
Oracle® Fusion Middleware
Release Notes for Oracle Coherence

14c (14.1.2.0.0)
F79654-04
May 2025

Oracle Fusion Middleware Release Notes for Oracle Coherence, 14c (14.1.2.0.0)

F79654-04

Copyright © 2008, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

Related Documents v

Conventions vi

1 Introduction

Latest Release Information 1-1

Purpose of this Document 1-1

System Requirements and Specifications 1-1

Certification Information 1-1

Product Documentation 1-2

Oracle Support 1-2

Licensing Information 1-2

Downloading and Applying Required Patches 1-2

2 What’s New in this Release

New Features 2-1

Breaking Changes 2-6

PortableType Annotation Now Requires type-id Attribute 2-6

"vendor:" Prefix Removed from Prometheus Generated Metrics 2-7

Changed Return Type of Coherence.start() Method 2-7

MapViewBuilder and ViewBuilder 2-7

Client for .NET 2-7

Deprecated Features 2-7

Deprecated Features for 14.1.2.0.0 2-8

Oracle Solaris Support 2-8

SafeSortedMap 2-8

ImmutableArrayList.getSortedSet 2-8

Coherence .NET Client 2-8

Memcached Adapter 2-8

iii

OpenTracing Support 2-8

3 Known Issues and Workarounds

Changing the Partition Count When Using Active Persistence 3-1

Disabling Inlining in Java Versions Greater than 8 3-1

Binary Incompatibility with Older Versions 3-2

pof-maven-plugin Version is Non-Compliant 3-2

4 Bugs Fixed and Enhancements in This Release

Oracle Coherence for Java 4-1

iv

Preface

Release Notes for Oracle Coherence summarizes the release information related to new and
updated features, known issues and their workarounds, deprecated and removed functionality,
and more.

This preface includes the following topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This document is intended for users of Oracle Coherence.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
For more information, see the following documents in the Oracle Coherence documentation
set:

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

• Administering Oracle Coherence

• Administering HTTP Session Management with Oracle Coherence*Web

• Developing Applications with Oracle Coherence

• Developing Oracle Coherence Applications for Oracle WebLogic Server

• Developing Remote Clients for Oracle Coherence

• Installing Oracle Coherence

• Integrating Oracle Coherence

• Managing Oracle Coherence

• Securing Oracle Coherence

• Java API Reference for Oracle Coherence

• .NET API Reference for Oracle Coherence

• C++ API Reference for Oracle Coherence

• REST API for Managing Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vi

1
Introduction

You can use the Oracle Coherence Release Notes to learn about important production
information such as Coherence certifications, support, and licensing.
This chapter contains the following sections:

• Latest Release Information

• Purpose of this Document

• System Requirements and Specifications

• Certification Information

• Product Documentation

• Oracle Support

• Licensing Information

• Downloading and Applying Required Patches

Latest Release Information
This document is accurate at the time of publication. Oracle will update the release notes
periodically after the software release. You can access the latest information and additions to
these release notes at Oracle Help Center.

Purpose of this Document
This document contains the release information for Oracle Coherence.

Oracle recommends you review its contents before installing, or working with the product.

System Requirements and Specifications
Oracle Coherence follows the Fusion Middleware system requirements and certifications for
production environments. For more information, see http://www.oracle.com/technetwork/
middleware/ias/downloads/fusion-certification-100350.html.

For system requirements for installations of development environments, visit:

• Coherence for Java — Installing Oracle Coherence for Java.

• C++ Client — Installing the C++ Client Distribution.

• .Net Client — Installing the .NET Client Distribution.

Certification Information
To see versions of platforms and related software for which Oracle Coherence is certified and
supported, go to https://www.oracle.com/middleware/technologies/fusion-
certification.html.

1-1

https://docs.oracle.com/en/middleware/fusion-middleware/coherence/index.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/middleware/technologies/fusion-certification.html
https://www.oracle.com/middleware/technologies/fusion-certification.html

Product Documentation
For complete documentation on Oracle Coherence, go to Oracle Help Center.

Oracle Support
Oracle customers that have purchased support have access to electronic support through My
Oracle Support .

Licensing Information
Detailed information regarding license compliance for Oracle Fusion Middleware is available at
Licensing Information.

Downloading and Applying Required Patches
To download and install the latest software patch:

1. Log in to My Oracle Support to download the latest software patches.

2. Click the Patches & Updates tab.

3. Under the Patch Search tab, select Product or Family (Advanced Search), and select
the Include all patches in a product family check box.

4. Enter Oracle Coherence as the product, select the platform and release, and click
Search.

A list of currently available patches for Oracle Coherence is returned.

5. Select the required patch and click Download.

You can check the README file in the patch distribution for up-to-date information on the
software fixes provided by the patch.

Chapter 1
Product Documentation

1-2

https://docs.oracle.com/en/middleware/fusion-middleware/coherence/index.html
https://support.oracle.com
https://support.oracle.com
https://support.oracle.com/CSP/ui/flash.html

2
What’s New in this Release

Learn about the features, enhancements, and changes made to Oracle Coherence. Oracle
updates the release notes periodically after the software release. This document is accurate at
the time of publication.

This chapter includes the following sections:

• New Features

• Breaking Changes

• Deprecated Features

New Features
This section contains new features for Oracle Coherence that are organized by release.

New and Improved for 14c (14.1.2.0.0)

• Java Modules Support

– You can now run Coherence using Java modules. See Using Java Modules to Build a
Coherence Application in Developing Applications with Oracle Coherence.

– Coherence no longer requires the following modules to be explicitly opened or
exported: java.base/java.lang.invoke=com.oracle.coherence, java.base/
java.lang=org.eclipse.persistence.core, java.management/
sun.management=com.oracle.coherence, java.base/
java.util=com.oracle.coherence. See Using Java Modules to Build a Coherence
Application in Developing Applications with Oracle Coherence.

• Core Improvements

– NamedMap API - A distributed implementation of java.util.Map interface. See
Performing Basic Cache Operations in Developing Applications with Oracle
Coherence.

– Bootstrap API - The new bootstrap API enables you to configure and start a
Coherence application by building a com.tangosol.net.Coherence instance and
starting this instance. See Using the Bootstrap API in Developing Applications with
Oracle Coherence.

– Repository API - The Coherence Repository API provides you with a higher-level,
DDD-friendly way to access data managed in Coherence. See Using the Repository
API in Developing Applications with Oracle Coherence.

– Caffeine - Coherence now adds a Caffeine backing map implementation, enabling you
to use Caffeine wherever the standard Coherence local cache can be used. See
Integrating Caffeine in Developing Applications with Oracle Coherence.

– Partition Events Logging - This feature enables logging of partition unavailable
duration when the partition events occur. For example, during partition movements
between members. See Logging Partition Events in Developing Applications with
Oracle Coherence.

2-1

– Non-Blocking Data Sources - The new NonBlockingEntryStore enables cache
stores to respond asynchronously when mutations are made to entries. See Non-
Blocking Data Sources in Developing Applications with Oracle Coherence.

– Coherence Lifecycle Listeners - Added the ability to register lifecycle listeners with
Coherence instances, either through the Coherence API, or through discovery using
the Java ServiceLoader. See Starting Cache Servers in Developing Applications with
Oracle Coherence.

– Remote Client MEMBER_JOINED and MEMBER_LEFT MemberEvents - A proxy
now sends MEMBER_JOINED and MEMBER_LEFT MemberEvents to all active services on the
proxy when a remote client joins and leaves. This event enables management of a
service’s server side resources being retained per remote client. If a MemberListener
is registered on a service and the environment has both remote and cluster member
access to a service, the MemberListener may need to account for remote client
MemberEvent(s). For example, see Example 8-3 in Listening to Member Events
section in Developing Applications with Oracle Coherence.

– Scheduled Backups - Writing asynchronous backups has been enhanced to enable
scheduling of these backups at a time interval after the primary has been written. See
Scheduling Backups in Developing Applications with Oracle Coherence.

– Read Locator - Coherence now allows for certain requests for data to be targeted to
non-primary partition owners (backups) to balance request load or reduce latency. See
Using the Read Locator in Developing Applications with Oracle Coherence.

– Cache Configuration Override - Similar to the Coherence Cluster override, you can
now specify a cache configuration override to override elements of existing cache
configuration with new elements at runtime. See Using Cache Configuration Override
in Developing Applications with Oracle Coherence.

– Extend the Operational Configuration File - Adds support for custom namespace
handlers in the Coherence operational configuration file. See Introduction to Extending
Configuration Files in Developing Applications with Oracle Coherence.

– BigDecimal-related aggregators - These aggregators now support the ability to set
BigDecimal properties such as scale, rounding mode, stripTrailingZeros, and
MathContext (where applicable) for the final result. See Java API Reference for Oracle
Coherence.

– JSON objects in CohQL - The Coherence Query Language (CohQL) now supports
the ability to insert JSON objects as keys or values, as well as to query by and select
JSON attributes. See Working with JSON Objects in Developing Applications with
Oracle Coherence.

– Durable Events (Experimental) - Coherence now supports an experimental feature
which allows missed MapEvents to be replayed when a client disconnects. See Using
Durable Events (Experimental) in Developing Applications with Oracle Coherence.

• Topics Improvements

– A number of durability and stability improvements have been applied to make topics
more stable during failover.

– Topics now guarantee at least once delivery, whereas in previous releases this was not
the case. A subscriber that is part of a group can commit a processed message to
indicate that processing is complete and it should not be redelivered on failover.

– Topic channels are now fairly allocated to the subscribers in a subscriber group; only a
single subscriber receives messages from an allocated channel.

Chapter 2
New Features

2-2

– Subscribers will be timed-out after a configurable period of inactivity (or failure to
heartbeat) causing their channels to be reallocated to remaining subscribers in the
same group.

– Added API methods to determine the number of unreceived elements for a NamedTopic
subscriber or subscriber group.

See Using Topics in Developing Applications with Oracle Coherence.

• Persistence

– Persistent Backups - You can now enable and configure persistent backups which
stores backup partitions on a disk, as additional copies of persisted primary one. See
Using Persistent Backups in Developing Applications with Oracle Coherence.

– Parallel Recovery - The parallel recovery feature enables Coherence to recover data
in parallel within a member/process as well as in parallel across the cluster. See
Parallel Recovery in Administering Oracle Coherence.

• Distributed Concurrency - The Coherence Concurrent module provides distributed
implementations of the concurrency primitives from the java.util.concurrent package
such as executors, atomics, locks, semaphores, and latches. See Implementing
Concurreny in a Distributed Network in Developing Applications with Oracle Coherence.

• Queues - Coherence now includes an implementation of Queues as a data structure. See
Using Blocking Queues in Developing Applications with Oracle Coherence.

• Serialization/ POF

– Portable Types and POF Maven Plug-in - This release introduces Portable Types,
which provide a way to add support for POF serialization to your classes by using
annotations and without the requirement to implement serialization code by hand. See
Using Portable Object Format in Developing Applications with Oracle Coherence.

– POF Configuration Discovery - It is now possible to make POF configuration files
discoverable at runtime by the ConfigurablePofContext class instead of needing to
put them inside <include> elements. See Making POF Configuration Files
Discoverable at Runtime in Developing Applications with Oracle Coherence.

• Integrations

– Internal

* CDI Support - Coherence provides support for Contexts and Dependency
Injection (CDI) within the Coherence cluster members to inject Coherence-
managed resources, such as NamedMap, NamedCache, and Session instances
into CDI managed beans. See Using Contexts and Dependency Injection in
Developing Applications with Oracle Coherence.

* MicroProfile Configuration - Coherence MicroProfile (MP) Configuration
provides support for Eclipse MicroProfile Configuration within Coherence cluster
members. See Using Coherence MicroProfile Configuration in Integrating Oracle
Coherence.

* MicroProfile Metrics - Coherence MicroProfile Metrics provides support for
Eclipse MicroProfile Metrics within the Coherence cluster members. See Using
Coherence MicroProfile Metrics in Integrating Oracle Coherence.

– External

* Helidon - Coherence can be integrated with Helidon through Contexts and
Dependency Injection (CDI). See Helidon.

* GraphQL Support through Helidon - Using Helidon integration, you can enable
access to Coherence data from GraphQL. See GraphQL.

Chapter 2
New Features

2-3

https://helidon.io/
https://docs.coherence.community/coherence/docs/14.1.2.0/examples/tutorials/500-graphql/README

* Kafka - Coherence can now integrate with Kafka using Kafka Entry Store and
Kafka Sink Connector. See Kafka.

* Micronaut - Coherence now provides integration to Micronaut. See Micronaut
Coherence.

* Hibernate - Updated support for Coherence integration with Hibernate. See
Integrating Hibernate and Coherence in Integrating Oracle Coherence.

* Spring - Coherence can be integrated with Spring, which is a platform for building
and running Java-based enterprise applications. See Integrating Spring with
Coherence in Integrating Oracle Coherence.

• gRPC - Coherence introduces the ability to use gRPC to access Coherence caches. See
Introduction to gRPC.

– gRPC Proxy - A new Coherence gRPC proxy implementation of the services defined
within the Coherence gRPC module. See Using the Coherence gRPC Server in
Developing Remote Clients for Oracle Coherence.

– gRPC Java Client - The Coherence Java gRPC Client is a library that enables a Java
application to connect to a Coherence gRPC proxy server. See Using the Coherence
Java gRPC Client in Developing Remote Clients for Oracle Coherence.

• Coherence*Web - Apache Tomcat 9 Support - Coherence*Web is now supported on
Tomcat 9.

• Clients

– JavaScript Client - The Coherence JavaScript Client allows Node applications to act
as cache clients to a Coherence Cluster using gRPC framework as the network
transport. See Coherence JavaScript Client.

– Go Client - The Coherence Go Client allows native Go applications to act as cache
clients to a Coherence cluster using gRPC for the network transport. See Coherence
Go Client.

– Python Client - The Coherence Python Client allows Python applications to act as
cache clients to an Oracle Coherence cluster using gRPC as the network transport.
See Coherence Python Client.

– Client for .NET - Coherence for .NET 14.1.2 supports .NET 6 and .NET 8. Coherence
for .NET 14.1.2 includes session support for ASP.NET 6 and 8. Prior versions of
Coherence for .NET used an app.config file. Coherence for .NET 14.1.2 now uses
appsettings.json, which follows standard .NET practices. Coherence 14.1.2 server
ASP.NET session support is not compatible with older Coherence for .NET versions.
For more information, see Oracle Coherence for .NET.

• Security

– SSL Improvements - Various SSL improvements that enable more flexible
configuration and allow customizations through extensions. See Using Private Key and
Certificate Files and Using Custom Keystore, Private Key, and Certificate Loaders in
Securing Oracle Coherence.

– New TLS/SSL socket provider configuration element - client-auth element
controls whether the socket provider should use one-way or two-way TLS/SSL
authentication. See Configuring TLS/SSL Authentication in Securing Oracle
Coherence.

– New Password Provider for DefaultController Keystore - This password provider
allows you to obtain the passwords from the DefaultController keystore. See Using
Custom Password Providers in Securing Oracle Coherence.

Chapter 2
New Features

2-4

https://github.com/oracle/coherence-kafka
https://github.com/micronaut-projects/micronaut-coherence/
https://github.com/micronaut-projects/micronaut-coherence/
https://grpc.io/docs/what-is-grpc/introduction/
https://github.com/oracle/coherence-js-client
https://github.com/oracle/coherence-go-client
https://github.com/oracle/coherence-go-client
https://github.com/oracle/coherence-py-client
https://github.com/oracle/coherence-dotnet-extend-client

• Management/Administration

– OpenTelemetry API - The OpenTelemetry API provides developers with visibility into
cache operations within the cluster. See Distributed Tracing in Developing Applications
with Oracle Coherence.

– Coherence Metrics - Additional dependencies are no longer required when using the
coherence-metrics module. In addition, a new Coherence Metrics endpoint for
WebLogic managed Coherence servers allows the scraping of metrics using metrics
gathering systems such as Prometheus. See Using Oracle Coherence Metrics in
Managing Oracle Coherence.

– A new system property, coherence.metrics.http.path, that specifies the metrics
context root path. See Using Metrics System Properties in Managing Oracle
Coherence.

– Coherence Management over REST - The dependencies required to enable
Management over REST have been reduced significantly. The only additional
dependency required to enable management over REST is coherence-json.jar.
See REST API for Managing Oracle Coherence.

– Health Check API - A new health check API to enable application code to determine
the health of the local Coherence member. See Using the Health Check API in
Managing Oracle Coherence.

– Micrometer Metrics - The coherence-micrometer module provides integration
between Coherence metrics and Micrometer allowing Coherence metrics to be
published through any of the Micrometer registries. See Using Coherence Micrometer
Metrics in Managing Oracle Coherence.

– Access to Remote MBeans - The new jmxserviceurl script works with the JConsole
utility to remotely access MBeans. See Accessing MBeans of a Running Coherence
Cluster Using the JConsole Utility in Managing Oracle Coherence.

– New Reports - Executor, View, Storage, and Proxy Connections - See
Understanding the Executor Report, Understanding the View Report, Understanding
the Cache Storage Report, and Understanding the Proxy Connections Report in
Managing Oracle Coherence.

– New Topics Reports - See Understanding the Topic Report, Understanding the Topic
Subscribers Report, Understanding the Topic Subscriber Groups Report in Managing
Oracle Coherence.

– Persistence and Persistence Detail Reports - Additional columns added to these
reports. See Understanding the Persistence Detail Report and Understanding the
Persistence Report in Managing Oracle Coherence.

– New ExecutorMBean - Provides statistics for the executor services that run in a
cluster. See ExecutorMBean in Managing Oracle Coherence.

– New ViewMBean - Provides statistics for view caches that run in a cluster. See
ViewMBean in Managing Oracle Coherence.

– New HealthMBean - Provides information about health checks configured in a cluster.
See HealthMBean in Managing Oracle Coherence.

– ServiceMBean - Additional attributes added to the ServiceMBean track Persistent
Backups storage utilization. See ServiceMBean in Managing Oracle Coherence.

– StorageManagerMBean - Additional attributes added to StorageManagerMBean to
show Indexing Total Millis and Index Total Units. See StorageManagerMBean in
Managing Oracle Coherence.

Chapter 2
New Features

2-5

– New PagedTopic MBean - Provides statistics for Topic services running in a cluster.
See PagedTopic MBean in Managing Oracle Coherence.

– New PagedTopicSubscriber MBean - provides statistics for Topic Subscribers
running in a cluster. See PagedTopicSubscriber MBean in Managing Oracle
Coherence.

– New PagedTopicSubscriberGroup MBean - provides statistics for Topic Subscriber
Groups running in a cluster. See PagedTopicSubscriberGroup MBean in Managing
Oracle Coherence.

– WKA Improvements - Added the ability to provide a comma-separated list of
addresses when specifying a Well Known Address (WKA). See Using Well Known
Addresses.

– Coherence Operator - A number of major enhancements have been made to the
Coherence Operator. See Coherence Operator.

– Coherence VisualVM Plug-in - Updates have been made to support new
functionalities added in 14.1.2. See Coherence VisualVM Plugin Releases.

– Coherence CLI - Updates have been made to support new functionalities added in
14.1.2. See Coherence CLI Release.

• Federation - Additional attributes added to Origin and Destination MBeans to show errors
and replication estimation. See OriginMBean and DestinationMBean in Managing Oracle
Coherence.

• Examples - Coherence guides and tutorials are now hosted on the Coherence GitHub
Repository and are documented here: Examples - Guides & Tutorials Overview.

Breaking Changes
Learn about updates in Coherence 14c (14.1.2.0.0) that introduce potentially incompatible
changes between Coherence releases.

• PortableType Annotation Now Requires type-id Attribute

• "vendor:" Prefix Removed from Prometheus Generated Metrics

• Changed Return Type of Coherence.start() Method

• MapViewBuilder and ViewBuilder

• Client for .NET

PortableType Annotation Now Requires type-id Attribute
In Coherence 14.1.2.0.0, the @PortableType annotation was updated to require a type-id
attribute.

In previous releases, type-id was optional and auto-generated, which could lead to
serialization and schema evolvability issues as the type-id was not guaranteed to be
consistent between each build for each class.

To correct this issue, the type-id is now mandatory on the @PortableType annotation, and in
coherence-pof-config.xsd. Therefore, annotations using @PortableType without an id will fail
to compile. You must now supply a unique type-id when the annotation is used. For example:

@PortableType(id = 1000)
public class Customer {

Chapter 2
Breaking Changes

2-6

https://github.com/oracle/coherence-operator/releases
https://github.com/oracle/coherence-visualvm/releases
https://github.com/oracle/coherence-cli/releases
https://docs.coherence.community/coherence/docs/14.1.2.0/examples/README

"vendor:" Prefix Removed from Prometheus Generated Metrics

In this release, the default value of the system property "coherence.metrics.legacy.names"
has been changed from true to false, to remove the "vendor:" prefix from generated
Prometheus metrics.

This prefix was deprecated several releases ago.

For more information, see the Coherence Operator documentation, Publish Metrics.

Changed Return Type of Coherence.start() Method
Enhanced the Coherence.start() method to return a CompletableFuture<Coherence> instead
of a CompletableFuture<Void>. This allows a more fluent API when using static factory
methods to create and start a Coherence instance. This is a breaking change in applications
that specifically assign the result of calls to Coherence.start() to a CompletableFuture<Void>
variable.

MapViewBuilder and ViewBuilder
Fixed an issue with the generics of MapViewBuilder and ViewBuilder that would prevent the
proper use of the map() function. MapViewBuilder and ViewBuilder have had their class-level
generics simplified to <K, V> from <K, V_BACK, V_FRONT>. The map() function has been
changed to: public <U> ViewBuilder<K, U> map(ValueExtractor<? super V, ? extends
U> mapper), where U represents the type of the extracted value. This change also necessitated
similar changes to the generics of NamedMap.view() and NamedCache.view(). These methods
have also been simplified to <K, V> from <K, V_BACK, V_FRONT>.

Note:

This is a backward-incompatible change, but will have an impact only during
compilation.

Client for .NET
• Coherence for .NET configuration, which used to be in app.config, is now in

appsettings.json.

• Coherence 14.1.2 ASP.NET session support is incompatible with older Coherence
for .NET versions.

• The following classes that relied on the deprecated .NET BinaryFormatter class have
been removed from Coherence for .NET: BinarySerializer,
OptimizedBinarySerializer, BinaryPofSerializer, and SafeConfigurablePofContext.

Deprecated Features
Learn about the deprecated and desupported features of Oracle Coherence.

This section includes the following topics:

Chapter 2
Deprecated Features

2-7

https://oracle.github.io/coherence-operator/docs/latest/#/docs/metrics/020_metrics

• Deprecated Features for 14.1.2.0.0

Deprecated Features for 14.1.2.0.0
A brief description of the deprecated features for 14.1.2.0.0.

This section includes the following topics:

• Oracle Solaris Support

• SafeSortedMap

• ImmutableArrayList.getSortedSet

• Coherence .NET Client

• Memcached Adapter

• OpenTracing Support

Oracle Solaris Support
Coherence no longer supports the Oracle Solaris platform for the Coherence for C++ client.

SafeSortedMap
The SafeSortedMap class is now depreciated.

ImmutableArrayList.getSortedSet
The deprecated ImmutableArrayList.getSortedSet will be removed. This method and the
SortedSet interface implementation will be removed from ImmutableArrayList in a future
release.

Coherence .NET Client
Coherence .NET client 14.1.2.0.0 has deprecated HashDictionary(SerializationInfo info,
StreamingContext context) and PortableException(SerializationInfo info,
StreamingContext context) constructors and GetObjectData methods in PortableException,
RequestIncompleteException, and HashDictionary classes, which overrode legacy
serialization methods.

Memcached Adapter
The memcached adapter is now deprecated.

OpenTracing Support
Support for OpenTracing has been deprecated; use OpenTelemetry instead.

Chapter 2
Deprecated Features

2-8

3
Known Issues and Workarounds

Learn about the known issues at the time of release.
This chapter includes the following section:

• Changing the Partition Count When Using Active Persistence

• Disabling Inlining in Java Versions Greater than 8

• Binary Incompatibility with Older Versions

• pof-maven-plugin Version is Non-Compliant

Changing the Partition Count When Using Active Persistence
Issue

The partition count cannot be changed when using active persistence. If you change a services
partition count, then on restart of the services all active data is moved to the persistence trash
and must be recovered after the original partition count is restored. Data that is persisted can
only be recovered to services running with the same partition count.

Ensure that the partition count is not modified if active persistence is being used. If the partition
count is changed, then a message similar to the following is displayed when the services are
started:

<Warning> (thread=DistributedCache:DistributedCachePersistence, member=1):
Failed to recover partition 0 from SafeBerkeleyDBStore(...); partition-count
mismatch 501(persisted) != 277(service); reinstate persistent store from
trash once validation errors have been resolved

The message indicates that the change in the partition-count is not supported and the current
active data has been copied to the trash directory.

Workaround

To recover the data:

1. Shutdown the entire cluster.

2. Remove the current active directory contents for the cluster and service affected on each
cluster member.

3. Copy (recursively) the contents of the trash directory for each service to the active
directory.

4. Restore the partition count to the original value.

5. Restart the cluster.

Disabling Inlining in Java Versions Greater than 8
When using Java versions greater than Java 8 (for example, Java 11), one of the directives
below should be provided as a JVM Option (on the command line). This step is to avoid a

3-1

segmentation fault (SIGSEGV) that has been observed due to a compiler bug that is being
worked on by the Java team.

• -XX:CompileCommand=exclude,com/tangosol/coherence/component/util/daemon/
queueProcessor/service/Grid.onInterval

• -XX:-Inline

The first option will exclude the problematic method from being inlined by the compiler while
the latter will disable inlining altogether.

Binary Incompatibility with Older Versions
There is a binary incompatibility between Oracle Coherence release 14.1.1.0 and Oracle
Coherence release 14.1.2. This incompatibility requires upgrading users to recompile your
applications against 14.1.2. It is a binary incompatibility only; not an API or functional
incompatibility.

When you run Coherence-based applications prior to release 14.1.2 with the coherence.jar
file from that release, you may encounter the following exception at runtime:

java.lang.ClassNotFoundException: com.tangosol.net.NamedCache$Option

For example, from Session.getCache("<cache name>") calls. This exception occurs because
the nested class Option moved, in a refactoring, from NamedCache to its supertype NamedMap
between 14.1.1.0 and 14.1.2. This refactoring preserves the API compatibility for the previous
code using NamedCache.Option, but requires recompilation of that code against the 14.1.2
coherence.jar.

Workaround

To run a Coherence-based application prior to Oracle Coherence 14.1.2 with that release, you
should first recompile the application against 14.1.2. Recompiling will avoid encountering a
binary incompatibility exception at runtime.

pof-maven-plugin Version is Non-Compliant
Issue

The pof-maven-plugin packaged in the installer has a version qualifier, for example,
14.1.2-0-0-112309 in the plug-in pom.xml file and in the Maven plug-in metadata, under META-
INF/maven/plugin.xml, which is generated and packaged inside the pof-maven-plugin JAR
file.

Workaround

When the oracle-maven-sync plug-in is used to put the pof-maven-plugin artifacts into the
local Maven repository, the plug-in output will show a message as follows:

[INFO] Installing <OracleHome>/coherence/plugins/maven/com/oracle/coherence/pof-maven-
plugin/14.1.2/pof-maven-plugin.14.1.2.jar to $HOME/.m2/repository/com/oracle/coherence/
pof-maven-plugin/14.1.2-0-0-112309/pof-maven-plugin-14.1.2-0-0-112309.jar
[INFO] Installing <OracleHome>/coherence/plugins/maven/com/oracle/coherence/pof-maven-
plugin/14.1.2/pof-maven-plugin.14.1.2.pom to $HOME/.m2/repository/com/oracle/coherence/
pof-maven-plugin/14.1.2-0-0-112309/pof-maven-plugin-14.1.2-0-0-112309.pom

Chapter 3
Binary Incompatibility with Older Versions

3-2

When the pof-maven-plugin is used and referenced inside the Maven pom.xml file, the pof-
maven-plugin version must be specified as the same exact version with the qualifier, as shown
in the output message, for example 14.1.2-0-0-112309:

<groupId>com.oracle.coherence</groupId>
<artifactId>pof-maven-plugin</artifactId>
<version>14.1.2-0-0-112309</version>

Chapter 3
pof-maven-plugin Version is Non-Compliant

3-3

4
Bugs Fixed and Enhancements in This
Release

Learn about the bugs fixed and enhancements in this release.
This chapter includes the following section:

• Oracle Coherence for Java

Oracle Coherence for Java
New features, improvements, and bug fixes added to Oracle Coherence for Java components.

Enhancements and Fixes for 14.1.2.0.0

• Persistence

– Fixed an issue where a service with on-demand persistence mode could be blocked by
the recovery quorum from a system property.

– Improved recovering from persistence by deferring contentious maintenance tasks.

– Fixed an issue where partition recovery could take a long time for a large cluster,
especially with persistence using shared disk storage.

– Fixed an issue where partition distribution may fail to reach a balanced state within five
minutes after recovering from a persistence snapshot.

– Fixed an issue where a service using active persistence may be terminated with a
PersistenceException due to reaching the guardian timeout on a blocked operation.

– Made the opening of persistent stores gradual. Underlying store files, one per partition,
will only be created when they start containing data.

– Fixed an issue with persistent backups where a deadlock situation may occur during
partition re-distribution.

– Added an element to the service list indicating the persistence mode in use.

– Improved the cleanup process of persistence files to handle case when data is deleted
followed by a period with no cache activity.

– Added log messages to report when individual partitions cannot be accessed due to
indexing, partition migration or persistence, and added the IndexingTotalMillis
attribute to the StorageManager MBean.

– Improved persistence to recover data in parallel within a member/process, in addition
to in parallel across the cluster. This allows the cluster, and more importantly the
associated data, to be made available as quickly as possible.

– Fixed a rare case where persistence snapshots could produce a
NullPointerException if a rolling upgrade to remove cache mappings was not
correctly done.

– Fixed an issue where specifying a wrong value for persistence mode would be silently
ignored and default to "on-demand".

4-1

– Fixed an issue where rolling restart with persistence done concurrently by two or more
nodes may result in the cache service going into the "orphaned" state and require a
cluster restart.

– Fixed an issue where data loss might occur after multiple rolling restarts when backup
persistence is enabled.

– Fixed an issue in persistence to ensure errors are caught in a rare and unexpected
part of the recovery protocol.

– Fixed an issue where a persistence snapshot could contain stale cache data leading to
a recovery error.

– Fixed an issue where a persistence snapshot recovery operation could hang
indefinitely.

– Fixed an issue where using persistent backups can result in an
"IllegalArgumentException: unknown extent identifier" error under load and while
performing rolling restarts.

– Fixed an issue where a distributed service with active persistence may be terminated
by an async write to an old persistent store.

– Fixed an issue where a service could repeatedly fail to recover a partition if
persistence is using local disk storage.

– Fixed an issue where a service could repeatedly fail to recover a partition.

– Fixed an issue where recovering snapshots with indices would result in corrupted
index contents.

• Executor Service

– Added support to allow the definition of custom executors for the remote executor
service via XML configuration.

– Added support for advanced task orchestration across multiple JVMs via the
RemoteExecutor API.

– Fixed an issue where executor tasks may not execute under high load.

– Added support for JDK 21 VirtualThread-per-task executors to the Coherence
Executor Service.

– Updated the executor services CronTask to allow the user to configure whether or not
the wrapped task should be cloned upon each successful execution or not where as
previously, it always performed the clone which prevents the task from maintaining
internal state.

– Fixed an issue that prevented the use of additional filters when using
NamedOrchestration to orchestrate tasks to the executor service.

– Fixed an issue which could prevent tasks from being executed by RemoteExecutors.

– Fixed an issue where multiple long running tasks may prevent other tasks from being
executed by concurrent Executors.

– Fixed an issue where the executor service would recreate a failed-over task upon re-
execution after a yield.

– Fixed an issue where the executor service would incorrectly increment the tasks-in-
progress count when re-executing a yielded task.

– Fixed an issue where an IllegalArgumentException could be thrown when looking up
a named executor when using POF.

Chapter 4
Oracle Coherence for Java

4-2

– Fixed an issue where an executor service task submitted with the Debugging option
wouldn't log any task execution details unless the
coherence.executor.trace.logging system property was set to true and
coherence.log.level is at least seven.

– Fixed an issue where the executor service in-progress count could be incremented
twice per task.

– Fixed a rare issue with the executor service where a dynamically registered executor
could result in an inflight task not completing.

– Fixed an issue where the concurrent executor service calls ensureCache on the service
thread during shutdown resulting in a potential deadlock warning message.

– Fixed a rare issue where a Coherence cache server may be inadvertently restarted
when attempting to do an asynchronous shutdown of a registered executor.

– Fixed an issue with the executor service where task properties could be set after a
task had completed.

– Fixed a rare issue in the executor service where a task executing across multiple
members may not complete properly.

– Updated the system properties for persistence mode for the config service to be
consistent with those of the concurrent executor service.

– Added the ability to configure the number of worker threads the concurrent cache
service using two system properties: coherence.concurrent.distributed.threads.
{min|max}. The concurrent cache service will honor the global system properties
coherence.distributed.threads.{min|max} if provided and the concurrent versions
are not set.

• Federation

– Fixed an issue where federation may get stuck repeatedly requesting a retry of the
same cache changes.

– Fixed an issue where partition distribution for a large cluster could take a long time to
reach the desired state.

– Fixed an issue where in rare cases a partition may be stuck with repeated
MISSING_RECORDS_IN_RANGE trace messages resulting in changes not being sent to a
destination participant after stopping then starting federation.

– Fixed an issue where the DestinationController state in the DestinationMBean
might not be correct.

– Enabled TCP KeepAlive for federation connections.

– Added federation ReplicateAllPercentComplete to Coherence metrics.

– Added currentConnectionCount and mapMembers attributes to the federation Origin
MBean to provide the current connection count and a list of members from which the
connections are established.

– Added the ability to enable/disable federation trace logging using the federation
Destination MBean.

– Added support for specifying a separate AddressProvider per (Participant, Service)
pair for environments which have multiple FederatedCache services and are not using
the NameService to look up federation connections.

– Fixed an issue where changes for a partition may stop being federated under rare
circumstances.

Chapter 4
Oracle Coherence for Java

4-3

– Fixed an issue where unacknowledged federation journal records may be garbage
collected.

– Fixed an issue where the wrong TransferEvent type was reported in some federation
trace level log messages

– Added additional metrics and MBean attributes to improve federation replicateAll
operation monitoring and error reporting.

– Added StateCode attribute/metric to Federation Destination MBean so users can map
a State name to a numeric code.

– Enhanced federation connection related information level logging to provide more
information about the connection and more details about the life cycle of the
connection.

– Fixed an issue where an IllegalStateException may be thrown when federating
large entries.

– Fixed an issue where federation may attempt to apply federated changes during
service shutdown after the local storage for caches has already been released.

– Fixed an issue where a federation service does not work if a KeyAssociator or
KeyPartitioningStrategy is defined. Cache entries with PartitionAwareKey type
keys will now bypass KeyAssociators and KeyPartitioningStrategies for federation
services.

– Fixed an issue where incoming federation messages may cause the cluster service to
be unable to complete its shutdown process.

– Fixed an issue where a NullPointerException may be thrown in some rare cases
when federation is preparing a ReplicateMessage during partition migration.

– Fixed an issue where a federation transition to the ERROR state may not be done cluster
wide.

– Fixed an issue where certain types and sizes of federation journal entries which are
too large to fit in Elastic Data may not be identified as requiring splitting.

– Added a TotalRetryResponses attribute to both Destination and Origin federation
MBeans to track the total number of retry responses to ReplicateMessages.

– Added the service name to the federation log message that indicates that an endpoint
address could not be created for a remote participant.

– Changed the default calculator to BINARY for federation's internal metadata caches.

– Fixed an issue where federation may fail to apply changes to a cache which has been
released or destroyed.

– Fixed an issue where there may be unnecessary redundant updates to federation's
internal metadata caches in some rare scenarios.

– Fixed an issue where some cache updates may not be federated under very rare
circumstances.

– Fixed an issue where the federation destination MBean state attribute may be null in
some rare cases.

– Enabled heartbeat messages on federation connections to prevent the dropping of idle
connections by load balancers and firewalls.

– Increased the MessageBus ack timeout for federation to tolerate potentially higher
latency inter-cluster connections.

Chapter 4
Oracle Coherence for Java

4-4

– Fixed an issue in federation where a NullPointerException may be thrown by the
EnvelopeAggregator in some rare cases.

– Fixed an issue where MessageBus connection migration attempts may occur for
federation connections.

– Fixed an issue where a deadlock may occur in federation between
UnsolicitedEntryAddProcessor and FederatedCacheInterceptor.

• Clustering/Services

– Enhanced the service startup messages for Partitioned, Invocation and Proxy services
to display the serializer used.

– Fixed an issue where the cluster service may be stopped in very rare circumstances
due to an unhandled UnsupportedOperationException.

– Fixed an issue where there may be leaked threads as a result of starting and stopping
Coherence multiple times within the same JVM instance.

– Fixed an issue where it was not possible to specifically set the serializer for the
Coherence system config separately from the default coherence.serializer property.

– Corrected the displayed version, for certain Coherence versions, of members within
the master member set.

– Fixed an issue where a NullPointerException may be thrown during service
shutdown.

– Improved a warning log to describe the potential communication problem due to
packet delivery failures to be clearer and more correct.

– Fixed "Started Cluster" log message to clarify that a JOINING member's version is a
transport protocol compatibility version, not the member's actual Coherence version.

– Improved a warning log to describe the potential communication problem due to
packet delivery failures more clear and correct.

– Enhanced DefaultServiceFailurePolicy.POLICY_EXIT_PROCESS from halting the
process to graceful exit, allowing registered shutdown listeners to run. The process is
halted if graceful exit does not complete within coherence.shutdown.timeout duration.

– Improved the cluster member join algorithm to avoid members blocking each other
when there are large number of members joining the cluster simultaneously and
system resources are under heavy load.

– Fixed an issue where a ClassCastException may be thrown when transferring
partitions containing entries with an expiry.

– Implemented periodic flushing of pending messages to reduce native memory usage
when sending multiple messages at once.

– Fixed an issue where a PartitionedCache may be terminated due to an unhandled
NullPointerException in onBackupListenerRequest().

– Fixed an issue where a Coherence worker thread daemon pool may deadlock if the
pool is stopped while a resize task is executing.

– Fixed an issue where a PartitionedCache service may terminate unexpectedly due to
an unhandled ArrayIndexOutOfBoundsException being thrown while processing an
UpdateIndexRequest.

– Fix an issue in PartitionedCache where a NullPointerException may be thrown in
onBackupListenerAllRequest and onBackupListenerRequest when a member sends
one of these requests and then suddenly leaves cluster.

Chapter 4
Oracle Coherence for Java

4-5

– Fixed an issue where the partitioned cache service thread could hit the guardian
timeout while processing deferred events during partition recovery or failover.

– Fixed an issue where DefaultCacheServer.shutdown() does not shut down the
Coherence server gracefully.

– Fixed an issue where partition redistribution could be stuck after a snapshot recovery.

– Reduced the overhead of key set manipulation when applying indexes

– Reduced memory allocation when creating a PartitionSet instance for a single
partition, to improve memory profile of parallel queries against caches with high
partition count.

– Fixed an issue where PartitionedCache's PartitionControl may hang indefinitely due to
a discarded backup message.

– Fixed an issue where a NullPointerException could be thrown during partition
redistribution.

– Fixed an issue where a service could be terminated while finalizing a cache request.

• Caching /Cache-Stores

– Fixed an issue where CacheStore.eraseAll() had no path to be called on NamedCache
bulk operations such as invokeAll(). With this fix, CacheStore.eraseAll() is called
when NamedCache.invokeAll() is invoked with a "remove" processor or when
NamedCache.keySet().removeAll() or NamedCache.entrySet().removeAll() are
called.

– Added default implementations to CacheLoader and CacheStore interfaces for
loadAll(), storeAll(), and eraseAll().

– Fixed an issue where the getOrDefault() call on a cache that uses RWBM with cache
store does not propagate the call through to the cache store when the entry does not
exist.

– Added service-name as an allowable child element of near-scheme

– Fixed an issue where InFilter queries could take longer to return.

– Fixed an issue where AsyncNamedCache.putAll() can result in CacheLoader/
CacheStore load()/loadAll() calls.

– Fixed an issue where entry processor invocations may never be re-sent when re-
distribution takes place at the same time.

– Fixed an issue where ContinuousQueryCache did not handle
NamedCacheDeactivationListener registrations correctly. This can cause issues if
using View Scheme on Extend or gRPC Proxy servers.

– Fixed an issue where a write-behind remove might get stuck when there are
outstanding pending write-behind operations on the entry.

– Fixed an issue where CacheLifecycleEvents are not emitted for existing caches or on
storage-disabled nodes.

– Fixed an issue where incremental cache eviction could temporarily hold references to
evicted cache keys.

– Fixed an issue where the bootstrap API can deadlock if the stop() method is called on
a Coherence instance before start-up has completed.

– Improved NearCache getOrDefault and computeIfAbsent to utilize the front map.

Chapter 4
Oracle Coherence for Java

4-6

– Fixed an issue where a ClassCastException or NullPointerException may be thrown
by InvocableMap during service config processing in some very rare scenarios.

– Fixed an issue where ExtensibleConfigurableCacheFactory.DependenciesHelper
newInstance() methods present in Coherence CE are not present in commercial
Coherence versions.

– Fixed an issue where, in certain cases, remote invocation using an ArrayFilter would
use excessive CPU.

– Fixed an issue where CacheMappingRegistry.register() or
SchemeMappingRegistry.register() will throw a NullPointerException if the registry
is not initialized.

– Fixed an issue where pending events could remain on backup members for a longer
time than expected if not acknowledged by clients.

– Fixed a performance regression in InFilter.

– Fixed an issue where CQC synchronization with the reference cache may miss
updates when its initialization runs concurrent with changes.

– Fixed an issue where services could restart during graceful shutdown when using the
Bootstrap API.

– Fixed an issue where put, get, and remove operations from a gRPC client or when
using AsyncNamedMap or AsyncNamedCache did not trigger the cache store.

– Fixed an issue where query processing enhancements introduced a performance
degradation when using indices in filter-based calls (entrySet, invokeAll with filter or
aggregations).

– Fixed an issue where near cache key lock(s) were not being properly released when
the back map is truncated and the near cache is using the PRESENT invalidation
strategy. The observable failure is thread(s) hung waiting for near cache key locks that
are never released.

– Fixed an issue where a NullPointerException may be thrown traversing
BinaryRadixTree nodes during a CompactSerializationCache operation.

– Added new ValueExtractor factory methods to the com.tangosol.util.Extractors
class.

– Narrowed down the return type of factory methods in Extractors, Processors, and
Aggregators classes to eliminate the need for casting of created instances.

– Added support for Java records to UniversalExtractor.

– Added the ability to pass a custom Executor to AsyncNamedCache to use to complete
the invoked futures instead of using the Coherence common pool. This is useful if it is
a requirement to strictly enforce order of completion of async futures.

– Enhanced AsynchronousAgent to complete async API responses using daemon pool
instead of service thread.

– Improved performance of filter-based aggregators by leveraging partitioned index.

– Improved the filter reordering logic for composite filters.

– Improved parallelism of queries, aggregations and bulk entry processor requests by
splitting them by partition, instead of by member.

– Added CacheEvent.isExpired(). On ENTRY_DELETED, isExpired() will return true if
the entry was evicted due to expiry.

Chapter 4
Oracle Coherence for Java

4-7

– Added write-behind support for cache store erase() and eraseAll() operations.

– Fixed an issue where using a conditional index on a key extractor resulted in the
corresponding index not being updated when entry values were modified, and queries
would return incorrect results.

– Fixed an issue where partitioned queries took longer to execute than before, this fix
now provides as fast or faster execution due to the ability to run queries in parallel
across partitions.

– Fixed an issue where query results could include an entry that does not match
specified filter under heavy concurrent updates.

– Fixed an issue where calling AsyncNamedCache.put() ignored any expiry value
configured for the cache, causing entries to never be expired.

– Fixed a performance issue which can occur when a large number of cache entries
expire at approximately the same time.

– Fixed an issue where calling AsyncNamedMap values or entrySet methods with a Filter
could fail to return all of the values or entries.

– Fixed an issue in DistinctValues.accumulate() that results in
onAggregateFilterRequest() throwing a NotSerializableException.

– Enhanced index support, as part of partitioning indices, to avoid index contents being
stored more than necessary.

– Fixed an issue where a NearCache may not detect and release a lock on a cache key
that is held by a terminated thread, resulting in a "Detected state corruption on KEY..."
log message.

– Fixed an issue where Caffeine could not be configured or used as a near cache front
map.

– Fixed an issue where an EntryProcessorEvent.EXECUTED event raised by an invokeAll
may incorrectly contain an empty entry set.

– Fixed an issue where expired entries are not evicted for ReadWriteBackingMap.

– Fixed an issue where NullPointerException could occur in the index rebuild thread
during failover, and lead to worker threads hanging waiting for index ready.

– An internal ForkJoinPool is now used to run queries in parallel across all owned
partitions.

– Enhanced Coherence gRPC proxy and client to be configurable using the Coherence
operational and cache configuration files. Added support for configuring gRPC secure
sockets using the same socket provider approach used in the rest of Coherence.

• Security

– Added support for using a password provider for the keystore password in the
AccessController.

– Added the ability to configure Coherence socket providers to use TLS/SSL private key
and certificate files instead of keystores and to be able to load keystores, private keys
and certificates from custom sources instead of the file system.

– Fixed an issue where a service restart could throw a SecurityException with the
message "No security token available" when the security framework is enabled.

– Added an option to configure a global socket provider that will be applied to all network
sockets created by Coherence. This allows a single place to configure TLS settings

Chapter 4
Oracle Coherence for Java

4-8

that apply to Coherence cluster communication, extend proxy and client
communication, gRPC channels, and such.

– Fixed an issue where hostname verification could fail due to missing peer certificates
when using Coherence with TLS enabled on Java 17 and higher.

– Fixed an issue where traffic over TLS 1.3 connections may hang.

– Added an enhancement to allow the client auth mode to be configured for an SSL
socket provider. Previously this behavior was fixed to "required" if a trust store was
configured. The enhancement allows the mode to be "none", "wanted" or "required".

– Enhanced the default SSL HostnameVerifier to be able to verify wild-card Subject
Alternate Names and to disable localhost matching by default. Matching of localhost
can be enabled via a system property.

• CohQL

– The JLine console input Java library is no longer included as part of a Coherence
installation. For JLine functionality when using CohQL or Coherence console
command line tools, download and include the JLine library in the tool classpath.

– Fixed a regression in query.sh by adding new command line argument "-v" to indicate
that the CohQL statement should be echo'ed to output. Also fixed unhandled JLine
exceptions for EOF and user interruption.

– Fixed an issue where correct CohQL comparison expressions could raise an exception
stating "The use of identifier on both sides of an expression is not supported".

– Fixed an issue where the history file was not getting saved to disk for CohQL query
console and Coherence console when using jline.jar.

– Fixed an issue where CohQL could return incorrect results when compound conditions
are used with parenthesis on the first part of the query statement.

– Enhanced CohQL to print out the Exception call stack when trace is turned on.

– Fixed an issue where a StackOverflowError could be thrown when comparing two
identifiers.

– Fixed an issue where backup and restore commands would use the default Java
serializer rather than the pass-through binary serializer.

– Fixed a thread safety issue in QueryHelper and FilterBuilder that may result in
corruption of the underlying parser token table.

– Fixed a thread safety issue in CohQL QueryHelper and FilterBuilder that may result
in corruption of the underlying parser token table.

• Elastic Data

– Fixed an issue where federation JournalRecord cache garbage collection may be very
slow when there are a large number of entries to be removed.

– Fixed an issue where queries using an index with Elastic Data were running slower
than they should.

– Replaced the usage of synchronized blocks with locks to prevent hangs and allow for
better thread utilization in JournalCache.

• Coherence*Web

– Added support for and certified running Coherence*Web on the following web
containers: Wildfly/Undertow web container, Jetty 9.4 and Tomcat 9.

– Certified Coherence*Web support for servlet spec 3.1.

Chapter 4
Oracle Coherence for Java

4-9

– Fixed an issue where a Coherence*Web thread may hang waiting to acquire a lock
when releasing ownership of a session.

– Added additional session information to the session log: "Session Reaping Cycle
Seconds" "Session Logger Level", "Session Log Invalidation Exceptions", and
"Configuration Consistency Required".

– Fixed an issue in Coherence*Web where overflow attributes in a session may not be
saved.

– Removed the "web-sessions" report. The same information is available in the "cache-
effectiveness" report.

– Fixed an issue in Coherence*Web to disallow invalid characters in MBean names.

– Fixed an issue where session invalidation might lead to "no usable session model
error" and stuck threads.

– Added a warning level log message for when HTTP session reaping takes longer than
coherence-reaperdaemon-cycle-seconds.

– Fixed an issue in Coherence*Web where incorrect session data may be returned if
there are members in the cluster with a lower patch level than 12.2.1.4.16, which does
not have the "splitting large values" feature.

– Fixed an issue in Coherence*Web where a lock on an invalidated session might not be
released, causing other threads waiting on the lock to be stuck indefinitely, when a
session is invalidated and replaced by a new one.

– Fixed an issue where when coherence.session.log.invalidation.exceptions is set
to false, reaper still logged invalidation exceptions.

– Fixed an issue in Coherence*Web where many threads are stuck due to the session
reaper not releasing the lock on the session being reaped.

– Fixed an issue where ServletRequestEvents are not dispatched when
Coherence*Web is used.

– Fixed an issue with the Coherence*Web installer to skip instrumenting and retain
integrity of signed nested jar files.

– Fixed an issue in Coherence*Web where a Servlet may fail with
com.tangosol.net.RequestTimeoutException: Failed to obtain cluster ownership
leading to struck thread.

– Fixed an issue in Coherence*Web where an application thread could end up blocked
waiting for a lock on a SegmentedConcurrentMap due to the lock not being released by
the reaper thread.

– Fixed an issue in Coherence*Web where a thread could block indefinitely in
com.tangosol.util.SegmentedConcurrentMap$LockableEntry.waitForNotify.

– Fixed an issue where if a war-scoped deployment is used, a
"java.lang.IllegalStateException: SafeNamedCache was explicitly destroyed" exception
may be thrown due to Coherence*Web not cleaning up its cache references when
handling a contextDestroyed event.

– Changed Coherence*Web to no longer use replicated caches.

– Added a Coherence*Web Context Parameter "coherence-use-elastic-data" to
enable/disable the use of elastic data for storing session data. The default setting is
true.

– Enhanced Coherence*Web to support sessions containing data that exceeds the
Elastic Data maximum entry size limit.

Chapter 4
Oracle Coherence for Java

4-10

– Fixed a memory leak in Coherence*Web SplitHttpSessionCollection.

• Serialization/POF

– Fixed an issue in POF that would result in java.io.StreamCorruptedException:
unknown user type:5.

– Fixed an issue where all "\uXXXX" character sequences (for example: "\usr\bin") were
assumed to be a Unicode escape sequence when writing a JSON value.

– Fixed an issue that resulted in unnecessary deserialization of entry values during
write-behind.

– Fixed an issue where ScriptAggregator, ScriptFilter and ScriptProcessor could
not be serialized using JSON.

– Fixed an issue where deserialization of 4-byte UTF-8 sequences would fail.

– Fixed an issue where automatic discovery of the Coherence JSON serializer at start-
up could fail with Java 17 and later.

– Fixed an issue where PortableTypeGenerator may generate an incorrect
implementation for "public Evolvable getEvolvable(int nTypeId)".

– Fixed an issue where it was not possible to specifically set the serializer for the
Coherence system config separately from the default coherence.serializer property.

– Improved PortableTypeGenerator to report an error when a POF annotated field is
declared as final.

– Improved JSON serialization of Big{Decimal,Integer} so these types may be better
handled by gRPC clients.

– Added Helidon JEP-290 serialization configuration files to allow Coherence to work
with Helidon.

– Enabled configuring lambdas serialization mode in the operational configuration by
setting the <cluster-config/lambdas-serialization> element to "static" or
"dynamic".

– Added a new Gradle plug-in for POF serialization that instruments classes at build time
(similar to the Coherence POF Maven plug-in).

– Improved the efficiency of several of the methods on AsyncNamedMap and
AsyncNamedCache by eliminating unnecessary serialization or deserialization wherever
possible.

– Fixed an issue where deserialization of Optional<Object> fails with
"java.lang.ClassNotFoundException" due to the incorrect ClassLoader being used.

– Fixed an issue that prevented the serialization/deserialization of lambdas with JDK 21.

– Removed identity token deserialization in NameService TcpAcceptor processing.

– Added support for high-performance (raw) serialization of primitive arrays.

– The coherence-json module's POF configuration file is now auto discoverable when
using POF serialization.

– Added support for use of Java records as portable types.

– Added support for the use of final fields within portable types.

– Added maven and gradle plug-ins for instrumenting Coherence PortableTypes to the
Installer.

Chapter 4
Oracle Coherence for Java

4-11

– Enhanced POF deserialization error messages to show the ID of the field being
deserialized.

– Improved deserialization performance of very large byte arrays (> 100MB).

– Fixed QueryMap.values() methods that accept Filter argument to eliminate eager
deserialization of returned values when called against distributed cache, to bring them
in-line with the existing keySet and entrySet implementations, which deserialize
returned results lazily.

– Added PofWriter.writeByteArray overload that takes array offset and length as
arguments.

– Added support for serializing Protobuf messages using POF.

– Added enhancement enabling specifying an ExternalizableLiteSerializer for an
ExternalizableLite class using class annotation
@ExternalizableType(serializer=ImplOfExternalizableLiteSerializer.class).

– Added functionality to allow the list of included POF configuration files to be
discoverable at runtime using the Java ServiceLoader

– Fixed an issue that prevents ExtractorComparator to be used with PofExtractor.

– Fixed a regression in PortableException when Java serialisation introduced in
12.2.1.4.5 and 14.1.1.0.1 that made it incompatible with earlier Coherence versions.
Applications using POF are not affected by this change or this bug.

• Configuration

– Added enhancements to configuration system property macros enabling nested
definition and shell substring expansion.

– Added cache configuration element cache-values which allows a view-scheme to be
configured to cache both keys and values (the default), or only keys.

– Allow custom namespace handlers to be used in the operational configuration file.

– Added system property coherence.discovery.address for providing the discovery
address.

– Fixed an issue where a custom namespace handler cannot be used within a backing-
map-scheme element.

– Fixed an issue where XSD schema validation may fail in coherence-operational-
config.xsd when using JDK22 or greater and setting -
Djdk.xml.jdkcatalog.resolve=strict.

– Fixed an issue where the cluster service did not honor the
coherence.service.startup.timeout and
coherence.service.clusterservice.startup.timeout system properties.

– Added support for macro parameter expansion to <cdi:bean/> content expression.

– Added a debug system property "coherence.debug.operational.config" that when
set to true, causes Coherence to dump the stack of the thread that loads the
Coherence operational config to standard out.

– Added the ability to configure distributed service partition count using two system
properties: coherence.service.partitions and coherence.service.<distributed-
service>.partitions.

– Fixed an issue where the coherence.distributed.partitioncount system property
was not honored when using the default cache configuration.

Chapter 4
Oracle Coherence for Java

4-12

– Fixed an issue that incorrectly raises an AssertionException when setting the
coherence.distributed.threads.min system property when the property is applied to
a service using the deprecated thread-count configuration that is configured with a
smaller value.

– Fixed an issue where Coherence fails to load a cache configuration file if the
<reconnect-interval> for a <view-scheme> was in form of a time unit, for example
"30s".

– Fixed an issue where a NullPointerException could be thrown if the interface for
multicast-listener is incorrectly specified.

– Fixed an issue where cluster-quorum-policy attributes could not be overridden with
a system-property.

– Improved the configuration of the hostname-verifier with the introduction of an "action"
element with permitted values of "allow" or "default"; see the XSD for a thorough
description.

– Improved the description for the various managed-nodes options in a schema for
coherence operational config so that it is easier for the developer to gain a quick
understanding of what each mode means.

– Added system property coherence.reflect.filter to enable configuring allow list
and/or deny list of classes accessible via reflection.

– Added security enhancement that enables configuring between secure static lambdas
and more convenient to use dynamic lambdas.

– Configured XML processors to disable access to external entities to prevent XML
eXternal Entity injection (XXE).

– Added support for system property coherence.guardian.log.threaddump.interval
that can be set to a time duration to reduce the frequency that guardian service thread
dumps appear in server log.

– Added service-name as an allowable child element of near-scheme.

– Fixed an issue where coherence.mode would be effectively ignored at the cluster level.

– Added a message to stdout which prints the Coherence logging configuration when the
Coherence logger is set to level 6 or higher.

– Reduced the frequency of the messages displayed (to once every 60 seconds) when
the BinaryMemoryCalculator cannot calculate the index size.

– Added system properties "coherence.publisher.resend.interval" and
"coherence.publisher.delivery.timeout" for setting the packet delivery "<resend-
milliseconds>" and "<timeout-milliseconds>" element values.

– Added system property coherence.join.timeout which can be used to control the
cluster join timeout.

– Added system property coherence.daemonpool.debug (defaults to false) to control the
display of log messages pertaining to dynamic thread pool sizing. Set this property to
true to see these messages.

• Topics

– Improved the removal of topic group subscribers created by departed cluster
members, by making it more aggressive and hence speeding up reallocation of
channels to the remaining subscribers.

Chapter 4
Oracle Coherence for Java

4-13

– Fixed an issue where the last polled position for a subscriber group in a channel was
not properly rolled back on subscriber fail over, causing some messages to never be
received.

– Fixed an issue where increasing the channel count for a topic may cause an
UnsupportedOperationException.

– Fixed an issue where a topic subscriber could stop receiving messages from a newly
allocated channel after the previous owner of the channel departed.

– Fixed an issue where new channels are not allocated to topic subscribers if a publisher
increases the channel count. This particularly applies when performing a cluster restart
using active persistence.

– Fixed an issue where topic subscribers channel allocations were sometimes not
cleaned up when the subscribers owning member departed from the cluster.

– Fixed a race condition which could cause a PagedTopic to miss messages when
cancelling futures returned by a Subscriber.

– Enhanced topics to allow the channel count to be changed for an existing topic.

– Fixed an issue with where cancelling a CompletableFuture returned by a NamedTopic
Subscriber stopped the subscriber from receiving more messages. Cancelled or
completed futures are now handled correctly.

– Fixed NamedTopic methods isDestroyed and isReleased to return true when
appropriate.

– Fixed an issue where topic subscribers failed to be cleaned up when their owning
member departs the cluster. This is especially relevant when running Coherence on a
single core.

– Fixed a race condition in the concurrent executor service RecordingSubscriber which
can result in the RecordingSubscriber reporting an incorrect state.

– Fixed a potential NullPointerException when registering a topic MBean

– Fixed an issue where a topic subscriber could redeliver previously committed
messages.

– Fixed a possible race condition when calling seek operations on a topic subscriber that
has in-flight receive operations.

– Fixed an issue where topic subscribers could become disconnected and hang
attempting to reconnect. The fix for this issue means that when using topics is it not
possible to perform a rolling upgrade from versions prior to 14.1.1-2206-4. If a rolling
upgrade is required it must be done in two stages, first to a version 14.1.1-2206-4 or
higher then to the 14.1.1-2206-9. This rolling upgrade restriction only affects
applications that are using topics.

• Management/Metrics

– Fixed the reset statistics URL for federation in management over REST.

– Added the ability to specify a domain name suffix for Coherence MBeans by setting the
coherence.management-config.domain-name-suffix in the operational override
configuration.

– Added additional logging when metrics registration fails.

– Added an error level log message for when federation is stopped due to the connect
retry timeout being reached

– Updated the Management over REST Swagger documentation to call out certain
features that are only available in Grid Edition.

Chapter 4
Oracle Coherence for Java

4-14

– Enhanced Coherence REST server logging to assist development time debugging by
logging handled exceptions for a REST HTTP Response of BAD_REQUEST (status
400) at log level 6 or higher.

– Improved ClusterNodeMBean.setLoggingLevel() to apply the change to all supported
destinations except SLF4J because it does not support the feature.

– Added a REST endpoint to the ClusterMemberResource to return the response of the
reportEnvironment MBean operation of the ClusterNodeMBean, providing details
about the Java environment and system properties.

– Fixed an issue where some cache metrics would fail to register when using
Micrometer.

– Added a new report (report-transaction.xml) to show TransactionManager MBean
details.

– Added ServiceMBean attribute StatusHACode for metrics support.

– Added example showing how to monitor StatusHA for rolling redeploys

– Added service name and nodeId to the result of the Cache MBean query. In addition,
you can now get the MBean type (type), cluster name (cluster), member name
(member), and cache tier (tier) attributes from the Cache MBean query.

– Added reportEnvironment operation to the ClusterNode MBean to provide details
about the Java environment and system properties.

– Added an MBean operation and Management over REST endpoint to retrieve the
Coherence Cluster configuration.

– Fixed an issue where a deadlock could occur when a node becomes the dynamic
management senior while there are other management nodes in the cluster.

– Removed deprecated gRPC session classes from the coherence-java-client module.

– Fixed an issue where not all MBean operations honored read-only management mode.

– Fixed an issue with Management over REST and JMX where queries over all
members of a large cluster may fail with an InstanceNotFoundException if a cluster
member is shut down in middle of the query computation.

– Fixed an issue where the metric metadata value retrieved from the Coherence metrics
endpoint when using Prometheus text format includes an additional space in the metric
type name.

– Fixed an issue where performing a rolling upgrade would cause a
NullPointerException and make the cache service restart.

– Fixed an issue where a rolling upgrade was not possible in some cases when using
view caches due to a version compatibility issue.

– Coherence cumulative OPatch patches now supersede earlier applied Coherence
cumulative patches, if any. A rollback of an earlier patch may no longer be required.

– Fixed an issue where the forceRecovery operation was not present in the
management-swagger.json for Management over REST.

– Fixed an issue where the Coherence health API could report ready before all services
had started.

– Fixed an issue where the NodeId column was missing from the view report.

– Added a Management over REST endpoint to retrieve the view caches in a cluster.

Chapter 4
Oracle Coherence for Java

4-15

– Fixed an issue where the actual listen port was not being displayed for HTTP listeners
which are configured to bind to port 0 (ephemeral).

– Fixed an issue where when the management senior leaves the cluster registered
health checks could disappear on the new management senior.

– Fixed an issue where some reporter group files do not honor the
coherence.reporter.frequency system property.

– Fixed an issue where a RequestTimeoutException may be thrown when setting an
MBean attribute due to the operation using a small timeout value instead of the service
request timeout.

– Fixed an issue where the ServiceMBean.TaskMaxBacklog might not be updated to
have the maximum task backlog.

– Fixed an issue where the ConnectionManager MBean resetStatistics operation was
missing from REST API and Swagger documentation.

– Corrected the descriptions of some Health Check MBean attributes.

– Fixed an issue where the MetricsHttpProxy service fails to restart on shutdown or
unexpected restart of a Coherence member.

– Fixed an issue where the cluster service thread may be blocked on a member that is
assuming the JMX cluster member role.

– Fixed an issue where the Coherence Reporter proxy reports do not account for
members joining and leaving the cluster.

– Removed the shaded MVEL2 library from coherence-rest.jar and switched to using
built in Coherence classes for Coherence REST query processing. MVEL can still be
used for query processing if desired by adding the library (mvel2.jar) to the classpath.

– Fixed an issue where Management over REST queries could fail if non-Coherence
MBeans exist with the same type field in the ObjectName, for example
"type=Service".

– Fixed an issue where Connector$Register may throw a NullPointerException during
a rolling upgrade.

– Added ListenerKeyCount, ListenerFilterCount , and ListenerRegistrationCount
to report-cache-storage.xml.

– Improved the process of loading management-http-config.xml so that the file can be
overridden by placing another management-http-config.xml file in the classpath
before coherence.jar.

– Improved logging to report the location of the management-config.xml file loaded by
the cluster member

– Added the reportPartitionStats operation to the StorageManager MBean to report
cache partition sizes for a cache.

– Added the ClearCount attribute to the StorageManager MBean which shows how many
times clear() has been called on a cache.

– Added size() operation on StorageManager MBean to get distributed cache total size.

– Added UNIX and Windows script jmxserviceurl.[sh|cmd] to print the Coherence
JMX server URL to use to connect using Jconsole.

– Additional JMX attributes are now exposed as metrics on the SimpleStrategyMBean.

Chapter 4
Oracle Coherence for Java

4-16

– Enhanced the Coherence Node and Service MBeans to always have reliable transport
information in the TransportStatus attribute.

– Added getClusterDescription, getServiceDescription, and getNodeDescription
operations to the Cluster, Service, and ClusterNode MBeans to retrieve details about
a cluster, service, and member.

– Added clearCache and truncateCache operations to StorageManager MBean

– Fixed a performance regression during StorageManager MBean population caused by
expensive collection of unique keys across index partitions, by removal of a Content
attribute from a default (non-verbose) IndexInfo string representation.

– Fixed an issue in management over REST where an empty response could be
returned instead of an expected empty collection.

– Added CharacterLimit attribute to the CoherenceLoggingParamsBean to allow user to
set character limit for Coherence logging message in managed Coherence server.

– Removed the following deprecated HTTP servers supported by Coherence:
coherence-http-grizzly, coherence-http-jetty, and coherence-http-simple.

– Added additional columns to the memory status report to show memory information in
megabytes. Additionally ensured that in all reports the display of report values never
uses exponential notation.

– Added integration with the Microprofile Health API so server Coherence health checks
via MP Health endpoints.

– Added new attributes starting with Client to ConnectionMBean to identify a Connection
to its client when a load balancer is between proxy and client. These attributes are
mapped to metrics tags on Coherence.Connnection.* metric values.

– Fixed an issue where "java.lang.IllegalArgumentException: Operation
vmUnlockCommercialFeatures() cannot be invoked" is thrown when invoking JFR
related MBean operations when running with the Java Enterprise Performance Pack.

– Fixed an issue where the Cache Units attribute or metric could be negative for large
caches when the unit factor is greater than 1.

• Integrations

– Added CDI support for response caching.

– Fixed an issue where an IllegalStateException could be thrown when terminating a
Coherence/Spring Boot application.

– Fixed an issue with the Bootstrap API that could prevent a Coherence Session from
being found when using Spring Boot.

– Fix a performance regression by removing unnecessary JEP-290 filter checking of the
array length of a String or Binary.

– Removed the coherence-helidon-grpc, coherence-helidon-client, and coherence-
helidon-proxy modules. While a Coherence gRPC server and client still work in a
Helidon application, it is no longer possible to automatically serve Coherence gRPC
proxy endpoints on the Helidon MP gRPC server. Coherence configures and creates
its own independent gRPC clients and server.

– Integrated support for OpenTelemetry. See the documentation for further details.

– Updated server-side JavaScript integration to work with GraalVM for JDK 21 and
GraalVM Truffle 23.1.4 libraries.

Chapter 4
Oracle Coherence for Java

4-17

– Enabled the com.tangosol.net.Coherence class main method to be able to run a GAR
server to be consistent with DefaultCacheServer.

– Fixed an issue where a GAR would not shut down properly when using Interceptors
defined on abstract classes.

– Added defensive guards against OpenTracing tracer implementations that don't
conform to the specification.

• WebLogic Managed Coherence Servers

– Fixed an issue where requesting the default session using the bootstrap API inside
WebLogic Managed Coherence fails to return a valid session.

– Fixed an issue where undeploying a GAR application may hang due to the underlying
cache service being unable to gracefully shut down.

– Fixed an issue where deserialization of reflection-based extractors may be rejected
when running in WebLogic.

– Fixed an issue where auto-discovered session configurations were not started and
stopped correctly when running in a GAR application using WebLogic Managed
Coherence.

– Fixed an issue where an IllegalStateException is thrown when a Coherence client
runs inside an OSB Java callout utility.

– Fixed an issue where the Coherence gRPC proxy is not usable in clusters running in
WebLogic Managed Coherence.

• Hot Cache

– Enhanced Coherence HotCache to support Oracle GoldenGate 12.3.2.1.x and
19.1.0.x.

– Fixed HotCache process to report CoherenceAdapter MBean statistics when
GoldenGate ggsci command stats is called.

– Changed HotCacheAdapter to log only one warning message per missing table
column on an insert event. This warning only occurs when GoldenGate Extract does
not extract all table columns.

– Upgraded Coherence HotCache to depend on Oracle GoldenGate Big Data 21.8 that
supports JRE 11.

• Miscellaneous

– Fixed rolling upgrade for distributed lambdas by removing production mode defaulting
to static lambdas.

– Improved Coherence to work correctly when coherence.jar is shaded into another jar.

– Fixed an issue where JPMS --add-exports java.management/
sun.management=com.oracle.coherence was required when using Berkeley Database
JE database for storage.

– Added the ability to show the Coherence version without starting a cluster via java -
jar coherence.jar --version.

– Improved error reporting during the cluster service halting process to help identify what
caused the cluster service to halt and any issues that may have been encountered
while halting.

– Added the ability to register lifecycle listeners with Coherence instances, either via the
Coherence API, or via discovery using the Java ServiceLoader.

Chapter 4
Oracle Coherence for Java

4-18

– Fixed an issue with coherence-json module removing jackson-annotations as a
required runtime library.

– Fixed an issue to prevent InjectorProvider from throwing a ClassNotFound exception if
the javax.annotation.Priority annotation isn't available on the classpath.

– Fixed an issue where the service thread would not heartbeat when all daemon pool
threads are stuck.

– Fixed an issue where gRPC did not correctly support key association.

– Fixed an issue where the Coherence default HostnameVerifier may erroneously
reject a valid host name.

– Fixed an issue where an IllegalAccessException may be thrown in
DefaultMemberIdentity.makeProcessName() with Java 17 or later.

– Fixed an issue where a race condition is possible in SafeHashMap on ARM processors.

– Removed the Sun Codemodel shaded dependency from coherence.jar due to its
dropped support in Java 17.

– Fixed an issue where UnsolicitedCommitEvents may not fire for some entries which
are part of a bulk update such as a clear().

– Changed async() to throw UnsupportedOperationException for Extend caches.
Changed async() for near and view caches to call async() on the back cache.

– Fixed an issue where LifecycleEvent.DISPOSING was not being emitted for the
system ($SYS) ConfigurableCacheFactory.

– Fixed an issue where Enums were not automatically discovered when enabling type
discovery.

– Fixed an issue that would lead to a leak of a view cache service if the cluster service
was restarted.

– Fixed an issue where near and local caches incorrectly share the same service name.

– Fixed an issue where delayed service join may inadvertently start a DaemonPool even
when DaemonPool is disabled.

– Fixed an issue where the memory used by cache backing map entries is higher than it
should be.

– Fixed a performance regression introduced by the Binary.hashCode change.

– Updated the dependencies listed in the Coherence gRPC, Helidon, JSON, and
MicroProfile POM files.

– Fixed an issue where calling clear() on a cache from a gRPC client removed entries
using a synthetic delete instead of a real delete, and hence appears as an eviction.

– Fixed poor performance in SafeSortedMap methods getEntrySet and getEntry when
there are a large number of entries in the map and ensured no SafeSortedMap method
returns SafeSortedMap.NULL for an entry key or value.

– Fixed a potential thread deadlock where an initializing ContinuousQueryCache receives
and attempts to process a cache truncation event.

– Fixed an issue where MessageBus would heartbeat at double the configured interval.

– Fixed an issue where a NullPointerException would be raised when attempting to
get a session name from a remote gRPC Session.

Chapter 4
Oracle Coherence for Java

4-19

– Fixed an issue where gRPC client connections did not fail over correctly during a
rolling restart of the gRPC proxy members in the cluster.

– Fixed an issue where a NullPointerException may be thrown when a
ReplicatedCache service is shutting down.

– Changed the NamedCache.entrySet(Filter) implementation to execute query by
partition instead of by member, in order to improve parallelism and avoid exceeding
the 2GB message limit when executing large queries.

– Fixed an issue where a NearCache using invalidation strategy present failed to release
a key lock within get/getAll, resulting in a "Detected state corruption on KEY..." log
message.

– Fixed an issue where an UnsupportedOperationException is thrown when accessing
a read-only cache entry when sliding-expiry is enabled.

– Fixed an issue where using non-observable maps, such as SafeHashMap, as backing
maps can result in data loss when cluster members leave.

– Fixed an issue where a Coherence LifecycleListener discovered using the
ServiceLoader can be registered twice and hence receive events multiple times.

– Fixed an issue where TcpRing.close.keys() may throw an unhandled
ClosedSelectorException which can cause the Cluster service to terminate
unexpectedly.

– Fixed an issue where a MessageBus connection with heartbeats enabled may throw
an OutOfMemoryError when reestablishing a dropped connection.

– Fixed an issue where the underlying exception is not properly logged when the
SimpleServiceMonitor fails to restart services.

– Fixed an issue where the high-units setting for a transactional-scheme was being
ignored.

– Fixed an issue where a ConfigurableCacheFactorySession would leak an event
interceptor if constructed with an instance of ExtensibleConfigurableCacheFactory.

– Fixed an issue where a distributed service could release an unowned partition leading
to IllegalStateException.

– Fixed an issue where SafeSortedMap concurrent access would result in
inconsistencies under high stress situations.

– Fixed an issue where near, view, and continuous query caches may contain stale data
after snapshot recovery.

– Improved cache operations to use an interruptible lock so that operations can be
interrupted after the specified timeout.

– Fixed an issue where an AssertionException could be thrown if the partition backup
count is greater than 1.

– Fixed an issue where a deadlock could occur during partition backup transfers.

– Fixed an issue where an AssertionException could be thrown by the
PartitionSet.intersects method.

– Fixed an issue where the MANIFEST.MF file inside the Coherence Maven plugin related
jars are not updated by Coherence patches.

– Fixed an issue where a heavy key listener can be overridden by a lite listener from the
same member.

Chapter 4
Oracle Coherence for Java

4-20

– Fixed an issue where a NullPointerException could be thrown during concurrent
query with BetweenFilter and an entry remove operation.

– Fixed an issue where archiveSnapshot could throw an
ArrayIndexOutOfBoundsException if the partition count is less than the storage
enabled member size.

– Fixed an issue where a service could fail to start and join the cluster.

– Excluded maven build artifacts from distributed library jars.

– Fixed an issue where the PrimingListener optimization of NearCache in
Coherence*Extend was broken.

– Fixed an issue in the Java security example where listeners were not removed when a
client disconnected from proxy, causing events to be dispatched to those listeners.

– Fixed a race condition between TransferEvent.ASSIGNED and pre-commit
EntryEvents. Interceptors registered for TransferEvent.ASSIGNED should fully
complete prior to any EntryEvents for the same partition.

– Fixed an issue where a cluster member may run into a StackOverflowError and shut
down when processing a malformed deeply nested filter.

– Improved ConverterCollections.getNamedCache to support generics and correctly
implement methods putIfAbsent, remove, replace, and merge. The return types were
widened for some of the factory methods in ConverterCollections to be interface and
not implementation based.

– Fixed an issue that could yield a java.io.StreamCorruptedException: invalid
type: 64 during a rolling upgrade.

– Fixed a memory leak which can occur in an *Extend client when using a custom
AddressProvider.

– Fixed an issue where the service thread could be terminated while blocked waiting for
an index rebuild to finish.

– Corrected the MANIFEST.MF Bundle-Version in Coherence jar files.

– Fixed an issue where a cache remove operation could get lost during partition transfer.

– Fixed an issue where active recovery may commence while the service is suspended.

– Fixed an issue with binary map detection within a ContinuousQueryCache.

– Fixed a race condition in ConfigurableCacheFactory where concurrent
releaseCache() or destroyCache() calls could result in an
IllegalArgumentException being thrown.

– Fixed an issue in which different editions cannot join the same cluster.

– Fixed an issue where TcpRing may incorrectly trigger eviction of a temporarily network
unreachable cluster member.

– Fixed an issue where application requests may hang if a cluster connection is
handshaking concurrently with the delivery of a backlog excessive event.

– Fixed an issue where assigning partitions for a large partition count can inadvertently
trigger the guardian.

– Fixed an issue with calls to BMC.getReadOnlyEntry not initiating a read-through when
the aggregator is not limited to present entries.

– Corrected the generics type usage in the Filter signature for MapEventFilter.

Chapter 4
Oracle Coherence for Java

4-21

– Added an option to allow inconsistent query results which can provide faster results
when there are frequent concurrent entry mutations. This option can be set by adding
ALLOW_INCONSISTENCIES to an aggregator's characteristics() or globally by setting
the coherence.query.retry system property to 0 (zero).

– Fixed an issue where concurrent create and release of a cache may cause the
ScopedCacheReferenceStore to fail to store references to the cache when it is created
leading to an exception if that cache is later released.

– Fixed an issue where a query with a StreamingAggregator could take very long time if
there are frequent concurrent entry mutations.

– Fixed an issue where a registered MapTrigger may not be called.

– Fixed an issue where old members may remain in the service member set which can
lead to endless rejection of new members trying to join the service.

– Fixed a non-optimal deadlock avoidance rollback when using
BackingMapContext.getBackingMapEntry to enlist entries in a different cache while
concurrently executing an invokeAll on the other cache.

– Fixed an issue where cluster join may automatically fallback to multicast if all of the
configured WKA addresses are unresolvable.

– cache-config.xml is not generated by the Coherence Maven archetype in 14.1.2-0-0.
It was fixed in 14.1.2-0-1 and later.

Chapter 4
Oracle Coherence for Java

4-22

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Introduction
	Latest Release Information
	Purpose of this Document
	System Requirements and Specifications
	Certification Information
	Product Documentation
	Oracle Support
	Licensing Information
	Downloading and Applying Required Patches

	2 What’s New in this Release
	New Features
	Breaking Changes
	PortableType Annotation Now Requires type-id Attribute
	"vendor:" Prefix Removed from Prometheus Generated Metrics
	Changed Return Type of Coherence.start() Method
	MapViewBuilder and ViewBuilder
	Client for .NET

	Deprecated Features
	Deprecated Features for 14.1.2.0.0
	Oracle Solaris Support
	SafeSortedMap
	ImmutableArrayList.getSortedSet
	Coherence .NET Client
	Memcached Adapter
	OpenTracing Support

	3 Known Issues and Workarounds
	Changing the Partition Count When Using Active Persistence
	Disabling Inlining in Java Versions Greater than 8
	Binary Incompatibility with Older Versions
	pof-maven-plugin Version is Non-Compliant

	4 Bugs Fixed and Enhancements in This Release
	Oracle Coherence for Java

