
Oracle® Fusion Middleware
Integrating Oracle Coherence

12c (12.2.1.4.0)
E90859-05
February 2021

Oracle Fusion Middleware Integrating Oracle Coherence, 12c (12.2.1.4.0)

E90859-05

Copyright © 2008, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Related Documents vi

Conventions vii

 What's New in This Guide

New and Changed Features viii

Other Significant Changes in this Document ix

1 Using JPA with Coherence

Overview of the JPA CacheStore and CacheLoader Implementations 1-1

Obtain a JPA Provider Implementation 1-2

Configure a Coherence JPA Cache Store 1-2

Map the Persistent Classes 1-3

Configure JPA 1-3

Configure a Coherence Cache for JPA 1-3

Configure the Persistence Unit 1-5

2 Integrating with Oracle Coherence GoldenGate HotCache

About Oracle Coherence GoldenGate HotCache 2-2

How Does HotCache Work 2-3

Overview of How HotCache Works 2-3

How the GoldenGate Java Delivery Adapter Uses JPA Mapping Metadata 2-4

Supported Database Operations 2-5

JPA Relationship Support 2-5

Prerequisites 2-6

Configuring GoldenGate 2-7

Monitor Table Changes 2-7

Filter Changes Made by the Current User 2-8

iii

Configuring HotCache 2-9

Create a Properties File with GoldenGate for Java Properties 2-9

Add JVM Boot Options to the Properties File 2-11

Java Classpath Files 2-11

HotCache-related Properties 2-11

Coherence-related Properties 2-12

Logging Properties 2-12

Provide Coherence*Extend Connection Information 2-13

Configuring the GoldenGate Big Data Java Delivery Adapter 2-14

Edit the HotCache Replicat Parameter File 2-14

Configuring the Coherence Cache Servers 2-15

Using Portable Object Format with HotCache 2-15

Configuring HotCache JPA Properties 2-16

EnableUpsert Property 2-16

HonorRedundantInsert Property 2-17

SyntheticEvent Property 2-17

eclipselink.cache.shared.default Property 2-18

Warming Caches with HotCache 2-18

Create and Run an Initial Load Extract 2-18

Create and Run a Cache Warmer Replicat 2-19

Capturing Changed Data While Warming Caches 2-20

Implementing High Availability for HotCache 2-21

Support for Oracle Data Types 2-21

Support for SDO_GEOMETRY 2-22

Support for XMLType 2-23

Configuring Multi-Threading in HotCache 2-23

Using HotCache Multitenant Mode 2-25

Managing HotCache 2-26

CoherenceAdapterMXBean 2-26

Understanding the HotCache Report 2-28

Monitoring HotCache Using the Coherence-JVisualVM Plug-In 2-29

3 Integrating Hibernate and Coherence

4 Integrating Coherence Applications with Coherence*Web

Merging Coherence Cache and Session Information 4-1

5 Using Memcached Clients with Oracle Coherence

Overview of the Oracle Coherence Memcached Adapter 5-1

iv

Setting Up the Memcached Adapter 5-2

Define the Memcached Adapter Socket Address 5-2

Define Memcached Adapter Proxy Service 5-2

Connecting to the Memcached Adapter 5-4

Securing Memcached Client Communication 5-4

Performing Memcached Client Authentication 5-5

Performing Memcached Client Authorization 5-5

Sharing Data Between Memcached and Coherence Clients 5-5

Configuring POF for Memcached Clients 5-6

Create a Memcached Client that Uses POF 5-7

6 Integrating Spring with Coherence

7 Enabling ECID in Coherence Logs

v

Preface

Integrating Oracle Coherence describes how to integrate Oracle Coherence with
Coherence*Web, EclipseLink JPA, Hibernate, Spring, memcached adapters, and
Coherence GoldenGate HotCache.

This preface includes the following sections:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This guide is for software developers and architects who will be integrating Coherence
with TopLink-Grid, JPA, Hibernate, Spring, memcached adapters, and Coherence
GoldenGate HotCache.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information about Oracle Coherence, see the following:

• Administering HTTP Session Management with Oracle Coherence*Web

• Administering Oracle Coherence

• Developing Applications with Oracle Coherence

• Developing Remote Clients for Oracle Coherence

• Installing Oracle Coherence

• Managing Oracle Coherence

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Securing Oracle Coherence

• Java API Reference for Oracle Coherence

• .NET API Reference for Oracle Coherence

• C++ API Reference for Oracle Coherence

• Release Notes for Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vii

What's New in This Guide

This preface includes the following sections:

• New and Changed Features
New and changed features in Integrating Oracle Coherence that are organized by
release.

• Other Significant Changes in this Document
Other significant changes in Integrating Oracle Coherence that are organized by
release.

New and Changed Features
New and changed features in Integrating Oracle Coherence that are organized by
release.

New and Changed Features for 12c (12.2.1.4)

Oracle Coherence 12c (12.2.1.4) does not contain any new and changed features for
this document.

New and Changed Features for 12c (12.2.1.3)

Oracle Coherence 12c (12.2.1.3) includes the following new and changed features for
this document.

• HotCache Multitenant mode, which allows caches to be refreshed based on a
tenant identifier. See Using HotCache Multitenant Mode.

• HotCache JMX management, which provides insight in to how HotCache is
performing. See Managing HotCache.

• HotCache multi-threading, which uses multiple threads to apply trail file
operations. See Configuring Multi-Threading in HotCache.

New and Changed Features for 12c (12.2.1.2)

Oracle Coherence 12c (12.2.1.2) includes the following new and changed features for
this document.

• Added HotCache JPA properties. See Configuring HotCache JPA Properties.

• Added instructions for warming caches with HotCache. See Warming Caches with
HotCache.

• Added instructions for SDO_GEOMETRY and XML type support in HotCache. See
Support for Oracle Data Types.

What's New in This Guide

viii

New and Changed Features for 12c (12.2.1.1)

Oracle Coherence 12c (12.2.1.1) does not contain any new and changed features for
this document.

New and Changed Features for 12c (12.2.1)

Oracle Coherence 12c (12.2.1) includes the following new and changed features for
this document.

• Support for GoldenGate HotCach has been updated. See Integrating with Oracle
Coherence GoldenGate HotCache .

Other Significant Changes in this Document
Other significant changes in Integrating Oracle Coherence that are organized by
release.

Other Significant Changes in This Document for 12c (12.2.1.4)

For 12c (12.2.1.4), no other significant changes have been made to this guide.

Other Significant Changes in This Document for 12c (12.2.1.3)

For 12c (12.2.1.3), this guide has been updated in several ways. Following are the
sections that have been added or changed.

• Updated GoldenGate HotCache instructions to use replicat process instead of
extract process.

• TopLink Grid is deprecated and all instructions (previously chapter 1) have been
removed.

• The "Integrating JPA Using the Coherence API" chapter has been renamed to
"Using JPA with Coherence" and now describes how to use the pre-defined JPA
cache store implementations.

Other Significant Changes in This Document for 12c (12.2.1.2)

For 12c (12.2.1.2), no other significant changes have been made to this guide.

Other Significant Changes in This Document for 12c (12.2.1.1)

For 12c (12.2.1.1), no other significant changes have been made to this guide.

Other Significant Changes in This Document for 12c (12.2.1)

For 12c (12.2.1), this guide has been updated in several ways. Following are the
sections that have been added or changed.

• Support for the Toplink cache store and cache loader has been removed.

What's New in This Guide

ix

1
Using JPA with Coherence

Coherence provides native, entity-based implementations of the CacheStore and
CacheLoader interfaces that use the Java Persistence API (JPA) to load and store
objects to a database. Before using JPA with Coherence, you should be familiar with
the CacheStore and CacheLoader interfaces. These interfaces are used to cache data
sources. See Caching Data Sources.

Note:

Only resource-local and bootstrapped entity managers can be used with
Coherence and JPA. Container-managed entity managers and those that
use Java Transaction Architecture (JTA) transactions are not currently
supported.

This chapter includes the following sections:

• Overview of the JPA CacheStore and CacheLoader Implementations

• Obtain a JPA Provider Implementation
A JPA provider allows you to work directly with Java objects, rather then with SQL
statements. You map, store, update and retrieve data, and the provider performs
the translation between database entities and Java objects.

• Configure a Coherence JPA Cache Store
Using JPA with Coherence requires configuring persistence properties and
defining a cache that uses the JpaCacheStore implementation.

Overview of the JPA CacheStore and CacheLoader
Implementations

Oracle Coherence provides two implementations of the CacheStore and CacheLoader
interfaces which can be used with JPA: a generic JPA implementation and an
EclipseLink-specific implementation. For both implementations, the entities must be
mapped to the data store and a JPA persistence unit configuration must exist. A JPA
persistence unit is defined as a logical grouping of user-defined entity classes that can
be persisted and their settings. The JPA run-time configuration file, persistence.xml,
and the default JPA Object-Relational mapping file, orm.xml, are typically provided as
part of a JPA solution.
Table 1-1 describes the JPA implementations provided by Coherence.

1-1

Table 1-1 JPA-Related CacheStore and CacheLoader API Included with Coherence

Class Name Location Description

JpaCacheStore COHERENCE_HOME\lib\co
herence-jpa.jar

A JPA implementation of the Coherence CacheStore
interface. Use this class as a full load and store
implementation. It can use any JPA implementation to
load and store entities to and from a data store.

Note: The persistence unit is assumed to be set to use
RESOURCE_LOCAL transactions.

JpaCacheLoader A JPA implementation of the Coherence CacheLoader
interface. Use this class as a load-only implementation.
It can use any JPA implementation to load entities from a
data store.

Use the JpaCacheStore class for a full load and store
implementation.

EclipseLinkJPACacheSt
ore

ORACLE_HOME\oracle_co
mmon\modules\oracle.t
oplink_version\toplin
k-grid.jar

An EclipseLink specific JPA implementation of the
Coherence CacheStore interface. This implementation
is intended to be used where the application uses
Coherence directly and the cache store and loader is
used behind the scene to persist and load data.

Note: To use this implementation, make sure no cache
interceptors or query redirectors from the EclipseLink-
Coherence integration are set within the persistence unit
for the specific class.

EclipseLinkJPACacheLo
ader

An EclipseLink specific JPA implementation of the
Coherence CacheLoader interface.

Note: To use this implementation, make sure no cache
interceptors or query redirectors from the EclipseLink-
Coherence integration are set within the persistence unit
for the specific class.

Obtain a JPA Provider Implementation
A JPA provider allows you to work directly with Java objects, rather then with SQL
statements. You map, store, update and retrieve data, and the provider performs the
translation between database entities and Java objects.

Oracle recommends using EclipseLink JPA– the reference implementation for the
JPA 2.0 specification and also the JPA provider used in Oracle TopLink. EclipseLink
provides a high-performance JPA implementation with many advanced features for
caching, threading, and overall performance.

The EclipseLink JAR files (eclipselink.jar) is included in
the Coherence installation and can be found in the
ORACLE_HOME\oracle_common\modules\oracle.toplink_version folder.

Configure a Coherence JPA Cache Store
Using JPA with Coherence requires configuring persistence properties and defining a
cache that uses the JpaCacheStore implementation.

This section includes the following topics:

Chapter 1
Obtain a JPA Provider Implementation

1-2

• Map the Persistent Classes

• Configure JPA

• Configure a Coherence Cache for JPA

• Configure the Persistence Unit

Map the Persistent Classes
Map the entity classes to the database. This will allow you to load and store objects
through the JPA cache store. JPA mappings are standard, and can be specified in the
same way for all JPA providers.

You can map entities either by annotating the entity classes or by adding an orm.xml
or other XML mapping file. See the JPA provider documentation for more information
about how to map JPA entities.

Configure JPA
Edit the persistence.xml file to create the JPA configuration. This file contains the
properties that dictate run-time operation.

Set the transaction type to RESOURCE_LOCAL and provide the required JDBC properties
for your JPA provider (such as driver, url, user, and password) with the appropriate
values for connecting and logging into your database. List the classes that are
mapped using JPA annotations in <class> elements. Example 1-1 illustrates a sample
persistence.xml file with the typical properties that you can set.

Example 1-1 Sample persistence.xml File for JPA

<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance" version="1.0"
xmlns="http://java.sun.com/xml/ns/persistence">
<persistence-unit name="EmpUnit" transaction-type="RESOURCE_LOCAL">
 <provider>
 org.eclipse.persistence.jpa.PersistenceProvider
 </provider>
 <class>com.oracle.coherence.handson.Employee</class>
 <properties>
 <property name="eclipselink.jdbc.driver"
value="oracle.jdbc.OracleDriver"/>
 <property name="eclipselink.jdbc.url"
value="jdbc:oracle:thin:@localhost:1521:XE"/>
 <property name="eclipselink.jdbc.user" value="scott"/>
 <property name="eclipselink.jdbc.password" value="tiger"/>
 </properties>
</persistence-unit>
</persistence>

Configure a Coherence Cache for JPA
Create a coherence-cache-config.xml file to override the default Coherence settings
and define a caching scheme. The caching scheme includes a <cachestore-scheme>
element that lists the JPA implementation class and includes the following parameters.

• The entity name of the entity being stored. Unless it is explicitly overridden in
JPA, this is the unqualified name of the entity class. Example 1-2 uses the built-in
Coherence macro {cache-name} that translates to the name of the cache that is

Chapter 1
Configure a Coherence JPA Cache Store

1-3

constructing and using the cache store. This works because a separate cache
must be used for each type of persistent entity and Coherence ensures that the
name of each cache is set to the name of the entity that is being stored in it.

• The fully qualified name of the entity class. If the classes are all in the same
package and use the default JPA entity names, then you can again use the
{cache-name} macro for the part that is variable across the different entity types.
In this way, the same caching scheme can be used for all of the entities that are
cached within the same persistence unit.

• The persistence unit name. This should be the same as the name specified in the
persistence.xml file.

The various named caches are then directed to use the JPA caching scheme.
Example 1-2 is a sample coherence-cache-config.xml file that defines a cache
named Employee that caches instances of the Employee class. The cache is configured
to use the JpaCacheStore implementation. To define additional entity caches for more
classes, add more <cache-mapping> elements to the file.

Example 1-2 Assigning Named Caches to a JPA Caching Scheme

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <!-- Set the name of the cache to be the entity name. -->
 <cache-name>Employee</cache-name>
 <!-- Configure this cache to use the following defined scheme. -->
 <scheme-name>jpa-distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <distributed-scheme>
 <scheme-name>jpa-distributed</scheme-name>
 <service-name>JpaDistributedCache</service-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>
 <!- Define the cache scheme. -->
 <cachestore-scheme>
 <class-scheme>
 <class-name>
 com.tangosol.coherence.jpa.JpaCacheStore
 </class-name>
 <init-params>

 <!-- This param is the entity name. -->
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>

 <!-- This param is the fully qualified entity class. -->
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>com.acme.{cache-name}</param-value>
 </init-param>

 <!-- This param should match the value of the -->
 <!-- persistence unit name in persistence.xml. -->

Chapter 1
Configure a Coherence JPA Cache Store

1-4

 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>EmpUnit</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

Configure the Persistence Unit
When using a JPA cache store or loader implementation, configure the persistence
unit to ensure that no changes are made to entities when they are inserted or updated.
Any changes made to entities by the JPA provider are not reflected in the Coherence
cache. This means that the entity in the cache will not match the database contents.
In particular, entities should not use ID generation, for example, @GeneratedValue, to
obtain an ID. IDs should be assigned in application code before an object is put into
Coherence. The ID is typically the key under which the entity is stored in Coherence.

Optimistic locking (for example, @Version) should not be used because it might lead to
the failure of a database transaction commit transaction.

When using a JPA cache store or loader implementation, L2 (shared) caching should
be disabled in your persistence unit. See the documentation for your provider. In
EclipseLink, this can be specified on an individual entity with @Cache(shared=false) or
as the default in the persistence.xml file with the following property:

<property name="eclipselink.cache.shared.default" value="false"/>

Chapter 1
Configure a Coherence JPA Cache Store

1-5

2
Integrating with Oracle Coherence
GoldenGate HotCache

Applications that use Coherence caches can leverage the Oracle Coherence
GoldenGate HotCache (HotCache) integration to allow external changes to a database
to be propagated to objects in Coherence caches.
A detailed description of Oracle GoldenGate is beyond the scope of this
documentation. If you are new to GoldenGate, install the appropriate Oracle
GoldenGate for your database environment. See the GoldenGate documentation
library at Oracle GoldenGate 19.1.

In addition, see the following documents:

• Preparing the Database for Oracle GoldenGate in Using Oracle GoldenGate for
Oracle Database.

• Installing Oracle GoldenGate for Big Data in Installing and Upgrading Oracle
GoldenGate for Big Data.

• Oracle GoldenGate Java Delivery in Administering Oracle GoldenGate for Big
Data.

• Configuring Java Delivery documents in the Oracle GoldenGate for Big Data 19.1
documentation library.

Note:

To use HotCache, you must have licenses for Oracle GoldenGate and
Coherence Grid Edition. HotCache can be used with Oracle GoldenGate
for Big Data 12c (12.3.1.1.0 or higher) and Oracle GoldenGate 11gR1,
11gR2, 12c, and 19.1 releases. Examples of configuring Oracle GoldenGate
scripts and properties in this chapter refer to Oracle GoldenGate for Oracle
Database 19.1 and Oracle GoldenGate for Big Data 19.1. See Coherence
12.2.1.3 documentation for how to configure Oracle Coherence HotCache
with Oracle GoldenGate 12c.

This chapter includes the following sections:

• About Oracle Coherence GoldenGate HotCache

• How Does HotCache Work

• Prerequisites

• Configuring GoldenGate

• Configuring HotCache

• Configuring the GoldenGate Big Data Java Delivery Adapter

• Configuring the Coherence Cache Servers

• Using Portable Object Format with HotCache

2-1

https://docs.oracle.com/en/middleware/goldengate/core/19.1/index.html
https://docs.oracle.com/en/middleware/goldengate/big-data/19.1/java-delivery.html

• Configuring HotCache JPA Properties

• Warming Caches with HotCache

• Implementing High Availability for HotCache

• Support for Oracle Data Types

• Configuring Multi-Threading in HotCache

• Using HotCache Multitenant Mode

• Managing HotCache

About Oracle Coherence GoldenGate HotCache
Third-party updates to the database can cause Coherence applications to work
with data which could be stale and out-of-date. HotCache solves this problem
by monitoring the database and pushing any changes into the Coherence cache.
HotCache employs an efficient push model which processes only stale data. Low
latency is assured because the data is pushed when the change occurs in the
database.
HotCache can be added to any Coherence application. Standard JPA is used to
capture the mappings from database data to Java objects. The configuration can be
captured in XML exclusively or in XML with annotations.

The following scenario describes how HotCache could be used to work with the
database and with applications that use Coherence caches. Figure 2-1 illustrates the
scenario.

1. Start GoldenGate Capture. See Deciding Which Capture Method to Use in Using
Oracle GoldenGate for Oracle Database. GoldenGate monitors the transaction log
for changes of interest. These changes will be placed into a "trail file".

2. Start the Coherence cache server and warm the cache, if required.

3. Start HotCache so that it can propagate changes in the trail file into the cache. If
changes occur during cache warming, then they will be applied to the cache once
HotCache is started so no changes are lost.

4. Start an application client. As part of its operation, assume that the application
performs repeated queries on the cache.

5. A third-party application performs a direct database update.

6. GoldenGate detects the database change which is then propagated to the
Coherence cache by HotCache.

7. The application client detects the change in cache.

Chapter 2
About Oracle Coherence GoldenGate HotCache

2-2

Figure 2-1 How HotCache Propagates Database Changes to the Cache

How Does HotCache Work
Before implementing a HotCache solution, take some time to understand HotCache
fundamentals and supported features.
This section includes the following topics:

• Overview of How HotCache Works

• How the GoldenGate Java Delivery Adapter Uses JPA Mapping Metadata

• Supported Database Operations

• JPA Relationship Support

Overview of How HotCache Works
HotCache processes database change events delivered by GoldenGate and maps
those changes onto the affected objects in the Coherence cache. It is able to do this
through the use of Java Persistence API (JPA) mapping metadata. JPA is the Java
standard for object-relational mapping in Java and it defines a set of annotations (and
corresponding XML) that describe how Java objects are mapped to relational tables.
As Example 2-1 illustrates, instances of an Employee class could be mapped to rows in
an EMPLOYEE table with the following annotations.

Example 2-1 Mapping Instances of Employee Class to Rows with Java Code

@Entity
@Table(name="EMPLOYEE")
Public class Employee {
 @Id
 @Column(name="ID")
 private int id;
 @Column(name="FIRSTNAME")
 private String firstName;
…
}

Chapter 2
How Does HotCache Work

2-3

The @Entity annotation marks the Employee class as being persistent and the
@Id annotation identifies the id field as containing its primary key. In the case of
Coherence cached objects, the @Id field must also contain the value of the key under
which the object is cached. The @Table and @Column annotations associate the class
with a named table and a field with a named column, respectively.

For simplification, JPA assumes a number of default mappings such as table
name=class name and column name=field name so many mappings need only be
specified when the defaults are not correct. In Example 2-1, both the table and field
names match the Java names so the @Table and @Column can be removed to make
the code more compact, as illustrated in Example 2-2.

Example 2-2 Simplified Java Code for Mapping Instances of Employee Class to
Rows

@Entity
Public class Employee {
 @Id
 private int id;
 private String firstName;
…
}

Note that the Java code in the previous examples can also be expressed as XML.
Example 2-3 illustrates the XML equivalent of the Java code in Example 2-1.

Example 2-3 Mapping Instances of Employee Class to Rows with XML

<entity class="Employee">
 <table name="EMPLOYEE"/>
 <attributes>
 <id name="id">
 <column name="ID"/>
 </id>
 <basic name="firstName"/>
 <column name="FIRSTNAME"/>
 </basic>
 ...
 </attributes>
</entity>

Similarly, Example 2-4 illustrates the XML equivalent for the simplified Java code in
Example 2-2.

Example 2-4 Simplified XML for Mapping Instances of Employee Class to Rows

<entity class="Employee">
 <attributes>
 <id name="id"/>
 <basic name="firstName"/>
 ...
 </attributes>
</entity>

How the GoldenGate Java Delivery Adapter Uses JPA Mapping
Metadata

JPA mapping metadata provides mappings from object to relational; however, it also
provides the inverse relational to object mappings which HotCache can use. Given

Chapter 2
How Does HotCache Work

2-4

the Employee example, consider an update to the FIRSTNAME column of a row in the
EMPLOYEE table. Figure 2-2 illustrates the EMPLOYEE table before the update, where the
first name John is associated with employee ID 1, and the EMPLOYEE table after the
update where first name Bob is associated with employee ID 1.

Figure 2-2 EMPLOYEE Table Before and After an Update

With GoldenGate monitoring changes to the EMPLOYEE table and HotCache configured
on the appropriate trail file, the adapter processes an event indicating the FIRSTNAME
column of the EMPLOYEE row with primary key 1 has been changed to Bob. The
adapter will use the JPA mapping metadata to first identify the class associated with
the EMPLOYEE table, Employee, and then determine the column associated with an
Employee's ID field, ID. With this information, the adapter can extract the ID column
value from the change event and update the firstName field (associated with the
FIRSTNAME column) of the Employee cached under the ID column value.

Supported Database Operations
Database INSERT, UPDATE, and DELETE operations are supported by the GoldenGate
Java Delivery Adapter. INSERT operations into a mapped table result in the addition
of a new instance of the associated class populated with the data from the newly
inserted row. Changes applied through an UPDATE operation are propagated to the
corresponding cached object. If the cache does not contain an object corresponding
to the updated row, then the cache is unchanged by default. To change the default
behavior, see HonorRedundantInsert Property. A DELETE operation results in the
removal of the corresponding object from the cache, if one exists.

JPA Relationship Support
HotCache does not support the JPA relationship mappings one-to-one, one-to-many,
many-to-one, and many-to-many. However HotCache does support JPA embeddable

Chapter 2
How Does HotCache Work

2-5

classes and JPA element collections. Embeddable classes and element collections
can be used with HotCache to model relationships between domain objects. Domain
objects used with HotCache may also refer to each other by an identifier (analogous to
foreign keys in a relational database).

As a performance optimization, when using JPA element collections with HotCache, it
is suggested to configure GoldenGate with an ADD TRANDATA command specifying the
column in the element collection table that is the foreign key to the parent table. The
optimization allows HotCache to efficiently find the cache entry to update when a row
in the element collection table changes.

Prerequisites
Make sure you complete the prerequisites prior to using Oracle Coherence
GoldenGate HotCache.The instructions assume that you have set up your database to
work with GoldenGate.
Setting up a database includes:

• creating a database and tables

• granting user permissions

• enabling logging

• provisioning the tables with data

Example 2-5 illustrates a list of sample commands for the Oracle Database that
creates a user named csdemo and grants user permissions to the database.

Note the ALTER DATABASE ADD SUPPLEMENTAL LOG DATA command. When supplemental
logging is enabled, all columns are specified for extra logging. At the very least,
minimal database-level supplemental logging must be enabled for any change data
capture source database. If the values of primary key columns in a database table
can change, it is important to include the following commands for Oracle Database:
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS; and ALTER
DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;.

Example 2-5 Sample Commands to Create a User, Grant Permissions, and
Enable Logging

CREATE USER csdemo IDENTIFIED BY csdemo;
GRANT DBA TO csdemo;
grant alter session to csdemo;
grant create session to csdemo;
grant flashback any table to csdemo;
grant select any dictionary to csdemo;
grant select any table to csdemo;
grant select any transaction to csdemo;
grant unlimited tablespace to csdemo;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

The instructions also assume that you have installed Oracle GoldenGate and started
the manager. This includes the following tasks:

• downloading and installing Oracle GoldenGate

• running ggsci to create the GoldenGate subdirectories

• creating a manager parameter (mgr.prm) file, specifying the listener port

• adding JVM libraries to the libraries path

Chapter 2
Prerequisites

2-6

• starting the manager

A detailed description of these tasks is beyond the scope of this documentation. See:

• Installing Oracle GoldenGate for Oracle Database in Installing Oracle GoldenGate.

• Installing Oracle GoldenGate for Big Data in Installing and Upgrading Oracle
GoldenGate for Big Data.

• Oracle GoldenGate Java Delivery in Administering Oracle GoldenGate for Big
Data.

Note:

It is important to use the generic build of Oracle GoldenGate when installing
Oracle GoldenGate Application Adapters. Do not use a non-generic instance
of Oracle GoldenGate.

Configuring GoldenGate
Updating a cache from a GoldenGate trail file requires configuring GoldenGate and
HotCache. You then enable HotCache by configuring the GoldenGate Java Delivery.

Note:

The sample scripts provided in this section are intended only to be
introductory. See Using Oracle GoldenGate for Oracle Database and Setting
Up Oracle GoldenGate for Big Data in Using Oracle GoldenGate for Big Data
for a comprehensive configuration details.

This section includes the following topics:

• Monitor Table Changes

• Filter Changes Made by the Current User

Monitor Table Changes
Indicate the table that you want to monitor for changes by using the ADD TRANDATA
command. The ADD TRANDATA command can be used on the command line or as part
of a ggsci script. For example, to monitor changes to tables in the csdemo schema,
use the following command:

ADD TRANDATA csdemo.*

Sample GoldenGate Capture ggsci Script to Monitor Table Changes illustrates a
sample ggsci script named cs-cap.ggsci.

• The script starts the manager and logs into the database. It stops and deletes any
running extract named cs-cap.

• The ADD TRANDATA command instructs the extract that tables named csdemo*
should be monitored for changes.

Chapter 2
Configuring GoldenGate

2-7

• The SHELL command deletes all trail files in the dirdat directory to ensure that
if the extract is being recreated, there will be no old trail files. Note that the
rm -f command is platform-specific. An extract named cs-cap is created using
parameters from the dirprm/cs-cap.prm file. A trail is added at dirdat/cs from
the extract cs-cap file.

• The start command starts the cs-cap.ggsci script.

• The ADD EXTRACT command automatically uses the cs-cap.prm file as the source
of parameters, so a PARAMS dirprm/cs-cap.prm, statement is not necessary.

Example 2-6 Sample GoldenGate Capture ggsci Script to Monitor Table
Changes

start mgr
DBLOGIN USERID csdemo, PASSWORD csdemo
STOP EXTRACT cs-cap
DELETE EXTRACT cs-cap
ADD TRANDATA csdemo.*
ADD EXTRACT cs-cap, integrated tranlog, begin now
SHELL rm -f dirdat/cs*
ADD EXTTRAIL dirdat/cs, EXTRACT cs-cap
start cs-cap

Filter Changes Made by the Current User
Configure GoldenGate to ignore changes made by the user that the Coherence
CacheStores are logged in as. This avoids GoldenGate processing any changes made
to the database by Coherence that are already in the cache.

The TranLogOptions excludeUSER command can be used on the command line or
in a ggsci script. For example, the following command instructs GoldenGate extract
process to ignore changes to the database tables made by the Coherence CacheStore
user logged in as csdemo.

TranLogOptions excludeUser csdemo

Sample Extract .prm File for the GoldenGate Capture illustrates a sample extract .prm
file named cs-cap.prm. The user that the Coherence CacheStore is logged in as is
csdemo. The recoveryOptions OverwriteMode line indicates that the extract overwrites
the existing transaction data in the trail after the last write-checkpoint position, instead
of appending the new data. The EXTRAIL parameter identifies the trail as dirdat/cs.
The BR BROFF parameter controls the Bounded Recovery (BR) feature. The BROFF
value turns off Bounded Recovery for the run and for recovery. The GETUPDATEBEFORES
parameter indicates that the before images of updated columns are included in the
records that are processed by Oracle GoldenGate. The TABLE parameter identifies
csdemo.* as the tables that should be monitored for changes. The TranLogOptions
excludeUSER parameter indicates that GoldenGate should ignore changes to the
tables made by the Coherence CacheStore user logged in as csdemo.

Note:

The OverwriteMode option is not applicable in Oracle GoldenGate for Big
Data.

Chapter 2
Configuring GoldenGate

2-8

Example 2-7 Sample Extract .prm File for the GoldenGate Capture

EXTRACT cs-cap
USERID csdemo, PASSWORD csdemo
RecoveryOptions OverwriteMode
LOGALLSUPCOLS
UPDATERECORDFORMAT COMPACT
EXTTRAIL dirdat/cs
BR BROFF
getUpdateBefores
TABLE csdemo.*;
TranLogOptions excludeUser csdemo --ignore changes made by csuser

For details on available configuration options for capture, see Configuring Capture in
Integrated Mode in Using Oracle GoldenGate for Oracle Database.

Configuring HotCache
HotCache is configured with system properties, EclipseLink JPA mapping metadata,
and a JPA persistence.xml file. See How Does HotCache Work. The connection from
HotCache to the Coherence cluster can be made by using Coherence*Extend (TCP),
or the HotCache JVM can join the Coherence cluster as a member.
The following sections describe the properties needed to configure HotCache and
provide details about connecting with Coherence*Extend:

• Create a Properties File with GoldenGate for Java Properties

• Add JVM Boot Options to the Properties File

• Provide Coherence*Extend Connection Information

Create a Properties File with GoldenGate for Java Properties
Create a text file with the filename extension .properties. In the file, enter the
configuration for HotCache. A minimal configuration should contain the list of event
handlers and the fully-qualified Java class of the event handler.

Note:

The path to the .properties file must be set in the HotCache replicat
TARGETDB parameter in a .prm file, for example:

TARGETDB LIBFILE libggjava.so SET property=/home/oracle/gg/
hotcache.properties

See Edit the HotCache Replicat Parameter File.

Example 2-8 illustrates a .properties file that contains the minimal configuration for a
HotCache project. The following properties are used in the file:

• gg.handlerlist=hotcache

The gg.handlerlist property specifies a comma-separated list of active handlers.
This example defines the logical name hotcache as database change event

Chapter 2
Configuring HotCache

2-9

handler. The name of a handler can be defined by the user, but it must match
the name used in the gg.handler.{name}.type property in the following bullet.

• gg.handler.hotcache.type=[oracle.toplink.goldengate.CoherenceAdapter|
oracle.toplink.goldengate.CoherenceAdapter1220]

The gg.handler.{name}.type property defines the handler for HotCache.
The {name} field should be replaced with the name of an event
handler listed in the gg.handlerlist property. The only handlers that
can be set for HotCache are oracle.toplink.goldengate.CoherenceAdapter
or oracle.toplink.goldengate.CoherenceAdapter1220. Use
oracle.toplink.goldengate.CoherenceAdapter1220 with GoldenGate
Application Adapters release 12.2.0 or later. Use
oracle.toplink.goldengate.CoherenceAdapter with GoldenGate Application
Adapters releases earlier than 12.2.0.

• gg.classpath files

The following is a list of directories and JAR files for the gg.handler(s) and their
dependencies.

– coherence-hotcache.jar – contains the Oracle Coherence GoldenGate
HotCache libraries

– javax.persistence.jar – contains the Java persistence libraries

– eclipselink.jar – contains the EclipseLink libraries

– toplink-grid.jar – contains the Oracle TopLink libraries required by
HotCache

– domain classes – the JAR file or directory containing the user classes cached
in Coherence that are mapped with JPA for use in HotCache. Also, the
Coherence configuration files, persistence.xml file, and any orm.xml file.

There are many other properties that can be used to control the behavior of the
GoldenGate Java Delivery. See Java Delivery Properties in Administering Oracle
GoldenGate for Big Data.

Example 2-8 .properties File for a HotCache Project

==
List of active event handlers
==
gg.handlerlist=hotcache

==
HotCache event handler
==
gg.handler.hotcache.type=oracle.toplink.goldengate.CoherenceAdapter1220

======================================
HotCache handler dependency jars
======================================
Set gg.classpath with following:
persistence unit name, directory containing coherence configuration files,
$GGBD_HOME/dirprm, coherence.jar, coherence-hotcache, jar, eclipselink.jar,
javax.persistence.jar, and toplink-grid.jar from a Coherence
installation, as well as a JDBC driver jar for your database.
gg.classpath=<list of jars and directories separated by OS specific classpath
separator>

Chapter 2
Configuring HotCache

2-10

======================================
Options for HotCache JVM
======================================
jvm.bootoptions=-Djava.class.path=dirprm:ggjava/ggjava.jar -
Xmx512M -Xms32M -Dtoplink.goldengate.persistence-
unit=employee -Dlog4j.configuration=my-log4j.properties -
Dcoherence.distributed.localstorage=false -Dcoherence.cacheconfig=/home/oracle/
cgga/workspace/CacheStoreDemo/client-cache-config.xml

Note that if you are using a windows machine, you need to replace the : with
a ; for both gg.classpath and java.class.path.

Add JVM Boot Options to the Properties File
This section describes the properties that must appear in the JVM boot options section
of the .properties file. These options are defined by using the jvm.bootoptions
property. A sample jvm.bootoptions listing is illustrated in JVM boot options section
of Example 2-8.

This section includes the following topics:

• Java Classpath Files

• HotCache-related Properties

• Coherence-related Properties

• Logging Properties

Java Classpath Files
The following is a list of directories and JAR files that should be included in the
java.class.path property.

• ggjava.jar – contains the GoldenGate Java Delivery Adapter libraries

• dirprm – the GoldenGate dirprm directory

Note:

The dirprm directory is included here since it could include custom
logging properties file required for logging initialization that occurs before
gg.classpath is added to classloader. This directory can be moved to
gg.classpath if it does not include any logging property or jar files. See
Configuring Java Delivery.

HotCache-related Properties
The toplink.goldengate.persistence-unit property is required as it identifies the
persistence unit defined in persistence.xml file that HotCache should load. The
persistence unit contains information such as the list of participating domain classes,
configuration options, and optionally, database connection information.

The toplink.goldengate.on-error property is optional. It controls how the adapter
responds to errors while processing a change event. This response applies to both
expected optimistic lock exceptions and to unexpected exceptions. This property is

Chapter 2
Configuring HotCache

2-11

optional, as its value defaults to "Refresh". Refresh causes the adapter to attempt to
read the latest data for a given row from the database and update the corresponding
object in the cache. Refresh requires a database connection to be specified in
the persistence.xml file. This connection will be established during initialization of
HotCache. If a connection cannot be made, then an exception is thrown and HotCache
will fail to start.

The other on-error strategies do not require a database connection. They are:

• Ignore—Log the exception only. The cache may be left with stale data. Depending
on application requirements and cache eviction policies this may be acceptable.

• Evict—Log a warning and evict the object corresponding to the change database
row from the cache

• Fail—Throw an exception and exit HotCache

Coherence-related Properties
Any Coherence property can be passed as a system property in the Java boot options.
The coherence.distributed.localstorage system property with a value of false is
the only Coherence property that is required to be passed in the Java boot options.
Like all Coherence properties, precede the property name with the -D prefix in the
jvm.bootoptions statement, for example:

-Dcoherence.distributed.localstorage=false

Logging Properties
The following logging properties can be defined for HotCache.

The -Dlog4j.configuration=default-log4j.properties property specifies
the default Log4J configuration file. Example properties are located
in $GOLDEN_GATE_HOME/ggjava/resources/classes/ directory. You can merge these
with your existing Log4J configuration.

The Log4J properties file that is bundled with GoldenGate for Java is for
demonstration purposes only. The file can be used as-is, or you can merge its contents
with the existing Log4J properties.

If the file is used as-is, then it should be copied into the dirprm directory, given a
new name, and specified with the -Dlog4j.configuration property. For example,
the following line specifies the user-defined my-log4j.properties file in the dirprm
directory (note the dirprm directory is already on the classpath):

-Dlog4j.configuration=my-log4j.properties

Using the default properties file in its current location can cause problems during
upgrades: your changes will lost when a new distribution is installed.

To allow HotCache to log warnings, add the following line to the property file:

log4j.logger.oracle.toplink.goldengate=WARN, stdout, rolling

To allow HotCache to log errors, add the following line to the property file you use:

-Dlog4j.logger.oracle.toplink.goldengate=DEBUG, stdout, rolling

Chapter 2
Configuring HotCache

2-12

Note:

A Coherence Log4J configuration can co-exist with the GoldenGate Log4J
configuration. Both can be included in the same file that is configured on the
jvm.bootoptions path.

Provide Coherence*Extend Connection Information
The connection between HotCache and the Coherence cluster can be made with
Coherence*Extend. For more information on Coherence*Extend, see Developing
Remote Clients for Oracle Coherence.

The Coherence configuration files must be in a directory referenced by the
gg.classpath entry in the .properties file. For an example, see the gg.classpath
files.

Example 2-9 illustrates the section of a client cache configuration file that uses
Coherence*Extend to connect to the Coherence cluster. In the client cache
configuration file, Coherence*Extend is configured in the <remote-cache-scheme>
section. For additional options for configuring a remote-cache-scheme, see Overview
of Configuring Extend Clients in Developing Remote Clients for Oracle Coherence.

Example 2-9 Coherence*Extend Section of a Client Cache Configuration File

<cache-config>
 ...
 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>CustomRemoteCacheScheme</scheme-name>
 <service-name>CustomExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 ...
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 ...
</cache-config>

Example 2-10 illustrates the section of a server cache configuration file that
listens for Coherence*Extend connections. In the server cache configuration file,
Coherence*Extend is configured in the <proxy-scheme> section. By default, the
listener port for Coherence*Extend is 9099.

Example 2-10 Coherence*Extend Section of a Server Cache Configuration File

<cache-config>
 ...
 <caching-schemes>

Chapter 2
Configuring HotCache

2-13

 ...
 <proxy-scheme>
 <scheme-name>CustomProxyScheme</scheme-name>
 <service-name>CustomProxyService</service-name>
 <thread-count>2</thread-count>
 <acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address>localhost</address>
 <port>9099</port>
 </local-address>
 </tcp-acceptor>
 </acceptor-config>
 <load-balancer>proxy</load-balancer>
 <autostart>true</autostart>
 </proxy-scheme>

 </caching-schemes>
</cache-config>

Configuring the GoldenGate Big Data Java Delivery Adapter
The GoldenGate Java Delivery Adapter provides a way to process GoldenGate data
change events in Java by configuring an event handler class.The configuration for the
GoldenGate Java Delivery Adapter allows it to monitor an a trail file and to pass data
change events to HotCache. The configuration is provided in a replicat parameter and
is described in this section.
This section includes the following topic:

• Edit the HotCache Replicat Parameter File

Edit the HotCache Replicat Parameter File
This section describes the parameters that can be defined in the replicat .prm file for
a GoldenGate Big Data Java Delivery adapter. The parameters that are illustrated in
Example 2-11 constitute a minimal configuration for a HotCache project.

For details on creating a replicat parameter file, see Creating a Parameter File for
Online Replication in Administering Oracle GoldenGate.

• TARGETDB LIBFILE libggjava.so SET property=/home/oracle/gg/
hotcache.properties

• GROUPTRANSOPS 1

The GROUPTRANSOPS parameter controls transaction grouping by the GoldenGate
replicat process. A value of 1 tells the GoldenGate replicat process to honor
source database transaction boundaries in the trail file. A value greater than 1
tells the GoldenGate replicat process to group operations from multiple source
database transactions into a single target transaction. See GROUPTRANSOPS in
Reference for Oracle GoldenGate for Windows and UNIX.

• MAP scott.*, TARGET scott.*;

The MAP parameter tells the GoldenGate replicat process how to map source
database tables to the replication target. The parameter syntax assumes the
replication target is a relational database. For HotCache it is appropriate to specify

Chapter 2
Configuring the GoldenGate Big Data Java Delivery Adapter

2-14

an identical mapping. See TABLE and MAP Options in Reference for Oracle
GoldenGate for Windows and UNIX.

Sample .prm Parameter File for a GoldenGate Big Data Java Delivery adapter
illustrates a sample .prm file for a GoldenGate Big Data Java Delivery adapter.

Example 2-11 Sample .prm Parameter File for a GoldenGate Big Data Java
Delivery adapter

REPLICAT hotcache
TARGETDB LIBFILE libggjava.so SET property=/home/user/project/hotcache.properties
GROUPTRANSOPS 1
GetUpdateBefores
MAP scott.*, TARGET scott.*;

Configuring the Coherence Cache Servers
You must modify the classpaths of all Coherence cache server JVMs that contain
caches that are refreshed by HotCache. Place the following JAR files, included in the
Coherence installation, on each cache server classpath:

• coherence-hotcache.jar – contains the Oracle Coherence GoldenGate
HotCache libraries

• javax.persistence.jar – contains the Java persistence libraries

• eclipselink.jar – contains the EclipseLink libraries

• toplink-grid.jar – contains the Oracle TopLink libraries required by HotCache

• domain classes – the JAR file or directory containing the user classes cached in
Coherence that are mapped with JPA for use in HotCache.

Using Portable Object Format with HotCache
Serialization is the process of encoding an object into a binary format. It is a critical
component to working with Coherence as data must be moved around the network.
Portable Object Format (also known as POF) is a language-agnostic binary format.
POF was designed to be very efficient in both space and time and has become a
cornerstone element in working with Coherence. POF serialization can be used with
HotCache but requires a small update to the POF configuration file (pof-config.xml)
to allow for HotCache and TopLink Grid framework classes to be registered.
The pof-config.xml file must include the coherence-hotcache-pof-config.xml
file and must register the TopLinkGridPortableObject user type and
TopLinkGridSerializer as the serializer. The <type-id> for each class must be
unique and must match across all cluster instances. See Registering POF Objects
in Developing Applications with Oracle Coherence.

The <allow-interfaces> element must be set to true to allow you to register a single
class for all implementors of the TopLinkGridPortableObject interface.

Example 2-12 illustrates a sample pof-config.xml file for HotCache. The value
integer_value represents a unique integer value greater than 1000.

Example 2-12 Sample POF Configuration File for HotCache

<?xml version='1.0'?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Chapter 2
Configuring the Coherence Cache Servers

2-15

 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-hotcache-pof-config.xml</include>
 <!-- User types must be above 1000 -->
 ...
 <user-type>
 <type-id><integer_value></type-id>
 <class-
name>oracle.eclipselink.coherence.integrated.cache.TopLinkGridPortableObject</
class-name>
 <serializer>

<class-name>oracle.eclipselink.coherence.integrated.cache.TopLinkGridSerializer</
class-name>
 </serializer>
 </user-type>
 ...
 </user-type-list>
 <allow-interfaces>true</allow-interfaces>
 ...
</pof-config>

Configuring HotCache JPA Properties
You can customize HotCache using a number of custom JPA properties that can
be configured per JPA entity type. These properties can be configured either by
an @Property annotation on the JPA entity class or by a <property> element in
the persistence.xml file. The latter takes precedence in the event of conflicting
configuration.
This section includes the following topics:

• EnableUpsert Property

• HonorRedundantInsert Property

• SyntheticEvent Property

• eclipselink.cache.shared.default Property

EnableUpsert Property
EnableUpsert

The EnableUpsert property controls whether HotCache inserts a cache entry when an
update operation is received in the GoldenGate trail file but no corresponding cache
entry is present in cache at the entity key. By default, HotCache ignores updates
to absent entities. Set this property to true if you want HotCache to insert missing
entities into the cache when update operations are received in the trail file. The default
value of this property is false.

Setting this property to true can facilitate warming caches in an event-driven manner
if it is likely that entities will be accessed from the cache after their corresponding
records are updated in the underlying database.

Chapter 2
Configuring HotCache JPA Properties

2-16

Note:

There are risks to consider when using this property:

• The entity to insert is read from the database, as the trail file may not
contain values for all fields of the entity to be inserted. This can reduce
the throughput of the HotCache process by waiting on database reads.

• Cache capacity can be exhausted if more rows in the DB are updated
than the number of entities in the cache for which capacity was
provisioned.

Entity Class Annotation

@Property(name = "EnableUpsert", value = "false",valueType = boolean.class)

Persistence XML Property

<property name="[fully qualified entity class name].EnableUpsert" value="[true|
false]"/>

HonorRedundantInsert Property
HonorRedundantInsert

The HonorRedundantInsert property controls whether HotCache honors an insert
operation in the GoldenGate trail file when a cache entry at that key is already
present. By default, HotCache ignores a redundant insert operation. However, when
a JPA entity is mapped to a complex materialized view in Oracle Database and a
row is updated in a table underlying that materialized view (thus updating one or
more rows of the materialized view), Oracle Database inserts a new row into the
materialized view with the same PK as an existing row but with a new rowid and
deletes the existing row. Therefore, HotCache sees a redundant insert operation that
really represents an update to the cached JPA entity. Users in this situation should
also consider suppressing replication of delete operations on that materialized view
through the use of GoldenGate configuration; otherwise, the cached entity is deleted
by HotCache. The default value of this property is false.

Entity Class Annotation

@Property(name = "HonorRedundantInsert", value = "false",valueType =
boolean.class)

Persistence XML Property

<property name="[fully qualified entity class name].HonorRedundantInsert"
value="[true|false]"/>

SyntheticEvent Property
SyntheticEvent

The SyntheticEvent property controls whether cache writes by HotCache are
synthetic or not. Synthetic writes to Coherence caches do not trigger events in
Coherence; they do not engage Federated Caching; and they do not call Coherence

Chapter 2
Configuring HotCache JPA Properties

2-17

CacheStore implementations. Set this property to false for a JPA entity class if you
want cache writes by HotCache for that class to be non-synthetic so that events are
triggered, Federated Caching is engaged, and CacheStore implementations are called
(if any of those are configured for the entity class cache). The default value of this
property is true for every entity class.

Note:

There is a risk of infinite replication loops if the SyntheticEvent is set to true
for an entity class and a CacheStore implementation is configured on that
entity class cache and writing to the same database HotCache is replicating
to Coherence. This risk can be mitigated by filtering transactions by database
user. See Filter Changes Made by the Current User.

Entity Class Annotation

@Property(name = "SyntheticEvent", value = "[true|false]", valueType =
boolean.class)

Persistence XML Property

<property name="[fully qualified entity class name].SyntheticEvent" value="[true|
false]"/>

eclipselink.cache.shared.default Property
eclipselink.cache.shared.default

The eclipselink.cache.shared.default property is used to enable the EclipseLink
internal shared cache. It is important to disable the internal shared cache in the
HotCache JVM by setting the property to false in the persistence.xml file.

Persistence XML Property

<property name=" eclipselink.cache.shared.default" value="false"/>

Warming Caches with HotCache
HotCache can be used to warm caches by loading an initial dataset. This approach
eliminates the need to write custom cache warming programs because it leverages
GoldenGate and HotCache for initial cache warming.
This section includes the following topics:

• Create and Run an Initial Load Extract

• Create and Run a Cache Warmer Replicat

• Capturing Changed Data While Warming Caches

Create and Run an Initial Load Extract
To create and run and initial load extract:

Chapter 2
Warming Caches with HotCache

2-18

1. Create a GoldenGate extract parameter file named initload.prm as shown below
and save it to GG_HOME/dirprm. Note that the extract files cannot have
filenames longer than eight characters. A GoldenGate extract process that is run
with this parameter file selects records from the source database (as opposed to
capturing changes from the database’s transaction log) and writes them to a trail
file in canonical format.

-- This is an initial load extract initload
-- SOURCEISTABLE parameter indicates source is a table, not redo logs
SOURCEISTABLE
USERID <user>, PASSWORD <password>
-- EXTFILE parameter indicates path and prefix of data files
-- Note: set MEGABYTES parameter to a maximum file size relative
-- to the amount of source data being extracted
EXTFILE GG_HOME/dirdat/IL, maxfiles 9999, MEGABYTES 5, PURGE
TABLE <schema>.*

2. Using the above extract parameters file, run a GoldenGate initial load extract
process directly from the command line as shown in the following example.

cd GG_HOME
extract paramfile GG_HOME/dirprm/initload.prm reportfile GG_HOME/dirrpt/
initload.rpt

After running the extract process, there will be one or more trail files named IL0001,
IL0002, etc... in the GG_HOME/dirdat directory. If no files are generated, then
review the GG_HOME/dirrpt/initload.rpt file.

Create and Run a Cache Warmer Replicat
To create and run a cache warmer replicat:

1. Create a GoldenGate replicat parameter file named warmcach.prm as shown in the
example below. A GoldenGate replicat process that is run with this parameter file
reads the initial load dataset from the trail files. See Create and Run an Initial Load
Extract.

REPLICAT warmcach
TARGETDB LIBFILE libggjava.so SET property=/home/user/project/
warmcach.properties
MAP <schema>.*, TABLE <schema>.*

2. Since the replicat parameter file uses the GoldenGate Java Delivery Adapter,
create a corresponding warmcach.properties file in GGBD_HOME/dirprm as
shown in the example below.

#==
List of active event handlers
gg.handlerlist=hotcache
#==
HotCache handler
gg.handler.hotcache.type=oracle.toplink.goldengate.CoherenceAdapter1220
#==
Options for the HotCache gg.classpath.
gg.classpath=
Obviously the persistence unit name, classpath, and other
options will vary between users and environments. The gg.classpath
must include $GGBD_HOME/dirprm,
coherence.jar, coherence-hotcache, jar, eclipselink.jar,

Chapter 2
Warming Caches with HotCache

2-19

javax.persistence.jar, and toplink-grid.jar from a Coherence
installation, as well as a JDBC driver jar for your database,
and a jar with your cache key and value classes in it.
#==
Options for the HotCache JVM
Other system properties may override Coherence operational
configuration elements for cluster addresses and names,
paths to configuration files, etc. You may also wish to provide
non-default JVM heap sizes, log4j configuration, etc.
jvm.bootoptions=-Djava.class.path=dirprm:ggjava/ggjava.jar -Xmx512M -Xms32M
-Dtoplink.goldengate.persistence-unit=pu_name -Dlog4j.configuration=my-
log4j.properties -Dcoherence.distributed.localstorage=false

3. Register the warmcach replicat process with the GoldenGate installation using the
GoldenGate GGSCI command-line interface as shown in the following example.

cd $GGBD_HOME
./ggsci
add replicat warmcach, exttrail GGBD_HOME/dirrpt/IL

The replicat parameter file and properties file above are used by the GoldenGate
warmcach process that reads the trail files created by the initial load extract
process.

4. Run the GoldenGate warmcach replicat process by issuing the following commands
through the GoldenGate GGSCI command-line interface.

cd $GGBD_HOME
./ggsci
start mgr
start replicat warmcach

After the warmcach replicat process has finished running, the contents of the initial
load trail files will have been transformed into JPA entities and put into Coherence
caches.

5. Stop and unregister the warmcach replicat, using the following GGSCI commands.

stop replicat warmcach
delete replicat warmcach

Capturing Changed Data While Warming Caches
HotCache was developed to refresh Coherence caches as underlying database
transactions occur. Using HotCache for initial cache warming is an added benefit. It
is possible to capture changed data in the database while initial cache warming takes
place and refresh Coherence caches with that changed data by following a carefully
sequenced procedure. The necessary sequence of operations is as follows:

1. Start the normal source extract process that captures change data from the
database’s redo logs, but do not start the normal HotCache replicat process that
refreshes Coherence caches with that change data.

2. Start the initial load extract process to select the initial data set from the database.

3. Run the cache warming replicat process to warm Coherence caches with the initial
data set.

4. Verify that the initial load has completed correctly by comparing the number
of rows extracted from the database by GoldenGate (see initload.rpt) with

Chapter 2
Warming Caches with HotCache

2-20

the number of entries in the target Coherence caches according to Coherence
MBeans or command-line interface commands.

5. Start the normal HotCache replicat process to refresh Coherence caches with
change data.

Implementing High Availability for HotCache
HotCache is a client of Coherence cache services and invokes the services to insert,
update, or evict cache entries in response to transactions in an underlying database.
As a cache client, HotCache can be configured either as a Coherence cluster member
or as a Coherence*Extend client connecting to a Coherence proxy service in the
cluster.
In best-practice deployments, Coherence cache services and proxy services are
already highly available due to redundancy of service members (for example, multiple
cache server processes and multiple proxy server processes) and due to built-in
automatic failover capabilities within Coherence. For example, if a proxy server should
fail, then Coherence*Extend clients that are using the proxy server automatically fail
over to another proxy server. Likewise, if a cache server should fail then another
cache server assumes responsibility for its data and client interactions with that data
automatically redirect to the new cache server owning the data.

Making the HotCache client itself highly available relies on standard GoldenGate HA
techniques since the HotCache JVM runs embedded in a GoldenGate process.

GoldenGate implements “single server” HA through AUTOSTART and AUTORESTART
parameters enforced by the Manager process in a GoldenGate installation. The
Manager process automatically starts registered GoldenGate processes configured
with AUTOSTART. It also detects the death of (and automatically restarts), registered
GoldenGate processes configured with AUTORESTART.

To protect against failure of the Manager process itself or the host on which it runs or
the network connecting that host, GoldenGate relies on Oracle Clusterware to detect
the death of the active GoldenGate installation and fail over to a passive GoldenGate
installation.

GoldenGate high availability is discussed in the Oracle GoldenGate with Oracle
GoldenGate with Oracle RealApplication Clusters Configuration Best Practices white
paper.

Support for Oracle Data Types
HotCache uses EclipseLink as its JPA provider. It is reasonable to expect HotCache to
support Oracle-specific data types supported by EclipseLink. For example, EclipseLink
supports data types specific to Oracle Database, such as SDO_GEOMETRY from the
Oracle Spatial and Graph option for Oracle Database and XMLType in all Oracle
Database editions.
It is important to understand that data is presented to EclipseLink differently when
used in HotCache than when used in the typical JPA scenario. In the typical
JPA scenario, EclipseLink interacts with the database through a JDBC connection
and EclipseLink consumes data as presented by the JDBC API and driver-specific
extensions (for example an SDO_GEOMETRY column is represented as an instance
of java.sql.Struct). Whereas in HotCache, data is read from a GoldenGate trail
file; there is no JDBC connection involved. Therefore EclipseLink consumes the
GoldenGate representation of data as opposed to the JDBC representation of data.

Chapter 2
Implementing High Availability for HotCache

2-21

https://www.oracle.com/technetwork/database/features/availability/maa-goldengate-rac-2007111.pdf
https://www.oracle.com/technetwork/database/features/availability/maa-goldengate-rac-2007111.pdf

For example, GoldenGate represents an SDO_GEOMETRY column as an XML document
and not as an instance of java.sql.Struct.

These differences in data representation may necessitate the use of HotCache-
specific EclipseLink converters when using EclipseLink within HotCache that take
the place of standard EclipseLink converters used in typical JPA scenarios. See
@Converter in Java Persistence API (JPA) Extensions Reference for EclipseLink. The
following sections describe HotCache support for specific Oracle Database data types
supported by EclipseLink and how to configure EclipseLink within HotCache to use
those data types.

• Support for SDO_GEOMETRY

• Support for XMLType

Support for SDO_GEOMETRY
EclipseLink supports the Oracle Spatial and Graph option of Oracle Database by
mapping SDO_GEOMETRY columns to instances of oracle.spatial.geometry.JGeometry
(the Java class shipped with the Oracle Spatial and Graph option). See Using Oracle
Spatial and Graph in Solutions Guide for EclipseLink.

Therefore, HotCache supports mapping columns of type SDO_GEOMETRY to instances
of oracle.spatial.geometry.JGeometry bound to fields of JPA entities. This
support requires configuring a HotCache-specific EclipseLink Converter of class
oracle.toplink.goldengate.spatial.GoldenGateJGeometryConverter as shown in
the following example.

import javax.persistence.Access;
import javax.persistence.AccessType;
import javax.persistence.Convert;
import javax.persistence.Converter;
import javax.persistence.Entity;

import oracle.spatial.geometry.JGeometry;

import oracle.toplink.goldengate.spatial.GoldenGateJGeometryConverter;

@Entity
@Converter(name=”JGeometry”, converterClass=
GoldenGateJGeometryConverter.class)
public class SpatialEntity {

 private JGeometry geometry;

 @Access(AccessType.PROPERTY)
 @Convert(“JGeometry”)
 public JGeometry getGeometry() {
 return geometry;
 }

This converter converts the GoldenGate XML representation of an SDO_GEOMETRY
column into an instance of oracle.spatial.geometry.JGeometry bound to a field
of a JPA entity. The GoldenGateJGeometryConverter class is contained in coherence-

Chapter 2
Support for Oracle Data Types

2-22

https://www.eclipse.org/eclipselink/documentation/2.6/jpa/extensions/annotations_ref.htm#CHDEHJEB
http://www.eclipse.org/eclipselink/documentation/2.6/solutions/oracledb002.htm#CHDJBFIJ
http://www.eclipse.org/eclipselink/documentation/2.6/solutions/oracledb002.htm#CHDJBFIJ

hotcache.jar which should already be on the classpath of the HotCache JVM
and Coherence cache server JVMs used in HotCache deployments (along with the
eclipselink.jar file on which it depends). However the JGeometry class is contained
in sdoapi.jar from an installation of Oracle Spatial and Graph option. The sdoapi.jar
file must be on the classpath of the HotCache JVM, and any other JVM where the JPA
entity containing a JGeometry field will be deserialized.

The oracle.spatial.geometry.JGeometry class implements java.io.Serializable,
so JPA entities with JGeometry fields cached in Coherence can be serialized with
java.io.Serializable without any additional configuration. To use Coherence’s
Portable Object Format (POF) to serialize a JPA entity with a JGeometry field, the
JGeometrySerializer must be added to the POF configuration file used in the
Coherence deployment, as in the following example.

<user-type>
 <type-id>1001</type-id><!—use a type-id value above 1000 that
doesn’t conflict with other POF type-ids-->
 <class-name>oracle.spatial.geometry.JGeometry</class-name>
 <serializer>
 <class-name>oracle.spatial.geometry.JGeometryPofSerializer</
class-name>
 </serializer>
</user-type>

The oracle.spatial.geometry.JGeometryPofSerializer class is contained in
coherence-hotcache.jar, which must be on the classpath of any JVM that will
serialize or deserialize a JPA entity with a JGeometry field using POF.

Support for XMLType
EclipseLink supports the Oracle Database XMLType data type by mapping XMLType
columns to instances of java.lang.String or org.w3c.dom.Document (depending on
the type of the mapped field in the JPA entity). See DirectToXMLTypeMapping in
EclipseLink API Reference and Mapping XMLTYPE in the On Persistence blog.

Therefore, HotCache supports mapping columns of type XMLType to instances of
java.lang.String or org.w3c.dom.Document bound to fields of JPA entities. This
support requires configuring a standard EclipseLink DirectToXMLTypeMapping .

GoldenGate must be configured to use integrated capture mode for support of XMLType
columns. See Details of Support for Oracle Data Types and Objects and Deciding
Which Capture Method to Use in Using Oracle GoldenGate for Oracle Database.

Configuring Multi-Threading in HotCache
HotCache can use multiple threads to apply trail file operations to Coherence caches.
Multiple threads can increase the throughput of a HotCache process as compared to
using a single thread to apply trail file operations. Before configuring multi-threading,
evaluate whether concurrently applying trail file operations poses data correctness
risks in the Coherence caches and the system using HotCache.
Transactions and their operations appear in the trail file in the order in which they
were committed in the source database. By default, HotCache applies operations one
at a time on a single thread to ensure the operations are applied to the cache in the
exact same order in which they were applied to the source database. When using

Chapter 2
Configuring Multi-Threading in HotCache

2-23

https://www.eclipse.org/eclipselink/api/2.6/org/eclipse/persistence/mappings/xdb/DirectToXMLTypeMapping.html
http://onpersistence.blogspot.in/2011/08/mapping-xmltype.html

multi-threading, operations can be applied in a different order than that in which they
were applied to the source database tables and can result in correctness risks.

When determining the potential risk, consider the following examples:

• If one database transaction inserts a row in a table and the next database
transaction deletes that row, then applying operations out of order can leave an
object in the cache whose corresponding database row is deleted.

• If one database transaction updates a column to an older value and the next
database transaction updates that column to a newer value, then applying
operations out of order can leave the older value in the cached object instead
of the newer value. (You can use the JPA optimistic locking features, which are
supported by HotCache, to mitigate this particular update risk).

If you determine that using multiple threads to apply trail file operations to Coherence
caches poses no data correctness risks in the system using HotCache, then HotCache
can be configured to use multi-threading as follows:

1. Edit the GoldenGate Java Delivery Adapter properties file and configure the
HotCache event handler to use transaction mode:

gg.handlerlist=hotcache
goldengate.handler.hotcache.type=oracle.toplink.goldengate.Coherence
Adapter1220
goldengate.handler.hotcache.mode=tx

By default, GoldenGate Java Delivery Adapter event handlers use operation
mode. In operation mode (op), event handlers process operations one at a time. In
transaction mode (tx), event handlers process all operations in a transaction at a
time.

2. Edit the GoldenGate Java Delivery Adapter properties file and set the
coherence.hotcache.concurrency system property on the HotCache JVM with a
value between one and eight times the number of cores on the JVM host, inclusive
(as reported by java.lang.Runtime.getAvailableProcessors()). For example:

jvm.bootoptions=-Dcoherence.hotcache.concurrency=16 …

The value of this property determines the number of threads HotCache uses to
concurrently apply trail file operations to Coherence caches.

3. Edit the HotCache replicat .prm file and set the GROUPTRANOPS property. A value of
1 causes source database transaction boundaries to be honored. A value greater
than 1 causes transaction grouping within the GoldenGate replicat. The default
value is 1000.

Summary of Hot Cache Thread Behavior

Assuming HotCache is run in a GoldenGate replicat process as recommended,
the risks stemming from conflicting source database transactions only materialize
if the GROUPTRANOPS property is configured to a value other than one 1. A value
of 1 causes the source database transaction boundaries and sequencing to be
honored by the HotCache replicat. Therefore, the operations in one transaction are
applied in parallel followed by the operations in the next transaction and so on.
The GROUPTRANOPS property default is 1000, which groups trail file operations from
multiple successive source database transactions into one target transaction of at

Chapter 2
Configuring Multi-Threading in HotCache

2-24

least 1,000 operations. The likelihood of data correctness risks materializing when
the GROUPTRANOPS parameter is set to greater than one is equivalent to the likelihood
of conflicting operations within the grouped source database transactions, given the
magnitude of the GROUPTRANOPS property value and the write rate and volume of the
source database. See GROUPTRANSOPS in Reference for Oracle GoldenGate for
Windows and UNIX.

The following table summarizes the HotCache thread behavior depending on
the values of the GoldenGate Java Delivery Adapter mode property and the
coherence.hotcache.concurrency property.

Table 2-1 Hot Cache Thread Behavior

Mode Concurrency Behavior

op N/A In op mode, HotCache applies trail file operations one at a time
on a single thread (the GoldenGate Java Delivery Adapter thread)
as each operation is read from the trail file. This is the HotCache
default behavior. The value of the concurrency property is not
considered in operation mode.

tx 1 In tx mode with a concurrency property value of 1, HotCache
iterates and applies a transaction worth of trail file operations on
a single thread (the GoldenGate Java Delivery Adapter thread).
The group of operations comprising the transaction is determined
by the value of the GoldenGate replicat GROUPTRANOPS property.
The default value of the concurrency property is 1. This
configuration may exhibit greater throughput than the operation
mode configuration, even though it is still single-threaded and
therefore poses no data correctness risks.

tx >1 In tx mode with a concurrency property value greater than 1,
HotCache applies a transaction worth of operations in parallel on
multiple HotCache threads. The group of operations comprising
the transaction is determined by the value of the GoldenGate
replicat GROUPTRANOPS property. This configuration should exhibit
greater throughput than single-threaded configurations and
throughput generally increases with the number of threads
configured to a maximum of eight times the number of cores on
the HotCache host.

Using HotCache Multitenant Mode
HotCache can refresh caches for specific tenants. In Multitenant mode, a tenant
identifier is used in conjunction with a Coherence scope name to ensure that
HotCache only refreshes caches for a specified tenant.
The GoldenGate trail file is assumed to include data for a single tenant, and must
be configured to include data for a single tenant. If you want to refresh caches for
multiple tenants, then a different HotCache process must be used for each tenant. If
you are using Oracle Database and have not already done so, configure GoldenGate
multitenant support before completing these instructions. See Configuring Oracle
GoldenGate in a Multitenant Container Database in Using Oracle GoldenGate for
Oracle Database.

To use HotCache multitenant mode:

Chapter 2
Using HotCache Multitenant Mode

2-25

1. Edit the HotCache properties file and include a coherence.hotcache.tenantid
system property, within the JVM boot options section, that is set to the database
tenant identifier. For example:

-Dcoherence.hotcache.tenantid=oracle

2. Edit the Coherence cache configuration file to include a scope name for the
configuration. For example

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
cache-config
 coherence-cache-config.xsd">
 <defaults>
 <scope-name>accounts</scope-name>
 </defaults>
 ...

Note:

Given the above tenant identifier and scope name, the cache service name
changes to oracle/accounts:servicename.

Managing HotCache
You can manage HotCache to ensure that cache update operations are performed
within acceptable time limits. HotCache uses JMX to collect management data, which
is viewed using either a JMX browser, a Coherence report, or the Coherence-Java
VisualVM plug-in. Management data includes statistics for the GoldenGate HotCache
adapter as a whole in addition to statistics for specific caches and operation types.
This section includes the following topics:

• CoherenceAdapterMXBean

• Understanding the HotCache Report

• Monitoring HotCache Using the Coherence-JVisualVM Plug-In

CoherenceAdapterMXBean
The CoherenceAdapterMXBean MBean represents a Golden Gate HotCache adapter
and provides operational and performance statistics. Zero or more instances of this
managed bean are created: one managed bean instance for each adapter instance.

The object name of the MBean is:

Type=CoherenceAdapter,name=replicat name,member=member name

Chapter 2
Managing HotCache

2-26

To view the CoherenceAdapterMXBean MBean from an MBean browser, you must
enable Coherence management. If you are new to Coherence JMX management, see
Using JMX to Manage Oracle Coherence.

Attributes

Table 2-2 describes the attributes for CacheMBean.

Table 2-2 CoherenceAdapterMXBean

Attribute Type Access Description

CacheNames String[
]

read-only The names of the caches that were
refreshed by the CoherenceAdapter

ExecutionTimePerOperationStatistic
s

LongSum
marySta
tistics

read-only Summary statistics about the execution time
for each operation in nanoseconds since the
statistics were last reset

ExecutionTimePerTransactionStatist
ics

LongSum
marySta
tistics

read-only Summary statistics about the execution time
for each transaction in nanoseconds since
the statistics were last reset

InvocationsPerOperationStatistics IntSumm
aryStat
istics

read-only Summary statistics about the number of
invocations for each operation since the
statistics were last reset

LastExecutionTimePerOperationStati
stics

LongSum
marySta
tistics

read-only Summary statistics about the execution time
for each operation in nanoseconds since this
method was last called

LastOperationReplicationLagStatist
ics

LongSum
marySta
tistics

read-only Summary statistics about operation
replication lag in milliseconds since this
method was last called

NumberOfOperationsProcessed Long read-only The aggregate number of operations
processed since the statistics were last reset

OperationReplicationLagStatistics LongSum
marySta
tistics

read-only Summary statistics about operation
replication lag in milliseconds since the
statistics were last reset

OperationsPerTransactionStatistics IntSumm
aryStat
istics

read-only Summary statistics about the number of
operations for each transaction since the
statistics were last reset

PerCacheStatistics Map read-only Execution time summary statistics in
nanoseconds for each cache for each
operation type

StartTime Date read-only The time at which the CoherenceAdapter
was started

TrailFileName String read-only The name of the trail file currently being read

TrailFilePosition String read-only The position in the trail file of the last
successfully-processed operation

Operations

The CoherenceAdapterMXBean MBean includes a resetStatistics operation that
resets all cache statistics.

Chapter 2
Managing HotCache

2-27

Understanding the HotCache Report
The HotCache report includes operational settings and performance statistics. The
statistical data is collected from the CoherenceAdapterMXBean MBean and presented
over time making it ideal for discovering performance trends and troubleshooting
potential performance issues. The name of the HotCache report is timestamp-
hotcache.txt where the timestamp is in YYYYMMDDHH format. For example, a file
named 2009013101-hotcache.txt represents a HotCache report for January 31, 2009
at 1:00 a.m.

To view the HotCache report, you must enable Coherence reporting and you must
configure the report-all report group. If you are new to Coherence reporting, see Using
Oracle Coherence Reporting.

Table 2-3 describes the contents of the HotCache report.

Table 2-3 Contents of the HotCache Report

Column Data Type Description

Batch Counter Long A sequential counter to help integrate
information between related files. This value
resets when the reporter restarts, and is not
consistent across members. However, it is
helpful when trying to integrate files.

Report Time Date A timestamp for each report refresh

Handler Name String The user-given name of the HotCache event
handler from the GoldenGate HotCache
properties file

Member Name String The Coherence member name where the
HotCache adapter runs

Start Time Date The time when the Coherence HotCache
adapter started

Operations Processed Long The number of transaction operations
processed

Trail File Name String The name of the Golden Gate trail file that
contains transaction operations

Trail File Position String The position in the trail file of the last
successfully-processed operation

Operations per
Transaction Average

IntSummaryStat
istics

The average number of operations
processed for each transaction

Operations per
Transaction Maximum

IntSummaryStat
istics

The maximum number of operations
processed for each transaction

Operations per
Transaction Minimum

IntSummaryStat
istics

The minimum number of operations
processed for each transaction

Invocations per
Operation Average

IntSummaryStat
istics

The average number of entry processor
invocations that are performed for each
operation

Invocations per
Operation Maximum

IntSummaryStat
istics

The maximum number of entry processor
invocations that are performed for each
operation

Chapter 2
Managing HotCache

2-28

Table 2-3 (Cont.) Contents of the HotCache Report

Column Data Type Description

Invocations per
Operation Minimum

IntSummaryStat
istics

The minimum number of entry processor
invocations that are performed for each
operation

Last Execution Time
per Operation Average
(ns)

LongSummarySta
tistics

The average execution time for each
operation since the last sample in
nanoseconds

Execution Time per
Operation Average
(ns)

LongSummarySta
tistics

The average execution time for each
operation in nanoseconds

Execution Time per
Operation Maximum
(ns)

LongSummarySta
tistics

The maximum execution time for each
operation in nanoseconds

Execution Time per
Operation Minimum
(ns)

LongSummarySta
tistics

The minimum execution time for each
operation in nanoseconds

Execution Time per
Transaction Average
(ns)

LongSummarySta
tistics

The average execution time for each
transaction in nanoseconds

Execution Time per
Transaction Maximum
(ns)

LongSummarySta
tistics

The maximum execution time for each
transaction in nanoseconds

Execution Time per
Transaction Minimum
(ns)

LongSummarySta
tistics

The maximum execution time for each
transaction in nanoseconds

Last Operation
Replication Lag
Average (ms)

LongSummarySta
tistics

The average time in milliseconds between
the commit of the database transaction and
the processing of the last operation by the
HotCache adapter

Operation Replication
Lag Average (ms)

LongSummarySta
tistics

The average time in milliseconds between
the commit of the database transaction
and the processing of the operation by the
HotCache adapter

Operation Replication
Lag Maximum (ms)

LongSummarySta
tistics

The average time in milliseconds between
the commit of the database transaction
and the processing of the operation by the
HotCache adapter since the last sample

Operation Replication
Lag Minimum (ms)

LongSummarySta
tistics

The minimum time in milliseconds between
the commit of the database transaction
and the processing of the operation by the
HotCache adapter

Monitoring HotCache Using the Coherence-JVisualVM Plug-In
The HotCache tab in the Coherence-JVisualVM Plug-In provides a graphical view of
HotCache performance statistics. If you are new to the Coherence-Java VisualVM
plug-in, see Using the Coherence-JVisualVM Plug-In.

Chapter 2
Managing HotCache

2-29

The HotCache statistical data is collected from the CoherenceAdapatMBean MBean and
presented over time in both tabular and graph form. The tab displays statistics for each
GoldenGate HotCache member including detail about specific caches refreshed by
that HotCache member. To view data for a specific member, select the member on the
member table. To view data for a specific cache, select the cache on the cache table.

Use the HotCache tab to get a detailed view of performance statistics and to
identify potential performance issues with cache update operations. The HotCache
tab includes:

• The minimum, maximum, and average time it takes to update a cache for each
operation.

• The minimum, maximum, and average time it takes to update a cache for all the
operations in a transaction.

• The total number of entry processor invocations that are performed for each
operation.

• The minimum, maximum, and average time for the last operation.

• The minimum, maximum, and average operation replication lag time for the last
operation since this MBean attribute value was last sampled. Replication lag is
the amount of time between the commit of the database transaction and the
processing of the operation by the HotCache adapter.

• The minimum, maximum, and average operation replication lag time since the
statistics were last reset.

• The minimum, maximum, and average number of operations for each transaction.

• The minimum, maximum, and average time for each operation type for
each cache. Operations include: EVICT, INSERT, PK_CHANGE, READ_FROM_DB,
REDUNDANT_INSERT, REFRESH, UPDATE, and UPSERT.

Chapter 2
Managing HotCache

2-30

3
Integrating Hibernate and Coherence

Oracle Coherence can be integrated with Hibernate, an object-relational mapping tool
for Java environments. The functionality in Oracle Coherence and Hibernate can be
combined such that Hibernate can act as the Coherence cache store or Coherence
can act as the Hibernate L2 cache.

If you are interested in using Coherence with Hibernate, see the Coherence Hibernate
Integration project that is part of the Coherence Community. Coherence Community
projects provide example implementations for commonly used design patterns based
on Oracle Coherence.

3-1

https://github.com/coherence-community/coherence-hibernate
https://github.com/coherence-community/coherence-hibernate

4
Integrating Coherence Applications with
Coherence*Web

You can configure applications running under Coherence*Web so that they can share
Coherence cache and session information.
If you are new to Coherence*Web, see Understanding Coherence*Web in
Administering HTTP Session Management with Oracle Coherence*Web.

This chapter includes the following section:

• Merging Coherence Cache and Session Information

Merging Coherence Cache and Session Information
In Coherence, the cache configuration deployment descriptor provides detailed
information about the various caches that can be used by applications within a
cluster. Coherence provides a sample cache configuration deployment descriptor,
named coherence-cache-config.xml, in the root of the coherence.jar library.
In Coherence*Web, the session cache configuration deployment descriptor
provides detailed information about the caches, services, and attributes used by
HTTP session management. Coherence*Web provides a sample session cache
configuration deployment descriptor, named default-session-cache-config.xml, in
the coherence-web.jar library. You can use this file as the basis for any custom
session cache configuration file you may need to write.
At run time, Coherence uses the first coherence-cache-config.xml file that is found
in the classpath, and it must precede the coherence.jar library; otherwise, the sample
coherence-cache-config.xml file in the coherence.jar file is used.

In the case of Coherence*Web, it first looks for a custom session cache configuration
XML file in the classloader that was used to start Coherence*Web. If no custom
session cache configuration XML resource is found, then it will use the default-
session-cache-config.xml file packaged in coherence-web.jar.

If your Coherence applications are using Coherence*Web for HTTP session
management, the start-up script for the application server and the Coherence
cache servers must reference the session cache configuration file—not the cache
configuration file. In this case, you must complete these steps:

1. Extract the session cache configuration file from the coherence-web.jar library.

2. Merge the cache information from the Coherence cache configuration file into the
session cache configuration file.

Note that in the cache scheme mappings in this file, you cannot use wildcards to
specify cache names. You must provide, at least, a common prefix for application
cache names.

3. Ensure that modified session cache configuration file is used by the Coherence
members in the cluster.

4-1

The cache and session configuration must be consistent across WebLogic Servers
and Coherence cache servers.

Chapter 4
Merging Coherence Cache and Session Information

4-2

5
Using Memcached Clients with Oracle
Coherence

You can configure a memcached adapter to allow Coherence to be used as a
distributed cache for memcached clients. A simple hello world client that is written
using the spymemcached API is provided for demonstration purposes; howver any
existing memcached client can be used to connect to Coherence.
This chapter includes the following sections:

• Overview of the Oracle Coherence Memcached Adapter

• Setting Up the Memcached Adapter
Memcached adapters are configured within a proxy service using a specific
memcached acceptor. The acceptor configuration defines the socket address and
the distributed cache for use by memcached clients.

• Connecting to the Memcached Adapter

• Securing Memcached Client Communication

• Sharing Data Between Memcached and Coherence Clients

Overview of the Oracle Coherence Memcached Adapter
The memcached adapter provides access to Coherence caches over the memcached
binary protocol and allows Coherence to be used as a drop-in replacement for a
memcached server. The adapter supports any memcached client API that supports the
memcached binary protocol. This allows memcached clients that are written in many
different programming languages to use Coherence.
The memcached adapter is located on a Coherence proxy server and is implemented
as a Coherence*Extend-styled acceptor. Memcached clients connect to the acceptor,
which manages the distributed cache operations on the cluster. The cache operations
are performed as entry processor operations. The acceptor must first be enabled
within a proxy service in order to interact with Coherence cached data. Additional
features for securing memcached client communication and for sharing data with
native Coherence clients are provided and can be configured as required.

Figure 5-1 shows a conceptual view of a memcached client connecting to the
memcached acceptor located on a Coherence proxy server in order to use a
distributed cache.

5-1

Figure 5-1 Conceptual View of a Memcached Client Connection

Setting Up the Memcached Adapter
Memcached adapters are configured within a proxy service using a specific
memcached acceptor. The acceptor configuration defines the socket address and the
distributed cache for use by memcached clients.

This section includes the following topics:

• Define the Memcached Adapter Socket Address

• Define Memcached Adapter Proxy Service

Define the Memcached Adapter Socket Address
The memcached adapter uses a socket address (IP, or DNS name, and port) for
clients to connect to. The socket address is configured in an operational override
configuration file using the <address-provider> element. The address is then
referenced from a proxy service definition using the configured id attribute. See
address-provider in Developing Applications with Oracle Coherence.

The following example configures a socket address and uses 198.168.1.5 for the IP
address, 9099 for the port, and memcached for the ID.

...
<cluster-config>
 <address-providers>
 <address-provider id="memcached">
 <socket-address>
 <address>198.168.1.5</address>
 <port>9099</port>
 </socket-address>
 </address-provider>
 </address-providers>
</cluster-config>
...

Define Memcached Adapter Proxy Service
A proxy service allows remote clients to interact with the caching services of
a Coherence cluster without becoming cluster members. A proxy service for

Chapter 5
Setting Up the Memcached Adapter

5-2

the memcached adapter includes a specific memcached acceptor that accepts
memcached client requests on a defined socket address and then delegates the
requests to a distributed cache.

Note:

The memcached adapter can only use a distributed cache.

To create a proxy service for memcached clients, edit the cache configuration file and
add a <proxy-scheme> element and include the <memcached-acceptor> element within
the <acceptor-config> element. The <memcached-acceptor> element must include
the name of the cache to use and a reference to an address provider definition that
defines the socket address to listen to for memcached client communication. See
memcached-acceptor in Developing Applications with Oracle Coherence.

The following example creates a proxy service and defines a memcached acceptor.
The example references the address provider that was defined in Define the
Memcached Adapter Socket Address.

...
<caching-schemes>
 <proxy-scheme>
 <service-name>MemcachedProxyService</service-name>
 <acceptor-config>
 <memcached-acceptor>
 <cache-name>hello-example</cache-name>
 <address-provider>memcached</address-provider>
 </memcached-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

The cache name refers to the hello-example cache. The cache name must resolve to
a distributed cache. The following example shows the definition of the hello-example
cache and the distributed scheme to which it maps.

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation=
 "http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>hello-example</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>MemcachedTest</service-name>
 <backing-map-scheme>

Chapter 5
Setting Up the Memcached Adapter

5-3

 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>MemcachedProxyService</service-name>
 <acceptor-config>
 <memcached-acceptor>
 <cache-name>hello-example</cache-name>
 <address-provider>memcached</address-provider>
 </memcached-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

Connecting to the Memcached Adapter
Memcached clients must specify the address and port of a proxy service for the
memcached adapter. The proxy service address is used in place of the memcached
server address. Refer to your memcached client documentation for details on how to
specify the address of a memcached server.
The following example shows a simple hello world client that uses the spymemcached
client API to connect to the proxy service for the memcached adapter that was defined
in Setting Up the Memcached Adapter.

import net.spy.memcached.AddrUtil;
import net.spy.memcached.BinaryConnectionFactory;
import net.spy.memcached.MemcachedClient;

public class MemcachedExample {
 public static void main(String[] args) throws Exception {
 String key = "k1";
 String value = "Hello World!";

 MemcachedClient c = new MemcachedClient(
 new BinaryConnectionFactory(),
 AddrUtil.getAddresses("198.168.1.5:9099"));

 c.add(key, 0, value);
 System.out.println((String)c.get(key));
 c.shutdown();
 }
}

Securing Memcached Client Communication
The memcached adapter can use both authentication and authorization to restrict
access to cluster resources. Authentication support is provided for the SASL
(Simple Authentication and Security Layer) plain authentication. Authorization is
implemented using Oracle Coherence*Extend-styled authorization, which relies on
interceptor classes that provide fine-grained access for cache service operations. The
memcached adapter authentication and authorization features reuses much of the
existing security capabilities of Oracle Coherence: references are provided to existing
content where applicable.

Chapter 5
Connecting to the Memcached Adapter

5-4

This section includes the following topics:

• Performing Memcached Client Authentication

• Performing Memcached Client Authorization

Performing Memcached Client Authentication
Memcached clients can use SASL plain authentication to provide a username
and password when connecting to the memcached adapter. To use SASL plain
authentication, you must create an IdentityAsserter implementation on the proxy.
The memcached adapter calls the IdentityAsserter implementation and passes
the com.tangosol.net.security.UsernameAndPassword object as a token. See Using
Identity Tokens to Restrict Client Connections in Securing Oracle Coherence. Refer
to your memcached client documentation for details on establishing a SASL plain
connection.

In addition to an IdentityAsserter implementation, authentication must be enabled
on a memcached adapter to use SASL plain authentication. To enable authentication,
edit the proxy service definition in the cache configuration file and add a <memcached-
auth-method> element, within the <memcached-acceptor> element, and set it to plain.

...
<caching-schemes>
 <proxy-scheme>
 <service-name>MemcachedProxyService</service-name>
 <acceptor-config>
 <memcached-acceptor>
 <cache-name>hello-example</cache-name>
 <memcached-auth-method>plain</memcached-auth-method>
 <address-provider>memcached</address-provider>
 </memcached-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

Performing Memcached Client Authorization
The memcached adapter relies on the Oracle Coherence*Extend authorization
framework to restrict which operations a memcached client performs on a cluster. See
Implementing Extend Client Authorization in Securing Oracle Coherence.

Sharing Data Between Memcached and Coherence Clients
The memcached adapter stores entries in a cache using a binary format. If you
intend to share the data with Coherence clients, then memcached clients must use
a serialization format that Coherence clients also support. Coherence clients typically
use Portable Object Format (POF), which is highlighted in this section. See Using
Portable Object Format in Developing Applications with Oracle Coherence.
This section includes the following topics:

• Configuring POF for Memcached Clients

• Create a Memcached Client that Uses POF

Chapter 5
Sharing Data Between Memcached and Coherence Clients

5-5

Configuring POF for Memcached Clients
To configure POF for Memcached clients:

1. Edit the proxy service definition in the cache configuration file and add an
<interop-enabled> element, within the <memcached-acceptor> element, and set it
to true.

...
<proxy-scheme>
 <service-name>MemcachedProxyService</service-name>
 <acceptor-config>
 <memcached-acceptor>
 <cache-name>hello-example</cache-name>
 <interop-enabled>true</interop-enabled>
 <address-provider>memcached</address-provider>
 </memcached-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>
...

2. Enable POF on the distributed cache that is used by the memcached acceptor.

...
<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>MemcachedTest</service-name>
 <serializer>
 <instance>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>String</param-type>
 <param-value>memcached-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </instance>
 </serializer>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

3. Register POF types in the defined POF configuration file. For the above example,
the POF configuration file is named memcached-pof-config.xml. The file must
be found on the classpath before the coherence.jar file. The following example
defines a POF user type for the PofUser object:

<?xml version='1.0'?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>

 <!-- User types must be above 1000 -->

Chapter 5
Sharing Data Between Memcached and Coherence Clients

5-6

 <user-type>
 <type-id>1001</type-id>
 <class-name>memcached.PofUser</class-name>
 </user-type>

 </user-type-list>
</pof-config>

Create a Memcached Client that Uses POF
Many memcached client libraries include the ability to plug in custom serializers.
Refer to your memcached client documentation for details on how to plug in custom
serializers. The following excerpt shows a spymemcached client that adds the PofUser
object that was registered in step 3 and uses a spymemcached transcoder to plug in
the POF serializer.

MemcachedClient client = m_client;
String key = "pofKey";
PofUser user = new PofUser("memcached", 1);
PofTranscoder<PofUser> tc = new PofTranscoder("memcached-pof-config.xml");

if (!client.set(key, 0, user, tc).get())
 {
 throw new Exception("failed to set value");
 }

The POF transcoder plug-in is defined as follows:

import com.tangosol.io.pof.ConfigurablePofContext;
import com.tangosol.util.Binary;
import com.tangosol.util.ExternalizableHelper;

import net.spy.memcached.CachedData;
import net.spy.memcached.compat.SpyObject;
import net.spy.memcached.transcoders.Transcoder;

public class PofTranscoder<T> extends SpyObject implements Transcoder<T>
 {

 public PofTranscoder(String sLocator)
 {
 m_ctx = new ConfigurablePofContext(sLocator);
 }

 @Override
 public boolean asyncDecode(CachedData arg0)
 {
 return Boolean.FALSE;
 }

 @Override
 public T decode(CachedData cachedData)
 {
 int nFlag = cachedData.getFlags();
 Binary bin = new Binary(cachedData.getData());
 return (T) ExternalizableHelper.fromBinary(bin, m_ctx);
 }

 @Override

Chapter 5
Sharing Data Between Memcached and Coherence Clients

5-7

 public CachedData encode(Object obj)
 {

 byte[] oValue = ExternalizableHelper.toByteArray(obj, m_ctx);
 return new CachedData(FLAG, oValue, CachedData.MAX_SIZE);
 }

 @Override
 public int getMaxSize()
 {
 return CachedData.MAX_SIZE;
 }

 protected ConfigurablePofContext m_ctx;

 protected static final int FLAG = 4;

Chapter 5
Sharing Data Between Memcached and Coherence Clients

5-8

6
Integrating Spring with Coherence

Oracle Coherence can be integrated with Spring, which is a platform for building and
running Java-based enterprise applications.

If you are interested in using Coherence with Spring, see the Coherence Spring
Integration project that is part of the Coherence Community. Coherence Community
projects provide example implementations for commonly used design patterns based
on Oracle Coherence.

6-1

https://github.com/coherence-community/coherence-spring
https://github.com/coherence-community/coherence-spring

7
Enabling ECID in Coherence Logs

Oracle Coherence can use an Execution Context ID (ECID). This globally unique
ID can be attached to requests between Oracle components. The ECID allows you
to track log messages pertaining to the same request when multiple requests are
processed in parallel.
Coherence logs will include ECID only if the client already has an activated ECID prior
to calling Coherence operations. The ECID may be passed from another component
or obtained in the client code. To activate the context, use the get and activate
methods on the oracle.dms.context.ExecutionContext interface in the Coherence
client code. The ECID will be attached to the executing thread. Use the deactivate
method to release the context, for example:

Example 7-1 Using a DMS Context in Coherence Client Code

...
// Get the context associated with this thread
ExecutionContext ctx = ExecutionContext.get();
ctx.activate();
...
set additional execution context values (optional)
perform some cache operations
...
// Release the context
ctx.deactivate();
...

ECID logging will occur only on the node where the client is running. If a client request
is processed on some other node and an exception is thrown by Coherence, then
the remote error will be returned to the originating node and it will be logged on the
Coherence client. The log message will contain the ECID of the request. Messages
logged on the remote node will not contain the ECID.

To include the ECID in a Coherence log message, see Changing the Log Message
Format in Developing Applications with Oracle Coherence.

7-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features
	Other Significant Changes in this Document

	1 Using JPA with Coherence
	Overview of the JPA CacheStore and CacheLoader Implementations
	Obtain a JPA Provider Implementation
	Configure a Coherence JPA Cache Store
	Map the Persistent Classes
	Configure JPA
	Configure a Coherence Cache for JPA
	Configure the Persistence Unit

	2 Integrating with Oracle Coherence GoldenGate HotCache
	About Oracle Coherence GoldenGate HotCache
	How Does HotCache Work
	Overview of How HotCache Works
	How the GoldenGate Java Delivery Adapter Uses JPA Mapping Metadata
	Supported Database Operations
	JPA Relationship Support

	Prerequisites
	Configuring GoldenGate
	Monitor Table Changes
	Filter Changes Made by the Current User

	Configuring HotCache
	Create a Properties File with GoldenGate for Java Properties
	Add JVM Boot Options to the Properties File
	Java Classpath Files
	HotCache-related Properties
	Coherence-related Properties
	Logging Properties

	Provide Coherence*Extend Connection Information

	Configuring the GoldenGate Big Data Java Delivery Adapter
	Edit the HotCache Replicat Parameter File

	Configuring the Coherence Cache Servers
	Using Portable Object Format with HotCache
	Configuring HotCache JPA Properties
	EnableUpsert Property
	HonorRedundantInsert Property
	SyntheticEvent Property
	eclipselink.cache.shared.default Property

	Warming Caches with HotCache
	Create and Run an Initial Load Extract
	Create and Run a Cache Warmer Replicat
	Capturing Changed Data While Warming Caches

	Implementing High Availability for HotCache
	Support for Oracle Data Types
	Support for SDO_GEOMETRY
	Support for XMLType

	Configuring Multi-Threading in HotCache
	Using HotCache Multitenant Mode
	Managing HotCache
	CoherenceAdapterMXBean
	Understanding the HotCache Report
	Monitoring HotCache Using the Coherence-JVisualVM Plug-In

	3 Integrating Hibernate and Coherence
	4 Integrating Coherence Applications with Coherence*Web
	Merging Coherence Cache and Session Information

	5 Using Memcached Clients with Oracle Coherence
	Overview of the Oracle Coherence Memcached Adapter
	Setting Up the Memcached Adapter
	Define the Memcached Adapter Socket Address
	Define Memcached Adapter Proxy Service

	Connecting to the Memcached Adapter
	Securing Memcached Client Communication
	Performing Memcached Client Authentication
	Performing Memcached Client Authorization

	Sharing Data Between Memcached and Coherence Clients
	Configuring POF for Memcached Clients
	Create a Memcached Client that Uses POF

	6 Integrating Spring with Coherence
	7 Enabling ECID in Coherence Logs

