define the BPMN Process Interface
	21.2.1 Using Message Events to Define the Callback Interface for BPMN Processes

	21.3 Using Message Events to Define Asynchronous Operations in a BPMN Processes
	21.3.1 How to Configure the Start Operation of a BPMN Process as Asynchronous Using Message Events
	21.3.2 How to Define a Callback Operation Using Message Events
	21.3.3 What Happens When You Configure a BPMN Process Start Operation as Asynchronous Using Message Events
	21.3.4 How to Add an Asynchronous Operation to a BPMN Process Interface Using Intermediate Message Events

	21.4 Using Message Events to Define a Synchronous Operation in a BPMN Processes Interface
	21.4.1 How to Configure the Start Operation of a BPMN Process as Synchronous Using Message Events
	21.4.2 How to Configure the End Event of a Synchronous Process
	21.4.3 What Happens When You Configure the Start Operation of a BPMN Process as Synchronous Using Message Events

	21.5 Using Message Events with an Interface from the Business Catalog to Define Your Process Interface
	21.5.1 How to Use an Interface from the Business Catalog to Define an Operation in a BPMN Process Interface Using Message Start and Catch Events
	21.5.2 How to Configure a Message End or a Message Throw Event to Use an Interface from the Business Catalog Using Message Events
	21.5.3 What Happens When You Use an Interface from the Business Catalog to Define an Operation

	21.6 Defining the BPMN Process Interface Using Send and Receive Tasks
	21.6.1 Defining the Callback Interface for BPMN Processes Using a Send Task

	21.7 Defining Asynchronous Processes Operations Using Send and Receive Tasks
	21.7.1 How to Define an Asynchronous Process Operation Using Send and Receive Tasks
	21.7.2 How to Add an Asynchronous Process Operation to the Process Interface Using a Receive Task
	21.7.3 How to Define a Callback Process Operation Using a Send Task
	21.7.4 What Happens When You Define an Asynchronous Operation Using Send and Receive Tasks

	21.8 Using Send and Receive Tasks to Define a Synchronous Operation in a BPMN Process
	21.8.1 How to Configure a Process Operation as Synchronous Using Send and Receive Tasks
	21.8.2 What Happens When You Define a Synchronous Operation Using Send and Receive Tasks

	21.9 Using Send and Receive Tasks with an Interface from the Business Catalog to Define Your Process Interface
	21.9.1 How to Use an Interface from the Business Catalog to Define an Operation in a BPMN Process Interface Using Send and Receive Tasks
	21.9.2 How to Configure a Message End or a Message Throw Event to Use an Interface from the Business Catalog Using Send and Receive Tasks
	21.9.3 What Happens When You Use Send and Receive Tasks with an Interface from the Business Catalog to Define an Operation

	21.10 Defining the Process Input and Output
	21.10.1 How to Add Input and Output Arguments to a BPMN Process
	21.10.2 How to Edit the Input and Output Arguments of a BPMN Process
	21.10.3 How to Delete an Input or Output Argument of a BPMN Process

	22 Communicating Business Processes Using Correlations
	22.1 Introduction to Correlations
	22.2 Understanding the Components of a Correlation
	22.3 Typical Design Workflow
	22.4 Defining Correlations for a BPMN Element
	22.4.1 How to Define a Correlation for a Flow Object
	22.4.2 How to Define a Correlation Using Simple Mode
	22.4.3 How to Define a Correlation Using Advanced Mode

	22.5 Creating Correlations Keys
	22.5.1 How to Create a Correlation Key
	22.5.2 How to Configure a Correlation Key

	23 Defining Conversations
	23.1 Introduction to Conversations
	23.1.1 Defining the Default Conversation

	23.2 Understanding the Different Types of Conversations
	23.3 Creating Conversations
	23.3.1 How to Create a Conversation

	23.4 Defining Conversations for a BPMN Element
	23.4.1 How to Define a Conversation for a BPMN Element

	23.5 Viewing the Collaboration Diagram
	23.5.1 How to View the Collaboration Diagram
	23.5.2 How to Hide a Collaboration
	23.5.3 How to Show a Collaboration

	24 Writing Expressions
	24.1 Introduction to Expressions in Oracle BPM
	24.2 Writing Conditions in Conditional Sequence Flows
	24.2.1 How to Implement a Conditional Sequence Flow

	24.3 Writing Expressions in Complex Gateways
	24.3.1 How to Implement a Complex Gateway

	24.4 Writing Expressions in Timer Events
	24.4.1 How to Use an Expression in a Timer Event

	24.5 Writing Expressions in Data Associations
	24.5.1 How to Use an Expression in a Data Association

	24.6 Writing Conditions in Loop and Multi-Instance Markers in Subprocesses
	24.6.1 How to Configure Loop Markers
	24.6.2 How to Configure Multi-Instance Markers

	24.7 Writing Expressions and Conditions Using the Simple Expression Builder
	24.7.1 How to Use a Data Object in an Expression
	24.7.2 How to Use a Function in an Expression

	24.8 Simple Expression Builder Supported Operators
	24.8.1 Operators Precedence

	24.9 Simple Expression Builder Supported Functions
	24.9.1 String Functions
	24.9.1.1 length
	24.9.1.2 concatenation
	24.9.1.3 contains
	24.9.1.4 startsWith

	24.9.2 Numeric Functions
	24.9.2.1 floor
	24.9.2.2 ceil
	24.9.2.3 round
	24.9.2.4 abs

	24.9.3 DateTime and Duration Functions
	24.9.3.1 now
	24.9.3.2 addition
	24.9.3.3 subtraction
	24.9.3.4 year
	24.9.3.5 month
	24.9.3.6 day
	24.9.3.7 hours
	24.9.3.8 minutes
	24.9.3.9 seconds
	24.9.3.10 timezone

	24.10 Writing Expressions Using the XPath Expression Builder
	24.10.1 How to Add a Variable to an XPath Expression
	24.10.2 How to Use a Function in an XPath Expression

	24.11 Using Arrays
	24.11.1 Accessing an Attribute of an Element Within an Array
	24.11.2 Obtaining the Length of an Array

	24.12 Using Literals
	24.12.1 Using String Literals
	24.12.2 Using Time Literals
	24.12.3 Using Duration Literals
	24.12.4 Using Array Literals

	24.13 XPath BPM Extension Functions
	24.13.1 getActivityInstanceAttribute
	24.13.2 getDataInput
	24.13.3 getDataObject
	24.13.4 getDataOutput
	24.13.5 getGatewayInstanceAttribute
	24.13.6 getProcessInstanceAttribute
	24.13.7 getBusinessParameter

	25 Writing BPM Scripts
	25.1 Introduction to BPM Scripting
	25.2 Introduction to the BPM Code Editor
	25.3 Introduction to the Scripting Catalog
	25.4 Importing Custom Libraries
	25.4.1 How to Import a Custom Library

	25.5 Working with the Elements of a BPM Project
	25.5.1 How to Work with Business Objects
	25.5.2 How to Work with Business Parameters

	25.6 Importing Business Objects from the Business Catalog
	25.7 Predefined Variables
	25.8 Implementing Script Tasks
	25.8.1 How to Implement a Script Task

	25.9 Type Description Mapping for XML Schema Types

	26 Debugging a BPM Project
	26.1 Introduction to Debugging a BPM Project
	26.2 Adding a Breakpoint to a BPMN Flow Object
	26.2.1 How to Add a Breakpoint to a BPMN Flow Object

	26.3 Adding a Breakpoint to a BPMN Component
	26.3.1 How to Add a Breakpoint to a BPMN Component

	26.4 Disabling a Breakpoint
	26.4.1 How to Disable a Breakpoint

	26.5 Debugging a BPM Project
	26.5.1 How to Attach a BPM Project to the Debugger

	Part VI Using Human Interaction Components
	27 Getting Started with Human Workflow
	27.1 Introduction to Human Workflow
	27.2 Introduction to Human Workflow Concepts
	27.2.1 Introduction to Design and Runtime Concepts
	27.2.1.1 Task Assignment and Routing
	27.2.1.1.1 Participant
	27.2.1.1.2 Participant Type
	27.2.1.1.2.1 Participant Assignment

	27.2.1.1.3 Ad Hoc Routing
	27.2.1.1.4 Outcome-based Completion of Routing Flow

	27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment
	27.2.1.3 Task Stakeholders
	27.2.1.4 Task Deadlines
	27.2.1.5 Notifications
	27.2.1.6 Task Forms
	27.2.1.7 Advanced Concepts
	27.2.1.7.1 Rule-based Routing
	27.2.1.7.2 Rule-based Participant Assignment
	27.2.1.7.3 Stages
	27.2.1.7.4 Access Rules
	27.2.1.7.5 Callbacks

	27.2.1.8 Reports and Audit Trails

	27.2.2 Introduction to the Stages of Human Workflow Design

	27.3 Introduction to Human Workflow Features
	27.3.1 Task Assignment to a User or Role
	27.3.2 Use of the Various Participant Types
	27.3.3 Escalation, Expiration, and Delegation
	27.3.4 Automatic Assignment and Delegation
	27.3.5 Dynamic Assignment of Users Based on Task Content

	27.4 Introduction to Human Workflow Architecture
	27.4.1 Human Workflow Services
	27.4.2 Use of Human Task
	27.4.3 Service Engines

	27.5 Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle BPM Suite

	28 Designing Human Tasks in Oracle BPM
	28.1 Introduction to Designing Human Tasks in Oracle BPM
	28.1.1 Typical Design Workflow

	28.2 Creating a Human Task from Oracle BPM Studio
	28.2.1 How to Create a Human Task from Oracle BPM Studio
	28.2.2 How to Configure the Outcome of a Human Task
	28.2.3 How to Add a Parameter to Human Task
	28.2.4 How to Configure the Outcome Target of a Human Task
	28.2.5 What Happens When You Create a Human Task from Oracle BPM Studio

	28.3 Editing a Human Task from Oracle BPM Studio
	28.3.1 How to Edit a Human Task Using the User Task Properties Dialog

	28.4 Creating a Human Task from the SOA Composite Editor
	28.4.1 How to Create a Human Task from the SOA Composite Editor

	28.5 Implementing a User Task with an Existing Human Task
	28.5.1 How to Implement a User Task With an Existing Human Task
	28.5.2 What Happens When You Implement a User Task With an Existing Human Task
	28.5.3 How to Associate the Process Payload to the Human Task Payload

	28.6 Editing a Human Task Using the Human Task Editor
	28.6.1 How to Edit a Human Task Using the Human Task Editor

	28.7 Configuring a Human Task Using the Human Task Editor
	28.7.1 How to Specify an E-mail Address for the Recipient of a Notification
	28.7.2 How to Configure Oracle UCM Repository to Store Task Attachments

	28.8 Working with Screenflows
	28.8.1 Creating a Screenflow

	29 Configuring Human Tasks
	29.1 Accessing the Sections of the Human Task Editor
	29.1.1 How to Access the Sections of the Human Task Editor

	29.2 Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context
	29.2.1 How to Specify the Title, Description, Outcome, Priority, Category, Owner, and Application Context
	29.2.2 How to Specify a Task Title
	29.2.3 How to Specify a Task Description
	29.2.4 How to Specify a Task Outcome
	29.2.5 How to Specify a Task Priority
	29.2.6 How to Specify a Task Category
	29.2.7 How to Specify a Task Owner
	29.2.7.1 Specifying a Task Owner Statically Through the User Directory or a List of Application Roles
	29.2.7.2 Specifying a Task Owner Dynamically Through an XPath Expression

	29.2.8 How To Specify an Application Context

	29.3 Specifying the Task Payload Data Structure
	29.3.1 How to Specify the Task Payload Data Structure

	29.4 Assigning Task Participants
	29.4.1 How to Specify a Stage Name and Add Parallel and Sequential Blocks
	29.4.2 How to Assign Task Participants
	29.4.3 How to Configure the Single Participant Type
	29.4.3.1 Creating a Single Task Participant List
	29.4.3.1.1 Creating Participant Lists Consisting of Value-Based Names and Expressions
	29.4.3.1.2 Creating Participant Lists Consisting of Value-Based Management Chains
	29.4.3.1.3 Creating Participant Lists Consisting of Rulesets

	29.4.3.2 Specifying a Time Limit for Acting on a Task
	29.4.3.3 Inviting Additional Participants to a Task
	29.4.3.4 Bypassing a Task Participant

	29.4.4 How to Configure the Parallel Participant Type
	29.4.4.1 Specifying the Voting Outcome
	29.4.4.2 Creating a Parallel Task Participant List
	29.4.4.3 Specifying a Time Limit for Acting on a Task
	29.4.4.4 Inviting Additional Participants to a Task
	29.4.4.5 Bypassing a Task Participant

	29.4.5 How to Configure the Serial Participant Type
	29.4.5.1 Creating a Serial Task Participant List
	29.4.5.2 Specifying a Time Limit for Acting on a Task
	29.4.5.3 Inviting Additional Participants to a Task
	29.4.5.4 Bypassing a Task Participant

	29.4.6 How to Configure the FYI Participant Type
	29.4.6.1 Creating an FYI Task Participant List

	29.5 Selecting a Routing Policy
	29.5.1 How to Route Tasks to All Participants in the Specified Order
	29.5.1.1 Allow All Participants to Invite Other Participants or Edit New Participants
	29.5.1.2 Allow Initiator to Add Participants
	29.5.1.3 Stopping Routing of a Task to Further Participants
	29.5.1.4 Enabling Early Completion in Parallel Subtasks
	29.5.1.5 Completing Parent Subtasks of Early Completing Subtasks

	29.5.2 How to Specify Advanced Task Routing Using Business Rules
	29.5.2.1 Introduction to Advanced Task Routing Using Business Rules
	29.5.2.2 Facts
	29.5.2.3 Action Types
	29.5.2.4 Sample Ruleset
	29.5.2.5 Linked Dictionary Support
	29.5.2.6 Creating Advanced Routing Rules

	29.5.3 How to Use External Routing
	29.5.4 How to Configure the Error Assignee and Reviewers

	29.6 Specifying Multilingual Settings and Style Sheets
	29.6.1 How to Specify WordML and Other Style Sheets for Attachments
	29.6.2 How to Specify Multilingual Settings

	29.7 Specifying What to Show in Task Details in the Worklist
	29.8 Escalating, Renewing, or Ending the Task
	29.8.1 Introduction to Escalation and Expiration Policy
	29.8.2 How to Specify a Policy to Never Expire
	29.8.3 How to Specify a Policy to Expire
	29.8.4 How to Extend an Expiration Policy Period
	29.8.5 How to Escalate a Task Policy
	29.8.6 How to Specify Escalation Rules
	29.8.7 How to Specify a Due Date

	29.9 Specifying Participant Notification Preferences
	29.9.1 How to Notify Recipients of Changes to Task Status
	29.9.2 How to Edit the Notification Message
	29.9.3 How to Set Up Reminders
	29.9.4 How to Change the Character Set Encoding
	29.9.5 How to Secure Notifications to Exclude Details
	29.9.6 How to Display the Oracle BPM Worklist URL in Notifications
	29.9.7 How to Make Email Messages Actionable
	29.9.8 How to Send Task Attachments with Email Notifications
	29.9.9 How to Send Email Notifications to Groups and Application Roles
	29.9.10 How to Customize Notification Headers

	29.10 Specifying Access Policies and Task Actions on Task Content
	29.10.1 How to Specify Access Policies on Task Content
	29.10.1.1 Introduction to Access Rules
	29.10.1.2 Specifying User Privileges for Acting on Task Content
	29.10.1.3 Specifying Actions for Acting Upon Tasks

	29.11 Creating and Implementing Digital Certificates
	29.11.1 How to Create a Digital Certificate Authority
	29.11.2 How to Create Digital User Certificates
	29.11.3 How to Generate Digital Certificate Revocation List
	29.11.4 How to Specify a Certificate Authority
	29.11.5 How to Specify a Workflow Digital Signature Policy

	29.12 Specifying Restrictions on Task Assignments
	29.12.1 How to Specify Restrictions on Task Assignments

	29.13 Specifying Java or Business Event Callbacks
	29.13.1 How to Specify Callback Classes on Task Status
	29.13.1.1 Specifying Java Callbacks
	29.13.1.2 Specifying Business Event Callbacks

	29.13.2 How to Specify Task and Routing Customizations in BPEL Callbacks
	29.13.3 How to Disable BPEL Callbacks

	29.14 Storing Documents in Oracle Enterprise Content Management
	29.14.1 How to Configure Oracle UCM Repository to Store Task Attachments

	30 Working with Guided Business Processes
	30.1 Introduction to Guided Business Processes
	30.1.1 Guided Business Process Design Time Architecture
	30.1.2 Components of a Guided Business Process
	30.1.3 Guided Business Process Runtime Architecture
	30.1.3.1 Client Tier
	30.1.3.2 Business Logic Tier
	30.1.3.3 Data Tier

	30.2 Guided Business Process Use Cases
	30.2.1 Online Public Sector Form Processing
	30.2.2 Online Loan Application Procedure

	30.3 The Typical Flow of Developing a Guided Business Process
	30.4 Introduction to Developing a Guided Business Process
	30.5 Developing a BPMN Guided Business Process
	30.5.1 How to Develop a BPMN Guided Business Process
	30.5.2 What Happens When You Develop a BPMN Guided Business Process
	30.5.3 How to Add a New Milestone to a Guided Business Process
	30.5.4 What Happens When You Add a Milestone to a Guided Business Process
	30.5.5 How to Add a User Task to a Milestone
	30.5.6 What Happens When You Add a User Task to a Milestone
	30.5.7 How to Move a User Task to Another Milestone
	30.5.8 What Happens When You Move a User Task to Another Milestone
	30.5.9 How to Order the Milestones in a BPMN Guided Business Process
	30.5.10 What Happens When You Order the Milestones in a Guided Business Process
	30.5.11 How to Delete a Task from a Guided Business Process
	30.5.12 What Happens When You Delete a Task from a Guided Business Process
	30.5.13 How to Delete a Milestone
	30.5.14 What Happens When You Delete Milestone
	30.5.15 How to Configure an Optional Task
	30.5.16 What Happens When You Configure an Optional Task
	30.5.17 How to Configure a Parallel Task Flow in a BPMN Guided Business Process
	30.5.18 How to Branch the Task Flow in a BPMN Guided Business Process
	30.5.19 How to Configure a Task to Display a Blocked Icon
	30.5.20 What Happens When You Configure a Task to Display a Blocked Icon and Message
	30.5.21 How to Configure an Icon for a Guided Business Process
	30.5.22 What Happens When You Configure an Icon for a Guided Business Process
	30.5.23 How to Configure an Icon for a Milestone
	30.5.24 What Happens When You Configure an Icon for a Milestone
	30.5.25 How to Configure the Display Mode for a Guided Business Process
	30.5.26 What Happens When You Configure the Display Mode for a Guided Business Process
	30.5.27 How to Configure the Display Mode for a Milestone
	30.5.28 What Happens When You Configure the Display Mode for a Milestone
	30.5.29 How to Configure the Display Mode for a User Task
	30.5.30 What Happens When You Configure the Display Mode for a User Task
	30.5.31 How to Configure the Task Access Mode for a Guided Business Process
	30.5.32 What Happens When You Configure the Task Access Mode for a Guided Business Process
	30.5.33 How to Localize a BPMN Guided Business Process
	30.5.34 How to Localize a Milestone
	30.5.35 How to Localize a User Task
	30.5.36 What Happens When You Localize a Guided Business Process

	30.6 Configuring Activity Guide Properties
	30.7 Deploying a Guided Business Process to Oracle WebLogic Server
	30.7.1 How to Deploy a Guided Business Process

	30.8 Testing Guided Business Processes

	31 Building a Guided Business Process Client Application
	31.1 Introduction to Building a Guided Business Process Client Application
	31.2 Developing a Guided Business Process Client Application with Oracle ADF
	31.2.1 How to Develop a Guided Business Process Client Application
	31.2.2 What Happens When You Develop a Guided Business Process Application with Oracle ADF
	31.2.3 What Happens at Runtime: How a Guided Business Process Application Is Developed with Oracle ADF

	31.3 Securing the Guided Business Process Client Application
	31.4 Localizing a Guided Business Process Client Application
	31.4.1 How to Configure the Supported Locales for a Guided Business Process Client Application

	31.5 Guided Business Process Runtime APIs
	31.5.1 Guided Business Process query Service API
	31.5.2 JNDI Names for the Guided Business Process Enterprise Java Beans

	31.6 Developing an Example of a User Interface for Guided Business Process Tasks Using Guided Business Process Runtime Services
	31.7 Using Guided Business Process Logging
	31.7.1 How to Enable Client Side Logging
	31.7.2 How to Enable Server-Side Logging
	31.7.3 Configuring Log Levels
	31.7.4 How to View Guided Business Process Log Messages
	31.7.5 Understanding Guided Business Process Log Messages

	32 Using Approval Management
	32.1 Introduction to Approval Management
	32.1.1 AMX Components

	32.2 Understanding Approval Management Concepts
	32.2.1 Task
	32.2.2 Service Data Objects
	32.2.3 Stages
	32.2.4 List Builders
	32.2.5 Task Operations
	32.2.6 Business Rules for Approval
	32.2.6.1 List Creation
	32.2.6.2 Approver Substitution
	32.2.6.3 List Modification

	32.3 Designing Approval Management Tasks in Oracle JDeveloper
	32.3.1 Introduction to the Modeling Process
	32.3.2 Before You Begin
	32.3.3 Specifying General Information
	32.3.3.1 Task-Title Globalization

	32.3.4 Specifying Task Parameters
	32.3.4.1 How to Create Service Data Object (SDO) References
	32.3.4.2 How to Define Entity Parameters
	32.3.4.3 How to Define Collections

	32.3.5 Specifying Mapped Attributes
	32.3.5.1 About Attribute Labels and Attribute-Label Mappings
	32.3.5.2 How to Define Attribute-Label Mappings

	32.3.6 Specifying Routing and Approval Policies
	32.3.6.1 How to Model and Configure Stages
	32.3.6.2 How to Model Task Participants
	32.3.6.3 How to Model and Configure List Builders
	32.3.6.3.1 How to Model an Approval Groups List Builder
	32.3.6.3.2 How to Model a Job Level List Builder
	32.3.6.3.3 How to Model a Position List Builder
	32.3.6.3.4 How to Model a Supervisory List Builder

	32.3.6.4 How to Use Business Rules to Specify List Builders
	32.3.6.4.1 How to Create Lists
	32.3.6.4.2 How to Make Approver Substitutions
	32.3.6.4.3 How to Make List Modifications
	32.3.6.4.4 How to Define Repeating-Node Attributes of a Business Rule Condition

	32.3.6.5 How to Use Assignment Context
	32.3.6.5.1 Configuring Assignment Context

	32.3.6.6 How to Aggregate Task Approvals

	32.3.7 Defining Escalation and Renewal Policies
	32.3.8 Specifying Notification Settings
	32.3.9 Using Advanced Settings
	32.3.9.1 How to Add Callbacks for Notes, Attachments, and Validation
	32.3.9.2 How to Define Security Access Rules

	32.4 Using the End-to-End Approval Management Samples
	32.5 Using the User Metadata Migration Utility

	33 Working with Adaptive Case Management
	33.1 Introduction to Adaptive Case Management
	33.1.1 Differences Between Adaptive Case Management and Business Processes
	33.1.2 Adaptive Case Management Artifacts
	33.1.3 Use Cases
	33.1.4 Case State Model

	33.2 Creating a Case
	33.2.1 How to Create a Case

	33.3 Configuring a Case
	33.3.1 How to Edit a Case

	33.4 Configuring Case General Properties
	33.4.1 Case Deadlines
	33.4.2 How to Configure the Case General Properties
	33.4.3 How to Add Case Milestones
	33.4.4 How to Define Case Outcomes

	33.5 Configuring Case Data and Documents
	33.5.1 Case Document Operations
	33.5.2 Specifying Permission Tags for Case Documents
	33.5.3 Using the BPM Database for Data Storage
	33.5.4 Case Links in WebCenter Case Documents
	33.5.5 Customizing Case Links in WebCenter Case Documents
	33.5.6 Creating Case Fields in Oracle WebCenter Content
	33.5.7 How to Configure Case Data
	33.5.8 Configuring Case Flex Fields
	33.5.9 How to Create a Case Flex Field
	33.5.10 How to Configure the Document Location
	33.5.11 How to Configure Enterprise Content Management

	33.6 Configuring Case User Events
	33.6.1 How to Add User Events
	33.6.2 How to Publish Case User Events

	33.7 Defining Case Stakeholders and Permissions
	33.7.1 How to Add Case Stakeholders
	33.7.2 How to Add Case Permissions
	33.7.3 How to Manage Case Permissions

	33.8 Defining Case Tag Permissions
	33.8.1 How to Manage Case Tag Permissions

	33.9 Localizing a Case
	33.9.1 How to Configure Case Localization
	33.9.2 Localizing Case Objects

	33.10 Case Activities and Sub Cases
	33.10.1 Case Activity and Sub Case Attributes
	33.10.2 Predefined Case Activities
	33.10.3 Specifying the Order of Case Activities
	33.10.4 How to Promote a BPMN Process to a Case Activity
	33.10.5 How to View the BPMN Process
	33.10.6 How to Promote a Human Task to a Case Activity
	33.10.7 How to View the Human Task
	33.10.8 How to Create a Custom Case Activity
	33.10.9 Creating Sub Cases
	33.10.10 How to Create a Sub Case

	33.11 Defining Input Parameters for Case Activities
	33.11.1 How to Add a Case Activity Input Parameter

	33.12 Defining Output Parameters for Case Activities
	33.12.1 How to Add a Case Activity Output Parameter

	33.13 Configuring Case Activities
	33.13.1 How to Edit a Case Activity
	33.13.2 Configuring Case Activity Basic Properties

	33.14 Creating a Global Case Activity
	33.15 Using Business Rules with Cases
	33.15.1 Defining the Condition of a Case Business Rule
	33.15.2 Understanding the Case Business Rule Dictionary
	33.15.3 How to Generate a Case Business Rule Dictionary

	33.16 Closing Cases
	33.17 Integrating with Oracle BPM
	33.17.1 Invoking a Case From a BPMN Process
	33.17.2 How to Use Correlations with Case Events

	33.18 Schema Reference
	33.18.1 Simple Workflow Payload Schema
	33.18.2 Email Notification Payload Schema
	33.18.3 Example of Global Case Activity Metadata Schema
	33.18.4 CaseEvent.edl

	Part VII Appendices
	A Process Star Schema Views
	A.1 Standard Data Objects
	A.2 Composite-Specific Data Objects

	B Oracle BPM Studio Accessibility Features
	B.1 Oracle BPM Studio Keyboard Navigation

