
Oracle® Fusion Middleware
Connectivity and Knowledge Modules Guide
for Oracle Data Integrator

12c (12.2.1.4.0)
E95630-05
June 2024



Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator, 12c (12.2.1.4.0)

E95630-05

Copyright © 2010, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xxvi

Documentation Accessibility xxvi

Related Documents xxvi

Conventions xxvii

1   Introduction

1.1 Terminology 1-1

1.2 Using This Guide 1-2

1.3 Accessing Data in the Relational Structure 1-2

1.4 Accessing Data in the Schemas 1-2

Part I   Databases, Files, and XML

2   Oracle Database

2.1 Introduction 2-1

2.1.1 Concepts 2-1

2.1.2 Knowledge Modules 2-1

2.2 Installation and Configuration 2-3

2.2.1 System Requirements and Certifications 2-4

2.2.2 Technology Specific Requirements 2-4

2.2.2.1 Using the SQL*Loader Utility 2-4

2.2.2.2 Using External Tables 2-4

2.2.2.3 Using Oracle Wallet 2-4

2.2.3 Connectivity Requirements 2-6

2.3 Setting up the Topology 2-6

2.3.1 Creating an Oracle Data Server 2-6

2.3.1.1 Creation of the Data Server 2-7

2.3.2 Creating an Oracle Physical Schema 2-9

2.4 Setting Up an Integration Project 2-9

2.5 Creating and Reverse-Engineering an Oracle Model 2-9

iii



2.5.1 Create an Oracle Model 2-9

2.5.2 Reverse-engineer an Oracle Model 2-10

2.6 Setting up Changed Data Capture 2-10

2.7 Setting up Data Quality 2-12

2.8 Designing a Mapping 2-12

2.8.1 Loading Data from and to Oracle 2-12

2.8.1.1 Loading Data from Oracle 2-12

2.8.1.2 Loading Data to Oracle 2-13

2.8.2 Integrating Data in Oracle 2-13

2.8.3 Designing an ETL-Style Mapping 2-15

2.9 Troubleshooting 2-17

2.9.1 Troubleshooting Oracle Database Errors 2-17

2.9.2 Common Problems and Solutions 2-18

3   Oracle Autonomous Data Warehouse Cloud

3.1 Introduction 3-1

3.1.1 Concepts 3-1

3.1.2 Knowledge Modules 3-1

3.2 Prerequisites 3-3

3.3 Setting up the Topology 3-5

3.3.1 Creating an Oracle Data Server 3-5

3.3.2 Creating an Oracle Physical Schema 3-7

3.4 Creating and Reverse-Engineering an Oracle Model 3-7

3.4.1 Create an Oracle Model 3-7

3.4.2 Reverse Engineer an Oracle Model 3-7

3.5 Designing a Mapping 3-8

3.5.1 Loading data 3-8

3.5.1.1 Loading Data using Oracle KMs 3-8

3.5.1.2 Loading Data using SQL* Loader KMs 3-9

3.5.1.3 Loading Data directly into ADWC 3-9

3.5.1.4 Loading Oracle Object Storage files into ADWC 3-31

3.5.2 Extracting data 3-38

3.6 Best Practices for Working with ADWC 3-38

3.6.1 Caching Oracle Sequences in ADWC 3-38

4   Files

4.1 Introduction 4-1

4.1.1 Concepts 4-1

4.1.2 Knowledge Modules 4-1

4.2 Installation and Configuration 4-2

iv



4.2.1 System Requirements and Certifications 4-2

4.2.2 Technology Specific Requirements 4-2

4.2.3 Connectivity Requirements 4-5

4.3 Setting up the Topology 4-5

4.3.1 Creating a File Data Server 4-5

4.3.1.1 Creation of the Data Server 4-6

4.3.2 Creating a File Physical Schema 4-7

4.4 Setting Up an Integration Project 4-8

4.5 Creating and Reverse-Engineering a File Model 4-8

4.5.1 Create a File Model 4-8

4.5.2 Reverse-engineer a File Model 4-9

4.5.2.1 Delimited Files Reverse-Engineering 4-9

4.5.2.2 Fixed Files Reverse-engineering using the Wizard 4-10

4.5.2.3 COBOL Copybook reverse-engineering 4-11

4.5.2.4 Customized Reverse-Engineering 4-12

4.6 Designing a Mapping 4-14

4.6.1 Loading Data From Files 4-14

4.6.2 Integrating Data in Files 4-15

4.6.2.1 IKM SQL to File Append 4-16

4.6.2.2 IKM File to File (Java) 4-16

5   Generic SQL

5.1 Introduction 5-1

5.1.1 Concepts 5-1

5.1.2 Knowledge Modules 5-2

5.2 Installation and Configuration 5-4

5.2.1 System Requirements and Certifications 5-4

5.2.2 Technology-Specific Requirements 5-5

5.2.3 Connectivity Requirements 5-5

5.3 Setting up the Topology 5-5

5.3.1 Creating a Data Server 5-5

5.3.2 Creating a Physical Schema 5-5

5.4 Setting up an Integration Project 5-5

5.5 Creating and Reverse-Engineering a Model 5-6

5.5.1 Create a Data Model 5-6

5.5.2 Reverse-engineer a Data Model 5-6

5.6 Setting up Changed Data Capture 5-6

5.7 Setting up Data Quality 5-6

5.8 Designing a Mapping 5-7

5.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology 5-7

5.8.1.1 Loading Data from an ANSI SQL-92 Compliant Technology 5-7

v



5.8.1.2 Loading Data to an ANSI SQL-92 Compliant Technology 5-7

5.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology 5-8

5.8.3 Designing an ETL-Style Mapping 5-9

6   XML Files

6.1 Introduction 6-1

6.1.1 Concepts 6-1

6.1.2 Pre/Post Processing Support for XML Driver 6-1

6.1.3 Knowledge Modules 6-2

6.2 Installation and Configuration 6-2

6.2.1 System Requirements 6-2

6.2.2 Technologic Specific Requirements 6-2

6.2.3 Connectivity Requirements 6-5

6.3 Setting up the Topology 6-5

6.3.1 Creating an XML Data Server 6-5

6.3.1.1 Creation of the Data Server 6-5

6.3.2 Creating a Physical Schema for XML 6-6

6.4 Setting Up an Integration Project 6-7

6.5 Creating and Reverse-Engineering a XML File 6-7

6.5.1 Create an XML Model 6-7

6.5.2 Reverse-Engineering an XML Model 6-7

6.6 Designing a Mapping 6-8

6.6.1 Notes about XML Mappings 6-8

6.6.1.1 Targeting an XML Structure 6-8

6.6.1.2 Synchronizing XML File and Schema 6-8

6.6.1.3 Handling Large XML Files 6-9

6.6.2 Loading Data from and to XML 6-9

6.6.2.1 Loading Data from an XML Schema 6-9

6.6.2.2 Loading Data to an XML Schema 6-9

6.6.3 Integrating Data in XML 6-10

6.7 Troubleshooting 6-10

6.7.1 Detect the Errors Coming from XML 6-10

6.7.2 Common Errors 6-11

7   Complex Files

7.1 Introduction 7-1

7.1.1 Concepts 7-1

7.1.2 Pre/Post Processing Support for Complex File Driver 7-2

7.1.3 Knowledge Modules 7-2

7.2 Installation and Configuration 7-2

vi



7.2.1 System Requirements 7-2

7.2.2 Technology Specific Requirements 7-3

7.2.3 Connectivity Requirements 7-3

7.3 Building a Native Schema Description File Using the Native Format Builder 7-3

7.4 Setting up the Topology 7-3

7.4.1 Creating a Complex File Data Server 7-4

7.4.1.1 Creation of the Data Server 7-4

7.4.2 Creating a Complex File Physical Schema 7-5

7.5 Setting Up an Integration Project 7-5

7.6 Creating and Reverse-Engineering a Complex File Model 7-5

7.6.1 Create a Complex File Model 7-5

7.6.2 Reverse-engineer a Complex File Model 7-5

7.7 Designing a Mapping 7-6

8   Microsoft SQL Server

8.1 Introduction 8-1

8.1.1 Concepts 8-1

8.1.2 Knowledge Modules 8-1

8.2 Installation and Configuration 8-2

8.2.1 System Requirements and Certifications 8-2

8.2.2 Technology Specific Requirements 8-2

8.2.2.1 Using the BULK INSERT Command 8-3

8.2.2.2 Using the BCP Command 8-3

8.2.2.3 Using Linked Servers 8-3

8.2.3 Connectivity Requirements 8-4

8.3 Setting up the Topology 8-4

8.3.1 Creating a Microsoft SQL Server Data Server 8-4

8.3.1.1 Creation of the Data Server 8-4

8.3.2 Creating a Microsoft SQL Server Physical Schema 8-4

8.4 Setting Up an Integration Project 8-5

8.5 Creating and Reverse-Engineering a Microsoft SQL Server Model 8-5

8.5.1 Create a Microsoft SQL Server Model 8-5

8.5.2 Reverse-engineer a Microsoft SQL Server Model 8-5

8.6 Setting up Changed Data Capture 8-6

8.7 Setting up Data Quality 8-7

8.8 Designing a Mapping 8-7

8.8.1 Loading Data from and to Microsoft SQL Server 8-7

8.8.1.1 Loading Data from Microsoft SQL Server 8-7

8.8.1.2 Loading Data to Microsoft SQL Server 8-8

8.8.2 Integrating Data in Microsoft SQL Server 8-9

vii



9   Microsoft Excel

9.1 Introduction 9-1

9.1.1 Concepts 9-1

9.1.2 Knowledge Modules 9-1

9.2 Installation and Configuration 9-2

9.2.1 System Requirements and Certifications 9-2

9.2.2 Specific Requirements 9-2

9.2.3 Connectivity Requirements 9-3

9.3 Setting up the Topology 9-3

9.3.1 Creating a Microsoft Excel Data Server 9-3

9.3.2 Creating a Microsoft Excel Physical Schema 9-3

9.4 Setting Up an Integration Project 9-4

9.5 Creating and Reverse-Engineering a Microsoft Excel Model 9-4

9.5.1 Create a Microsoft Excel Model 9-4

9.5.2 Reverse-engineer a Microsoft Excel Model 9-4

9.6 Designing a Mapping 9-4

9.6.1 Loading Data From and to Microsoft Excel 9-4

9.6.1.1 Loading Data from Microsoft Excel 9-5

9.6.1.2 Loading Data to Microsoft Excel 9-5

9.6.2 Integrating Data in Microsoft Excel 9-5

9.7 Troubleshooting 9-5

9.7.1 Decoding Error Messages 9-5

9.7.2 Common Problems and Solutions 9-6

10  
 

Microsoft Access

10.1 Introduction 10-1

10.2 Concepts 10-1

10.3 Knowledge Modules 10-1

10.4 Specific Requirements 10-2

11  
 

Netezza

11.1 Introduction 11-1

11.1.1 Concepts 11-1

11.1.2 Knowledge Modules 11-1

11.2 Installation and Configuration 11-2

11.2.1 System Requirements and Certifications 11-2

11.2.2 Technology Specific Requirements 11-2

11.2.3 Connectivity Requirements 11-3

11.3 Setting up the Topology 11-3

viii



11.3.1 Creating a Netezza Data Server 11-3

11.3.1.1 Creation of the Data Server 11-3

11.3.2 Creating a Netezza Physical Schema 11-3

11.4 Setting Up an Integration Project 11-4

11.5 Creating and Reverse-Engineering a Netezza Model 11-4

11.5.1 Create a Netezza Model 11-4

11.5.2 Reverse-engineer a Netezza Model 11-4

11.6 Setting up Data Quality 11-5

11.7 Designing a Mapping 11-5

11.7.1 Loading Data from and to Netezza 11-5

11.7.1.1 Loading Data from Netezza 11-5

11.7.1.2 Loading Data to Netezza 11-5

11.7.2 Integrating Data in Netezza 11-6

12  
 

Teradata

12.1 Introduction 12-1

12.1.1 Concepts 12-1

12.1.2 Knowledge Modules 12-1

12.2 Installation and Configuration 12-2

12.2.1 System Requirements and Certifications 12-2

12.2.2 Technology Specific Requirements 12-3

12.2.3 Connectivity Requirements 12-3

12.3 Setting up the Topology 12-3

12.3.1 Creating a Teradata Data Server 12-3

12.3.1.1 Creation of the Data Server 12-4

12.3.2 Creating a Teradata Physical Schema 12-4

12.4 Setting Up an Integration Project 12-4

12.5 Creating and Reverse-Engineering a Teradata Model 12-5

12.5.1 Create a Teradata Model 12-5

12.5.2 Reverse-engineer a Teradata Model 12-5

12.6 Setting up Data Quality 12-6

12.7 Designing a Mapping 12-6

12.7.1 Loading Data from and to Teradata 12-7

12.7.1.1 Loading Data from Teradata 12-7

12.7.1.2 Loading Data to Teradata 12-7

12.7.2 Integrating Data in Teradata 12-8

12.7.3 Designing an ETL-Style Mapping 12-11

12.8 KM Optimizations for Teradata 12-14

12.8.1 Primary Indexes and Statistics 12-15

12.8.2 Support for Teradata Utilities 12-15

12.8.3 Support for Named Pipes 12-16

ix



12.8.4 Optimized Management of Temporary Tables 12-16

13  
 

Hypersonic SQL

13.1 Introduction 13-1

13.1.1 Concepts 13-1

13.1.2 Knowledge Modules 13-1

13.2 Installation and Configuration 13-2

13.2.1 System Requirements and Certifications 13-2

13.2.2 Technology Specific Requirements 13-2

13.2.3 Connectivity Requirements 13-2

13.3 Setting up the Topology 13-2

13.3.1 Creating a Hypersonic SQL Data Server 13-3

13.3.2 Creating a Hypersonic SQL Physical Schema 13-3

13.4 Setting Up an Integration Project 13-3

13.5 Creating and Reverse-Engineering a Hypersonic SQL Model 13-3

13.5.1 Create a Hypersonic SQL Model 13-4

13.5.2 Reverse-engineer a Hypersonic SQL Model 13-4

13.6 Setting up Changed Data Capture 13-4

13.7 Setting up Data Quality 13-4

13.8 Designing a Mapping 13-5

14  
 

IBM Informix

14.1 Introduction 14-1

14.2 Concepts 14-1

14.3 Knowledge Modules 14-1

14.4 Specific Requirements 14-2

15  
 

IBM DB2 for iSeries

15.1 Introduction 15-1

15.1.1 Concepts 15-1

15.1.2 Knowledge Modules 15-1

15.2 Installation and Configuration 15-2

15.2.1 System Requirements and Certifications 15-2

15.2.2 Technology Specific Requirements 15-2

15.2.3 Connectivity Requirements 15-2

15.3 Setting up the Topology 15-3

15.3.1 Creating a DB2/400 Data Server 15-3

15.3.1.1 Creation of the Data Server 15-3

15.3.2 Creating a DB2/400 Physical Schema 15-3

x



15.4 Setting Up an Integration Project 15-4

15.5 Creating and Reverse-Engineering an IBM DB2/400 Model 15-4

15.5.1 Create an IBM DB2/400 Model 15-4

15.5.2 Reverse-engineer an IBM DB2/400 Model 15-4

15.6 Setting up Changed Data Capture 15-5

15.6.1 Setting up Trigger-Based CDC 15-5

15.6.2 Setting up Log-Based CDC 15-5

15.6.2.1 How does it work? 15-5

15.6.2.2 CDCRTVJRN Program Details 15-6

15.6.2.3 Installing the CDC Components on iSeries 15-6

15.6.2.4 Using the CDC with the Native Journals 15-8

15.6.2.5 Problems While Reading Journals 15-8

15.7 Setting up Data Quality 15-9

15.8 Designing a Mapping 15-9

15.8.1 Loading Data from and to IBM DB2 for iSeries 15-9

15.8.1.1 Loading Data from IBM DB2 for iSeries 15-9

15.8.1.2 Loading Data to IBM DB2 for iSeries 15-9

15.8.2 Integrating Data in IBM DB2 for iSeries 15-9

15.9 Specific Considerations with DB2 for iSeries 15-10

15.9.1 Installing the Run-Time Agent on iSeries 15-10

15.9.2 Alternative Connectivity Methods for iSeries 15-10

15.9.2.1 Using Client Access 15-10

15.9.2.2 Using the IBM JT/400 and Native Drivers 15-10

15.10 Troubleshooting 15-11

15.10.1 Troubleshooting Error messages 15-11

15.10.2 Common Problems and Solutions 15-11

15.10.2.1 Connection Errors 15-11

16  
 

IBM DB2 UDB

16.1 Introduction 16-1

16.2 Concepts 16-1

16.3 Knowledge Modules 16-1

16.4 Specific Requirements 16-3

17  
 

Salesforce.com

17.1 Introduction 17-1

17.1.1 Concepts 17-1

17.1.2 Knowledge Modules 17-1

17.2 Installation and Configuration 17-1

17.2.1 System Requirements and Certifications 17-2

xi



17.2.2 Technology Specific Requirements 17-2

17.2.3 Connectivity Requirements 17-2

17.3 Setting up the Topology 17-2

17.3.1 Creating a Salesforce.com Data Server 17-2

17.3.2 Creating a Physical Schema for Salesforce.com Data Server 17-3

17.4 Setting Up an Integration Project 17-3

17.5 Creating and Reverse-Engineering a Salesforce.com Model 17-3

17.5.1 Create a Salesforce.com Model 17-4

17.5.2 Reverse-engineer a Salesforce.com Model 17-4

17.6 Designing a Mapping 17-4

17.6.1 Loading Data from and to Salesforce.com 17-4

17.6.1.1 Loading Data from Salesforce.com 17-4

17.6.1.2 Loading Data to Salesforce.com 17-5

17.6.2 Integrating Data in Salesforce.com 17-5

18  
 

Sybase IQ

18.1 Introduction 18-1

18.2 Concepts 18-1

18.3 Knowledge Modules 18-1

18.4 Specific Requirements 18-3

Part II   Business Intelligence

19  
 

Oracle Business Intelligence Enterprise Edition

19.1 Introduction 19-1

19.1.1 Concepts 19-1

19.1.2 Knowledge Modules 19-1

19.2 Installation and Configuration 19-2

19.2.1 System Requirements and Certifications 19-2

19.2.2 Technology Specific Requirements 19-2

19.2.3 Connectivity Requirements 19-2

19.3 Setting up the Topology 19-2

19.3.1 Creating an Oracle BI Data Server 19-3

19.3.1.1 Creation of the Data Server 19-3

19.3.2 Creating an Oracle BI Physical Schema 19-4

19.4 Setting Up an Integration Project 19-4

19.5 Creating and Reverse-Engineering an Oracle BI Model 19-4

19.5.1 Create an Oracle BI Model 19-4

19.5.2 Reverse-engineer an Oracle BI Model 19-4

19.6 Setting up Data Quality 19-5

xii



19.7 Designing a Mapping 19-5

19.7.1 Loading Data from and to Oracle BI 19-5

19.7.1.1 Loading Data from Oracle BI 19-5

19.7.1.2 Loading Data to Oracle BI 19-6

19.7.2 Integrating Data in Oracle BI 19-6

20  
 

Oracle Business Intelligence Cloud Service

20.1 Introduction 20-1

20.2 Setting up the Topology 20-2

20.2.1 Creating an Oracle BICS Data Server 20-2

20.2.2 Creating an Oracle BICS Physical Schema 20-2

20.3 Reverse Engineering a BICS Model 20-2

20.4 Designing a Mapping 20-3

21  
 

Oracle Hyperion Planning

21.1 Introduction 21-1

21.1.1 Integration Process 21-1

21.1.2 Knowledge Modules 21-1

21.2 Installation and Configuration 21-2

21.2.1 System Requirements and Certifications 21-2

21.2.2 Technology Specific Requirements 21-2

21.2.3 Connectivity Requirements 21-2

21.3 Setting up Hyperion Planning Adapter 21-2

21.3.1 Setting up Adapter for ODI Studio 21-2

21.3.2 Setting up Adapter for ODI Standalone Agent 21-3

21.4 Setting up the Topology 21-3

21.4.1 Creating an Hyperion Planning Data Server 21-3

21.4.2 Creating an Hyperion Planning Physical Schema 21-3

21.5 Creating and Reverse-Engineering a Planning Model 21-4

21.5.1 Create a Planning Model 21-4

21.5.2 Reverse-engineer a Planning Model 21-4

21.6 Designing a Mapping 21-4

21.6.1 Loading Metadata 21-4

21.6.2 Loading Data 21-5

21.6.3 Load Options 21-6

21.7 Datastore Tables and Data Load Columns 21-7

21.7.1 Accounts 21-8

21.7.2 Employee 21-15

21.7.3 Entities 21-19

21.7.4 User-Defined Dimensions 21-25

xiii



21.7.5 Attribute Dimensions 21-29

21.7.6 UDA 21-31

21.7.7 Data Load Columns 21-32

22  
 

Oracle Hyperion Essbase

22.1 Introduction 22-1

22.1.1 Integration Process 22-1

22.1.2 Knowledge Modules 22-2

22.2 Installation and Configuration 22-2

22.2.1 System Requirements and Certifications 22-2

22.2.2 Technology Specific Requirements 22-2

22.2.3 Connectivity Requirements 22-2

22.3 Setting up Hyperion Essbase Adapter 22-3

22.3.1 Setting up Adapter for ODI Studio 22-3

22.3.2 Setting up Adapter for ODI Standalone Agent 22-3

22.4 Setting up the Topology 22-3

22.4.1 Creating an Hyperion Essbase Data Server 22-3

22.4.2 Creating an Hyperion Essbase Physical Schema 22-4

22.5 Creating and Reverse-Engineering an Essbase Model 22-4

22.5.1 Create an Essbase Model 22-4

22.5.2 Reverse-engineer an Essbase Model 22-4

22.6 Designing a Mapping 22-6

22.6.1 Loading Metadata 22-6

22.6.2 Loading Data 22-8

22.6.3 Extracting Data 22-11

22.6.3.1 Data Extraction Methods for Essbase 22-11

22.6.3.2 Extracting Essbase Data 22-13

22.6.3.3 Extracting Members from Metadata 22-14

Part III   Other Technologies

23  
 

JMS

23.1 Introduction 23-1

23.1.1 Concepts 23-1

23.1.1.1 JMS Message Structure 23-1

23.1.1.2 Using a JMS Destination 23-2

23.1.2 Knowledge Modules 23-3

23.2 Installation and Configuration 23-3

23.2.1 System Requirements and Certifications 23-4

23.2.2 Technology Specific Requirements 23-4

xiv



23.2.3 Connectivity Requirements 23-4

23.3 Setting up the Topology 23-4

23.3.1 Creating a JMS Data Server 23-4

23.3.1.1 Creation of the Data Server 23-4

23.3.2 Creating a JMS Physical Schema 23-5

23.4 Setting Up an Integration Project 23-5

23.5 Creating and Defining a JMS Model 23-5

23.5.1 Create a JMS Model 23-6

23.5.2 Defining the JMS Datastores 23-6

23.6 Designing a Mapping 23-7

23.6.1 Loading Data from a JMS Source 23-7

23.6.2 Integrating Data in a JMS Target 23-7

23.7 JMS Standard Properties 23-9

23.7.1 Using JMS Properties 23-11

23.7.1.1 Declaring JMS Properties 23-11

23.7.1.2 Filtering on the Router 23-11

23.7.1.3 Filtering on the Client 23-12

23.7.1.4 Using Property Values as Source Data 23-12

23.7.1.5 Setting Properties when Sending a Message 23-12

24  
 

JMS XML

24.1 Introduction 24-1

24.1.1 Concepts 24-1

24.1.1.1 JMS Message Structure 24-1

24.1.1.2 Using a JMS Destination 24-1

24.1.2 Knowledge Modules 24-3

24.2 Installation and Configuration 24-3

24.2.1 System Requirements and Certifications 24-3

24.2.2 Technology Specific Requirements 24-3

24.2.3 Connectivity Requirements 24-4

24.3 Setting up the Topology 24-4

24.3.1 Creating a JMS XML Data Server 24-4

24.3.1.1 Creation of the Data Server 24-5

24.3.2 Creating a JMS XML Physical Schema 24-6

24.4 Setting Up an Integration Project 24-7

24.5 Creating and Reverse-Engineering a JMS XML Model 24-7

24.5.1 Create a JMS XML Model 24-7

24.5.2 Reverse-Engineering a JMS XML Model 24-7

24.6 Designing a Mapping 24-8

24.6.1 Loading Data from a JMS XML Source 24-8

xv



24.6.2 Integrating Data in a JMS XML Target 24-8

25  
 

LDAP Directories

25.1 Introduction 25-1

25.1.1 Concepts 25-1

25.1.2 Knowledge Modules 25-2

25.2 Installation and Configuration 25-2

25.2.1 System Requirements 25-2

25.2.2 Technologic Specific Requirements 25-2

25.2.3 Connectivity Requirements 25-2

25.3 Setting up the Topology 25-3

25.3.1 Creating an LDAP Data Server 25-3

25.3.1.1 Creation of the Data Server 25-3

25.3.2 Creating a Physical Schema for LDAP 25-4

25.4 Setting Up an Integration Project 25-4

25.5 Creating and Reverse-Engineering an LDAP Directory 25-4

25.5.1 Create an LDAP Model 25-5

25.5.2 Reverse-Engineering an LDAP Model 25-5

25.6 Designing a Mapping 25-5

25.6.1 Loading Data from and to LDAP 25-5

25.6.1.1 Loading Data from an LDAP Directory 25-5

25.6.1.2 Loading Data to an LDAP Directory 25-6

25.6.2 Integrating Data in an LDAP Directory 25-6

25.7 Troubleshooting 25-6

26  
 

Oracle TimesTen In-Memory Database

26.1 Introduction 26-1

26.1.1 Concepts 26-1

26.1.2 Knowledge Modules 26-1

26.2 Installation and Configuration 26-2

26.2.1 System Requirements and Certifications 26-2

26.2.2 Technology Specific Requirements 26-2

26.2.3 Connectivity Requirements 26-3

26.3 Setting up the Topology 26-3

26.3.1 Creating a TimesTen Data Server 26-3

26.3.1.1 Creation of the Data Server 26-3

26.3.2 Creating a TimesTen Physical Schema 26-4

26.5 Creating and Reverse-Engineering a TimesTen Model 26-4

26.5.1 Create a TimesTen Model 26-4

26.5.2 Reverse-engineer a TimesTen Model 26-4

xvi



26.6 Setting up Data Quality 26-5

26.7 Designing a Mapping 26-5

26.7.1 Loading Data from and to TimesTen 26-5

26.7.1.1 Loading Data from TimesTen 26-5

26.7.1.2 Loading Data to TimesTen 26-5

26.7.2 Integrating Data in TimesTen 26-6

26.4 Setting Up an Integration Project 26-6

27  
 

Oracle GoldenGate

27.1 Introduction 27-1

27.1.1 Overview of the GoldenGate CDC Process 27-1

27.1.2 Knowledge Modules 27-2

27.2 Installation and Configuration 27-3

27.2.1 System Requirements and Certifications 27-3

27.2.2 Technology Specific Requirements 27-4

27.2.3 Connectivity Requirements 27-4

27.3 Working with the Oracle GoldenGate JKMs 27-4

27.3.1 Define the Topology 27-4

27.3.1.1 Define the Source Data Server 27-5

27.3.1.2 Create the Source Physical Schema 27-5

27.3.1.3 Define the Staging Server 27-5

27.3.1.4 Create the Staging Physical Schema 27-5

27.3.1.5 Define the Oracle GoldenGate Data Servers 27-6

27.3.1.6 Create the Oracle GoldenGate Physical Schemas 27-6

27.3.1.7 Create the Oracle GoldenGate Logical Schemas 27-7

27.3.2 Create the Replicated Tables 27-8

27.3.3 Set Up an Integration Project 27-9

27.3.4 Configure CDC for the Source Datastores 27-9

27.3.4.1 Create Oracle GoldenGate Physical Schemas from the model 27-11

27.3.5 Configure and Start Oracle GoldenGate Processes (Offline mode only) 27-12

27.3.6 Design Mappings Using Replicated Data 27-13

27.4 Advanced Configuration 27-13

27.4.1 Initial Load Method 27-13

27.4.2 Tuning Replication Performances 27-14

27.4.3 One Source Multiple Staging Configuration (Offline mode only) 27-14

27.5 Integrated Capture 27-14

27.5.1 Integrated Capture Deployment Options 27-15

27.5.2 Deciding Which Apply Method to Use 27-16

27.5.2.1 Nonintegrated Replicat 27-16

27.6 Using Different Capture and Apply Modes Together 27-19

27.7 Switching to Different Process Mode 27-20

xvii



27.8 Upgrading GoldenGate Classic Extract to Integrated 27-20

28  
 

Oracle SOA Suite Cross References

28.1 Introduction 28-1

28.1.1 Concepts 28-1

28.1.1.1 General Principles 28-1

28.1.1.2 Cross Reference Table Structures 28-1

28.1.1.3 Handling Cross Reference Table Structures 28-3

28.1.2 Knowledge Modules 28-3

28.1.3 Overview of the SOA XREF KM Process 28-4

28.1.3.1 Loading Phase (LKM) 28-4

28.1.3.2 Integration and Cross-Referencing Phase (IKM) 28-5

28.1.3.3 Updating/Deleting Processed Records (LKM) 28-5

28.2 Installation and Configuration 28-5

28.2.1 System Requirements and Certifications 28-6

28.2.2 Technology Specific Requirements 28-6

28.2.3 Connectivity Requirements 28-6

28.3 Working with XREF using the SOA Cross References KMs 28-6

28.3.1 Defining the Topology 28-6

28.3.2 Setting up the Project 28-7

28.3.3 Designing a Mapping with the Cross-References KMs 28-7

28.4 Knowledge Module Options Reference 28-8

29  
 

Oracle Object Storage

29.1 Introduction 29-1

29.1.1 Concepts 29-1

29.2 Installation and Configuration 29-2

29.2.1 System Requirements & Certifications 29-2

29.2.2 Technology Specific Requirements 29-3

29.3 Setting up the Topology 29-3

29.3.1 Creating an Oracle Object Storage Data Server 29-3

29.3.2 Creating an Oracle Object Storage Physical Schema 29-5

29.4 Creating and Reverse-Engineering an Oracle Object Storage Model 29-5

29.4.1 Creating an Oracle Object Storage Model 29-6

29.4.2 Reverse Engineer an Oracle Object Storage Model 29-6

29.4.2.1 Reverse-Engineering Delimited Files from Oracle Object Storage 29-6

29.4.2.2 Reverse-engineering Fixed Files from Oracle Object Storage 29-7

29.5 Working with Oracle Object Storage Tools 29-7

29.5.1 Uploading Files/Objects to Oracle Object Storage 29-8

29.5.2 Downloading Files/Objects from Oracle Object Storage 29-9

xviii



29.5.3 Deleting Files/Objects from Oracle Object Storage 29-11

29.6 Designing a Mapping 29-12

29.7 Setting up an Integration Project 29-12

29.7.1 LKM File to Oracle Object Storage 29-12

29.7.2 LKM File to Oracle Object Storage Direct 29-13

29.7.3 LKM SQL to Object Storage 29-13

29.7.4 LKM SQL to Oracle Object Storage Direct 29-14

30  
 

Oracle Storage Cloud Service

30.1 Introduction 30-1

30.1.1 Concepts 30-1

30.2 Installation and Configuration 30-2

30.2.1 System Requirements & Certifications 30-2

30.2.2 Technology Specific Requirements 30-2

30.3 Setting up the Topology 30-2

30.3.1 Creating an Oracle Storage Cloud Service Data Server 30-3

30.3.2 Creating an Oracle Storage Cloud Service Physical Schema 30-3

30.4 Working with Oracle Storage Cloud Service Tools 30-4

30.4.1 Uploading Files/Objects to Oracle Storage Cloud Service 30-4

30.4.2 Downloading File/Objects from Oracle Storage Cloud Service 30-6

Part IV   SaaS Applications

31  
 

Oracle Enterprise Resource Planning Cloud

31.1 Introduction 31-1

31.1.1 Concepts 31-1

31.1.2 Knowledge Modules 31-1

31.2 Prerequisites 31-2

31.3 Installation and Configuration 31-2

31.3.1 System Requirements and Certifications 31-2

31.3.2 Technology Specific Requirements 31-2

31.3.3 Connectivity Requirements 31-2

31.4 Setting up the Topology 31-2

31.4.1 Creating an Oracle ERP Cloud Data Server 31-3

31.4.2 Creating an Oracle ERP Cloud Physical Schema 31-3

31.5 Creating and Reverse-Engineering an Oracle ERP Cloud Datastore 31-4

31.5.1 Creating an Oracle ERP Cloud Model 31-4

31.5.2 Creating an Oracle ERP Cloud Datastore 31-4

31.5.2.1 Defining Parameters for BI Publisher Report 31-4

31.5.3 Reverse-Engineering an Oracle ERP Cloud Datastore 31-5

xix



31.6 Designing a Mapping 31-5

31.6.1 Loading Data from Oracle ERP Cloud 31-5

31.7 Troubleshooting 31-7

32  
 

Oracle Marketing Cloud

32.1 Introduction 32-1

32.1.1 Concepts 32-1

32.1.2 Knowledge Modules 32-1

32.2 Installation and Configuration 32-1

32.2.1 System Requirements and Certifications 32-2

32.2.2 Technology Specific Requirements 32-2

32.2.3 Connectivity Requirements 32-2

32.3 Setting up the Topology 32-2

32.3.1 Creating an Oracle Marketing Cloud Data Server 32-2

32.3.2 Creating an Oracle Marketing Cloud Physical Schema 32-3

32.4 Creating and Reverse-Engineering an Oracle Marketing Cloud Model 32-3

32.4.1 Creating an Oracle Marketing Cloud Model 32-3

32.4.2 Reverse-engineer an Oracle Marketing Cloud Model 32-3

32.5 Designing a Mapping 32-3

33  
 

Oracle Sales Cloud

33.1 Introduction 33-1

33.1.1 Concepts 33-1

33.1.2 Knowledge Modules 33-1

33.2 Installation and Configuration 33-1

33.2.1 System Requirements and Certifications 33-2

33.2.2 Technology Specific Requirements 33-2

33.2.3 Connectivity Requirements 33-2

33.3 Setting up the Topology 33-2

33.3.1 Creating an Oracle Sales Cloud Data Server 33-2

33.3.2 Creating an Oracle Sales Cloud Physical Schema 33-3

33.4 Creating and Reverse-Engineering an Oracle Sales Cloud Model 33-3

33.4.1 Creating an Oracle Sales Cloud Model 33-3

33.4.2 Reverse-engineer an Oracle Sales Cloud Model 33-3

33.5 Designing a Mapping 33-3

34  
 

Oracle Service Cloud

34.1 Introduction 34-1

34.1.1 Concepts 34-1

xx



34.1.2 Knowledge Modules 34-1

34.2 Installation and Configuration 34-1

34.2.1 System Requirements and Certifications 34-2

34.2.2 Technology Specific Requirements 34-2

34.2.3 Connectivity Requirements 34-2

34.3 Setting up the Topology 34-2

34.3.1 Creating an Oracle Service Cloud Data Server 34-2

34.3.2 Creating an Oracle Service Cloud Physical Schema 34-3

34.4 Creating and Reverse-Engineering an Oracle Service Cloud Model 34-3

34.4.1 Creating an Oracle Service Cloud Model 34-3

34.4.2 Reverse-engineer an Oracle Service Cloud Model 34-3

34.5 Designing a Mapping 34-3

35  
 

Oracle Business Intelligence Cloud Connector

35.1 Introduction 35-1

35.1.1 Concepts 35-1

35.1.2 Knowledge Modules 35-1

35.2 Installation and Configuration 35-2

35.2.1 System Requirements and Certifications 35-2

35.2.2 Technology Specific Requirements 35-2

35.2.3 Connectivity Requirements 35-2

35.3 Setting up the Topology 35-2

35.3.1 Creating Topology objects for Oracle Object Storage 35-3

35.3.1.1 Creating an Oracle Object Storage Data Server 35-3

35.3.1.2 Creating an Oracle Object Storage Physical Schema 35-4

35.3.2 Creating Topology objects for Oracle Storage Cloud Service 35-4

35.3.2.1 Creating an Oracle Storage Cloud Service Data Server 35-4

35.3.2.2 Creating an Oracle Storage Cloud Service Physical Schema 35-5

35.3.3 Creating Topology objects for Oracle BI Cloud Connector 35-5

35.3.3.1 Creating an Oracle BI Cloud Connector Data Server 35-5

35.3.3.2 Creating an Oracle BI Cloud Connector Physical Schema 35-6

35.4 Creating and Reverse-Engineering an Oracle BI Cloud Connector Model 35-7

35.4.1 Creating an Oracle BI Cloud Connector Model 35-7

35.4.2 Reverse-engineering an Oracle BI Cloud Connector Model 35-7

35.5 Designing a Mapping 35-7

35.5.1 Loading Data from Oracle BI Cloud Connector 35-7

35.5.1.1 LKM BICC to ADW External Table 35-8

35.5.1.2 LKM BICC to ADW Copy 35-9

35.5.1.3 LKM BICC to ADW Copy Direct 35-10

xxi



36  
 

Oracle NetSuite

36.1 Introduction 36-1

36.1.1 Concepts 36-1

36.1.2 Knowledge Modules 36-1

36.2 Installation and Configuration 36-2

36.2.1 System Requirements and Certifications 36-2

36.2.2 Technology Specific Requirements 36-2

36.2.3 Connectivity Requirements 36-2

36.3 Setting up the Topology 36-3

36.3.1 Creating an Oracle NetSuite Data Server 36-3

36.3.2 Creating an Oracle NetSuite Physical Schema 36-4

36.4 Creating and Reverse-Engineering an Oracle NetSuite Model 36-4

36.4.1 Creating an Oracle NetSuite Model 36-4

36.4.2 Reverse-engineer an Oracle NetSuite Model 36-4

36.5 Designing a Mapping 36-4

Part V   Appendices

A   Oracle Data Integrator Driver for LDAP Reference

A.1 Introduction to Oracle Data Integrator Driver for LDAP A-1

A.2 LDAP Processing Overview A-1

A.2.1 LDAP to Relational Mapping A-1

A.2.1.1 General Principle A-2

A.2.1.2 Grouping Factor A-3

A.2.1.3 Mapping Exceptions A-4

A.2.1.4 Reference LDAP Tree A-4

A.2.2 Managing Relational Schemas A-5

A.2.2.1 Relational Schema Storage A-5

A.2.2.2 Accessing Data in the Relational Structure A-6

A.3 Installation and Configuration A-6

A.3.1 Driver Configuration A-7

A.3.2 Using an External Database to Store the Data A-11

A.3.2.1 Passing the Properties in the Driver URL A-12

A.3.2.2 Setting the Properties in ODI Studio A-12

A.3.2.3 Setting the Properties in a Properties File A-12

A.3.3 LDAP Directory Connection Configuration A-14

A.3.4 Table Aliases Configuration A-15

A.4 SQL Syntax A-16

A.4.1 SQL Statements A-17

A.4.1.1 DISCONNECT A-17

xxii



A.4.1.2 INSERT INTO A-17

A.4.1.3 SELECT A-17

A.4.1.4 UPDATE A-17

A.4.1.5 Expressions, Condition & values A-18

A.4.2 SQL FUNCTIONS A-18

A.5 JDBC API Implemented Features A-22

B   Oracle Data Integrator Driver for XML Reference

B.1 Introduction to Oracle Data Integrator Driver for XML B-1

B.2 XML Processing Overview B-1

B.2.1 XML to SQL Mapping B-2

B.2.2 XML Namespaces B-3

B.2.3 Managing Schemas B-3

B.2.3.1 Schema Storage B-3

B.2.3.2 Multiple Schemas B-4

B.2.3.3 Accessing Data in the Schemas B-4

B.2.3.4 Case Sensitivity B-4

B.2.3.5 Loading/Synchronizing B-4

B.2.4 Locking B-5

B.2.5 XML Schema (XSD) Support B-5

B.3 Installation and Configuration B-5

B.3.1 Driver Configuration B-5

B.3.2 Automatically Create Multiple Schemas B-10

B.3.3 Using an External Database to Store the Data B-10

B.4 Detailed Driver Commands B-16

B.4.1 CREATE FILE B-17

B.4.2 CREATE FOREIGNKEYS B-18

B.4.3 CREATE XMLFILE B-18

B.4.4 CREATE SCHEMA B-19

B.4.5 DROP FOREIGNKEYS B-20

B.4.6 DROP SCHEMA B-20

B.4.7 LOAD FILE B-20

B.4.8 SET SCHEMA B-22

B.4.9 SYNCHRONIZE B-22

B.4.10 UNLOCK FILE B-23

B.4.11 TRUNCATE SCHEMA B-23

B.4.12 VALIDATE B-23

B.4.13 WRITE MAPPING FILE B-24

B.5 SQL Syntax B-24

B.5.1 SQL Statements B-25

B.5.1.1 COMMIT B-25

xxiii



B.5.1.2 CREATE TABLE B-25

B.5.1.3 DELETE B-26

B.5.1.4 DISCONNECT B-26

B.5.1.5 DROP TABLE B-26

B.5.1.6 INSERT INTO B-26

B.5.1.7 ROLLBACK B-26

B.5.1.8 SELECT B-26

B.5.1.9 SET AUTOCOMMIT B-27

B.5.1.10 UPDATE B-27

B.5.1.11 Expressions, Condition and Values B-27

B.5.2 SQL FUNCTIONS B-28

B.6 JDBC API Implemented Features B-30

B.7 Rich Metadata B-31

B.7.1 Supported user-specified types for different databases B-33

B.8 XML Schema Supported Features B-33

B.8.1 Datatypes B-33

B.8.2 Supported Elements B-34

B.8.2.1 All B-35

B.8.2.2 Any B-35

B.8.2.3 AnyAttribute B-35

B.8.2.4 AnyType B-35

B.8.2.5 Attribute B-35

B.8.2.6 AttributeGroup B-36

B.8.2.7 Choice B-36

B.8.2.8 ComplexContent B-36

B.8.2.9 ComplexType B-37

B.8.2.10 Element B-37

B.8.2.11 Extension B-38

B.8.2.12 Group B-38

B.8.2.13 Import B-38

B.8.2.14 Include B-38

B.8.2.15 List B-39

B.8.2.16 Restriction B-39

B.8.2.17 Schema B-39

B.8.2.18 Sequence B-39

B.8.2.19 SimpleContent B-40

B.8.2.20 SimpleType B-40

B.8.3 Unsupported Features B-40

B.8.3.1 Unsupported Elements B-40

B.8.3.2 Unsupported Features B-41

B.8.3.3 Unsupported Datatypes B-41

xxiv



C   Oracle Data Integrator Driver for Complex Files Reference

C.1 Introduction to Oracle Data Integrator Driver for Complex Files C-1

C.2 Complex Files Processing Overview C-1

C.2.1 Generating the Native Schema C-2

C.2.2 XML to SQL Mapping C-2

C.2.3 JSON Support C-2

C.2.4 Supported Features C-2

C.3 Driver Configuration C-3

C.4 Detailed Driver Commands C-5

C.5 JDBC API and XML Schema Supported Features C-5

D   Pre/Post Processing Support for XML and Complex File Drivers

D.1 Overview D-1

D.2 Configuring the processing stages D-1

D.3 Implementing the processing stages D-2

D.4 Example: Groovy Script for Reading XML Data From Within a ZIP File D-4

D.5 Example: Groovy Script for Transforming XML Data and Writing to a Different Format D-4

D.6 Example: Java Class for Reading Data From HTTP Source Requiring Authentication D-6

D.7 Example: Groovy Code Embedded in Configuration XML File D-7

xxv



Preface

This book describes how work with different technologies in Oracle Data Integrator.

This preface contains the following topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for developers who want to work with Knowledge Modules for their
integration processes in Oracle Data Integrator.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents in Oracle Data Integrator Library.

• Release Notes for Oracle Data Integrator

• Understanding Oracle Data Integrator

• Administering Oracle Data Integrator

• Developing Integration Projects with Oracle Data Integrator

• Installing and Configuring Oracle Data Integrator

• Upgrading Oracle Data Integrator

• Application Adapters Guide for Oracle Data Integrator

• Developing Knowledge Modules with Oracle Data Integrator

• Migrating From Oracle Warehouse Builder to Oracle Data Integrator

• Oracle Data Integrator Tools Reference

Preface

xxvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/middleware/12213/odi/index.html


• Data Services Java API Reference for Oracle Data Integrator

• Open Tools Java API Reference for Oracle Data Integrator

• Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator

• Java API Reference for Oracle Data Integrator

• Getting Started with SAP ABAP ERP Adapter for Oracle Data Integrator

• Oracle Data Integrator 12c Online Help, which is available in ODI Studio through the
JDeveloper Help Center when you press F1 or from the main menu by selecting Help, and
then Search or Table of Contents.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxvii



1
Introduction

The Connectivity and Knowledge Modules Guide for Oracle Data Integrator describes how to
work with different technologies in Oracle Data Integrator.
This book includes the following parts:

• Databases, Files, and XML

• Business Intelligence

• Other Technologies

• SaaS Applications

Application Adapters are covered in a separate guide. See the Application Adapters Guide for
Oracle Data Integrator for more information.

This chapter provides an introduction to the terminology used in the Oracle Data Integrator
documentation and describes the basic steps of how to use Knowledge Modules in Oracle
Data Integrator.

This chapter contains the following sections:

• Terminology

• Using This Guide

1.1 Terminology
This section defines some common terms that are used in this document and throughout the
related documents mentioned in the Preface.

Knowledge Module

Knowledge Modules (KMs) are components of Oracle Data Integrator that are used to
generate the code to perform specific actions against certain technologies.

Combined with a connectivity layer such as, for example, JDBC, JMS, or JCA, Knowledge
Modules allow running defined tasks against a technology, such as connecting to this
technology, extracting data from it, transforming the data, checking it, integrating it, etc.

Application Adapter

Oracle Application Adapters for Data Integration provide specific software components for
integrating enterprise applications data. Enterprise applications suported by Oracle Data
Integrator include Oracle E-Business Suite, Siebel, SAP, etc.

An adapter is a group of Knowledge Modules. In some cases, this group also contains an
attached technology definition for Oracle Data Integrator.

Application Adapters are covered in a separate guide. See the Application Adapters Guide for
Oracle Data Integrator for more information.

1-1



1.2 Using This Guide
This guide provides conceptual information and processes for working with knowledge
modules and technologies supported in Oracle Data Integrator.

Each chapter explains how to configure a given technology, set up a project and use the
technology-specific knowledge modules to perform integration operations.

Some knowledge modules are not technology-specific and require a technology that support
an industry standard. These knowledge modules are referred to as Generic knowledge
modules. For example the knowledge modules listed in Generic SQL and in JMS are designed
to work respectively with any ANSI SQL-92 compliant database and any JMS compliant
message provider.

When these generic knowledge module can be used with a technology, the technology chapter
will mention it. However, we recommend using technology-specific knowledge modules for
better performances and enhanced technology-specific feature coverage.

Before using a knowledge module, it is recommended to review the knowledge module
description in Oracle Data Integrator Studio for usage details, limitations and requirements. In
addition, although knowledge modules options are pre-configured with default values to work
out of the box, it is also recommended to review these options and their description.

The chapters in this guide will provide you with the important usage, options, limitation and
requirement information attached to the technologies and knowledge modules.

1.3 Accessing Data in the Relational Structure
DML operations on tables in the relational are executed with standard SQL statements.

Modifications made to the relational data are propagated to the directory depending on the
selected storage :

• In the case where the virtual mapping is used, all insert, update, and delete requests are
automatically propagated to the original LDAP server in an autocommit mode. No explicit
COMMIT or ROLLBACK statements will have any impact on the Oracle Data Integrator
driver for LDAP.

• In the case where the external database is used to store the relational structure, all types
of DML statements may be used with the driver. However, it is important to know that no
modifications will be propagated to the original LDAP server.

1.4 Accessing Data in the Schemas
Data in the schemas is handled using the SQL language.

It is possible to access tables in a schema that is different from the current schema. To access
the tables of a different schema, prefix the table name with the schema name, followed by a
period character (.). For example:

SELECT col1, schema2.table2.col2, table1.col3 FROM table1, schema2.table2.

This query returns data from table1 in the current schema, and from table2 from schema2.

Chapter 1
Using This Guide

1-2



Note:

Note that the other schema must be located on the same storage space - built-in
engine or external database - as than the current schema.

Chapter 1
Accessing Data in the Schemas

1-3



Part I
Databases, Files, and XML

It is important to understand how to work with databases, files, and XML files in Oracle Data
Integrator.
Part I contains the following chapters:

• Oracle Database

• Oracle Autonomous Data Warehouse Cloud

• Files

• Generic SQL

• XML Files

• Complex Files

• Microsoft SQL Server

• Microsoft Excel

• Microsoft Access

• Netezza

• Teradata

• Hypersonic SQL

• IBM Informix

• IBM DB2 for iSeries

• IBM DB2 UDB

• Salesforce.com



2
Oracle Database

It is important to understand how to work with Oracle Database in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering an Oracle Model

• Setting up Changed Data Capture

• Setting up Data Quality

• Designing a Mapping

• Troubleshooting

2.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an Oracle Database. All Oracle
Data Integrator features are designed to work best with the Oracle Database engine, including
reverse-engineering, changed data capture, data quality, and mappings.

2.1.1 Concepts
The Oracle Database concepts map the Oracle Data Integrator concepts as follows: An Oracle
Instance corresponds to a data server in Oracle Data Integrator. Within this instance, a schema
maps to an Oracle Data Integrator physical schema. A set of related objects within one
schema corresponds to a data model, and each table, View or synonym will appear as an ODI
datastore, with its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Oracle
database instance.

2.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in the following table for
handling Oracle data. The KMs use Oracle specific features. It is also possible to use the
generic SQL KMs with the Oracle Database. See Generic SQL for more information.

Table 2-1    Oracle KMs

Knowledge
Module

Description

RKM Oracle Reverse-engineers tables, views, columns, primary keys, non unique indexes and foreign keys.

2-1



Table 2-1    (Cont.) Oracle KMs

Knowledge
Module

Description

JKM Oracle
11g Consistent
(Streams)

Creates the journalizing infrastructure for consistent set journalizing on Oracle 11g tables, using Oracle
Streams.

This KM is deprecated.

JKM Oracle
Consistent

Creates the journalizing infrastructure for consistent set journalizing on Oracle tables using triggers.

JKM Oracle
Consistent
(Update Date)

Creates the journalizing infrastructure for consistent set journalizing on Oracle tables using triggers based
on a Last Update Date column on the source tables.

JKM Oracle
Simple

Creates the journalizing infrastructure for simple journalizing on Oracle tables using triggers.

JKM Oracle to
Oracle
Consistent
(OGG Online)

Creates and manages the ODI CDC framework infrastructure when using Oracle GoldenGate for CDC.
See Oracle GoldenGate for more information.

CKM Oracle Checks data integrity against constraints defined on an Oracle table.

LKM File to
Oracle
(EXTERNAL
TABLE)

Loads data from a file to an Oracle staging area using the EXTERNAL TABLE SQL Command.

LKM File to
Oracle
(SQLLDR)

Loads data from a file to an Oracle staging area using the SQL*Loader command line utility.

LKM MSSQL
to Oracle (BCP
SQLLDR)

Loads data from a Microsoft SQL Server to Oracle database (staging area) using the BCP and
SQL*Loader utilities.

LKM Oracle BI
to Oracle
(DBLINK)

Loads data from any Oracle BI physical layer to an Oracle target database using database links. See 
Oracle Business Intelligence Enterprise Edition for more information.

LKM Oracle to
Oracle
(DBLINK)

Loads data from an Oracle source database to an Oracle staging area database using database links.

LKM Oracle to
Oracle Pull (DB
Link)

Loads data from an Oracle source database to an Oracle staging area database using database links. It
does not create a view in the source database. It also does not creates the synonym in the staging
database. Built-in KM.

LKM Oracle to
Oracle Push
(DB Link)

Loads and integrates data into Oracle target table using database links. It does not create the synonym in
the staging database. Any settings in the IKM would be ignored. Built-in KM.

LKM Oracle to
Oracle
(datapump)

Loads data from an Oracle source database to an Oracle staging area database using external tables in
the datapump format.

LKM SQL to
Oracle

Loads data from any ANSI SQL-92 source database to an Oracle staging area.

LKM SAP BW
to Oracle
(SQLLDR)

Loads data from SAP BW systems to an Oracle staging using SQL*Loader utilities. See the Application
Adapters Guide for Oracle Data Integrator for more information.

LKM SAP ERP
to Oracle
(SQLLDR)

Loads data from SAP ERP systems to an Oracle staging using SQL*Loader utilities. See the Application
Adapters Guide for Oracle Data Integrator for more information.

Chapter 2
Introduction

2-2



Table 2-1    (Cont.) Oracle KMs

Knowledge
Module

Description

IKM Oracle
Incremental
Update

Integrates data in an Oracle target table in incremental update mode. Supports Flow Control.

IKM Oracle
Incremental
Update
(MERGE)

Integrates data in an Oracle target table in incremental update mode, using a MERGE statement. Supports
Flow Control.

IKM Oracle
Incremental
Update (PL
SQL)

Integrates data in an Oracle target table in incremental update mode using PL/SQL. Supports Flow
Control.

IKM Oracle
Insert

Integrates data into an Oracle target table in append mode. The data is loaded directly in the target table
with a single INSERT SQL statement. Built-in KM.

IKM Oracle
Update

Integrates data into an Oracle target table in incremental update mode. The data is loaded directly into the
target table with a single UPDATE SQL statement. Built-in KM.

IKM Oracle
Merge

Integrates data into an Oracle target table in incremental update mode. The data is loaded directly into the
target table with a single MERGE SQL statement. Built-in KM.

IKM Oracle
Multi-Insert

Integrates data from one source into one or many Oracle target tables in append mode, using a multi-table
insert statement (MTI). This IKM can be utilized in a single mapping to load multiple targets. Built-in KM.

IKM Oracle
Multi Table
Insert

Integrates data from one source into one or many Oracle target tables in append mode, using a multi-table
insert statement (MTI). Supports Flow Control.

IKM Oracle
Slowly
Changing
Dimension

Integrates data in an Oracle target table used as a Type II Slowly Changing Dimension. Supports Flow
Control.

IKM Oracle
Spatial
Incremental
Update

Integrates data into an Oracle (9i or above) target table in incremental update mode using the MERGE
DML statement. This module supports the SDO_GEOMETRY datatype. Supports Flow Control.

IKM Oracle to
Oracle Control
Append
(DBLINK)

Integrates data from one Oracle instance into an Oracle target table on another Oracle instance in control
append mode. Supports Flow Control.

This IKM is typically used for ETL configurations: source and target tables are on different Oracle instances
and the mapping's staging area is set to the logical schema of the source tables or a third schema.

SKM Oracle Generates data access Web services for Oracle databases. For information about how to use this SKM,
see Generating and Deploying Data Servicesin the Administering Oracle Data Integrator.

2.2 Installation and Configuration
Make sure you have read the information in this section before you start using the Oracle
Knowledge Modules:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

Chapter 2
Installation and Configuration

2-3



2.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

2.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Oracle use specific features of this database. This section
lists the requirements related to these features.

2.2.2.1 Using the SQL*Loader Utility
This section describes the requirements that must be met before using the SQL*Loader utility
with Oracle database.

• The Oracle Client and the SQL*Loader utility must be installed on the machine running the
Oracle Data Integrator Agent.

• The server names defined in the Topology must match the Oracle TNS name used to
access the Oracle instances.

• A specific log file is created by SQL*Loader. We recommend looking at this file in case of
error. Control Files (CTL), Log files (LOG), Discard Files (DSC) and Bad files (BAD) are
placed in the work directory defined in the physical schema of the source files.

• Using the DIRECT mode requires that Oracle Data integrator Agent run on the target
Oracle server machine. The source file must also be on that machine.

2.2.2.2 Using External Tables
This section describes the requirements that must be met before using external tables in
Oracle database.

• The file to be loaded by the External Table command needs to be accessible from the
Oracle instance. This file must be located on the file system of the server machine or
reachable from a Unique Naming Convention path (UNC path) or stored locally.

• For performance reasons, it is recommended to install the Oracle Data Integrator Agent on
the target server machine.

2.2.2.3 Using Oracle Wallet
Oracle Wallet provides a simple and easy method to manage database credentials across
multiple domains.

NOT_SUPPORTED:

This section applies only to Data Integration Platform Cloud.

Chapter 2
Installation and Configuration

2-4

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


This section describes the requirements that are necessary for creating and managing wallet in
an Oracle database environment.

Note:

For more details on creating and managing wallets, refer to Managing Oracle Wallets
section of Enterprise User Security Administrator's Guide.

This environment provides all the necessary commands and libraries, including $ORACLE_HOME/
oracle_common/bin/mkstore command.

• Oracle recommends you to create and manage Wallet in a database environment. Often
this task is completed by a database administrator and provided for use to the client. You
can also install the Oracle Client Runtime package to provide the necessary commands
and libraries to create and manage Oracle Wallet.

Create a wallet on the client using the command: mkstore –wrl <wallet_location> -
create, where: wallet_location is the path to the directory where you want to create and
store the wallet.

For Example — mkstore -wrl /scratch/ewallet - createCredential
jdbc:oracle;thin:@kkm00ebs.in.example.com:1523:oditest odiUser odi where

– kkm00ebs.in.example.com is the host name

– 1523 is the port number

– oditest is the SID

– odiUser denotes the user name

– odi denotes the password for the user

Note:

You can store multiple credentials for multiple databases in a single client wallet.
You cannot store multiple credentials (for logging into multiple schema) for the
same database in the same wallet. If you have multiple login credentials for the
same database, then they must be stored in separate wallets.

• To add database login credentials to an existing client wallet, use the command: mkstore –
wrl <wallet_location> -createCredential <db_connect_string> <username>
<password> where

– wallet_location is the path to the directory where you have created the wallet

– db_connect_string must be identical to the connection string that you specify in the
URL used in the datasource definition (the part of the string that follows the @).

It can be either the short form or the long form of the URL.

* For Example — jdbc:oracle:thin:@kkm00ebs.in.example.com:1523/oditest
or

* (DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)
(HOST=myhost-scan)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=myservice)))

Chapter 2
Installation and Configuration

2-5

https://docs.oracle.com/en/database/oracle/oracle-database/18/dbimi/using-oracle-wallet-manager.html#GUID-0383B8F6-73CA-4677-9009-A2926267A93B


For Example —(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=<hostname or
ipaddress>)(PORT=<port>))(CONNECT_DATA=(SERVICE_NAME=<db service>))
(security=(ssl_server_cert_dn="<certificate_info>")) )

Note:

Oracle supports two types of wallets: 1. Password protected wallets (ewallet.p12) and
2. Auto login wallets (cwallet.sso) is used for retrieving connection details to establish
secure connection to an instance by verifying certificate details associated with
instance for secure connection.

2.2.3 Connectivity Requirements
This section lists the requirements for connecting to an Oracle Database.

JDBC Driver

Oracle Data Integrator is installed with a default version of the Oracle Type 4 JDBC driver. This
drivers directly uses the TCP/IP network layer and requires no other installed component or
configuration.

It is possible to connect an Oracle Server through the Oracle JDBC OCI Driver, or even using
ODBC. For performance reasons, it is recommended to use the Type 4 driver.

Connection Information

You must ask the Oracle DBA the following information:

• Network Name or IP address of the machine hosting the Oracle Database.

• Listening port of the Oracle listener.

• Name of the Oracle Instance (SID) or Service Name

• Login and password of an Oracle User.

2.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating an Oracle Data Server

2. Creating an Oracle Physical Schema

2.3.1 Creating an Oracle Data Server
An Oracle data server corresponds to an Oracle Database Instance connected with a specific
Oracle user account. This user will have access to several schemas in this instance,
corresponding to the physical schemas in Oracle Data Integrator created under the data
server.

Chapter 2
Setting up the Topology

2-6



2.3.1.1 Creation of the Data Server
Create a data server for the Oracle technology using the standard procedure, as described in 
Creating a Data Server of Administering Oracle Data Integrator. This section details only the
fields required or specific for defining an Oracle data server:

1. In the Definition tab:

Data Server

• Name: Name of the data server that will appear in Oracle Data Integrator.

• Instance/dblink(Data Server): TNS Alias used for this Oracle instance. It will be used
to identify the Oracle instance when using database links and SQL*Loader.

Connection

• User/Password: Oracle user (with its password), having select privileges on the
source schemas, select/insert privileges on the target schemas and select/insert/object
creation privileges on the work schemas that will be indicated in the Oracle physical
schemas created under this data server.

• JNDI Connection: Select this check-box to configure the JNDI connection settings.
Navigate to the JNDI tab, and fill in the required fields.

• Use Credential File: Select this check box to upload the connection details directly
from a pre-configured wallet file1 or credential zip file.

Credential Details

NOT_SUPPORTED:

This section applies only to Data Integration Platform Cloud.

• Credential File: Click the browse icon present beside the Credential File text box, to
browse for the location of the required wallet file containing the connection details.

By default, the credential location is populated to point to the same wallet file
(ewallet.p12) or credential zip file (auto login wallet) that is used for login which is
present in <homedir>/.odi/oracledi/ewallet. You can also browse for any other
location where this credential file is stored with the required database connection
details.

Based on your selection, the following options appear:

a. If you have selected a password protected wallet file (ewallet.p12),

– The Credential File Password text box appears. It represents the password
that you configured during wallet creation and it is required to open the wallet
file. Enter the relevant password of the wallet file in this text box.

1 In ODI, you can directly upload connection details from a credential file (auto login wallet) or a password protected wallet
file (ewallet.p12)

Chapter 2
Setting up the Topology

2-7



Note:

ODI supervisor can distribute ewallet.p12 and wallet password to
other ODI users.

– Connection Details – If the entered password is valid, ODI retrieves a list of
all available database connection details that are present in the wallet and
displays it. Click the Connection Details drop down arrow to choose the
required database connection from the list.

b. If you have selected a credential zip file (auto login wallet),

– The Connection Details text box appears. Click the Connection Details drop
down arrow to choose the required connection URL from the list of available
connection URLs retrieved from tnsnames.ora.

• Upon selecting the required connection URL, JDBC Driver, JDBC URL, Username and
Password fields are disabled and the associated username, password, jdbc URL and
jdbc driver details are auto-populated with credentials retrieved from the pre-
configured wallet file or credential zip file. You can change them only through the list of
connections available in the wallet file (ewallet.p12) or credential zip (tnsnames.ora).

• Click Save, to save the Data Server details

• Click Test Connection, to test the established connection

2. If the data server supports JNDI access, fill-in the details of the JNDI tab:

• JNDI authentication: Select the required option from the following-

– None- Anonymous access to the naming or directory service

– Simple: Authenticated access, non-encrypted

– CRAM-MD5: Authenticated access, encrypted MD5

– <other value>: authenticated access, encrypted according to <other value>

• JNDI User/Password: User/password connecting to the JNDI directory

• JNDI Protocol: Protocol used for the connection

Note:

Please note that only the most common protocols are listed here. This is not
an exhaustive list.

– LDAP: Access to an LDAP directory

– SMQP: Access to a SwiftMQ MOM directory

– <other value>: access following the sub-protocol <other value>

• JNDI Driver: The driver allowing the JNDI connection

For Example — Sun LDAP directory: com.sun.jndi.ldap.LdapCtxFactory
• JNDI URL: The URL allowing the JNDI connection

For example: ldap://suse70:389/o=linuxfocus.org
• JNDI Resource: The directory element containing the connection parameters

Chapter 2
Setting up the Topology

2-8



For example: cn=sampledb
3. If the data server supports JDBC access, fill-in the details of the JDBC tab:

• JDBC Driver: Name of the JDBC driver used for connecting to the data server

oracle.jdbc.OracleDriver
• JDBC URL: URL allowing you to connect to the data server.

jdbc:oracle:thin:@<network name or ip address of the Oracle machine>:<port
of the Oracle listener>:<name of the Oracle instance>
To connect an Oracle RAC instance with the Oracle JDBC thin driver, use an Oracle
RAC database URL as shown in the following example:

jdbc:oracle:thin:@(DESCRIPTION=(LOAD_BALANCE=on)
(ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=host2) (PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=service)))

2.3.2 Creating an Oracle Physical Schema
Create an Oracle physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

2.4 Setting Up an Integration Project
Setting up a project using the Oracle Database follows the standard procedure. See Creating
an Integration Project of the Developing Integration Projects with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for getting
started with Oracle Database:

• RKM Oracle

• CKM Oracle

• LKM SQL to Oracle

• LKM File to Oracle (SQLLDR)

• LKM File to Oracle (EXTERNAL TABLE)

• IKM Oracle Incremental Update

2.5 Creating and Reverse-Engineering an Oracle Model
This section contains the following topics:

• Create an Oracle Model

• Reverse-engineer an Oracle Model

2.5.1 Create an Oracle Model
Create an Oracle Model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator.

Chapter 2
Setting Up an Integration Project

2-9



2.5.2 Reverse-engineer an Oracle Model
Oracle supports both Standard reverse-engineering - which uses only the abilities of the JDBC
driver - and Customized reverse-engineering, which uses a RKM to retrieve the structure of the
objects directly from the Oracle dictionary.

In most of the cases, consider using the standard JDBC reverse engineering for starting.
Standard reverse-engineering with Oracle retrieves tables, views, columns, primary keys, and
references.

Consider switching to customized reverse-engineering for retrieving more metadata. Oracle
customized reverse-engineering retrieves the table and view structures, including columns,
primary keys, alternate keys, indexes, check constraints, synonyms, and references.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Oracle use the usual procedure, as described
in Reverse-engineering a Model of Developing Integration Projects with Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Oracle with a RKM, use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration Projects
with Oracle Data Integrator. This section details only the fields specific to the Oracle
technology:

In the Reverse Engineer tab of the Oracle Model, select the KM: RKM Oracle.<project name>.

2.6 Setting up Changed Data Capture
The ODI Oracle Knowledge Modules support the Changed Data Capture feature. See Using
Changed Data of Developing Integration Projects with Oracle Data Integrator for details on
how to set up journalizing and how to use captured changes.

Oracle Journalizing Knowledge Modules support Simple Journalizing and Consistent Set
Journalizing. The Oracle JKMs use either triggers or Oracle Streams to capture data changes
on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 2-2 for journalizing
Oracle tables.

Table 2-2    Oracle Journalizing Knowledge Modules

KM Notes

JKM Oracle 11g Consistent (Streams) Creates the journalizing infrastructure for consistent set
journalizing on Oracle 11g tables, using Oracle Streams.

JKM Oracle Consistent Creates the journalizing infrastructure for consistent set
journalizing on Oracle tables using triggers.

JKM Oracle Consistent (Update Date) Creates the journalizing infrastructure for consistent set
journalizing on Oracle tables using triggers based on a
Last Update Date column on the source tables.

JKM Oracle Simple Creates the journalizing infrastructure for simple
journalizing on Oracle tables using triggers.

Chapter 2
Setting up Changed Data Capture

2-10



Note that it is also possible to use Oracle GoldenGate to consume changed records from an
Oracle database. See Oracle GoldenGate for more information.

Using the Streams JKMs

The Streams KMs work with the default values. The following are the recommended settings:

• By default, the AUTO_CONFIGURATION KM option is set to Yes. If set to Yes, the KM
provides automatic configuration of the Oracle database and ensures that all prerequisites
are met. As this option automatically changes the database initialization parameters, it is
not recommended to use it in a production environment. You should check the Create
Journal step in the Oracle Data Integrator execution log to detect configurations tasks that
have not been performed correctly (Warning status).

• By default, the CONFIGURATION_TYPE option is set to Low Activity. Leave this option if
your database is having a low transactional activity.

Set this option to Standalone for installation on a standalone database such as a
development database or on a laptop.

Set this option to High Activity if the database is intensively used for transactional
processing.

• By default, the STREAMS_OBJECT_GROUP option is set to CDC. The value entered is
used to generate object names that can be shared across multiple CDC sets journalized
with this JKM. If the value of this option is CDC, the naming rules listed in Table 2-3 will be
applied.

Note that this option can only take upper case ASCII characters and must not exceed 15
characters.

Table 2-3    Naming Rules Example for the CDC Group Name

CDC Group Naming Convention

Capture Process ODI_CDC_C

Queue ODI_CDC_Q

Queue Table ODI_CDC_QT

Apply Process ODI_CDC_A

• VALIDATE enables extra steps to validate the correct use of the KM. This option checks
various requirements without configuring anything (for configuration steps, please see
AUTO_CONFIGURATION option). When a requirement is not met, an error message is
written to the log and the execution of the JKM is stopped in error.

By default, this option is set to Yes in order to provide an easier use of this complex KM out
of the box

Using the Update Date JKM

This JKM assumes that a column containing the last update date exists in all the journalized
tables. This column name is provided in the UPDATE_DATE_COL_NAME knowledge module
option.

Chapter 2
Setting up Changed Data Capture

2-11



2.7 Setting up Data Quality
Oracle Data Integrator provides the CKM Oracle for checking data integrity against constraints
defined on an Oracle table. See Flow Control and Static Control in Developing Integration
Projects with Oracle Data Integrator.

Oracle Data Integrator provides the Knowledge Module listed in Table 2-4 to perform a check
on Oracle. It is also possible to use the generic SQL KMs. See Generic SQL for more
information.

Table 2-4    Check Knowledge Modules for Oracle Database

Recommended KM Notes

CKM Oracle Uses Oracle's Rowid to identify records

2.8 Designing a Mapping
You can use Oracle as a source, staging area or a target of a mapping. It is also possible to
create ETL-style mappings based on the Oracle technology.

The KM choice for a mapping or a check determines the abilities and performance of this
mapping or check. The recommendations in this section help in the selection of the KM for
different situations concerning an Oracle data server.

2.8.1 Loading Data from and to Oracle
Oracle can be used as a source, target or staging area of a mapping. The LKM choice in the
Mapping's Loading Knowledge Module tab to load data between Oracle and another type of
data server is essential for the performance of a mapping.

2.8.1.1 Loading Data from Oracle
The following KMs implement optimized methods for loading data from an Oracle database to
a target or staging area database. In addition to these KMs, you can also use the Generic SQL
KMs or the KMs specific to the other technology involved.

Target or Staging
Area Technology

KM Notes

Oracle LKM Oracle to Oracle (dblink) Creates a view on the source server,
and synonyms on this view on the target
server.

Oracle LKM Oracle to Oracle Push (DB Link) Creates a view on the source server, but
does not create synonyms on this view
on the target server. This KM ignores
any settings on the IKM. Built-in KM.

Oracle LKM Oracle to Oracle Pull (DB Link) Does not create a view on the source
server, or the synonyms on this view on
the target server. Built-in KM.

Oracle LKM Oracle to Oracle (datapump) Uses external tables in the datapump
format.

Chapter 2
Setting up Data Quality

2-12



2.8.1.2 Loading Data to Oracle
The following KMs implement optimized methods for loading data from a source or staging
area into an Oracle database. In addition to these KMs, you can also use the Generic SQL
KMs or the KMs specific to the other technology involved.

Source or Staging
Area Technology

KM Notes

Oracle LKM Oracle to Oracle (dblink) Views created on the source server,
synonyms on the target.

Oracle LKM Oracle to Oracle Push (DB Link) Views not created on the source server,
synonyms created on the target. Built-in
KM.

Oracle LKM Oracle to Oracle Pull (DB Link) Views not created on the source server,
synonyms not created on the target.
Built-in KM.

SAP BW LKM SAP BW to Oracle (SQLLDR) Uses Oracle's bulk loader. File cannot be
Staging Area.

SAP ERP LKM SAP ERP to Oracle (SQLLDR) Uses Oracle's bulk loader. File cannot be
Staging Area.

Files LKM File to Oracle (EXTERNAL
TABLE)

Loads file data using external tables.

Files LKM File to Oracle (SQLLDR) Uses Oracle's bulk loader. File cannot be
Staging Area.

Oracle LKM Oracle to Oracle (datapump) Uses external tables in the datapump
format.

Oracle BI LKM Oracle BI to Oracle (DBLINK) Creates synonyms for the target staging
table and uses the OBIEE populate
command.

MSSQL LKM MSSQL to Oracle (BCP-SQLLDR) Unloads data from SQL Server using
BCP, loads data into Oracle using
SQL*Loader.

All LKM SQL to Oracle Faster than the Generic LKM (Uses
Statistics)

2.8.2 Integrating Data in Oracle
The data integration strategies in Oracle are numerous and cover several modes. The IKM
choice in the Mapping's Physical diagram determines the performances and possibilities for
integrating.

The following KMs implement optimized methods for integrating data into an Oracle target. In
addition to these KMs, you can also use the Generic SQL KMs.

Mode KM Note

Update IKM Oracle Incremental
Update

Optimized for Oracle. Supports Flow Control.

Update IKM Oracle Update Optimized for Oracle. Oracle UPDATE statement KM. Built-in
KM.

Chapter 2
Designing a Mapping

2-13



Mode KM Note

Update IKM Oracle Merge Optimized for Oracle. Oracle MERGE statement KM. Built-in
KM.

Update IKM Oracle Spatial
Incremental Update

Supports SDO_GEOMETRY datatypes. Supports Flow Control.

Update IKM Oracle Incremental
Update (MERGE)

Recommended for very large volumes of data because of bulk
set-based MERGE feature. Supports Flow Control.

Update IKM Oracle Incremental
Update (PL SQL)

Use PL/SQL and supports long and blobs in incremental
update mode. Supports Flow Control.

Specific IKM Oracle Slowly
Changing Dimension

Supports type 2 Slowly Changing Dimensions. Supports Flow
Control.

Specific IKM Oracle Multi Table
Insert

Supports multi-table insert statements. Supports Flow Control.

Append IKM Oracle to Oracle
Control Append (DBLINK)

Optimized for Oracle using DB*Links. Supports Flow Control.

Append IKM Oracle Insert Optimized for Oracle. Oracle INSERT statement KM. Built-in
KM. Supports Flow Control.

Append IKM Oracle Multi-Insert Optimized for Oracle. Oracle multi-target INSERT statement
KM, applied to each target. Built-in KM.

Using Slowly Changing Dimensions

For using slowly changing dimensions, make sure to set the Slowly Changing Dimension value
for each column of the Target datastore. This value is used by the IKM Oracle Slowly Changing
Dimension to identify the Surrogate Key, Natural Key, Overwrite or Insert Column, Current
Record Flag and Start/End Timestamps columns.

Using Multi Table Insert

The IKM Oracle Multi Table Insert is used to integrate data from one source into one to many
Oracle target tables with a multi-table insert statement. This IKM must be used in mappings
that are sequenced in a Package. This Package must meet the following conditions:

• The first mapping of the Package must have a temporary target and the KM option
DEFINE_QUERY set to YES.

This first mapping defines the structure of the SELECT clause of the multi-table insert
statement (that is the source flow).

• Subsequent mappings must source from this temporary datastore and have the KM option
IS_TARGET_TABLE set to YES.

• The last mapping of the Package must have the KM option EXECUTE set to YES in order
to run the multi-table insert statement.

• Do not set Use Temporary Mapping as Derived Table (Sub-Select) to true on any of the
mappings.

If large amounts of data are appended, consider to set the KM option OPTIMIZER_HINT to /*+
APPEND */.

Using Spatial Datatypes

To perform incremental update operations on Oracle Spatial datatypes, you need to declare
the SDO_GEOMETRY datatype in the Topology and use the IKM Oracle Spatial Incremental
Update. When comparing two columns of SDO_GEOMETREY datatype, the

Chapter 2
Designing a Mapping

2-14



GEOMETRY_TOLERANCE option is used to define the error margin inside which the
geometries are considered to be equal. See the Oracle Spatial User's Guide and Reference,
for more information.

2.8.3 Designing an ETL-Style Mapping
See Creating a Mapping in Developing Integration Projects with Oracle Data Integrator for
generic information on how to design mappings. This section describes how to design an ETL-
style mapping where the staging area is Oracle database or any ANSI-92 compliant database
and the target on Oracle database.

In an ETL-style mapping, ODI processes the data in a staging area, which is different from the
target. Oracle Data Integrator provides two ways for loading the data from an Oracle staging
area to an Oracle target:

• Using a Multi-connection IKM

• Using an LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM

A multi-connection IKM allows updating a target where the staging area and sources are on
different data servers.

Oracle Data Integrator provides the following multi-connection IKM for handling Oracle data:
IKM Oracle to Oracle Control Append (DBLINK). You can also use the generic SQL multi-
connection IKMs. See Generic SQL for more information.

See Table 2-5 for more information on when to use a multi-connection IKM.

To use a multi-connection IKM in an ETL-style mapping:

1. Create a mapping with the staging area on Oracle or an ANSI-92 compliant technology
and the target on Oracle using the standard procedure as described in Creating a Mapping
of Developing Integration Projects with Oracle Data Integrator. This section describes only
the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables or a
third schema. See Configuring Execution Locations of Developing Integration Projects with
Oracle Data Integrator for information about how to change the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for this
object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) to the
staging area. See Table 2-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Physical diagram, select the Target by clicking its title. The Property Inspector opens
for this object.

In the Integration Knowledge Module tab, select an ETL multi-connection IKM to load the
data from the staging area to the target. See Table 2-5 to determine the IKM you can use.

Note the following when setting the KM options:

• For IKM Oracle to Oracle Control Append (DBLINK)

– If large amounts of data are appended, set the KM option OPTIMIZER_HINT to /*+
APPEND */.

Chapter 2
Designing a Mapping

2-15



– Set AUTO_CREATE_DB_LINK to true to create automatically db link on the target
schema. If AUTO_CREATE_DB_LINK is set to false (default), the link with this name
should exist in the target schema.

– If you set the options FLOW_CONTROL and STATIC_CONTROL to Yes, select a CKM
in the Check Knowledge Module tab. If FLOW_CONTROL is set to Yes, the flow table
is created on the target.

Using an LKM and a mono-connection IKM

If there is no dedicated multi-connection IKM, use a standard exporting LKM in combination
with a standard mono-connection IKM. The exporting LKM is used to load the flow table from
the staging area to the target. The mono-connection IKM is used to integrate the data flow into
the target table.

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a source
of an ETL-style mapping. Staging area and the target are Oracle.

See Table 2-5 for more information on when to use the combination of a standard exporting
LKM and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping:

1. Create a mapping with the staging area and target on Oracle using the standard procedure
as described in Creating a Mapping of Developing Integration Projects with Oracle Data
Integrator. This section describes only the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables or a
third schema. See Configuring Execution Locationsof Developing Integration Projects with
Oracle Data Integrator for information about how to change the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for this
object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) to the
staging area. See Table 2-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. Select the access point for the Staging Area. The Property Inspector for this object
appears.

7. In the Loading Knowledge Module tab, select an LKM to load from the staging area to the
target. See Table 2-5 to determine the LKM you can use.

8. Optionally, modify the KM options.

9. Select the Target by clicking its title. The Property Inspector opens for this object.

In the Integration Knowledge Module tab, select a standard mono-connection IKM to
update the target. See Table 2-5 to determine the IKM you can use.

Table 2-5    KM Guidelines for ETL-Style Mappings with Oracle Data

Source Staging Area Target Exporting LKM IKM KM Strategy Comment

ANSI
SQL-92
standard
compliant

Oracle Oracle NA IKM Oracle
to Oracle
Control
Append
(DBLINK)

Multi-
connection IKM

Use this KM strategy to:

• Perform control append
• Use DB*Links for

performance reasons
Supports flow and static
control.

Chapter 2
Designing a Mapping

2-16



Table 2-5    (Cont.) KM Guidelines for ETL-Style Mappings with Oracle Data

Source Staging Area Target Exporting LKM IKM KM Strategy Comment

ANSI
SQL-92
standard
compliant

Oracle or any
ANSI SQL-92
standard
compliant
database

Oracle or
any ANSI
SQL-92
standard
compliant
database

NA IKM SQL to
SQL
Incremental
Update

Multi-
connection IKM

Allows an incremental update
strategy with no temporary
target-side objects. Use this
KM if it is not possible to create
temporary objects in the target
server.

The application updates are
made without temporary
objects on the target, the
updates are made directly from
source to target. The
configuration where the flow
table is created on the staging
area and not in the target
should be used only for small
volumes of data.

Supports flow and static
control

Oracle Oracle Oracle LKM to Oracle
to Oracle
(DBLINK)

IKM Oracle
Slowly
Changing
Dimension

LKM +
standard IKM

na

Oracle Oracle Oracle LKM to Oracle
to Oracle
(DBLINK)

IKM Oracle
Incremental
Update

LKM +
standard IKM

na

Oracle Oracle Oracle LKM to Oracle
to Oracle
(DBLINK)

IKM Oracle
Incremental
Update
(MERGE)

LKM +
standard IKM

na

2.9 Troubleshooting
This section provides information on how to troubleshoot problems that you might encounter
when using Oracle Knowledge Modules. It contains the following topics:

• Troubleshooting Oracle Database Errors

• Common Problems and Solutions

2.9.1 Troubleshooting Oracle Database Errors
Errors appear often in Oracle Data Integrator in the following way:

java.sql.SQLException: ORA-01017: invalid username/password; logon denied
at ...
at ...
...

the java.sql.SQLExceptioncode simply indicates that a query was made to the database
through the JDBC driver, which has returned an error. This error is frequently a database or
driver error, and must be interpreted in this direction.

Chapter 2
Troubleshooting

2-17



Only the part of text in bold must first be taken in account. It must be searched in the Oracle
documentation. If its contains an error code specific to Oracle, like here (in red), the error can
be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL code send
to the database to find the source of the error. The code is displayed in the description tab of
the erroneous task.

2.9.2 Common Problems and Solutions
This section describes common problems and solutions.

• ORA-12154 TNS:could not resolve service name
TNS alias resolution. This problem may occur when using the OCI driver, or a KM using
database links. Check the configuration of the TNS aliases on the machines.

• ORA-02019 connection description for remote database not found
You use a KM using non existing database links. Check the KM options for creating the
database links.

• ORA-00900 invalid SQL statement
ORA-00923 FROM Keyword not found where expected
The code generated by the mapping, or typed in a procedure is invalid for Oracle. This is
usually related to an input error in the mapping, filter of join. The typical case is a missing
quote or an unclosed bracket.

A frequent cause is also the call made to a non SQL syntax, like the call to an Oracle
stored procedure using the syntax

EXECUTE SCHEMA.PACKAGE.PROC(PARAM1, PARAM2).

The valid SQL call for a stored procedure is:

BEGIN
SCHEMA.PACKAGE.PROC(PARAM1, PARAM2);
END;

The syntax EXECUTE SCHEMA.PACKAGE.PROC(PARAM1, PARAM2) is specific to SQL*PLUS,
and do not work with JDBC.

• ORA-00904 invalid column name
Keying error in a mapping/join/filter. A string which is not a column name is interpreted as a
column name, or a column name is misspelled.

This error may also appear when accessing an error table associated to a datastore with a
recently modified structure. It is necessary to impact in the error table the modification, or
drop the error tables and let Oracle Data Integrator recreate it in the next execution.

• ORA-00903 invalid table name
The table used (source or target) does not exist in the Oracle schema. Check the mapping
logical/physical schema for the context, and check that the table physically exists on the
schema accessed for this context.

• ORA-00972 Identifier is too Long
There is a limit in the object identifier in Oracle (usually 30 characters). When going over
this limit, this error appears. A table created during the execution of the mapping went over
this limit. and caused this error (see the execution log for more details).

Chapter 2
Troubleshooting

2-18



Check in the topology for the oracle technology, that the maximum lengths for the object
names (tables and columns) correspond to your Oracle configuration.

• ORA-01790 expression must have same datatype as corresponding expression
You are trying to connect two different values that can not be implicitly converted (in a
mapping, a join...). Use the explicit conversion functions on these values.

Chapter 2
Troubleshooting

2-19



3
Oracle Autonomous Data Warehouse Cloud

This chapter describes how to work with Autonomous Data Warehouse Cloud (ADWC) in
Oracle Data Integrator.

This chapter includes the following sections:

• Introduction

• Prerequisites

• Setting up the Topology

• Creating and Reverse-Engineering an Oracle Model

• Designing a Mapping

• Best Practices for Working with ADWC

3.1 Introduction
Autonomous Data Warehouse Cloud (ADWC) is a fully-managed, high-performance elastic
cloud service providing analytical capability over data stored in the database and Oracle Object
Store.

Oracle Data Integrator (ODI) seamlessly integrates with ADWC. By integrating ODI with
ADWC, you can get the full performance of Oracle Database, in a fully-managed environment
that is tuned and optimized for data warehouse workloads.

3.1.1 Concepts

The Oracle ADWC concepts map the Oracle Data Integrator concepts as follows: An Oracle
ADWC Instance corresponds to a data server in Oracle Data Integrator. Within this instance, a
schema maps to an Oracle Data Integrator physical schema. A set of related objects within
one schema corresponds to a data model, and each table, view or synonym will appear as an
ODI datastore, with its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Oracle ADWC
instance. All connections to the ADWC require the use of an Oracle Wallet to manage public
key security credentials.

3.1.2 Knowledge Modules

Oracle Data Integrator provides the following Knowledge Modules (KM) for loading data into
ADWC. The KMs use Oracle specific features. It is also possible to use the generic SQL KMs
with ADWC.

3-1



Table 3-1    ADWC Knowledge Modules

Knowledge Module Description

LKM SQL to Oracle (Built-In) Loads data from any ANSI SQL-92 source database to an Oracle staging area.

LKM SQL Multi-Connect Enables the use of multi-connect IKM for target table. Built-in IKM.

LKM File to Oracle (SQLLDR) Loads data from a file to an Oracle staging area using the SQL*Loader command line
utility.

IKM SQL to File Append Integrates data in a target file from any ANSI SQL-92 compliant staging area in replace
mode.

IKM Oracle Insert Integrates data into an Oracle target table in append mode. The data is loaded directly
in the target table with a single INSERT SQL statement. Built-in KM.

IKM Oracle Update Integrates data into an Oracle target table in incremental update mode. The data is
loaded directly into the target table with a single UPDATE SQL statement. Built-in KM.

IKM Oracle Merge Integrates data into an Oracle target table in incremental update mode. The data is
loaded directly into the target table with a single MERGE SQL statement. Built-in KM.

IKM Oracle Multi-Insert Integrates data from one source into one or many Oracle target tables in append mode,
using a multi-table insert statement (MTI). This IKM can be utilized in a single mapping
to load multiple targets. Built-in KM.

RKM Oracle Reverse-engineers tables, views, columns and creates data models to use as targets or
sources in Oracle Data Integrator mappings.

LKM SQL to ADWC External Table Loads data from SQL source to Oracle ADWC using Oracle Object Storage as
intermediate staging. You have to use this LKM in combination with Oracle or generic
SQL IKM.

LKM SQL to ADWC Copy Loads data from SQL source to Oracle ADWC using Oracle Object Storage as
intermediate staging. You have to use this LKM in combination with Oracle or generic
SQL IKM.

LKM SQL to ADWC Copy Direct Loads data from SQL source to Oracle ADWC using Oracle Object Storage as
intermediate staging. You can use this LKM as a standalone KM as you do not need
any IKM.

LKM File to ADWC External Table Loads data from local or HDFS file source to Oracle ADWC using Oracle Object
Storage as intermediate staging. You have to use this LKM in combination with Oracle
or generic SQL IKM.

LKM File to ADWC Copy Loads data from local or HDFS file source to Oracle ADWC using Oracle Object
Storage as intermediate staging. You have to use this LKM in combination with Oracle
or generic SQL IKM.

LKM File to ADWC Copy Direct Loads data from local or HDFS file source to Oracle ADWC using Oracle Object
Storage as intermediate staging. You can use this LKM as a standalone KM as you do
not need an IKM for its implementation.

LKM Oracle to ADWC Datapump Loads data from Oracle On-premises products to Oracle ADWC.. You can use it in
combination with Oracle or generic SQL IKM.

LKM Object Storage to ADWC
Copy

Loads data from Oracle Cloud Object Storage to Oracle ADWC. You can use it in
combination with Oracle or generic SQL IKM

LKM Object Storage to ADWC
Copy Direct

Loads data from Oracle Cloud Object Storage to Oracle ADWC. You can use this LKM
to move files/objects from Oracle Object Storage to an ADWC table.

LKM Object Storage to ADWC
External Table

Loads data from Oracle Object Storage to Oracle ADWC using External Table method.
You can use this LKM in combination with Oracle or generic SQL IKM.

Chapter 3
Introduction

3-2



3.2 Prerequisites
The following prerequisites are essential for connecting to ADWC environment. Make sure you
go through the following prerequisites, before connecting to ADWC environment.

Note:

The following prerequisites are common for both ODI Studio and ODI Agent.

Wallet Configuration

All connections to ADWC require the use of an Oracle Wallet to manage public key security
credentials. A wallet is a password-protected container used to store authentication and
signing credential, including private key, certificates, and trusted certificates needed by SSL.
Oracle Wallet provides a simple and easy method to manage database credentials across
multiple domains. It allows you to update database credentials by updating the Wallet instead
of having to change individual data source definitions. To connect to the ADWC, applications
need access to the Oracle wallet.

For more details on wallet, refer to Securing Passwords in Application Design section of 
Managing Security for Application Developers in Database Security Guide.

The JDBC properties require a Wallet file location.

• Get the wallet zip file from ADWC wallet location and place it in a local directory accessible
to both ODI Studio and ODI Agent. The default location of the wallet file is
<homedir>/.odi/oracledi/ewallet.For auto login wallet, upload the zip as wallet file.

Java Security configuration

Note:

Steps listed below are not required for JDK1.8.0_u161 or later versions.

Update the file java.security, from the location JDK_HOME\jre\lib\security and add the
following lines of code, as shown below:

• security.provider.10=sun.security.mscapi.SunMSCAPI
• security.provider.11=oracle.security.pki.OraclePKIProvider

security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.ec.SunEC
security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
security.provider.10=sun.security.mscapi.SunMSCAPI
security.provider.11=oracle.security.pki.OraclePKIProvider

Chapter 3
Prerequisites

3-3

https://docs.oracle.com/database/122/DBSEG/managing-security-for-application-developers.htm#DBSEG005


Preparing for OCI Connection

Follow the below steps, to create a OCI Connection :

1. Download and install Oracle Instant Client: Version 12.2.0.1.0. For more instructions, see 
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html

2. After installing the Oracle Instant Client, add its folder in the environment variable called
LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/oracle/
instantclient_12_2

3. Unzip the credential file into a new directory: i.e. /home/oracle/wallet
4. Navigate to the new wallet directory, and modify the sqlnet.ora file as:

• specify the wallet location.

For Example —

WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA = (DIRECTORY=/
home/oracle/wallet)))

• add the following two SSL parameters in the sqlnet.ora file:

SSL_SERVER_DN_MATCH= TRUE 
SSL_VERSION = 1.2 

5. Change or set TNS_ADMIN to the location or directory where the unzipped credential files
are located. For instance, if your wallet file was unzipped to a directory called /home/
oracle/wallet then, set TNS_ADMIN parameter as follows:

TNS_ADMIN=/home/oracle/wallet

Agent Configurations for OCI

Perform the following configurations to use OCI, to connect ODI Agents (Standalone and
J2EE) with ADWC:

• In Local (No Agent), ODI Standalone agent and J2EE Agent, set the instant client folder for
the LD_LIBRARY_PATH parameter before launching ODI Studio. For example, export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/oracle/instantclient_12_2

Note:

The existing value of jars or directories mentioned in the LD_LIBRARY_PATH
parameter should be consistent to the current version of instant client jars . If not,
you may get an error.

• For ODI Standalone Agent, configure the instant client library path in
ODI_ADDITIONAL_JAVA_OPTIONS variable, present in instance.sh/cmd of the standalone
domain. The instance.sh file is located at : <DOMAIN_HOME>config/fmwconfig/
components/ODI/<agent-name>/bin . For Example,

ODI_ADDITIONAL_JAVA_OPTIONS="${ODI_ADDITIONAL_JAVA_OPTIONS} -
Djava.library.path=${ODI_HOME}/../sdk/lib:/home/oracle/instantclient_12_2"

Chapter 3
Prerequisites

3-4

http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html


• For ODI J2EE Agent, set JAVA_OPTIONS parameter to $JAVA_OPTIONS -
Djava.library.path=/home/oracle/instantclient_12_2. For example, export
JAVA_OPTIONS="$JAVA_OPTIONS -Djava.library.path=/home/oracle/
instantclient_12_2"

3.3 Setting up the Topology

Note:

Please note the ADWC data server is created under Oracle Technology.

Setting up the Topology consists of:

• Creating an Oracle Data Server

• Creating an Oracle Physical Schema

3.3.1 Creating an Oracle Data Server
Create a data server for ADWC using the standard procedure, as described in Creating a Data
Server of Administering Oracle Data Integrator. This section details only the properties required
to be set in the data server created under Oracle technology for ADWC:

1. In the Definition tab:

Data Server

• Name : Enter a name for the data server definition.

• Instance / dblink (Data Server) : TNS Alias used for this Oracle instance. It will be
used to identify the Oracle instance when using database links and SQL*Loader.

Connection

• User/Password: Oracle user (with its password), having select privileges on the
source schemas, select/insert privileges on the target schemas and select/insert/object
creation privileges on the work schemas that will be indicated in the Oracle physical
schemas created under this data server.

• JNDI Connection : Select this check-box to configure the JNDI connection settings.
Navigate to the JNDI tab, and fill in the required fields.

Note:

JNDI connection field is not applicable for ADWC.

• Use Credential File

Note:

Please note it is required to use a credential file with ADWC.

Chapter 3
Setting up the Topology

3-5



Select this check box to upload the connection details directly from a pre-configured
wallet file1 or credential zip file. The above JNDI Connection check-box is disabled and
the following fields with respect to Wallet feature appear:

Credential Details

• Credential File: Click the browse icon present beside the Credential File text box, to
browse for the location of the required wallet file containing the connection details.

By default, the credential location is populated to point to the same wallet file
(ewallet.p12) or credential zip file (auto login wallet) that is used for login which is
present in <homedir>/.odi/oracledi/ewallet.You can also browse for any other
location where this credential file is stored with the required database connection
details.

Note:

ODI supervisor can distribute the password protected wallet and credential
zip file to other ODI users.

• Click the Connection Details drop down arrow to choose the required connection
URL from the list of available connection URLs retrieved from tnsnames.ora.

• Upon selecting the required connection URL, JDBC Driver, JDBC URL, Username and
Password fields are disabled and the associated username, password, jdbc URL and
jdbc driver details are auto-populated with credentials retrieved from the pre-
configured wallet file or credential zip file. You can change them only through the list of
connections available in the wallet file (ewallet.p12) or credentials zip (tnsnames.ora).

• Click Save, to save the Data Server details

• Click Test Connection, to test the established connection

2. The ADWC Data Server (using the Oracle Technology) supports JDBC. Fill-in the following
details of the JDBC tab:

ODI users can use a Thin or OCI connection to access ADWC.

Note:

The JDBC tab will be auto populated with the JDBC information contained in the
credential file. You can review the auto-populated information in the JDBC tab
and make edits (only if required).

• JDBC Driver : Name of the JDBC driver used for connecting to the data server.
oracle.jdbc.OracleDriver

• JDBC URL : URL allowing you to connect to the data server.

Format of the JDBC URL: jdbc:oracle:thin:@<network name or ip address of
the Oracle machine>:<port of the Oracle listener (1521)>:<name of the
Oracle instance>
a. To connect an ADWC instance with the Oracle JDBC thin driver, use a database

URL as shown below:

1 In ODI, you can directly upload connection details from a credential file (cwallet.sso) or a password protected wallet file
(ewallet.p12).

Chapter 3
Setting up the Topology

3-6



jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=<hostname
or ipaddress>)(PORT=<port>))(CONNECT_DATA=(SERVICE_NAME=<db service>))
(security=(ssl_server_cert_dn="<certificate_info>")) )
For Example —(description= (address=(protocol=tcps)(port=1522)
(host=129.146.11.169))
(connect_data=(service_name="<dbservice.oracle.com>"))
(security=(ssl_server_cert_dn="<certificate_info>")

b. To connect an ADWC instance with JDBC OCI, use a database URL as shown
below:

jdbc:oracle:oci8:@tnsname , where tnsname is the network name to identify a
server or sid or port combination.

For Example — jdbc:oracle:oci8:@adwc_high
• JDBC Properties: (Wallet Specific Properties)

– oracle.net.ssl_server_dn_match = true
– oracle.net.wallet_location =(SOURCE=(METHOD=file)

(METHOD_DATA=(DIRECTORY=<wallet_directory>))
For Example —WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA
= (DIRECTORY="/network/admin/ewallet")))
This property is used to force the distinguished name (dn) of the server to match
with its service name.

3.3.2 Creating an Oracle Physical Schema

Create an Oracle physical schema for ADWC using the standard procedure, as described in 
Creating a Physical Schema in Administering Oracle Data Integrator.

Create a logical schema for this physical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

3.4 Creating and Reverse-Engineering an Oracle Model
This section contains the following topics:

• Create an Oracle Model

• Reverse Engineer an Oracle Model

3.4.1 Create an Oracle Model
Create an Oracle Model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator.

3.4.2 Reverse Engineer an Oracle Model
An Oracle model for ADWC supports both Standard reverse-engineering - which uses only the
abilities of the JDBC driver - and Customized reverse-engineering, which uses a RKM to
retrieve the structure of the objects directly from the Oracle dictionary.
In most of the cases, consider using the standard JDBC reverse engineering for starting.
Standard reverse-engineering with Oracle retrieves tables, views, columns and references.

Chapter 3
Creating and Reverse-Engineering an Oracle Model

3-7



Consider switching to customized reverse-engineering for retrieving more metadata. Oracle
customized reverse-engineering retrieves the table and view structures, including columns,
indexes, check constraints, synonyms, and references.

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on an Oracle model for ADWC, use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration Projects
with Oracle Data Integrator.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on Oracle model for ADWC with a RKM, use
the usual procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator.

This section details only the fields specific to the Oracle technology. In the Reverse Engineer
tab of the Oracle Model, select the KM — RKM Oracle.<project name>.

3.5 Designing a Mapping
You can use Oracle ADWC as a source or a target of a mapping. It is also possible to create
ETL-style mappings based on the Oracle technology for ADWC.

The recommendations in this section help in the selection of the KM for different situations
concerning an Oracle Database Server.

• Loading Data

• Extracting data

3.5.1 Loading data
ADWC can be used as a source or target of a mapping. The choice of LKM used in the
mappings for loading Knowledge Module, to load data between Oracle and another type of
data server determines the working and performance of a mapping.

The following KMs implement optimized methods for loading data from an Oracle database to
a target database which is ADWC. Our primary goal is to load data into ADWC. In addition to
these KMs, you can also use the Generic SQL KMs or the KMs specific to the other
technologies involved.

• Loading Data using Oracle KMs

• Loading Data using SQL* Loader KMs

• Loading Data directly into ADWC

• Loading Oracle Object Storage files into ADWC

3.5.1.1 Loading Data using Oracle KMs
You can load data into Oracle tables using the following Oracle KMs by designing a mapping
where ADWC Oracle data stores can be the target. KMs that can be used for mapping are:

• LKM SQL to Oracle (Built-In)

• IKM Oracle Insert

• IKM Oracle Update

• IKM Oracle Merge

Chapter 3
Designing a Mapping

3-8



• IKM Oracle Multi-Insert

3.5.1.2 Loading Data using SQL* Loader KMs
You can also load data into Oracle tables for ADWC using the SQL* Loader KM. LKM File to
Oracle (SQLLDR) loads data into Oracle tables from files. You can design a mapping that uses
the data stores for an Oracle Schema for ADWC as the target of the mapping, where the data
is loaded using the SQL*Loader KM.

Connection Setup for SQL* Loader KMs

Make sure your tnsnames.ora and sqlnet.ora properties are configured to use a Wallet file.

For Example:

1. sqlnet.ora :

WALLET_LOCATION=(SOURCE = (METHOD = file)
(METHOD_DATA = (DIRECTORY="<wallet_directory>")))
SSL_SERVER_DN_MATCH=yes

2. tnsnames.ora :

• <db_name>_DB_high=(description=(address=(protocol=tcps)(port=<port>)
(host=<hostname or ipaddress>))(connect_data=(service_name=<db_service>))
(security=(ssl_server_cert_dn="<certificate_info>")) )

• <db_name>_DB_medium=(description=(address=(protocol=tcps)(port=<port>)
(host=<hostname or ipaddress>))(connect_data=(service_name=<db_service>))
(security=(ssl_server_cert_dn="<certificate_info>")) )

• <db_name>_DB_low=(description=(address=(protocol=tcps)(port=<port>)
(host=<hostname or ipaddress>))(connect_data=(service_name=<db_service>))
(security=(ssl_server_cert_dn="<certificate_info>")) )

For more details, refer to Use of an External Password Store to Secure Passwords section of
Database Security Guide.

3.5.1.3 Loading Data directly into ADWC
You can use the following knowledge modules for loading data directly into Oracle ADWC.

• LKM SQL to ADWC External Table

• LKM SQL to ADWC Copy

• LKM SQL to ADWC Copy Direct

• LKM File to ADWC External Table

• LKM File to ADWC Copy

• LKM File to ADWC Copy Direct

• LKM Oracle to ADWC Datapump

For loading data directly into ADWC set the Source of the mapping to be File/HDFS or SQL
technology such as Oracle. Target of the mapping has to be Oracle technology, more
specifically ADWC database. Object storage staging area is used to temporary store files and
this is defined by setting KM option TEMP_OBJECT_STORAGE_SCHEMA(logical schema). Some
properties such as user/password are retrieved from Oracle Object Storage data server
attached to TEMP_OBJECT_STORAGE_SCHEMAlogical schema. If you need to create temporary local

Chapter 3
Designing a Mapping

3-9

https://docs.oracle.com/database/122/DBSEG/managing-security-for-application-developers.htm#DBSEG136


file in case of SQL source, you have to define its location as TEMP_FILE_SCHEMAKM option. If
you use transform components, they can be included in the source execution unit in case of
SQL as a source and/or on the target ADWC execution unit. File, as a source does not support
source transformations. Direct Copy KMs do not support transformations on the target.

3.5.1.3.1 LKM SQL to ADWC External Table
This LKM helps in loading data from SQL source to Oracle ADWC using Oracle Object Storage
as intermediate staging. The result from SQL query is first loaded into Oracle Object Storage
staging area and then External Table method is used to pull data from Oracle Object Storage.
You must set the TEMP_OBJECT_STORAGE_SCHEMAand TEMP_FILE_SCHEMA KM options to
designate temporary storage locations.

You have to use this LKM in combination with Oracle or generic SQL IKM.

The KM invokes the ODI tool OdiSqlUnload to unload SQL query data to a local file.

For Example –

OdiSqlUnload "-FILE=/tmp/odi_e3a779f8-ddd3-49d2-9575-
a9f3c675b0f6_FILTER_AP.txt" "-DRIVER=oracle.jdbc.OracleDriver" "-
URL=jdbc:oracle:thin:@//slc03sap:1521/flex" "-USER=system" "-
PASS=<@=odiRef.getInfo("SRC_ENCODED_PASS") @>" "-FILE_FORMAT=VARIABLE" "-
FIELD_SEP=," "-ROW_SEP=" "-DATE_FORMAT=MM-DD-YYYY" "-
CHARSET_ENCODING=ISO8859_1"

SELECT
  PER.PID AS PID ,
  PER.PNAME AS PNAME 
FROM
  UT_TD_D_1.PERSON PER
WHERE (PER.PID = 2)

The KM then calls ODI tool OdiObjectStorageUpload to upload the local file to Oracle Object
Storage.

OdiObjectStorageUpload "-TRG_LOGICAL_SCHEMA=Object Storage - SRC1" "-
SRC_LOGICAL_SCHEMA=FILE_GENERIC_TMP" "-FILE_NAMES_FILTER=odi_e3a779f8-
ddd3-49d2-9575-a9f3c675b0f6_FILTER_AP.txt" "-OVERWRITE=true"

The KM creates a temporary staging external table to pull the data from Oracle Object Storage.

BEGIN
  dbms_cloud.create_external_table(
    table_name =>'C$_0FILTER_EXT',
    credential_name =>'ODI',
    file_uri_list =>'https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/dwcsdemo/odi_bojana/odi_e3a779f8-ddd3-49d2-9575-
a9f3c675b0f6_FILTER_AP.txt',
    column_list => 'PID NUMBER(2), PNAME VARCHAR2(20)',
    format => json_object(
    'type' VALUE 'CSV',
    'skipheaders' VALUE '0',
    'dateformat' VALUE 'AUTO')

Chapter 3
Designing a Mapping

3-10



 );
END;

The KM optionally creates the credential object to connect to Object Storage, but can also re-
use an existing one.

  dbms_cloud.create_credential(
    credential_name => 'ODI_FLEX',
    username => 'tenant15',
    password => 'xxxxxxxx'
  );
END;

Note:

LKM SQL to ADWC External Table has two different KM options for formatting date/
time datatypes:

1. UNLOAD_DATE_FORMAT– Use this KM option while unloading SQL query into text
file. The formatting syntax is in conform to Java Date and Time Patterns.

2. DATE_FORMAT– Use this KM option while loading object storage text file into
ADWC. The formatting syntax is in conform to Oracle database syntax for
formatting DATE datatype.

If you are loading into TIMESTAMP column, use Advanced option ADD_FORMAT_PROPERTIESto add
the timestampformat property. It is very important to synchronize UNLOAD_DATE_FORMATand
DATE_FORMAT/timestampformatto use identical format settings, even though they are using
different syntax.

Here is an example of loading from source TIMESTAMP column into target TIMESTAMP
column.

UNLOAD_DATE_FORMAT = yyyy-MM-dd
UNLOAD_TIMESTAMP_FORMAT = HH:mm:ss.SSS
ADD_FORMAT_PROPERTIES = 'timestampformat' VALUE 'YYYY-MM-DD HH24:MI:SS.FF3’

Also, make sure that TIMESTAMP column precision allows to store the given format.

KM Options
This KM has the following options:

• CREDENTIAL_NAME — It provides Credential name to connect to Oracle Object Storage. The
default value is ODI.

• CREATE_CREDENTIAL- It creates new credentials. If set to False, ODI reuses the existing
credentials.

• GENERATE_FIELD_LIST — If this KM option is set to False, then the field_list clause is
skipped and the default settings of ORACLE_LOADER access driver is applied.

Chapter 3
Designing a Mapping

3-11



Note:

You have to always generate the field_list clause as it required by Fixed file
format.

• TEMP_OBJECT_STORAGE_SCHEMA — It specifies the name of logical schema defining the
location of the temporary file that will be stored in Oracle Object Storage staging area. This
must be an Oracle Object Storage technology logical schema.

• CLEANUP_TEMPORARY_OBJECTS— Set this property to True, if you want temporary objects to
be automatically cleaned up.

• ADD_COMPRESSION — It compresses data before loading. Set this property to True, if you
want to compress source data before loading into Oracle Object Storage. Additional KM
options COMPRESSION_TYPEand KEEP_SOURCE_FILESdefine compression preferences.

• COMPRESSION_TYPE- It allows you to configure the required compression type. Select the
type of compression you want to apply on source data before loading into Oracle Object
Storage.

• KEEP_SOURCE_FILES — Use this KM option to retain the original source files after
compression. Set this property to True (by default), if you wish to compress the target files
and retain the original files.

Note:

gzip supports KEEP_SOURCE_FILESoption, starting from version 1.6 only.

Formatting

• DELIMITED_FILE_FORMAT — It specifies delimited File Format and it can be CSV (default) or
common delimited format known to ORACLE_LOADER access driver. You can use this
KM option only if the source datastore File Format property is set to Delimited.

• COMPRESSION — It specifies the compression method of the source file. There are 3
possible compression types or auto. Empty value implies no compression and AUTO
implies compression type is auto-detected.

• DATE_FORMAT - It helps to set specific date format. The default format option AUTO
searches for the following formats:

J
MM-DD-YYYYBC
MM-DD-YYYY
YYYYMMDD HHMISS
YYMMDD HHMISS
YYYY.DDD
YYYY-MM-DD

• REJECT_LIMIT — The query helps to display an error message after the specified number
of rows are rejected. Default value is zero.

• CONVERSION_ERRORS — It specifies the processing conversion errors. If any row throws an
error because of a conversion error, the related columns are stored as null or the row is
rejected.

Chapter 3
Designing a Mapping

3-12



• TRIM_SPACES — It helps to trim the leading and trailing spaces of the fields. Select the
required trim option from the provided list of trim options.

• IGNORE_BLANK_LINES — If set to True, the blank lines are ignored without throwing any
error.

• IGNORE MISSING COLUMNS — If there are more columns in the field_list than the source
files, the extra columns will be stored as null.

• TRUNCATE_COLUMNS — If the data in a file is too long for a field, then this option will truncate
the value of the field rather than rejecting the row.

Advanced

• ADD_FORMAT_PROPERTIES — This option allows adding custom format properties.

Use the following syntax: '<prop1>' VALUE '<value1>', '<prop2>' VALUE '<value2>' ...

• OVERWRITE_FIELD_LIST — This option gives the possibility to redefine the source file field
definitions, where ODI does not have enough information about your input data. The
details that you enter here is used as field_list parameter of
dbms_cloud.create_external_table function call.

For more details, refer to DBMS_CLOUD package documentation for more information.

Cleanup

• CLEANUP_EXTERNAL_TABLE— Set this property to True, if you want the external table to be
automatically cleaned up at the end of the every execution.

• CLEANUP_CREDENTIAL — Set this property to True, if you want the credential object to be
automatically cleaned up at the end of the every execution. Cleanup will happen only if
CREATE_CREDENTIALoption is also set to True.

SQL Unload Options

• TEMP_FILE_SCHEMA — It specifies the name of logical schema defining the location of the
temporary file that is stored before uploading to Oracle Object Storage. This must be a File
technology logical schema. The temporary file is stored on local file system where the ODI
agent is running.

• UNLOAD_DATE_FORMAT— It specifies the output format used for date datatypes. This format
follows Java date format standards.

• UNLOAD_TIMESTAMP_FORMAT— It specifies the output format used for time datatypes. This
format follows Java time format standards.

• CHARSET_ENCODING — Use this for character set encoding.

• FETCH_SIZE — It denotes the number of rows (records read) requested by ODI agent on
each communication with the data server.

3.5.1.3.2 LKM SQL to ADWC Copy
This LKM helps in loading data from SQL source to Oracle ADWC using Oracle Object Storage
as intermediate staging. The result from SQL query is first loaded into Oracle Object Storage
staging area. Then we use dbms_cloud.copy_data () to load data from Oracle Object Storage
into staging table on ADWC. The user must set TEMP_OBJECT_STORAGE_SCHEMA and
TEMP_FILE_SCHEMA KM options to designate temporary storage locations.

You can use this LKM in combination with Oracle or generic SQL IKM.

OdiSqlUnloadand OdiObjectStorageUpload follows the same steps as described in LKM SQL
to ADWC External Table. LKM SQL to ADWC Copy is then creating a temporary staging table

Chapter 3
Designing a Mapping

3-13

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/dbmscloud-reference.html#GUID-52C9974C-D95E-4E41-AFBD-0FC4065C029A


on ADWC execution unit and pulls the data from Object Store into it using
dbms_cloud.copy_data()function.

For Example

create table STAR.C$_0FILTER
(
  PID NUMBER(2),
  PNAME VARCHAR2(20)
)
BEGIN
  dbms_cloud.copy_data(
    schema_name => 'STAR',
    table_name =>'C$_0FILTER',
    credential_name =>'ODI',
    file_uri_list =>'https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/dwcsdemo/odi_bojana/odi_d0b58fb8-
bde5-4ce5-89da-0d258c98380e_FILTER_AP.txt',
    format => json_object(
    'type' VALUE 'CSV',
    'skipheaders' VALUE '0',
    'dateformat' VALUE 'AUTO')
 );
END;

The KM optionally creates the credential object to connect to Oracle Object Storage, but can
also re-use an existing one:

BEGIN  
  dbms_cloud.create_credential(
    credential_name => 'ODI_FLEX',
    username => 'tenant15',
    password => 'xxxxxxxx'
  );
END;

Note:

LKM SQL to ADWC Copy has two different KM options for formatting date/time
datatypes:

• UNLOAD_DATE_FORMAT- Use this KM option while unloading SQL query into text
file. The formatting syntax is conform to Java Date Patterns.

• DATE_FORMAT — Use this KM option while loading object storage text file into
ADWC. The formatting syntax is conform to Oracle database syntax for
formatting DATE datatype.

If you are loading into TIMESTAMP column use Advanced option ADD_FORMAT_PROPERTIES to
add timestampformat property. It is very important to synchronize UNLOAD_DATE_FORMATand
DATE_FORMAT/timestampformatto use identical format settings, even though they are using
different syntax.

Chapter 3
Designing a Mapping

3-14



Here is an example of loading from source TIMESTAMP column into target TIMESTAMP
column.

• UNLOAD_DATE_FORMAT = yyyy-MM-dd HH:mm:ss.SSS
• ADD_FORMAT_PROPERTIES = 'timestampformat' VALUE 'YYYY-MM-DD HH24:MI:SS.FF3'

Also, make sure that TIMESTAMP column precision allows the given format to be stored.

KM Options
This KM has the following KM options:

• CREDENTIAL_NAME — It provides Credential name to connect to Oracle Object Storage. The
default value is ODI.

• CREATE_CREDENTIAL — It creates new credentials. If set to False, ODI reuses the existing
credentials.

• GENERATE_FIELD_LIST — If this KM option is set to False, then the field_list clause is
skipped and the default settings of ORACLE_LOADER access driver is applied.

Note:

You have to always generate the field_list clause as it is required by Fixed file
format.

• TEMP_OBJECT_STORAGE_SCHEMA — It specifies the name of logical schema defining the
location of the temporary file that will be stored in Object Storage staging area. This must
be an Oracle Object Storage technology logical schema.

• ADD_COMPRESSION — It compresses data before loading. Set this property to True, if you
want to compress source data before loading into Oracle Object Storage. Additional KM
options COMPRESSION_TYPEand KEEP_SOURCE_FILESdefine compression preferences.

• COMPRESSION_TYPE — It allows you to configure the required compression type. Select the
type of compression you want to apply on source data before loading into Oracle Object
Storage.

• KEEP_SOURCE_FILES — Use this KM option to retain the original source files after
compression. Set this property to True (by default), if you wish to compress the target files
and retain the original files.

Note:

gzip supports KEEP_SOURCE_FILES option, starting from version 1.6 only.

Formatting

• DELIMITED_FILE_FORMAT — It specifies delimited File Format and it can be CSV (default) or
common delimited format known to ORACLE_LOADER access driver. You can use this
KM option only if the source datastore File Format property is set to Delimited.

• COMPRESSION — It specifies the compression method of the source file. There are 3
possible compression types or auto. Empty value implies no compression and AUTO
implies compression type is auto-detected.

Chapter 3
Designing a Mapping

3-15



• DATE_FORMAT — It helps to set specific date format. The default format option AUTO
searches for the following formats:

J
MM-DD-YYYYBC
MM-DD-YYYY
YYYYMMDD HHMISS
YYMMDD HHMISS
YYYY.DDD
YYYY-MM-DD

• REJECT_LIMIT — The query helps to display an error message after the specified number
of rows are rejected. Default value is zero.

• CONVERSION_ERRORS — It specifies the processing conversion errors. If any row throws an
error because of a conversion error, the related columns are stored as null or the row is
rejected.

• TRIM_SPACES — It helps to trim the leading and trailing spaces of the fields. If set to True, it
trims the specified spaces.

• IGNORE_BLANK_LINES — If set to True, the blank lines are ignored without throwing any
error.

• IGNORE MISSING COLUMNS — If there are more columns in the field_list than the source
files, the extra columns will be stored as null.

• TRUNCATE_COLUMNS — If the data in a file is too long for a field, then this option will truncate
the value of the field rather than rejecting the row.

Advanced

• ADD_FORMAT_PROPERTIES - This option allows adding custom format properties.

Use the following syntax: <'prop1>' VALUE '<value1>', '<prop2>' VALUE '<value2>' ...

• OVERWRITE_FIELD_LIST — This option gives the possibility to redefine the source file field
definitions, where ODI does not have enough information about your input data. The
details that you enter here is used as field_listparameter of
dbms_cloud.create_external_tablefunction call.

For more details, refer to DBMS_CLOUD package documentation for more information.

Cleanup

• CLEANUP_TEMPORARY_OBJECTS — Set this property to True, if you want temporary objects to
be automatically cleaned up.

• CLEANUP_CREDENTIAL — Set this property to True, if you want the credential object to be
automatically cleaned up at the end of the every execution. Cleanup will happen only if
CREATE_CREDENTIALoption is also set to True.

SQL Unload Options

• TEMP_FILE_SCHEMA — It specifies the name of logical schema defining the location of the
temporary file that is stored before uploading to Object Storage. This must be a File
technology logical schema. The temporary file is stored on local file system where the ODI
agent is running.

• UNLOAD_DATE_FORMAT — It specifies the output format used for date datatypes. This format
follows Java date/time format standards.

Chapter 3
Designing a Mapping

3-16

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/dbmscloud-reference.html#GUID-52C9974C-D95E-4E41-AFBD-0FC4065C029A


• UNLOAD_TIMESTAMP_FORMAT— It specifies the output format used for time datatypes. This
format follows Java time format standards.

• CHARSET_ENCODING— Use this for character set encoding.

• FETCH_SIZE — It denotes the number of rows (records read) requested by ODI agent on
each communication with the data server.

3.5.1.3.3 LKM SQL to ADWC Copy Direct
This LKM loads data from SQL source to Oracle ADWC using Oracle Object Storage as
intermediate staging. The result from SQL query is first loaded into Oracle Object Storage
staging area. Then we use dbms_cloud.copy_data () function to load data from Oracle Object
Storage directly into ADWC target table. All target columns are loaded irrespective of whether
they are mapped or not. Only transformations on source are supported. The user must set
TEMP_OBJECT_STORAGE_SCHEMA and TEMP_FILE_SCHEMA KM options to designate temporary
storage locations.

You can use this LKM as a standalone KM as you do not need any IKM.

OdiSqlUnloadand OdiObjectStorageUploadsteps are the same as described in LKM SQL to
ADWC External Table. LKM SQL to ADWC Copy Direct pulls the data from Object Store and
loads data directly into target using dbms_cloud.copy_data() function.

For Example

EGIN
  dbms_cloud.copy_data(
    schema_name => 'STAR',
    table_name =>'PERSON',
    credential_name =>'ODI',
    file_uri_list =>'https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/dwcsdemo/odi_bojana/
odi_16a97fd6-8a61-4303-8f83-81988222b8cb_FILTER_AP.txt',
    format => json_object(
    'type' VALUE 'CSV',
    'skipheaders' VALUE '0',
    'dateformat' VALUE 'AUTO')
 );
END;

The KM optionally creates the credential object to connect to Object Storage, but can also re-
use an existing one.

BEGIN  

  dbms_cloud.create_credential(
    credential_name => 'ODI_FLEX',
    username => 'tenant15',
    password => 'xxxxxxxx'
  );

END;

Chapter 3
Designing a Mapping

3-17



Note:

LKM SQL to ADWC Copy Direct has two different KM options for formatting date/time
Data types:

• UNLOAD_DATE_FORMAT is used while unloading SQL query into text file. The formatting
syntax is conform to Java Date and Time Patterns.

• DATE_FORMATis used while loading object storage text file into ADWC. The formatting
syntax is conform to Oracle database syntax for formatting DATE data type.

If you are loading into TIMESTAMPcolumn use Advanced option ADD_FORMAT_PROPERTIESto add
timestampformatproperty. It is very important to synchronize UNLOAD_DATE_FORMATand
DATE_FORMAT/timestampformatto use identical format settings, even though they are using
different syntax.

Here is an example of loading from source TIMESTAMP column into target TIMESTAMP
column.

UNLOAD_DATE_FORMAT = yyyy-MM-dd HH:mm:ss.SSS
ADD_FORMAT_PROPERTIES = 'timestampformat' VALUE 'YYYY-MM-DD HH24:MI:SS.FF3'

Also, make sure that TIMESTAMPcolumn precision allows for the given format to be stored.

KM Options
This KM has the following options:

• CREDENTIAL_NAME— It provides Credential name to connect to Oracle Object Storage. The
default value is ODI.

• CREATE_CREDENTIAL— It creates new credentials. If set to False, ODI reuses the existing
credentials.

• GENERATE_FIELD_LIST— If this KM option is set to False, then the field_list clause is
skipped and the default settings of ORACLE_LOADERaccess driver is applied.

Note:

You have to always generate the field_list clause as it is required by Fixed file
format.

• TEMP_OBJECT_STORAGE_SCHEMA— It specifies the name of logical schema defining the
location of the temporary file that will be stored in Oracle Object Storage staging area. This
must be an Oracle Object Storage technology logical schema.

• CLEANUP_TEMPORARY_OBJECTS — Set this property to True, if you want temporary objects to
be automatically cleaned up.

• ADD_COMPRESSION- It compresses data before loading. Set this property to True, if you want
to compress source data before loading into Oracle Object Storage. Additional KM options
COMPRESSION_TYPEand KEEP_SOURCE_FILESdefine compression preferences.

• COMPRESSION_TYPE- It allows you to configure the required compression type. Select the
type of compression you want to apply on source data before loading into Oracle Object
Storage.

Chapter 3
Designing a Mapping

3-18



• KEEP_SOURCE_FILES— Use this KM option to retain the original source files after
compression. Set this property to True (by default), if you wish to compress the target files
and retain the original files.

Note:

gzip supports KEEP_SOURCE_FILESoption, starting from version 1.6 only.

Formatting

• DELIMITED_FILE_FORMAT- It specifies delimited File Format and it can be CSV (default) or
common delimited format known to ORACLE_LOADER access driver. You can use this
KM option only if the source datastore File Format property is set to Delimited.

• COMPRESSION — It specifies the compression method of the source file. There are 3
possible compression types or auto. Empty value implies no compression and AUTO
implies compression type is auto-detected.

• DATE_FORMAT — It helps to set specific date format. The default format option AUTO
searches for the following formats:

J
MM-DD-YYYYBC
MM-DD-YYYY
YYYYMMDD HHMISS
YYMMDD HHMISS
YYYY.DDD
YYYY-MM-DD

• REJECT_LIMIT — The query helps to display an error message after the specified number
of rows are rejected. Default value is zero.

• CONVERSION_ERRORS — It specifies the processing conversion errors. If any row throws an
error because of a conversion error, the related columns are stored as null or the row is
rejected.

• TRIM_SPACES — It helps to trim the leading and trailing spaces of the fields. If set to True it
trims the specified spaces.

• IGNORE_BLANK_LINES — If set to True, the blank lines are ignored without throwing any
error.

• IGNORE MISSING COLUMNS — If there are more columns in the field_list than the source
files, the extra columns will be stored as null.

• TRUNCATE_COLUMNS — If the data in a file is too long for a field, then this option will truncate
the value of the field rather than rejecting the row.

Advanced

• ADD_FORMAT_PROPERTIES — This option allows adding custom format properties.

Use the following syntax:'<prop1>' VALUE '<value1>', '<prop2>' VALUE
'<value2>' ...

• OVERWRITE_FIELD_LIST — This option gives the possibility to redefine the source file field
definitions, where ODI does not have enough information about your input data. The
details that you enter here is used as field_list parameter of
dbms_cloud.create_external_tablefunction call.

Chapter 3
Designing a Mapping

3-19



For more details, refer to DBMS_CLOUD package documentation for more information.

Target

• CREATE_TARG_TABLE— It helps you to create target table. Set this option to True, if you want
to create target table before loading.

• TRUNCATE_TARG_TABLE— It helps to truncate target table. Set this KM option to True if you
want to truncate target table before loading it.

• DELETE_TARG_TABLE— It allows you to delete the target table. Set this KM option to True if
you want to delete data from target table before loading.

Cleanup

• CLEANUP_CREDENTIAL — Set this property to True, if you want the credential object to be
automatically cleaned up at the end of the every execution. Cleanup will happen only if
CREATE_CREDENTIALoption is also set to True.

SQL Unload Options

• TEMP_FILE_SCHEMA— It specifies the name of logical schema defining the location of the
temporary file that is stored before uploading to Object Storage. This must be a File
technology logical schema. The temporary file is stored on local file system where the ODI
agent is running.

• UNLOAD_DATE_FORMAT— It specifies the output format used for date data types. This format
follows Java date/time format standards.

• UNLOAD_TIMESTAMP_FORMAT— It specifies the output format used for time data types. This
format follows Java time format standards.

• CHARSET_ENCODING— Use this for character set encoding.

• FETCH_SIZE- It denotes the number of rows (records read) requested by ODI agent on
each communication with the data server.

3.5.1.3.4 LKM File to ADWC External Table
This LKM helps to load data from local or HDFS file source to Oracle ADWC using Oracle
Object Storage as intermediate staging. The source file is first loaded into Oracle Object
Storage staging area. Then we use External Table method to pull data from Object Storage.
You must set TEMP_OBJECT_STORAGE_SCHEMA KM option to designate temporary
storage location.

You have to use this LKM in combination with Oracle or generic SQL IKM.

The KM invokes ODI tool OdiObjectStorageUpload to upload the local file to Object Storage.

For Example

OdiObjectStorageUpload "-TRG_LOGICAL_SCHEMA=Object Storage - SRC1" "-
SRC_LOGICAL_SCHEMA=FILE_GENERIC_TMP" "-
FILE_NAMES_FILTER=person_no_header.csv" "-OVERWRITE=true"

The KM then creates a temporary staging external table to pull the data from Oracle Object
Storage.

BEGIN
  dbms_cloud.create_external_table(
    table_name =>'C$_0PER_EXT',

Chapter 3
Designing a Mapping

3-20

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/dbmscloud-reference.html#GUID-52C9974C-D95E-4E41-AFBD-0FC4065C029A


    credential_name =>'ODI',
    file_uri_list =>'https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/dwcsdemo/odi_bojana/person_no_header.csv',
    column_list => 'PID NUMBER(2,0), PNAME VARCHAR2(20)',
    format => json_object(
    'type' VALUE 'CSV',
    'skipheaders' VALUE '0',
    'dateformat' VALUE 'AUTO')
 );
END;

The KM optionally creates the credential object to connect to Oracle Object Storage, but can
also re-use an existing one.

BEGIN  
  dbms_cloud.create_credential(
    credential_name => 'ODI_FLEX',
    username => 'tenant15',
    password => 'xxxxxxxx'
  );
END;

KM Options

This KM has the following options:

• CREDENTIAL_NAME — It provides Credential name to connect to Oracle Object Storage. The
default value is ODI.

• CREATE_CREDENTIAL — It creates new credentials. If set to False, ODI reuses the existing
credentials.

• GENERATE_FIELD_LIST — If this KM option is set to False, then the field_list clause is
skipped and the default settings of ORACLE_LOADER access driver is applied.

Note:

You have to always generate the field_list clauseas it is required by Fixed file
format.

• TEMP_OBJECT_STORAGE_SCHEMA — It specifies the name of logical schema defining the
location of the temporary file that will be stored in Object Storage staging area. This must
be an Oracle Object Storage technology logical schema.

• ADD_COMPRESSION — It compresses data before loading. Set this property to True, if you
want to compress source data before loading into Oracle Object Storage. Additional KM
options COMPRESSION_TYPEand KEEP_SOURCE_FILES define compression preferences.

• COMPRESSION_TYPE — It allows you to configure the required compression type. Select the
type of compression you want to apply on source data before loading into Oracle Object
Storage.

• KEEP_SOURCE_FILES — Use this KM option to retain the original source files after
compression. Set this property to True (by default), if you wish to compress the target files
and retain the original files.

Chapter 3
Designing a Mapping

3-21



Note:

gzip supports KEEP_SOURCE_FILES option, starting from version 1.6 only.

Formatting

• DELIMITED_FILE_FORMAT — It specifies delimited File Format and it can be CSV (default)
or common delimited format known to ORACLE_LOADERaccess driver. You can use this KM
option only if the source datastore File Format property is set to Delimited.

• COMPRESSION — It specifies the compression method of the source file. There are 3
possible compression types or auto. Empty value implies no compression and AUTO
implies compression type is auto-detected.

• DATE_FORMAT — It helps to set specific date format. The default format option AUTO
searches for the following formats:

J
MM-DD-YYYYBC
MM-DD-YYYY
YYYYMMDD HHMISS
YYMMDD HHMISS
YYYY.DDD
YYYY-MM-DD

• REJECT_LIMIT — The query helps to display an error message after the specified number
of rows are rejected. Default value is zero.

• CONVERSION_ERRORS — It specifies the processing conversion errors. If any row throws an
error because of a conversion error, the related columns are stored as null or the row is
rejected.

• TRIM_SPACES — It helps to trim the leading and trailing spaces of the fields. If set to True, it
trims the specified spaces.

• IGNORE_BLANK_LINES — It set to True the blank lines are ignored without throwing any
error.

• IGNORE MISSING COLUMNS — If there are more columns in the field_list than the source
files, the extra columns will be stored as null.

• TRUNCATE_COLUMNS — If the data in a file is too long for a field, then this option will truncate
the value of the field rather than rejecting the row.

Advanced

• ADD_FORMAT_PROPERTIES — This option allows adding custom format properties.

Use the following syntax: '<prop1>' VALUE '<value1>', '<prop2>' VALUE
'<value2>' ...

• OVERWRITE_FIELD_LIST — This option gives the possibility to redefine the source file field
definitions, where ODI does not have enough information about your input data. The
details that you enter here is used as field_listparameter of
dbms_cloud.create_external_tablefunction call.

For more details, refer to DBMS_CLOUD package documentation for more information.

Cleanup

Chapter 3
Designing a Mapping

3-22

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/dbmscloud-reference.html#GUID-52C9974C-D95E-4E41-AFBD-0FC4065C029A


• CLEANUP_TEMPORARY_OBJECTS — Set this property to True, if you want temporary objects to
be automatically cleaned up.

• CLEANUP_CREDENTIAL — Set this property to True, if you want the credential object to be
automatically cleaned up at the end of the every execution. Cleanup will happen only if
CREATE_CREDENTIAL option is also set to True.

3.5.1.3.5 LKM File to ADWC Copy
This LKM helps to load data from local or HDFS file source to Oracle ADWC using Oracle
Object Storage as intermediate staging. The source file is first loaded into Oracle Object
Storage staging area. Then we use dbms_cloud.copy_data()to load data from Oracle Object
Storage into staging table on ADWC. You must set TEMP_OBJECT_STORAGE_SCHEMA KM option to
designate temporary storage location.

You can use this LKM in combination with Oracle or generic SQL IKM.

OdiObjectStorageUpload happens similar to LKM File to ADWC External Table.

LKM File to ADWC Copy then creates a temporary staging table on ADWC execution unit and
pulls the data from Object Store into it using dbms_cloud.copy_data()function.

For Example

create table STAR.C$_0PER
(  PID NUMBER(2,0),
   PNAME VARCHAR2(20)
)
BEGIN
  dbms_cloud.copy_data(
    schema_name => 'STAR',
    table_name =>'C$_0PER',
    credential_name =>'ODI',
    file_uri_list =>'https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/dwcsdemo/odi_bojana/person_no_header.csv',
    format => json_object(
    'type' VALUE 'CSV',
    'skipheaders' VALUE '0',
    'dateformat' VALUE 'AUTO')
 );
END;

The KM optionally creates the credential object to connect to Object Storage, but can also re-
use an existing one.

BEGIN  

  dbms_cloud.create_credential(
    credential_name => 'ODI_FLEX',
    username => 'tenant15',
    password => 'xxxxxxxx'
  );
END;

Chapter 3
Designing a Mapping

3-23



KM Options

This KM has the following options:

• CREDENTIAL_NAME — It provides Credential name to connect to Oracle Object Storage. The
default value is ODI.

• CREATE_CREDENTIAL — It creates new credentials. If set to False, ODI reuses the existing
credentials.

• GENERATE_FIELD_LIST — If this KM option is set to False, then the field_list clause is
skipped and the default settings of ORACLE_LOADER access driver is applied.

Note:

You have to always generate the field_list clause as it is required by Fixed file
format.

• TEMP_OBJECT_STORAGE_SCHEMA — It specifies the name of logical schema defining the
location of the temporary file that will be stored in Object Storage staging area. This must
be an Oracle Object Storage technology logical schema.

• ADD_COMPRESSION — It compresses data before loading. Set this property to True, if you
want to compress source data before loading into Oracle Object Storage. Additional KM
options COMPRESSION_TYPEand KEEP_SOURCE_FILESdefine compression preferences.

• COMPRESSION_TYPE — It allows you to configure the required compression type. Select the
type of compression you want to apply on source data before loading into Oracle Object
Storage.

• KEEP_SOURCE_FILES — Use this KM option to retain the original source files after
compression. Set this property to True (by default), if you wish to compress the target files
and retain the original files.

Note:

gzip supports KEEP_SOURCE_FILES option, starting from version 1.6 only.

Formatting

• DELIMITED_FILE_FORMAT — It specifies delimited File Format and it can be CSV (default)
or common delimited format known to ORACLE_LOADERaccess driver. You can use this KM
option only if the source datastore File Format property is set to Delimited.

• COMPRESSION — It specifies the compression method of the source file. There are 3
possible compression types or auto. Empty value implies no compression and AUTO
implies compression type is auto-detected.

• DATE_FORMAT — It helps to set specific date format. The default format option AUTO
searches for the following formats:

J
MM-DD-YYYYBC
MM-DD-YYYY
YYYYMMDD HHMISS
YYMMDD HHMISS

Chapter 3
Designing a Mapping

3-24



YYYY.DDD
YYYY-MM-DD

• REJECT_LIMIT — The query helps to display an error message after the specified number
of rows are rejected. Default value is zero.

• CONVERSION_ERRORS — It specifies the processing conversion errors. If any row throws an
error because of a conversion error, the related columns are stored as null or the row is
rejected.

• TRIM_SPACES — It helps to trim the leading and trailing spaces of the fields. If set to True, it
trims the specified spaces.

• IGNORE_BLANK_LINES — If set to True, the blank lines are ignored without throwing any
error.

• IGNORE MISSING COLUMNS — If there are more columns in the field_list than the source
files, the extra columns will be stored as null.

• TRUNCATE_COLUMNS — If the data in a file is too long for a field, then this option will truncate
the value of the field rather than rejecting the row.

Advanced

• ADD_FORMAT_PROPERTIES — This option allows adding custom format properties.

Use the following syntax: '<prop1>' VALUE '<value1>', '<prop2>' VALUE
'<value2>' ...

• OVERWRITE_FIELD_LIST — This option gives the possibility to redefine the source file field
definitions, where ODI does not have enough information about your input data. The
details that you enter here is used as field_list parameter of
dbms_cloud.create_external_tablefunction call.

For more details, refer to DBMS_CLOUD package documentation for more information.

Cleanup

• CLEANUP_TEMPORARY_OBJECTS — Set this property to True, if you want temporary objects to
be automatically cleaned up.

• CLEANUP_CREDENTIAL — Set this property to True, if you want the credential object to be
automatically cleaned up at the end of the every execution. Cleanup will happen only if
CREATE_CREDENTIAL option is also set to True.

3.5.1.3.6 LKM File to ADWC Copy Direct
This KM is helpful to load data from local or HDFS file source to Oracle ADWC using Oracle
Object Storage as intermediate staging. The source file is first loaded into Oracle Object
Storage staging area. Then we use dbms_cloud.copy_data()function to load data from Object
Storage directly into ADWC target table. Source attributes must match target column names.
Either use data entities with matching attributes or set option GENERATE_FIELD_LIST to false. All
target columns are loaded, irrespective of their mapping.

You must set TEMP_OBJECT_STORAGE_SCHEMA KM option to designate temporary storage
location. LKM File to ADWC Copy Direct does not support any transformations.

You can use this LKM as a standalone KM as you do not need an IKM for its implementation.
OdiObjectStorageUpload happens similar to LKM File to ADWC External Table. LKM SQL to
ADWC Copy Direct pulls the data from Oracle Object Storage and loads data directly into
target using dbms_cloud.copy_data() function.

Chapter 3
Designing a Mapping

3-25

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/dbmscloud-reference.html#GUID-52C9974C-D95E-4E41-AFBD-0FC4065C029A


For Example

BEGIN
  dbms_cloud.copy_data(
    schema_name => 'STAR',
    table_name =>'PERSON',
    credential_name =>'ODI',
    file_uri_list =>'https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/dwcsdemo/odi_bojana/person_no_header.csv',
    format => json_object(
    'type' VALUE 'CSV',
    'skipheaders' VALUE '0',
    'dateformat' VALUE 'AUTO')
 );
END;

The KM optionally creates the credential object to connect to Oracle Object Storage, but can
also re-use an existing one.

BEGIN  

  dbms_cloud.create_credential(
    credential_name => 'ODI_FLEX',
    username => 'tenant15',
    password => 'xxxxxxxx'
  );

END;

KM Options

This KM has the following options:

• CREDENTIAL_NAME — It provides Credential name to connect to Oracle Object Storage. The
default value is ODI.

• CREATE_CREDENTIAL — It creates new credentials. If set to False, ODI reuses the existing
credentials.

• GENERATE_FIELD_LIST — If this KM option is set to False, then the field_list clause is
skipped and the default settings of ORACLE_LOADER access driver is applied.

Note:

You have to always generate the field_list clause as it is required by Fixed file
format.

• TEMP_OBJECT_STORAGE_SCHEMA — It specifies the name of logical schema defining the
location of the temporary file that will be stored in Object Storage staging area. This must
be an Oracle Object Storage technology logical schema.

• CLEANUP_TEMPORARY_OBJECTS — Set this property to True, if you want temporary objects to
be automatically cleaned up.

Chapter 3
Designing a Mapping

3-26



• ADD_COMPRESSION — It compresses data before loading. Set this property to True, if you
want to compress source data before loading into Oracle Object Storage. Additional KM
options COMPRESSION_TYPEand KEEP_SOURCE_FILESdefine compression preferences.

• COMPRESSION_TYPE — It allows you to configure the required compression type. Select the
type of compression you want to apply on source data before loading into Oracle Object
Storage.

• KEEP_SOURCE_FILES — Use this KM option to retain the original source files after
compression. Set this property to True (by default), if you wish to compress the target files
and retain the original files.

Note:

gzip supports KEEP_SOURCE_FILESoption, starting from version 1.6 only.

Formatting

• DELIMITED_FILE_FORMAT — It specifies delimited File Format and it can be CSV (default) or
common delimited format known to ORACLE_LOADERaccess driver. You can use this KM
option only if the source data store File Format property is set to Delimited.

• COMPRESSION — It specifies the compression method of the source file. There are 3
possible compression types, or auto. Empty value implies no compression and AUTO
implies compression type is auto-detected.

• DATE_FORMAT — It helps to set specific date format. The default format option AUTO
searches for the following formats

J
MM-DD-YYYYBC
MM-DD-YYYY
YYYYMMDD HHMISS
YYMMDD HHMISS
YYYY.DDD
YYYY-MM-DD

• REJECT_LIMIT — The query helps to display an error message after the specified number
of rows are rejected. Default value is zero.

• CONVERSION_ERRORS — It specifies the processing conversion errors. If any row throws an
error because of a conversion error, the related columns are stored as null or the row is
rejected.

• TRIM_SPACES — It helps to trim the leading and trailing spaces of the fields. If set to True, it
trims the specified spaces.

• IGNORE_BLANK_LINES — If set to True, the blank lines are ignored without throwing any
error.

• IGNORE MISSING COLUMNS — If there are more columns in the field_list than the source
files, the extra columns will be stored as null.

• TRUNCATE_COLUMNS — If the data in a file is too long for a field, then this option will truncate
the value of the field rather than rejecting the row.

Advanced

• ADD_FORMAT_PROPERTIES — This option allows adding custom format properties.

Chapter 3
Designing a Mapping

3-27



Use the following syntax: '<prop1>' VALUE '<value1>', '<prop2>' VALUE
'<value2>' ...

• OVERWRITE_FIELD_LIST — This option gives the possibility to redefine the source file field
definitions, where ODI does not have enough information about your input data. The
details that you enter here is used as field_list parameter of
dbms_cloud.create_external_tablefunction call.

For more details, refer to DBMS_CLOUD package documentation for more information.

Target

• CREATE_TARG_TABLE — It helps you to create target table. Set this option to True, if you
want to create target table before loading.

• TRUNCATE_TARG_TABLE — It helps to truncate target table. Set this KM option to True if you
want to truncate target table before loading it.

• DELETE_TARG_TABLE — It allows you to delete the target table. Set this KM option to True if
you want to delete data from target table before loading.

Cleanup

• CLEANUP_CREDENTIAL — Set this property to True, if you want the credential object to be
automatically cleaned up at the end of the every execution. Cleanup will happen only if
CREATE_CREDENTIALoption is also set to True.

3.5.1.3.7 LKM Oracle to ADWC Datapump
This KM is helpful to load data from Oracle On-premises products to Oracle ADWC. You can
use it in combination with Oracle or generic SQL IKM.

Working

First source table is exported into local Datapump dump file. The export file is created in a local
directory specified by TEMP_FILE_SCHEMA logical schema. A unique Export file name is
generated as odi_<ODI_session_id>_<mapping_node>.dmp. Export log name is
odi_<ODI_session_id>_<mapping_node>_exp.log. The export file is then uploaded to Oracle
Object storage bucket specified by TEMP_OBJECT_STORAGE_SCHEMA logical schema. It
is then imported to ADWC database into temporary staging table C$_alias. Import log name is
odi_<ODI_session_id>_<mapping_node>_imp.log. Finally, the mapping IKM integrates the
staging table into target. Transformations on target execution unit are supported.

Note:

• ODI agent has to run on the same host as the source database to be able to
access the dump/log files.

• Currently the KM does not support multi file loading from Oracle Object Storage.
Hence you cannot set FILESIZE and PARALLEL options. dbms_datapump
package is used for export and import.

Example of Export code

declare
  h1 number;
  j_status varchar2(200);

Chapter 3
Designing a Mapping

3-28

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/dbmscloud-reference.html#GUID-52C9974C-D95E-4E41-AFBD-0FC4065C029A


begin
  dbms_output.enable();
  h1 := dbms_datapump.open('EXPORT','SCHEMA',NULL,'ODI_EXPORT','LATEST');
  dbms_datapump.add_file(
    handle => h1,
    filename => 'odi_de73e691-2ef5-4fff-8d98-697cf8e123cf_PER_AP.dmp',
    directory => 'ODI_DIR',
    filetype => dbms_datapump.KU$_FILE_TYPE_DUMP_FILE,
    reusefile => 1);
  dbms_datapump.add_file(
    handle => h1,
    filename => 'odi_de73e691-2ef5-4fff-8d98-697cf8e123cf_PER_AP_exp.log',
    directory => 'ODI_DIR',
    filetype => dbms_datapump.KU$_FILE_TYPE_LOG_FILE);
  dbms_datapump.metadata_filter( h1, 'SCHEMA_LIST', q'|'UT_TD_D_1'|' );
  dbms_datapump.metadata_filter( h1, 'NAME_LIST', q'|'PERSON_SRC'|', 
'TABLE' );
  dbms_datapump.metadata_filter( h1, 'INCLUDE_PATH_LIST', q'|'TABLE'|' );
  dbms_datapump.set_parameter(h1, 'COMPRESSION', 'METADATA_ONLY');
  dbms_datapump.set_parameter(h1, 'COMPRESSION_ALGORITHM', 'BASIC');
  dbms_datapump.start_job(h1);
  dbms_datapump.wait_for_job(h1, j_status);
  exception
    when others then
    ....
end;

Example of Import code

declare
  h1 number;
  j_status varchar2(200);
begin
  h1 := dbms_datapump.open('IMPORT','FULL',NULL,'ODI_IMPORT','LATEST');
  dbms_datapump.add_file(
    handle => h1,
    filename => 'https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/
dwcsdemo/odi_bojana/odi_de73e691-2ef5-4fff-8d98-697cf8e123cf_PER_AP.dmp',
    directory => 'ODI',
    filetype => dbms_datapump.KU$_FILE_TYPE_URIDUMP_FILE);
  dbms_datapump.add_file(
    handle => h1,
    filename => 'odi_de73e691-2ef5-4fff-8d98-697cf8e123cf_PER_AP_imp.log',
    directory => 'DATA_PUMP_DIR',
    filetype => dbms_datapump.KU$_FILE_TYPE_LOG_FILE);
  dbms_datapump.metadata_remap( h1, 'REMAP_SCHEMA', 'UT_TD_D_1', 'STAR');
  dbms_datapump.metadata_remap( h1, 'REMAP_TABLE', 'PERSON_SRC', 'C$_0PER');
  dbms_datapump.set_parameter(h1,'TABLE_EXISTS_ACTION','SKIP');
  dbms_datapump.set_parameter(h1,'PARTITION_OPTIONS','MERGE');
  dbms_datapump.metadata_transform( h1, 'SEGMENT_ATTRIBUTES', 0);  
  dbms_datapump.start_job(h1);
  dbms_datapump.wait_for_job(h1, j_status);
  dbms_cloud.put_object(
    credential_name => 'ODI',
    object_uri => 'https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/

Chapter 3
Designing a Mapping

3-29



dwcsdemo/odi_bojana/odi_de73e691-2ef5-4fff-8d98-697cf8e123cf_PER_AP_imp.log',
    directory_name  => 'DATA_PUMP_DIR',
    file_name => 'odi_de73e691-2ef5-4fff-8d98-697cf8e123cf_PER_AP_imp.log');
  exception
    when others then
    ....
end;

KM Options

This KM has the following options:

Source Export

• TEMP_FILE_SCHEMA— It specifies the name of logical schema defining the location of the
temporary export file that is stored before uploading to Oracle Object Storage. This must
be a File technology logical schema. Oracle directory is created based on this location.
The temporary file is stored on a file system accessible by the source database.

• ORACLE_DIRECTORY_NAME — It specifies the name of Oracle directory used by Datapump to
store export file and logs on Source. The default value is ODI_DIR.

Note:

Use only uppercase for directory names.

• COMPRESSION — It specifies which data to compress before writing to the dump file set. You
can specify any of the following compression options:

– ALL — enables compression for the entire export operation. You must enable Oracle
Advanced Compression option for making this type of compression.

– DATA_ONLY — When you select this option, entire data is written to the dump file in a
compressed format. You must enable Oracle Advanced Compression option for
making this type of compression.

– METADATA_ONLY — When you select this option, entire metadata is written to the dump
file in compressed format. This is the default option for COMPREESSION.

– NONE — It disables compression for the entire export operation.

• COMPRESSION_ALGORITHM— It specifies the compression algorithm to be used when
compressing dump file data. You can specify one of the following compression algorithm
options:

– BASIC — Offers a good combination of compression ratios and speed; the algorithm
used is the same as in previous versions of Oracle Datapump.

– LOW — Least impact on export throughput and suited for environments where CPU
resources are the limiting factor.

– MEDIUM — Recommended for most environments. This option is similar to the BASIC
option that provides a good combination of compression ratios and speed, but it uses a
different algorithm when compared to BASIC algorithm.

– HIGH — Best suited for situations in which dump files are copied over slower networks
where the limiting factor is the network speed.

• CREATE_VIEW_ON_SOURCE — It allows you to create view on source. Set this property to
False only if you have a single source with no transformations or a simple filter.

Chapter 3
Designing a Mapping

3-30



• CREATE_VIEW_ON_SOURCE_TEMP_SCHEMA — It allows you to create view on source work
schema. Set this property to True if you want to create view on source Work Schema.

Note:

– Work Schema user should have select privileges to all the source tables
participating in the view select statement for the view to be valid. If set to
False the view is created in the schema of the currently connected user.

– You cannot remap a SYSTEM schema, which means if set to False you must
not be connected as SYSTEM. Because of restrictions in both the cases, we
provide this option.

• USE_GROUP_PARTITION_TABLE_DATA — Use parameter
DATA_OPTIONS=GROUP_PARTITION_TABLE_DATA on export. GROUP_PARTITION_TABLE_DATA
value for DATA_OPTIONS parameter is only available for Oracle 12.2 versions or later.

Note:

Set this option to False, for any previous Oracle versions.

Target Import

• CREDENTIAL_NAME — It provides credential name to connect to Object Storage. The default
value is ODI.

• CREATE_CREDENTIAL — It helps to create new credential. If set to False ODI will reuse
existing credentials.

• TEMP_OBJECT_STORAGE_SCHEMA — It denotes the logical schema for temporary Oracle
Object Storage location. Specify the name of logical schema defining the location of the
temporary export file that will be stored in Oracle Object Storage staging area. This must
be an Object Storage technology logical schema.

Cleanup

• CLEANUP_TEMPORARY_OBJECTS — Set this property to True, if you want to clean up the
temporary objects automatically.

• CLEANUP_CREDENTIAL — Set this property to True, if you want to clean up the credential
object automatically at the end of the every execution. Cleanup will happen only if
CREATE_CREDENTIALoption is also set to true.

3.5.1.4 Loading Oracle Object Storage files into ADWC
You can use the following knowledge modules for loading Oracle Object Storage files into
Oracle ADWC:

• LKM Object Storage to ADWC Copy

• LKM Object Storage to ADWC Copy Direct

• LKM Object Storage to ADWC External Table

When you load data from Oracle Object Storage to ADWC, target of the mapping has to be
Oracle technology as there is no specific technology for ADWC. Object Storage Bucket
represents Object Storage physical schema. Some properties such as Heading and Delimiter

Chapter 3
Designing a Mapping

3-31



are retrieved from source Data Store. Other properties such as user name and password are
retrieved from Object Storage Data Server. If you use transform components, they need to be
moved to the target (Oracle) execution unit. No transformations on source are supported.

3.5.1.4.1 LKM Object Storage to ADWC Copy
This KM helps to load data from Oracle Cloud Object Storage to Oracle ADWC. It is using
dbms_cloud.copy_data() function to load data into a staging table. LKM Object Storage to
ADWC Copy is assigned to an AP node. It is used in moving data from Oracle Object Storage
file to an ADWC table. You can use it in combination with Oracle or generic SQL IKM.

For Example

LKM Object Storage to ADWC External Table is creating a temporary staging external table to
pull the data from Object Store.

BEGIN
  dbms_cloud.create_external_table(
    table_name =>'C$_0PER_EXT',
    credential_name =>'ODI_FLEX',
    file_uri_list =>'https://swiftobjectstorage.us-
phoenix-1.oraclecloud.com/v1/dwcsprod/bucket_tenant15/person.csv',
    column_list => 'PID NUMBER(2,0),
PNAME VARCHAR2(20)',
    field_list => 'PID, PNAME',
    format => json_object('type' VALUE 'CSV', 'skipheaders' VALUE '1')
 );
END;

It also optionally creates the credential object, but can also re-use an existing one.

BEGIN  

  dbms_cloud.create_credential(
    credential_name => 'ODI_FLEX',
    username => 'tenant15',
    password => 'xxxxxxxx'
  );
END;

KM Options

This KM has the following options:

• CREDENTIAL_NAME — It provides credential name to connect to Object Storage. The default
value is ODI.

• CREATE_CREDENTIAL — It helps to create new credential. If set to False ODI will reuse
existing credentials.

• GENERATE_FIELD_LIST — If this KM option is set to False, then the field_list clause is
skipped and the default settings of ORACLE_LOADER access driver is applied.

Chapter 3
Designing a Mapping

3-32



Note:

You have to always generate the field_list clause as it is required by Fixed file
format.

• DELIMITED_FILE_FORMAT — It specifies delimited File Format and it can be CSV (default) or
common delimited format known to ORACLE_LOADER access driver. You can use this
KM option only if the source datastore File Format property is set to Delimited.

• COMPRESSION — It specifies the compression method of the source file. It can have values
nil or auto. Empty value implies no compression and AUTO implies compression type is
auto-detected.

• DATE_FORMAT — It helps to set specific date format. The default format option AUTO
searches for the following formats:

J
MM-DD-YYYYBC
MM-DD-YYYY
YYYYMMDD HHMISS
YYMMDD HHMISS
YYYY.DDD
YYYY-MM-DD

• REJECT_LIMIT — The query helps to display an error message after the specified number
of rows are rejected. Default value is zero.

• CONVERSION_ERRORS — It specifies the processing conversion errors. If any row throws an
error because of a conversion error, the related columns are stored as null or the row is
rejected.

• TRIM_SPACES — It helps to trim the leading and trailing spaces of the fields. If set to True it
trims the specified spaces.

• IGNORE_BLANK_LINES— It set to True the blank lines are ignored without throwing any error.

• IGNORE MISSING COLUMNS — If there are more columns in the field_list than the source
files, the extra columns will be stored as null.

• TRUNCATE_COLUMNS — If the data in a file is too long for a field, then this option will truncate
the value of the field rather than rejecting the row.

• ADD_FORMAT_PROPERTIES — This option allows adding custom format properties.

Use the following syntax: <'prop1>' VALUE '<value1>', '<prop2>' VALUE
'<value2>' ...

• OVERWRITE_FIELD_LIST — This option gives the possibility to redefine the source file field
definitions, where ODI does not have enough information about your input data. The
details that you enter here is used as field_list parameter of
dbms_cloud.create_external_table function call.

For more details, refer to DBMS_CLOUD package documentation for more information.

• CLEANUP_TEMPORARY_OBJECTS — Set this property to True, if you want temporary objects to
be automatically cleaned up.

• CLEANUP_CREDENTIAL — Set this property to True, if you want the credential object to be
automatically cleaned up at the end of the every execution. Cleanup will happen only if
CREATE_CREDENTIAL option is also set to True.

Chapter 3
Designing a Mapping

3-33

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/dbmscloud-reference.html#GUID-52C9974C-D95E-4E41-AFBD-0FC4065C029A


3.5.1.4.2 LKM Object Storage to ADWC Copy Direct
This KM is helpful to load data from Oracle Object Storage to Oracle ADWC. It is using
dbms_cloud.copy_data () function. This LKM can be used as standalone as no IKM is needed.
It loads data directly into target table. Source attributes must match target column names.
Either use data entities with matching attributes or set option GENERATE_FIELD_LIST = false.
All target columns are loaded irrespective of whether they are mapped or not.

Note:

LKM Object Storage to ADWC Copy Direct does not support any transformations.

The LKM Object Storage to ADWC Copy Direct is assigned to an AP node. This is used for
moving files/objects from Oracle Object Storage to an ADWC table.

For Example

LKM Object Store to ADWC Copy Direct pulls the data from Oracle Object Storage and loads
data directly into target using dbms_cloud.copy_data() function.

BEGIN
  dbms_cloud.copy_data(
    schema_name => 'ODI',
    table_name =>'PERSON',
    credential_name =>'ODI_FLEX',
    file_uri_list =>'https://swiftobjectstorage.us-
phoenix-1.oraclecloud.com/v1/dwcsprod/bucket_tenant15/person.csv',
    field_list => 'PID, PNAME',    
    format => json_object('type' VALUE 'CSV', 'skipheaders' VALUE '1')
 );
END;

It also optionally creates the credential object, but can also re-use an existing one.

BEGIN  

  dbms_cloud.create_credential(
    credential_name => 'ODI_FLEX',
    username => 'tenant15',
    password => 'xxxxxxxx'
  );
END;

KM Options

This KM has the following options:

• CREATE_TARG_TABLE — It helps you to create target table. Set this option to True, if you
want to create target table before loading.

• CREDENTIAL_NAME — It provides Credential name to connect to Oracle Object Storage. The
default value is ODI.

Chapter 3
Designing a Mapping

3-34



• CREATE_CREDENTIAL — It creates new credentials. If set to False, ODI reuses the existing
credentials.

• TRUNCATE_TARG_TABLE — It helps to truncate target table. Set this KM option to True if you
want to truncate target table before loading it.

• DELETE_TARG_TABLE — It allows you to delete the target table. Set this KM option to True if
you want to delete data from target table before loading.

• GENERATE_FIELD_LIST — If this KM option is set to False, then the field_list clause is
skipped and the default settings of ORACLE_LOADER access driver is applied.

Note:

You have to always generate the field_list clause as it is required by Fixed file
format.

• DELIMITED_FILE_FORMAT — It specifies delimited File Format and it can be CSV (default)
or common delimited format known to ORACLE_LOADER access driver. You can use this
KM option only if the source datastore File Format property is set to Delimited.

• COMPRESSION — It specifies the compression method of the source file. It can have values
nil or auto. Empty value implies no compression and AUTO implies compression type is
auto-detected.

• DATE_FORMAT — It helps to set specific date format. The default format option AUTO
searches for the following formats:

J
MM-DD-YYYYBC
MM-DD-YYYY
YYYYMMDD HHMISS
YYMMDD HHMISS
YYYY.DDD
YYYY-MM-DD

• REJECT_LIMIT — The query helps to display an error message after the specified number
of rows are rejected. Default value is zero.

• CONVERSION_ERRORS — It specifies the processing conversion errors. If any row throws an
error because of a conversion error, the related columns are stored as null or the row is
rejected.

• TRIM_SPACES — It helps to trim the leading and trailing spaces of the fields. If set to True it
trims the specified spaces.

• IGNORE_BLANK_LINES — If set to True, the blank lines are ignored without throwing any
error.

• IGNORE MISSING COLUMNS — If there are more columns in the field_list than the source
files, the extra columns will be stored as null.

• TRUNCATE_COLUMNS — If the data in a file is too long for a field, then this option will truncate
the value of the field rather than rejecting the row.

• ADD_FORMAT_PROPERTIES — This option allows adding custom format properties.

Use the following syntax:'<prop1>' VALUE '<value1>', '<prop2>' VALUE
'<value2>' ...

Chapter 3
Designing a Mapping

3-35



• OVERWRITE_FIELD_LIST — This option gives the possibility to redefine the source file field
definitions, where ODI does not have enough information about your input data. The
details that you enter here is used as field_list parameter of
dbms_cloud.create_external_table function call.

For more details, refer to DBMS_CLOUD package documentation for more information.

• CLEANUP_TEMPORARY_OBJECTS — Set this property to True, if you want temporary objects to
be automatically cleaned up.

• CLEANUP_CREDENTIAL — Set this property to True, if you want the credential object to be
automatically cleaned up at the end of the every execution. Cleanup will happen only if
CREATE_CREDENTIAL option is also set to True.

3.5.1.4.3 LKM Object Storage to ADWC External Table
This KM is helpful to load data from Oracle Object Storage to Oracle ADWC using External
Table method. You can use this LKM in combination with Oracle or generic SQL IKM.

The LKM is assigned to an AP node, so that it can move Oracle Object Storage file to Oracle
ADWC table.

For Example —

LKM Object Storage to ADWC External Table is creating a temporary staging external table to
pull the data from Oracle Object Storage.

BEGIN
  dbms_cloud.create_external_table(
    table_name =>'C$_0PER_EXT',
    credential_name =>'ODI_FLEX',
    file_uri_list =>'https://swiftobjectstorage.us-
phoenix-1.oraclecloud.com/v1/dwcsprod/bucket_tenant15/person.csv',
    column_list => 'PID NUMBER(2,0),
PNAME VARCHAR2(20)',
    field_list => 'PID, PNAME',
    format => json_object('type' VALUE 'CSV', 'skipheaders' VALUE '1')
 );
END;

It also optionally creates the credential object, but can also re-use an existing one.

BEGIN  

  dbms_cloud.create_credential(
    credential_name => 'ODI_FLEX',
    username => 'tenant15',
    password => 'xxxxxxxx'
  );

END;

KM Options

This KM has the following options:

Chapter 3
Designing a Mapping

3-36

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/dbmscloud-reference.html#GUID-52C9974C-D95E-4E41-AFBD-0FC4065C029A


• CREDENTIAL_NAME — It provides Credential name to connect to Oracle Object Storage. The
default value is ODI.

• CREATE_CREDENTIAL — It creates new credentials. If set to False, ODI reuses the existing
credentials.

• GENERATE_FIELD_LIST — If this KM option is set to False, then the field_list clause is
skipped and the default settings of ORACLE_LOADER access driver is applied.

Note:

You have to always generate the field_list clause as it is required by Fixed file
format.

• DELIMITED_FILE_FORMAT — It specifies delimited File Format and it can be CSV (default)
or common delimited format known to ORACLE_LOADER access driver. You can use this
KM option only if the source datastore File Format property is set to Delimited.

• COMPRESSION — It specifies the compression method of the source file. It can have values
nil or auto. Empty value implies no compression and AUTO implies compression type is
auto-detected.

• DATE_FORMAT — It helps to set specific date format. The default format option AUTO
searches for the following formats:

J
MM-DD-YYYYBC
MM-DD-YYYY
YYYYMMDD HHMISS
YYMMDD HHMISS
YYYY.DDD
YYYY-MM-DD

• REJECT_LIMIT — The query helps to display an error message after the specified number
of rows are rejected. Default value is zero.

• CONVERSION_ERRORS — It specifies the processing conversion errors. If any row throws an
error because of a conversion error, the related columns are stored as null or the row is
rejected.

• TRIM_SPACES — It helps to trim the leading and trailing spaces of the fields. If set to True it
trims the specified spaces.

• IGNORE_BLANK_LINES — It set to True the blank lines are ignored without throwing any
error.

• IGNORE MISSING COLUMNS — If there are more columns in the field_list than the source
files, the extra columns will be stored as null.

• TRUNCATE_COLUMNS— If the data in a file is too long for a field, then this option will truncate
the value of the field rather than rejecting the row.

• ADD_FORMAT_PROPERTIES — This option allows adding custom format properties.

Use the following syntax: '<prop1>' VALUE '<value1>', '<prop2>' VALUE
'<value2>' ...

• OVERWRITE_FIELD_LIST — This option gives the possibility to redefine the source file field
definitions, where ODI does not have enough information about your input data. The

Chapter 3
Designing a Mapping

3-37



details that you enter here is used as field_list parameter of
dbms_cloud.create_external_table function call.

For more details, refer to DBMS_CLOUD package documentation for more information.

• CLEANUP_TEMPORARY_OBJECTS — Set this property to True, if you want temporary objects to
be automatically cleaned up.

• CLEANUP_CREDENTIAL— Set this property to True, if you want the credential object to be
automatically cleaned up at the end of the every execution. Cleanup will happen only if
CREATE_CREDENTIAL option is also set to True.

3.5.2 Extracting data
In ODI, you can extract data from ADWC via JDBC using Oracle KMs.

You can design a mapping that uses the Data Stores for an ADWC Schema as the source of
the mapping, where you can extract data via JDBC using the following Oracle KMs:

• Extract data from ADWC and load to on-premise Oracle Table through

– LKM SQL to Oracle (Built-In)

– IKM Oracle Insert

• Extract data from ADWC and load to on-premise File through

– LKM SQL Multi-Connect

– IKM SQL to File Append

3.6 Best Practices for Working with ADWC
This section provides the best practices for working with Oracle Data Integrator connected to
ADWC technology.

3.6.1 Caching Oracle Sequences in ADWC
In order to maintain the referential integrity between dimensions and facts tables, warehouse
dimensions require unique surrogate keys. These surrogate keys get auto populated when you
configure the dimensions with new records. It is a common practice to use Oracle sequences
to populate the surrogate keys of warehouse dimensions. During the initial upload operation of
a large warehouse dimension, you have to set the CACHE SIZE of the sequence used by the
dimension to a large size. This will significantly improve the initial upload operation of the large
dimension. You can then reduce the CACHE SIZE for incremental-updates operations.

The following example shows how to create an Oracle sequence for a large dimension. The
CACHE SIZE for this sequence is 50,000 sequences:

CREATE SEQUENCE "SEQ_W_CUSTOMER_D" MINVALUE 1000 MAXVALUE
9999999999999999999999999999 INCREMENT BY 1 START WITH 1000 CACHE 50000 NOORDER
NOCYCLE;

Chapter 3
Best Practices for Working with ADWC

3-38

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/dbmscloud-reference.html#GUID-52C9974C-D95E-4E41-AFBD-0FC4065C029A


4
Files

It is important to understand how to work with Files in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering a File Model

• Designing a Mapping

4.1 Introduction
Oracle Data Integrator supports fixed or delimited files containing ASCII or EBCDIC data.

4.1.1 Concepts
The File technology concepts map the Oracle Data Integrator concepts as follows: A File
server corresponds to an Oracle Data Integrator data server. In this File server, a directory
containing files corresponds to a physical schema. A group of flat files within a directory
corresponds to an Oracle Data Integrator model, in which each file corresponds to a datastore.
The fields in the files correspond to the datastore columns.

Oracle Data Integrator provides a built-in driver for Files and knowledge modules for
integrating Files using this driver, using the metadata declared in the File data model and in the
topology.

Most technologies also have specific features for interacting with flat files, such as database
loaders, utilities, and external tables. Oracle Data Integrator can also benefit from these
features by using technology-specific Knowledge Modules. In terms of performance, it is most
of the time recommended to use database utilities when handling flat files.

Note that the File technology concerns flat files (fixed and delimited). XML files are covered in 
XML Files .

4.1.2 Knowledge Modules
Oracle Data Integrator provides the knowledge modules (KM) listed in this section for handling
File data using the File driver.

Note that the SQL KMs listed in Table 4-1 are generic and can be used with any database
technology. Technology-specific KMs, using features such as loaders or external tables, are
listed in the corresponding technology chapter.

4-1



Table 4-1    SQL KMs

Knowledge Module Description

LKM File to SQL Loads data from an ASCII or EBCDIC File to any ANSI SQL-92 compliant
database used as a staging area.

IKM SQL to File Append Integrates data in a target file from any ANSI SQL-92 compliant staging
area in replace mode.

IKM File to File (Java) Integrates data in a target file from a source file using a Java processing.
Can take several source files and generates a log and a bad file. See IKM
File to File (Java) for more information.

4.2 Installation and Configuration
Make sure you have read the information in this section before you start working with the File
technology:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

4.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

4.2.2 Technology Specific Requirements
Some of the knowledge modules for File data use specific features of the database. This
section lists the requirements related to these features.

Database Utilities

Most database technologies have their own utilities for interacting with flat files. All require that
the database client software is accessible from the Agent that runs the mapping that is using
the utility. Some examples are:

• Oracle: SQL*Loader

• Microsoft SQL Server: bcp

• Teradata: FastLoad, MultiLoad, TPump, FastExport

You can benefit from these utilities in Oracle Data Integrator by using the technology-specific
knowledge modules. See the technology-specific chapter in this guide for more information
about the knowledge modules and the requirements for using the database utilities.

Chapter 4
Installation and Configuration

4-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


Requirements for IKM File to File (Java)

The IKM File to File (Java) generates, compiles, and runs a Java program to process the
source files. In order to use this KM, a JDK is required.

Supported Datatypes

Datatype Mappings to and from Oracle will be defined for these data types. Supported
datatypes for File technology are:

• Ascii signed zone decimal — It is a numeric data type commonly used in COBOL files on
IBM mainframes. It is a USAGE DISPLAY item where every digit is represented using one
byte character, the corresponding ASCII or EBCDIC character is used for each digit.
Signed zone decimal can take both positive and negative values. The ZONED data type is
valid only in fixed-width text data files. The maximum length of a zoned decimal constant is
15 decimal digits (15 bytes).

• Ascii unsigned zoned decimal —Unsigned decimal is very similar to Ascii signed zone
decimal and the difference is that it represents only positive numbers. The ASCII zoned
decimal formats produce the same printable representation of numbers. There are two
nibbles per byte, each indicated by a hexadecimal character. For example, the value 15 is
stored in two bytes. The first byte contains the hexadecimal value F1, and the second byte
contains the hexadecimal value C5.

Note:

For the ASCII environment the unsigned and signed, positive values are
arithmetically and physically equal.

• Binary signed big endian — Big endian is an order in which the "big end" (most
significant value in the sequence) is stored first (at the lowest storage address). For
example, in a big endian computer, the two bytes required for the hexadecimal number
4F52 is stored as 4F52 in storage (if 4F is stored at storage address 1000, for example, 52
will be at address 1001). Singed binary data type means that it can hold both positive or
negative values i.e., an 8 bit signed binary can hold values from 0 to 127 both positive and
negative.

• Binary signed little endian — Little endian is an order in which the "little end" (least
significant value in the sequence) is stored first. For example, in a little endian computer,
the two bytes required for the hexadecimal number 4F52 is stored as 524F (52 at address
1000, 4F at 1001). Singed binary data type means that it can hold both positive or negative
values i.e., an 8 bit signed binary can hold values from 0 to 127 both positive and negative.

• Binary unsigned big endian — Big endian is an order in which the "big end" (most
significant value in the sequence) is stored first (at the lowest storage address). For
example, in a big endian computer, the two bytes required for the hexadecimal number
4F52 is stored as 4F52 in storage (if 4F is stored at storage address 1000, for example, 52
will be at address 1001). Unsigned binary data type denotes that the binary item can hold
only positive values (i.e., an 8 bit unsigned binary can hold values from 0 to 255).

• Binary unsigned little endian — Little endian is an order in which the "little end" (least
significant value in the sequence) is stored first. For example, in a little endian computer,
the two bytes required for the hexadecimal number 4F52 is stored as 524F (52 at address
1000, 4F at 1001). Unsigned binary data type denotes that the binary item can hold only
positive values (i.e., an 8 bit unsigned binary can hold values from 0 to 255).

Chapter 4
Installation and Configuration

4-3



• Date —Based on the international ISO-8601:1988 standard date notation: YYYYMMDD
where YYYY represents the year in the usual Gregorian calendar, MM is the month
between 01 (January) and 12 (December), and DD is the day of the month with a value
between 01 and 31. Dates may be represented in any of the following list of base data
types. For some data types, a minimum of 4 bytes is required. The list includes: Numeric,
String and EBCDIC.

• Ebcdic — A string of characters encoded using the EBCDIC (Extended Binary Coded
Decimal Interchange Code) encoding used on larger IBM computers. During a reformat
from EBCDIC to ASCII, if a character being converted is not in the EBCDIC character set,
the conversion results in a space hexadecimal 20.

• Ebcdic signed zoned decimal — A signed zoned decimal is composed of regular
EBCDIC numeric characters, one character per byte, for all the digits of the field except the
one that holds the sign, either the most-significant (sign leading) or the least-significant
(sign trailing) digit, usually the least-significant digit. The digit that holds the sign combines,
or "over punches" the sign of the number onto that digit. This saves one byte that the sign
would otherwise occupy.

• Ebcdic unsigned zoned decimal — Unsigned zoned decimal is very similar to Ebcdic
signed zoned decimal and the difference is that it represents only positive numbers. For
unsigned (or implied positive) fields each digit is represented by a zoned bit value in the
left-most four bits (nibble or half-word) and the binary value for the digit in the right-most
four bits (nibble or half-word).

Note:

For the EBCDIC environment, the unsigned and signed, positive values are
arithmetically equal but physically different because of the low-order byte or units
position (or the sign position).

• Fixed Ebcdic — It is a text representation of a floating-point number, space-padded in
fixed-length data, encoded as EBCDIC to comply with the character set of the text data file.
The PACKED data type is valid only in fixed-width text data files. It is a packed decimal
type.

• Fixed String — A fixed-length string that is always right-padded with spaces to the
specified length when stored. M represents the column length in characters. The range of
M is 0 to 255. If M is omitted, the length is 1.CHAR(0) columns can contain 2 values: an
empty string or NULL. Such columns cannot be part of an index. The CONNECT storage
engine does not support CHAR(0).

Note:

Trailing spaces are removed when CHAR values are retrieved unless the
PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

• Numeric — The numeric data types store positive and negative fixed and floating-point
numbers, zero, infinity, and values that are the undefined result of an operation (that is, is
"not a number" or NAN). It comprises of Number data type and Floating Point Numbers.
The NUMBER data type stores fixed and floating-point numbers. Numbers of virtually any
magnitude can be stored and are guaranteed portable among different systems operating
Oracle Database, up to 38 digits of precision.

• Signed packed decimal — Packed decimal constants can be used in any type of
expression. A packed decimal constant is coded as P'constantValue', where constantValue

Chapter 4
Installation and Configuration

4-4



is a string of 1 to 15 decimal digits, optionally preceded by a plus (+) or minus (-) sign. If no
sign is coded, the value is positive. To simplify coding of expressions, packed decimal
constants can be coded without the leading P and enclosing apostrophes. The maximum
length of a packed decimal constant is 15 decimal digits (8 bytes).

• String — A string is a data type used in programming, such as an integer and floating
point unit, but is used to represent text rather than numbers. It is comprised of a set of
characters that can also contain spaces and numbers. It is often implemented as an array
of bytes (or words) that stores a sequence of elements, typically characters, using some
character encoding. A string may also denote more general arrays or other sequence (or
list) data types and structures. String is a class, a reference data type. Although the
compiler has special support for strings, such as converting string literals into string
instances, and performing string concatenation, string is not a primitive type, but a Class.
By convention, class names begin in uppercase.

• Unsigned packed decimal — An unsigned packed decimal number is like a packed
decimal number except that the right-most, four-bit nibble contains a packed decimal digit
rather than a four-bit sign. Unsigned packed numbers are often encountered when
handling certain date and time values returned by the system. Unsigned packed decimal
constants are most useful in simple, single term expressions where you have a
requirement to output an unsigned packed decimal value. There is no particular advantage
to specifying unsigned packed decimal constants in arithmetic or relational expressions
since they are always converted to packed decimal in order to complete the operation.

4.2.3 Connectivity Requirements
This section lists the requirements for connecting to flat files.

JDBC Driver

Oracle Data Integrator includes a built-in driver for flat files. This driver is installed with Oracle
Data Integrator and does not require additional configuration.

4.3 Setting up the Topology
Setting up the topology consists in:

1. Creating a File Data Server

2. Creating a File Physical Schema

4.3.1 Creating a File Data Server
A File data server is a container for a set of file folders (each file folder corresponding to a
physical schema).

Oracle Data Integrator provides the default FILE_GENERIC data server. This data server suits
most of the needs. In most cases, it is not required to create a File data server, and you only
need to create a physical schema under the FILE_GENERIC data server.

Chapter 4
Setting up the Topology

4-5



Note:

Starting with JDK 8, the JDBC-ODBC Bridge is no longer included with the JDK.

The JDBC-ODBC Bridge has always been considered transitional and a non-
supported product that was only provided with select JDK bundles and not included
with the JRE. Instead, use a JDBC driver provided by the vendor of the database or a
commercial JDBC Driver instead of the JDBC-ODBC Bridge.

4.3.1.1 Creation of the Data Server
Create a data server for the File technology using the standard procedure, as described in
Creating a Data Server of Administering Oracle Data Integrator. This section details only the
fields required or specific for defining a File data server:

1. In the Definition tab:

• Name: Name of the data server that will appear in Oracle Data Integrator.

• User/Password: These fields are not used for File data servers.

2. In the JDBC tab, enter the following values:

• JDBC Driver: com.sunopsis.jdbc.driver.file.FileDriver
• JDBC URL: jdbc:snps:dbfile?<property=value>&<property=value>&...

You can use in the URL the properties listed in Table 4-2.

Table 4-2    JDBC File Driver Properties

Property Value Description

DATA_CONTAINS_LINE_S
EPARATOR

TRUE|FALSE If set to true, when reading data, if a record
contains a character (or sequence of
characters) that is set as a line separator, it
is not considered as a line break, but the
data is read on till the read 'row size'
number of characters.

ENCODING <encoding_code> File encoding. The list of supported
encoding is available at https://
docs.oracle.com/javase/8/docs/technotes/
guides/intl/encoding.doc.html. The default
encoding value is ISO8859_1.

ERR_FILE_PATH empty File location path. This path is taken by the
File driver and any errors encountered by
driver in parsing the data is put into
<property value> + .error. The rows that
cause problem are put into <property
value> + .bad. So this actually causes
creation of two files, in case of any
problems.

Chapter 4
Setting up the Topology

4-6

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html


Table 4-2    (Cont.) JDBC File Driver Properties

Property Value Description

MULTIBYTES_MODE 0, 1, or 2 0 is the default and indicates no special
handling for multibyte. The driver reads file
byte by byte

1 indicates that the file contains multibyte
strings. The driver reads multibytes file
character by character.

2 indicates that the file contains mixture of
multibyte characters and binary data. The
driver read multibytes file byte by byte for
BINARY columns and character by
character for other columns.

NO_PAD_DEL_NUMERIC TRUE|FALSE Restricts left-padding of numbers (integer,
float) with spaces to match the physical
length of the column. Default value is
FALSE.

TRUNC_FIXED_STRINGS TRUE|FALSE Truncates strings to the field size for fixed
files. Default value is FALSE.

TRUNC_DEL_STRINGS TRUE|FALSE Truncates strings to the field size for
delimited files. Default value is FALSE.

NO_RTRIM_DEL_STRING TRUE|FALSE Despite its name, this same property acts
on both DELimited, and FIXED format text
files.

When the value is set to FALSE, the trailing
spaces at the end of a string value are
removed. To avoid right-trimming, the
property must be set to TRUE.

Note:

The TRUNC_FIXED_STRINGS and TRUNC_DEL_STRINGS properties
affect the treatment of data that is fed into the File driver via an INSERT
statement, not the data that File driver reads from the backing file.

JDBC URL example:

jdbc:snps:dbfile?ENCODING=ISO8859_1&TRUNC_FIXED_STRINGS=FALSE

4.3.2 Creating a File Physical Schema
Create a File physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

In your physical schema, you must set a pair of directories:

• The Directory (Schema), where Oracle Data Integrator will look for the source and target
files and create error files for invalid records detected in the source files.

• A Directory (Work Schema), where Oracle Data Integrator may create temporary files
associated to the sources and targets contained in the Data Schema.

Chapter 4
Setting up the Topology

4-7



Note:

• Data and Work schemas each correspond to a directory. This directory must be
accessible to the component that will access the files. The directory can be an
absolute path (m:/public/data/files) or relative to the runtime agent or Studio
startup directory (../demo/files). It is strongly advised to use a path that is
independent from the execution location.

• In UNIX in particular, the agent must have read/write permission on both these
directories.

• Keep in mind that file paths are different in Windows than they are in UNIX. Take
the platform used by the agent into account when setting up this information.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

4.4 Setting Up an Integration Project
Setting up a project using the File database follows the standard procedure. See Creating an
Integration Project of the Developing Integration Projects with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for getting
started:

• LKM File to SQL

• IKM SQL to File Append

• IKM File to File (Java)

In addition to these knowledge modules, you can also import file knowledge modules specific
to the other technologies involved in your product.

4.5 Creating and Reverse-Engineering a File Model
This section contains the following topics:

• Create a File Model

• Reverse-engineer a File Model

4.5.1 Create a File Model
An File model is a set of datastores, corresponding to files stored in a directory. A model is
always based on a logical schema. In a given context, the logical schema corresponds to one
physical schema. The data schema of this physical schema is the directory containing all the
files (eventually in sub-directories) described in the model.

Create a File model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator.

Chapter 4
Setting Up an Integration Project

4-8



4.5.2 Reverse-engineer a File Model
Oracle Data Integrator provides specific methods for reverse-engineering files. File database
supports four types of reverse-engineering:

• Delimited Files Reverse-Engineering is performed per file datastore.

• Fixed Files Reverse-engineering using the Wizard is performed per file datastore.

• COBOL Copybook reverse-engineering, which is available for fixed files, if a copybook
describing the file is provided. It is performed per file datastore.

• Customized Reverse-Engineering, which uses a RKM (Reverse Knowledge Module) to
obtain, from a Microsoft Excel spreadsheet, column definitions of each file datastore within
a model and automatically create the file datastores in batch without manual input.

Note:

The built-in file driver uses metadata from the Oracle Data Integrator models (field
data type or length, number of header rows, etc.). Driver-specific tags are generated
by Oracle Data Integrator and passed to the driver along with regular SQL
commands. These tags control how the driver reads or writes the file.

Similarly, when Oracle Data Integrator uses database loaders and utilities, it uses the
model metadata to control these loaders and utilities.

It is important to pay close attention to the file definition after a reverse-engineering
process, as discrepancy between the file definition and file content is a source of
issues at run-time.

4.5.2.1 Delimited Files Reverse-Engineering
To perform a delimited file reverse-engineering:

1. In the Models accordion, right click your File Model and select New Data Store. The Data
Store Editor opens.

2. In the Definition tab, enter the following fields:

• Name: Name of this data store

• Resource Name: Sub-directory (if needed) and name of the file. You can browse for
the file using the browse icon next to the field.

3. Go to the Files tab to describe the type of file. Set the fields as follows:

• File Format: Delimited

• Heading (Number of Lines): Enter the number of lines of the header. Note that if
there is a header, the first line of the header will be used by Oracle Data Integrator to
name the columns in the file.

• Select a Record Separator.

• Select or enter the character used as a Field Separator.

• Enter a Text Delimiter if your file uses one.

• Enter a Decimal Separator if your file contains decimals.

Chapter 4
Creating and Reverse-Engineering a File Model

4-9



4. From the File main menu, select Save.

5. In the Data store Editor, go to the Attributes tab.

6. In the editor toolbar, click Reverse Engineer.

7. Verify the data type and length for the reverse engineered attributes. Oracle Data
Integrator infers the field’s data types and lengths from the file contents as following:

a. If there are no records in the file, all data store attributes will get the default data type
as String after reverse.

b. If records are present in the file, then all data store attributes will get the data type
based on the first non-header row of the file.

c. If header is present in the file and File data store definition has Heading (Number of
Lines) defined as not 0, then data store will be reversed with attribute names defined
as in file heading.

Attributes are created with pre-generated names (C1, C2 and so on) if file has no header
and it is first non-header record.

8. From the File main menu, select Save.

4.5.2.2 Fixed Files Reverse-engineering using the Wizard
Oracle Data Integrator provides a wizard to graphically define the columns of a fixed file.

To reverse-engineer a fixed file using the wizard:

1. In the Models accordion, right click your File Model and select New Datastore. The
Datastore Editor opens.

2. In the Definition Tab, enter the following fields:

• Name: Name of this datastore

• Resource Name: Sub-directory (if needed) and name of the file. You can browse for
the file using the browse icon next to the field.

3. Go to the Files tab to describe the type of file. Set the fields as follows:

• File Format: Fixed

• Header (Number of Lines): Enter the number of lines of the header.

• Select a Record Separator.

4. From the File main menu, select Save.

5. In the Datastore Editor, go to the Attributes tab.

6. In the editor toolbar, click Reverse Engineer.The Attributes Setup Wizard is launched. The
Attributes Setup Wizard displays the first records of your file.

7. Click on the ruler (above the file contents) to create markers delimiting the attributes. You
can right-click within the ruler to delete a marker.

8. Attributes are created with pre-generated names (C1, C2, and so on). You can edit the
attribute name by clicking in the attribute header line (below the ruler).

9. In the properties panel (on the right), you can edit all the parameters of the selected
attribute. You should set at least the Attribute Name, Datatype, and Length for each
attribute.

10. Click OK when the attributes definition is complete.

11. From the File main menu, select Save.

Chapter 4
Creating and Reverse-Engineering a File Model

4-10



Note:

When you define attribute(s) manually or perform reverse-engineering for File
Datastores with Fixed format, Start number value is calculated based on the
summation of Start value of the previous attribute and it's Physical length. If you
change the Physical length of the attribute(s) for some reasons (for example you
have changed the flat file structure) and need to adjust the Start value for the
new structure, click Automatically compute. By this, the value of the Start
number parameter gets readjusted to the newly edited Physical length of the
attribute(s).

4.5.2.3 COBOL Copybook reverse-engineering
COBOL Copybook reverse-engineering allows you to retrieve a legacy file structure from its
description contained in a COBOL Copybook file.

To reverse-engineer a fixed file using a COBOL Copybook:

1. In the Models accordion, right click your File Model and select New Datastore. The
Datastore Editor opens.

2. In the Definition Tab, enter the following fields:

• Name: Name of this datastore

• Resource Name: Sub-directory (if needed) and name of the file. You can browse for
the file using the browse icon next to the field.

3. Go to the Files tab to describe the type of file. Set the fields as follows:

• File Format: Fixed

• Header (Number of Lines): Enter the number of lines of the header.

• Select a Record Separator.

4. From the File main menu, select Save.

5. In the Datastore Editor, go to the Attributes tab.

6. Create or open a File datastore that has a fixed format.

7. In the Datastore Editor, go to the Attributes tab.

8. In the toolbar menu, click Reverse Engineer COBOL CopyBook.

9. In the Reverse Engineer Cobol CopyBook Dialog, enter the following fields:

• File: Location of the Copybook file

• Character set: Copybook file charset.

• Description format (EBCDIC | ASCII): Copybook file format

• Data format (EBCDIC | ASCII): Data file format

10. Click OK.

The attributes described in the COBOL Copybook are reverse-engineered and appear in the
attributes list.

Chapter 4
Creating and Reverse-Engineering a File Model

4-11



Note:

• Oracle Data Integrator only works with IBM COBOL Copybooks.

• If a field has a data type declared in the Copybook with no corresponding
datatype in Oracle Data Integrator File technology, then this attribute will appear
with no data type.

• When you define attribute(s) manually or perform reverse-engineering for File
Datastores with Fixed format, Start number value is calculated based on the
summation of Start value of the previous attribute and its Physical length. If you
change the Physical length of the attribute(s) for some reasons (for example you
have changed the flat file structure) and need to adjust the Start value for the
new structure, click Automatically compute. By this, the value of the Start
number parameter gets readjusted to the newly edited Physical length of the
attribute(s).

4.5.2.4 Customized Reverse-Engineering
In this reverse-engineering method, Oracle Data Integrator reads from a Microsoft Excel
spreadsheet containing column definitions of each file datastore within a model and creates the
file datastores in batch.

A sample file called file_repository.xls is supplied by ODI, typically under /demo/excel
sub-directory. Follow the specific format in the sample file to input your datastore information.

The following steps assume that you have modified this file with the description of the structure
of your flat files.

It is recommended that this file shall be closed before the reverse engineering is started.

To perform a customized reverse-engineering, perform the following steps:

1. Create an ODBC Datasource for the Excel Spreadsheet corresponding to the Excel
Spreadsheet containing the files description.

2. Define the Data Server, Physical and Logical Schema for the Microsoft Excel Spreadsheet

3. Run the customized reverse-engineering using the RKM File from Excel RKM.

Create an ODBC Datasource for the Excel Spreadsheet

1. Launch the Microsoft ODBC Administrator.

Note that ODI running on 64-bit JRE will work with 64-bit ODBC only.

2. Add a System DSN (Data Source Name).

3. Select the Microsoft Excel Driver (*.xls, and *.xlsx etc.) as the data source driver.

4. Name the data source ODI_EXCEL_FILE_REPO and select the file /demo/excel/
file_repository.xls as the default workbook. Be sure to select driver version
accordingly. Example, "Excel 12.0" for ".xlsx" files.

Define the Data Server, Physical and Logical Schema for the Microsoft Excel
Spreadsheet

1. In Topology Navigator, add a Microsoft Excel data server with the following parameters:

• Name: EXCEL_FILE_REPOSITORY

Chapter 4
Creating and Reverse-Engineering a File Model

4-12



• JDBC Driver: Select the appropriate JDBC driver for Excel.

• JDBC URL: Enter the URL as required by the selected JDBC driver.

• Array Fetch Size: 0
2. Use default values for the rest of the parameters. From the File main menu, select Save.

3. Click Test Connection to see if the data sever connects to the actual Excel file.

4. Add a physical schema to this data server. Leave the default values in the Definition tab.

1. In the Context tab of the physical schema, click Add.

2. In the new line, select the context that will be used for reverse engineering and enter in the
logical schema column EXCEL_FILE_REPOSITORY. This logical schema will be created
automatically. Note that this name is mandatory.

3. From the File main menu, select Save.

Run the customized reverse-engineering

1. In Designer Navigator, import the RKM File (FROM EXCEL) Knowledge Module into your
project.

Note:

If the EXCEL_FILE_REPOSITORY logical schema does not get created before the
time of import, the customization status of the imported RKM will be "Modified by
User". Upon the creation of EXCEL_FILE_REPOSITORY, it will be visible as source
command schema under the corresponding RKM tasks.

2. Open an existing File model (or create a new one). Define the parameters as you normally
will for a File model. Note that the Technology is File, not Microsoft Excel.

3. In the Reverse Engineer tab, set the following parameters:

• Select Customized

• Context: Reverse Context

• Knowledge Module: RKM File (FROM EXCEL)

4. In the toolbar menu, click Reverse Engineer.

5. You can follow the reverse-engineering process in the execution log.

Note:

• The mandatory Microsoft Excel schema, EXCEL_FILE_REPOSITORY, is
automatically used by RKM File (FROM EXCEL). It is independent from an actual
File model using RKM File (FROM EXCEL).

• Refer to Common Problems and Solutions for information on mitigating common
Excel-related ODBC exceptions.

Chapter 4
Creating and Reverse-Engineering a File Model

4-13



4.6 Designing a Mapping
You can use a file as a source or a target of a mapping, but NOT as a staging area.

The KM choice for a mapping or a check determines the abilities and performances of this
mapping or check. The recommendations below help in the selection of the KM for different
situations concerning a File data server.

4.6.1 Loading Data From Files
Files can be used as a source of a mapping. The LKM choice in the Loading Knowledge
Module tab to load a File to the staging area is essential for the mapping performance.

The LKM File to SQL uses the built-in file driver for loading data from a File database to a
staging area. In addition to this KM, you can also use KMs that are specific to the technology of
the staging area or target. Such KMs support technology-specific optimizations and use
methods such as loaders or external tables.

This knowledge module, as well as other KMs relying on the built-in driver, support the
following two features attached to the driver:

• Erroneous Records Handling

• Multi-Record Files Support

Erroneous Records Handling

Oracle Data Integrator built-in driver provides error handling at column level for the File
technology. When loading a File, Oracle Data Integrator performs several controls. One of
them verifies if the data in the file is consistent with the datastore definition. If one value from
the row is inconsistent with the column description, the On Error option - on the Control tab of
the Attribute Editor - defines the action to perform and continues to verify the remaining rows.
The On Error option can take the following values:

• Reject Error: The row containing the error is moved to a .BAD file, and a reason of the
error is written to a .ERROR file.

The .BAD and .ERROR files are located in the same directory as the file being read and
are named after this file, with a .BAD and .ERROR extension.

• Null if error (inactive trace): The row is kept in the flow and the erroneous value is
replaced by null.

• Null if error (active trace): The row is kept in the flow, the erroneous value is replaced by
null, and an reason of the error is written to the .ERROR file.

Multi-Record Files Support

Oracle Data Integrator is able to handle files that contain multiple record formats. For example,
a file may contain records representing orders (these records have 5 columns) and other
records representing order lines (these records having 8 columns with different datatypes).

The approach in Oracle Data Integrator consists in considering each specific record format as
a different datastore.

To handle multi record files as a source of a mapping:

1. Create a File Model using a logical schema that points to the directory containing the
source file.

Chapter 4
Designing a Mapping

4-14



2. Identify the different record formats and structures of the flat file. In Example 4-1 two
record formats can be identified: one for the orders and one for the order lines.

3. For each record format identified, do the following:

a. Create a datastore in the File Model for each type of record.

For Example 4-1 create two datastores.

b. In the Definition tab of the Datastore Editor, enter a unique name in the Name field and
enter the flat file name in the Resource Name field. Note that the resource name is
identical for all datastores of this model.

For Example 4-1 you can use ORDERS and ORDER_LINES as the name of your
datastores. Enter orders.txt in the Resource Name field for both datastores.

c. In the Files tab, select, depending on the format of your flat file, Fixed or Delimited
from the File Format list and specify the record and field separators.

d. In the Attributes tab, enter the attribute definitions for this record type.

e. One or more attributes can be used to identify the record type. The record code is the
field value content that is used as distinguishing element to be found in the file. The
record code must be unique and allows files with several record patterns to be
processed. In the Record Codes field, you can specify several values separated by the
semicolon (;) character.

In the Attribute Editor, assign a record code for each record type in the Record Codes
field.

In Example 4-1, enter ORD in the Record Codes field of the CODE_REC attribute of the
ORDERS datastore and enter LIN in the Record Codes field of the CODE_REC
attribute of the ORDER_LINES datastore.

With such definition, when reading data from the ORDERS datastore, the file driver will filter
only those of the records where the first attribute contains the value ORD. The same applies to
the ORDER_LINES datastore (only the records with the first attribute containing the value LIN
will be returned).

Example 4-1    Multi Record File

This example uses the multi record file orders.txt. It contains two different record types:
orders and order lines.

Order records have the following format:

REC_CODE,ORDER_ID,CUSTOMER_ID,ORDER_DATE
Order lines records have the following format

REC_CODE,ORDER_ID,LINE_ID,PRODUCT_ID,QTY
Order records are identified by REC_CODE=ORD
Order lines are identified by REC_CODE=LIN

4.6.2 Integrating Data in Files
Files can be used as a source and a target of a mapping. The data integration strategies in
Files concern loading from the staging area to Files. The IKM choice in the Integration
Knowledge Module tab determines the performances and possibilities for integrating.

Oracle Data Integrator provides two Integration Knowledge Modules for integrating File data:

Chapter 4
Designing a Mapping

4-15



• IKM SQL to File Append

• IKM File to File (Java)

4.6.2.1 IKM SQL to File Append
The IKM SQL to File Append uses the file driver for integrating data into a Files target from a
staging area in truncate-insert mode.

This KM has the following options:

• INSERT automatically attempts to insert data into the target datastore of the mapping.

• CREATE_TARG_TABLE creates the target table.

• TRUNCATE deletes the content of the target file and creates it if it does not exist.

• GENERATE_HEADER creates the header row for a delimited file.

In addition to this KM, you can also use IKMs that are specific to the technology of the staging
area. Such KMs support technology-specific optimizations and use methods such as loaders or
external tables.

4.6.2.2 IKM File to File (Java)
The IKM File to File (Java) is the solution for handling File-to-File use cases. This IKM
optimizes the integration performance by generating a Java program to process the files. It can
process several source files when the datastore's resource name contains a wildcard. This
program is able to run the transformations using several threads.

The IKM File to File (Java) provides a KM option for logging and error handling purposes:
BAD_FILE.

This IKM supports flat delimited and fixed files where the fields can be optionally enclosed by
text delimiters. EBCDIC and XML formats are not supported.

Using the IKM File to File (Java)

To use the IKM File to File (Java), the staging area must be on a File data server. It is the
default configuration when creating a new mapping. The staging area is located on the target,
which is the File technology.

The IKM File to File (Java) supports mappings and filters. Mappings and filters are always
executed on the source or on the staging area, never on the target. When defining the
mapping expressions and filters use the Java syntax. Note that the mapping expressions and
filter conditions must be written in a single line with no carriage return. The IKM supports the
following standard Java datatypes: string, numeric, and date and accepts any Java
transformation on these datatypes.

The following are two examples of a mapping expression:

• FIC.COL1.toLower()
• FIC.COL1+FIC.COL2
In the second example, if COL1 and COL2 are numeric, the IKM computes the sum of both
numbers otherwise it concatenates the two strings.

The following are two examples of a filter condition:

• FIC.COL1.equals("ORDER")
• (FIC.COL1==FIC.COL2)&&(FIC.COL3 !=None)

Chapter 4
Designing a Mapping

4-16



The following objects and features are not supported:

• Joins

• Datasets

• Changed Data Capture (CDC)

• Flow Control

• Lookups

Processing Several Files

The IKM File to File (Java) is able to process several source files. To specify several source
files use wildcards in the datastore's resource name. You can use the
PROCESSED_FILE_PREFIX and PROCESSED_FILE_SUFFIX KM options to manage the
source files by renaming them once they are processed.

Using the Logging Features

Once the mapping is completed, Oracle Data Integrator generates the following output files
according to the KM options:

• Log file: This file contains information about the loading process, including names of the
source files, the target file, and the bad file, as well as a summary of the values set for the
major KM options, error messages (if any), statistic information about the processed rows.

• Bad file: This file logs each row that could not be processed. If no error occurs, the bad file
is empty.

KM Options

This KM has the following options:

• JAVA_HOME indicates the full path to the bin directory of your JDK. If this options is not
set, the ODI Java Home will be used.

• APPEND appends the transformed data to the target file if set to Yes. If set to No, the file is
overwritten.

• DISCARDMAX indicates the maximum number of records that will be discarded into the
bad file. The mapping fails when the number of discarded records exceeds the number
specified in this option.

Note:

Rollback is not supported. The records that have been inserted remain.

• MAX_NB_THREADS indicates the number of parallel threads used to process the data.

• BAD_FILE indicates the bad file name. If this option is not set, the bad file name will be
automatically generated and the bad file will be written in the target work schema.

• SOURCE_ENCODING indicates the charset encoding for the source files. Default is the
machine's default encoding.

• TARGET_ENCODING indicates the charset encoding for the target file. Default is the
machine's default encoding.

• REMOVE_TEMPORARY_OBJECTS removes the log and bad files if set to Yes.

Chapter 4
Designing a Mapping

4-17



• PROCESSED_FILE_PREFIX indicates the prefix that will be added to the source file name
after processing.

• PROCESSED_FILE_SUFFIX indicates the suffix that will be added to the source file name
after processing.

Example 4-2    Log File

Source File: /xxx/abc.dat
Target File: /yyy/data/target_file.dat
Bad File: /yyy/log/target_file.bad

Header Number to skip: 1
Errors allowed: 3
Insert option: APPEND (could be REPLACE)
Thread: 1

ERROR LINE 100: FIELD COL1 IS NOT A DATE
ERROR LINE 120: UNEXPECTED ERROR

32056 Rows susccessfully read
2000 Rows not loaded due to data filter
2 Rows not loaded due to data errors

30054 Rows successfully loaded

Chapter 4
Designing a Mapping

4-18



5
Generic SQL

It is important to understand how to work with technologies supporting the ANSI SQL-92
syntax in Oracle Data Integrator.

Note:

This is a generic chapter. The information described in this chapter can be applied to
technologies supporting the ANSI SQL-92 syntax, including Oracle, Microsoft SQL
Server, Sybase ASE, IBM DB2, Teradata, PostgreSQL, MySQL, Derby and so forth.

Some of the ANSI SQL-92 compliant technologies are covered in a separate chapter
in this guide. Refer to the dedicated technology chapter for specific information on
how to leverage the ODI optimizations and database utilities of the given technology.

This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting up an Integration Project

• Creating and Reverse-Engineering a Model

• Setting up Changed Data Capture

• Setting up Data Quality

• Designing a Mapping

5.1 Introduction
Oracle Data Integrator supports ANSI SQL-92 standard compliant technologies.

5.1.1 Concepts
The mapping of the concepts that are used in ANSI SQL-92 standard compliant technologies
and the Oracle Data Integrator concepts are as follows: a data server in Oracle Data Integrator
corresponds to a data processing resource that stores and serves data in the form of tables.
Depending on the technology, this resource can be named for example, database, instance,
server and so forth. Within this resource, a sub-division maps to an Oracle Data Integrator
physical schema. This sub-division can be named schema, database, catalog, library and so
forth. A set of related objects within one schema corresponds to a data model, and each table,
view or synonym will appear as an ODI datastore, with its attributes, columns, and constraints

5-1



5.1.2 Knowledge Modules
Oracle Data Integrator provides a wide range of Knowledge Modules for handling data stored
in ANSI SQL-92 standard compliant technologies. The Knowledge Modules listed in Table 5-1
are generic SQL Knowledge Modules and apply to the most popular ANSI SQL-92 standard
compliant databases.

Oracle Data Integrator also provides specific Knowledge Modules for some particular
databases to leverage the specific utilities. Technology-specific KMs, using features such as
loaders or external tables, are listed in the corresponding technology chapter.

Table 5-1    Generic SQL KMs

Knowledge Module Description

CKM SQL Checks data integrity against constraints defined on a Datastore. Rejects invalid
records in the error table created dynamically. Can be used for static controls as well as
for flow controls.

Consider using this KM if you plan to check data integrity on an ANSI SQL-92 compliant
database. Use specific CKMs instead if available for your database.

IKM SQL Control Append Integrates data in an ANSI SQL-92 compliant target table in replace/append mode.
When flow data needs to be checked using a CKM, this IKM creates a temporary
staging table before invoking the CKM. Supports Flow Control.

Consider using this IKM if you plan to load your SQL compliant target table in replace
mode, with or without data integrity check.

To use this IKM, the staging area must be on the same data server as the target.

IKM SQL Incremental Update Integrates data in an ANSI SQL-92 compliant target table in incremental update mode.
This KM creates a temporary staging table to stage the data flow. It then compares its
content to the target table to identify the records to insert and the records to update. It
also allows performing data integrity check by invoking the CKM. This KM is therefore
not recommended for large volumes of data. Supports Flow Control.

Consider using this KM if you plan to load your ANSI SQL-92 compliant target table to
insert missing records and to update existing ones. Use technology-specific
incremental update IKMs whenever possible as they are more optimized for
performance.

To use this IKM, the staging area must be on the same data server as the target.

IKM SQL Incremental Update (row
by row)

Integrates data in any AINSI-SQL92 compliant target database in incremental update
mode. This IKM processes the data row by row, updates existing rows, and inserts non-
existent rows. It isolates invalid data in the Error Table, which can be recycled. When
using this IKM with a journalized source table, the deletions can be synchronized.
Supports Flow Control.

IKM SQL to File Append Integrates data in a target file from an ANSI SQL-92 compliant staging area in replace
mode. Supports Flow Control.

Consider using this IKM if you plan to transform and export data to a target file. If your
source datastores are located on the same data server, we recommend using this data
server as staging area to avoid extra loading phases (LKMs)

To use this IKM, the staging area must be different from the target.

IKM SQL to SQL Control Append Integrates data into a ANSI-SQL92 target database from any ANSI-SQL92 compliant
staging area. Supports Flow Control.

This IKM is typically used for ETL configurations: source and target tables are on
different databases and the mapping's staging area is set to the logical schema of the
source tables or a third schema.

Chapter 5
Introduction

5-2



Table 5-1    (Cont.) Generic SQL KMs

Knowledge Module Description

IKM SQL to SQL Incremental
Update

Integrates data from any AINSI-SQL92 compliant database into any AINSI-SQL92
compliant database target table in incremental update mode. Supports Flow Control.

This IKM is typically used for ETL configurations: source and target tables are on
different databases and the mapping's staging area is set to the logical schema of the
source tables or a third schema.

IKM SQL Insert Integrates data into an ANSI-SQL92 target table in append mode. The data is loaded
directly in the target table with a single INSERT SQL statement. Built-in KM.

IKM SQL Update Integrates data into an ANSI-SQL92 target table in incremental update mode. The data
is loaded directly into the target table with a single UPDATE SQL statement. Built-in
KM.

IKM SQL Merge Integrates data into an ANSI-SQL92 target table in incremental update mode. The data
is loaded directly into the target table with a single MERGE SQL statement. Built-in KM.

LKM File to SQL Loads data from an ASCII or EBCDIC File to an ANSI SQL-92 compliant database
used as a staging area. This LKM uses the Agent to read selected data from the source
file and write the result in the staging temporary table created dynamically.

Consider using this LKM if one of your source datastores is an ASCII or EBCDIC file.
Use technology-specific LKMs for your target staging area whenever possible as they
are more optimized for performance. For example, if you are loading to an Oracle
database, use the LKM File to Oracle (SQLLDR) or the LKM File to Oracle (EXTERNAL
TABLE) instead.

LKM SQL to File Loads and integrates data into a target flat file. This LKM ignores the settings in the
IKM. Built-in KM.

LKM SQL to SQL Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92 compliant
staging area. This LKM uses the Agent to read selected data from the source database
and write the result into the staging temporary table created dynamically.

Consider using this LKM if your source datastores are located on a SQL compliant
database different from your staging area. Use technology-specific LKMs for your
source and target staging area whenever possible as they are more optimized for
performance. For example, if you are loading from an Oracle source server to an Oracle
staging area, use the LKM Oracle to Oracle (dblink) instead.

LKM SQL to SQL (Built-in) Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92 compliant
staging area. This LKM uses the Agent to read selected data from the source database
and write the result into the staging temporary table created dynamically. The extract
options specified in the source execution unit will be used to generate source query.
Built-in KM.

LKM SQL to SQL (row by row) Loads data from any ISO-92 database to any ISO-92 compliant target database. This
LKM uses a Jython script to read selected data from the database and write the result
into the target temporary table, which is created dynamically. It loads data from a
staging area to a target and indicates the state of each processed row.

The following options are used for the logging mechanism:

• MAX_ERRORS: Specify the maximum number of errors.

The LKM process stops when the maximum number of errors specified in this
option is reached.

This Knowledge Module is NOT RECOMMENDED when using LARGE VOLUMES.
Other specific modules using Bulk utilities (SQL*LOADER, BULK INSERT...) or direct
links (DBLINKS, Linked Servers...) are usually more efficient.

Chapter 5
Introduction

5-3



Table 5-1    (Cont.) Generic SQL KMs

Knowledge Module Description

LKM SQL to SQL (JYTHON) Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92 compliant
staging area. This LKM uses Jython scripting to read selected data from the source
database and write the result into the staging temporary table created dynamically. This
LKM allows you to modify the default JDBC data type binding between the source
database and the target staging area by editing the underlying Jython code provided.

Consider using this LKM if your source datastores are located on an ANSI SQL-92
compliant database different from your staging area and if you plan to specify your own
data type binding method.

Use technology-specific LKMs for your source and target staging area whenever
possible as they are more optimized for performance. For example, if you are loading
from an Oracle source server to an Oracle staging area, use the LKM Oracle to Oracle
(dblink) instead.

LKM SQL Multi-Connect Enables the use of multi-connect IKM for target table. Built-in IKM.

RKM SQL (JYTHON) Retrieves JDBC metadata for tables, views, system tables and columns from an ANSI
SQL-92 compliant database. This RKM may be used to specify your own strategy to
convert JDBC metadata into Oracle Data Integrator metadata.

Consider using this RKM if you encounter problems with the standard JDBC reverse-
engineering process due to some specificities of your JDBC driver. This RKM allows
you to edit the underlying Jython code to make it match the specificities of your JDBC
driver.

SKM SQL Generates data access Web services for ANSI SQL-92 compliant databases. Data
access services include data manipulation operations such as adding, removing,
updating or filtering records as well as changed data capture operations such as
retrieving changed data. Data manipulation operations are subject to integrity check as
defined by the constraints of your datastores.

Consider using this SKM if you plan to generate and deploy data manipulation or
changed data capture web services to your Service Oriented Architecture
infrastructure. Use specific SKMs instead if available for your database

5.2 Installation and Configuration
Make sure you have read the information in this section before you start using the generic SQL
Knowledge Modules:

• System Requirements and Certifications

• Technology-Specific Requirements

• Connectivity Requirements

5.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

Chapter 5
Installation and Configuration

5-4

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


5.2.2 Technology-Specific Requirements
See the Technology Specific Requirements section of the specific technology chapter for more
information.

If your technology does not have a dedicated chapter in this guide, see the documentation of
your technology for any technology-specific requirements.

5.2.3 Connectivity Requirements
See the Connectivity Requirements section of the specific technology chapter for more
information.

The Java Database Connectivity (JDBC) is the standard for connecting to a database and
other data sources. If your technology does not have a dedicated chapter in this guide, see the
documentation of your technology for the JDBC configuration information, including the
required driver files, the driver name, and the JDBC URL format.

5.3 Setting up the Topology
Setting up the Topology consists in:

1. Creating a Data Server

2. Creating a Physical Schema

5.3.1 Creating a Data Server
Create a data server under the ANSI SQL-92 compliant technology listed in the Physical
Architecture accordion using the standard procedure, as described in Creating a Data Server
of Administering Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more information.
For other technologies, see the documentation of your technology for the JDBC driver name
and JDBC URL format.

5.3.2 Creating a Physical Schema
Create a Physical Schema using the standard procedure, as described in Creating a Physical
Schema in Administering Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more information.

5.4 Setting up an Integration Project
Setting up a Project using an ANSI SQL-92 compliant database follows the standard
procedure. See Creating an Integration Project of the Developing Integration Projects with
Oracle Data Integrator.

The recommended knowledge modules to import into your project for getting started depend
on the corresponding technology. If your technology has a dedicated chapter in this guide, see
this chapter for more information.

Chapter 5
Setting up the Topology

5-5



5.5 Creating and Reverse-Engineering a Model
This section contains the following topics:

• Create a Data Model

• Reverse-engineer a Data Model

5.5.1 Create a Data Model
Create a data model based on the ANSI SQL-92 compliant technology using the standard
procedure, as described in Creating a Model of Developing Integration Projects with Oracle
Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more information.

5.5.2 Reverse-engineer a Data Model
ANSI SQL-92 standard compliant technologies support both types of reverse-engineering, the
Standard reverse-engineering, which uses only the abilities of the JDBC driver, and the
Customized reverse-engineering, which uses a RKM which provides logging features.

In most of the cases, consider using the standard JDBC reverse engineering instead of the
RKM SQL (Jython). However, you can use this RKM as a starter if you plan to enhance it by
adding your own metadata reverse-engineering behavior.

Standard Reverse-Engineering

To perform a Standard Reverse- Engineering on ANSI SQL-92 technologies use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration Projects
with Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more information.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on ANSI SQL-92 technologies with a RKM, use
the usual procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator. This section details only the fields specific to the usage of
the RKM SQL (Jython):

This RKM provides a logging option:

USE_LOG: Set to Yes if you want the reverse-engineering to process log details in a log file.

5.6 Setting up Changed Data Capture
Oracle Data Integrator does not provide journalizing Knowledge Modules for ANSI SQL-92
compliant technologies.

5.7 Setting up Data Quality
Oracle Data Integrator provides the CKM SQL for checking data integrity against constraints
defined on an ANSI SQL-92 compliant table. See Flow Control and Static Control in the
Developing Integration Projects with Oracle Data Integrator.

Chapter 5
Creating and Reverse-Engineering a Model

5-6



5.8 Designing a Mapping
You can use ANSI SQL-92 compliant technologies as a source, staging area or a target of a
mapping. It is also possible to create ETL-style mappings based on an ANSI SQL-92 compliant
technology.

The KM choice for a mapping or a check determines the abilities and performances of this
mapping or check. The recommendations below help in the selection of the KM for different
situations concerning a data server based on an ANSI SQL-92 compliant technology.

5.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology
ANSI SQL-92 compliant technologies can be used as a source, target or staging area of a
mapping. The LKM choice in the Loading Knowledge Module tab to load data between an
ANSI SQL-92 compliant technology and another type of data server is essential for the
performance of a mapping.

5.8.1.1 Loading Data from an ANSI SQL-92 Compliant Technology
The generic KMs that are listed in Table 5-2 implement methods for loading data from an ANSI
SQL-92 compliant database to a target or staging area database. In addition to these KMS,
Oracle Data Integrator provides KMs specific to the target or staging area database. If your
technology has a dedicated chapter in this guide, see this chapter for more information.

Table 5-2    KMs to Load from an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

ANSI SQL-92 compliant technology LKM SQL to SQL Standard KM for SQL-92 to SQL-92 transfers.

ANSI SQL-92 compliant technology LKM SQL to SQL (Built-in) Built-in KM for SQL-92 to SQL-92 transfers
through the agent using JDBC.

ANSI SQL-92 compliant technology LKM SQL to SQL (Jython) This LKM uses Jython scripting to read
selected data from the source database and
write the result into the staging temporary table
created dynamically. This LKM allows you to
modify the default JDBC data types binding
between the source database and the target
staging area by editing the underlying Jython
code provided.

ANSI SQL-92 compliant technology LKM SQL to SQL (row by row) This LKM uses row by row logging.

ANSI SQL-92 compliant technology LKM SQL to File Built-in KM for SQL-92 to flat file transfers.

5.8.1.2 Loading Data to an ANSI SQL-92 Compliant Technology
The generic KMs that are listed in Table 5-3 implement methods for loading data from a source
or staging area into an ANSI SQL-92 compliant database. In addition to these KMs, Oracle
Data Integrator provides KMs specific to the source or staging area database. If your
technology has a dedicated chapter in this guide, see this chapter for more information.

Chapter 5
Designing a Mapping

5-7



Table 5-3    KMs to Load to an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

File LKM File to SQL Standard KM

ANSI SQL-92 compliant technology LKM SQL to SQL Standard KM

ANSI SQL-92 compliant technology LKM SQL to SQL (Built-in) Built-in KM for SQL-92 to SQL-92 transfers
through the agent using JDBC.

ANSI SQL-92 compliant technology LKM SQL to SQL (Jython) This LKM uses Jython scripting to read
selected data from the source database and
write the result into the staging temporary table
created dynamically. This LKM allows you to
modify the default JDBC data types binding
between the source database and the target
staging area by editing the underlying Jython
code provided.

ANSI SQL-92 compliant technology LKM SQL to SQL (row by row) This LKM uses row by row logging.

5.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology
An ANSI SQL-92 compliant technology can be used as a target of a mapping. The IKM choice
in the Integration Knowledge Module tab determines the performance and possibilities for
integrating.

The KMs listed in Table 5-4 implement methods for integrating data into an ANSI SQL-92
compliant target. In addition to these KMs, Oracle Data Integrator provides KMs specific to the
source or staging area database. See the corresponding technology chapter for more
information.

Table 5-4    KMs to Integrate Data in an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

ANSI SQL-92 compliant
technology

IKM SQL Control Append Uses Bulk data movement inside data server.
Supports Flow Control.

ANSI SQL-92 compliant
technology

IKM SQL Incremental Update Uses Bulk data movement inside data server.
Supports Flow Control.

ANSI SQL-92 compliant
technology

IKM SQL Incremental Update (row by
row)

Uses Bulk data movement inside data server,
processes data row by row. Supports Flow
Control.

ANSI SQL-92 compliant
technology

IKM SQL Insert Uses SQL INSERT statement for data
movement. Built-in KM.

ANSI SQL-92 compliant
technology

IKM SQL Update Uses SQL UPDATE statement for data
movement. Built-in KM.

ANSI SQL-92 compliant
technology

IKM SQL Merge Uses SQL MERGE statement for data
movement. Built-in KM.

ANSI SQL-92 compliant
technology

IKM SQL to File Append Uses agent for data movement. Supports
Flow Control.

ANSI SQL-92 compliant
technology

IKM SQL to SQL Incremental Update Uses agent or JYTHON for data movement.
Supports Flow Control.

ANSI SQL-92 compliant
technology

IKM SQL to SQL Control Append Uses agent for control append strategies.
Supports Flow Control.

Chapter 5
Designing a Mapping

5-8



5.8.3 Designing an ETL-Style Mapping
See Creating a Mapping in Developing Integration Projects with Oracle Data Integrator for
generic information on how to design mappings. This section describes how to design an ETL-
style mapping where the staging area and target are ANSI SQL-92 compliant.

In an ETL-style mapping, ODI processes the data in a staging area, which is different from the
target. Oracle Data Integrator provides two ways for loading the data from an ANSI SQL-92
compliant staging area to an ANSI SQL-92 compliant target:

• Using a Multi-connection IKM

• Using a LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM

A multi-connection IKM allows updating a target where the staging area and sources are on
different data servers.

Oracle Data Integrator provides the following multi-connection IKMs for ANSI SQL-92
compliant technologies: IKM SQL to SQL Incremental Update and IKM SQL to SQL Control
Append.

See Table 5-5 for more information on when to use a multi-connection IKM.

To use a multi-connection IKM in an ETL-style mapping:

1. Create a mapping with an ANSI SQL-92 compliant staging area and target using the
standard procedure as described in Creating a Mapping in Developing Integration Projects
with Oracle Data Integrator. This section describes only the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables or a
third schema. See Configuring Execution Locations in Developing Integration Projects with
Oracle Data Integrator for information about how to change the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for this
object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) to the
staging area. See Table 5-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Physical diagram, select the Target by clicking its title. The Property Inspector opens
for this object.

In the Integration Knowledge Module, select an ETL multi-connection IKM to load the data
from the staging area to the target. See Table 5-5 to determine the IKM you can use.

Note the following when setting the KM options:

• For IKM SQL to SQL Incremental Update

– If you do not want to create any tables on the target system, set FLOW_CONTROL=false
and FLOW_TABLE_LOCATION=STAGING.

Please note that this will lead to row-by-row processing and therefore significantly
lower performance.

– If you set the options FLOW_CONTROL or STATIC_CONTROL to true, select a CKM
in the Check Knowledge Module tab. Note that if FLOW_CONTROL is set to true, the

Chapter 5
Designing a Mapping

5-9



flow table is created on the target, regardless of the value of
FLOW_TABLE_LOCATION.

– The FLOW_TABLE_LOCATION option can take the following values:

Value Description Comment

TARGET Objects are created on the
target.

Default value.

STAGING Objects are created only on
the staging area, not on the
target.

Cannot be used with flow control. Leads to row-
by-row processing and therefore loss of
performance.

NONE No objects are created on
staging area nor target.

Cannot be used with flow control. Leads to row-
by-row processing and therefore loss of
performance. Requires to read source data
twice in case of journalized data sources

Using a LKM and a mono-connection IKM

If there is no dedicated multi-connection IKM, use a standard exporting LKM in combination
with a standard mono-connection IKM. The exporting LKM is used to load the flow table from
the staging area to the target. The mono-connection IKM is used to integrate the data flow into
the target table.

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a source,
staging area, and target of an ETL-style mapping.

See Table 5-5 for more information on when to use the combination of a standard LKM and a
mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping:

1. Create a mapping with an ANSI SQL-92 compliant staging area and target using the
standard procedure as described in Creating a Mapping in Developing Integration Projects
with Oracle Data Integrator. This section describes only the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables or a
third schema. See Configuring Execution Locations in Developing Integration Projects with
Oracle Data Integrator for information about how to change the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for this
object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) to the
staging area. See Table 5-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. Select the access point for the Staging Area. The Property Inspector opens for this object.

7. In the Loading Knowledge Module tab, select an LKM to load from the staging area to the
target. See Table 5-5 to determine the LKM you can use.

8. Optionally, modify the options.

9. Select the Target by clicking its title. The Property Inspector opens for this object.

10. In the Integration Knowledge Module tab, select a standard mono-connection IKM to
update the target. SeeTable 5-5 to determine the IKM you can use.

Chapter 5
Designing a Mapping

5-10



Table 5-5    KM Guidelines for ETL-Style Mappings based on an ANSI SQL-92 standard compliant
technology

Source Staging Area Target Exporting LKM IKM KM Strategy Comment

ANSI
SQL-92
standard
compliant

ANSI SQL-92
standard
compliant
database

ANSI
SQL-92
standard
compliant
database

NA IKM SQL to SQL
Incremental Update

Multi-
connection IKM

Allows an
incremental update
strategy with no
temporary target-
side objects. Use
this KM if it is not
possible to create
temporary objects
in the target server.

The application
updates are made
without temporary
objects on the
target, the updates
are made directly
from source to
target. The
configuration
where the flow
table is created on
the staging area
and not in the
target should be
used only for small
volumes of data.

Supports flow and
static control

ANSI
SQL-92
standard
compliant

ANSI SQL-92
standard
compliant
database

ANSI
SQL-92
standard
compliant
database

NA IKM SQL to SQL
Control Append

Multi-
connection IKM

Use this KM
strategy to perform
control append.

Supports flow and
static control.

ANSI
SQL-92
standard
compliant

ANSI SQL-92
standard
compliant
database

ANSI
SQL-92
standard
compliant
database

any standard
KM loading from
an ANSI
SQL-92
standard
compliant
technology to an
ANSI SQL-92
standard
compliant
technology

IKM SQL Incremental
Update

Mono-
connection IKM

Allows an
incremental update
strategy

Chapter 5
Designing a Mapping

5-11



6
XML Files

It is important to understand how to work with XML files in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering a XML File

• Designing a Mapping

• Troubleshooting

6.1 Introduction
Oracle Data Integrator supports XML files integration through the Oracle Data Integrator Driver
for XML.

6.1.1 Concepts
The XML concepts map the Oracle Data Integrator concepts as follows: An XML file
corresponds to a data server in Oracle Data Integrator. Within this data server, a single
schema maps the content of the XML file.The Oracle Data Integrator Driver for XML (XML
driver) loads the hierarchical structure of the XML file into a relational schema. This relational
schema is a set of tables located in the schema that can be queried or modified using SQL.
The XML driver is also able to unload the relational schema back in the XML file.The relational
schema is reverse-engineered as a data model in ODI, with tables, columns, and constraints.
This model is used like a normal relational data model in ODI. If the modified data within the
relational schema needs to be written back to the XML file, the XML driver provides the
capability to synchronize the relational schema into the file.

See Oracle Data Integrator Driver for XML Reference for more information on this driver.

6.1.2 Pre/Post Processing Support for XML Driver
You can now customize the way data is fed to the XML driver. You can set up intermediate
processing stages to process the data that is retrieved from an external endpoint using Oracle
Data Integrator, or to write the data out to an external endpoint.

For detailed information about configuring and implement the pre and post processing stages
for XML driver, see Pre/Post Processing Support for XML and Complex File Drivers.

6-1



6.1.3 Knowledge Modules
Oracle Data Integrator provides the IKM XML Control Append for handling XML data. This
Knowledge Module is a specific XML Knowledge Module. It has a specific option to
synchronize the data from the relational schema to the file.

In addition to this KM, you can also use an XML data server as any SQL data server. XML data
servers support both the technology-specific KMs sourcing or targeting SQL data servers, as
well as the generic KMs. See Generic SQL or the technology chapters for more information on
these KMs.

6.2 Installation and Configuration
Make sure you have read the information in this section before you start using the XML
Knowledge Module:

• System Requirements

• Technologic Specific Requirements

• Connectivity Requirements

6.2.1 System Requirements
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

6.2.2 Technologic Specific Requirements
There are no technology-specific requirements for using XML Files in Oracle Data Integrator.

Supported Data types

Data type Mappings to and from Oracle will be defined for these data types. Supported data
types for XML technology are:

• BIGINT — The int data type is the primary integer data type in SQL Server. An integer
datatype with a precision of 19 decimal digits. The bigint data type is intended for use
when integer values might exceed the range that is supported by the int data type. Bigint
fits between smallmoney and int in the data type precedence chart. Functions return bigint
only if the parameter expression is a bigint data type.

• BINARY — The data types BINARY and BINARY VARYING ( VARBINARY ) are
collectively referred to as binary string types and the values of binary string types are
referred to as binary strings. A binary string is a sequence of octets, or bytes. A binary
value of NULL appears last (largest) in ascending order. Enables storage of binary data up
to 4,096 bytes. Enables your application to store a bit unconstrained by character
semantics.

• BIT — An integer data type that can take a value of 1, 0, or NULL. It can also be used to
store boolean values because TRUE is convertible to 1 and FALSE is convertible to 0.
Converting to bit promotes any nonzero value to 1. If there are 8 or fewer bit columns in a

Chapter 6
Installation and Configuration

6-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


table, the columns are stored as 1 byte. If there are from 9 up to 16 bit columns, the
columns are stored as 2 bytes, and so on.

• BLOB — A BLOB (binary large object) is a varying-length binary string that can be up to
2,147,483,647 characters long. Like other binary types, BLOB strings are not associated
with a code page. In addition, BLOB strings do not hold character data. The length is given
in bytes for BLOB unless one of the suffixes K, M, or G is given, relating to the multiples of
1024, 1024*1024, 1024*1024*1024 respectively. Length is specified in bytes for BLOB.

• CHAR — The CHAR data type stores character data in a fixed-length field. Character data
can be stored as fixed-length or variable-length strings. Fixed-length strings are right-
extended with spaces on output; variable-length strings are not extended. Any trailing
blank spaces are removed on input, and only restored on output. The default length is 1,
and the maximum size is 4,096 bytes.

• CLOB — A CLOB (character large object) is used to store unicode character-based data,
such as large documents in any character set. A CLOB value can be up to 2,147,483,647
( two giga) characters long. The length is given in number characters for both CLOB,
unless one of the suffixes K, M, or G is given, relating to the multiples of 1024, 1024*1024,
1024*1024*1024 respectively. Length is specified in characters (unicode) for CLOB.

• DATE — Based on the international ISO-8601:1988 standard date notation: YYYYMMDD
where YYYY represents the year in the usual Gregorian calendar, MM is the month
between 01 (January) and 12 (December), and DD is the day of the month with a value
between 01 and 31. Dates may be represented in any of the following list of base data
types. For some data types, a minimum of 4 bytes is required. The list includes: Numeric,
String and EBCDIC.

• DECIMAL — DECIMAL provides an exact numeric in which the precision and scale can be
arbitrarily sized. You can specify the precision (the total number of digits, both to the left
and the right of the decimal point) and the scale (the number of digits of the fractional
component). The amount of storage required is based on the precision.

• DOUBLE — A double precision floating-point data type used in CREATE TABLE and
ALTER TABLE statements. The double data type is a double-precision 64-bit IEEE 754
floating point. The Double data type provides the largest and smallest possible magnitudes
for a number. The default value of Double is 0. For decimal values, this data type is
generally the default choice.

Note:

This data type should never be used for precise values, such as currency.

• FLOAT — The FLOAT datatype is a floating-point number with a binary precision b. The
default precision for this datatype is 126 binary, or 38 decimal. A subtype of the NUMBER
datatype having precision p. A FLOAT value is represented internally as NUMBER. The
precision p can range from 1 to 126 binary digits. A FLOAT value requires from 1 to 22
bytes.

• INTEGER — An INTEGER is an ANSI SQL data type which refers to numeric values which
have only an integer portion and no floating point or decimal part. It will only store whole
numbers, such as 3, 25, 1987 and so on. The INTEGER data type is usually referred to as
NUMBER(38). Its precision can range from 1 to 38. SIMPLE_INTEGER, a subtype of
BINARY_INTEGER. Its range is -2147483648 to 2147483648. The SIMPLE_INTEGER
cannot store a NULL value.

• LONGVARBINARY — Variable-length raw-byte data, such as IP addresses. LONG
VARBINARY values are not extended to the full width of the column. Stores data up to
32,000,000 bytes. Use the LONG data types only when you need to store data greater

Chapter 6
Installation and Configuration

6-3



than 65,000 bytes, which is the maximum size for VARBINARY and VARCHAR data types.
Such data might include unstructured data, online comments or posts, or small log files.

• LONGVARCHAR — Variable-length strings of letters, numbers, and symbols. LONG
VARCHAR values are not extended to the full width of the column. Stores data up to
32,000,000 bytes. Use the LONG data types only when you need to store data greater
than 65,000 bytes, which is the maximum size for VARBINARY and VARCHAR data types.
Such data might include unstructured data, online comments or posts, or small log files.

• NCHAR and NVARCHAR2— NCHAR and NVARCHAR2 are Unicode datatypes that store
Unicode character data. The character set of NCHAR and NVARCHAR2 datatypes can
only be either AL16UTF16 or UTF8 and is specified at database creation time as the
national character set. AL16UTF16 and UTF8 are both Unicode encoding. The NCHAR
datatype stores fixed-length character strings that correspond to the national character set
whereas NVARCHAR2 datatype stores variable length character strings. The maximum
length of an NCHAR column is 2000 bytes and it can hold up to 2000 characters. The
actual data is subject to the maximum byte limit of 2000. The maximum length of an
NVARCHAR2 column is 4000 bytes and it can hold up to 4000 characters. The actual data
is subject to the maximum byte limit of 4000. The two size constraints must be satisfied
simultaneously at run time for both the data types.

• NCLOB — NCLOB (National Character Large Object) is a data type that can hold up to 4
GB of character data. It's similar to a CLOB, but characters are from the national character
set. In 12c, the storage limit is extended to (4*1024*1024*1024-1) * CHUNK size given in
the LOB STORAGE clause defining the LOB (database block size by default).

• NUMBER — The NUMBER data type stores fixed and floating-point numbers. Numbers of
virtually any magnitude can be stored and are guaranteed portable among different
systems operating Oracle, up to 38 digits of precision. The following numbers can be
stored in a NUMBER column - positive numbers in the range 1 x 10-130 to 9.99...9 x
10125 with up to 38 significant digits, negative numbers from -1 x 10-130 to 9.99...99 x
10125 with up to 38 significant digits, zero and positive and negative infinity (generated
only by importing from an Oracle Version 5 or later version database).

• NUMERIC — The numeric data types store positive and negative fixed and floating-point
numbers, zero, infinity, and values that are the undefined result of an operation (that is, is
"not a number" or NAN). It comprises of Number data type and Floating Point Numbers.
The NUMBER data type stores fixed and floating-point numbers. Numbers of virtually any
magnitude can be stored and are guaranteed portable among different systems operating
Oracle Database, up to 38 digits of precision.

• OBJECT — Object types are abstractions of the real-world entities—for example,
purchase orders—that application programs deal with. An object type is a schema object
with three kinds of components - a Name, which serves to identify the object type uniquely
within that schema, Attributes, which model the structure and state of the real-world entity.
Attributes are built-in types or other user-defined types, Methods, which are functions or
procedures written in PL/SQL or Java and stored in the database, or written in a language
such as C and stored externally. Methods implement operations the application can
perform on the real-world entity. An object type is a template. A structured data unit that
matches the template is called an object.

• REAL — The REAL data type is a floating-point number with a binary precision of 63, or
18 decimal. A REAL is a signed approximate numeric value with a mantissa decimal
precision 7. Its absolute value is either zero or between 10^-38 and 10^38. Example -
5600E+12. The REAL data type provides 4 bytes of storage for numbers using IEEE
floating-point notation.

• SMALLINT — A SMALLINT, small integer type, is an exact numeric value with precision 5
and scale 0, typically 2 bytes or 16 bits. If signed, the range can be -32,768 to +32,767
(SQL_C_SSHORT or SQL_C_SHORT) or, if unsigned, 0 to 65,535 (SQL_C_USHORT).

Chapter 6
Installation and Configuration

6-4



-32,768 <= n <= 32,767, where n is the value of a SMALLINT. SMALLINT provides 2 bytes
of storage.

• TEXT — The TEXT data type stores any kind of text data. It can contain both single-byte
and multibyte characters that the locale supports. The term simple large object refers to an
instance of a TEXT or BYTE data type. A TEXT column has a theoretical limit of 231 bytes
(two gigabytes) and a practical limit that your available disk storage determines. No more
than 195 columns of the same table can be declared as TEXT data types. The same
restriction also applies to BYTE data types. You can store, retrieve, update, or delete the
value in a TEXT column.

6.2.3 Connectivity Requirements
This section lists the requirements for connecting to XML database.

Oracle Data Integrator Driver for XML

XML files are accessed through the Oracle Data Integrator Driver for XML. This JDBC driver is
installed with Oracle Data Integrator and requires no other installed component or
configuration.

You must ask the system administrator for the following connection information:

• The location of the DTD or XSD file associated with your XML file

• The location of the XML file

6.3 Setting up the Topology
Setting up the topology consists in:

1. Creating an XML Data Server

2. Creating a Physical Schema for XML

6.3.1 Creating an XML Data Server
An XML data server corresponds to one XML file that is accessible to Oracle Data Integrator.

6.3.1.1 Creation of the Data Server
Create a data server for the XML technology using the standard procedure, as described in 
Creating a Data Server of Administering Oracle Data Integrator. This section details only the
fields required or specific for defining a File data server:

1. In the Definition tab:

• Name: Name of the data server that will appear in Oracle Data Integrator.

• User/Password: These fields are not used for XML data servers.

2. In the JDBC tab, enter the values according to the driver used:

• JDBC Driver: com.sunopsis.jdbc.driver.xml.SnpsXmlDriver
• JDBC URL: jdbc:snps:xml?[property=value&property=value...]
Table 6-1 lists the key properties of the Oracle Data Integrator Driver for XML. These
properties can be specified in the JDBC URL.

Chapter 6
Setting up the Topology

6-5



See Oracle Data Integrator Driver for XML Reference for a detailed description of these
properties and for a comprehensive list of all properties.

Table 6-1    JDBC Driver Properties

Property Value Notes

f <XML File location> XML file name. Use slash "/" in the path name instead of
back slash "\". It is possible to use an HTTP, FTP or File
URL to locate the file. Files located by URL are read-only.

d <DTD/XSD File
location>

Description file: This file may be a DTD or XSD file. It is
possible to use an HTTP, FTP or File URL to locate the file.
Files located by URL are read-only.

Note that when no DTD or XSD file is present, the relational
schema is built using only the XML file content. It is not
recommended to reverse-engineer the data model from
such a structure as one XML file instance may not contain
all the possible elements described in the DTD or XSD, and
data model may be incomplete.

re <Root element> Name of the element to take as the root table of the
schema. This value is case sensitive. This property can be
used for reverse-engineering for example a specific
message definition from a WSDL file, or when several
possible root elements exist in a XSD file.

ro true | false If true, the XML file is opened in read only mode.

s <schema name> Name of the relational schema where the XML file will be
loaded. If this property is missing, a schema named after
the five first letters of the XML file name will automatically
be created.

cs true | false Load the XML file in case sensitive or insensitive mode. For
case insensitive mode, all element names in the DTD file
should be distinct (For example: Abc and abc in the same
file will result in name collisions).

The following examples illustrate these properties:

Connects to the PROD20100125_001.xml file described by products.xsd in the PRODUCTS
schema.

jdbc:snps:xml?f=/xml/PROD20100125_001.xml&d=/xml/products.xsd&s=PRODUCTS

Connects in read-only mode to the staff_internal.xml file described by
staff_internal.dtd in read-only mode. The schema name will be staff.

jdbc:snps:xml?f=/demo/xml/staff_internal.xml&d=/demo/xml/
staff_internal.dtd&ro=true&s=staff

6.3.2 Creating a Physical Schema for XML
Create an XML physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

The schema name that you have set on the URL will be preset. Select this schema for both the
Data Schema and Work Schema.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

Chapter 6
Setting up the Topology

6-6



6.4 Setting Up an Integration Project
Setting up a Project using the XML database follows the standard procedure. See Creating an
Integration Project of the Developing Integration Projects with Oracle Data Integrator.

The recommended knowledge modules to import into your project for getting started with XML
are the following:

• LKM SQL to SQL

• LKM File to SQL

• IKM XML Control Append

6.5 Creating and Reverse-Engineering a XML File
This section contains the following topics:

• Create an XML Model

• Reverse-Engineering an XML Model

6.5.1 Create an XML Model
An XML file model groups a set of datastores. Each datastore typically represents an element
in the XML file.

Create an XML Model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator. Select the XML technology and
the XML logical schema created when configuring the topology.

6.5.2 Reverse-Engineering an XML Model
XML supports standard reverse-engineering, which uses only the abilities of the XML driver.

It is recommended to reference a DTD or XSD file in the dtd or d parameters of the URL to
reverse-engineer the structure from a generic description of the XML file structure. Reverse-
engineering can use an XML instance file if no XSD or DTD is available. In this case, the
relational schema structure will be inferred from the data contained in the XML file.

Standard Reverse-Engineering

To perform a Standard Reverse- Engineering on XML use the usual procedure, as described in 
Reverse-engineering a Model of Developing Integration Projects with Oracle Data Integrator.

The standard reverse-engineering process will automatically reverse-engineer the table from
the relational schema generated by the XML driver. Note that these tables automatically
include:

• Primary keys (PK columns) to preserve parent-child elements relationships

• Foreign keys (FK columns) to preserve parent-child elements relationships

• Order identifier (ORDER columns) to preserve the order of elements in the XML file

These extra columns enable the mapping of the hierarchical XML structure into the relational
schema. See XML to SQL Mapping in the Oracle Data Integrator Driver for XML Reference for
more information.

Chapter 6
Setting Up an Integration Project

6-7



6.6 Designing a Mapping
You can use XML as a source or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performances of this
mapping or check. The recommendations in this section help in the selection of the KM for
different situations concerning an XML data server.

6.6.1 Notes about XML Mappings
Read carefully these notes before working with XML in mappings.

6.6.1.1 Targeting an XML Structure
When using a datastore of an XML model as a target of a mapping, you must make sure to
load the driver-generated columns that are used for preserving the parent-child relationships
and the order in the XML hierarchy. For example, if filling records for the region element into
an XML structure as shown in Example 6-1, that correspond to a REGION table in the
relational schema, you should load the columns REGION_ID and REGION_NAME of the
REGION table. These two columns correspond to XML attributes.

<country COUNTRY_ID="6" COUNTRY_NAME="Australia">
    <region REGION_ID="72" REGION_NAME="Queensland">
</country>

In Example 6-1 you must also load the following additional columns that are automatically
created by the XML Driver in the REGION table:

• REGIONPK: This column enables you to identify each <region> element.

• REGIONORDER: This column enables you to order the <region> elements in the XML file
(records are not ordered in a relational schema, whereas XML elements are ordered).

• COUNTRYFK: This columns enables you to put the <region> element in relation with the
<country> parent element. This value is equal to the COUNTRY.COUNTRYPK value for
the Australia record in the COUNTRY table.

Example 6-1    XML Structure

6.6.1.2 Synchronizing XML File and Schema
To ensure a perfect synchronization of the data in an XML file and the data in the XML
schema, the following commands have to be called:

• Before using the tables of an XML model, either to read or update data, it is recommended
that you use the SYNCHRONIZE FROM FILE command on the XML logical schema. This
operation reloads the XML hierarchical data in the relational XML schema. The schema is
loaded in the built-in or external database storage when first accessed. Subsequent
changes made to the file are not automatically synchronized into the schema unless you
issue this command.

• After performing changes in the relational schema, you must unload this schema into the
XML hierarchical data by calling the SYNCHRONIZE ALL or SYNCHRONIZE FROM DATABASE
commands on the XML Logical Schema. The IKM XML Control Append implements this
synchronize command.

Chapter 6
Designing a Mapping

6-8



These commands must be executed in procedures in the packages before (and after) the
mappings and procedures manipulating the XML schema.

See Oracle Data Integrator Driver for XML Reference for more information on these
commands.

6.6.1.3 Handling Large XML Files
Large XML files can be handled with high performance with Oracle Data Integrator.

The default driver configuration stores the relational schema in a built-in engine in memory. It is
recommended to consider the use of external database storage for handling large XML files.

See Schema Storage for more information on these commands.

6.6.2 Loading Data from and to XML
An XML file can be used as a mapping's source or target. The LKM choice in the Loading
Knowledge Module tab that is used to load data between XML files and other types of data
servers is essential for the performance of the mapping.

6.6.2.1 Loading Data from an XML Schema
Use the Generic SQL KMs or the KMs specific to the other technology involved to load data
from an XML database to a target or staging area database.

Table 6-2 lists some examples of KMs that you can use to load from an XML source to a
staging area:

Table 6-2    KMs to Load from XML to a Staging Area

Staging Area KM Notes

Microsoft SQL Server LKM SQL to MSSQL (BULK) Uses SQL Server's bulk loader.

Oracle LKM SQL to Oracle Faster than the Generic LKM (Uses
Statistics)

All LKM SQL to SQL Generic KM to load data between an
ANSI SQL-92 source and an ANSI
SQL-92 staging area.

6.6.2.2 Loading Data to an XML Schema
It is not advised to use an XML schema as a staging area, except if XML is the target of the
mapping and you wish to use the target as a staging area. In this case, it might be required to
load data to an XML schema.

Use the Generic SQL KMs or the KMs specific to the other technology involved to load data
from a source or staging area into an XML schema.

Table 6-3 lists some examples of KMs that you can use to load from a source to an XML
staging area.

Chapter 6
Designing a Mapping

6-9



Table 6-3    KMs to Load to an XML Schema

Source KM Notes

File LKM File to SQL Generic KM to load a file in a ANSI SQL-92
staging area.

All LKM SQL to SQL Generic KM to load data between an ANSI
SQL-92 source and an ANSI SQL-92
staging area.

6.6.3 Integrating Data in XML
XML can be used as a target of a mapping. The data integration strategies in XML concern
loading from the staging area to XML. The IKM choice in the Integration Knowledge Module
tab determines the performances and possibilities for integrating.

The IKM XML Control Append integrates data into the XML schema and has an option to
synchronize the data to the file. In addition to this KM, you can also use the Generic SQL KMs
or the KMs specific to the other technology involved. Note that if using generic or technology-
specific KMs, you must manually perform the synchronize operation to write the changes made
in the schema to the XML file.

Table 6-4 lists some examples of KMs that you can use to integrate data:

• From a staging area to an XML target

• From an XML staging area to an XML target. Note that in this case the staging area is on
the XML target.

Table 6-4    KMs to Integrate Data in an XML File

Mode Staging Area KM Notes

Update XML IKM SQL Incremental Update Generic KM

Append XML IKM SQL Control Append Generic KM

Append All RDBMS IKM SQL to SQL Append Generic KM

6.7 Troubleshooting
This section provides information on how to troubleshoot problems that you might encounter
when using XML in Oracle Data Integrator. It contains the following topics:

• Detect the Errors Coming from XML

• Common Errors

6.7.1 Detect the Errors Coming from XML
Errors appear often in Oracle Data Integrator in the following way:

java.sql.SQLException: No suitable driver
at ... 
at ... 
...

Chapter 6
Troubleshooting

6-10



the java.sql.SQLExceptioncode simply indicates that a query was made through the JDBC
driver, which has returned an error. This error is frequently a database or driver error, and must
be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the XML
driver documentation. If it contains a specific error code, like here, the error can be
immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL code send
to the database to find the source of the error. The code is displayed in the description tab of
the task in error.

6.7.2 Common Errors
This section describes the most common errors with XML along with the principal causes. It
contains the following topics:

• No suitable driver
The JDBC URL is incorrect. Check that the URL syntax is valid.

• File <XML file> is already locked by another instance of the XML driver.

The XML file is locked by another user/application. Close all application that might be using
the XML file. If such an application has crashed, then remove the .lck file remaining in the
XML file's directory.

• The DTD file "xxxxxxx.dtd" doesn't exist
This exception may occur when trying to load an XML file by the command LOAD FILE.
The error message can have two causes:

– The path of the DTD file is incorrect.

– The corresponding XML file was already opened by another schema (during
connection for instance).

• Table not found: S0002 Table not found: <table name> in statement [<SQL
statement>]
The table you are trying to access does not exist in the schema.

• Column not found: S0022 Column not found: <column name> in statement [<SQL
statement>]
The column you are trying to access does not exist in the tables specified in the statement.

Chapter 6
Troubleshooting

6-11



7
Complex Files

It is important to understand how to work with Complex Files in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Building a Native Schema Description File Using the Native Format Builder

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering a Complex File Model

• Designing a Mapping

7.1 Introduction
Oracle Data Integrator supports several files types. This chapter describes how to work with
the Complex (or native) File format. See Files for information about simple fixed or delimited
files containing ASCII or EBCDIC data.

For complex files it is possible to build a Native Schema description file that describes the file
structure. Using this Native Schema (nXSD) description and the Oracle Data Integrator Driver
for Complex Files, Oracle Data Integrator is able to reverse-engineer, read and write
information from complex files.

See Building a Native Schema Description File Using the Native Format Builder for information
on how to build a native schema description file using the Native Format Builder Wizard, and 
Oracle Data Integrator Driver for Complex Files Reference for reference information on the
Complex File driver.

7.1.1 Concepts
The Oracle Data Integrator Driver for Complex Files (Complex File driver) converts native
format to a relational structure and exposes this relational structure as a data model in Oracle
Data Integrator.

The Complex File driver translates internally the native file into an XML structure, as defined in
the Native Schema (nXSD) description and from this XML file it generates a relational schema
that is consumed by Oracle Data Integrator. The overall mechanism is shown in Figure 7-1.

Figure 7-1    Complex File Driver Process

7-1



Most concepts and processes that are used for Complex Files are equivalent to those used for
XML files. The main difference is the step that transparently translates the Native File into an
XML structure that is used internally by the driver but never persisted.

The Complex File technology concepts map the Oracle Data Integrator concepts as follows: A
Complex File corresponds to an Oracle Data Integrator data server. Within this data server, a
single schema maps the content of the complex file.

The Oracle Data Integrator Driver for Complex File (Complex File driver) loads the complex
structure of the native file into a relational schema. This relational schema is a set of tables
located in the schema that can be queried or modified using SQL. The Complex File driver is
also able to unload the relational schema back into the complex file.The relational schema is
reverse-engineered as a data model in ODI, with tables, columns, and constraints. This model
is used like a standard relational data model in ODI. If the modified data within the relational
schema needs to be written back to the complex file, the driver provides the capability to
synchronize the relational schema into the file.

Note that for simple flat files formats (fixed and delimited), it is recommended to use the File
technology, and for XML files, the XML technology. See Files and XML Files for more
information.

7.1.2 Pre/Post Processing Support for Complex File Driver
You can now customize the way data is fed to the Complex File driver. You can set up
intermediate processing stages to process the data that is retrieved from an external endpoint
using Oracle Data Integrator, or to write the data out to an external endpoint.

For detailed information about configuring and implement the pre and post processing stages
for Complex File driver, see Pre/Post Processing Support for XML and Complex File Drivers.

7.1.3 Knowledge Modules
You can use a Complex File data server as any SQL data server. Complex File data servers
support both the technology-specific KMs sourcing or targeting SQL data servers, as well as
the generic KMs. See Generic SQL or the technology chapters for more information on these
KMs.

You can also use the IKM XML Control Append when writing to a Complex File data server.
This Knowledge Module implements specific option to synchronize the data from the relational
schema to the file, which is supported by the Complex File driver.

7.2 Installation and Configuration
Make sure you have read the information in this section before you start working with the
Complex File technology:

• System Requirements

• Technology Specific Requirements

• Connectivity Requirements

7.2.1 System Requirements
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

Chapter 7
Installation and Configuration

7-2



The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

7.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Complex Files in Oracle Data
Integrator.

7.2.3 Connectivity Requirements
This section lists the requirements for connecting to complex files.

Oracle Data Integrator Driver for Complex Files

Complex files are accessed through the Oracle Data Integrator Driver for Complex File. This
JDBC driver is installed with Oracle Data Integrator and requires no other installed component
or configuration.

You must ask the system administrator for the following connection information:

• The location of the Native Schema (nXSD) file associated with your native file

• The location of the native complex file

7.3 Building a Native Schema Description File Using the Native
Format Builder

You can build a Native Schema (nXSD) description file using the Native Format Builder Wizard.
You can start the Native Format Builder Wizard from the Data Server Editor when creating the
Complex File data server.

To build a native schema description file using the native format builder:

1. In the Topology Navigator expand the Technologies node in the Physical Architecture
accordion.

2. Select the Complex File technology.

3. Right-click and select New Data Server.

4. In the JDBC tab, click the Edit nXSD button. The Native Format Builder Wizard appears.

5. Follow the on-screen instructions and complete the Native Format Builder Wizard to create
a Native Schema description file.

See Native Format Builder Wizard in the User's Guide for Technology Adapters, for more
information on the Native Schema format.

7.4 Setting up the Topology
Setting up the topology consists in:

1. Creating a Complex File Data Server

2. Creating a Complex File Physical Schema

Chapter 7
Building a Native Schema Description File Using the Native Format Builder

7-3

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


7.4.1 Creating a Complex File Data Server
A Complex File data server corresponds to one native file that is accessible to Oracle Data
Integrator.

7.4.1.1 Creation of the Data Server
Create a data server for the Complex File technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This section
details only the fields required or specific for defining a Complex File data server:

1. In the Definition tab:

• Name: Name of the data server that will appear in Oracle Data Integrator.

• User/Password: These fields are not used for Complex File data servers.

2. In the JDBC tab, enter the following values:

• JDBC Driver: oracle.odi.jdbc.driver.file.complex.ComplexFileDriver
• JDBC URL: jdbc:snps:complexfile
• Edit nXSD: Launch the Native Format Builder Wizard if you want to create a Native

Schema description file.

For more information on Native Format Builder Wizard, see Building a Native Schema
Description File Using the Native Format Builder.

• Properties: Configure the properties, such as native file location, native schema, root
element, and schema name, for the Oracle Data Integrator Driver for Complex Files.

Table 7-1 lists the key properties of the Oracle Data Integrator Driver for Complex
Files. These properties can be specified in JDBC URL.

See Oracle Data Integrator Driver for Complex Files Reference for a detailed
description of these properties and for a comprehensive list of all properties.

Table 7-1    Complex File Driver Properties

Property Value Notes

f <native file name> Native file location. Use slash "/" in the path name instead of
back slash "\". It is possible to use an HTTP, FTP or File
URL to locate the file. Files located by URL are read-only.
This parameter is mandatory.

d <native schema> Native Schema (nXSD) file location. This parameter is
mandatory.

re <root element> Name of the element to take as the root table of the
schema. This value is case sensitive. This property can be
used for reverse-engineering for example a specific section
of the Native Schema. This parameter is mandatory.

s <schema name> Name of the relational schema where the complex file will
be loaded. This parameter is optional.

This schema will be selected when creating the physical
schema under the Complex File data server.

Chapter 7
Setting up the Topology

7-4



7.4.2 Creating a Complex File Physical Schema
Create a Complex File physical schema using the standard procedure, as described in 
Creating a Physical Schema in Administering Oracle Data Integrator.

The schema name that you have set on the URL will be preset. Select this schema for both the
Data Schema and Work Schema.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

7.5 Setting Up an Integration Project
Setting up a project using the Complex File technology follows the standard procedure. See 
Creating an Integration Project of Developing Integration Projects with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for getting
started:

• LKM SQL to SQL

• IKM XML Control Append

In addition to these knowledge modules, you can also import file knowledge modules specific
to the other technologies involved in your product.

7.6 Creating and Reverse-Engineering a Complex File Model
This section contains the following topics:

• Create a Complex File Model

• Reverse-engineer a Complex File Model

7.6.1 Create a Complex File Model
A Complex File model groups a set of datastores. Each datastore typically represents an
element in the intermediate XML file generated from the native file using the native schema.

Create a Complex File model using the standard procedure, as described in Creating a Model
of Developing Integration Projects with Oracle Data Integrator.

7.6.2 Reverse-engineer a Complex File Model
The Complex File technology supports standard reverse-engineering, which uses only the
abilities of the Complex File driver.

Standard Reverse-Engineering

To perform a Standard Reverse- Engineering with a Complex File model use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration Projects
with Oracle Data Integrator.

This reverse-engineering uses the same process as the reverse-engineering of XML Files. The
native schema (nXSD) provided in the data server URL is used as the XSD file to describe the

Chapter 7
Setting Up an Integration Project

7-5



XML structure. See Reverse-Engineering an XML Model and XML to SQL Mapping for more
information.

7.7 Designing a Mapping
You can use a complex file as a source or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performances of this
mapping or check. The recommendations below help in the selection of the KM for different
situations concerning a Complex File data server.

Complex File data models are handled in mappings similarly to XML structures. For example,
the Synchronization model is the same for complex files and XML files and the same
knowledge modules can be used for both technologies.

See Designing a Mapping in XML Files for more information.

Chapter 7
Designing a Mapping

7-6



8
Microsoft SQL Server

It is important to understand how to work with Microsoft SQL Server in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering a Microsoft SQL Server Model

• Setting up Changed Data Capture

• Setting up Data Quality

• Designing a Mapping

8.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in Microsoft SQL Server. Oracle Data
Integrator features are designed to work best with Microsoft SQL Server, including reverse-
engineering, changed data capture, data integrity check, and mappings.

8.1.1 Concepts
The Microsoft SQL Server concepts map the Oracle Data Integrator concepts as follows: A
Microsoft SQL Server server corresponds to a data server in Oracle Data Integrator. Within this
server, a database/owner pair maps to an Oracle Data Integrator physical schema. A set of
related objects within one database corresponds to a data model, and each table, view or
synonym will appear as an ODI datastore, with its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Microsoft SQL
Server.

8.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 8-1 for handling
Microsoft SQL Server data. In addition to these specific Microsoft SQL Server Knowledge
Modules, it is also possible to use the generic SQL KMs with Microsoft SQL Server. See 
Generic SQL for more information.

Table 8-1    MSSQL KMs

Knowledge Module Description

IKM MSSQL Incremental Update Integrates data in a Microsoft SQL Server target table in incremental
update mode.

IKM MSSQL Slowly Changing Dimension Integrates data in a Microsoft SQL Server target table used as a Type II
Slowly Changing Dimension in your Data Warehouse.

8-1



Table 8-1    (Cont.) MSSQL KMs

Knowledge Module Description

JKM MSSQL Consistent Creates the journalizing infrastructure for consistent journalizing on
Microsoft SQL Server tables using triggers.

JKM MSSQL Simple Creates the journalizing infrastructure for simple journalizing on Microsoft
SQL Server tables using triggers.

LKM File to MSSQL (BULK) Loads data from a File to a Microsoft SQL Server staging area database
using the BULK INSERT SQL command.

LKM MSSQL to MSSQL (BCP) Loads data from a Microsoft SQL Server source database to a Microsoft
SQL Server staging area database using the native BCP out/BCP in
commands.

LKM MSSQL to MSSQL (LINKED SERVERS) Loads data from a Microsoft SQL Server source database to a Microsoft
SQL Server staging area database using the native linked servers feature.

LKM MSSQL to ORACLE (BCP SQLLDR) Loads data from a Microsoft SQL Server to an Oracle database (staging
area) using the BCP and SQLLDR utilities.

LKM SQL to MSSQL (BULK) Loads data from any ANSI SQL-92 source database to a Microsoft SQL
Server staging area database using the native BULK INSERT SQL
command.

LKM SQL to MSSQL Loads data from any ANSI SQL-92 source database to a Microsoft SQL
Server staging area. This LKM is similar to the standard LKM SQL to SQL
described in Generic SQL except that you can specify some additional
specific Microsoft SQL Server parameters.

RKM MSSQL Retrieves metadata for Microsoft SQL Server objects: tables, views and
synonyms, as well as columns and constraints.

8.2 Installation and Configuration
Make sure you have read the information in this section before you start working with the
Microsoft SQL Server technology:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

8.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

8.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Microsoft SQL Server use specific features of this
database. The following restrictions apply when using these Knowledge Modules. See the
Microsoft SQL Server documentation for additional information on these topics.

Chapter 8
Installation and Configuration

8-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


8.2.2.1 Using the BULK INSERT Command
This section describes the requirements that must be met before using the BULK INSERT
command with Microsoft SQL Server:

• The file to be loaded by the BULK INSERT command needs to be accessible from the
Microsoft SQL Server instance machine. It could be located on the file system of the server
or reachable from a UNC (Unique Naming Convention) path.

• UNC file paths are supported but not recommended as they may decrease performance.

• For performance reasons, it is often recommended to install Oracle Data Integrator Agent
on the target server machine.

8.2.2.2 Using the BCP Command
This section describes the requirements that must be met before using the BCP command with
Microsoft SQL Server:

• The BCP utility as well as the Microsoft SQL Server Client Network Utility must be installed
on the machine running the Oracle Data Integrator Agent.

• The server names defined in the Topology must match the Microsoft SQL Server Client
connect strings used for these servers.

• White spaces in server names defined in the Client Utility are not supported.

• UNC file paths are supported but not recommended as they may decrease performance.

• The target staging area database must have the option select into/bulk copy.

• Execution can remain pending if the file generated by the BCP program is empty.

• For performance reasons, it is often recommended to install Oracle Data Integrator Agent
on the target server machine.

8.2.2.3 Using Linked Servers
This section describes the requirements that must be met before using linked servers with
Microsoft SQL Server:

• The user defined in the Topology to connect to the Microsoft SQL Server instances must
have the following privileges:

– The user must be the db_owner of the staging area databases

– The user must have db_ddladmin role

– For automatic link server creation, the user must have sysdamin privileges

• The MSDTC Service must be started on both SQL Server instances (source and target).
The following hints may help you configure this service:

– The Log On As account for the MSDTC Service is a Network Service account (and not
the 'LocalSystem' account).

– MSDTC should be enabled for network transactions.

– Windows Firewall should be configured to allow the MSDTC service on the network.
By default, the Windows Firewall blocks the MSDTC program.

– The Microsoft SQL Server must be started after MSDTC has completed its startup.

See the following links for more information about configuring the MSDTC Service:

Chapter 8
Installation and Configuration

8-3



– http://support.microsoft.com/?kbid=816701
– http://support.microsoft.com/?kbid=839279

8.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Microsoft SQL Server database.

JDBC Driver

Oracle Data Integrator is installed with a default Microsoft SQL Server Datadirect Driver. This
drivers directly uses the TCP/IP network layer and requires no other installed component or
configuration. You can alternatively use the drivers provided by Microsoft for SQL Server.

8.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a Microsoft SQL Server Data Server

2. Creating a Microsoft SQL Server Physical Schema

8.3.1 Creating a Microsoft SQL Server Data Server
A Microsoft SQL Server data server corresponds to a Microsoft SQL Server server connected
with a specific user account. This user will have access to several databases in this server,
corresponding to the physical schemas in Oracle Data Integrator created under the data
server.

8.3.1.1 Creation of the Data Server
Create a data server for the Microsoft SQL Server technology using the standard procedure,
as described in Creating a Data Server of Administering Oracle Data Integrator.

This section details only the fields required or specific for defining a Microsoft SQL data server:

1. In the Definition tab:

• Name: Name of the data server that will appear in Oracle Data Integrator

• Server: Physical name of the data server

• User/Password: Microsoft SQLServer user with its password

2. In the JDBC tab:

• JDBC Driver: weblogic.jdbc.sqlserver.SQLServerDriver
• JDBC URL: jdbc:weblogic:sqlserver://hostname:port[;property=value[;...]]

8.3.2 Creating a Microsoft SQL Server Physical Schema
Create a Microsoft SQL Server physical schema using the standard procedure, as described in 
Creating a Physical Schema in Administering Oracle Data Integrator.

The work schema and data schema in this physical schema correspond each to a database/
owner pair. The work schema should point to a temporary database and the data schema
should point to the database hosting the data to integrate.

Chapter 8
Setting up the Topology

8-4

http://support.microsoft.com/?kbid=816701
http://support.microsoft.com/?kbid=839279


Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

8.4 Setting Up an Integration Project
Setting up a project using the Microsoft SQL Server database follows the standard procedure.
See Creating an Integration Project of Developing Integration Projects with Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for getting
started with Microsoft SQL Server:

• IKM MSSQL Incremental Update

• IKM MSSQL Slowly Changing Dimension

• JKM MSSQL Consistent

• JKM MSSQL Simple

• LKM File to MSSQL (BULK)

• LKM MSSQL to MSSQL (BCP)

• LKM MSSQL to MSSQL (LINKED SERVERS)

• LKM MSSQL to ORACLE (BCP SQLLDR)

• LKM SQL to MSSQL (BULK)

• LKM SQL to MSSQL

• CKM SQL. This generic KM is used for performing integrity check for SQL Server.

• RKM MSSQL

8.5 Creating and Reverse-Engineering a Microsoft SQL Server
Model

This section contains the following topics:

• Create a Microsoft SQL Server Model

• Reverse-engineer a Microsoft SQL Server Model

8.5.1 Create a Microsoft SQL Server Model
Create a Microsoft SQL Server Model using the standard procedure, as described in Creating
a Model of the Developing Integration Projects with Oracle Data Integrator.

8.5.2 Reverse-engineer a Microsoft SQL Server Model
Microsoft SQL Server supports both Standard reverse-engineering - which uses only the
abilities of the JDBC driver - and Customized reverse-engineering, which uses a RKM to
retrieve the metadata.

In most of the cases, consider using the standard JDBC reverse engineering for starting.
Standard reverse-engineering with Microsoft SQL Server retrieves tables, views, and columns.

Chapter 8
Setting Up an Integration Project

8-5



Consider switching to customized reverse-engineering for retrieving more metadata. Microsoft
SQL Server customized reverse-engineering retrieves the tables, views, and synonyms. The
RKM MSSQL also reverse-engineers columns that have a user defined data type and
translates the user defined data type to the native data type.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Microsoft SQL Server use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration Projects
with Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Microsoft SQL Server with a RKM, use the
usual procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator . This section details only the fields specific to the
Microsoft SQL Server technology:

1. In the Reverse Engineer tab of the Microsoft SQL Server Model, select the KM: RKM
MSSQL.<project name>.

2. In the COMPATIBLE option, enter the Microsoft SQL Server version. This option decides
whether to enable reverse synonyms. Note that only Microsoft SQLServer version 2005
and above support synonyms.

Note the following information when using this RKM:

• The connection user must have SELECT privileges on any INFORMATION_SCHEMA
views.

• Only native data type will be saved for the attribute with user defined data type in the
repository and model.

• User defined data types implemented through a class of assembly in the Microsoft .NET
Framework common language runtime (CLR) will not be reversed.

8.6 Setting up Changed Data Capture
The ODI Microsoft SQL Server Knowledge Modules support the Changed Data Capture
feature. See Working with Changed Data Capture of Developing Integration Projects with
Oracle Data Integrator, for details on how to set up journalizing and how to use captured
changes.

Microsoft SQL Server Journalizing Knowledge Modules support Simple Journalizing and
Consistent Set Journalizing. The Microsoft SQL Server JKMs use triggers to capture data
changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 8-2 for journalizing
Microsoft SQL Server tables.

Table 8-2    Microsoft SQL Server Journalizing Knowledge Modules

KM Notes

JKM MSSQL Consistent Creates the journalizing infrastructure for consistent
journalizing on Microsoft SQL Server tables using triggers.

JKM MSSQL Simple Creates the journalizing infrastructure for simple
journalizing on Microsoft SQL Server tables using triggers.

Chapter 8
Setting up Changed Data Capture

8-6



Log-based changed data capture is possible with Microsoft SQL Server using the Oracle
GoldenGate. See Oracle GoldenGate for more information.

8.7 Setting up Data Quality
Oracle Data Integrator provides the generic CKM SQL for checking data integrity against
constraints defined on a Microsoft SQL Server table. See Flow Control and Static Control in
Developing Integration Projects with Oracle Data Integrator for details.

See Generic SQL for more information.

8.8 Designing a Mapping
You can use Microsoft SQL Server as a source, staging area or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of this
mapping or check. The recommendations in this section help in the selection of the KM for
different situations concerning a Microsoft SQL Server data server.

8.8.1 Loading Data from and to Microsoft SQL Server
Microsoft SQL Server can be used as a source, target or staging area of a mapping. The LKM
choice in the Loading Knowledge Module tab to load data between Microsoft SQL Server and
another type of data server is essential for the performance of a mapping.

8.8.1.1 Loading Data from Microsoft SQL Server
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for
loading data from Microsoft SQL Server to a target or staging area database. These optimized
Microsoft SQL Server KMs are listed in Table 8-3.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to the
other technology involved to load data from Microsoft SQL Server to a target or staging area
database.

Table 8-3    KMs for loading data from Microsoft SQL Server

Source or Staging Area Technology KM Notes

Microsoft SQL Server LKM MSSQL to MSSQL (BCP) Loads data from a Microsoft
SQL Server source database
to a Microsoft SQL Server
staging area database using
the native BCP out/BCP in
commands.

Microsoft SQL Server LKM MSSQL to MSSQL
(LINKED SERVERS)

Loads data from a Microsoft
SQL Server source database
to a Microsoft SQL Server
staging area database using
the native linked servers
feature.

Chapter 8
Setting up Data Quality

8-7



Table 8-3    (Cont.) KMs for loading data from Microsoft SQL Server

Source or Staging Area Technology KM Notes

Oracle LKM MSSQL to ORACLE (BCP
SQLLDR)

Loads data from a Microsoft
SQL Server to an Oracle
database (staging area) using
the BCP and SQLLDR
utilities.

8.8.1.2 Loading Data to Microsoft SQL Server
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for
loading data from a source or staging area into a Microsoft SQL Server database. These
optimized Microsoft SQL Server KMs are listed in Table 8-4.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to the
other technology involved.

Table 8-4    KMs for loading data to Microsoft SQL Server

Source or Staging Area Technology KM Notes

File LKM File to MSSQL (BULK) Loads data from a File to a
Microsoft SQL Server staging
area database using the
BULK INSERT SQL
command.

Microsoft SQL Server LKM MSSQL to MSSQL (BCP) Loads data from a Microsoft
SQL Server source database
to a Microsoft SQL Server
staging area database using
the native BCP out/BCP in
commands.

Microsoft SQL Server LKM MSSQL to MSSQL
(LINKED SERVERS)

Loads data from a Microsoft
SQL Server source database
to a Microsoft SQL Server
staging area database using
the native linked servers
feature.

SQL LKM SQL to MSSQL (BULK) Loads data from any ANSI
SQL-92 source database to a
Microsoft SQL Server staging
area database using the
native BULK INSERT SQL
command.

SQL LKM SQL to MSSQL Loads data from any ANSI
SQL-92 source database to a
Microsoft SQL Server staging
area.

Chapter 8
Designing a Mapping

8-8



8.8.2 Integrating Data in Microsoft SQL Server
Oracle Data Integrator provides Knowledge Modules that implement optimized data integration
strategies for Microsoft SQL Server. These optimized Microsoft SQL Server KMs are listed in 
Table 8-5.

In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the performances and
possibilities for integrating.

Table 8-5    KMs for integrating data to Microsoft SQL Server

KM Notes

IKM MSSQL Incremental Update Integrates data in a Microsoft SQL Server target table in
incremental update mode.

IKM MSSQL Slowly Changing
Dimension

Integrates data in a Microsoft SQL Server target table used as a
Type II Slowly Changing Dimension in your Data Warehouse

Using Slowly Changing Dimensions

For using slowly changing dimensions, make sure to set the Slowly Changing Dimension value
for each column of the target datastore. This value is used by the IKM MSSQL Slowly
Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or Insert Column,
Current Record Flag and Start/End Timestamps columns.

Chapter 8
Designing a Mapping

8-9



9
Microsoft Excel

It is important to understand how to work with Microsoft Excel in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering a Microsoft Excel Model

• Designing a Mapping

• Troubleshooting

9.1 Introduction
Oracle Data Integrator (ODI) integrates data stored into Microsoft Excel workbooks. It allows
reverse-engineering as well as read and write operations on spreadsheets.

9.1.1 Concepts
A Microsoft Excel data server corresponds to one Microsoft Excel workbook (.xls file) that is
accessible through your local network. A single physical schema is created under this data
server.

Within this schema, a spreadsheet or a given named zone of the workbook appears as a
datastore in Oracle Data Integrator.

9.1.2 Knowledge Modules
Oracle Data Integrator provides no Knowledge Module (KM) specific to the Microsoft Excel
technology. You can use the generic SQL KMs to perform the data integration and
transformation operations of Microsoft Excel data. See Generic SQL for more information.

9-1



Note:

Excel technology cannot be used as the staging area, does not support incremental
update or flow/static check. As a consequence, the following KMs will not work with
the Excel technology:

• RKM SQL (JYTHON)

• LKM File to SQL

• CKM SQL

• IKM SQL Incremental Update

• IKM SQL Control Append

• LKM SQL to SQL (JYTHON)

9.2 Installation and Configuration
Make sure you have read the information in this section before you start using the Microsoft
Excel Knowledge Module:

• System Requirements and Certifications

• Specific Requirements

9.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

9.2.2 Specific Requirements
There are no specific requirements for using Microsoft Excel files in Oracle Data Integrator.

Note:

ODI does not come with a specific driver to access Microsoft Excel and you have to
acquire one from third-party vendors.

To install drivers from third-party vendors, refer to:

• For ODI Studio — Adding Libraries to ODI Studio

• For Standalone Agent or Collocated Agent — Adding Libraries to a Standalone or
Standalone Collocated Agent

• JEE Agent — Adding Libraries to a Java EE Agent

Chapter 9
Installation and Configuration

9-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html
https://docs.oracle.com/en/middleware/lifecycle/12.2.1.3/oding/configuring-oracle-data-integrator-studio.html#GUID-8005F6A0-2EB7-41B9-A6F6-749BFE67DC6E
https://docs.oracle.com/en/middleware/lifecycle/12.2.1.3/oding/configuring-domain-standalone-agent.html#GUID-ED402551-81CE-4733-937D-18E913EA7C8D
https://docs.oracle.com/en/middleware/lifecycle/12.2.1.3/oding/configuring-domain-standalone-agent.html#GUID-ED402551-81CE-4733-937D-18E913EA7C8D
https://docs.oracle.com/en/middleware/lifecycle/12.2.1.3/oding/configuring-domain-java-ee-agent.html#GUID-A424807A-4A41-4958-8215-D9DCEF6CF246


9.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Microsoft Excel workbook.

To be able to access Microsoft Excel data, you need to:

• Install the Microsoft Excel ODBC Driver

• Declare a Microsoft Excel ODBC Data Source

Install the Microsoft Excel ODBC Driver

Microsoft Excel workbooks can only be accessed through ODBC connectivity. The ODBC
Driver for Excel must be installed on your system.

Declare a Microsoft Excel ODBC Data Source

An ODBC data source must be defined for each Microsoft Excel workbook (.xls file) that will
be accessed from ODI. ODBC datasources are created with the Microsoft ODBC Data Source
Administrator. Refer to your Microsoft Windows operating system documentation for more
information on datasource creation. Also refer to Create an ODBC Datasource for the Excel
Spreadsheet, Customized Reverse-Engineering.

9.3 Setting up the Topology
Setting up the Topology consists in:

1. Creating a Microsoft Excel Data Server

2. Creating a Microsoft Excel Physical Schema

9.3.1 Creating a Microsoft Excel Data Server
Create a data server for the Microsoft Excel technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator.

In the JDBC tab, for JDBC Driver and JDBC URL parameters , enter the details provided by
your driver provider.

9.3.2 Creating a Microsoft Excel Physical Schema
Create a Microsoft Excel Physical Schema using the standard procedure, as described in 
Creating a Physical Schema in Administering Oracle Data Integrator .Note that Oracle Data
Integrator needs only one physical schema for each Microsoft Excel data server.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

Note:

An Excel physical schema only has a data schema, and no work schema. Microsoft
Excel cannot be used as the staging area of a mapping.

Chapter 9
Setting up the Topology

9-3



9.4 Setting Up an Integration Project
Setting up a Project using the Microsoft Excel follows the standard procedure. See Creating an
Integration Project of Developing Integration Projects with Oracle Data Integrator.

Import the following generic SQL KMs into your project for getting started with Microsoft Excel:

• LKM SQL to SQL

• IKM SQL to SQL Append

See Generic SQL for more information about these KMs.

9.5 Creating and Reverse-Engineering a Microsoft Excel Model
This section contains the following topics:

• Create a Microsoft Excel Model

• Reverse-engineer a Microsoft Excel Model

9.5.1 Create a Microsoft Excel Model
A Microsoft Excel Model is a set of datastores that correspond to the tables contained in a
Microsoft Excel workbook.

Create a Microsoft Excel Model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator

9.5.2 Reverse-engineer a Microsoft Excel Model
Microsoft Excel supports only the Standard reverse-engineering and its capabilities entirely
depend on the driver being used.

To perform a Standard Reverse-Engineering on Microsoft Excel use the usual procedure, as
described in Reverse-engineering a Model of Developing Integration Projects with Oracle Data
Integrator.

9.6 Designing a Mapping
You can use a Microsoft Excel file as a source or a target of a mapping, but NOT as the
staging area

The KM choice for a mapping or a check determines the abilities and performances of this
mapping or check. The recommendations below help in the selection of the KM for different
situations concerning a Microsoft Excel server.

9.6.1 Loading Data From and to Microsoft Excel
Microsoft Excel can be used as a source or a target of a mapping. The LKM choice in the
Mapping Flow tab to load data between Microsoft Excel and another type of data server is
essential for the performance of a mapping.

Chapter 9
Setting Up an Integration Project

9-4



9.6.1.1 Loading Data from Microsoft Excel
Oracle Data Integrator does not provide specific knowledge modules for Microsoft Excel. Use
the Generic SQL KMs or the KMs specific to the technology used as the staging area. The
following table lists some generic SQL KMs that can be used for loading data from Microsoft
Excel to any staging area.

Table 9-1    KMs to Load from Microsoft Excel

Target or Staging Area KM Notes

Oracle LKM SQL to Oracle Loads data from any ISO-92 database to an
Oracle target database. Uses statistics.

SQL LKM SQL to SQL Loads data from any ISO-92 database to any
ISO-92 compliant target database.

9.6.1.2 Loading Data to Microsoft Excel
Because Microsoft Excel cannot be used as staging area you cannot use a LKM to load data
into Microsoft Excel. See Integrating Data in Microsoft Excel for more information on how to
integrate data into Microsoft Excel.

9.6.2 Integrating Data in Microsoft Excel
Oracle Data Integrator does not provide specific knowledge modules for Microsoft Excel. Use
the Generic SQL KMs or the KMs specific to the technology used as the staging area. For
integrating data from a staging area to Microsoft Excel, you can use, for example the IKM SQL
to SQL Append.

9.7 Troubleshooting
This section provides information on how to troubleshoot problems that you might encounter
when using the Microsoft Excel technology in Oracle Data Integrator. It contains the following
topics:

• Decoding Error Messages

• Common Problems and Solutions

9.7.1 Decoding Error Messages
Errors appear often in Oracle Data Integrator in the following way:

java.sql.SQLException: java.sql.SQLException: [Microsoft][ODBC Driver Manager] Data 
source name not found and no default driver specified RC=Oxb
at ... ...

the java.sql.SQLException code simply indicates that a query was made through the JDBC-
ODBC bridge, which has returned an error. This error is frequently a database or driver error,
and must be interpreted in this direction.

Only the part of text in italic must first be taken in account. It must be searched in the ODBC
driver or Excel documentation. If its contains a specific error code, like here in bold italic, the
error can be immediately identified.

Chapter 9
Troubleshooting

9-5



If such an error is identified in the execution log, it is necessary to analyze the SQL code to find
the source of the error. The code is displayed in the description tab of the task in error.

The most common errors with Excel are detailed below, with their principal causes.

9.7.2 Common Problems and Solutions
This section describes common problems and solutions.

• [Microsoft][ODBC Excel Driver] Invalid SQL statement; expected 'DELETE',
'INSERT', 'PROCEDURE', 'SELECT', or 'UPDATE'.
This error is probably due to a functionality limitation of the installed ODBC driver. You
might have to install a full version of ODBC driver, such as the default one with Microsoft
Office.

• Invalid Fetch Size
Make sure array Fetch Size is set to 0 for the Microsoft Excel data sever defined in ODI.

• [Microsoft][ODBC Excel Driver] Could not decrypt file.
You might have to keep the password-protected Microsoft Excel workbook open for the
JDBC-ODBC connection to work.

• UnknownDriverException
The JDBC driver is incorrect. Check the name of the driver.

• [Microsoft][ODBC Driver Manager] Data source name not found and no default
driver specified RC=0xb Datasource not found or driver name not specified
The ODBC Datasource specified in the JDBC URL is incorrect.

• The Microsoft Jet Database engine could not find the object <object name>
The table you are trying to access does not exist or is not defined in the Excel
spreadsheet.

• Too few parameters. Expected 1.
You are trying to access an nonexisting column in the Excel spreadsheet.

• Operation must use an updateable query.
This error is probably due to the fact that you have not unchecked the "read only" option
when defined the Excel DSN. Unselect this option and re-execute your mapping.

Chapter 9
Troubleshooting

9-6



10
Microsoft Access

It is important to understand how to work with Microsoft Access in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Concepts

• Knowledge Modules

• Specific Requirements

10.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in a Microsoft Access database.
Oracle Data Integrator features are designed to work best with Microsoft Access, including
mappings.

10.2 Concepts
The Microsoft Access concepts map the Oracle Data Integrator concepts as follows: An
Microsoft Access database corresponds to a data server in Oracle Data Integrator. Within this
server, a schema maps to an Oracle Data Integrator physical schema.

10.3 Knowledge Modules
Oracle Data Integrator provides the IKM Access Incremental Update for handling Microsoft
Access data. This IKM integrates data in a Microsoft Access target table in incremental update
mode.

The IKM Access Incremental Update creates a temporary staging table to stage the data flow
and compares its content to the target table to identify the records to insert and the records to
update. It also allows performing data integrity check by invoking the CKM.

Consider using this KM if you plan to load your Microsoft Access target table to insert missing
records and to update existing ones.

To use this IKM, the staging area must be on the same data server as the target.

This KM uses Microsoft Access specific features. It is also possible to use the generic SQL
KMs with the Microsoft Access database. See Generic SQL for more information.

Note:

When reverse engineering MS Access, primary keys are not retrieved. Primary key
constraints have to be added manually to the datastores for IKM Access Incremental
Update to work correctly.

10-1



Note:

Microsoft Access supports only the Standard reverse-engineering and its capabilities
entirely depend on the driver being used.

10.4 Specific Requirements
There are no specific requirements for using Microsoft Access in Oracle Data Integrator.

Note:

ODI does not come with a driver to use Microsoft Access and you have to acquire
one from third-party vendors.

To install drivers from third-party vendors, refer to:

• For ODI Studio — Adding Libraries to ODI Studio

• For Standalone Agent or Collocated Agent — Adding Libraries to a Standalone or
Standalone Collocated Agent

• JEE Agent — Adding Libraries to a Java EE Agent

To know more about the supported data types, refer to Microsoft Access documentation.

Chapter 10
Specific Requirements

10-2

https://docs.oracle.com/en/middleware/lifecycle/12.2.1.3/oding/configuring-oracle-data-integrator-studio.html#GUID-8005F6A0-2EB7-41B9-A6F6-749BFE67DC6E
https://docs.oracle.com/en/middleware/lifecycle/12.2.1.3/oding/configuring-domain-standalone-agent.html#GUID-ED402551-81CE-4733-937D-18E913EA7C8D
https://docs.oracle.com/en/middleware/lifecycle/12.2.1.3/oding/configuring-domain-standalone-agent.html#GUID-ED402551-81CE-4733-937D-18E913EA7C8D
https://docs.oracle.com/en/middleware/lifecycle/12.2.1.3/oding/configuring-domain-java-ee-agent.html#GUID-A424807A-4A41-4958-8215-D9DCEF6CF246
https://docs.microsoft.com/en-us/sql/odbc/microsoft/microsoft-access-data-types?view=sql-server-2017


11
Netezza

It is important to understand how to work with Netezza in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering a Netezza Model

• Setting up Data Quality

• Designing a Mapping

11.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in a Netezza database. Oracle Data
Integrator features are designed to work best with Netezza, including reverse-engineering,
data integrity check, and mappings.

11.1.1 Concepts
The Netezza database concepts map the Oracle Data Integrator concepts as follows: A
Netezza cluster corresponds to a data server in Oracle Data Integrator. Within this server, a
database/owner pair maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a Netezza
database.

11.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 11-1 for handling
Netezza data. These KMs use Netezza specific features. It is also possible to use the generic
SQL KMs with the Netezza database. See Generic SQL for more information.

Table 11-1    Netezza KMs

Knowledge Module Description

CKM Netezza Checks data integrity against constraints defined on a Netezza table. Rejects invalid
records in the error table created dynamically. Can be used for static controls as well as
flow controls.

IKM Netezza Control Append Integrates data in a Netezza target table in replace/append mode. When flow data needs to
be checked using a CKM, this IKM creates a temporary staging table before invoking the
CKM.

IKM Netezza Incremental
Update

Integrates data in a Netezza target table in incremental update mode.

11-1



Table 11-1    (Cont.) Netezza KMs

Knowledge Module Description

IKM Netezza To File
(EXTERNAL TABLE)

Integrates data in a target file from a Netezza staging area. It uses the native EXTERNAL
TABLE feature of Netezza.

LKM File to Netezza
(EXTERNAL TABLE)

Loads data from a File to a Netezza Server staging area using the EXTERNAL TABLE
feature (dataobject).

LKM File to Netezza
(NZLOAD)

Loads data from a File to a Netezza Server staging area using NZLOAD.

RKM Netezza Retrieves JDBC metadata from a Netezza database. This RKM may be used to specify your
own strategy to convert Netezza JDBC metadata into Oracle Data Integrator metadata.

Consider using this RKM if you encounter problems with the standard JDBC reverse-
engineering process due to some specificities of the Netezza JDBC driver.

11.2 Installation and Configuration
Make sure you have read the information in this section before you start using the Netezza
Knowledge Modules:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

11.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

11.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Netezza use the NZLOAD utility.

The following requirements and restrictions apply for these Knowledge Modules:

• The source file must be accessible by the ODI agent executing the mapping.

• The run-time agent machine must have Netezza Performance Server client installed. And
the NZLOAD install directory needs to be in the PATH variable when the agent is started.

• All mappings need to be on the staging area.

• All source fields need to be mapped, and must be in the same order as the target table in
Netezza.

• Date, Time, Timestamp and Numeric formats should be specified in consistent with
Netezza Data Type definition.

For KMs using the EXTERNAL TABLE feature: Make sure that the file is accessible by the
Netezza Server.

Chapter 11
Installation and Configuration

11-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


To know more about the supported data types, refer to Netezza documentation.

11.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Netezza database.

JDBC Driver

Oracle Data Integrator uses the Netezza JDBC to connect to a NCR Netezza database. This
driver must be installed in your Oracle Data Integrator drivers directory.

11.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a Netezza Data Server

2. Creating a Netezza Physical Schema

11.3.1 Creating a Netezza Data Server
A Netezza data server corresponds to a Netezza cluster connected with a specific Netezza
user account. This user will have access to several databases in this cluster, corresponding to
the physical schemas in Oracle Data Integrator created under the data server.

11.3.1.1 Creation of the Data Server
Create a data server for the Netezza technology using the standard procedure, as described in
Creating a Data Server of Administering Oracle Data Integrator. This section details only the
fields required or specific for defining a Netezza data server:

1. In the Definition tab:

• Name: Name of the data server that will appear in Oracle Data Integrator

• Server: Physical name of the data server

• User/Password: Netezza user with its password

2. In the JDBC tab:

• JDBC Driver: org.netezza.Driver
• JDBC URL: jdbc:Netezza://<host>:<port>/<database>

Note:

Note that Oracle Data Integrator will have write access only on the database
specified in the URL.

11.3.2 Creating a Netezza Physical Schema
Create a Netezza physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

Chapter 11
Setting up the Topology

11-3

https://www.ibm.com/support/knowledgecenter/en/SSULQD_7.2.1/com.ibm.nz.sproc.doc/c_sproc_data_types_aliases.html


Note:

When performing this configuration, the work and data databases names must
match. Note also that the dollar sign ($) is an invalid character for names in Netezza.
Remove the dollar sign ($) from work table and journalizing elements prefixes.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

11.4 Setting Up an Integration Project
Setting up a project using the Netezza database follows the standard procedure. See Creating
an Integration Project of Developing Integration Projects with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for getting
started with Netezza:

• CKM NetezzaIKM Netezza Control AppendIKM Netezza Incremental UpdateIKM Netezza
To File (EXTERNAL TABLE)LKM File to Netezza (EXTERNAL TABLE)LKM File to Netezza
(NZLOAD)RKM Netezza

11.5 Creating and Reverse-Engineering a Netezza Model
This section contains the following topics:

• Create a Netezza Model

• Reverse-engineer a Netezza Model

11.5.1 Create a Netezza Model
Create a Netezza Model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator.

11.5.2 Reverse-engineer a Netezza Model
Netezza supports both Standard reverse-engineering - which uses only the abilities of the
JDBC driver - and Customized reverse-engineering.

In most of the cases, consider using the standard JDBC reverse engineering for starting.

Consider switching to customized reverse-engineering if you encounter problems with the
standard JDBC reverse-engineering process due to some specificities of the Netezza JDBC
driver.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Netezza use the usual procedure, as
described in Reverse-engineering a Model of Developing Integration Projects with Oracle Data
Integrator.

Chapter 11
Setting Up an Integration Project

11-4



Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Netezza with a RKM, use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration Projects
with Oracle Data Integrator:

• In the Reverse Engineer tab of the Netezza Model, select the KM: RKM Netezza.<project
name>.

The reverse-engineering process returns tables, views, attributes, Keys and Foreign Keys.

11.6 Setting up Data Quality
Oracle Data Integrator provides the CKM Netezza for checking data integrity against
constraints defined on a Netezza table. See Flow Control and Static Control in Developing
Integration Projects with Oracle Data Integrator for details.

11.7 Designing a Mapping
You can use Netezza as a source, staging area, or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of this
mapping or check. The recommendations in this section help in the selection of the KM for
different situations concerning a Netezza data server.

11.7.1 Loading Data from and to Netezza
Netezza can be used as a source, target or staging area of a mapping. The LKM choice in the
Loading Knowledge Module tab to load data between Netezza and another type of data server
is essential for the performance of a mapping.

11.7.1.1 Loading Data from Netezza
Use the Generic SQL KMs or the KMs specific to the other technology involved to load data
from a Netezza database to a target or staging area database.

For extracting data from a Netezza staging area to a file, use the IKM Netezza to File
(EXTERNAL TABLE). See Integrating Data in Netezza for more information.

11.7.1.2 Loading Data to Netezza
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for
loading data from a source or staging area into a Netezza database. These optimized Netezza
KMs are listed in Table 11-2. In addition to these KMs, you can also use the Generic SQL KMs
or the KMs specific to the other technology involved.

Table 11-2    KMs for loading data to Netezza

Source or Staging Area
Technology

KM Notes

File LKM File to Netezza
(EXTERNAL TABLE)

Loads data from a File to a Netezza
staging area database using the
Netezza External table feature.

Chapter 11
Setting up Data Quality

11-5



Table 11-2    (Cont.) KMs for loading data to Netezza

Source or Staging Area
Technology

KM Notes

File LKM File to Netezza (NZLOAD) Loads data from a File to a Netezza
staging area database using the
NZLOAD bulk loader.

11.7.2 Integrating Data in Netezza
Oracle Data Integrator provides Knowledge Modules that implement optimized data integration
strategies for Netezza. These optimized Netezza KMs are listed in Table 11-3. In addition to
these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the performances and
possibilities for integrating.

Table 11-3    KMs for integrating data to Netezza

KM Notes

IKM Netezza Control Append Integrates data in a Netezza target table in replace/append
mode.

IKM Netezza Incremental Update Integrates data in a Netezza target table in incremental update
mode.

This KM implements a DISTRIBUTE_ON option to define the
processing distribution. It is important that the chosen column
has a high cardinality (many distinct values) to ensure evenly
spread data to allow maximum processing performance.

Please follow Netezza's recommendations on choosing a such a
column.Valid options are:

• [PK]: Primary Key of the target table.
• [UK]: Update key of the mapping
• [RANDOM]: Random distribution
• <list of column>: a comma separated list of columns
If no value is set (empty), no index will be created.

This KM also uses an ANALYZE_TARGET option to generate
statistics on the target after integration.

IKM Netezza to File (EXTERNAL
TABLE)

Integrates data from a Netezza staging area to a file using
external tables.

This KM implements an optional BASE_TABLE option to specify
the name of a table that will be used as a template for the
external table.

Chapter 11
Designing a Mapping

11-6



12
Teradata

It is important to understand how to work with Teradata in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering a Teradata Model

• Setting up Data Quality

• Designing a Mapping

• KM Optimizations for Teradata

12.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an Teradata database. Oracle Data
Integrator features are designed to work best with Teradata, including reverse-engineering,
data integrity check, and mappings.

12.1.1 Concepts
The Teradata database concepts map the Oracle Data Integrator concepts as follows: A
Teradata server corresponds to a data server in Oracle Data Integrator. Within this server, a
database maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) and Teradata Utilities to
connect to Teradata database.

12.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 12-1 for handling
Teradata data. These KMs use Teradata specific features. It is also possible to use the generic
SQL KMs with the Teradata database. See Generic SQL for more information.

Table 12-1    Teradata KMs

Knowledge Module Description

CKM Teradata Checks data integrity against constraints defined on a Teradata table.
Rejects invalid records in the error table created dynamically. Can be used
for static controls as well as flow controls.

IKM File to Teradata (TTU) This IKM is designed to leverage the power of the Teradata utilities for
loading files directly to the target. See Support for Teradata Utilities for
more information.

12-1



Table 12-1    (Cont.) Teradata KMs

Knowledge Module Description

IKM SQL to Teradata (TTU) Integrates data from a SQL compliant database to a Teradata database
target table using Teradata Utilities FastLoad, MultiLoad, TPump or Parallel
Transporter. See Support for Teradata Utilities for more information.

IKM Teradata Control Append Integrates data in a Teradata target table in replace/append mode.

IKM Teradata Incremental Update Integrates data in a Teradata target table in incremental update mode.

IKM Teradata Slowly Changing Dimension Integrates data in a Teradata target table used as a Type II Slowly
Changing Dimension in your Data Warehouse.

IKM Teradata to File (TTU) Integrates data in a target file from a Teradata staging area in replace
mode. See Support for Teradata Utilities for more information.

IKM Teradata Multi Statement Integrates data in Teradata database target table using multi statement
requests, managed in one SQL transaction. See Using Multi Statement
Requests for more information.

IKM SQL to Teradata Control Append Integrates data from an ANSI-92 compliant source database into Teradata
target table in truncate / insert (append) mode.

This IKM is typically used for ETL configurations: source and target tables
are on different databases and the mapping's staging area is set to the
logical schema of the source tables or a third schema.

LKM File to Teradata (TTU) Loads data from a File to a Teradata staging area database using the
Teradata bulk utilities. See Support for Teradata Utilities for more
information.

LKM SQL to Teradata (TTU) Loads data from a SQL compliant source database to a Teradata staging
area database using a native Teradata bulk utility. See Support for Teradata
Utilities for more information.

RKM Teradata Retrieves metadata from the Teradata database using the DBC system
views. This RKM supports UNICODE columns.

12.2 Installation and Configuration
Make sure you have read the information in this section before you start using the Teradata
Knowledge Modules:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

12.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

Chapter 12
Installation and Configuration

12-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


12.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Teradata use the following Teradata Tools and Utilities
(TTU):

• FastLoad

• MultiLoad

• Tpump

• FastExport

• Teradata Parallel Transporter

The following requirements and restrictions apply for these Knowledge Modules:

• Teradata Utilities must be installed on the machine running the Oracle Data Integrator
Agent.

• The server name of the Teradata Server defined in the Topology must match the Teradata
connect string used for this server (without the COP_n postfix).

• It is recommended to install the Agent on a separate platform than the target Teradata
host. The machine were the Agent is installed should have a very large network bandwidth
to the target Teradata server.

• The IKM File to Teradata (TTU) and LKM File to Teradata (TTU) support a File Character
Set Encoding option specify the encoding of the files integrated with TTU. If this option is
unset, the default TTU charset is used. Refer to the Getting Started: International
Character Sets and the Teradata Database Teradata guide for more information about
character set encoding.

To know more about the supported data types, refer to Teradata documentation.

12.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Teradata Database.

JDBC Driver

Oracle Data Integrator uses the Teradata JDBC Driver to connect to a Teradata Database. The
Teradata Gateway for JDBC must be running, and this driver must be installed in your Oracle
Data Integrator installation.

12.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a Teradata Data Server

2. Creating a Teradata Physical Schema

12.3.1 Creating a Teradata Data Server
A Teradata data server corresponds to a Teradata Database connected with a specific
Teradata user account. This user will have access to several databases in this Teradata
system, corresponding to the physical schemas in Oracle Data Integrator created under the
data server.

Chapter 12
Setting up the Topology

12-3

https://docs.teradata.com


12.3.1.1 Creation of the Data Server
Create a data server for the Teradata technology using the standard procedure, as described
in Creating a Data Server of Administering Oracle Data Integrator. This section details only the
fields required or specific for defining a Teradata data server:

1. In the Definition tab:

• Name: Name of the data server that will appear in Oracle Data Integrator

• Server: Physical name of the data server

• User/Password: Teradata user with its password

2. In the JDBC tab:

• JDBC Driver: com.teradata.jdbc.TeraDriver
• JDBC URL: jdbc:teradata://<HOSTNAME>/<DB/SCHEMA_NAME>

For example, jdbc:teradata://localhost/ODI.

3. In the Properties section, specify the STRICT_NAMES key and set the value of this key as
OFF.

The STRICT_NAMES parameter is available for SQL connections beginning with Teradata
JDBC Driver 17.10.00.18. This parameter specifies the behavior for checking connection
parameter names. The default value is ON.

• When set to ON or omitted, the Teradata JDBC Driver throws a SQLException when
an unexpected connection parameter name is specified in the JDBC Connection URL
or in the getConnection method Properties argument.

• When set to OFF, the Teradata JDBC Driver ignores unexpected connection
parameter names in the JDBC Connection URL or in the getConnection method
Properties argument.

12.3.2 Creating a Teradata Physical Schema
Create a Teradata physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

12.4 Setting Up an Integration Project
Setting up a project using the Teradata database follows the standard procedure. See Creating
an Integration Project of Developing Integration Projects with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for getting
started with Teradata:

• CKM Teradata

• IKM File to Teradata (TTU)

• IKM SQL to Teradata (TTU)

• IKM Teradata Control Append

Chapter 12
Setting Up an Integration Project

12-4



• IKM Teradata Incremental Update

• IKM Teradata Multi Statement

• IKM Teradata Slowly Changing Dimension

• IKM Teradata to File (TTU)

• IKM SQL to Teradata Control Append

• LKM File to Teradata (TTU)

• LKM SQL to Teradata (TTU)

• RKM Teradata

12.5 Creating and Reverse-Engineering a Teradata Model
This section contains the following topics:

• Create a Teradata Model

• Reverse-engineer a Teradata Model

12.5.1 Create a Teradata Model
Create a Teradata Model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator. When creating Models using "New
Model and Topology Objects" under the Models section in the Designer tab, the properties
should be updated as mentioned in the Creating a Teradata Data Server section.

12.5.2 Reverse-engineer a Teradata Model
Teradata supports both Standard reverse-engineering - which uses only the abilities of the
JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve the
metadata from Teradata database using the DBC system views.

In most of the cases, consider using the standard JDBC reverse engineering for starting.
Standard reverse-engineering with Teradata retrieves tables and columns.

Preferably use customized reverse-engineering for retrieving more metadata. Teradata
customized reverse-engineering retrieves the tables, views, columns, keys (primary indexes
and secondary indexes) and foreign keys. Descriptive information (column titles and short
descriptions) are also reverse-engineered.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Teradata use the usual procedure, as
described in Reverse-engineering a Model of Developing Integration Projects with Oracle Data
Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Teradata with a RKM, use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration Projects
with Oracle Data Integrator:

1. In the Reverse Engineer tab of the Teradata Model, select the KM: RKM
Teradata.<project name>.

Chapter 12
Creating and Reverse-Engineering a Teradata Model

12-5



2. Set the REVERSE_FKS option to true if you want to reverse-engineer existing FK
constraints in the database.

3. Set the REVERSE_TABLE_CONSTRAINTS to true if you want to reverse-engineer table
constrains.

4. Set REVERSE_COLUMN_CHARACTER_SET to true if you want to reverse-engineer
VARCHAR and CHAR for a Unicode database as CHAR()CHARACTER SET UNICODE or
VARCHAR()CHARACTER SET UNICODE respectively, regardless of the use of
CHARACTER SET UNICODE clause at table creation.

The reverse-engineering process returns tables, views, columns, Keys (primary indexes and
secondary indexes) and Foreign Keys. Descriptive information (Column titles and short
descriptions) are also reverse-engineered

Note that Unique Indexes are reversed as follows:

• The unique primary index is considered as a primary key.

• The primary index is considered as a non unique index.

• The secondary unique primary index is considered as an alternate key

• The secondary non unique primary index is considered as a non unique index.

You can use this RKM to retrieve specific Teradata metadata that is not supported by the
standard JDBC interface (such as primary indexes).

12.6 Setting up Data Quality
Oracle Data Integrator provides the CKM Teradata for checking data integrity against
constraints defined on a Teradata table. See Flow Control and Static Control in Developing
Integration Projects with Oracle Data Integrator for details.

Oracle Data Integrator provides the Knowledge Module listed in Table 12-2 to perform a check
on Teradata.

Table 12-2    Check Knowledge Modules for Teradata Database

Recommended KM Notes

CKM Teradata Checks data integrity against constraints defined on a Teradata table.
Rejects invalid records in the error table created dynamically. Can be
used for static controls as well as flow controls.

This KM supports the following Teradata optimizations:

• Primary Indexes
• Statistics

12.7 Designing a Mapping
You can use Teradata as a source, staging area or a target of a mapping. It is also possible to
create ETL-style mappings based on the Teradata technology.

The KM choice for a mapping or a check determines the abilities and performance of this
mapping or check. The recommendations in this section help in the selection of the KM for
different situations concerning a Teradata data server.

Chapter 12
Setting up Data Quality

12-6



12.7.1 Loading Data from and to Teradata
Teradata can be used as a source, target or staging area of a mapping. The LKM choice in the
Loading Knowledge Module tab to load data between Teradata and another type of data server
is essential for the performance of a mapping.

12.7.1.1 Loading Data from Teradata
Use the Generic SQL KMs or the KMs specific to the other technology involved to load data
from a Teradata database to a target or staging area database.

For extracting data from a Teradata staging area to a file, use the IKM File to Teradata (TTU).
See Integrating Data in Teradata for more information.

12.7.1.2 Loading Data to Teradata
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for
loading data from a source or staging area into a Teradata database. These optimized
Teradata KMs are listed in Table 12-3. In addition to these KMs, you can also use the Generic
SQL KMs or the KMs specific to the other technology involved.

Table 12-3    KMs for loading data to Teradata

Source or Staging Area
Technology

KM Notes

File LKM File to Teradata (TTU) Loads data from a File to a Teradata
staging area database using the
Teradata bulk utilities.

Because this method uses the native
Teradata utilities to load the file in the
staging area, it is more efficient than
the standard LKM File to SQL when
dealing with large volumes of data.

Consider using this LKM if your source
is a large flat file and your staging area
is a Teradata database.

This KM support the following Teradata
optimizations:

• Statistics
• Optimized Temporary Tables

Management

Chapter 12
Designing a Mapping

12-7



Table 12-3    (Cont.) KMs for loading data to Teradata

Source or Staging Area
Technology

KM Notes

SQL LKM SQL to Teradata (TTU) Loads data from a SQL compliant
source database to a Teradata staging
area database using a native Teradata
bulk utility.

This LKM can unload the source data in
a file or Named Pipe and then call the
specified Teradata utility to populate the
staging table from this file/pipe. Using
named pipes avoids landing the data in
a file. This LKM is recommended for
very large volumes.

Consider using this IKM when:

• The source data located on a SQL
compliant database is large

• You don't want to stage your data
between the source and the target

• Your staging area is a Teradata
database.

This KM support the following Teradata
optimizations:

• Support for Teradata Utilities
• Support for Named Pipes
• Optimized Temporary Tables

Management

12.7.2 Integrating Data in Teradata
Oracle Data Integrator provides Knowledge Modules that implement optimized data integration
strategies for Teradata. These optimized Teradata KMs are listed in Table 12-4. In addition to
these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the performances and
possibilities for integrating.

Table 12-4    KMs for integrating data to Teradata

KM Notes

IKM Teradata Control Append Integrates data in a Teradata target table in replace/append
mode. When flow data needs to be checked using a CKM, this
IKM creates a temporary staging table before invoking the CKM.

Consider using this IKM if you plan to load your Teradata target
table in replace mode, with or without data integrity check.

To use this IKM, the staging area must be on the same data
server as the target Teradata table.

This KM support the following Teradata optimizations:

• Primary Indexes and Statistics
• Optimized Temporary Tables Management

Chapter 12
Designing a Mapping

12-8



Table 12-4    (Cont.) KMs for integrating data to Teradata

KM Notes

IKM Teradata Incremental Update Integrates data in a Teradata target table in incremental update
mode. This IKM creates a temporary staging table to stage the
data flow. It then compares its content to the target table to
guess which records should be inserted and which others should
be updated. It also allows performing data integrity check by
invoking the CKM.

Inserts and updates are done in bulk set-based processing to
maximize performance. Therefore, this IKM is optimized for large
volumes of data.

Consider using this IKM if you plan to load your Teradata target
table to insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data
server as the target.

This KM support the following Teradata optimizations:

• Primary Indexes and Statistics
• Optimized Temporary Tables Management

IKM Teradata Multi Statement Integrates data in Teradata database target table using multi
statement requests, managed in one SQL transaction

IKM Teradata Slowly Changing
Dimension

Integrates data in a Teradata target table used as a Type II
Slowly Changing Dimension in your Data Warehouse. This IKM
relies on the Slowly Changing Dimension metadata set on the
target datastore to figure out which records should be inserted
as new versions or updated as existing versions.

Because inserts and updates are done in bulk set-based
processing, this IKM is optimized for large volumes of data.

Consider using this IKM if you plan to load your Teradata target
table as a Type II Slowly Changing Dimension.

To use this IKM, the staging area must be on the same data
server as the target and the appropriate Slowly Changing
Dimension metadata needs to be set on the target datastore.

This KM support the following Teradata optimizations:

• Primary Indexes and Statistics
• Optimized Temporary Tables Management
This KM also includes a COMPATIBLE option. This option
corresponds to the Teradata engine major version number. If this
version is 12 or above, then a MERGE statement will be used
instead of the standard INSERT then UPDATE statements to
merge the incoming data flow into the target table.

IKM Teradata to File (TTU) Integrates data in a target file from a Teradata staging area in
replace mode. This IKM requires the staging area to be on
Teradata. It uses the native Teradata utilities to export the data to
the target file.

Consider using this IKM if you plan to transform and export data
to a target file from your Teradata server.

To use this IKM, the staging area must be different from the
target. It should be set to a Teradata location.

This KM support the following Teradata optimizations:

• Support for Teradata Utilities

Chapter 12
Designing a Mapping

12-9



Table 12-4    (Cont.) KMs for integrating data to Teradata

KM Notes

IKM File to Teradata (TTU) This IKM is designed to leverage the power of the Teradata
utilities for loading files directly to the target. It is restricted to one
file as source and one Teradata table as target.

Depending on the utility you choose, you'll have the ability to
integrate the data in either replace or incremental update mode.

Consider using this IKM if you plan to load a single flat file to
your target table. Because it uses the Teradata utilities, this IKM
is recommended for very large volumes.

To use this IKM, you have to set the staging area to the source
file's schema.

This KM support the following Teradata optimizations:

• Primary Indexes and Statistics
• Support for Teradata Utilities
• Optimized Temporary Tables Management.

IKM SQL to Teradata (TTU) Integrates data from a SQL compliant database to a Teradata
database target table using Teradata Utilities TPUMP,
FASTLOAD OR MULTILOAD.

This IKM is designed to leverage the power of the Teradata
utilities for loading source data directly to the target. It can only
be used when all source tables belong to the same data server
and when this data server is used as a staging area (staging
area on source). Source data can be unloaded into a file or
Named Pipe and then loaded by the selected Teradata utility
directly in the target table. Using named pipes avoids landing the
data in a file. This IKM is recommended for very large volumes.

Depending on the utility you choose, you'll have the ability to
integrate the data in replace or incremental update mode.

Consider using this IKM when:

• You plan to load your target table with few transformations
on the source

• All your source tables are on the same data server (used as
the staging area)

• You don't want to stage your data between the source and
the target

To use this IKM, you have to set the staging area to the source
data server's schema.

This KM support the following Teradata optimizations:

• Primary Indexes and Statistics
• Support for Teradata Utilities
• Support for Named Pipes
• Optimized Temporary Tables Management

IKM SQL to Teradata Control Append Integrates data from an ANSI-92 compliant source database into
Teradata target table in truncate / insert (append) mode.

This IKM is typically used for ETL configurations: source and
target tables are on different databases and the mapping's
staging area is set to the logical schema of the source tables or
a third schema. See Designing an ETL-Style Mapping for more
information.

Chapter 12
Designing a Mapping

12-10



Using Slowly Changing Dimensions

For using slowly changing dimensions, make sure to set the Slowly Changing Dimension value
for each column of the target datastore. This value is used by the IKM Teradata Slowly
Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or Insert Column,
Current Record Flag, and Start/End Timestamps columns.

Using Multi Statement Requests

Multi statement requests typically enable the parallel execution of simple mappings. The
Teradata performance is improved by synchronized scans and by avoiding transient journal.

Set the KM options as follows:

• Mappings using this KM must be used within a package:

– In the first mapping of the package loading a table via the multi-statement set the
INIT_MULTI_STATEMENT option to YES.

– The subsequent mappings loading a table via the multi-statement must use this KM
and have the INIT_MULTI_STATEMENT option set to NO.

– The last mapping must have the EXECUTE option set to YES in order to run the
generated multi-statement.

• In the STATEMENT_TYPE option, specify the type of statement (insert or update) for each
mapping.

• In the SQL_OPTION option, specify the additional SQL sentence that is added at the end
of the query, for example QUALIFY Clause.

Note the following limitations concerning multi-statements:

• Multi-statements are only supported when they are used within a package.

• Temporary indexes are not supported.

• Updates are considered as Inserts in terms of row count.

• Updates can only have a single Dataset.

• Only executing mapping (EXECUTE = YES) reports row counts.

• Journalized source data not supported.

• Neither Flow Control nor Static Control is supported.

• The SQL_OPTION option applies only to the last Dataset.

12.7.3 Designing an ETL-Style Mapping
See Creating a Mapping in Developing Integration Projects with Oracle Data Integrator for
generic information on how to design mappings. This section describes how to design an ETL-
style mapping where the staging area is on a Teradata database or any ANSI-92 compliant
database and the target on Teradata.

In an ETL-style mapping, ODI processes the data in a staging area, which is different from the
target. Oracle Data Integrator provides two ways for loading the data from a Teradata or an
ANSI-92 compliant staging area to a Teradata target:

• Using a Multi-connection IKM

• Using an LKM and a mono-connection IKM

Chapter 12
Designing a Mapping

12-11



Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM

A multi-connection IKM allows integrating data into a target when the staging area and sources
are on different data servers.

Oracle Data Integrator provides the following multi-connection IKM for handling Teradata data:
IKM SQL to Teradata Control Append. You can also use the generic SQL multi-connection
IKMs. See Generic SQL for more information.

See Table 12-5 for more information on when to use a multi-connection IKM.

To use a multi-connection IKM in an ETL-style mapping:

1. Create a mapping with an ANSI-92 compliant staging area and the target on Teradata
using the standard procedure as described in Creating a Mapping in Developing
Integration Projects with Oracle Data Integrator. This section describes only the ETL-style
specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables or a
third schema. See Configuring Execution Locations in Developing Integration Projects with
Oracle Data Integrator for information about how to change the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for this
object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) to the
staging area. See Table 12-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Physical diagram, select the Target by clicking its title. The Property Inspector opens
for this object.

7. In the Integration Knowledge Module tab, select an ETL multi-connection IKM to load the
data from the staging area to the target. See Table 12-5 to determine the IKM you can use.

Note the following when setting the KM options of the IKM SQL to Teradata Control Append:

• If you do not want to create any tables on the target system, set FLOW_CONTROL=false. If
FLOW_CONTROL=false, the data is inserted directly into the target table.

• If FLOW_CONTROL=true, the flow table is created on the target or on the staging area.

• If you want to recycle data rejected from a previous control, set RECYCLE_ERROR=true and
set an update key for your mapping.

Using an LKM and a mono-connection IKM

If there is no dedicated multi-connection IKM, use a standard exporting LKM in combination
with a standard mono-connection IKM. The exporting LKM is used to load the flow table from
the staging area to the target. The mono-connection IKM is used to integrate the data flow into
the target table.

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a source
and staging area of an ETL-style mapping. The target is Teradata.

See Table 12-5 for more information on when to use the combination of a standard LKM and a
mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping:

Chapter 12
Designing a Mapping

12-12



1. Create a mapping with an ANSI-92 compliant staging area and the target on Teradata
using the standard procedure as described in Creating a Mapping in Developing
Integration Projects with Oracle Data Integrator. This section describes only the ETL-style
specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables or a
third schema. See Configuring Execution Locations in the Developing Integration Projects
with Oracle Data Integrator for information about how to change the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for this
object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) to the
staging area. See Table 12-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. Select the access point for the Staging Area. The Property Inspector opens for this object.

7. In the Loading Knowledge Module tab, select an LKM to load from the staging area to the
target. See Table 12-5 to determine the LKM you can use.

8. Optionally, modify the options.

9. Select the Target by clicking its title. The Property Inspector opens for this object.

In the Integration Knowledge Module tab, select a standard mono-connection IKM to
update the target. See Table 12-5 to determine the IKM you can use.

Table 12-5    KM Guidelines for ETL-Style Mappings with Teradata Data

Source Staging Area Target Exporting LKM IKM KM Strategy Comment

ANSI
SQL-92
standard
compliant

ANSI SQL-92
standard
compliant

Teradata NA IKM SQL to Teradata
Control Append

Multi-
connection IKM

Recommended to
perform control
append

Supports flow
control.

Chapter 12
Designing a Mapping

12-13



Table 12-5    (Cont.) KM Guidelines for ETL-Style Mappings with Teradata Data

Source Staging Area Target Exporting LKM IKM KM Strategy Comment

ANSI
SQL-92
standard
compliant

Teradata or any
ANSI SQL-92
standard
compliant
database

Teradata
or any
ANSI
SQL-92
standard
compliant
database

NA IKM SQL to SQL
Incremental Update

Multi-
connection IKM

Allows an
incremental update
strategy with no
temporary target-
side objects. Use
this KM if it is not
possible to create
temporary objects
in the target server.

The application
updates are made
without temporary
objects on the
target, the updates
are made directly
from source to
target. The
configuration
where the flow
table is created on
the staging area
and not in the
target should be
used only for small
volumes of data.

Supports flow and
static control

ANSI
SQL-92
standard
compliant

Teradata or
ANSI SQL-92
standard
compliant

Teradata LKM SQL to
Teradata (TTU)

IKM Teradata
Incremental Update

LKM +
standard IKM

ANSI
SQL-92
standard
compliant

Teradata Teradata LKM SQL to
Teradata (TTU)

IKM Teradata Slowly
Changing Dimension

LKM +
standard IKM

ANSI
SQL-92
standard
compliant

ANSI SQL-92
standard
compliant

Teradata LKM SQL to
Teradata (TTU)

IKM SQL to Teradata
(TTU)

LKM +
standard IKM

If no flow control,
this strategy is
recommended for
large volumes of
data

12.8 KM Optimizations for Teradata
This section describes the specific optimizations for Teradata that are included in the Oracle
Data Integrator Knowledge Modules.

This section includes the following topics:

• Primary Indexes and Statistics

• Support for Teradata Utilities

• Support for Named Pipes

Chapter 12
KM Optimizations for Teradata

12-14



• Optimized Management of Temporary Tables

12.8.1 Primary Indexes and Statistics
Teradata performance heavily relies on primary indexes. The Teradata KMs support
customized primary indexes (PI) for temporary and target tables. This applies to Teradata
LKMs, IKMs and CKMs. The primary index for the temporary and target tables can be defined
in these KMs using the PRIMARY_INDEX KM option, which takes the following values:

• [PK]: The PI will be the primary key of each temporary or target table. This is the default
value.

• [NOPI]: Do not specify primary index (Teradata 13.0 & above only).

• [UK]: The PI will be the update key of the mapping. This is the default value.

– <Column list>: This is a free PI based on the comma-separated list of column names.

– <Empty string>: No primary index is specified. The Teradata engine will use the default
rule for the PI (first column of the temporary table).

Teradata MultiColumnStatistics should optionally be gathered for selected PI columns. This is
controlled by COLLECT_STATS KM option, which is set to true by default.

12.8.2 Support for Teradata Utilities
Teradata Utilities (TTU) provide an efficient method for transferring data from and to the
Teradata engine. When using a LKM or IKM supporting TTUs, it is possible to set the method
for loading data using the TERADATA_UTILITY option.

This option takes the following values when pushing data to a Teradata target (IKM) or staging
area (LKM):

• FASTLOAD: use Teradata FastLoad

• MLOAD: use Teradata MultiLoad

• TPUMP: use Teradata TPump

• TPT-LOAD: use Teradata Parallel Transporter (Load Operator)

• TPT-SQL-INSERT: use Teradata Parallel Transporter (SQL Insert Operator)

This option takes the following values when pushing data FROM Teradata to a file:

• FEXP: use Teradata FastExport

• TPT: use Teradata Parallel Transporter

When using TTU KMs, you should also take into account the following KM parameters:

• REPORT_NB_ROWS: This option allows you to report the number of lines processed by
the utility in a Warning step of the mapping.

• SESSIONS: Number of FastLoad sessions

• MAX_ALLOWED_ERRORS: Maximum number of tolerated errors. This corresponds to the
ERRLIMIT command in FastLoad/MultiLoad/TPump and to the ErrorLimit attribute for TPT.

• MULTILOAD_TPUMP_TYPE: Operation performed by the MultiLoad or TPump utility. Valid
values are INSERT, UPSERT and DELETE. For UPSERT and DELETE an update key is required
in the mapping.

Chapter 12
KM Optimizations for Teradata

12-15



For details and appropriate choice of utility and load operator, refer to the Teradata
documentation.

12.8.3 Support for Named Pipes
When using TTU KMs to move data between a SQL source and Teradata, it is possible to
increase the performances by using Named Pipes instead of files between the unload/load
processes. Named Pipes can be activated by setting the NP_USE_NAMED_PIPE option to
YES. The following options should also be taken into account for using Named Pipes:

• NP_EXEC_ON_WINDOWS: Set this option to YES if the run-time agent runs on a windows
platform.

• NP_ACCESS_MODULE: Access module used for Named Pipes. This access module is
platform dependant.

• NP_TTU_STARTUP_TIME: This number of seconds for the TTU to be able to receive data
through the pipe. This is the delay between the moment the KM starts the TTU and the
moment the KM starts to push data into the named pipe. This delay is dependant on the
machine workload.

12.8.4 Optimized Management of Temporary Tables
Creating and dropping Data Integrator temporary staging tables can be a resource consuming
process on a Teradata engine. The ODI_DDL KM option provides a mean to control these DDL
operations. It takes the following values:

• DROP_CREATE: Always drop and recreate all temporary tables for every execution
(default behavior).

• CREATE_DELETE_ALL: Create temporary tables when needed (usually for the first
execution only) and use DELETE ALL to drop the temporary table content. Temporary
table are reused for subsequent executions.

• DELETE_ALL: Do not create temporary tables. Only submit DELETE ALL for all temporary
tables.

• NONE: Do not issue any DDL on temporary tables. Temporary tables should be handled
separately.

Chapter 12
KM Optimizations for Teradata

12-16



13
Hypersonic SQL

It is important to understand how to work with Hypersonic SQL in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering a Hypersonic SQL Model

• Setting up Data Quality

• Designing a Mapping

13.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an Hypersonic SQL database.
Oracle Data Integrator features are designed to work best with Hypersonic SQL, including
reverse-engineering, data integrity check, and mappings.

13.1.1 Concepts
The Hypersonic SQL database concepts map the Oracle Data Integrator concepts as follows:
A Hypersonic SQL server corresponds to a data server in Oracle Data Integrator. Within this
server, one single Oracle Data Integrator physical schema maps to the database.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Hypersonic
SQL.

13.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 13-1for handling
Hypersonic SQL data. These KMs use Hypersonic SQL specific features. It is also possible to
use the generic SQL KMs with the Hypersonic SQL database. See for more information.

Table 13-1    Hypersonic SQL Knowledge Modules

Knowledge Module Description

CKM HSQL Checks data integrity against constraints defined on a Hypersonic SQL
table. Rejects invalid records in the error table created dynamically. Can be
used for static controls as well as flow controls.

JKM HSQL Consistent Creates the journalizing infrastructure for consistent journalizing on
Hypersonic SQL tables using triggers. Enables consistent Changed Data
Capture on Hypersonic SQL.

JKM HSQL Simple Creates the journalizing infrastructure for simple journalizing on Hypersonic
SQL tables using triggers.

13-1



Table 13-1    (Cont.) Hypersonic SQL Knowledge Modules

Knowledge Module Description

SKM HSQL Generates data access Web services for Hypersonic SQL databases.

13.2 Installation and Configuration
Make sure you have read the information in this section before you start using the Hypersonic
SQL Knowledge Modules:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

13.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

13.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Hypersonic SQL in Oracle Data
Integrator.

To know more about the supported data types, refer to Hypersonic SQL documentation.

13.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Hypersonic SQL Database.

JDBC Driver

Oracle Data Integrator is installed with a JDBC driver for Hypersonic SQL. This driver directly
uses the TCP/IP network layer and requires no other installed component or configuration.

13.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a Hypersonic SQL Data Server

2. Creating a Hypersonic SQL Physical Schema

Chapter 13
Installation and Configuration

13-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html
http://hsqldb.org/doc/guide/sqlgeneral-chapt.html#sgc_types_ops


13.3.1 Creating a Hypersonic SQL Data Server
A Hypersonic SQL data server corresponds to an Hypersonic SQL Database connected with a
specific Hypersonic SQL user account. This user will have access to the database via a
physical schema in Oracle Data Integrator created under the data server.

Create a data server for the Hypersonic SQL technology using the standard procedure, as
described in Creating a Data Server of the Administering Oracle Data Integrator. This section
details only the fields required or specific for defining a Hypersonic SQL data server:

1. In the Definition tab:

• Name: Name of the data server that will appear in Oracle Data Integrator

• Server: Physical name of the data server

• User/Password: Hypersonic SQL user with its password (usually sa)

2. In the JDBC tab:

• JDBC Driver: org.hsqldb.jdbcDriver
• JDBC URL: jdbc:hsqldb:hsql://<host>:<port>

The URL parameters are:

– <host>: Hypersonic SQL machine network name or IP address

– <port>: Port number

13.3.2 Creating a Hypersonic SQL Physical Schema
Create a physical schema using the standard procedure, as described in Creating a Physical
Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

13.4 Setting Up an Integration Project
Setting up a project using the Hypersonic SQL database follows the standard procedure. See 
Creating an Integration Project of Oracle Fusion Middleware Developer's Guide for Oracle
Data Integrator.

It is recommended to import the following knowledge modules into your project for getting
started with Hypersonic SQL:

• CKM HSQL

Import also the Generic SQL KMs into your project. See for more information about these KMs.

13.5 Creating and Reverse-Engineering a Hypersonic SQL
Model

This section contains the following topics:

• Create a Hypersonic SQL Model

Chapter 13
Setting Up an Integration Project

13-3



• Reverse-engineer a Hypersonic SQL Model

13.5.1 Create a Hypersonic SQL Model
Create a Hypersonic SQL Model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

13.5.2 Reverse-engineer a Hypersonic SQL Model
Hypersonic SQL supports Standard reverse-engineering - which uses only the abilities of the
JDBC driver.

To perform a Standard Reverse- Engineering on Hypersonic SQL use the usual procedure, as
described in Reverse-engineering a Model of the Oracle Fusion Middleware Developer's Guide
for Oracle Data Integrator.

13.6 Setting up Changed Data Capture
The ODI Hypersonic SQL Knowledge Modules support the Changed Data Capture feature.
See Working with Changed Data Capture of Developing Integration Projects with Oracle Data
Integrator for details on how to set up journalizing and how to use captured changes.

Hypersonic SQL Journalizing Knowledge Modules support Simple Journalizing and Consistent
Set Journalizing. The JKMs use triggers to capture data changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 13-2for journalizing
Hypersonic SQL tables.

Table 13-2    Hypersonic SQL Journalizing Knowledge Modules

KM Notes

JKM HSQL Consistent Creates the journalizing infrastructure for consistent
journalizing on Hypersonic SQL tables using triggers.
Enables consistent Changed Data Capture on Hypersonic
SQL.

JKM HSQL Simple Creates the journalizing infrastructure for simple
journalizing on Hypersonic SQL tables using triggers.

13.7 Setting up Data Quality
Oracle Data Integrator provides the CKM HSQL for checking data integrity against constraints
defined on a Hypersonic SQL table. See Flow Control and Static Control in Developing
Integration Projects with Oracle Data Integrator for details.

Oracle Data Integrator provides the Knowledge Module listed in Table 13-3to perform a check
on Hypersonic SQL.

Table 13-3    Check Knowledge Modules for Hypersonic SQL Database

Recommended KM Notes

CKM HSQL Checks data integrity against constraints defined on a Hypersonic SQL
table. Rejects invalid records in the error table created dynamically.
Can be used for static controls as well as flow controls.

Chapter 13
Setting up Changed Data Capture

13-4



13.8 Designing a Mapping
You can use Hypersonic SQL as a source, staging area or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of this
mapping or check. The recommendations in this section help in the selection of the KM for
different situations concerning a Hypersonic SQL data server.

Oracle Data Integrator does not provide specific loading or integration knowledge modules for
Hypersonic SQL. Use the KMs or the KMs specific to the other technologies used as source,
target, or staging area.

Chapter 13
Designing a Mapping

13-5



14
IBM Informix

It is important to understand how to work with IBM Informix in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Concepts

• Knowledge Modules

• Specific Requirements

14.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an IBM Informix database. Oracle
Data Integrator features are designed to work best with IBM Informix, including reverse-
engineering, journalizing, and mappings.

14.2 Concepts
The IBM Informix concepts map the Oracle Data Integrator concepts as follows: An IBM
Informix Server corresponds to a data server in Oracle Data Integrator. Within this server, an
Owner maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an IBM Informix
database.

14.3 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 14-1 for handling
IBM Informix data. These KMs use IBM Informix specific features. It is also possible to use the
generic SQL KMs with the IBM Informix database. See for more information.

Table 14-1    IBM Informix Knowledge Modules

Knowledge Module Description

IKM Informix Incremental Update Integrates data in an IBM Informix target table in incremental update mode.
This IKM creates a temporary staging table to stage the data flow. It then
compares its content to the target table to guess which records should be
inserted and which others should be updated. It also allows performing
data integrity check by invoking the CKM.

Inserts and updates are done in bulk set-based processing to maximize
performance. Therefore, this IKM is optimized for large volumes of data.

Consider using this IKM if you plan to load your IBM Informix target table to
insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as the
target.

14-1



Table 14-1    (Cont.) IBM Informix Knowledge Modules

Knowledge Module Description

JKM Informix Consistent Creates the journalizing infrastructure for consistent journalizing on IBM
Informix tables using triggers.

Enables Consistent Set Changed Data Capture on IBM Informix.

The source database must have transaction logging enabled to use this
KM.

JKM Informix Simple Creates the journalizing infrastructure for simple journalizing on IBM
Informix tables using triggers.

Enables Simple Changed Data Capture on IBM Informix.

LKM Informix to Informix (SAME SERVER) Loads data from a source Informix database to a target Informix staging
area located inside the same server.

This LKM creates a view in the source database and a synonym in the
staging area database. This method if often more efficient than the
standard "LKM SQL to SQL" when dealing with large volumes of data.

Consider using this LKM if your source tables are located on an IBM
Informix database and your staging area is on an IBM Informix database
located in the same Informix server.

Both databases must have the same logging mode enabled to use this KM.

RKM Informix Retrieves IBM Informix specific metadata for tables, views, columns,
primary keys and non unique indexes. This RKM accesses the underlying
Informix catalog tables to retrieve metadata.

Consider using this RKM if you plan to extract additional metadata from
your Informix catalog when it is not provided by the default JDBC reverse-
engineering process.

RKM Informix SE Retrieves IBM Informix SE specific metadata for tables, views, columns,
primary keys and non unique indexes. This RKM accesses the underlying
Informix SE catalog tables to retrieve metadata.

Consider using this RKM if you plan to extract additional metadata from
your Informix SE catalog when it is not provided by the default JDBC
reverse-engineering process.

SKM Informix Generates data access Web services for IBM Informix databases. See
SKM SQL in for more details.

14.4 Specific Requirements
There are no specific requirements for using IBM Informix in Oracle Data Integrator.

To know more about the supported data types, refer to IBM Informix documentation.

Chapter 14
Specific Requirements

14-2

https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.sqlr.doc/ids_sqr_094.htm


15
IBM DB2 for iSeries

It is important to understand how to work with IBM DB2 for iSeries in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering an IBM DB2/400 Model

• Setting up Changed Data Capture

• Setting up Data Quality

• Designing a Mapping

• Specific Considerations with DB2 for iSeries

• Troubleshooting

15.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in IBM DB2 for iSeries. Oracle Data
Integrator features are designed to work best with IBM DB2 for iSeries, including reverse-
engineering, changed data capture, data integrity check, and mappings.

15.1.1 Concepts
The IBM DB2 for iSeries concepts map the Oracle Data Integrator concepts as follows: An IBM
DB2 for iSeries server corresponds to a data server in Oracle Data Integrator. Within this
server, a collection or schema maps to an Oracle Data Integrator physical schema. A set of
related objects within one schema corresponds to a data model, and each table, view or
synonym will appear as an ODI datastore, with its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to IBM DB2 for
iSeries.

15.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 15-1 for handling
IBM DB2 for iSeries data. In addition to these specific IBM DB2 for iSeries Knowledge
Modules, it is also possible to use the generic SQL KMs with IBM DB2 for iSeries. See Generic
SQL for more information.

15-1



Table 15-1    DB2 for iSeries KMs

Knowledge Module Description

IKM DB2 400 Incremental Update Integrates data in an IBM DB2 for iSeries target table in incremental update
mode.

IKM DB2 400 Slowly Changing Dimension Integrates data in an IBM DB2 for iSeries target table used as a Type II
Slowly Changing Dimension in your Data Warehouse.

JKM DB2 400 Consistent Creates the journalizing infrastructure for consistent journalizing on IBM
DB2 for iSeries tables using triggers.

JKM DB2 400 Simple Creates the journalizing infrastructure for simple journalizing on IBM DB2
for iSeries tables using triggers.

RKM DB2 400 Retrieves metadata for IBM DB2 for iSeries: physical files, tables, views,
foreign keys, unique keys.

15.2 Installation and Configuration
Make sure you have read the information in this section before you start working with the IBM
DB2 for iSeries technology:

• System Requirements and Certifications

• Technology Specific Requirements

15.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

15.2.2 Technology Specific Requirements
Some of the Knowledge Modules for IBM DB2 for iSeries use specific features of this
database. The following restrictions apply when using these Knowledge Modules.

See the IBM DB2 for iSeries documentation for additional information on these topics.

Using CDC with Journals

This section describes the requirements that must be met before using the Journal-based
Change Data Capture with IBM DB2 for iSeries:

• This journalizing method requires that a specific program is installed and runs on the
iSeries system. See Setting up Changed Data Capture for more information.

To know more about the supported data types, refer to IBM DB2 for iSeries documentation.

15.2.3 Connectivity Requirements
This section lists the requirements for connecting to an IBM DB2 for iSeries system.

Chapter 15
Installation and Configuration

15-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html
https://docs.tibco.com/pub/sfire-analyst/7.7.0/doc/html/en-US/TIB_sfire-analyst_UsersGuide/connectors/ibmdb2/ibmdb2_data_types.htm


JDBC Driver

Oracle Data Integrator is installed with a default IBM DB2 Datadirect Driver. This driver directly
uses the TCP/IP network layer and requires no other installed component or configuration. You
can alternatively use the drivers provided by IBM, such as the Native Driver when installing the
agent on iSeries.

15.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a DB2/400 Data Server

2. Creating a DB2/400 Physical Schema

15.3.1 Creating a DB2/400 Data Server
An IBM DB2/400 data server corresponds to an iSeries server connected with a specific user
account. This user will have access to several databases in this server, corresponding to the
physical schemas in Oracle Data Integrator created under the data server.

15.3.1.1 Creation of the Data Server
Create a data server for the IBM DB2/400 technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This section
details only the fields required or specific for defining an IBM DB2/400 data server:

1. In the Definition tab:

• Name: Name of the data server that will appear in Oracle Data Integrator

• Host (Data Server): Name or IP address of the host

• User/Password: DB2 user with its password

2. In the JDBC tab:

• JDBC Driver: weblogic.jdbc.db2.DB2Driver
• JDBC URL: jdbc:as400://<host>[;libraries=<library>]

[;<property>=<value>...]
The URL parameters are:

– <host>: server network name or IP address

– <library>: default library or collection to access

– <property>=<value>: connection properties. Refer to the driver's documentation for
a list of available properties.

15.3.2 Creating a DB2/400 Physical Schema
Create an IBM DB2/400 physical schema using the standard procedure, as described in 
Creating a Physical Schema in Administering Oracle Data Integrator.

The work schema and data schema in this physical schema correspond each to a schema
(collection or library). The work schema should point to a temporary schema and the data
schema should point to the schema hosting the data to integrate.

Chapter 15
Setting up the Topology

15-3



Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

15.4 Setting Up an Integration Project
Setting up a project using the IBM DB2 for iSeries database follows the standard procedure.
See Creating an Integration Project of Developing Integration Projects with Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for getting
started with IBM DB2 for iSeries:

• IKM DB2 400 Slowly Changing Dimension

• JKM DB2 400 Consistent

• JKM DB2 400 Simple

• RKM DB2 400

• CKM SQL

15.5 Creating and Reverse-Engineering an IBM DB2/400 Model
This section contains the following topics:

• Create an IBM DB2/400 Model

• Reverse-engineer an IBM DB2/400 Model

15.5.1 Create an IBM DB2/400 Model
Create an IBM DB2/400 Model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

15.5.2 Reverse-engineer an IBM DB2/400 Model
IBM DB2 for iSeries supports both Standard reverse-engineering - which uses only the abilities
of the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve the
metadata.

In most of the cases, consider using the standard JDBC reverse engineering for starting.

Consider switching to customized reverse-engineering for retrieving more metadata. IBM DB2
for iSeries customized reverse-engineering retrieves the physical files, database tables,
database views, columns, foreign keys and primary and alternate keys.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on IBM DB2 for iSeries use the usual procedure,
as described in Reverse-engineering a Model of Developing Integration Projects with Oracle
Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on IBM DB2 for iSeries with a RKM, use the
usual procedure, as described in Reverse-engineering a Model of Developing Integration

Chapter 15
Setting Up an Integration Project

15-4



Projects with Oracle Data Integrator. This section details only the fields specific to the IBM
DB2/400 technology:

In the Reverse tab of the IBM DB2/400 Model, select the KM: RKM DB2 400.<project name>.

15.6 Setting up Changed Data Capture
Oracle Data Integrator handles Changed Data Capture on iSeries with two methods:

• Trigger-based CDC on the journalized tables. This method is set up with the JKM
DB2/400 Simple or JKM DB2/400 Consistent. This CDC is not different from the CDC on
other systems. See Setting up Trigger-Based CDC for more information.

• Log-based CDC by reading the native iSeries transaction journals.This method does
not support Consistent Set CDC and requires a platform-specific configuration. See Setting
up Trigger-Based CDC for more information.

15.6.1 Setting up Trigger-Based CDC
This method support Simple Journalizing and Consistent Set Journalizing. The IBM DB2 for
iSeries JKMs use triggers to capture data changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 15-2 for journalizing
IBM DB2 for iSeries tables using triggers.

See Working with Changed Data Capture of Developing Integration Projects with Oracle Data
Integrator for details on how to set up journalizing and how to use captured changes.

Table 15-2    IBM DB2 for iSeries Journalizing Knowledge Modules

KM Notes

JKM DB2 400 Consistent Creates the journalizing infrastructure for consistent
journalizing on IBM DB2 for iSeries tables using triggers.

JKM DB2 400 Simple Creates the journalizing infrastructure for simple
journalizing on IBM DB2 for iSeries tables using triggers.

15.6.2 Setting up Log-Based CDC
This method is set up with the JKM DB2/400 Journal Simple and used by the LKM DB2/400
Journal to SQL. It uses also an RPG program to retrieve the journal content.

15.6.2.1 How does it work?
A iSeries transaction journal contains the entire history of the data changes for a given period.
It is handled by the iSeries system for tables that are journaled. A journaled table is either a
table from a collection, or a table for which a journal receiver and a journal have been created
and journaling started.

Reading the transaction journal is performed by the a journal retriever CDCRTVJRN RPG
program provided with Oracle Data Integrator. This program loads on demand the tables of the
Oracle Data Integrator CDC infrastructure (J$ tables) with the contents from the transaction
journal.

This program can be either scheduled on the iSeries system or called by the KMs through a
stored procedure also called CDCRTVJRN. This stored procedure is automatically created by

Chapter 15
Setting up Changed Data Capture

15-5



the JKM DB2/400 Journal Simple and invoked by the LKM DB2/400 Journal to SQL when data
extraction is needed.

15.6.2.2 CDCRTVJRN Program Details
This program connects to the native iSeries journal for a given table, and captures changed
data information into the Oracle Data Integrator Journal (J$).

The program works as follows:

1. Journalized table attributes retrieval:

a. Table attributes retrieval: PK columns, J$ table name, last journal reading date.

b. Attributes enrichment (short names, record size, etc.) using the QSYS.QADBXREF system
table.

c. Location of the iSeries journal using the QADBRTVFD() API.

2. PK columns information retrieval:

a. PK columns attributes (short name, data types etc.) using the QSYS.QADBIFLD system
table.

b. Attributes enrichment (real physical length) using the QUSLFLD() API.

c. Data preprocessing (RPG to SQL datatype conversion) for the primary key columns.

3. Extraction the native journal information into the J$ table:

a. Native journal reading using the QJoRetrieveJournalEntries() API.

b. Conversion of the raw data to native SQL data and capture into the J$ table.

c. Update of the changes count.

This program accepts the parameters listed in Table 15-3.

Table 15-3    CDCRTVJRN Program Parameters

Parameter RPG Type SQL Type Description

SbsTName A138 Char(138) Full name of the subscribers table in the following
format: <Lib>.<Table>.

Example: ODILIB.SNP_SUBSCRIBERS
JrnTName A138 Char(138) Full name of the table for which the extract is done

from the journal.

Example: FINANCE.MY_COMPANY_ORDERS
JrnSubscriber A50 Char(50) Name of the current subscriber. It must previously

have been added to the list of subscribers.

LogMessages A1 Char(1) Flag activating logging in a spool file. Possible values
are: Y enable logging, and N to disable logging.

15.6.2.3 Installing the CDC Components on iSeries
There are two major components installed on the iSeries system to enable native journal
reading:

• The CDCRTVJRN Program. This program is provided in an archive that should installed in
the iSeries system. The installation process is described below.

Chapter 15
Setting up Changed Data Capture

15-6



• The CDC Infrastructure. It includes the standard CDC objects (J$ tables, views, ...) and the
CDCRTVJRN Stored Procedure created by the JKM and used by the LKM to read
journals. This stored procedure executes the CDCRTVJRN program.

Note:

The program must be set up in a library defined in the Topology as the default work
library for this iSeries data server. In the examples below, this library is called ODILIB.

Installing the CDCRTVJRN Program

To install the CDCRTVJRN program:

1. Identify the location the program SAVF file. It is located in the ODI_HOME/setup/manual/
cdc-iseries directory, and is also available on the Oracle Data Integrator Companion CD.

2. Connect to the iSeries system.

3. Create the default work library if it does not exist yet. You can use, for example, the
following command to create an ODILIB library:

CRTLIB LIB(ODILIB)
4. Create in this library an empty save file that has the same name as the SAVF file

(mandatory). For example:

CRTSAVF FILE(ODILIB/SAVPGM0110)
5. Upload the local SAVF file on the iSeries system in the library and on top of the file you

have just created. Make sure that the upload process is performed in binary mode.

An FTP command sequence performing the upload is given below as an example.

FTP 192.0.2.1
LCD /oracle/odi/setup/manual/cdc-iseries/
BI
CD ODILIB
PUT SAVPGM0110 
BYE

• Restore the objects from the save file, using the RSTOBJ command. For example:

RSTOBJ OBJ(*ALL) SAVLIB(CDCSNPRELE) DEV(*SAVF) OBJTYPE(*ALL) SAVF(ODILIB/SAVPGM0110) 
RSTLIB(ODILIB)

• Check that the objects are correctly restored. The target library should contain a program
object called CDCRTVJRN.

Use the following command below to view it:

WRKOBJ OBJ(ODILIB/CDCRTVJRN)
Example 15-1    The CDCRTVJRN Stored Procedure

This procedure is used to call the CDCRTVJRN program. It is automatically created by the
JKM DB2/400 Journal Simple KM when journalizing is started. Journalizing startup is described
in the Change Data Capture topic.

The syntax for the stored procedure is provided below for reference:

create procedure ODILIB.CDCRTVJRN(
   SbsTName char(138), /* Qualified Subscriber Table Name */
   JrnTName char(138), /* Qualified Table Name */

Chapter 15
Setting up Changed Data Capture

15-7



   Subscriber char(50) , /* Subscriber Name */
   LogMessages char(1) /* Create a Log (Y - Yes, N - No) */
)
language rpgle
external name 'ODILIB/CDCRTVJRN'

Note:

The stored procedure and the program are installed in a library defined in the
Topology as the default work library for this iSeries data server

15.6.2.4 Using the CDC with the Native Journals
Once the program is installed and the CDC is setup, using the native journals consists in using
the LKM DB2/400 Journal to SQL to extract journalized data from the iSeries system. The
retrieval process is triggered if the RETRIEVE_JOURNAL_ENTRIES option is set to true for
the LKM.

15.6.2.5 Problems While Reading Journals
This section list the possibly issues when using this changed data capture method.

CDCRTVJRN Program Limits

The following limits exist for the CDCRTVJRN program:

• The source table should be journaled and the iSeries journal should be readable by the
user specified in the iSeries data server.

• The source table should have one PK defined in Oracle Data Integrator.

• The PK declared in Oracle Data Integrator should be in the 4096 first octets of the physical
record of the data file.

• The number of columns in the PK should not exceed 16.

• The total number of characters of the PK column names added to the number of columns
of the PK should not exceed 255.

• Large object datatypes are not supported in the PK. Only the following SQL types are
supported in the PK: SMALLINT, INTEGER, BIGINT, DECIMAL (Packed), NUMERIC
(Zoned), FLOAT, REAL, DOUBLE, CHAR, VARCHAR, CHAR VARYING, DATE, TIME,
TIMESTAMP and ROWID.

• Several instances of CDCRTVJRN should not be started simultaneously on the same
system.

• Reinitializing the sequence number in the iSeries journal may have a critical impact on the
program (program hangs) if the journal entries consumption date
(SNP_SUBSCRIBERS.JRN_CURFROMDATE) is before the sequence initialization date.
To work around this problem, you should manually set a later date in
SNP_SUBSCRIBERS.JRN_CURFROMDATE.

Troubleshooting the CDCRTVJRN Program

The journal reading process can be put in trace mode:

Chapter 15
Setting up Changed Data Capture

15-8



• either by calling from your query tool the CDCRTVJRN stored procedure with the LogMsg
parameter set to Y,

• or by forcing the CREATE_SPOOL_FILE LKM option to 1 then restarting the mapping.

The reading process logs are stored in a spool file which can be reviewed using the WRKSPLF
command.

You can also review the raw contents of the iSeries journal using the DSPJRN command.

15.7 Setting up Data Quality
Oracle Data Integrator provides the generic CKM SQL for checking data integrity against
constraints defined in DB2/400. See Flow Control and Static Control in Developing Integration
Projects with Oracle Data Integrator for details.

See Generic SQL for more information.

15.8 Designing a Mapping
You can use IBM DB2 for iSeries as a source, staging area or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of this
mapping or check. The recommendations in this section help in the selection of the KM for
different situations concerning an IBM DB2 for iSeries data server.

15.8.1 Loading Data from and to IBM DB2 for iSeries
IBM DB2 for iSeries can be used as a source, target or staging area of a mapping. The LKM
choice in the Mapping Flow tab to load data between IBM DB2 for iSeries and another type of
data server is essential for the performance of a mapping.

15.8.1.1 Loading Data from IBM DB2 for iSeries
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for
loading data from IBM DB2 for iSeries to a target or staging area database.

You can use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from IBM DB2 for iSeries to a target or staging area database.

15.8.1.2 Loading Data to IBM DB2 for iSeries
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for
loading data from a source or staging area into an IBM DB2 for iSeries database.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to the
other technology involved.

15.8.2 Integrating Data in IBM DB2 for iSeries
Oracle Data Integrator provides Knowledge Modules that implement optimized data integration
strategies for IBM DB2 for iSeries. These optimized IBM DB2 for iSeries KMs are listed in 
Table 15-4. I

In addition to these KMs, you can also use the Generic SQL KMs.

Chapter 15
Setting up Data Quality

15-9



The IKM choice in the Mapping Flow tab determines the performances and possibilities for
integrating.

Table 15-4    KMs for integrating data to IBM DB2 for iSeries

KM Notes

IKM DB2 400 Incremental Update Integrates data in an IBM DB2 for iSeries target table in
incremental update mode.

IKM DB2 400 Slowly Changing
Dimension

Integrates data in an IBM DB2 for iSeries target table used as a
Type II Slowly Changing Dimension in your Data Warehouse.

Using Slowly Changing Dimensions

For using slowly changing dimensions, make sure to set the Slowly Changing Dimension value
for each attributes of the target datastore. This value is used by the IKM DB2 400 Slowly
Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or Insert Column,
Current Record Flag and Start/End Timestamps columns.

15.9 Specific Considerations with DB2 for iSeries
This section provides specific considerations when using Oracle Data Integrator in an iSeries
environment.

15.9.1 Installing the Run-Time Agent on iSeries
The Oracle Data Integrator Standalone Agent can be installed on iSeries.

See the Installing and Configuring Oracle Data Integrator, for more information.

15.9.2 Alternative Connectivity Methods for iSeries
It is preferable to use the built-in IBM DB2 Datadirect driver in most cases. This driver directly
use the TCP/IP network layer and require no other components installed on the client machine.
Other methods exist to connect DB2 on iSeries.

15.9.2.1 Using Client Access
It is also possible to connect through ODBC with the IBM Client Access component installed on
the machine. This method does not have very good performance and does not support the
reverse engineering and some other features. It is therefore not recommended.

15.9.2.2 Using the IBM JT/400 and Native Drivers
This driver appears as a jt400.zip file you must copy into your Oracle Data Integrator
installation drivers directory.

To connect DB2 for iSeries with a Java application installed on the iSeries machine, IBM
recommends that you use the JT/400 Native driver (jt400native.jar) instead of the JT/400
driver (jt400.jar). The Native driver provides optimized access to the DB2 system, but works
only from the iSeries machine.

To support seamlessly both drivers with one connection, Oracle Data Integrator has a built-in
Driver Wrapper for AS/400. This wrapper connects through the Native driver if possible,
otherwise it uses the JT/400 driver.

Chapter 15
Specific Considerations with DB2 for iSeries

15-10



To configure a data server with the driver wrapper, change the driver and URL to your AS/400
server with the following information:

• Driver: com.sunopsis.jdbc.driver.wrapper.SnpsDriverWrapper
• URL: jdbc:snps400:<machine_name>[;param1=value1[;param2=value2...]]

15.10 Troubleshooting
This section provides information on how to troubleshoot problems that you might encounter
when using Oracle Knowledge Modules. It contains the following topics:

• Troubleshooting Error messages

• Common Problems and Solutions

15.10.1 Troubleshooting Error messages
Errors in Oracle Data Integrator appear often in the following way:

java.sql.SQLException: The application server rejected the connection.(Signon was 
canceled.)
at ...
at ...
...

the java.sql.SQLExceptioncode simply indicates that a query was made to the database
through the JDBC driver, which has returned an error. This error is frequently a database or
driver error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the DB2 or
iSeries documentation. If its contains sometimes an error code specific to your system, with
which the error can be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL code send
to the database to find the source of the error. The code is displayed in the description tab of
the erroneous task.

15.10.2 Common Problems and Solutions
This section describes common problems and solutions.

15.10.2.1 Connection Errors
• UnknownDriverException

The JDBC driver is incorrect. Check the name of the driver.

• The application requester cannot establish the connection.(<name or IP
address>) Cannot open a socket on host: <name or IP address>, port: 8471
(Exception: java.net.UnknownHostException:<name or IP address>)
Oracle Data Integrator cannot connect to the database. Either the machine name or IP
address is invalid, the DB2/400 Services are not started or the TCP/IP interface on AS/400
is not started. Try to ping the AS/400 machine using the same machine name or IP
address, and check with the system administrator that the appropriate services are started.

• Datasource not found or driver name not specified
The ODBC Datasource specified in the JDBC URL is incorrect.

Chapter 15
Troubleshooting

15-11



• The application server rejected the connection.(Signon was canceled.) Database
login failed, please verify userid and password. Communication Link Failure.
Comm RC=8001 - CWBSY0001 - ...
The user profile used is not valid. This error occurs when typing an invalid user name or an
incorrect password.

• Communication Link Failure
An error occurred with the ODBC connectivity. Refer to the Client Access documentation
for more information.

• SQL5001 - Column qualifier or table &2 undefined. SQL5016 - Object name &1 not
valid for naming convention
Your JDBC connection or ODBC Datasource is configured to use the wrong naming
convention. Use the ODBC Administrator to change your datasource to use the proper
(*SQL or *SYS) naming convention, or use the appropriate option in the JDBC URL to
force the naming conversion (for instance, jdbc:as400://192.0.2.1;naming=system) . Note
that if using the system naming convention in the Local Object Mask of the Physical
Schema, you must enter %SCHEMA/%OBJECT instead of %SCHEMA.%OBJECT.

"*SQL" should always be used unless your application is specifically designed for *SYS.
Oracle Data Integrator uses the *SQL naming convention by default.

• SQL0204 &1 in &2 type *&3 not found
The table you are trying to access does not exist. This may be linked to an error in the
context choice, or in the sequence of operations (E.g.: The table is a temporary table which
must be created by another mapping).

• Hexadecimal characters appear in the target tables. Accentuated characters are
incorrectly transferred.

The iSeries computer attaches a language identifier or CCSID to files, tables and even
fields (columns). CCSID 65535 is a generic code that identifies a file or field as being
language independent: i.e. hexadecimal data. By definition, no translation is performed by
the drivers. If you do not wish to update the CCSID of the file, then translation can be
forced, in the JDBC URL, thanks to the flags ccsid=<ccsid code> and convert
_ccsid_65535=yes|no. See the driver's documentation for more information.

• SQL0901 SQL system error
This error is an internal error of the DB2/400 system.

• SQL0206 Column &1 not in specified tables
Keying error in a mapping/join/filter. A string which is not a column name is
interpreted as a column name, or a column name is misspelled.

This error may also appear when accessing an error table associated to a datastore with a
structure recently modified. It is necessary to impact in the error table the modification, or
drop the error tables and let Oracle Data Integrator recreate it in the next execution.

Chapter 15
Troubleshooting

15-12



16
IBM DB2 UDB

It is important to understand how to work with IBM DB2 UDB in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Concepts

• Knowledge Modules

• Specific Requirements

16.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an IBM DB2 UDB database. Oracle
Data Integrator features are designed to work best with IBM DB2 UDB, including journalizing,
data integrity checks, and mappings.

16.2 Concepts
The IBM DB2 UDB concepts map the Oracle Data Integrator concepts as follows: An IBM DB2
UDB database corresponds to a data server in Oracle Data Integrator. Within this server, a
schema maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an IBM DB2
UDB database.

16.3 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 16-1 for handling
IBM DB2 UDB data. These KMs use IBM DB2 UDB specific features. It is also possible to use
the generic SQL KMs with the IBM DB2 UDB database. See Generic SQL for more information

Table 16-1    DB2 UDB KMs

Knowledge Module Description

IKM DB2 UDB Incremental Update Integrates data in an IBM DB2 UDB target table in incremental update
mode. This IKM creates a temporary staging table to stage the data flow. It
then compares its content to the target table to identify which records
should be inserted and which others should be updated. It also allows
performing data integrity check by invoking the CKM.

Inserts and updates are done in bulk set-based processing to maximize
performance. Therefore, this IKM is optimized for large volumes of data.

Consider using this IKM if you plan to load your IBM DB2 UDB target table
to insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as the
target.

16-1



Table 16-1    (Cont.) DB2 UDB KMs

Knowledge Module Description

IKM DB2 UDB Slowly Changing Dimension Integrates data in an IBM DB2 UDB target table used as a Type II Slowly
Changing Dimension in your Data Warehouse. This IKM relies on the
Slowly Changing Dimension metadata set on the target datastore to figure
out which records should be inserted as new versions or updated as
existing versions.

Because inserts and updates are done in bulk set-based processing, this
IKM is optimized for large volumes of data.

Consider using this IKM if you plan to load your IBM DB2 UDB target table
as a Type II Slowly Changing Dimension.

To use this IKM, the staging area must be on the same data server as the
target and the appropriate Slowly Changing Dimension metadata needs to
be set on the target datastore.

JKM DB2 UDB Consistent Creates the journalizing infrastructure for consistent journalizing on IBM
DB2 UDB tables using triggers.

Enables Consistent Changed Data Capture on IBM DB2 UDB.

JKM DB2 UDB Simple Creates the journalizing infrastructure for simple journalizing on IBM DB2
UDB tables using triggers.

Enables Simple Changed Data Capture on IBM DB2 UDB.

LKM DB2 UDB to DB2 UDB
(EXPORT_IMPORT)

Loads data from an IBM DB2 UDB source database to an IBM DB2 UDB
staging area database using the native EXPORT / IMPORT commands.

This module uses the EXPORT CLP command to extract data in a
temporary file. Data is then loaded in the target staging DB2 UDB table
using the IMPORT CLP command. This method if often more efficient than
the standard LKM SQL to SQL when dealing with large volumes of data.

Consider using this LKM if your source tables are located on a DB2 UDB
database and your staging area is on a different DB2 UDB database.

LKM File to DB2 UDB (LOAD) Loads data from a File to a DB2 UDB staging area database using the
native CLP LOAD Command.

Depending on the file type (Fixed or Delimited) this LKM will generate the
appropriate LOAD script in a temporary directory. This script is then
executed by the CLP and automatically deleted at the end of the execution.
Because this method uses the native IBM DB2 loaders, it is more efficient
than the standard LKM File to SQL when dealing with large volumes of
data.

Consider using this LKM if your source is a large flat file and your staging
area is an IBM DB2 UDB database.

LKM SQL to DB2 UDB Loads data from any ANSI SQL-92 standard compliant source database to
an IBM DB2 UDB staging area. This LKM is similar to the standard LKM
SQL to SQL described in Generic SQL except that you can specify some
additional specific IBM DB2 UDB parameters.

LKM SQL to DB2 UDB (LOAD) Loads data from any ANSI SQL-92 standard compliant source database to
an IBM DB2 UDB staging area using the CLP LOAD command.

This LKM unloads the source data in a temporary file and calls the IBM
DB2 native loader using the CLP LOAD command to populate the staging
table. Because this method uses the native IBM DB2 loader, it is often
more efficient than the LKM SQL to SQL or LKM SQL to DB2 UDB
methods when dealing with large volumes of data.

Consider using this LKM if your source data located on a generic database
is large, and when your staging area is an IBM DB2 UDB database.

Chapter 16
Knowledge Modules

16-2



Table 16-1    (Cont.) DB2 UDB KMs

Knowledge Module Description

SKM IBM UDB Generates data access Web services for IBM DB2 UDB databases. See
SKM SQL in Generic SQL for more information.

16.4 Specific Requirements
Some of the Knowledge Modules for IBM DB2 UDB use operating system calls to invoke the
IBM CLP command processor to perform efficient loads. The following restrictions apply when
using such Knowledge Modules:

• The IBM DB2 UDB Command Line Processor (CLP) as well as the DB2 UDB Connect
Software must be installed on the machine running the Oracle Data Integrator Agent.

• The server names defined in the Topology must match the IBM DB2 UDB connect strings
used for these servers.

• Some DB2 UDB JDBC drivers require DB2 UDB Connect Software to be installed on the
machine running the ODI Agent.

To know more about the supported data types, refer to IBM DB2 UDB documentation .

Chapter 16
Specific Requirements

16-3

https://www.ibm.com/support/knowledgecenter/en/SSZJPZ_11.7.0/com.ibm.swg.im.iis.ia.product.doc/topics/r_db2.html


17
Salesforce.com

It is important to understand how to work with Salesforce.com in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering a Salesforce.com Model

• Designing a Mapping

17.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates with Salesforce.com. Oracle Data
Integrator features are designed to work best with Salesforce.com, including reverse-
engineering and mappings.

17.1.1 Concepts
The Salesforce.com database concepts map the Oracle Data Integrator concepts as follows: A
Salesforce.com server corresponds to a data server in Oracle Data Integrator. Within this
server, a database maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a
Salesforce.com data server. See Connectivity Requirements for more details.

17.1.2 Knowledge Modules
Oracle Data Integrator provides no Knowledge Module (KM) specific to the Salesforce.com
technology. You can use the generic SQL KMs to perform the data integration and
transformation operations of Salesforce.com data. See Generic SQL for more information.

17.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Salesforce.com Knowledge Module:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

17-1



17.2.1 System Requirements and Certifications
Before performing any installation, you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html

17.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Salesforce.com in Oracle Data
Integrator.

To know more about the supported data types, refer to Salesforce.com documentation.

17.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Salesforce.com database.

JDBC Driver

Oracle Data Integrator uses the Salesforce.com JDBC Driver to connect to a Salesforce.com
database.

17.3 Setting up the Topology
Setting up the topology consists of:

• Creating a Salesforce.com Data Server

• Creating a Physical Schema for Salesforce.com Data Server

17.3.1 Creating a Salesforce.com Data Server
Create a data server for the Salesforce.com technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This section
details only the fields required or specific for defining a Salesforce.com data server:

1. In the Definition tab:

• Name: Name of the data server that will appear in Oracle Data Integrator

• Instance/dblink (Data Server): Not required for Salesforce.com. Leave this field
blank.

• User/Password: User name and password for connecting to the data server

2. In the JDBC tab:

• JDBC Driver: weblogic.jdbc.sforce.SForceDriver
• JDBC URL: The URL used for connecting to the data server. For example,

jdbc:weblogic:sforce://login.salesforce.com.

3. In the Properties section:

Chapter 17
Setting up the Topology

17-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/langCon_apex_data_types.htm


• ConfigOptions: The configuration options that you want to use. For example,
(AuditColumns=all;MapSystemColumnNames=0;).

• DatabaseName: The instance of the database. This needs to be changed as per the
JDBC URL used.

17.3.2 Creating a Physical Schema for Salesforce.com Data Server
An Oracle Data Integrator physical schema corresponds to a pair of schemas:

• A Data Schema into which Oracle Data Integrator will look for the source and target data
structures for the mapping.

• A Work Schema into which Oracle Data Integrator can create and manipulate temporary
work data structures associated with the sources and targets contained in the data
schema.

Create a physical schema for the Salesforce.com data server using the standard procedure, as
described in Creating a Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

17.4 Setting Up an Integration Project
Setting up a project using Salesforce.com follows the standard procedure. See Creating an
Integration Project of Developing Integration Projects with Oracle Data Integrator.

Import the following generic SQL KMs into your project for getting started with Salesforce.com:

• IKM SQL to SQL Control Append

• IKM SQL to SQL Incremental Update

See Generic SQL for more information about these KMs.

Note:

The following KMs are available in the system by default:

• LKM SQL to Oracle (Built-In)

• LKM SQL to SQL (Built-In)

• LKM SQL Multi-Connect

• IKM Oracle Insert

• IKM Oracle Update

17.5 Creating and Reverse-Engineering a Salesforce.com Model
This section contains the following topics:

• Create a Salesforce.com Model

• Reverse-engineer a Salesforce.com Model

Chapter 17
Setting Up an Integration Project

17-3



17.5.1 Create a Salesforce.com Model
Create a Salesforce.com model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

17.5.2 Reverse-engineer a Salesforce.com Model
Salesforce.com supports Standard reverse-engineering - which uses only the abilities of the
JDBC driver.

To perform a Standard reverse-engineering on Salesforce.com, use the usual procedure, as
described in Reverse-engineering a Model of Developing Integration Projects with Oracle Data
Integrator.

17.6 Designing a Mapping
You can use Salesforce.com as a source or a target of a mapping, but not as the staging area.

The KM choice for a mapping or a check determines the abilities and performances of this
mapping or check. The recommendations below help in the selection of the KM for different
situations concerning a Salesforce.com server.

17.6.1 Loading Data from and to Salesforce.com
Salesforce.com can be used as a source or a target of a mapping. The LKM choice in the
Mapping Flow tab to load data between Salesforce.com and another type of data server is
essential for the performance of a mapping.

17.6.1.1 Loading Data from Salesforce.com
Oracle Data Integrator does not provide specific knowledge modules for Salesforce.com. Use
the generic SQL KMs or the KMs specific to the technology used as the staging area. The
following table lists some generic SQL KMs that can be used for loading data from
Salesforce.com to any staging area.

Table 17-1    KMs to Load from Salesforce.com

Target or Staging Area KM Notes

Oracle LKM SQL to Oracle Loads data from any ANSI
SQL-92 source database to an
Oracle staging area.

SQL LKM SQL to SQL Loads data from an ANSI SQL-92
compliant database for an ANSI
SQL-92 compliant staging area.
This LKM uses the agent to read
selected data from the source
database and write the result into
the staging temporary table
created dynamically.

Chapter 17
Designing a Mapping

17-4



17.6.1.2 Loading Data to Salesforce.com
Because Salesforce.com cannot be used as staging area, you cannot use a LKM to load data
into Salesforce.com. See Integrating Data in Salesforce.com for more information on how to
integrate data into Salesforce.com.

17.6.2 Integrating Data in Salesforce.com
Oracle Data Integrator does not provide specific knowledge modules for Salesforce.com. Use
the Generic SQL KMs or the KMs specific to the technology used as the staging area. For
integrating with Salesforce.com, only the IKMs that do not require a LKM and that do not
require the staging area to be set on target can be used. The following table lists the generic
SQL KMs that can be used for integrating data from a staging area to Salesforce.com.

Table 17-2    KMs for Integrating Data to Salesforce.com

KM Notes

IKM SQL to SQL Control Append Integrates data into an ANSI-SQL92 target
database from any ANSI-SQL92 compliant staging
area. This IKM is typically used for ETL
configurations: source and target tables are in
different databases and the mapping's staging area
is set to the logical schema of the source tables or
a third schema.

IKM SQL to SQL Incremental Update Integrates data from any AINSI-SQL92 compliant
database into any AINSISQL92 compliant
database target table in incremental update mode.
This IKM is typically used for ETL configurations:
source and target tables are on different databases
and the mapping's staging area is set to the logical
schema of the source tables or a third schema.

To use this IKM, the FLOW_TABLE_LOCATION
option should be set to STAGING.

Chapter 17
Designing a Mapping

17-5



18
Sybase IQ

This chapter describes how to work with Sybase IQ in Oracle Data Integrator.

NOT_SUPPORTED:

This chapter applies only to Data Integration Platform Cloud.

This chapter includes the following sections:

• Introduction

• Concepts

• Knowledge Modules

• Specific Requirements

18.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in a Sybase IQ database. Oracle Data
Integrator features are designed to work best with Sybase IQ, including data integrity check
and integration interfaces.

18.2 Concepts
The Sybase IQ concepts map the Oracle Data Integrator concepts as follows: A Sybase IQ
server corresponds to a data server in Oracle Data Integrator. Within this server, a schema
maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a Sybase IQ
database.

18.3 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in the below table for
handling Sybase IQ data. These KMs use Sybase IQ specific features. It is also possible to
use the generic SQL KMs with the Sybase IQ database. See Chapter 5, Generic SQL for more
information.

Note:

Generic SQL KMs for Update, Incremental Update and Merge cannot be used to
incrementally load or update Sybase IQ target table. Use IKM Sybase IQ Incremental
Update.

18-1



Table 18-1    Sybase IQ Knowledge Modules

Knowledge Module Description

CKM Sybase IQ Checks data integrity against constraints defined on a Sybase IQ table.
Rejects invalid records in the error table created dynamically. Can be
used for static controls as well as flow controls.

Consider using this KM, if you plan to check data integrity on a Sybase
IQ database.

IKM Sybase IQ Incremental
Update

Integrates data in a Sybase IQ target table in incremental update mode.
This IKM creates a temporary staging table to stage the data flow. It
then compares its content to the target table to guess which records
should be inserted and which others should be updated. It also allows
performing data integrity check by invoking the CKM.

Inserts and updates are done in bulk set-based processing to maximize
performance. Therefore, this IKM is optimized for large volumes of data.

Consider using this IKM if you plan to load your Sybase IQ target table
to insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as
the target.

IKM Sybase IQ Slowly
Changing Dimension

Integrates data in a Sybase IQ target table used as a Type II Slowly
Changing Dimension in your Data Warehouse. This IKM relies on the
Slowly Changing Dimension metadata set on the target datastore to
figure out which records should be inserted as new versions or updated
as existing versions.

Because inserts and updates are done in bulk set-based processing,
this IKM is optimized for large volumes of data.

Consider using this IKM if you plan to load your Sybase IQ target table
as a Type II Slowly Changing Dimension.

To use this IKM, the staging area must be on the same data server as
the target and the appropriate Slowly Changing Dimension metadata
needs to be set on the target datastore.

LKM File to Sybase IQ (LOAD
TABLE)

Loads data from a File to a Sybase IQ staging area database using the
LOAD TABLE SQL command.

Because this method uses the native LOAD TABLE command, it is more
efficient than the standard "LKM File to SQL" when dealing with large
volumes of data. However, the loaded file must be accessible from the
Sybase IQ machine.

Consider using this LKM if your source is a large flat file and your
staging area is a Sybase IQ database.

LKM SQL to Sybase IQ
(LOAD TABLE)

Loads data from any ANSI SQL-92 standard compliant source database
to a Sybase IQ staging area database using the native LOAD TABLE
SQL command.

This LKM unloads the source data in a temporary file and calls the
Sybase IQ LOAD TABLE SQL command to populate the staging table.
Because this method uses the native LOAD TABLE, it is often more
efficient than the LKM SQL to SQL method when dealing with large
volumes of data.

Consider using this LKM if your source data located on a generic
database is large, and when your staging area is a Sybase IQ database.

Chapter 18
Knowledge Modules

18-2



18.4 Specific Requirements
Some of the Knowledge Modules for Sybase IQ use the LOAD TABLE specific command. The
following restrictions apply when using such Knowledge Modules.

• The file to be loaded by the LOAD TABLE command needs to be accessible from the
Sybase IQ machine. It could be located on the file system of the server or reachable from a
UNC (Unique Naming Convention) path or mounted from a remote file system.

• UNC file paths are supported but not recommended as they may decrease performance.

• For performance reasons, it is often recommended to install Oracle Data Integrator Agent
on the target server machine.

To know more about the supported data types, refer to Sybase IQ documentation.

Chapter 18
Specific Requirements

18-3

https://www.ibm.com/support/knowledgecenter/SSZJPZ_11.5.0/com.ibm.swg.im.iis.conn.drs.doc/topics/DRS036.html


Part II
Business Intelligence

It is important to understand how to work with Business Intelligence in Oracle Data Integrator.
Part II contains the following chapters:

• Oracle Business Intelligence Enterprise Edition

• Oracle Business Intelligence Cloud Service

• Oracle Hyperion Planning

• Oracle Hyperion Essbase



19
Oracle Business Intelligence Enterprise
Edition

It is important to understand how to work with Oracle Business Intelligence Enterprise Edition
in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering an Oracle BI Model

• Setting up Data Quality

• Designing a Mapping

19.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data from Oracle Business Intelligence
Enterprise Edition (Oracle BI).

Oracle Data Integrator provides specific methods for reverse-engineering and extracting data
from ADF View Objects (ADF-VOs) via the Oracle BI Physical Layer using mappings.

19.1.1 Concepts
The Oracle Business Intelligence Enterprise Edition concepts map the Oracle Data Integrator
concepts as follows: An Oracle BI Server corresponds to a data server in Oracle Data
Integrator. Within this server, a catalog/owner pair maps to an Oracle Data Integrator physical
schema.

Oracle Data Integrator connects to this server to access, via a bypass connection pool, the
physical sources that support ADF View Objects.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an Oracle BI
Server.

19.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 19-1 for handling
Oracle BI data. These KMs use Oracle BI specific features.

Table 19-1    Oracle BI KMs

Knowledge Module Description

RKM Oracle BI (Jython) Retrieves the table structure in Oracle BI (columns and primary keys).

19-1



Table 19-1    (Cont.) Oracle BI KMs

Knowledge Module Description

LKM Oracle BI to Oracle (DBLink) Loads data from an Oracle BI source to an Oracle database area using
dblinks.

LKM Oracle BI to SQL Loads data from an Oracle BI source to any ANSI SQL-92 compliant
database.

IKM Oracle BI to SQL Append Integrates data into a ANSI-SQL92 target database from an Oracle BI
source.

19.2 Installation and Configuration
Make sure you have read the information in this section before you start using the Oracle BI
Knowledge Modules:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

19.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

19.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Oracle BI in Oracle Data Integrator.

19.2.3 Connectivity Requirements
This section lists the requirements for connecting to an Oracle BI Server.

JDBC Driver

Oracle Data Integrator uses the Oracle BI native driver to connect to the Oracle BI Server. This
driver must be installed in your Oracle Data Integrator drivers directory.

Bypass Connection Pool

In Oracle BI, a sqlbypass database connection must be setup to bypass the ADF layer and
directly fetch data from the underlying database. The name of this connection pool is required
for creating the Oracle BI data server in Oracle Data Integrator.

19.3 Setting up the Topology
Setting up the Topology consists of:

Chapter 19
Installation and Configuration

19-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


1. Creating an Oracle BI Data Server

2. Creating an Oracle BI Physical Schema

19.3.1 Creating an Oracle BI Data Server
A data server corresponds to a Oracle BI Server. Oracle Data Integrator connects to this server
to access, via a bypass connection pool, the physical sources that support ADF View Objects.
These physical objects are located under the view objects that are exposed in this server. This
server is connected with a user who has access to several catalogs/schemas. Catalog/
schemas pairs correspond to the physical schemas that are created under the data server.

19.3.1.1 Creation of the Data Server
Create a data server for the Oracle BI technology using the standard procedure, as described
in Creating a Data Server of Administering Oracle Data Integrator. This section details only the
fields required or specific for defining a Oracle BI data server:

1. In the Definition tab:

• Name: Name of the data server that will appear in Oracle Data Integrator

• Server: Leave this field empty.

• User/Password: Oracle BI user with its password

2. In the JDBC tab:

• JDBC Driver: oracle.bi.jdbc.AnaJdbcDriver
• JDBC URL: jddbc:oraclebi://<host>:<port>

<host> is the server on which Oracle BI server is installed. By default the <port>
number is 9703.

3. In the Properties tab, add a JDBC property with the following key/value pair.

• Key: NQ_SESSION.SELECTPHYSICAL
• Value: Yes

Note:

This option is required for accessing the physical data. Using this option makes
the Oracle BI connection read-only.

4. In the Flexfield tab, set the name of the bypass connection pool in the
CONNECTION_POOL flexfield.

• Name: CONNECTION_POOL
• Value: <connection pool name>

Note:

Note this bypass connection pool must also be defined in the Oracle BI server
itself.

Chapter 19
Setting up the Topology

19-3



19.3.2 Creating an Oracle BI Physical Schema
Create a Oracle BI physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

In the physical schema the Data and Work Schemas correspond each to an Oracle BI Catalog/
schema pair.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

19.4 Setting Up an Integration Project
Setting up a project using an Oracle BI Server follows the standard procedure. See Creating
an Integration Project of Developing Integration Projects with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for getting
started with Oracle BI:

• RKM Oracle BI (Jython)LKM Oracle BI to Oracle (DBLink)LKM Oracle BI to SQLIKM
Oracle BI to SQL Append

Import also the knowledge modules (IKM, CKM) required for the other technologies involved in
your project.

19.5 Creating and Reverse-Engineering an Oracle BI Model
This section contains the following topics:

• Create an Oracle BI Model

• Reverse-engineer an Oracle BI Model

19.5.1 Create an Oracle BI Model
Create an Oracle BI Model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator.

19.5.2 Reverse-engineer an Oracle BI Model
Oracle BI supports Customized reverse-engineering.

To perform a Customized Reverse-Engineering on Oracle BI with a RKM, use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration Projects
with Oracle Data Integrator. This section details only the fields specific to the Oracle BI
technology:

• In the Reverse Engineer tab of the Oracle BI Model, select the KM: RKM Oracle BI
(Jython).<project name>.

This KM implements the USE_LOG logging option to trace the reverse-engineering process.

Chapter 19
Setting Up an Integration Project

19-4



19.6 Setting up Data Quality
Data integrity check is not supported in an Oracle BI Server. You can check data extracted
Oracle BI in a staging area using another technology.

19.7 Designing a Mapping
You can use Oracle BI as a source of a mapping.

The KM choice for a mapping determines the abilities and performance of this mapping. The
recommendations in this section help in the selection of the KM for different situations
concerning an Oracle BI server.

19.7.1 Loading Data from and to Oracle BI
The LKM choice in the Loading Knowledge Module tab to load data between Oracle BI and
another type of data server is essential for the performance of a mapping.

19.7.1.1 Loading Data from Oracle BI
Use the knowledge modules listed in Table 19-2 to load data from an Oracle BI server to a
target or staging area database.

Table 19-2    KMs for loading data From Oracle BI

Staging Area/Target
Technology

KM Notes

Oracle LKM Oracle BI to Oracle
(Dblink)

Loads data from an Oracle BI source to
an Oracle Database staging area using
DBLinks.

To use this knowledge module, a
DBLink must be manually created from
the source Fusion Transaction DB (that
is the database storing the underlying
data tables) to the Oracle staging area.
This DBLink name must be the one
specified in the Oracle staging area
data server connection.

SQL LKM Oracle BI to SQL Loads data from an Oracle BI Source to
an ANSI SQL-92 compliant staging
area database via the agent.

SQL IKM Oracle BI to SQL Append Loads and Integrates data from an
Oracle BI Source to an ANSI SQL-92
compliant staging area database via the
agent.

To use this KM, you must set the
staging are of your mapping on the
source Oracle BI server.

In this configuration, no temporary table
is created and data is loaded and
integrated directly from the source to
the target tables.

Chapter 19
Setting up Data Quality

19-5



19.7.1.2 Loading Data to Oracle BI
Oracle BI cannot be used as a staging area. No LKM targets Oracle BI.

19.7.2 Integrating Data in Oracle BI
Oracle BI cannot be used as a target or staging area. It is not possible to integrate data into
Oracle BI with the knowledge modules.

Chapter 19
Designing a Mapping

19-6



20
Oracle Business Intelligence Cloud Service

It is important to understand how to work with Oracle Business Intelligence Cloud Service
(BICS) in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Setting up the Topology

• Reverse Engineering a BICS Model

• Designing a Mapping

20.1 Introduction
Oracle Business Intelligence Cloud Service (BICS) uses entities called Datasets and Tables for
storing data that then get used in an analytics solution.

Table 20-1    Datasets versus Tables

Datasets Tables

Does not have index Can have index

Creation and insertion of data can be a single operation Creation and insertion of data are two distinct steps with
different payloads

Loading data supports batching explicitly Loading data involves more fine-grained controls
For example, maximum number of errors to be allowed, while
loading

Also, more controls exist over column definition

Note:

Both the Datasets and the Tables have the parameters ‘firstBatch’ and ‘lastBatch.’
They are backed by a DBCS schema. The DBCS schema information is not
published. Data is loaded into Datasets/Tables as application/octet-stream format
part of a multi-part message. The stream can be Text stream with delimiters or Java
object array stream. ODI will load data only into the BICS Dataset or the Table. ODI
will not read data from the BICS Dataset or the Table.

For both the Dataset and the Table, you must define a BICS target. As each of these entities
are bound to a different URL endpoint, an ODI Datastore container will be bound to either
Dataset or Table, but never to both. This implies that an ODI Model (and by inference the
associated Logical and Physical Schema) can be only bound to either the Datasets endpoint or
the Tables endpoint.

Since loading data into a BICS target involves Mappings, you must model a BICS Dataset or
Table as a Datastore in ODI. BICS Logical Schema cannot be used for staging, and BICS
Datastores cannot be used as source in a Mapping.

20-1



20.2 Setting up the Topology
Setting up the topology consists of:

• Creating an Oracle BICS Data Server

• Creating an Oracle BICS Physical Schema

20.2.1 Creating an Oracle BICS Data Server
BICS Dataserver defines the endpoint URL and the dataloader suffix. The data source suffix
part of the URL depends on whether we are exploring Datasets or Tables and will be exposed
in the Physical Schema page. This will allow a single BICS Dataserver to work with both the
Dataset and the Table.

The Data Server page contains fields for the Dataserver name, base URI, username,
password, and the Identity domain.

The following is a full BICS URI:

https://service-identity_domain.analytics.data_center.oraclecloud.com/
resource-path
The base URI is the BICS service instance’s first paths segment.

The following is a base URI:

https://service-identity_domain.analytics.data_center.oraclecloud.com
The Data loader path field is a constant, auto-filled. This enables you to see the path segment.

The following is a data loader path segment:

/dataload/v1

20.2.2 Creating an Oracle BICS Physical Schema
Once the BICS Dataserver is configured, you can configure its Physical Schema. BICS
Physical Schema will prompt for choosing either Dataset or Table. This in turn will control the
Resource URI.

Note:

Resource URI can be chosen from the list or typed in, but once chosen/typed in and
then saved, it cannot be edited again.

Choice of whether the Physical Schema is to be bound to BICS Tables or Datasets triggers the
association of REST Operations. The Operations are unique and pre-defined for Datasets and
Tables.

20.3 Reverse Engineering a BICS Model
Once the BICS Logical Schema is set, you can create a Model based on this Logical Schema,
and then reverse engineer. You must select the RKM Oracle BI Cloud Service to reverse
engineer the BICS tables or datasets metadata.

Chapter 20
Setting up the Topology

20-2



Note:

After reverse engineering, make sure to manually fix the column datatypes, after
seeing the BICS Table/Dataset.

Table 20-2    KM Options

Option Type Default Description

GET_TABLE_INDEXES Table True Whether or not to retrieve
table indexes.

DEFAULT_DIRECTORY Table java.lang.System.getPropert
y("java.io.tmpdir")

Directory for generated
temporary (return) files by
REST calls.

All temporary data files
generated by REST calls will
be deleted at the end of RKM
execution.

20.4 Designing a Mapping
Similar to the IKMs for Hyperion, BICS IKM is also multi-connect. It uses batching capabilities
of the BICS Dataset/Table.

Note:

The IKM SQL to Oracle BI Cloud Service does not support loading the Oracle
SDO_GEOMETRY data type column to the BICS target table.
Oracle BI Cloud Service cannot be used as the staging area, and does not support
incremental update or flow/static check. Therefore, the following KMs will not work
with the Oracle BI Cloud Service technology:

• RKM SQL (JYTHON)

• LKM File to SQL

• CKM SQL

• IKM SQL Incremental Update

• IKM SQL Control Append

• LKM SQL to SQL (JYTHON)

BICS Datastore as target for Mapping

The IKM SQL to Oracle BI Cloud Service exposes Dataset/Table loading options as KM
options.

Chapter 20
Designing a Mapping

20-3



Table 20-3    Supported KM Options

Option Type Default Description

TRUNCATE_TARGET_TABL
E

Boolean False Deletes data before starting
to load data. This is only
applicable for BICS Table.

DROP_TARGET Boolean False Drops the target Table/
Dataset before starting to
load data.

Chapter 20
Designing a Mapping

20-4



Table 20-3    (Cont.) Supported KM Options

Option Type Default Description

CREATE_TARGET Boolean False If the target Table/Dataset
does not exist, creates it first.

N

o

t

e

:

T
h
e
R
E
S
T
A
P
I
D
a
t
a
s
e
t
d
a
t
a
l
o
a
d
s
e
m
a
n
t
i
c
s
i
s
‘
c
r
e
a

Chapter 20
Designing a Mapping

20-5



Table 20-3    (Cont.) Supported KM Options

Option Type Default Description

t
e
-
i
f
-
d
o
e
s
-
n
o
t
-
e
x
i
s
t
’
.
S
o
t
h
i
s
s
e
t
t
i
n
g
i
s
o
p
t
i
o
n
a
l
f
o
r
D
a
t
a
s
e

Chapter 20
Designing a Mapping

20-6



Table 20-3    (Cont.) Supported KM Options

Option Type Default Description

t
s
.

DATA_WRITE_MODE Choice Insert all Choice between Insert all,
Insert missing, Upsert,
Update only. This is
applicable only if the target is
BICS Table. Choosing Upsert/
Update only will fail, if the
BICS Table does not have
unique indexes.

NUM_RETRIES Text 0 Each dataload batch
operation could error out.
This is a numeric option that
will allow retry. Default is not
to retry at all.

RETRY_DELAY Text 5 Time delay in seconds
between each retry attempt.

REMOVE_DUPLICATES Boolean False Applicable only for BICS
Table to indicate whether or
not to remove duplicate data
from within the batch that is
being sent. Does not touch
data already in the BICS
Table.

BATCH_SIZE Text 1000 Number of rows to be send at
one time (in one POST
request).

VALIDATE_COLUMNS Boolean False Whether to validate the BICS
target’s column names before
trying to load data.

MAX_ERR_PER_BATCH Text 0 Maximum number of errors
per batch that Oracle BICS
will allow. Applicable only for
Tables.

TRACE_FILE Text Empty Location of file to which trace
of all the REST calls made by
the IKM are logged. If left
empty, no trace will be
created.

Chapter 20
Designing a Mapping

20-7



Note:

Datasets

• BICS Datasets do not have indexes.

• No unique index errors will be raised on loading data.

• Only possible errors are when data does not match the datatype of the target
column.

Tables

• BICS Tables support unique indexes.

• The insert/update modes depend on unique indexes being present and being
part of the data load operation.

• ‘Remove duplicates’ also requires unique indexes.

• Insert missing/Update only/Upsert all require unique index be part of the data
load

• ‘Insert all’ does not need unique index as long as the columns involved in the
data load are nullable.

Chapter 20
Designing a Mapping

20-8



21
Oracle Hyperion Planning

It is important to understand how to work with Oracle Hyperion Planning in Oracle Data
Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up Hyperion Planning Adapter

• Setting up the Topology

• Creating and Reverse-Engineering a Planning Model

• Designing a Mapping

• Datastore Tables and Data Load Columns

21.1 Introduction
Oracle Data Integrator Adapter for Hyperion Planning enables you to connect and integrate
Oracle's Hyperion Planning with any database through Oracle Data Integrator. The adapter
provides a set of Oracle Data Integrator Knowledge Modules (KMs) for loading metadata and
data into Planning, Oracle's Hyperion Workforce Planning, and Oracle's Hyperion Capital
Expense Planning applications.

21.1.1 Integration Process
Loading a Planning application with metadata and data using Oracle Data Integrator Adapter
for Hyperion Planning involves these tasks:

• Setting up an environment: Defining data servers and schemas

See Setting up the Topology.

• Reverse-engineering a Planning application using the adapter's Reverse-engineering
Knowledge Module (RKM)

See Creating and Reverse-Engineering a Planning Model.

• Loading metadata and data into the Planning application using the adapter's Integration
Knowledge Module (IKM)

See Designing a Mapping.

21.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 21-1 for handling
Hyperion Planning data. These KMs use Hyperion Planning specific features. It is also possible
to use the generic SQL KMs with the Hyperion Planning database.

21-1



Table 21-1    Hyperion Planning Knowledge Modules

Knowledge Module Description

RKM Hyperion Planning Reverse-engineers Planning applications and creates data models to use
as targets in Oracle Data Integrator mappings.

Each dimension (standard dimension and attribute dimension) is reversed
as a datastore with the same name as the dimension with appropriate
columns. Creates a datastore named "UDA" for loading UDA's.

IKM SQL to Hyperion Planning Loads metadata and data into Planning applications.

21.2 Installation and Configuration
Make sure you have read the information in this section before you start using the Oracle Data
Integrator Adapter for Planning:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

• Setting up Hyperion Planning Adapter

21.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

21.2.2 Technology Specific Requirements
There are no technology-specifc requirements for using the Oracle Data Integrator Adapter for
Planning.

21.2.3 Connectivity Requirements
There are no connectivity-specific requirements for using the Oracle Data Integrator Adapter
for Planning.

21.3 Setting up Hyperion Planning Adapter
The following sections explain how to set up Hyperion Planning Adapter for ODI Studio and
ODI standalone agent.

21.3.1 Setting up Adapter for ODI Studio
Exit from ODI Studio before setting up Hyperion Planning Adapter.

1. In Oracle Hyperion Planning directory, locate HspJS.jar

Chapter 21
Installation and Configuration

21-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


2. If HspJS.jar is not directly accessible by ODI, copy it to a location that allows ODI access.

3. Modify <ODI_HOME>/odi/studio/bin/odi.conf file to include HspJS.jar.

For Example:

AddJavaLibFile /server/lib/HspJS.jar

21.3.2 Setting up Adapter for ODI Standalone Agent
Stop ODI Agent before setting up Hyperion Planning Adapter.

1. In Oracle Hyperion Planning directory, locate HspJS.jar

2. Copy it into <DOMAIN_HOME>/lib directory.

For more information, see Configuring the Domain for the Standalone Collocated Agent in
Installing and Configuring Oracle Data Integrator.

21.4 Setting up the Topology
Setting up the Topology consists of:

1. Creating an Hyperion Planning Data Server

2. Creating an Hyperion Planning Physical Schema

21.4.1 Creating an Hyperion Planning Data Server
Create a data server for the Hyperion Planning technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This section
details only the fields required or specific for defining a Hyperion Planning data server:

1. In the Definition tab:

• Name: Enter a name for the data server definition.

• Server (Data Server): Enter the Planning application host name and RMI port number
in this format: <host>:<port>.

2. Under Connection, enter a user name and password for connecting to the Planning server.

Note:

The Test button does not work for a Hyperion Planning data server connection. This
button works only for relational technologies that have a JDBC Driver.

21.4.2 Creating an Hyperion Planning Physical Schema
Create a Hyperion Planning physical schema using the standard procedure, as described in
Creating a Physical Schema of Administering Oracle Data Integrator.

Under a data server, you can define a physical schema corresponding to an application and
the logical schemas on which models are based.

Chapter 21
Setting up the Topology

21-3



Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema of Administering Oracle Data Integrator and associate it in a
given context.

21.5 Creating and Reverse-Engineering a Planning Model
This section contains the following topics:

• Create a Planning Model

• Reverse-engineer a Planning Model

21.5.1 Create a Planning Model
Create a Planning Model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator.

21.5.2 Reverse-engineer a Planning Model
Reverse-engineering a Planning application creates an Oracle Data Integrator model that
includes a datastore for each dimension in the application. Note that the Year/Period/Version/
Scenario are not reverse-engineered.

To perform a Customized Reverse-Engineering on Hyperion Planning with a RKM, use the
usual procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator. This section details only the fields specific to the Hyperion
Planning technology.

1. In the Reverse tab of the Planning Model, select the RKM Hyperion Planning.

The RKM connects to the application (which is determined by the logical schema and the
context) and imports the following items:

• A datastore for each dimension in the application, with the same name as the dimension

• A datastore called UDA, for UDA loading

21.6 Designing a Mapping
After reverse-engineering a Planning application as a model, you can use the datastores in this
model as targets of mappings for loading data and metadata into the application.

The KM choice for a mapping determines the abilities and performance of this mapping. The
recommendations in this section help in the selection of the KM for different situations
concerning Hyperion Planning.

This section contains the following topics:

• Loading Metadata

• Loading Data

• Load Options

21.6.1 Loading Metadata
Oracle Data Integrator provides the IKM SQL to Hyperion Planning for loading metadata into a
Planning application.

Chapter 21
Creating and Reverse-Engineering a Planning Model

21-4



Metadata consists of dimension members. You must load members, or metadata, before you
load data values for the members. For example, before loading salary data for five new
employees, you load the employees (as members) to the Planning relational database before
you load the data to the Oracle's Hyperion Essbase database.

You can load members only to dimensions that exist in Planning. You must use a separate
mapping for each dimension that you load. You can chain mappings to load metadata into
several dimensions at once.

Note:

Please note the following:

• You must refresh the Essbase database after loading the dimension members in
the application. The Essbase database is refreshed if you set the
REFRESH_DATABASE option in IKM SQL to Hyperion Planning to Yes. See 
Load Options.

• If the REFRESH_DATABASE option in IKM SQL to Hyperion is set to Yes and
refresh Essbase database operation fails with an error, the execution is still
shown as successful in the Operator tab. However, the errors are reported in the
log file. In situations when the Essbase database is not refreshed and the
execution is successful in the Operator tab, check the log file for errors.

To load metadata into a Planning application:

1. Create a mapping. Make sure that you select the IKM SQL to Hyperion Planning on the
Flow tab.

2. Specify the load options as described in Load Options.

3. Run the mapping to load the metadata into the application

4. Validate the dimension:

a. Log on to Planning Web.

b. Select Administration > Dimensions.

21.6.2 Loading Data
Oracle Data Integrator provides the IKM SQL to Hyperion Planning for loading data into a
Planning application.

You can load data into selected dimension members that are already created in Planning. You
must set up the Planning, Workforce Planning, or Capital Expense Planning application before
you can load data into it.

Before loading data, ensure that the members (metadata) exist in the Planning relational
database and the Essbase database. A data load fails if the members do not exist. (This
includes the driver member and the members specified in the point of view.) If necessary, load
metadata and refresh the Essbase database to synchronize the members.

Before loading data into a Planning, Workforce Planning, or Capital Expense Planning
application, you must set up the relevant data load and driver dimensions in Planning. After
you set up the data load and driver dimensions in Planning, you must determine the point of
view for the members whose data you are loading.

Chapter 21
Designing a Mapping

21-5



To load data into a Planning application:

1. In Planning, specify parameters for data to load:

a. Select Administration > Data Load Administration.

b. For Available Data Load Dimensions, select a dimension, and click Go.

c. For Available Driver Dimensions, select the dimension to which you are loading data in
an Essbase database; for example, select the Account dimension.

d. Select the members of the driver dimension to load with data.

After the Hyperion Planning data load is set up, use Hyperion Planning RKM to
perform the reverse-engineering process. Reverse-engineering retrieves and updates
the datastore for the data load dimension with additional columns (fields) required for
the data load.

e. Click Save.

2. In Oracle Data Integrator Studio, run a mapping for loading data.

Note:

You can use the same mapping for loading metadata and data. Load Options
lists the options of the IKM SQL to Hyperion Planning

3. Check the Operator log to see if the mapping ran successfully.

4. To validate the data load, use either method:

• Create a Planning data form to retrieve data.

• Check Oracle's Essbase Administration Services to ensure that blocks were created in
the appropriate cube.

21.6.3 Load Options
IKM SQL to Hyperion Planning supports these options for defining how Oracle Data Integrator
Adapter for Hyperion Planning loads data:

• LOAD_ORDER_BY_INPUT

Possible values: Yes or No; default: No If set to Yes, members are loaded in the same
order as in the input records.

• SORT_PARENT_CHILD

Possible values: Yes or No; default: No If set to Yes, incoming records are sorted so that all
parents are inserted before children.

• LOG_ENABLED

Possible values: Yes or No; default: No If set to Yes, logging is done during the load
process to the file specified by the LOG_FILE_NAME option.

• LOG_FILE_NAME

The name of the file where logs are saved; default value:Java temp folder/ dimension.log

• MAXIMUM_ERRORS_ALLOWED

Maximum number of errors before the load process is stopped; default value: 0

Chapter 21
Designing a Mapping

21-6



If set to 0 or a negative number, the load process is not stopped regardless of the number
of errors.

• LOG_ERRORS

Possible values: Yes or No; default: No

If set to Yes, error records are loggedto the file specified by the ERROR_LOG_FILE
property.

• ERROR_LOG_FILE

The name of the file where error records are logged; default value: Java temp folder/
dimension.err

• ERR_COL_DELIMITER

The column delimiter used for the error record file; default value: comma (,)

• ERR_ROW_DELIMITER

The row delimiter used for the error record file; default value: \r\n

Note:

Row and column delimiters values can also be specified in hexadecimal. A value
that starts with 0x is treated as hexadecimal; for example, 0x0041 is treated as
the letter A.

• ERR_TEXT_DELIMITER

The text delimiter to be used for the column values in the error record file

• ERR_LOG_HEADER_ROW:

Possible values: Yes or No; default: Yes

If set to Yes, the row header (with all column names) is logged in the error records file.

• REFRESH_DATABASE:

If set to Yes, completion of the load operation invokes a cube refresh.

Possible values: Yes or No; default: No

21.7 Datastore Tables and Data Load Columns
IKM SQL to Hyperion Planning loads columns in tables to create datastores. The following
topics describe the columns in each datastore:

• Accounts

• Employee

• Entities

• User-Defined Dimensions

• Attribute Dimensions

• UDA

Data Load Columns are columns used for loading data into dimensions.

Chapter 21
Datastore Tables and Data Load Columns

21-7



21.7.1 Accounts
Table 21-2 describes the columns of the Accounts table. See Data Load Columns for
descriptions of additional columns that are displayed for loading Account dimension data if the
application has been set up for data load in Planning.

Table 21-2    Accounts

Column Description

Account Takes the name of the account member you are loading. If this member
exists, its properties are modified; otherwise, the record is added. This field is
required.

The value for this field must meet these requirements:

• Unique
• Alphanumeric
• Not more than 80 characters
• Member name cannot contain tabs, double quotation marks ("), or

backslash (\) characters.
• Member name cannot start with any of these characters: ' \ < | , = @ _ +

- { } ( ) .
• Value must not be an Essbase reserved word such as Children,

Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more information
about reserved words in Essbase, see the Hyperion Essbase - System 9
Database Administrator's Guide or Essbase online help.

This value is passed as a string.

Parent Takes the name of the parent of the member you are loading. It is used to
create the hierarchy in the dimension.

When you load data for a member and specify a different parent member that
from the parent member in the application, the member is updated with the
parent value that you specify.

Example: If Member 1 has a parent value of Member A in your Planning
application and you load Member 1 with a parent value of Member B, your
application is updated, and Member B becomes the parent of Member 1.
Member 1 and its descendants are moved from Member A to Member B. If
the column is left blank, it is ignored during the load.

The record is not loaded if one of the following situations occurs:

• The specified parent is a descendant of the member that you are
loading.

• The specified parent does not exist in the Planning application.

Chapter 21
Datastore Tables and Data Load Columns

21-8



Table 21-2    (Cont.) Accounts

Column Description

Default Alias Takes an alternate name for the member being loaded. If you are modifying
properties and do not specify a value, the alias is not changed in the
Planning application. If you specify <NONE> or <none> as the value, the
alias in the Planning application is deleted.

The value for this column must meet the following requirements for a
successful load:

• Unique
• Alphanumeric
• Not more than 80 characters
• Member name cannot contain tabs, double quotation marks ("), or

backslash (\) characters.
• Member name cannot start with any of these characters: ' \ < | , = @ _ +

- { } ( ) .
• Value must not be an Essbase reserved word such as Children,

Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more information
about reserved words in Essbase, see the Hyperion Essbase - System 9
Database Administrator's Guide or Essbase online help.

This value is passed as a string; default value: a null string.

Additional Alias Can take an alternate name for the member being loaded. There will be as
many Alias columns as there are Alias tables defined in Planning. The value
for multiple alias columns must conform to the same requirements as those
listed for the default alias column.

Data Storage Takes the storage attribute for the member being loaded.

Valid values:

• Store
• Dynamic Calc
• Dynamic Calc and Store
• Shared
• Never Share (default)
• Label Only
This value is passed as a string.

Two Pass Calculation Boolean value to indicate whether the member being loaded has the Two-
Pass Calculation associated attribute. Valid values: 0 for False (default), or
any other number for True. Values are valid only when the Data Storage
value is Dynamic Calc or Dynamic Calc and Store; otherwise, the record is
rejected.

Account Type Takes the account type of the member that is being loaded. Valid values:
Revenue, Expense, Asset, Liability, Equity, and Saved Assumption. The
default is taken from the parent of the member that is being loaded, or it is
Expense if the member is being added to the root dimension.

Chapter 21
Datastore Tables and Data Load Columns

21-9



Table 21-2    (Cont.) Accounts

Column Description

Time Balance Takes a type for members with an account type of Saved Assumption only or
when the record is rejected. Valid values: Flow, First, Balance, Average, and
two averaging options, Actual_365 and Actual_Actual. (Actual_365 assumes
the actual number of days in each month and 28 days in February;
Actual_Actual accounts for 29 days in February during leap years.)

The default is taken from the parent of the member being loaded or is Flow if
the member is being added to the root dimension. This value is passed as a
string. Default values of Time Balance for Account types:

• Revenue-Flow
• Expense-Flow
• Asset-Balance
• Liability-Balance
• Equity-Balance
Note: When Time Balance is Flow, records with any valid Skip Values are
loaded, but Skip Value is disabled for all account types.

Skip Value Skip ValueTakes the skip option that is set for the Time Balance property.
When the Time Balance property is set to First, Balance, or Average, these
Skip options are available:

• None-Indicates that zeros and #missing value are considered when the
parent value is calculated

• Missing-Excludes #missing values when calculating parent values
• Zeros-Excludes zero values when calculating parent values
• Missing and Zeros-Excludes #missing and zero values when calculating

parent values
Note: When Time Balance is Flow, records with any valid Skip Values are
loaded, but Skip Value is disabled for all Account types.

Data Type Takes the data storage value. Valid values:

• Currency-Stores and displays the member's data value in the default
currency.

• Non-currency-Stores and displays the member's data value as a numeric
value.

• Percentage-Stores data values as a numeric value and displays the
member's data value as a percentage.

• Smart list / enumeration-Stores data values as a numeric value and
displays the member's data value as a string.

• Date-Stores and displays the member's data value in the format mm/dd/
yyyy or dd/ mm/yyyy

• Text-Stores and displays the member's data value as text.
• Unspecified-Stores and displays the member's data value as

"unspecified."
The default value is taken from the parent of the member being loaded or is
Currency if the member is being added to the root dimension.

Chapter 21
Datastore Tables and Data Load Columns

21-10



Table 21-2    (Cont.) Accounts

Column Description

Exchange Rate Type Takes the exchange rate. This column is dependent on the value specified for
the Data Type column. Valid values:

• Average, Ending, and Historical when Data Type is equal to Currency
• None when Data Type is equal to Non-currency or Percentage

This value is passed as a string. The default value is taken from the
parent of the member that is being loaded or, if the member is being
added to the root dimension, is based on the account type and takes the
following values:

• Revenue-Average
• Expense-Average
• Asset-Ending
• Liability-Ending
• Equity-Ending
• Saved Assumption-None

Use 445 Indicates the distribution selected in the Planning application. If the
application has no distribution, this column is not displayed.

Valid values are 0 and 1 (or any number other than 0); default value: 1.

Variance Reporting Takes a value for account members with an account type of Saved
Assumption or if the record is rejected. Valid values:

• Expense-designates the saved assumption as an expense. The actual
amount is subtracted from the budgeted amount to determine the
variance.

• Non-Expense-designates the saved assumption as revenue. The
budgeted amount is subtracted from the actual amount to determine the
variance.

This value is passed as a string. The default value is taken from the parent of
the member being loaded or, if the member is being added to the root
dimension, is based on the value of the count type.

For Account types, the value is set to the following:

• Revenue-Non-Expense
• Expense-Expense
• Asset-Non-Expense
• Liability-Non-Expense
• Equity-Non-Expense

Chapter 21
Datastore Tables and Data Load Columns

21-11



Table 21-2    (Cont.) Accounts

Column Description

Source Plan Type Takes a plan type name for the plan type assigned to the member being
loaded. Valid values are any plan types specified in Planning application.

This value is passed as a string. The default is taken from the parent of the
member being loaded. If the source plan of the parent is not valid for the
member, the specified plan type is not selected for the member in the
application, and the first plan type that the member is used in is used. If the
member is being loaded to the root dimension, the first plan type the member
is used in is used.

When you update or save the parent of a member, the system verifies if the
Source Plan Type associated with the member being loaded is valid for the
new parent. If the member's source plan type is not a valid plan type of its
parent member, you receive the error message, "The source plan type is not
in the subset of valid plan types."

If the source plan type of a member is valid for the parent member but not for
the member itself, the member is saved but its source plan type is set to the
first valid plan type (in the order Plan 1, Plan 2, Plan 3, Wrkforce, Capex).

Note: If a Source Plan Type is specified in the adapter but is not valid for the
parent, the record is rejected.

Plan Type (Plan1) Boolean value that indicates if the member being loaded is used in Plan1.
Valid values are 0 for False and any other number for True. The default value
is True. The name of the column varies depending on the name of the plan
type in the Planning application.

Aggregation (Plan1) Takes the aggregation option for the member being loaded as related to
Plan1. This column is available only ifthe Planning application is valid for this
plan type. The name of the column varies depending on the name of the plan
type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Plan Type (Plan 2) Boolean value that indicates if the member being loaded is used in Plan2.
Valid values are 0 for False and any other number for True. The default value
is True. The name of the column varies depending on the name of the plan
type in the Planning application.

Aggregation (Plan2) Takes the aggregation option for the member being loaded as related to
Plan2. This column is available only ifthe Planning application is valid for this
plan type. The name of the column varies depending on the name of the plan
type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Chapter 21
Datastore Tables and Data Load Columns

21-12



Table 21-2    (Cont.) Accounts

Column Description

Plan Type (Plan3) Boolean value that indicates if the member being loaded is used in Plan3.
Valid values: 0 for False or any other number for True; default value: True.
The name of the column varies depending on the name of the plan type in
the Planning application.

Aggregation (Plan3) Takes the aggregation option for the member being loaded as related to
Plan3. This column is available only ifthe Planning application is valid for this
plan type. The name of the column varies depending on the name of the plan
type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Plan Type (Wrkforce) For Workforce Planning: The Plan Type (Wrkforce) column is a Boolean
value that indicates if the member being loaded is used in Workforce
Planning. Valid values are 0 for False and any other number for True. The
default is True. The actual name of the column varies, depending on by the
name of the plan type in the Planning application.

Aggregation (Wrkforce) For Workforce Planning: The Aggregation (Wrkforce) column takes the
aggregation option for the member being loaded as related to Workforce
Planning. This column is available only if the Planning application is valid for
this plan type. The name of the column varies, depending on the name of the
plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Plan Type (Capex) For Capital Expense Planning: The Plan Type (Capex) column is a Boolean
value that indicates if the member being loaded is used in Capital Expense
Planning. Valid values are 0 for False and any other number for True. The
default is True. The actual name of the column varies, depending on by the
name of the plan type in the Planning application.

Chapter 21
Datastore Tables and Data Load Columns

21-13



Table 21-2    (Cont.) Accounts

Column Description

Aggregation (Capex) For Capital Expense Planning: Takes the aggregation option for the member
being loaded as related to Capital Expense Planning. This column is
available only if the Planning application is valid for this plan type. The name
of the column varies, depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Custom Attribute Takes the custom attribute member values. The name of the column is
determined by the name of the custom attribute in the Planning application.
The number of custom attribute columns varies depending on the number of
attributes defined for the Account dimension. If you modify properties and do
not specify a value, the custom attribute is not changed in the Planning
application. If you specify <NONE> or <none> as the value, then the custom
attribute in the Planning application is deleted. This value is passed as a
string.

Member Formula Takes the member formula values defined for the dimension member. By
default, there is no member formula associated with a dimension or
dimension member. You cannot load member formulas for dimension
members that are Shared or Label Only.

UDA Specifies a list of user-defined attributes to be updated.Note: You must define
the UDA for the dimension members within Planning or by way of the UDA
target.

Smart Lists Takes the name of a user-defined Smart List defined in the Planning
application. This value is passed as a string. The default for Smart Lists is
<None>. Smart Lists are used in a metadata or dimension load (not a data
load) allowing you to define the association of the Smart List name (not the
values) with a given dimension member. You can have multiple Smart
Listsassociatedwith a dimension but only one Smart Listassociated witha
dimension member.

These predefined Smart Lists are available in a Workforce Planning
application:

• None
• Status
• FT_PT
• HealthPlan
• TaxRegion
• Month
• Performance
• Position
• EmployeeType

Chapter 21
Datastore Tables and Data Load Columns

21-14



Table 21-2    (Cont.) Accounts

Column Description

Description Takes a description for the member that is being loaded. By default, the
Description column is empty.

Note: If you do not enter a value for this column or do not connect the
column, a new member is loaded without a description, and the description of
an existing member is unchanged. If you enter <NONE> as the value for this
column, any existing description for the member is deleted and is not loaded
with the member.

Operation Takes any of these values:

• Update (default)-Adds, updates, or moves the member being loaded.
• Delete Level 0-Deletes the member being loaded if it has no children.
• Delete Idescendants-Deletes the member being loaded and all of its

descendants.
• Delete Descendants-Deletes the descendants of the member being

loaded, but does not delete the member itself.
Note: If you delete a member, that member, its data, and any associated
planning units are permanently removed and cannot be restored.

21.7.2 Employee
Table 21-3 describes the columns of the Employee table. See Data Load Columns for
descriptions of additional columns that are displayed for loading Employee dimension data if
the application has been set up for data load in Planning.

Table 21-3    Employee

Column Description

Employee Takes the name of the account member you are loading. If this member
exists, its properties are modified; otherwise, the record is added. This
field is required.

The value for this field must meet these requirements:

• Unique
• Alphanumeric
• Not more than 80 characters
• Member name cannot contain tabs, double quotation marks ("), or

backslash (\) characters.
• Member name cannot start with any of these characters: ' \ < | , =

@ _ + - { } ( ) .
• Value must not be an Essbase reserved word such as Children,

Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase
online help.

This value is passed as a string.

Chapter 21
Datastore Tables and Data Load Columns

21-15



Table 21-3    (Cont.) Employee

Column Description

Parent Takes the name of the parent of the member you are loading. It is used
to create the hierarchy in the dimension.

When you load data for a member and specify a different parent
member that from the parent member in the application, the member is
updated with the parent value that you specify.

Example: If Member 1 has a parent value of Member A in your
Planning application and you load Member 1 with a parent value of
Member B, your application is updated, and Member B becomes the
parent of Member 1. Member 1 and its descendants are moved from
Member A to Member B. If the column is left blank, it is ignored during
the load.

The record is not loaded if one of the following situations occurs:

• The specified parent is a descendant of the member that you are
loading.

• The specified parent does not exist in the Planning application.

Default Alias Takes an alternate name for the member being loaded. If you are
modifying properties and do not specify a value, the alias is not
changed in the Planning application. If you specify <NONE> or <none>
as the value, the alias in the Planning application is deleted.

The value for this column must meet the following requirements for a
successful load:

• Unique
• Alphanumeric
• Not more than 80 characters
• Member name cannot contain tabs, double quotation marks ("), or

backslash (\) characters.
• Member name cannot start with any of these characters: ' \ < | , =

@ _ + - { } ( ) .
• Value must not be an Essbase reserved word such as Children,

Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase
online help.

This value is passed as a string; default value: a null string.

Additional Alias Can take an alternate name for the member being loaded. There will
be as many Alias columns as there are Alias tables defined in
Planning. The value for multiple alias columns must conform to the
same requirements as those listed for the default alias column.

Data Storage Takes the storage attribute for the member being loaded.

Valid values:

• Store
• Dynamic Calc
• Dynamic Calc and Store
• Shared
• Never Share (default)
• Label Only
This value is passed as a string.

Valid for Consolidation The column is ignored.

Chapter 21
Datastore Tables and Data Load Columns

21-16



Table 21-3    (Cont.) Employee

Column Description

Two Pass Calculation Boolean value to indicate whether the member being loaded has the
Two-Pass Calculation associated attribute. Valid values: 0 for False
(default), or any other number for True. Values are valid only when the
Data Storage value is Dynamic Calc or Dynamic Calc and Store;
otherwise, the record is rejected.

Data Type Takes the data storage value. Valid values:

• Currency-Stores and displays the member's data value in the
default currency.

• Non-currency-Stores and displays the member's data value as a
numeric value.

• Percentage-Stores data values as a numeric value and displays
the member's data value as a percentage.

• Smart list / enumeration-Stores data values as a numeric value
and displays the member's data value as a string.

• Date-Stores and displays the member's data value in the format
mm/dd/yyyy or dd/ mm/yyyy

• Text-Stores and displays the member's data value as text.
• Unspecified-Stores and displays the member's data value as

"unspecified."
The default value is taken from the parent of the member being loaded
or is Currency if the member is being added to the root dimension.

Custom Attribute Takes the custom attribute member values. The name of the column is
determined by the name of the custom attribute in the Planning
application. The number of custom attribute columns varies depending
on the number of attributes defined for the Employee dimension. If you
modify properties and do not specify a value, the custom attribute is not
changed in the Planning application. If you specify <NONE> or <none>
as the value, then the custom attribute in the Planning application is
deleted. This value is passed as a string.

Aggregation (Plan1) Takes the aggregation option for the member being loaded as related
to Plan1. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Chapter 21
Datastore Tables and Data Load Columns

21-17



Table 21-3    (Cont.) Employee

Column Description

Aggregation (Plan2) Takes the aggregation option for the member being loaded as related
to Plan2. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Aggregation (Plan3) Takes the aggregation option for the member being loaded as related
to Plan3. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Aggregation (Wrkforce) For Workforce Planning: The Aggregation (Wrkforce) column takes the
aggregation option for the member being loaded as related to
Workforce Planning. This column is available only if the Planning
application is valid for this plan type. The name of the column varies,
depending on the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Aggregation (Capex) For Capital Expense Planning: Takes the aggregation option for the
member being loaded as related to Capital Expense Planning. This
column is available only if the Planning application is valid for this plan
type. The name of the column varies, depending on the name of the
plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Chapter 21
Datastore Tables and Data Load Columns

21-18



Table 21-3    (Cont.) Employee

Column Description

Member Formula Takes the member formula values defined for the dimension member.
By default, there is no member formula associated with a dimension or
dimension member. You cannot load member formulas for dimension
members that are Shared or Label Only.

UDA Specifies a list of user-defined attributes to be updated.Note: You must
define the UDA for the dimension members within Planning or by way
of the UDA target.

Smart Lists Takes the name of a user-defined Smart List defined in the Planning
application. This value is passed as a string. The default for Smart Lists
is <None>. Smart Lists are used in a metadata or dimension load (not
a data load) allowing you to define the association of the Smart List
name (not the values) with a given dimension member. You can have
multiple Smart Lists associatedwith a dimension but only one Smart
List associated with a dimension member.

These predefined Smart Lists are available in a Workforce Planning
application:

• None
• Status
• FT_PT
• HealthPlan
• TaxRegion
• Month
• Performance
• Position
• EmployeeType

Description Takes a description for the member that is being loaded; empty by
default.

Note: If you do not enter a value for this column or do not connect the
column, a new member is loaded without a description, and the
description of an existing member is unchanged. If you enter <NONE>
as the value for this column, any existing description for the member is
deleted and is not loaded with the member.

Operation Takes any of these values:

• Update (default)-Adds, updates, or moves the member being
loaded.

• Delete Level 0-Deletes the member being loaded if it has no
children.

• Delete Idescendants-Deletes the member being loaded and all of
its descendants.

• Delete Descendants-Deletes the descendants of the member
being loaded, but does not delete the member itself.

Note: If you delete a member, that member, its data, and any
associated planning units are permanently removed and cannot be
restored.

21.7.3 Entities
Table 21-4 describes the columns of the Entities table. See Data Load Columns for
descriptions of additional columns that are displayed for loading Entities data if the application
has been set up for data load in Planning.

Chapter 21
Datastore Tables and Data Load Columns

21-19



Table 21-4    Entities

Column Description

Entity Takes the name of the member you are loading. If this member exists,
its properties are modified. If the member does not exist, then the
record is added. This column is required.

The value for this column must meet the following requirements for a
successful load:

The value for this field must meet these requirements:

• Unique
• Alphanumeric
• Not more than 80 characters
• Member name cannot contain tabs, double quotation marks ("), or

backslash (\) characters.
• Member name cannot start with any of these characters: ' \ < | , =

@ _ + - { } ( ) .
• Value must not be an Essbase reserved word such as Children,

Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase
online help.

This value is passed as a string.

Parent Takes the name of the parent of the member you are loading. It is used
to create the hierarchy in the dimension.

When you update a member of an application using the Load method
and specify a parent member that is different than the parent member
in the application, the member is updated with the new parent value
specified in your flow diagram.

For example, if Member 1 has a parent value of Member A in your
Planning application and you load Member 1 with a parent value of
Member B, the system updates your application and makes Member B
the parent of Member 1. Member 1 and its descendants are moved
from Member A to Member B. If the column is left blank, it is ignored
during the load.

The record is not loaded if one of the following situations occurs:

• The specified parent is a descendant of the member that you are
loading.

• The specified parent does not exist in the Planning application.

Chapter 21
Datastore Tables and Data Load Columns

21-20



Table 21-4    (Cont.) Entities

Column Description

Default Alias Takes an alternate name for the member being loaded. If you are
modifying properties and do not specify a value, the alias is not
changed in the Planning application. If you specify <NONE> or <none>
as the value, the alias in the Planning application is deleted.

The value for this column must meet the following requirements for a
successful load:

• Unique
• Alphanumeric
• Not more than 80 characters
• Member name cannot contain tabs, double quotation marks ("), or

backslash (\) characters.
• Member name cannot start with any of these characters: ' \ < | , =

@ _ + - { } ( ) .
• Value must not be an Essbase reserved word such as Children,

Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase
online help.

This value is passed as a string; default value: a null string.

Additional Alias Additional Alias columns can take alternate names for the member
being loaded. There are as many Alias columns as there are Alias
tables defined in Planning. The value for multiple alias columns must
conform to the same requirements as those listed for the default alias
column.

Data Storage Takes the storage attribute for the member being loaded.

Valid values:

• Store
• Dynamic Calc
• Dynamic Calc and Store
• Shared
• Never Share (default)
• Label Only
This value is passed as a string.

Two Pass Calculation Boolean value to indicate if the member being loaded has the Two-
Pass Calculation attribute associated in the Planningapplication. Valid
values: 0 for False (default), or any other number for True. Values are
valid only when the Data Storage value is Dynamic Calc or Dynamic
Calc and Store; otherwise, the record is rejected.

Chapter 21
Datastore Tables and Data Load Columns

21-21



Table 21-4    (Cont.) Entities

Column Description

Data Type Takes the data storage value. Valid values:

• Currency-Stores and displays the member's data value in the
default currency.

• Non-currency-Stores and displays the member's data value as a
numeric value.

• Percentage-Stores data values as a numeric value and displays
the member's data value as a percentage.

• Smart list / enumeration-Stores data values as a numeric value
and displays the member's data value as a string.

• Date-Stores and displays the member's data value in the format
mm/dd/yyyy or dd/ mm/yyyy

• Text-Stores and displays the member's data value as text.
• Unspecified-Stores and displays the member's data value as

"unspecified."
The default value is taken from the parent of the member being loaded
or is Currency if the member is being added to the root dimension.

Base Currency Takes the base currency for the entity being loaded. It takes the code of
the currency as defined in your Planning application. The default value
is USD. This column is displayed only when the application is defined
to be multi-currency.

Plan Type (Plan1) Boolean value that indicates if the member being loaded is used in
Plan1. Valid values: 0 for False or any other number for True (default).
The name of the column varies depending on the name of the plan
type in the Planning application.

Aggregation (Plan1) Takes the aggregation option for the member being loaded as related
to Plan1. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Plan Type (Plan2) Boolean value that indicates if the member being loaded is used in
Plan2. Valid values are 0 for False and any other number for True. The
default value is True. The name of the column varies depending on the
name of the plan type in the Planning application.

Chapter 21
Datastore Tables and Data Load Columns

21-22



Table 21-4    (Cont.) Entities

Column Description

Aggregation (Plan2) Takes the aggregation option for the member being loaded as related
to Plan2. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Plan Type (Plan 3) Boolean value that indicates if the member being loaded is used in
Plan3. Valid values: 0 for False or any other number for True; default
value: True. The name of the column varies depending on the name of
the plan type in the Planning application.

Aggregation (Plan3) Takes the aggregation option for the member being loaded as related
to Plan3. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Aggregation (Wrkforce) For Workforce Planning: The Aggregation (Wrkforce) column takes the
aggregation option for the member being loaded as related to
Workforce Planning. This column is available only if the Planning
application is valid for this plan type. The name of the column varies,
depending on the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Chapter 21
Datastore Tables and Data Load Columns

21-23



Table 21-4    (Cont.) Entities

Column Description

Aggregation (Capex) For Capital Expense Planning: Takes the aggregation option for the
member being loaded as related to Capital Expense Planning. This
column is available only if the Planning application is valid for this plan
type. The name of the column varies, depending on the name of the
plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Custom Attribute Takes the custom attribute member values. The name of the column is
determined by the name of the custom attribute in the Planning
application. The number of custom attribute columns varies depending
on the number of attributes defined for the Entity dimension. If you
modify properties and do not specify a value, the custom attribute is not
changed in the Planning application. If you specify <NONE> or <none>
as the value, then the custom attribute in the Planning application is
deleted. This value is passed as a string.

Member Formula Takes the member formula values defined for the dimension member.
By default, there is no member formula associated with a dimension or
dimension member. You cannot load member formulas for dimension
members that are Shared or Label Only.

UDA Specifies a list of user-defined attributes to be updated.Note: You must
define the UDA for the dimension members within Planning or by way
of the UDA target.

Smart Lists Takes the name of a user-defined Smart List defined in the Planning
application. This value is passed as a string. The default for Smart Lists
is <None>. Smart Lists are used in a metadata or dimension load (not
a data load) allowing you to define the association of the Smart List
name (not the values) with a given dimension member. You can have
multiple Smart Lists associatedwith a dimension but only one Smart
List associated with a dimension member.

These predefined Smart Lists are available in a Workforce Planning
application:

• None
• Status
• FT_PT
• HealthPlan
• TaxRegion
• Month
• Performance
• Position
• EmployeeType

Chapter 21
Datastore Tables and Data Load Columns

21-24



Table 21-4    (Cont.) Entities

Column Description

Description Takes a description for the member that is being loaded; empty by
default.

Note: If you do not enter a value for this column or do not connect the
column, a new member is loaded without a description, and the
description of an existing member is unchanged. If you enter <NONE>
as the value for this column, any existing description for the member is
deleted and is not loaded with the member.

Operation Takes any of these values:

• Update (default)-Adds, updates, or moves the member being
loaded.

• Delete Level 0-Deletes the member being loaded if it has no
children.

• Delete Idescendants-Deletes the member being loaded and all of
its descendants.

• Delete Descendants-Deletes the descendants of the member
being loaded, but does not delete the member itself.

Note: If you delete a member, that member, its data, and any
associated planning units are permanently removed and cannot be
restored.

21.7.4 User-Defined Dimensions
Table 21-5 describes the columns of the User-Defined Dimensions table.

Table 21-5    User-Defined Dimensions

Column Description

Entity Takes the name of the member you are loading. If this member exists,
its properties are modified. If the member does not exist, then the
record is added. This column is required.

The value for this column must meet the following requirements for a
successful load:

The value for this field must meet these requirements:

• Unique
• Alphanumeric
• Not more than 80 characters
• Member name cannot contain tabs, double quotation marks ("), or

backslash (\) characters.
• Member name cannot start with any of these characters: ' \ < | , =

@ _ + - { } ( ) .
• Value must not be an Essbase reserved word such as Children,

Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase
online help.

This value is passed as a string.

Chapter 21
Datastore Tables and Data Load Columns

21-25



Table 21-5    (Cont.) User-Defined Dimensions

Column Description

Parent Takes the name of the parent of the member you are loading. It is used
to create the hierarchy in the dimension.

When you update a member of an application using the Load method
and specify a parent member that is different than the parent member
in the application, the member is updated with the new parent value
specified in your flow diagram.

For example, if Member 1 has a parent value of Member A in your
Planning application and you load Member 1 with a parent value of
Member B, the system updates your application and makes Member B
the parent of Member 1. Member 1 and its descendants are moved
from Member A to Member B. If the column is left blank, it is ignored
during the load.

The record is not loaded if one of the following situations occurs:

• The specified parent is a descendant of the member that you are
loading.

• The specified parent does not exist in the Planning application.

Default Alias Takes an alternate name for the member being loaded. If you are
modifying properties and do not specify a value, the alias is not
changed in the Planning application. If you specify <NONE> or <none>
as the value, the alias in the Planning application is deleted.

The value for this column must meet the following requirements for a
successful load:

• Unique
• Alphanumeric
• Not more than 80 characters
• Member name cannot contain tabs, double quotation marks ("), or

backslash (\) characters.
• Member name cannot start with any of these characters: ' \ < | , =

@ _ + - { } ( ) .
• Value must not be an Essbase reserved word such as Children,

Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase
online help.

This value is passed as a string; default value: a null string.

Additional Alias Additional Alias columns can take alternate names for the member
being loaded. There are as many Alias columns as there are Alias
tables defined in Planning. The value for multiple alias columns must
conform to the same requirements as those listed for the default alias
column.

Data Storage Takes the storage attribute for the member being loaded.

Valid values:

• Store
• Dynamic Calc
• Dynamic Calc and Store
• Shared
• Never Share (default)
• Label Only
This value is passed as a string.

Chapter 21
Datastore Tables and Data Load Columns

21-26



Table 21-5    (Cont.) User-Defined Dimensions

Column Description

Two Pass Calculation Boolean value to indicate if the member being loaded has the Two-
Pass Calculation attribute associated in the Planningapplication. Valid
values: 0 for False (default), or any other number for True. Values are
valid only when the Data Storage value is Dynamic Calc or Dynamic
Calc and Store; otherwise, the record is rejected.

Data Type Takes the data storage value. Valid values:

• Currency-Stores and displays the member's data value in the
default currency.

• Non-currency-Stores and displays the member's data value as a
numeric value.

• Percentage-Stores data values as a numeric value and displays
the member's data value as a percentage.

• Smart list / enumeration-Stores data values as a numeric value
and displays the member's data value as a string.

• Date-Stores and displays the member's data value in the format
mm/dd/yyyy or dd/ mm/yyyy

• Text-Stores and displays the member's data value as text.
• Unspecified-Stores and displays the member's data value as

"unspecified."
The default value is taken from the parent of the member being loaded
or is Currency if the member is being added to the root dimension.

Aggregation (Plan1) Takes the aggregation option for the member being loaded as related
to Plan1. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Aggregation (Plan2) Takes the aggregation option for the member being loaded as related
to Plan2. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Chapter 21
Datastore Tables and Data Load Columns

21-27



Table 21-5    (Cont.) User-Defined Dimensions

Column Description

Aggregation (Plan3) Takes the aggregation option for the member being loaded as related
to Plan3. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Aggregation (Wrkforce) For Workforce Planning: The Aggregation (Wrkforce) column takes the
aggregation option for the member being loaded as related to
Workforce Planning. This column is available only if the Planning
application is valid for this plan type. The name of the column varies,
depending on the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Aggregation (Capex) For Capital Expense Planning: Takes the aggregation option for the
member being loaded as related to Capital Expense Planning. This
column is available only if the Planning application is valid for this plan
type. The name of the column varies, depending on the name of the
plan type in the Planning application.

This value is passed as a string. Valid values:

• + (default)
•
• *
• /
• %
• ~
• Never

Custom Attribute Takes the custom attribute member values. The name of the column is
determined by the name of the custom attribute in the Planning
application. The number of custom attribute columns varies depending
on the number of attributes defined for the Entity dimension. If you
modify properties and do not specify a value, the custom attribute is not
changed in the Planning application. If you specify <NONE> or <none>
as the value, then the custom attribute in the Planning application is
deleted. This value is passed as a string.

Member Formula Takes the member formula values defined for the dimension member.
By default, there is no member formula associated with a dimension or
dimension member. You cannot load member formulas for dimension
members that are Shared or Label Only.

Chapter 21
Datastore Tables and Data Load Columns

21-28



Table 21-5    (Cont.) User-Defined Dimensions

Column Description

UDA Specifies a list of user-defined attributes to be updated.Note: You must
define the UDA for the dimension members within Planning or by way
of the UDA target.

Smart Lists Takes the name of a user-defined Smart List defined in the Planning
application. This value is passed as a string. The default for Smart Lists
is <None>. Smart Lists are used in a metadata or dimension load (not
a data load) allowing you to define the association of the Smart List
name (not the values) with a given dimension member. You can have
multiple Smart Lists associatedwith a dimension but only one Smart
List associated with a dimension member.

These predefined Smart Lists are available in a Workforce Planning
application:

• None
• Status
• FT_PT
• HealthPlan
• TaxRegion
• Month
• Performance
• Position
• EmployeeType

Description Takes a description for the member that is being loaded; empty by
default.

Note: If you do not enter a value for this column or do not connect the
column, a new member is loaded without a description, and the
description of an existing member is unchanged. If you enter <NONE>
as the value for this column, any existing description for the member is
deleted and is not loaded with the member.

Operation Takes any of these values:

• Update (default)-Adds, updates, or moves the member being
loaded.

• Delete Level 0-Deletes the member being loaded if it has no
children.

• Delete Idescendants-Deletes the member being loaded and all of
its descendants.

• Delete Descendants-Deletes the descendants of the member
being loaded, but does not delete the member itself.

Note: If you delete a member, that member, its data, and any
associated planning units are permanently removed and cannot be
restored.

21.7.5 Attribute Dimensions
Table 21-6 describes the columns of the Attribute Dimensions table.

Chapter 21
Datastore Tables and Data Load Columns

21-29



Note:

The Parent, Default Alias, and Additional Alias columns are available only in Planning
9.3.1 and later.

Table 21-6    Attribute Dimensions

Column Description

Entity Takes the name of the member you are loading. If this member exists,
its properties are modified. If the member does not exist, then the
record is added. This column is required.

The value for this column must meet the following requirements for a
successful load:

The value for this field must meet these requirements:

• Unique
• Alphanumeric
• Not more than 80 characters
• Member name cannot contain tabs, double quotation marks ("), or

backslash (\) characters.
• Member name cannot start with any of these characters: ' \ < | , =

@ _ + - { } ( ) .
• Value must not be an Essbase reserved word such as Children,

Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase
online help.

This value is passed as a string.

Parent Takes the name of the parent of the member you are loading. It is used
to create the hierarchy in the dimension.

When you update a member of an application using the Load method
and specify a parent member that is different than the parent member
in the application, the member is updated with the new parent value
specified in your flow diagram.

For example, if Member 1 has a parent value of Member A in your
Planning application and you load Member 1 with a parent value of
Member B, the system updates your application and makes Member B
the parent of Member 1. Member 1 and its descendants are moved
from Member A to Member B. If the column is left blank, it is ignored
during the load.

The record is not loaded if one of the following situations occurs:

• The specified parent is a descendant of the member that you are
loading.

• The specified parent does not exist in the Planning application.

Chapter 21
Datastore Tables and Data Load Columns

21-30



Table 21-6    (Cont.) Attribute Dimensions

Column Description

Default Alias Takes an alternate name for the member being loaded. If you are
modifying properties and do not specify a value, the alias is not
changed in the Planning application. If you specify <NONE> or <none>
as the value, the alias in the Planning application is deleted.

The value for this column must meet the following requirements for a
successful load:

• Unique
• Alphanumeric
• Not more than 80 characters
• Member name cannot contain tabs, double quotation marks ("), or

backslash (\) characters.
• Member name cannot start with any of these characters: ' \ < | , =

@ _ + - { } ( ) .
• Value must not be an Essbase reserved word such as Children,

Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase
online help.

This value is passed as a string; default value: a null string.

Additional Alias Additional Alias columns can take alternate names for the member
being loaded. There are as many Alias columns as there are Alias
tables defined in Planning. The value for multiple alias columns must
conform to the same requirements as those listed for the default alias
column.

Operation Takes any of these values:

• Update (default)-Adds, updates, or moves the member being
loaded.

• Delete Level 0-Deletes the member being loaded if it has no
children.

• Delete Idescendants-Deletes the member being loaded and all of
its descendants.

• Delete Descendants-Deletes the descendants of the member
being loaded, but does not delete the member itself.

Note: If you delete a member, that member, its data, and any
associated planning units are permanently removed and cannot be
restored.

21.7.6 UDA
Table 21-7 describes the columns of the UDA table.

Table 21-7    UDA

Column Description

Dimension Takes the dimension name for the UDA. You can associate UDAs only
with dimensions that exist in the Planning application. If the UDA exists,
its properties are modified; otherwise, the record is added. This column
is required.

UDA Takes the values of the UDA that you are loading.

Chapter 21
Datastore Tables and Data Load Columns

21-31



Table 21-7    (Cont.) UDA

Column Description

Dimension Takes the values of the UDA you are loading. The value for this column
must meet the following requirements for a successful load:

The value for this column must meet the following requirements for a
successful load:

• Unique
• Alphanumeric
• Not more than 80 characters
• Member name cannot contain tabs, double quotation marks ("), or

backslash (\) characters.
• Member name cannot start with any of these characters: ' \ < | , =

@ _ + - { } ( ) .
• Value must not be an Essbase reserved word such as Children,

Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase
online help.

This value is passed as a string; default value: a null string.

Operation Takes any of these values:

• Update (default)-Adds, updates, or moves the member being
loaded.

• Delete Level 0-Deletes the member being loaded if it has no
children.

• Delete Idescendants-Deletes the member being loaded and all of
its descendants.

• Delete Descendants-Deletes the descendants of the member
being loaded, but does not delete the member itself.

Note: If you delete a member, that member, its data, and any
associated planning units are permanently removed and cannot be
restored.

21.7.7 Data Load Columns
These columns for loading data into Account, Employee, Entities, and user-defined dimensions
are displayed if the application has been set up for data load in Planning.

Table 21-8    Data Load Columns

Columns Description

Data Load Cube Name Takes the name of the plan type to which data is being loaded. The value is
passed as a string. Valid values are any plan types specified in the Planning
application. For example:

• Plan1
• Plan2
• Plan3
• Wkforce
• Capex

Chapter 21
Datastore Tables and Data Load Columns

21-32



Table 21-8    (Cont.) Data Load Columns

Columns Description

Driver Member Takes the name of the driver member that is selected when the Planning,
Oracle's Hyperion® Workforce Planning, or Oracle's Hyperion® Capital
Expense Planning application is set up for loading data. You can have one
driver dimension per load. The Driver Dimension and Driver Dimension
Members are defined in the Data Load Administration page in Planning. The
driver members are the members into which the data is loaded. The number of
driver member columns depends on the number of driver members you select
in Oracle's Hyperion® Planning - System 9. The value is passed as a string
representing a numeric value or, if a Smart List is bound to the member
represented on this column, a Smart List value.

Note: The Smart List field on this load method does not affect this column.

Point-of-View Takes the names of all the other dimensions that are required to determine the
intersection to load the data. The value is passed as a string. The data load
automatically performs cross-product record creations based on dimension
parameters defined in the POV. For example, an employee's Smart List
attribute values that are constant over time such as full time status for all
twelve months need only be supplied once in the data feed and the load file
will create and load that data record for each relevant cell intersection.

Column Description

Data Load Cube Name Takes the name of the plan type to which data is being loaded. The value is
passed as a string. Valid values are any plan types specified in the Planning
application. For example:

• Plan1
• Plan2
• Plan3
• Wkforce
• Capex

Driver Member Takes the name of the driver member that is selected when the Planning,
Oracle's Hyperion® Workforce Planning, or Oracle's Hyperion® Capital
Expense Planning application is set up for loading data. You can have one
driver dimension per load. The Driver Dimension and Driver Dimension
Members are defined in the Data Load Administration page in Planning. The
driver members are the members into which the data is loaded. The number of
driver member columns depends on the number of driver members you select
in Oracle's Hyperion® Planning - System 9. The value is passed as a string
representing a numeric value or, if a Smart List is bound to the member
represented on this column, a Smart List value.

Note: The Smart List field on this load method does not affect this column.

Point-of-View Takes the names of all the other dimensions that are required to determine the
intersection to load the data. The value is passed as a string. The data load
automatically performs cross-product record creations based on dimension
parameters defined in the POV. For example, an employee's Smart List
attribute values that are constant over time such as full time status for all
twelve months need only be supplied once in the data feed and the load file
will create and load that data record for each relevant cell intersection.

Chapter 21
Datastore Tables and Data Load Columns

21-33



22
Oracle Hyperion Essbase

It is important to understand how to work with Oracle Hyperion Essbase in Oracle Data
Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up Hyperion Essbase Adapter

• Setting up the Topology

• Creating and Reverse-Engineering an Essbase Model

• Designing a Mapping

22.1 Introduction
Oracle Data Integrator Adapter for Oracle's Hyperion Essbase enables you to connect and
integrate Essbase with virtually any source or target using Oracle Data Integrator. The adapter
provides a set of Oracle Data Integrator Knowledge Modules (KMs) for loading and extracting
metadata and data and calculating data in Essbase applications.

22.1.1 Integration Process
You can use Oracle Data Integrator Adapter for Essbase to perform these data integration
tasks on an Essbase application:

• Load metadata and data

• Extract metadata and data

Using the adapter to load or extract metadata or data involves the following tasks:

• Setting up an environment: defining data servers and schemas.

See Setting up the Topology.

• Reverse-engineering an Essbase application using the Reverse-engineering Knowledge
Module (RKM)

See Creating and Reverse-Engineering an Essbase Model.

• Extracting metadata and data using Load Knowledge Modules (LKM).

See Designing a Mapping

• Integrating the metadata and data into the Essbase application using the Integration
Knowledge Modules (IKM).

See Designing a Mapping

22-1



22.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 22-1 for handling
Hyperion Essbase data. These KMs use Hyperion Essbase specific features. It is also possible
to use the generic SQL KMs with the Hyperion Essbase database.

Table 22-1    Hyperion Essbase Knowledge Modules

Knowledge Module Description

RKM Hyperion Essbase Reverse-engineers Essbase applications and creates data models to use
as targets or sources in Oracle Data Integrator mappings

IKM SQL to Hyperion Essbase (DATA) Integrates data into Essbase applications.

IKM SQL to Hyperion Essbase (METADATA) Integrates metadata into Essbase applications

LKM Hyperion Essbase DATA to SQL Loads data from an Essbase application to any SQL compliant database
used as a staging area.

LKM Hyperion Essbase METADATA to SQL Loads metadata from an Essbase application to any SQL compliant
database used as a staging area.

22.2 Installation and Configuration
Make sure you have read the information in this section before you start using the Oracle Data
Integrator Adapter for Essbase:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

22.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

22.2.2 Technology Specific Requirements
There are no technology-specifc requirements for using the Oracle Data Integrator Adapter for
Essbase.

22.2.3 Connectivity Requirements
There are no connectivity-specific requirements for using the Oracle Data Integrator Adapter
for Essbase.

Chapter 22
Installation and Configuration

22-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


22.3 Setting up Hyperion Essbase Adapter
The following sections explain how to set up Hyperion Essbase Adapter for ODI Studio and
ODI standalone agent.

22.3.1 Setting up Adapter for ODI Studio
Exit from ODI Studio, before starting the setup process.

1. In Oracle Hyperion Essbase directory, locate ess_japi.jar and ess_es_server.jar.

2. If ess_japi.jar and ess_es_server.jar are not directly accessible by ODI, copy them to a
location that allows ODI access.

3. Modify <ODI_HOME>/odi/studio/bin/odi.conf file to include ess_japi.jar and
ess_es_server.jar.

For example:

AddJavaLibFile /server/lib/ess_japi.jar

AddJavaLibFile /server/lib/ess_es_server.jar

22.3.2 Setting up Adapter for ODI Standalone Agent
Stop ODI Agent before starting the setup process.

1. In Oracle Hyperion Essbase directory, locate ess_japi.jar and ess_es_server.jar.

2. Copy them into <DOMAIN_HOME>/lib directory.

For more information, see Configuring the Domain for the Standalone Collocated Agent in
Installing and Configuring Oracle Data Integrator.

22.4 Setting up the Topology
Setting up the Topology consists of:

1. Creating an Hyperion Essbase Data Server

2. Creating an Hyperion Essbase Physical Schema

22.4.1 Creating an Hyperion Essbase Data Server
Create a data server for the Hyperion Essbase technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This section
details only the fields required or specific for defining a Hyperion Essbase data server:

1. In the Definition tab:

• Name: Enter a name for the data server definition.

• Server (Data Server): Enter the Essbase server name.

Chapter 22
Setting up Hyperion Essbase Adapter

22-3



Note:

If the Essbase server is running on a port other than the default port (1423), then
provide the Essbase server details in this format, <Essbase Server
hostname>:<port>.

2. Under Connection, enter a user name and password for connecting to the Essbase server.

Note:

The Test button does not work for an Essbase data server connection. This button
works only for relational technologies that have a JDBC Driver.

22.4.2 Creating an Hyperion Essbase Physical Schema
Create a Hyperion Essbase physical schema using the standard procedure, as described in
Creating a Physical Schema of Administering Oracle Data Integrator.

Under Application (Catalog) and Application (Work Catalog), specify an Essbase application
and under Database (Schema) and Database (Work Schema), specify an Essbase database
associated with the application you selected.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema of Administering Oracle Data Integrator and associate it in a
given context.

22.5 Creating and Reverse-Engineering an Essbase Model
This section contains the following topics:

• Create an Essbase Model

• Reverse-engineer an Essbase Model

22.5.1 Create an Essbase Model
Create an Essbase Model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator.

22.5.2 Reverse-engineer an Essbase Model
Reverse-engineering an Essbase application creates an Oracle Data Integrator model that
includes a datastore for each dimension in the application and a datastore for data.

To perform a Customized Reverse-Engineering on Hyperion Essbase with a RKM, use the
usual procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator. This section details only the fields specific to the Hyperion
Essbase technology.

1. In the Reverse tab of the Essbase Model, select the RKM Hyperion Essbase.

2. Set the KM options as indicated in Table 22-2.

Chapter 22
Creating and Reverse-Engineering an Essbase Model

22-4



Table 22-2    RKM Hyperion Essbase Options

Option Possible Values Description

MULTIPLE_DATA_COL
UMNS

• No (Default)
• Yes

If this option is set to No, then the datastore
created for the data extract / load model contains
one column for each of the standard dimensions
and a single data column.If this option is set to
Yes, then the datastore created for the data
extract / load model contains one column for
each of the standard dimensions excluding the
dimension specified by the
DATA_COLUMN_DIMENSION option and as
many data columns as specified by the comma
separated list for the
DATA_COLUMN_MEMBERS option.

DATA_COLUMN_DIME
NSION

Account This option is only applicable if
MULTIPLE_DATA_COLUMNS is set to Yes.

Specify the data column dimension name. For
example, data columns are spread across the
dimension Account or Time, and so on.

DATA_COLUMN_MEM
BERS

Account This option is only applicable if
MULTIPLE_DATA_COLUMNS is set to Yes.

Separate the required data column members
with, (Comma).

For example, if the data column dimension is set
to Account and members are set to Sales,COGS
then the datastore for data extract/load contains
one column for each of the dimension except the
data column dimension and one column for each
of the data column member specified in the
comma separated value. For example. Assuming
that the dimensions in the Essbase application
are Account, Scenario, Product, Market, and
Year and the data column dimension is specified
as Account and Data Column Members as
Sales, COGS, the datastore will have the
following columns:

• Scenario (String)
• Product (String)
• Market (String)Year (String)
• Sales (Numeric)
• COGS (Numeric)

EXTRACT_ATTRIBUTE
_MEMBERS

• No (Default)
• Yes

If this option is set to No, then the datastore
created for the data extract / load model contains
one column for each of the standard dimensions
and a single data column. Attribute dimensions
are not included.

If this option is set to Yes, then the data model
contains these columns.

• One column is created for each of the
standard dimensions

• One or more Data column(s) are created
depending upon the value of the
MULTIPLE_DATA_COLUMN option

• One column is created for each of the
associated attribute dimension

Chapter 22
Creating and Reverse-Engineering an Essbase Model

22-5



The RKM connects to the application (which is determined by the logical schema and the
context) and imports some or all of these datastores, according to the dimensions in the
application.

22.6 Designing a Mapping
After reverse-engineering an Essbase application as a model, you can use the datastores in
this model in these ways:

• Targets of mappings for loading data and metadata into the application

• Sources of mappings for extracting metadata and data from the application.

The KM choice for a mapping determines the abilities and performance of this mapping. The
recommendations in this section help in the selection of the KM for different situations
concerning Hyperion Essbase.

This section contains the following topics:

• Loading Metadata

• Loading Data

• Extracting Data

22.6.1 Loading Metadata
Oracle Data Integrator provides the IKM SQL to Hyperion Essbase (METADATA) for loading
metadata into an Essbase application.

Metadata consists of dimension members. You must load members, or metadata, before you
load data values for the members.

You can load members only to dimensions that exist in Essbase. You must use a separate
mapping for each dimension that you load. You can chain mappings to load metadata into
several dimensions at once.

1. Note:

The metadata datastore can also be modified by adding or deleting columns to
match the dimension build rule that will be used to perform the metadata load.
For example, the default datastore would have columns for ParentName and
ChildName, if the rule is a generational dimension build rule, you can modify the
metadata datastore to match the columns within your generational dimension
build rule. The loadMarkets mapping within the samples is an example of
performing a metadata load using a generational dimension build rule.

Table 22-3 lists the options of the IKM SQL to Hyperion Essbase (METADATA). These options
define how the adapter loads metadata into an Essbase application.

Chapter 22
Designing a Mapping

22-6



Table 22-3    IKM SQL to Hyperion Essbase (METADATA) Options

Option Values Description

RULES_FILE Blank (Default) Specify the rules file for loading or building metadata. If
the rules file is present on the Essbase server, then,
only specify the file name, otherwise, specify the fully
qualified file name with respect to the Oracle Data
Integrator Agent.

RULE_SEPARATOR , (Default) (Optional) Specify a rule separator in the rules file.

These are the valid values:

• Comma
• Tab
• Space
• Custom character; for example, @, #, ^

RESTRUCTURE_DATABAS
E

• KEEP_ALL_D
ATA (Default)

• KEEP_INPUT
_DATA

• KEEP_LEVEL
0_DATA

• DISCARD_AL
L_DATA

Restructure database after loading metadata in the
Essbasecube.

These are the valid values:

• KEEP_ALL_DATA- Keep all the data
• KEEP_INPUT_DATA Keep onlyinput data
• KEEP_LEVEL0_DATA-Keep onlylevel 0 data
• DISCARD_ALL_DATA-Discard alldata
Note: This option is applicable for the Essbase Release
9.3 and later. For the Essbase releases prior to 9.3, this
option is ignored.

PRE_LOAD_MAXL_SCRIP
T

Blank (Default) Enable this option to execute a MAXL script before
loading metadata to the Essbase cube.

Specify a fully qualified path name (without blank
spaces) for the MAXL script file.

Note: To successfully execute this option, the Essbase
client must be installed and configured on the machine
where the Oracle Data Integrator Agent is running.

POST_LOAD_MAXL_SCRI
PT

Blank (Default) Enable this option to execute a MAXL script after
loading metadata to the Essbase cube.

Specify a fully qualified path name (without blank
spaces) for the MAXL script file.

Note: To successfully execute this option, the Essbase
client must be installed and configured on the machine
where the Oracle Data Integrator Agent is running.

ABORT_ON_PRE_MAXL_E
RROR

• No (Default)
• Yes

This option is only applicable if you are enabling the
PRE_LOAD_MAXL_SCRIPT option.

If you set the ABORT_ON_PRE_MAXL_ERROR option
to Yes, then the load process is aborted on encountering
any error while executing the pre-MAXL script.

LOG_ENABLED • No (Default)
• Yes

If this option is set to Yes, during the IKM process,
logging is done to the file specified in the
LOG_FILE_NAME option.

LOG_FILE_NAME <?
=java.lang.System.
getProperty
("java.io.tmpdir")?
>/Extract_<%
=snpRef.getFrom()
%>.log (Default)

Specify a file name to log events of the IKM process.

Chapter 22
Designing a Mapping

22-7



Table 22-3    (Cont.) IKM SQL to Hyperion Essbase (METADATA) Options

Option Values Description

ERROR_LOG_FILENAME <?
=java.lang.System.
getProperty
("java.io.tmpdir")?
>/Extract_<%
=snpRef.getFrom()
%>.log (Default)

Specify a file name to log the error records of the IKM
process.

22.6.2 Loading Data
Oracle Data Integrator provides the IKM SQL to Hyperion Essbase (DATA) for loading data into
an Essbase application.

You can load data into selected dimension members that are already created in Essbase. For a
successful data load, all the standard dimension members are required and they should be
valid members. You must set up the Essbase application before you can load data into it.

You can also create a custom target to match a load rule.

Before loading data, ensure that the members (metadata) exist in the Essbase dimension. The
data load fails for records that have missing members and this information is logged (if logging
is enabled) as an error record and the data load process will continue until the maximum error
threshold is reached.

Note:

The data datastore can also be modified by adding or delete columns to match the
data load rule that will be used to perform the data load.

Table 22-4 lists the options of the IKM SQL to Hyperion Essbase (DATA). These options define
how the adapter loads and consolidates data in an Essbase application.

Table 22-4    IKM SQL to Hyperion Essbase (DATA)

Option Values Description

RULES_FILE Blank (Default) (Optional) Specify a rules file to enhance the
performance of data loading.

Specify a fully qualified file name if the rules file is not
present on the Essbase server.

If the rules file option is not specified, then the API-
based data load is used. However, you cannot specify
the API.

RULE_SEPARATOR , (Default) (Optional) Specify a rule separator in the rules file.

These are the valid values:

• Comma
• Tab
• Space
• Custom character; for example, @, #, ^

Chapter 22
Designing a Mapping

22-8



Table 22-4    (Cont.) IKM SQL to Hyperion Essbase (DATA)

Option Values Description

GROUP_ID Integer When performing multiple data loads in parallel, many
mappings can be set to use the same GROUP_ID. This
GROUP _ID is used to manage parallel loads allowing
the data load to be committed when the final mapping for
the GROUP_ID is complete. For more information on
loading to parallel ASO cubes, refer to the Essbase
Database Administrators guide.

BUFFER_ID 1–1000000 Multiple data load buffers can exist on an aggregate
storage database. To save time, you can load data into
multiple data load buffers at the same time. Although
only one data load commit operation on a database can
be active at any time, you can commit multiple data load
buffers in the same commit operation, which is faster
than committing buffers individually. For more information
on loading to parallel ASO cubes, refer to the Essbase
Database Administrators guide.

BUFFER_SIZE 0-100 When performing an incremental data load, Essbase
uses the aggregate storage cache for sorting

data. You can control how much of the cache a data load
buffer can use by specifying the percentage (between 0
and 100% inclusive). By default, the resource usage of a
data load buffer is set to 100, and the total resource
usage of all data load buffers created on a database
cannot exceed 100. For example, if a buffer of 90 exists,
you cannot create another buffer of a size greater than
10. A value of 0 indicates to Essbase to use a self-
determined, default load

buffer size.

CLEAR_DATABASE • None (Default)
• All
• Upper Blocks
• Non-input Blocks

Enable this option to clear data from the Essbase cube
before loading data into it.

These are the valid values:

• None—Clear database will not happen
• All—Clears all data blocksinput data
• Upper Blocks—Clears all consolidated level blocks
• Non-Input Blocks—Clears blocks containing values

derived from calculations
Note: For ASO applications, the Upper Blocks and Non-
Input Blocks options will not be applicable.

CALCULATION_SCRIP
T

Blank (Default) (Optional) Specify the calculation script that you want to
run after loading data in the Essbase cube.

Provide a fully qualified file name if the calculation script
is not present on the Essbase server.

RUN_CALC_SCRIPT_O
NLY

• No (Default)
• Yes

This option is only applicable if you have specified a
calculation script in the CALCULATION_SCRIPT option.

If you set the RUN_CALC_SCRIPT_ONLY option to Yes,
then only the calculation script is executed without
loading the data into the target Essbase cube.

Chapter 22
Designing a Mapping

22-9



Table 22-4    (Cont.) IKM SQL to Hyperion Essbase (DATA)

Option Values Description

PRE_LOAD_MAXL_SCR
IPT

Blank (Default) Enable this option to execute a MAXL script before
loading data to the Essbase cube.

Specify a fully qualified path name (without blank
spaces) for the MAXL script file.

Note: Essbase client must be installed and configured on
the machine where the Oracle Data Integrator Agent is
running.

POST_LOAD_MAXL_SC
RIPT

Blank (Default) Enable this option to execute a MAXL script after loading
data to the Essbase cube.

Specify a fully qualified path name (without blank
spaces) for the MAXL script file.

Note: Essbase client must be installed and configured on
the machine where the Oracle Data Integrator Agent is
running.

ABORT_ON_PRE_MAXL
_ERROR

• No (Default)
• Yes

This option is only applicable if you are enabling the
PRE_LOAD_MAXL_SCRIPT option.

If you set the ABORT_ON_PRE_MAXL_ERROR option
to Yes, then the load process is aborted on encountering
any error while executing pre-MAXL script.

MAXIMUM_ERRORS_AL
LOWED

1 (Default) Enable this option to set the maximum number of errors
to be ignored before stopping a data load.

The value that you specify here is the threshold limit for
error records encountered during a data load process. If
the threshold limit is reached, then the data load process
is aborted. For example, the default value 1 means that
the data load process stops on encountering a single
error record. If value 5 is specified, then data load
process stops on encountering the fifth error record. If
value 0 (== infinity) is specified, then the data load
process continues even after error records are
encountered.

COMMIT_INTERVAL 1000 (Default) Commit Interval is the chunk size of records that are
loaded in the Essbase cube in a complete batch.

Enable this option to set the Commit Interval for the
records in the Essbase cube.

Changing the Commit Interval can increase performance
of data load based on design of the Essbase database.

LOG_ENABLED • No (Default)
• Yes

If this option is set to Yes, during the IKM process,
logging is done to the file specified in the
LOG_FILENAME option.

LOG_FILENAME <?
=java.lang.System.get
Property("java.io.tmpd
ir")?/
<%=snpRef.getTarget
Table("RES_NAME")
%>.log (Default)

Specify a file name to log events of the IKM process.

LOG_ERRORS • No (Default)
• Yes

If this option is set to Yes, during the IKM process,
details of error records are logged to the file specified in
the ERROR_LOG_FILENAME option.

Chapter 22
Designing a Mapping

22-10



Table 22-4    (Cont.) IKM SQL to Hyperion Essbase (DATA)

Option Values Description

ERROR_LOG_FILENAM
E

<?
=java.lang.System.get
Property(java.io.tmpdi
r")?>/
<%=snpRef.getTarget
Table("RES_NAME")
%>.err

Specify a file name to log error record details of the IKM
process.

ERR_LOG_HEADER_RO
W

• No (Default)
• Yes

If this option is set to Yes, then the header row
containing the column names are logged to the error
records file.

ERR_COL_DELIMITER , (Default) Specify the column delimiter to be used for the error
records file.

ERR_ROW_DELIMITER \r\n (Default) Specify the row delimiter to be used for the error records
file.

ERR_TEXT_DELIMITE
R

' (Default) Specify the text delimiter to be used for the column data
in the error records file.

For example, if the text delimiter is set as ' " ' (double
quote), then all the columns in the error records file will
be delimited by double quotes.

22.6.3 Extracting Data
This section includes the following topics:

• Data Extraction Methods for Essbase

• Extracting Essbase Data

• Extracting Members from Metadata

22.6.3.1 Data Extraction Methods for Essbase
The Oracle Data Integrator Adapter for Essbase supports querying and scripting for data
extraction. To extract data, as a general process, create an extraction query and provide the
extraction query to the adapter. Before the adapter parses the output of the extraction query
and populates the staging area, a column validation is done. The adapter executes the
extraction query based on the results of the metadata output query during the validation. The
adapter does the actual parsing of the output query only when the results of the column
validation are successful.

After the extraction is complete, validate the results—make sure that the extraction query has
extracted data for all the output columns.

You can extract data with these Essbase-supported query and scripts:

• Data Extraction Using Report Scripts

• Data Extraction Using MDX Queries

• Data Extraction Using Calculation Scripts

Chapter 22
Designing a Mapping

22-11



Data Extraction Using Report Scripts

Data can be extracted by parsing the reports generated by report scripts. The report scripts
can exist on the client computer as well as server, where Oracle Data Integrator is running on
the client computer and Essbase is running on the server. The column validation is not
performed when extracting data using report scripts. So, the output columns of a report script
is directly mapped to the corresponding connected column in the source model. However,
before you begin data extract using report scripts, you must complete these tasks:

• Suppress all formatting in the report script. Include this line as the first line in the report
script—{ROWREPEAT SUPHEADING SUPFORMAT SUPBRACKETS SUPFEED
SUPCOMMAS NOINDENTGEN TABDELIMIT DECIMAL 15}.

• The number of columns produced by a report script must be greater than or equal to the
connected columns from the source model.

• The column delimiter value must be set in the LKM option.

Data Extraction Using MDX Queries

An MDX query is an XML-based data-extraction mechanism. You can specify the MDX query
to extract data from an Essbase application. However, before you begin data extract using
MDX queries, you must complete these tasks:

• The names of the dimension columns must match with the dimensions in the Essbase
cube.

• For Type 1 data extraction, all the names of data columns must be valid members of a
single standard dimension.

• For Type 1 data extraction, it is recommended that the data dimension exists in the lower
level axis, that is, axis (0) of columns. If it is not specified in the lowest level axis then the
memory consumption would be high.

• If columns are connected with the associated attribute dimension from the source model,
then, the same attribute dimension must be selected in the MDX query.

• The script of the MDX query can be present on the client computer or the server.

Data Extraction Using Calculation Scripts

Calculation scripts provide a faster option to extract data from an Essbase application.
However, before you extract data using the calculation scripts, take note of these restrictions:

• Data extraction using calculation scripts is supported ONLY for BSO applications.

• Data extraction using calculation scripts is supported ONLY for the Essbase Release 9.3
and later.

• Set the DataExportDimHeader option to ON.

• (If used) Match the DataExportColHeader setting to the data column dimension (in case of
multiple data columns extraction).

• The Oracle Data Integrator Agent, which is used to extract data, must be running on the
same machine as the Essbase server.

• When accessing calculation scripts present on the client computer, a fully qualified path to
the file must be provided, for example, C:\Essbase_Samples\Calc_Scripts \calcall.csc,
where as, to access calculation scripts present on the server, only the file name is
sufficient.

Chapter 22
Designing a Mapping

22-12



22.6.3.2 Extracting Essbase Data
Oracle Data Integrator provides the LKM Hyperion Essbase DATA to SQL for extracting data
from an Essbase application.

You can extract data for selected dimension members that exist in Essbase. You must set up
the Essbase application before you can extract data from it.

Table 22-5 provides the options of the LKM Hyperion Essbase Data to SQL. These options
define how Oracle Data Integrator Adapter for Essbase extracts data.

Table 22-5    LKM Hyperion Essbase DATA to SQL Options

Option Values Description

PRE_CALCULATION_SCR
IPT

Blank (Default) (Optional) Specify the calculation script that you
want to run before extracting data from the Essbase
cube.

EXTRACTION_QUERY_TY
PE

• ReportScript
(Default)

• MDXQuery
• CalcScript

Specify an extraction query type—report script,
MDX query, or calculation script.

Provide a valid extraction query, which fetches all
the data to fill the output columns.

The first record (first two records in case of
calculation script) contains the meta information of
the extracted data.

EXTRACTION_QUERY_FI
LE

Blank (Default) Specify a fully qualified file name of the extraction
query.

EXT_COL_DELIMITER \t (Default) Specify the column delimiter for the extraction
query.

If no value is specified for this option, then space ("
") is considered as column delimiter.

EXTRACT_DATA_FILE_I
N_CALC_SCRIPT

Blank (Default) This option is only applicable if the query type in the
EXTRACTION_QUERY_TYPE option is specified
as CalcScript.

Specify a fully qualified file location where the data
is extracted through the calculation script..

PRE_EXTRACT_MAXL Blank (Default) Enable this option to execute a MAXL script before
extracting data from the Essbase cube.

POST_EXTRACT_MAXL Blank (Default) Enable this option to execute a MAXL script after
extracting data from the Essbase cube.

ABORT_ON_PRE_MAXL_E
RROR

• No (Default)
• Yes

This option is only applicable if the
PRE_EXTRACT_MAXL option is enabled.

If the ABORT_ON_PRE_MAXL_ERROR option is
set to Yes, while executing pre-MAXL script, the
load process is aborted on encountering any error.

LOG_ENABLED • No (Default)
• Yes

If this option is set to Yes, during the LKM process,
logging is done to the file specified in the
LOG_FILE_NAME option.

Chapter 22
Designing a Mapping

22-13



Table 22-5    (Cont.) LKM Hyperion Essbase DATA to SQL Options

Option Values Description

LOG_FILENAME <?
=java.lang.System.getPr
operty
("java.io.tmpdir")?/<%
=snpRef.getTargetTable(
"RES_NAME")%>.log
(Default)

Specify a file name to log events of the LKM
process.

MAXIMUM_ERRORS_ALLO
WED

1 (Default Enable this option to set the maximum number of
errors to be ignored before stopping extract.

LOG_ERRORS • No (Default)
• Yes

If this option is set to Yes, during the LKM process,
details of error records are logged to the file
specified in the ERROR_LOG_FILENAME option.

ERROR_LOG_FILENAME <?
=java.lang.System.getPr
operty(java.io.tmpdir")?>/
<%=snpRef.getTargetTa
ble("RES_NAME")%>.err

Specify a file name to log error record details of the
LKM process.

ERR_LOG_HEADER_ROW • No (Default)
• Yes

If this option is set to Yes, then the header row
containing the column names are logged to the
error records file.

ERR_COL_DELIMITER , (Default) Specify the column delimiter to be used for the error
records file.

ERR_ROW_DELIMITER \r\n (Default) Specify the row delimiter to be used for the error
records file.

ERR_TEXT_DELIMITER ' (Default) Specify the text delimiter to be used for the column
data in the error records file.

For example, if the text delimiter is set as ' "
' (double quote), then all the columns in the error
records file are delimited by double quotes.

DELETE_TEMPORARY_OB
JECTS

• No (Default)
• Yes

Set this option to No, in order to retain temporary
objects (tables, files, and scripts) after integration.

This option is useful for debugging.

22.6.3.3 Extracting Members from Metadata
Oracle Data Integrator provides the LKM Hyperion Essbase METADATA to SQL for extracting
members from a dimension in an Essbase application.

To extract members from selected dimensions in an Essbase application, you must set up the
Essbase application and load metadata into it before you can extract members from a
dimension.Before extracting members from a dimension, ensure that the dimension exists in
the Essbase database. No records are extracted if the top member does not exist in the
dimension.

Table 22-6 lists the options of the LKM Hyperion Essbase METADATA to SQL. These options
define how Oracle Data Integrator Adapter for Oracle's Hyperion Essbase extracts dimension
members.

Chapter 22
Designing a Mapping

22-14



Table 22-6    LKM Hyperion Essbase METADATA to SQL

Option Values Description

MEMBER_FILTER_CRIT
ERIA

IDescendants, (Default) Enable this option to select members from the
dimension hierarchy for extraction. You can specify
these selection criteria:

• IDescendants
• Descendants
• IChildren
• Children
• Member_Only
• Level0
• UDA

MEMBER_FILTER_VALU
E

Blank (Default) Enable this option to provide the member name for
applying the specified filter criteria. If no member is
specified, then the filter criteria is applied on the root
dimension member.If the
MEMBER_FILTER_CRITERIA value is
MEMBER_ONLY or UDA, then the
MEMBER_FILTER_VALUE option is mandatory and
cannot be an empty string.

LOG_ENABLED • No (Default)
• Yes

If this option is set to Yes, during the LKM process,
logging is done to the file specified by the
LOG_FILE_NAME option.

LOG_FILE_NAME <?
=java.lang.System.getPr
operty(java.io.tmpdir")?
>/
Extract_<%=snpRef.get
From()%>.log

Specify a file name to log events of the LKM process.

MAXIMUM_ERRORS_ALL
OWED

1 (Default) Enable this option to set the maximum number of
errors to be ignored before stopping extract.

LOG_ERRORS • No (Default)
• Yes

If this option is set to Yes, during the LKM process,
details of error records are logged to the file specified
in the ERROR_LOG_FILENAME option.

ERROR_LOG_FILENAME <?
=java.lang.System.getPr
operty(java.io.tmpdir")?
>/
Extract_<%=snpRef.get
From()%>.err

Specify a file name to log error record details of the
LKM process.

ERR_LOG_HEADER_ROW • No (Default)
• Yes

If this option is set to Yes, then the header row
containing the column names are logged to the error
records file.

ERR_COL_DELIMITER , (Default) Specify the column delimiter to be used for the error
records file.

ERR_ROW_DELIMITER \r\n (Default) Specify the row delimiter to be used for the error
records file.

ERR_TEXT_DELIMITER • Blank (Default)
• \"
• \"

Specify the text delimiter to be used for the data
column in the error records file. For example, if the
text delimiter is set as ' " ' (double quote), then all the
columns in the error records file are delimited by
double quotes.

Chapter 22
Designing a Mapping

22-15



Table 22-6    (Cont.) LKM Hyperion Essbase METADATA to SQL

Option Values Description

DELETE_TEMPORARY_O
BJECTS

• No (Default)
• Yes

Set this option to No, in order to retain temporary
objects (tables, files, and scripts) after integration.

This option is useful for debugging.

Chapter 22
Designing a Mapping

22-16



Part III
Other Technologies

It is important to understand how to work with other technologies in Oracle Data Integrator.
Part III contains the following chapters:

• JMS

• JMS XML

• LDAP Directories

• Oracle TimesTen In-Memory Database

• Oracle GoldenGate

• Oracle SOA Suite Cross References

• Oracle Object Storage

• Oracle Storage Cloud Service



23
JMS

It is important to understand how to work with Java Message Services (JMS) in Oracle Data
Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Defining a JMS Model

• Designing a Mapping

• JMS Standard Properties

23.1 Introduction
Oracle Data Integrator provides a simple and transparent method to integrate JMS
destinations. This chapter focuses on processing JMS messages with a text payload in batch
mode. For XML payload processing, refer to JMS XML .

23.1.1 Concepts
The JMS Knowledge Modules apply to most popular JMS compliant middleware, including
Oracle Service Bus, Sonic MQ, and so forth. Most of these Knowledge Modules include
transaction handling to ensure message delivery.

23.1.1.1 JMS Message Structure
This section describes the structure of a message in a JMS destination.

A JMS Message consists of three sections:

• Header

• Properties

• Payload

Header

The header contains in the header fields standard metadata concerning the message,
including the destination (JMSDestination), Message ID (JMSMessageID), Message Type
(JMSType), and so forth.

Properties

The properties section contains additional metadata concerning the message. These metadata
are properties, that can be separated in three groups:

23-1



• JMS-Defined properties which are optional JMS Headers. Their name begins with
JMSX(JMSXUserID, JMSXAppID, etc.).

• Provider-specific properties. They are specific to the router vendor. Their names start with
JMS_<vendor name>.

• Application-specific properties. These properties depend on the application sending the
messages. These are user-defined information that is not included in the message
payload.

The Header and Properties sections provide a set of header fields and properties that:

• Have a specific Java data type (Boolean, string, short, and so forth),

• Can be accessed for reading and/or writing,

• Can be used for filtering on the router through the JMS Selector.

Payload

The payload section contains the message content. This content can be anything (text, XML,
binary, and so forth).

23.1.1.2 Using a JMS Destination
Oracle Data Integrator is able to process JMS Text and Byte messages that are delivered by a
JMS destination. Each message is considered as a container for rows of data and is handled
through the JMS Queue or JMS Topic technology.

With JMS Queue/JMS Topic technologies, each JMS destination is defined similarly to a flat file
datastore. Each message in the destination is a record in the datastore.

In the topology, each JMS router is defined as a JMS Topic/Queue data server, with a single
physical schema. A JMS router may be defined therefore twice to access its topics using one
data server, and its queues using another one.

Each JMS destination (Topic of Queue) is defined as a JMS datastore which resource name
matches the name of the JMS destination (name of the queue or topic as defined in the router).
A model groups message structures related to different topics or queues.

The JMS datastore structure is defined similarly to a flat file (delimited or fixed width). The
properties or header fields of the message can be declared with JMS-specific data types as
additional pseudo-columns in this flat file structure. Each message in the destination is
processed as a record of a JMS datastore.

Processing Messages

JMS destinations are handled as regular file datastores and messages as rows from these
datastores. With these technologies, entire message sets are produced and consumed within
each mapping.

Message publishing as well consumption requires a commit action to finalize removing/posting
the message from/to the JMS destination. Committing is particularly important when reading.
Without a commit, the message is read but not consumed. It remains in the JMS Topic/Queue
and will be re-read at a later time.

Both the message content and pseudo-columns can be used as regular attributes in the
mappings (for mapping, filter, etc.). Certain pseudo-columns (such as the one representing the
MESSAGE_ID property) are read-only, and some properties of header fields are used (or set)
through the Knowledge Module options.

Chapter 23
Introduction

23-2



Using Data Integrator you can transfer information either through the message payload - the
attributes - , or through the properties - pseudo-columns - (application properties, for example).

Using the properties to carry information is restricted by third-party applications producing or
consuming the messages.

Filtering Messages

It is possible to filter messages from a JMS destination in two ways:

• By defining a filter using the datastore's attributes and pseudo-columns. In this case Data
Integrator performs the filtering operation after consuming the messages. This implies that
messages rejected by this filter may also be consumed.

• By defining a Message Selector (MESSAGE_SELECTOR KM option). This type of filter
can only use the properties or header fields of the message. The filter is processed by the
router, and only the messages respecting the filter are consumed, reducing the number of
messages transferred.

23.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 23-1 for handling
JMS messages.

Table 23-1    JMS Knowledge Modules

Knowledge Module Description

IKM SQL to JMS Append Integrates data into a JMS compliant message queue or topic in text or
binary format from any SQL compliant staging area.

Consider using this IKM if you plan to transform and export data to a target
JMS queue or topic. If most of your source datastores are located on the
same data server, we recommend using this data server as staging area to
avoid extra loading phases (LKMs).

To use this IKM, the staging area must be different from the target.

LKM JMS to SQL Loads data from a text or binary JMS compliant message queue or topic to
any SQL compliant database used as a staging area. This LKM uses the
Agent to read selected messages from the source queue/topic and write
the result in the staging temporary table created dynamically.

To ensure message delivery, the message consumer (or subscriber) does
not commit the read until the data is actually integrated into the target by
the IKM.

Consider using this LKM if one of your source datastores is a text or binary
JMS message.

23.2 Installation and Configuration
Make sure you have read the information in this section before you start using the JMS
Knowledge Modules:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

Chapter 23
Installation and Configuration

23-3



23.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

23.2.2 Technology Specific Requirements
The JMS destinations are usually accessed via a JNDI service. The configuration and specific
requirements for JNDI and JMS depends on the JMS Provider you are connecting to. Refer to
the JMS Provider specific documentation for more details.

23.2.3 Connectivity Requirements
Oracle Data Integrator does not include specific drivers for JMS providers. Refer to the JMS
Provider documentation for the connectivity requirement of this provider.

23.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a JMS Data Server

2. Creating a JMS Physical Schema

23.3.1 Creating a JMS Data Server
A JMS data server corresponds to one JMS provider/router that is accessible through your
local network.

It exists two types of JMS data servers: JMS Queue and JMS Topic.

• A JMS Queue data server is used to access several queues in the JMS router.

• A JMS Topic data server is used to access several topics in the JMS router

23.3.1.1 Creation of the Data Server
Create a data server either for the JMS Queue technology or for the JMS Topic technology
using the standard procedure, as described in Creating a Data Server of Administering Oracle
Data Integrator. This section details only the fields required or specific for defining a JMS
Queue or JMS Topic data server.

1. In the Definition tab:

• Name: Name of the data server as it will appear in Oracle Data Integrator.

• User/Password: Not used here. Leave these fields empty.

2. In the JNDI tab:

• JNDI Authentication: Set this field to None.

• JNDI User: Enter the username to connect to the JNDI directory (optional step).

Chapter 23
Setting up the Topology

23-4

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


• Password: This user's password (optional step).

• JNDI Protocol: From the list, select the JNDI protocol (optional step).

• JNDI Driver: Name of the initial context factory java class to connect to the JNDI
provider, for example: com.sun.jndi.ldap.LdapCtxFactory for LDAP

• JNDI URL: <JMS_RESOURCE>, for example ldap://<host>:<port>/<dn> for LDAP

• JNDI Resource: Logical name of the JNDI resource corresponding to your JMS Queue
or Topic connection factory.

For example, specify QueueConnectionFactory if you want to access a message
queue and TopicConnectionFactory if you want to access a topic. Note that these
parameters are specific to the JNDI directory and the provider.

23.3.2 Creating a JMS Physical Schema
Create a JMS physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

Note:

Only one physical schema is required per JMS data server.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

23.4 Setting Up an Integration Project
Setting up a project using JMS follows the standard procedure. See Creating an Integration
Project of Developing Integration Projects with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for getting
started with JMS:

• IKM SQL to JMS Append

• LKM JMS to SQL

23.5 Creating and Defining a JMS Model
This section contains the following topics:

• Create a JMS Model

• Defining the JMS Datastores

Note:

It is not possible to reverse-engineer a JMS model. To create a datastore you have to
create a JMS model and define the JMS datastores.

Chapter 23
Setting Up an Integration Project

23-5



23.5.1 Create a JMS Model
Create a JMS Model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator.

A JMS Model is a set of datastores corresponding to the Topics or Queues of a router. Each
datastore corresponds to a specific Queue or Topic. The datastore structure defines the
message structure for this queue or topic. A model is always based on a Logical Schema. In a
given Context, the Logical Schema corresponds to one JMS Physical Schema. The Data
Schema corresponding to this Physical Schema contains the Topics or Queues.

23.5.2 Defining the JMS Datastores
In Oracle Data Integrator, each datastore is a JMS Topic or Queue. Each message in this topic
or queue is a row of the datastore.

A JMS message may carry any type of information and there is no metadata retrieval method
available. Therefore reverse-engineering is not possible.

To define the datastore structure, do one of the following:

• Create the datastore as a file datastore and manually declare the message structures.

• Use the File reverse-engineering through an Excel spreadsheet in order to automate the
reverse engineering of messages. See Files for more information about this reverse-
engineering method.

• Duplicate a datastore from another model into the JMS model.

Note:

The datastores' resource names must be identical to the name of JMS destinations
(this is the logical JNDI name) that will carry the message corresponding to their
data. Note that these names are frequently case-sensitive.

Declaring JMS Properties as Pseudo-Columns

The property pseudo-columns represent properties or header fields of a message. These
pseudo-columns are defined in the Oracle Data Integrator model as attributes in the JMS
datastore, with JMS-specific datatypes. The JMS-specific datatypes are called JMS_xxx (for
example: JMS String, JMS Long, JMS Int, and so forth).

To define these property pseudo-columns, simply declare additional attributes named
identically to the properties and specified with the appropriate JMS-specific datatypes.

If you define pseudo-columns that are named like standard, provider-specific or application-
specific properties, they will be consumed or published with the message as such. If a pseudo-
column is not listed in the standard or provider-specific set of JMS properties, It is considered
as additional application-specific property.

For example, to use or set in mappings the JMSPriority default property on messages
consumed from or pushed to a JMS queue called CUSTOMER, you would add a attribute
called JMSPriority (with this exact case) to the CUSTOMER datastore. This attribute would
have the JMS Int datatype available for the JMS Queue technology.

Chapter 23
Creating and Defining a JMS Model

23-6



WARNING:

• Property pseudo-columns must be defined and positioned in the JMS datastore
after the attributes making up the message payload in a DELIMITED file format.
Use the Order field in the column definition to position these columns. The order
of the pseudo-columns themselves is not important as long as they appear at the
end of the datastore definition.

• Pseudo-columns names are case-sensitive.

For more information about JMS Properties, see:

• JMS Standard Properties

• Using JMS Properties

23.6 Designing a Mapping
You can use JMS as a source or a target of a mapping. It cannot be used as the staging area.

The KM choice for a mapping or a check determines the abilities and performance of this
mapping or check. The recommendations in this section help in the selection of the KM for
different situations concerning JMS messages.

23.6.1 Loading Data from a JMS Source
JMS can be used as a source or a target in a mapping. Data from a JMS message Queue or
Topic can be loaded to any SQL compliant database used as a staging area. The LKM choice
in the Mapping Flow tab to load data between JMS and another type of data server is essential
for the performance of a mapping.

Oracle Data Integrator provides the LKM JMS to SQL for loading data from a JMS source to a
Staging Area. This LKM loads data from a text or binary JMS compliant message queue or
topic to any SQL compliant database used as a staging area.

Table 23-2 lists the JMS specific options.

23.6.2 Integrating Data in a JMS Target
Oracle Data Integrator provides the IKM SQL to JMS Append that implements optimized data
integration strategies for JMS. This IKM integrates data into a JMS compliant message queue
or topic in text or binary format from any SQL compliant staging area. Table 23-2 lists the JMS
specific KM options of this IKM.

The IKM choice in the Mapping Flow tab determines the performances and possibilities for
integrating.

JMS Knowledge Modules Options

Table 23-2 lists the JMS specific KM options of the JMS IKM and LKM.

The JMS specific options of this LKM are similar to the options of the IKM SQL to JMS
Append. There are only two differences:

• The DELETE_TEMPORARY_OBJECTS option is only provided for the LKM.

Chapter 23
Designing a Mapping

23-7



• The PUBLISH option is only provided for the IKM.

Table 23-2    JMS Specific KM Options

Option Used to Description

PUBLISH Write Check this option if you want to publish new messages
in the destination. This option is set to Yes by default.

JMS_COMMIT Read/Write Commit the publication or consumption of a message.
Uncheck this option if you don't want to commit your
publication/consumption on your router. This option is
set to Yes by default.

JMS_COMMIT=1 Read/Write Commit the JMS read operation, immediately after the
driver is done with the reading of all available
messages.

JMS server considers the messages read as being
consumed by some client.

JMS_COMMIT=0: Read/Write JMS driver reads messages, but the JMS 'read' is not
considered 'done' by the JMS server. This happens
when the corresponding ODI session (not necessarily
just the interface) finishes successfully.

If the session fails, the messages are NOT consumed.

JMSDELIVERYMODE Write JMS delivery mode (1: Non Persistent, 2: Persistent). A
persistent message remains on the server and is
recovered on server crash.

JMSEXPIRATION Write Expiration delay in milliseconds for the message on the
server [0..4 000 000 000]. 0 signifies that the message
never expires.

Warning! After this delay, a message is considered as
expired, and is no longer available in the topic or queue.
When developing mappings it is advised to set this
parameter to zero.

JMSPRIORITY Write Relative Priority of the message: 0 (lowest) to 9
(highest).

SENDMESSAGETYPE Write Type of message to send (1 -> BytesMessage, 2 -
>TextMessage).

JMSTYPE Write Optional name of the message.

CLIENTID Read Subscriber identification string. This option is described
only for JMS compatibility.

Not used for publication.

DURABLE Read D: Session is durable. Indicates that the subscriber
definition remains on the router after disconnection.

MESSAGEMAXNUMBER Read Maximum number of messages retrieved [0 .. 4 000 000
000]. 0: All messages are retrieved.

MESSAGETIMEOUT Read Time to wait for the first message in milliseconds [0 .. 4
000 000 000]. if MESSAGETIMEOUT is equal to 0, then
there is no timeout.

MESSAGETIMEOUT and MESSAGEMAXNUMBER
cannot be both equal to zero. if MESSAGETIMEOUT=
0 and MESSAGEMAXNUMBER =0, then
MESSAGETIMEOUT takes the value 1.

Warning! A mapping may retrieve no message if this
timeout value is too small.

Chapter 23
Designing a Mapping

23-8



Table 23-2    (Cont.) JMS Specific KM Options

Option Used to Description

NEXTMESSAGETIMEOUT Read Time to wait for each subsequent message in
milliseconds [0 .. 4 000 000 000]. The default value is
1000.

Warning! A mapping may retrieve only part of the
messages available in the topic or the queue if this
value is too small.

MESSAGESELECTOR Read Message selector in ISO SQL syntax. See Using JMS
Properties for more information on message selectors.

23.7 JMS Standard Properties
This section describes the JMS properties contained in the message header and how to use
them.

In Oracle Data Integrator, pseudo-columns corresponding to the JMS Standard properties
should be declared in accordance with the descriptions provided in Table 23-3.

The JMS type and access mode columns refer to the use of these properties in Oracle Data
Integrator or in Java programs. In Oracle Data Integrator, some of these properties are used
through the IKM options, and the pseudo-column values should not be set by the mappings.

For more details on using these properties in a Java program, see http://java.sun.com/
products/jms/.

Table 23-3    Standard JMS Properties of Message Headers

Property JMS Type Access (Read/
Write)

Description

JMSDestination JMS String R Name of the destination (topic or queue)
of the message.

JMSDeliveryMode JMS Integer R/W (set by IKM
option)

Distribution mode: 1 = Not Persistent or
2 = Persistent. A persistent message is
never lost, even if a router crashes.

When sending messages, this property
is set by the JMSDELIVERYMODE KM
option.

JMSMessageID JMS String R Unique Identifier for a message. This
identifier is used internally by the router.

JMSTimestamp JMS Long R Date and time of the message sending
operation. This time is stored in a UTC
standard format (1).

JMSExpiration JMS Long R/W (set by IKM
option)

Message expiration date and time. This
time is stored in a UTC standard format
(1).

To set this property the
JMSEXPIRATION KM option must be
used.

Chapter 23
JMS Standard Properties

23-9

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/


Table 23-3    (Cont.) Standard JMS Properties of Message Headers

Property JMS Type Access (Read/
Write)

Description

JMSRedelivered JMS Boolean R Indicates if the message was resent.
This occurs when a message consumer
fails to acknowledge the message
reception.

JMSPriority JMS Int R/W Name of the destination (topic or queue)
the message replies should be sent to.

JMSCorrelationID JMS String R/W Correlation ID for the message. This
may be the JMSMessageID of the
message this message generating this
reply. It may also be an application-
specific identifier.

JMSType JMS String R/W (set by IKM
option)

Message type label. This type is a string
value describing the message in a
functional manner (for example
SalesEvent, SupportProblem).

To set this property the JMSTYPE KM
option must be used.

Table 23-4 lists the optional JMS-defined properties in the JMS standard.

Table 23-4    Optional JMS Properties of Message Headers

Property JMS Type Access (Read/
Write)

Description

JMSXUserID JMS String R Client User ID.

JMSXAppID JMS String R Client Application ID.

JMSSXProducerTXID JMS String R Transaction ID for the production
session. This ID is the same for all the
messages sent to a destination by a
producer between two JMS commit
operations.

JMSSXConsumerTXI
D

JMS String R Transaction ID for current consumption
session. This ID is the same of a batch
of message read from a destination by a
consumer between two JMS commit
read operations.

JMSXRcvTimestamp JMS Long R Message reception date and time. This
time is stored in a UTC standard format
(1).

JMSXDeliveryCount JMS Int R Number of times a message is received.
Always set to 1.

JMSXState JMS Int R Message state. Always set to 2 (Ready).

JMSXGroupID JMS String R/W ID of the group to which the message
belongs.

JMSXGroupSeq JMS Int R/W Sequence number of the message in the
group of messages.

Chapter 23
JMS Standard Properties

23-10



(1): The UTC (Universal Time Coordinated) standard is the number of milliseconds that have
elapsed since January 1st, 1970

23.7.1 Using JMS Properties
In addition to their contents, messages have a set of properties attached to them. These may
be provider-specific, application-specific (user defined) or JMS Standard Properties.

JMS properties are used in Oracle Data Integrator as complementary information to the
message, and are used, for example, to filter the messages.

23.7.1.1 Declaring JMS Properties
When Defining the JMS Datastores, you must append pseudo-columns corresponding to the
JMS properties that you want to use in your mappings. See Declaring JMS Properties as
Pseudo-Columns for more information.

23.7.1.2 Filtering on the Router
With this type of filtering, the filter is specified when sending the JMS read query. Only
messages matching the message selector filter are retrieved. The message selector is
specified in Oracle Data Integrator using the MESSAGE_SELECTOR KM option

Note:

Router filtering is not a JMS mandatory feature. It may be unavailable. Please
confirm that it is available by reviewing the JMS provider documentation.

The MESSAGE_SELECTOR is programmed in an SQL WHERE syntax. Comparison, boolean
and mathematical operators are supported:

+, -, *, /, =, >, <, <>, >=, <=, OR, AND, BETWEEN, IN, NOT, LIKE, IS NULL.

Note:

• The IS NULL clause handles properties with an empty value but does not handle
nonexistent application-specific properties.

For example, if the selector COLOR IS NULL is defined, a message with the
application-specific property COLOR specified with an empty value is consumed
correctly. Another message in the same topic/queue without this property
specified would raise an exception.

Examples

Filter all messages with priority greater than 5

JMSPriority > 5
Filter all messages with priority not less than 6 and with the type Sales_Event.

NOT JMSPriority < 6 AND JMSType = 'Sales_Event'

Chapter 23
JMS Standard Properties

23-11



23.7.1.3 Filtering on the Client
Filtering is performed after receiving the messages, and is setup by creating a standard Oracle
Data Integrator mapping filter, which must be executed on the staging area. A filter uses
pseudo-columns from the source JMS datastore. The pseudo-columns defined in the Oracle
Data Integrator datastore represent the JMS properties. See Declaring JMS Properties as
Pseudo-Columns for more information. Note that messages filtered this way are considered as
consumed from the queue or topic.

23.7.1.4 Using Property Values as Source Data
It is possible to use the values of JMS properties as source data in a mapping. This is carried
out by specifying the pseudo-columns of the source JMS datastore in the mapping. See 
Declaring JMS Properties as Pseudo-Columns for more information.

23.7.1.5 Setting Properties when Sending a Message
When sending messages it is possible to specify JMS properties by mapping values of the
pseudo-columns in a mapping targeting a JMS datastore. Certain properties may be set using
KM options. See JMS Standard Properties for more information.

Chapter 23
JMS Standard Properties

23-12



24
JMS XML

It is important to understand how to work with Java Message Services (JMS) with a XML
payload in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering a JMS XML Model

• Designing a Mapping

24.1 Introduction
Oracle Data Integrator provides a simple and transparent method to integrate JMS
destinations. This chapter focuses on processing JMS messages with a XML payload. For text
payload processing in batch mode, refer to JMS.

24.1.1 Concepts
The JMS XML Knowledge Modules apply to most popular JMS compliant middleware,
including Oracle Service Bus, Sonic MQ, and so forth. Most of these Knowledge Modules
include transaction handling to ensure message delivery.

24.1.1.1 JMS Message Structure
See JMS Message Structure for information about the JMS message structure.

24.1.1.2 Using a JMS Destination
Oracle Data Integrator is able to process XML messages that are delivered by a JMS
destination. Each message is considered as a container for XML data and is handled through
the JMS XML Queue or JMS XML Topic technology.

With JMS XML Queue/JMS XML Topic technologies, each messages payload contains a
complete XML data structure. This structure is mapped into a relational schema (XML
Schema) that appears as a model, using the Oracle Data Integrator XML Driver.

Note:

This method is extremely similar to XML files processing. In JMS XML, the message
payload is the XML file. See XML Files and Oracle Data Integrator Driver for XML
Referencefor more information about XML Files processing and the XML Driver.

24-1



In the topology, each JMS destination is defined as a JMS XML Topic/Queue data server with a
single physical schema. A data server/physical schema pair will be declared for each topic or
queue delivering message in the XML format.

The structure of the XML message mapped into a relational structure (called the XML schema)
appears as a data model. Each datastore in this model represents a portion (typically, an
element type) in the XML file.

Processing Messages

As each XML message corresponds to an Oracle Data Integrator model, the entire model must
be used and loaded as one single unit when a JMS XML message is consumed or produced.
The processing unit for an XML message is the package.

It is not possible to declare the properties or header fields of the message in the model or use
them as attributes in a mapping. They still can be used in message selectors, or be set through
KM options.

Consuming an XML message

Processing an incoming XML message is performed in packages as follows:

1. Synchronize the JMS message to the XML schema: This operation reads the message
and generates the XML schema. This is usually performed by the first mapping accessing
the message.

2. Extract the data: A sequence of mappings use datastores from the XML schema as
sources. This data is usable until the session is terminated, another message is read by a
new Synchronize action, or the Commit JMS Read is performed.

3. Commit JMS Read: This operation validates the message consumption and deletes the
XML schema. It should be performed by the last mapping which extracts data from the
XML message.

Producing an XML message

To produce an XML message, a package must be designed to perform the following tasks:

1. Initialize the XML schema: This operation creates an empty XML schema corresponding to
the XML message to generate. This operation is usually performed in the first mapping
loading the structure.

2. Load the data: A sequence of mappings loads data into the XML schema.

3. Synchronize the XML schema to JMS: This operation converts the XML schema to an XML
message, and sends it to the JMS destination. This operation is usually performed by the
last mapping loading the schema.

Filtering Messages

It is possible to filter messages from a JMS XML destination by defining a Message Selector
(MESSAGE_SELECTOR KM option) to filter messages on the server. This type of filter can
use only the properties or header fields of the message. The filter is processed by the server,
reducing the amount of information read by Data Integrator. It is also possible to filter data in
the mapping using data extracted from the XML schema. These filters are processed in Data
Integrator, after the message is synchronized to the XML schema.

Chapter 24
Introduction

24-2



24.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 24-1 for handling
XML messages.

Table 24-1    JMS XML Knowledge Modules

Knowledge Module Description

IKM SQL to JMS XML Append Integrates data into a JMS compliant message queue or topic in XML
format from any ANSI SQL-92 standard compliant staging area.

LKM JMS XML to SQL Loads data from a JMS compliant message queue or topic in XML to any
ANSI SQL-92 standard compliant database used as a staging area.

24.2 Installation and Configuration
Make sure you have read the information in this section before you start using the JMS
Knowledge Modules:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

24.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

24.2.2 Technology Specific Requirements
The JMS destinations are usually accessed via a JNDI service. The configuration and specific
requirements for JNDI and JMS depends on the JMS Provider you are connecting to. Refer to
the JMS Provider specific documentation for more details.

Chapter 24
Installation and Configuration

24-3

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


Note:

By default, a sequence of four ';' is used as fixed record separator for JMS XML
driver read operations. If the XML data also contains a sequence of four or more ';'
characters, an error will occur and you must set the record separator to a different
value. This is achieved using the Doracle.odi.jmsxmlColSepString JVM option. For
example, Doracle.odi.jmsxmlColSepString="????" will set the JMS XML driver
record separator to "????" instead of ";;;;".

This option must be set in the following locations:

• In Studio, this parameter is set in the odi.conf parameter file. Add a new
AddVMOption entry.

• For 12c Standalone/Colocated Agents, use ODI_INSTANCE_OPTIONS in the
instance.sh script.

• For 11g Standalone Agents, use ODI_ADDITIONAL_JAVA_OPTIONS in the
odiparams file.

• For JEE Agents, add it to JAVA_OPTIONS in the startManagedWeblogic script.

24.2.3 Connectivity Requirements
This section lists the requirements for connecting to a JMS XML database.

Oracle Data Integrator does not include specific drivers for JMS providers. Refer to the JMS
Provider documentation for the connectivity requirement of this provider.

XML Configuration

XML content is accessed through the Oracle Data Integrator JDBC for XML driver. The driver
is installed with Oracle Data Integrator.

Ask your system administrator for the location of the DTD file describing the XML content.

24.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a JMS XML Data Server

2. Creating a JMS XML Physical Schema

24.3.1 Creating a JMS XML Data Server
An JMS XML data server corresponds to one JMS provider/router that is accessible through
your local network.

There are two types of JMS XML data servers: JMS Queue XML and JMS Topic XML.

• A JMS Queue XML data server is used to connect a single queue in the JMS router to
integrate XML messages.

• A JMS Topic XML data server is used to connect a single Topic in the JMS router to
integrate XML messages.

Chapter 24
Setting up the Topology

24-4



The Oracle Data Integrator JMS driver loads the messages that contains the XML content into
a relational schema in memory. This schema represents the hierarchical structure of the XML
message and enables unloading the relational structure back to the JMS messages.

24.3.1.1 Creation of the Data Server
Create a data server either for the JMS Queue XML technology or for the JMS Topic XML
technology using the standard procedure, as described in Creating a Data Server of
Administering Oracle Data Integrator.

The creation process for a JMS XML Queue or JMS Topic XML data server is identical to the
creation process of an XML data server except that you need to define a JNDI connection with
JMS XML specific information in the JNDI URL. See Creating an XML Data Server for more
information.

This section details only the fields required or specific for defining a JMS Queue XML or JMS
Topic XML data server.

1. In the Definition tab:

• Name: Name of the data server as it will appear in Oracle Data Integrator.

• User/Password: Not used here. Leave these fields empty.

2. In the JNDI tab:

• JNDI Authentication: From the list, select the authentication mode.

• JNDI User: Enter the username to connect to the JNDI directory (not mandatory).

• Password: This user's password (not mandatory).

• JNDI Protocol: From the list, select the JNDI protocol (not mandatory).

• JNDI Driver: Name of the initial context factory java class to connect to the JNDI
provider, for example:

com.sun.jndi.ldap.LdapCtxFactory
• JNDI URL: <JMS_RESOURCE>?

d=<DTD_FILE>&s=<SCHEMA>&JMS_DESTINATION=<JMS_DESTINATION_NAME>.

The JNDI URL properties are described inTable 24-2.

• JNDI Resource: Logical name of the JNDI resource corresponding to your JMS Queue
(or Topic) connection factory.

Note:

Specify QueueConnectionFactory if you want to access a message queue
and TopicConnectionFactory if you want to access a topic. Note that these
parameters are specific to the JNDI directory.

Chapter 24
Setting up the Topology

24-5



Table 24-2    JNDI URL Properties

Parameter Value Notes

d <DTD File location> DTD File location (relative or absolute) in UNC
format. Use slash "/" in the path name and not
backslash "\" in the file path. This parameter is
mandatory.

re <Root element> Name of the element to take as the root table of the
schema. This value is case sensitive. This
parameter can be used for reverse-engineering a
specific message definition from a WSDL file, or
when several possible root elements exist in a XSD
file.

ro true | false If true, the XML file is opened in read only mode.

s <schema name> Name of the relational schema where the XML file
will be loaded.This value must match the one set
for the physical schema attached to this data
server. This parameter is mandatory.

cs true | false Load the XML file in case sensitive or insensitive
mode. For case insensitive mode, all element
names in the DTD file should be distinct (Ex: Abc
and abc in the same file are banned). The case
sensitive parameter is a permanent parameter for
the schema. It CANNOT be changed after schema
creation. Please note that when opening the XML
file in insensitive mode, case will be preserved for
the XML file.

JMSXML_ROWS
EPARATOR

5B23245D Hexadecimal code of the string used as a line
separator (line break) for different XML contents.
Default value is 5B23245D which corresponds to
the string [#$].

JMS_DESTINATI
ON

JNDI Queue name or
Topic name

JNDI Name of the JMS Queue or Topic. This
parameter is mandatory.

transform_nonas
cii or tna

boolean (true|false) Transform Non Ascii. Set to false to keep non-ascii
characters. Default is true. This parameter is not
mandatory.

Example 24-1    Example

If using an LDAP directory as the JNDI provider, you should use the following parameters:

• JNDI Driver: com.sun.jndi.ldap.LdapCtxFactory
• JNDI URL: ldap://<ldap_host>:<port>/<dn>?

d=<DTD_FILE>&s=<SCHEMA>&JMS_DESTINATION=<JMS_DESTINATION_NAME>
• JNDI Resource: <Name of the connection factory>

24.3.2 Creating a JMS XML Physical Schema
Create a JMS XML physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

Chapter 24
Setting up the Topology

24-6



Note:

For the name of the Schema and Work Schema use the schema name defined in the
s=<schema name> property of the JNDI URL of the JMS Queue XML or JMS Topic
XML data server.

Note:

Only one physical schema is required per JMS XML data server.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

24.4 Setting Up an Integration Project
Setting up a project using JMS XML follows the standard procedure. See Creating an
Integration Project of Developing Integration Projects with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for getting
started with JMS XML:

• IKM SQL to JMS XML Append

• LKM JMS XML to SQL

24.5 Creating and Reverse-Engineering a JMS XML Model
This section contains the following topics:

• Create a JMS XML Model

• Reverse-Engineering a JMS XML Model

24.5.1 Create a JMS XML Model
Create a JMS Queue XML or JMS Topic XML Model using the standard procedure, as
described in Creating a Model of Developing Integration Projects with Oracle Data Integrator.

A JMS Queue XML or JMS Topic XML Model corresponds to a set of datastores, with each
datastore representing an entry level in the XML file. The models contain datastores describing
the structure of the JMS messages. A model contains the message structure of one topic or
one queue. This model's structure is reverse-engineered from the DTD or the XML file
specified in the data server definition, using standard reverse-engineering.

24.5.2 Reverse-Engineering a JMS XML Model
JMS XML supports Standard reverse-engineering - which uses only the abilities of the XML
driver.

Chapter 24
Setting Up an Integration Project

24-7



To perform a Standard Reverse-Engineering on JMS Queue XML or JMS Topic XML use the
usual procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator.

Oracle Data Integrator will automatically add the following attributes to the datastores
generated from the XML data:

• Primary keys (PK attributes) for parent-child relationships

• Foreign keys (FK attributes) for parent-child relationships

• Order identifier (ORDER attributes) to enable the retrieval of the order in which the data
appear in the XML file.

These extra attributes enable the hierarchical XML structure's mapping in a relational structure
stored in the schema. See Oracle Data Integrator Driver for XML Reference for more
information.

24.6 Designing a Mapping
The KM choice for a mapping or a check determines the abilities and performance of this
mapping or check. The recommendations in this section help in the selection of the KM for
different situations concerning XML messages.

24.6.1 Loading Data from a JMS XML Source
JMS XML can be used as a source or a target in a mapping. Data from an XML message
Queue or Topic can be loaded to any ANSI SQL-92 standard compliant database used as a
staging area. The LKM choice in the Mapping Flow tab to load data between JMS XML and
another type of data server is essential for successful data extraction.

Oracle Data Integrator provides the LKM JMS XML to SQL for loading data from a JMS
compliant message queue or topic in XML to any ANSI SQL-92 standard compliant database
used as a staging area. This LKM uses the Agent to read selected messages from the source
queue/topic and write the result in the staging temporary table created dynamically.To ensure
message delivery, the message consumer (or subscriber) does not commit the read until the
data is actually integrated into the target by the IKM.Consider using this LKM if one of your
source datastores is an XML JMS message.

In order to load XML messages from a JMS provider, the following steps must be followed:

• The first mapping reading the XML message from the JMS XML source must use the LKM
JMS XML to SQL with the SYNCHRO_JMS_TO_XML LKM option set to Yes. This option
creates and loads the XML schema from the message retrieved from the queue or topic.

• The last mapping should commit the message consumption by setting the JMS_COMMIT
to Yes.

Table 24-3 lists the JMS specific options of this knowledge module.

24.6.2 Integrating Data in a JMS XML Target
Oracle Data Integrator provides the IKM SQL to JMS XML Append that implements optimized
data integration strategies for JMS XML. This IKM integrates data into a JMS compliant
message queue or topic in XML format from any ANSI SQL-92 standard compliant staging
area.

To use this IKM, the staging area must be different from the target.

Chapter 24
Designing a Mapping

24-8



In order to integrate XML data into a JMS XML target, the following steps must be followed:

• The first mapping loading the XML schema must provide a value for the ROOT_TABLE (it
is the model's table that corresponds to the root element of the XML file), and also set the
INITIALIZE_XML_SCHEMA option to Yes.

Note:

The root table of the XML schema usually corresponds to the datastore at the top
of the hierarchy tree view of the JMS XML model. Therefore the ROOT_TABLE
parameter should take the value of the resource name for this datastore.

• The mappings should load the datastores in the hierarchy order, starting by the top of the
hierarchy and going down. The mappings loading subsequent levels of the XML schema
hierarchy should load the foreign key attribute linking the current hierarchy level to a higher
one.

For example, when loading the second level of the hierarchy (the one under the root table),
the foreign key attribute should be set to '0' (Zero), as it is the value that is set by the IKM
in the root table primary key when the root table is initialized.

• The last mapping should send the XML schema to the JMS provider by setting the
SYNCHRO_JMS_TO_XML parameter to Yes.

Example

An XML file format generates a schema with the following hierarchy of datastores:

+ GEOGRAPHY_DIM (GEO_DIMPK, ...)
  |
  +--- COUNTRY (GEO_DIMFK, COUNTRYPK, COUNTRY_NAME, ...)
       |
       +--- REGION (COUNTRYFK, REGIONPK, REGION_NAME, ...)

In this hierarchy, GEOGRAPHY_DIM is the root table, and its GEOGRAPHY_DIMPK attribute
is set to '0' at initialization time. The tables should be loaded in the GEOGRAPHY_DIM,
COUNTRY, REGION sequence.

• When loading the second level of the XML hierarchy (COUNTRY) make sure that the FK
field linking this level to the root table level is set to '0'. In the model above, when loading
COUNTRY, we must load the COUNTRY.GEOGRAPHY_DIMFK set to '0'.

• You must also link the records of REGION to the COUNTRY level by loading the
REGION.COUNTRYFK attribute with values that correspond to a parent record in
COUNTRY (having REGION.COUNTRYFK = COUNTRY.COUNTRYPK).

For more information on loading data to XML schemas, see Oracle Data Integrator Driver for
XML Reference.

Table 24-3 lists the JMS specific KM options of this IKM. Options that are specific to XML
messages are in bold.

JMS XML Knowledge Modules Options

Table 24-3 lists the KM options for the LKM and IKM for JMS XML. Options that are specific to
XML messages are in bold.

Although most options are the same for the LKM and IKM, there are only few differences:

Chapter 24
Designing a Mapping

24-9



• The INITIALIZE_XML_SCHEMA and ROOT_TABLE options are only provided for the IKM.

• The DELETE_TEMPORARY_OBJECTS and JMS_COMMIT options are only provided for
the LKM.

• Set JMS_COMMIT to Yes to commit the message consumption on the Router (JMS XML).

Table 24-3    JMS Specific KM Options

Option Used to Description

CLIENTID Read Subscriber identification string.

Not used for publication.

DURABLE Read D: Session is durable. Indicates that the subscriber
definition remains on the router after disconnection.

INITIALIZE_XML_SCHEMA Write Initializes an empty XML schema. This option must be
set to YES for the first mapping loading the schema.

JMSDELIVERYMODE Write JMS delivery mode (1: Non Persistent, 2: Persistent). A
persistent message remains on the server and is
recovered on server crash.

JMSEXPIRATION Write Expiration delay in milliseconds for the message on the
server [0..4 000 000 000]. 0 signifies that the message
never expires.

Warning! After this delay, a message is considered as
expired, and is no longer available in the topic or queue.
When developing mappings it is advised to set this
parameter to zero.

JMSPRIORITY Write Relative Priority of the message: 0 (lowest) to 9
(highest).

JMSTYPE Write Optional name of the message.

MESSAGEMAXNUMBER Read Maximum number of messages retrieved [0 .. 4 000 000
000]. 0: All messages are retrieved.

MESSAGESELECTOR Read Message selector in ISO SQL syntax for filtering on the
router. See Using JMS Properties for more information
on message selectors.

MESSAGETIMEOUT Read Time to wait for the first message in milliseconds [0 .. 4
000 000 000]. If MESSAGETIMEOUT is equal to 0, then
there is no timeout.

MESSAGETIMEOUT and MESSAGEMAXNUMBER
cannot be both equal to zero. If MESSAGETIMEOUT= 0
and MESSAGEMAXNUMBER =0, then MESSAGETIMEOUT
takes the value 1.

Warning! A mapping may retrieve no message if this
timeout value is too small.

NEXTMESSAGETIMEOUT Read Time to wait for each subsequent message in
milliseconds [0 .. 4 000 000 000]. The default value is
1000.

Warning! A mapping may retrieve only part of the
messages available in the topic or the queue if this value
is too small.

Chapter 24
Designing a Mapping

24-10



Table 24-3    (Cont.) JMS Specific KM Options

Option Used to Description

ROOT_TABLE Write Resource name of the datastore that is the root of the
XML model hierarchy. Option applicable only to first
mapping loading the schema
(INITIALIZE_XML_SCHEMA=true). IKM inserts a record
for the root element of the XML schema, if
ROOT_TABLE<>'' and INITIALIZE_XML_SCHEMA=true.

Warning! Use only, if no mapping will populate the root
table of the XML structure. Otherwise a duplicate root
element will be encountered.

SENDMESSAGETYPE Write Type of message to send (1 -> BytesMessage, 2 -
>TextMessage).

SYNCHRO_XML_TO_JMS Write Generates the XML message from the XML schema,
and sends this message. This option must be set to YES
for the last mapping that writes to the schema XML.

Chapter 24
Designing a Mapping

24-11



25
LDAP Directories

It is important to understand how to work with LDAP directories in Oracle Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering an LDAP Directory

• Designing a Mapping

• Troubleshooting

25.1 Introduction
Oracle Data Integrator supports LDAP directories integration using the Oracle Data Integrator
Driver for LDAP.

25.1.1 Concepts
The LDAP concepts map the Oracle Data Integrator concepts as follows: An LDAP directory
tree, more specifically the entry point to this LDAP tree, corresponds to a data server in Oracle
Data Integrator. Within this data server, a single schema maps the content of the LDAP
directory tree.

The Oracle Data Integrator Driver for LDAP (LDAP driver) loads the hierarchical structure of
the LDAP tree into a relational schema. This relational schema is a set of tables that can be
queried or modified using standard SQL statements.

Note:

ODI LDAP driver's support for LDAP servers is limited. All the features of the driver
may not work on any given instance of an LDAP server. ODI uses Java JNDI API to
interact with the LDAP servers. If the LDAP server adheres exactly with LDAP
specifications, then driver features will work. Otherwise, some of the features may not
work.

The relational schema is reverse-engineered as a data model in ODI, with tables, columns,
and constraints. This model is used like a normal relational data model in ODI. Any changes
performed in the relational schema data (insert/update) is immediately impacted by the driver
in the LDAP data.

See Oracle Data Integrator Driver for LDAP Reference for more information on this driver.

25-1



25.1.2 Knowledge Modules
Oracle Data Integrator does not provide specific Knowledge Modules (KM) for the LDAP
technology. You can use LDAP as a SQL data server. LDAP data servers support both the
technology-specific KMs sourcing or targeting SQL data servers, as well as the generic KMs.
See Generic SQL or the technology chapters for more information on these KMs.

25.2 Installation and Configuration
Make sure you have read the information in this section before you start working with the
LDAP technology.

• System Requirements

• Technologic Specific Requirements

• Connectivity Requirements

25.2.1 System Requirements
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

25.2.2 Technologic Specific Requirements
There are no technology-specific requirements for using LDAP directories in Oracle Data
Integrator.

25.2.3 Connectivity Requirements
This section lists the requirements for connecting to LDAP database.

Oracle Data Integrator Driver for LDAP

LDAP directories are accessed through the Oracle Data Integrator Driver for LDAP. This JDBC
driver is installed with Oracle Data Integrator.

To connect to an LDAP directory you must ask the system administrator for the following
connection information:

• The URL to connect to the directory

• The User and Password to connect to the directory

• The Base Distinguished Name (Base DN). This is the location in the LDAP tree that ODI
will access.

You may also require a connection to the Reference LDAP Tree structure and to an External
Storage database for the driver. See Oracle Data Integrator Driver for XML Reference for more
information on these concepts and configuration parameters.

Chapter 25
Installation and Configuration

25-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


25.3 Setting up the Topology
Setting up the topology consists in:

1. Creating an LDAP Data Server

2. Creating a Physical Schema for LDAP

25.3.1 Creating an LDAP Data Server
An LDAP data server corresponds to an LDAP tree that is accessible to Oracle Data Integrator.

25.3.1.1 Creation of the Data Server
Create a data server for the LDAP technology using the standard procedure, as described in
Creating a Data Server of Administering Oracle Data Integrator. This section details only the
fields required or specific for defining a LDAP data server:

1. In the Definition tab:

• Name: Name of the data server that will appear in Oracle Data Integrator.

• User/Password: Name and password of the LDAP directory user.

2. In the JDBC tab, enter the values according to the driver used:

• JDBC Driver: com.sunopsis.ldap.jdbc.driver.SnpsLdapDriver
• JDBC URL: The driver supports two URL formats:

– jdbc:snps:ldap?<property>=<value>[&<property>=<value>...]
– jdbc:snps:ldap2?<property>=<value>[&<property>=<value>...]
These two URLs accept the key properties listed in Table 25-1. See Driver
Configuration for a detailed description of these properties and for a comprehensive
list of all JDBC driver properties.

Note:

The first URL requires the LDAP directory password to be encoded. The
second URL allows you to give the LDAP directory password without
encoding it. It is recommended to use the first URL to secure the LDAP
directory password.

Table 25-1    JDBC URL Properties

Property Value Notes

ldap_auth <authentication mode> LDAP Directory authentication method. See the auth property in Table A-1

ldap_url <LDAP URL> LDAP Directory URL. The URL must not contain spaces. If there are spaces in the
URL, replace them with %20.

See the url property in Table A-1

ldap_user <LDAP user name> LDAP Directory user name. See the user property in Table A-1

Chapter 25
Setting up the Topology

25-3



Table 25-1    (Cont.) JDBC URL Properties

Property Value Notes

ldap_passwo
rd

<LDAP user password> LDAP Directory user password. This password must be encoded if using the
jdbc:snps:ldap URL syntax.

See the password property in Table A-1

ldap_basedn <base DN> LDAP Directory basedn. The basedn must not contain spaces. If there are spaces
in the basedn, replace them with %20.

See the basedn property in Table A-1

Example 25-1    URL Examples

To connect an Oracle Internet Directory on server OHOST_OID and port 3060, using the user
orcladmin, and accessing this directory tree from the basedn dc=us,dc=oracle,dc=com you
can use the following URL:

jdbc:snps:ldap?ldap_url=ldap://OHOST_OID:3060/
&ldap_basedn=dc=us,dc=oracle,dc=com
&ldap_password=ENCODED_PASSWORD
&ldap_user=cn=orcladmin

25.3.2 Creating a Physical Schema for LDAP
Create an LDAP physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

25.4 Setting Up an Integration Project
Setting up a Project using the LDAP database follows the standard procedure. See Creating
an Integration Project of Developing Integration Projects with Oracle Data Integrator.

The recommended knowledge modules to import into your project for getting started are the
following:

• LKM SQL to SQL

• LKM File to SQL

• IKM SQL Control Append

25.5 Creating and Reverse-Engineering an LDAP Directory
This section contains the following topics:

• Create an LDAP Model

• Reverse-Engineering an LDAP Model

Chapter 25
Setting Up an Integration Project

25-4



25.5.1 Create an LDAP Model
A data model groups a set of datastores. Each datastore represents in the context of a
directory a class or group of classes. Typically, classes are mapped to tables and attributes to
column. See LDAP to Relational Mapping for more information.

Create an LDAP Model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator.

25.5.2 Reverse-Engineering an LDAP Model
LDAP supports standard reverse-engineering, which uses only the abilities of the LDAP driver.

When the reverse-engineering process of the LDAP driver translates the LDAP tree into a
relational database structure, it constructs tables from sets of objects in the tree.

The names of these tables must reflect this original structure in order to maintain the mapping
between the two. As a result, the table names are composed of the original LDAP object
names that may be extremely long and not appropriate as datastore names in mappings.

The solution consists in creating an alias file that contains a list of short and clear table name
aliases. See Table Aliases Configuration for more information.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on LDAP use the usual procedure, as described
in Reverse-engineering a Model of Developing Integration Projects with Oracle Data Integrator.

The standard reverse-engineering process will automatically map the LDAP tree contents to a
relational database structure. Note that these tables automatically include primary key and
foreign key columns to map the directory hierarchy.

The reverse-engineering process also creates a ROOT table that represents the root of the
LDAP tree structure from the LDAP entry point downwards.

See LDAP Processing Overview for more information.

25.6 Designing a Mapping
You can use LDAP entries as a source or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performances of this
mapping or check. The recommendations in this section help in the selection of the KM for
different situations concerning an LDAP data server.

25.6.1 Loading Data from and to LDAP
An LDAP directory can be used as a mapping's source or target. The LKM choice in the
Loading Knowledge Module tab that is used to load data between LDAP entries and other
types of data servers is essential for the performance of the mapping.

25.6.1.1 Loading Data from an LDAP Directory
Use the Generic SQL KMs or the KMs specific to the other technology involved to load data
from an LDAP database to a target or staging area database.

Chapter 25
Designing a Mapping

25-5



Table 25-2 lists some examples of KMs that you can use to load from an LDAP source to a
staging area.

Table 25-2    KMs to Load from LDAP to a Staging Area

Staging Area KM Notes

Microsoft SQL Server LKM SQL to MSSQL (BULK) Uses SQL Server's bulk loader.

Oracle LKM SQL to Oracle Faster than the Generic LKM (Uses
Statistics)

Sybase LKM SQL to Sybase ASE (BCP) Uses Sybase's bulk loader.

All LKM SQL to SQL Generic KM

25.6.1.2 Loading Data to an LDAP Directory
It is not advised to use an LDAP directory as a staging area.

25.6.2 Integrating Data in an LDAP Directory
LDAP can be used as a target of a mapping. The IKM choice in the Integration Knowledge
Module tab determines the performances and possibilities for integrating.

Use the Generic SQL KMs or the KMs specific to the other technology involved to integrate
data in an LDAP directory.

Table 25-3 lists some examples of KMs that you can use to integrate data from a staging area
to an LDAP target.

Table 25-3    KMs to Integrate Data in an LDAP Directory

Mode KM Notes

Append IKM SQL to SQL Append Generic KM

25.7 Troubleshooting
This section provides information on how to troubleshoot problems that you might encounter
when using LDAP in Oracle Data Integrator. It contains the following topics:

• SQL operations (insert, update, delete) performed on the relational model are not
propagated to the LDAP directory.

You are probably using an external RDBMS to store your relational model.

• java.util.MissingResourceException: Can't find bundle for base name ldap_....
The property bundle file is missing, present in the incorrect directory or the filename is
incorrect.

• java.sql.SQLException: A NamingException occurred saying: [LDAP: error code
32 ....
The connection property bundle is possibly incorrect. Check the property values in the
bundle files.

• java.sql.SQLException: A NamingException occurred saying: [LDAP: error code 49
- Invalid Credentials]

Chapter 25
Troubleshooting

25-6



The authentication property is possibly incorrect. Check the password.

• java.sql.SQLException: Exception class javax.naming.NameNotFoundException
occurred saying: [LDAP: error code 32 - No Such Object].
The LDAP tree entry point is possibly incorrect. Check the target DistinguishedName in the
LDAP URL.

• java.sql.SQLException: No suitable driver
This error message indicates that the driver is unable to process the URL is registered.
The JDBC URL is probably incorrect. Check that the URL syntax is valid. See Installation
and Configuration .

Chapter 25
Troubleshooting

25-7



26
Oracle TimesTen In-Memory Database

It is important to understand how to work with Oracle TimesTen In-Memory Database in Oracle
Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Setting Up an Integration Project

• Creating and Reverse-Engineering a TimesTen Model

• Setting up Data Quality

• Designing a Mapping

26.1 Introduction
The Oracle TimesTen In-Memory Database (TimesTen) provides real-time data management.
It provides application-tier database and transaction management built on a memory-optimized
architecture accessed through industry-standard interfaces. Optional data replication and
Oracle caching extend the product to enable multi-node and multi-tier configurations that
exploit the full performance potential of today's networked, memory-rich computing platforms.

Oracle TimesTen In-Memory Database is a memory-optimized relational database. Deployed in
the application tier, TimesTen operates on databases that fit entirely in physical memory using
standard SQL interfaces. High availability for the in-memory database is provided through real-
time transactional replication.

TimesTen supports a variety of programming interfaces, including JDBC (Java Database
Connectivity) and PL/SQL (Oracle procedural language extension for SQL).

26.1.1 Concepts
The TimesTen concepts map the Oracle Data Integrator concepts as follows: An Oracle
TimesTen In-Memory Database instance corresponds to a data server in Oracle Data
Integrator. Within this database instance, the database/owner pair maps to an Oracle Data
Integrator physical schema. A set of related objects within one database corresponds to a data
model, and each table, view or synonym will appear as an ODI datastore, with its attributes,
columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an Oracle
TimesTen In-Memory Database ODBC DSN.

26.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 26-1 for handling
TimesTen data. These KMs use TimesTen specific features. It is also possible to use the
generic SQL KMs with the TimesTen database. See Generic SQL for more information.

26-1



Table 26-1    TimesTen KMs

Knowledge Module Description

IKM TimesTen Incremental Update (MERGE) Integrates data from staging area into a TimesTen target table using
TimesTen JDBC driver in incremental update mode. For example,
inexistent rows are inserted; already existing rows are updated.

LKM SQL to TimesTen Loads data from an ANSI SQL-92 source to a TimesTen staging table
using the TimesTen JDBC driver.

LKM File to TimesTen (ttBulkCp) Loads data from a file to a TimesTen staging table using ttBulkCp utility.

26.2 Installation and Configuration
Make sure you have read the information in this section before you start using the TimesTen
Knowledge Modules:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

26.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html

26.2.2 Technology Specific Requirements
Some of the Knowledge Modules for TimesTen use the ttBulkCp utility.

The following requirements and restrictions apply for these Knowledge Modules:

• The host of the ODI Agent running the job must have the TimesTen Client utilities installed
(TTBULKCP)

• Data transformations should be executed on the staging area or target

• The correct ODBC entry must be created on the agent machine:

– Client DSN: A Client DSN specifies a remote database and uses the TimesTen Client.
A Client DSN refers to a TimesTen database indirectly by specifying a hostname, DSN
pair, where the hostname represents the server machine on which TimesTen Server is
running and the DSN refers to a Server DSN that specifies the TimesTen database on
the server host.

– Server DSN: A Server DSN is always defined as a system DSN and is defined on the
server system for each database on that server that will be accessed by
clientapplications. The format and attributes of a server DSN are very similar to those
of a Data Manager DSN.

Chapter 26
Installation and Configuration

26-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


26.2.3 Connectivity Requirements
This section lists the requirements for connecting to a TimesTen database.

To be able to access Microsoft Excel data, you need to:

• Install the TimesTen ODBC Driver

• Declare a TimesTen ODBC Data Source

• JDBC Driver

• ODI Agent

Install the TimesTen ODBC Driver

Microsoft Excel workbooks can only be accessed through ODBC connectivity. The ODBC
Driver for TimesTen must be installed on your system.

Declare a TimesTen ODBC Data Source

An ODBC data source must be defined for each Microsoft Excel workbook (.xls file) that will
be accessed from ODI. ODBC datasources are created with the Microsoft ODBC Data Source
Administrator. Refer to your Microsoft Windows operating system documentation for more
information on datasource creation.

JDBC Driver

Oracle Data Integrator uses the TimesTen JDBC driver to connect to a TimesTen database.
This driver must be installed in your Oracle Data Integrator drivers directory.

ODI Agent

The ODI Agent running the job must have the TimesTen JDBC Driver and ODBC driver
installed and configured.

26.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a TimesTen Data Server

2. Creating a TimesTen Physical Schema

26.3.1 Creating a TimesTen Data Server
A TimesTen data server corresponds to a TimesTen database.

26.3.1.1 Creation of the Data Server
Create a data server for the TimesTen technology using the standard procedure, as described
in Creating a Data Server of Administering Oracle Data Integrator. This section details only the
fields required or specific for defining a TimesTen data server:

1. In the Definition tab:

• Name: Name of the data server that will appear in Oracle Data Integrator

• Server: Physical name of the data server

Chapter 26
Setting up the Topology

26-3



• User/Password: TimesTen user with its password

2. In the JDBC tab:

• JDBC Driver: org.TimesTen.Driver
• JDBC URL: jdbc:timesten:direct:dsn=<DSNname>

where DSNname is the name of an ODBC datasource configured on the machine
running the agent

Note:

Note that Oracle Data Integrator will have write access only on the database
specified in the URL.

26.3.2 Creating a TimesTen Physical Schema
Create a TimesTen physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

26.5 Creating and Reverse-Engineering a TimesTen Model
This section contains the following topics:

• Create a TimesTen Model

• Reverse-engineer a TimesTen Model

26.5.1 Create a TimesTen Model
Create a TimesTen Model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator.

26.5.2 Reverse-engineer a TimesTen Model
TimesTen supports both Standard reverse-engineering - which uses only the abilities of the
JDBC driver - and Customized reverse-engineering.

In most of the cases, consider using the standard JDBC reverse engineering for starting.

Consider switching to customized reverse-engineering if you encounter problems with the
standard JDBC reverse-engineering process due to some specificities of the TimesTen JDBC
driver.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on TimesTen use the usual procedure, as
described in Reverse-engineering a Model of Developing Integration Projects with Oracle Data
Integrator.

Chapter 26
Creating and Reverse-Engineering a TimesTen Model

26-4



Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on TimesTen with a RKM, use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration Projects
with Oracle Data Integrator. This section details only the fields specific to the TimesTen
technology:

• In the Reverse Engineer tab of the TimesTen Model, select the KM: RKM SQL
(Jython).<project name>.

The reverse-engineering process returns tables, views, attributes, Keys and Foreign Keys.

26.6 Setting up Data Quality
Oracle Data Integrator provides the CKM SQL for checking data integrity against constraints
defined on a TimesTen table. See Flow Control and Static Control in Developing Integration
Projects with Oracle Data Integrator for details.

See Generic SQL for more information.

26.7 Designing a Mapping
You can use TimesTen as a source, staging area, or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of this
mapping or check. The recommendations in this section help in the selection of the KM for
different situations concerning a TimesTen data server.

26.7.1 Loading Data from and to TimesTen
TimesTen can be used as a source, target or staging area of a mapping. The LKM choice in
the Loading Knowledge Module tab to load data between TimesTen and another type of data
server is essential for the performance of a mapping.

26.7.1.1 Loading Data from TimesTen
Use the Generic SQL KMs or the KMs specific to the other technology involved to load data
from a TimesTen database to a target or staging area database.

For extracting data from a TimesTen staging area to a TimesTen table, use the IKM TimesTen
Incremental Update (MERGE). See Loading Data from TimesTen for more information.

26.7.1.2 Loading Data to TimesTen
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for
loading data from a source or staging area into a TimesTen database. These optimized
TimesTen KMs are listed in Table 26-2. In addition to these KMs, you can also use the Generic
SQL KMs or the KMs specific to the other technology involved.

Chapter 26
Setting up Data Quality

26-5



Table 26-2    KMs for loading data to TimesTen

Source or Staging Area
Technology

KM Notes

SQL LKM SQL to TimesTen Loads data from an ANSI SQL-92
source to a TimesTen staging table
using the TimesTen JDBC driver.

File LKM File to TimesTen
(ttBulkCp)

Loads data from a file to a TimesTen
staging table using ttBulkCp utility.

26.7.2 Integrating Data in TimesTen
Oracle Data Integrator provides Knowledge Modules that implement optimized data integration
strategies for TimesTen. These optimized TimesTen KMs are listed in Table 26-3. In addition to
these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the performances and
possibilities for integrating.

Table 26-3    KMs for integrating data to TimesTen

KM Notes

IKM TimesTen Incremental Update
(MERGE)

Integrates data from staging area into a TimesTen target table
using TimesTen JDBC driver in incremental update mode. For
example, inexistent rows are inserted; already existing rows are
updated.

26.4 Setting Up an Integration Project
Setting up a project using the TimesTen database follows the standard procedure. See 
Creating an Integration Project of Developing Integration Projects with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for getting
started with TimesTen:

• CKM SQL

• IKM SQL Control Append

• IKM TimesTen Incremental Update (MERGE)

• LKM SQL to TimesTen

• LKM File to TimesTen (ttBulkCp)

• RKM SQL (Jython)

Chapter 26
Setting Up an Integration Project

26-6



27
Oracle GoldenGate

You can work with Oracle GoldenGate to capture changes on source transactional systems
and replicate them in a staging server for consumption by Oracle Data Integrator mappings.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Working with the Oracle GoldenGate JKMs

• Advanced Configuration

• Integrated Capture

• Using Different Capture and Apply Modes Together

• Switching to Different Process Mode

• Upgrading GoldenGate Classic Extract to Integrated

27.1 Introduction
Oracle GoldenGate (OGG) product offers solutions that provide key business applications with
continuous availability and real-time information. It provides guaranteed capture, routing,
transformation and delivery across heterogeneous databases and environments in real-time.

Using the Oracle GoldenGate knowledge modules requires that you know and understand
Oracle GoldenGate concepts and architecture. See the Oracle GoldenGate Documentation on
OTN for more information:

http://www.oracle.com/technetwork/middleware/goldengate/overview/index.html

27.1.1 Overview of the GoldenGate CDC Process
Oracle Data Integrator can capture changes in a source database using Oracle GoldenGate to
process them in the ODI CDC framework. Oracle Data Integrator uses Oracle GoldenGate to
replicate data from a source database to a staging database. This staging database contains a
copy of the source tables and the ODI Changed Data Capture (CDC) infrastructure, both
loaded using Oracle GoldenGate.

The staging database can be stored in an Oracle or Teradata schema. The source database
can be Oracle, Microsoft SQL Server, DB2 UDB, or Sybase ASE. In this chapter, <database>
refers to any of these source database technologies.

Setting up CDC with GoldenGate is done using the following process:

1. A replica of the source tables is created in the staging database, using, for example, the
Oracle Data Integrator Common Format Designer feature.

2. Oracle Data Integrator Changed Data Capture (CDC) is activated on the source tables
using either the JKM <database> to Oracle Consistent (OGG Online) or the JKM
<database> to Teradata Consistent (OGG Online).

3. The journals are started in either online mode or offline mode.

27-1

http://www.oracle.com/technetwork/middleware/goldengate/overview/index.html


• Online mode: Starting the journals in online mode configures and starts the
GoldenGate Capture (Extract) process to capture the changes in the source database
and corresponding Delivery (Replicat) processes to replicate the changes in the
staging database. Changes are replicated into both the replicated source table and the
CDC infrastructure.

The GoldenGate Capture and Delivery processes are deployed and started using the
GoldenGate JAgent interface. The GoldenGate JAgent facilitates communication
between Oracle Data Integrator and Oracle GoldenGate.

• Offline mode: Starting the journals in offline mode creates the Oracle GoldenGate
configuration files and sets up a CDC infrastructure in the staging database. Note that
no active process is started for capturing source data at this stage.

Using the generated configuration files, an Oracle GoldenGate Capture process is
configured and started to capture changes from the source database, and
corresponding Delivery processes are configured and started to replicate these
changes into the staging database. Changes are replicated into both the replicated
source table and the CDC infrastructure.

GoldenGate can optionally be configured to perform the initial load of the source data
into the staging tables.

Note:

The offline mode requires an Oracle GoldenGate data server to be first
created in Topology. See Define the Oracle GoldenGate Data Servers for
instructions on how to create one.

4. ODI mappings can source from the replicated tables and use captured changes
seamlessly within any ODI scenario.

27.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules listed in Table 27-1 for replicating
online data from a source to a staging database. Like any other CDC JKMs, the Oracle
GoldenGate JKMs journalize data in the source server.

The JKM <database> to Oracle Consistent (OGG Online) and the JKM <database> to
Teradata Consistent (OGG Online) perform the same tasks:

• Create and manage the ODI CDC framework infrastructure on the replicated tables.

• If the journals are started in online mode, configure and start the Oracle Capture and
Delivery processes on the GoldenGate servers using the GoldenGate JAgent.

• If the journals are started in offline mode, generate the parameter files to set up the Oracle
GoldenGate Capture and Delivery processes and the Readme.txt explaining how to
complete the setup.

• Provide extra steps to check the configuration of the source database and proposes tips to
correct the configuration.

Chapter 27
Introduction

27-2



Table 27-1    Oracle GoldenGate Knowledge Modules

Knowledge Module Description

JKM Oracle to Oracle
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on an Oracle
staging server and generates the Oracle GoldenGate configuration for
replicating data from an Oracle source to this staging server.

JKM DB2 UDB to Oracle
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on an Oracle
staging server and generates the Oracle GoldenGate configuration for
replicating data from an IBM DB2 UDB source to this staging server.

JKM Sybase ASE to Oracle
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on an Oracle
staging server and generates the Oracle GoldenGate configuration for
replicating data from a Sybase ASE source to this staging server.

JKM MSSQL to Oracle
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on an Oracle
staging server and generates the Oracle GoldenGate configuration for
replicating data from a Microsoft SQL Server source to this staging
server.

JKM Oracle to Teradata
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on a Teradata
staging server and generates the Oracle GoldenGate configuration for
replicating data from an Oracle source to this staging server.

JKM DB2 UDB to Teradata
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on a Teradata
staging server and generates the Oracle GoldenGate configuration for
replicating data from an IBM DB2 UDB source to this staging server.

JKM Sybase ASE to Teradata
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on a Teradata
staging server and generates the Oracle GoldenGate configuration for
replicating data from a Sybase ASE source to this staging server.

JKM MSSQL to Teradata
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on a Teradata
staging server and generates the Oracle GoldenGate configuration for
replicating data from a Microsoft SQL Server source to this staging
server.

27.2 Installation and Configuration
Make sure you have read the information in this section before you start using the Oracle
GoldenGate Knowledge Modules:

• System Requirements and Certifications

• Technology Specific Requirements

27.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

See also the Oracle GoldenGate documentation on OTN for source and staging database
version platform support.

Chapter 27
Installation and Configuration

27-3

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


27.2.2 Technology Specific Requirements
In order to run the Capture and Delivery processes, Oracle GoldenGate must be installed on
both the source and staging servers. Installing Oracle GoldenGate installs all of the
components required to run and manage GoldenGate processes.

Oracle GoldenGate Manager Process must be running on each system before Capture or
Delivery can be started, and must remain running during their execution for resource
management.

In order to perform online journalizing, the Oracle GoldenGate JAgent process must be
configured and running on the Oracle GoldenGate instances.

Oracle GoldenGate has specific requirement and installation instructions that must be
performed before starting the Capture and Delivery processes configured with the Oracle
GoldenGate JKMs. See the Oracle GoldenGate Documentation on OTN for more information.

27.2.3 Connectivity Requirements
If the source database is Oracle, there are no connectivity requirements for using Oracle
GoldenGate data in Oracle Data Integrator.

If the source database is IBM DB2 UDB, Microsoft SQL Server, or Sybase ASE, Oracle
GoldenGate uses the ODBC driver to connect to the source database. You need to install the
ODBC driver and to declare the data source in your system. You also need to set the data
source name (DSN) in the KM option SRC_DSN.

27.3 Working with the Oracle GoldenGate JKMs
To use the JKM <database> to Oracle Consistent (OGG Online) or the JKM <database> to
Teradata Consistent (OGG Online) in your Oracle Data Integrator integration projects, you
need to perform the following steps:

1. Define the Topology

2. Create the Replicated Tables

3. Set Up an Integration Project

4. Configure CDC for the Source Datastores

5. Configure and Start Oracle GoldenGate Processes (Offline mode only)

6. Design Mappings Using Replicated Data

27.3.1 Define the Topology
This step consists in declaring in Oracle Data Integrator the staging data server, the source
data server, as well as the physical and logical schemas attached to these servers.

To define the topology in this configuration, perform the following tasks:

1. Define the Source Data Server

2. Create the Source Physical Schema

3. Define the Staging Server

4. Create the Staging Physical Schema

Chapter 27
Working with the Oracle GoldenGate JKMs

27-4



5. Define the Oracle GoldenGate Data Servers

6. Create the Oracle GoldenGate Physical Schemas

7. Create the Oracle GoldenGate Logical Schemas

27.3.1.1 Define the Source Data Server
You have to define a source data server from which Oracle GoldenGate will capture changes.

Create a data server for your source technology using the standard procedure. For more
information, see the chapter corresponding to your source technology in this guide:

• Creating an Oracle Data Server

• Creating a Microsoft SQL Server Data Server

• Creating a DB2/400 Data Server

This data server represents the source database instance.

27.3.1.2 Create the Source Physical Schema
Create a physical schema under the data server that you have created in Define the Source
Data Server. Use the standard procedure, as described in Creating a Physical Schema in
Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

27.3.1.3 Define the Staging Server
Create a data server for the Oracle or Teradata technology. For more information, see:

• Creating an Oracle Data Server

• Creating a Teradata Data Server

27.3.1.4 Create the Staging Physical Schema
Create an Oracle or Teradata physical schema using the standard procedure, as described in 
Creating a Physical Schema in Administering Oracle Data Integrator.

Note:

The physical schema defined in the staging server will contain in the data schema the
changed records captured and replicated by the Oracle GoldenGate processes. The
work schema will be used to store the ODI CDC infrastructure.

Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

Chapter 27
Working with the Oracle GoldenGate JKMs

27-5



27.3.1.5 Define the Oracle GoldenGate Data Servers
An Oracle GoldenGate data server corresponds to the Oracle GoldenGate JAgent process in
Oracle Data Integrator (ODI). The Oracle GoldenGate JAgent process facilitates
communication between ODI and the Oracle GoldenGate servers. You must create a JAgent
process for both the source and the target Oracle GoldenGate servers.

Create a data server for the Oracle GoldenGate technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This section
details only the fields required or specific for defining an Oracle GoldenGate data server:

• In the Definition tab:

• Name: Name of the data server that will appear in the Oracle Data Integrator.

• Host: Hostname or the IP address of the server where the JAgent process is running.

• JMX Port: Port number of the JAgent process.

• Manager Port: Port number of the Oracle GoldenGate manager instance.

• JMX User: User name to connect to the JAgent.

• Password: Password of the user credentials.

• Installation Path: Location path for the Oracle GoldenGate installation. You must use
this path when you create the capture process definitions from a model.

27.3.1.6 Create the Oracle GoldenGate Physical Schemas
The Oracle GoldenGate physical schemas in ODI correspond to the GoldenGate Capture and
Delivery processes that perform CDC in Oracle GoldenGate. You must define the Oracle
GoldenGate physical schemas to configure the Capture process on the source GoldenGate
server and Delivery process on the target GoldenGate server.

Create a physical schema under the Oracle GoldenGate data server that you have created in 
Define the Oracle GoldenGate Data Servers. Use the standard procedure, as described in 
Creating a Physical Schema in Administering Oracle Data Integrator. This section details only
the fields required or specific to create the physical schemas to configure the Oracle
GoldenGate Capture and Replicate processes.

Note:

Alternatively, you can create the Oracle GoldenGate physical schemas from the
model. See Create Oracle GoldenGate Physical Schemas from the model for
information about how to create physical schemas from the model.

GoldenGate Capture Process Fields

Note that the GoldenGate Capture process must be configured on the source GoldenGate
server.

1. In the Process Definition tab:

• Process Type: Type of the process that you want to configure. Select Capture as the
process type.

Chapter 27
Working with the Oracle GoldenGate JKMs

27-6



• Name: Name of the process (physical schema) in Oracle Data Integrator. Process
name cannot exceed 8 characters and only upper case is allowed.

• Trail File Path: Location of the Oracle GoldenGate trail file. Only two characters for
the file name part are allowed.

• Remote Trail File Path: Location of the remote trail file. Only two characters for the
file name part are allowed.

• Trail File Size: Size of the Oracle GoldenGate trail file in Megabytes.

• Report Fetch: Enables report information to include the fetching statistics.

• Report Count Frequency: Reports the total operations count at specific intervals. If
the interval is not specified the entry is not added to the parameter file.

• Select a parameter: List of available Oracle GoldenGate parameters. Only the
parameters for the supported database are listed. Select a parameter and click Add. A
template of the selected parameter is added to the text box.

See the Oracle GoldenGate Reference Guide on OTN for information about the
GoldenGate parameters.

Delivery Process Fields

Note that the GoldenGate Delivery process must be configured on the target GoldenGate
server.

• In the Process Definition tab:

• Process Type: Type of the process that you want to configure. Select Delivery as the
process type.

• Name: Name of the process (physical schema) in Oracle Data Integrator. Process
name cannot exceed 7 characters and only uppercase is allowed.

• Trail File Path: Location of the trail file. Only two characters for the filename part are
allowed.

• Discard File Path: Location of the discard file.

• Definition File Path: Location of the definition file.

• Report Detail: Enables report information to include any collision counts.

• Report Count Frequency: Report the total operations count at specific intervals. If the
interval is not specified the entry is not added to the parameter file.

• Select a parameter: List of available Oracle GoldenGate parameters. Only the
parameters for the supported database are listed. Select a parameter and click Add.

See the Oracle GoldenGate Reference Guide on OTN for information about the
GoldenGate parameters.

Note:

In the definition of the logical schema, you must select the logical schema for
the staging database.

27.3.1.7 Create the Oracle GoldenGate Logical Schemas
Create logical schemas for the GoldenGate physical schemas (GoldenGate Capture and
Delivery processes) that you created in section Create the Oracle GoldenGate Physical

Chapter 27
Working with the Oracle GoldenGate JKMs

27-7



Schemas. You must create a logical schema for both the Capture process and the Delivery
process.

To create logical schemas:

1. In the Topology Navigator expand the Technologies node in the Logical Architecture
accordion.

2. Right-click Oracle GoldenGate and select New Logical Schema.

3. Fill in the Logical Schema Name.

4. Select the appropriate process type, either Capture or Delivery, to which you want to
attach your logical schema.

5. For each Context in the left column, select an existing Physical Schema in the right
column. This Physical Schema is automatically associated to the logical schema in this
context. Repeat this operation for all necessary contexts.

Note:

If the process type is set to 'Delivery', you must select the name of the logical
schema that GoldenGate will use to deliver the changes. In this case, select a
logical schema name for the 'Target DB Logical Schema'.

6. From File menu, click Save.

27.3.2 Create the Replicated Tables
Oracle GoldenGate will replicate in the staging server the records changed in the source. In
order to perform this replication, the source table structures must be replicated in the staging
server.

To replicate these source tables:

1. Create a new Data Model using the Oracle or Teradata technology. This model must use
the logical schema created using the instructions in Create the Staging Physical Schema.

See Creating a Model in Developing Integration Projects with Oracle Data Integrator for
more information on model creation.

Note that you do not need to reverse-engineer this data model.

2. Create a new diagram for this model and add to this diagram the source tables that you
want to replicate.

3. Generate the DDL Scripts and run these scripts for creating the tables in the staging data
server.

4. An initial load of the source data can be made to replicate this data into the staging tables.
You can perform this initial load with ODI using the Generate Interface IN feature of
Common Format Designer. Alternately, you can use Oracle GoldenGate to perform this
initial load, by specifying a capture or delivery process to perform the initial load or by
setting the USE_OGG_FOR_INIT JKM option to Yes to create a process to perform the
initial load when you Configure CDC for the Source Datastores.

Chapter 27
Working with the Oracle GoldenGate JKMs

27-8



Note:

See Creating Data Models with Common Format Designer in Developing Integration
Projects with Oracle Data Integrator for more information on diagrams, generating
DDL, and generating Interface IN features.

27.3.3 Set Up an Integration Project
Setting up a project using Oracle GoldenGate features follows the standard procedure. See 
Creating an Integration Project of Developing Integration Projects with Oracle Data Integrator.

Depending on the technology of your source data server and staging server, import one of the
following KMs into your project:

• JKM Oracle to Oracle Consistent (OGG Online)

• JKM DB2 UDB to Oracle Consistent (OGG Online)

• JKM Sybase ASE to Oracle Consistent (OGG Online)

• JKM MSSQL to Oracle Consistent (OGG Online)

• JKM Oracle to Teradata Consistent (OGG Online)

• JKM DB2 UDB to Teradata Consistent (OGG Online)

• JKM Sybase ASE to Teradata Consistent (OGG Online)

• JKM MSSQL to Teradata Consistent (OGG Online)

27.3.4 Configure CDC for the Source Datastores
Changed Data Capture must be configured for the source datastores. This configuration is
similar to setting up consistent set journalizing and is performed using the following steps.

1. Edit the data model that contains the source datastore. In the Journalizing tab of the data
model, set the Journalizing Mode to Consistent Set and select the appropriate JKM
<database> to Oracle Consistent (OGG Online) or JKM <database> to Teradata
Consistent (OGG Online).

Select the following GoldenGate processes (physical schemas) using the process
selection drop-down list:

• Capture Process

• Delivery Process

• Initial Load Capture Process

• Initial Load Delivery Process

If you do not want to use an existing GoldenGate process, you can create new processes
from here using the Create button next to the <Process Name> field. See Create Oracle
GoldenGate Physical Schemas from the model for information about how to create
GoldenGate processes from the model.

Set the KM options as follows:

• ONLINE: If you set this option to true, the JKM configures the CDC infrastructure and
configures and starts the GoldenGate Capture and Delivery processes. If you set this
option to false, the JKM generates the CDC infrastructure and the configuration files

Chapter 27
Working with the Oracle GoldenGate JKMs

27-9



that are required to set up the GoldenGate Capture and Delivery processes. It also
generates the Readme.txt that contains the instructions to configure and start the
GoldenGate processes.

For more information about online and offline mode, see Overview of the GoldenGate
CDC Process.

For information about how to configure and start GoldenGate processes using the
configuration files, see Configure and Start Oracle GoldenGate Processes (Offline
mode only).

• LOCAL_TEMP_DIR: Full path to a temporary folder into which the Oracle GoldenGate
configuration files will be generated

• SRC_DSN: Name of the data source. This KM option is required when the ODBC
driver is used. Note that this option does not exist in the JKM Oracle to Oracle
Consistent (OGG Online).

Note:

For Sybase users only: When defining the data source name, you have to
add the database server name to the datasource name as follows:

DSN_name@SYBASE_DBSERVER

• USE_OGG_FOR_INIT: Applicable for offline mode only. Generate the Oracle
GoldenGate processes to perform the initial load of the replicated tables. If you have
performed this initial load using Oracle Data Integrator while Creating the Replicated
Tables, you can leave this option to NO.

• USE_INTEGRATED_REPLICAT_MODE: This KM option is required when the delivery
mode is classic or integrated replicat.

Values

True: Use integrated replicat mode

False: Use classic mode (default value)

Only the following KMs have this parameter implemented:

KM_JKM DB2 UDB to Oracle Consistent (OGG Online).xml

KM_JKM MSSQL to Oracle Consistent (OGG Online).xml

KM_JKM Oracle to Oracle Consistent (OGG Online).xml

KM_JKM Sybase ASE to Oracle Consistent (OGG Online).xmlKM_JKM DB2 UDB to
Oracle Consistent (OGG Online).xml

KM_JKM MSSQL to Oracle Consistent (OGG Online).xml

KM_JKM Oracle to Oracle Consistent (OGG Online).xml

KM_JKM Sybase ASE to Oracle Consistent (OGG Online).xml

2. Select the datastores that you want to replicate or the model if want to replicate all
datastores, right-click then select Changed Data Capture > Add to CDC.

3. Select the model, right-click then select Changed Data Capture > Subscriber >
Subscribe. Add subscribers for this model.

4. Select the model, right-click then select Changed Data Capture > Start Journal. If
journals are started in online mode (ONLINE option for the JKM is set to true), the JKM

Chapter 27
Working with the Oracle GoldenGate JKMs

27-10



creates the CDC infrastructure and configures and starts the Oracle GoldenGate
processes. If journals are started in offline mode (ONLINE option for the JKM is set to
false), the JKM creates the CDC infrastructure and generates the configuration files that
are required to configure the Oracle GoldenGate processes. It also generates Readme.txt
that contains the instructions to configure and start the GoldenGate processes.

For information about how to configure and start GoldenGate processes, see Configure
and Start Oracle GoldenGate Processes (Offline mode only).

You can review the result of the journal startup action:

• If journals are started in online mode, the Oracle GoldenGate processes are configured
and started. The changed data in the source datastores is captured and replicated in the
staging tables.

• If the journals are started in offline mode, the Oracle GoldenGate configuration files, as
well as a Readme.txt file are generated in the directory that is specified in the
LOCAL_TEMP_DIR KM option. You can use these files to Configure and Start Oracle
GoldenGate Processes (Offline mode only).

• The CDC infrastructure is set up correctly. The journalized datastores appear in the Models
accordion with a Journalizing Active flag. You can right-click the model and select
Changed Data Capture > Journal Data… to access the journalized data for these
datastores.

See Using Journalizing in Developing Integration Projects with Oracle Data Integrator for more
conceptual information and detailed instructions on CDC.

Note:

Although this CDC configuration supports consistent set journalizing, it is not required
to order datastores in the Journalized Tables tab of the model after adding them to
CDC.

27.3.4.1 Create Oracle GoldenGate Physical Schemas from the model
You can create the Oracle GoldenGate physical schemas for the following GoldenGate
processes from the Journalizing tab of the Model Editor.

• Capture Process

• Delivery Process

• Initial Capture Process (Capture process to be used for initial load)

• Initial Delivery Process (Delivery process to be used for initial load)

When you create the Oracle GoldenGate physical schemas from the models, the default
values are derived from the JAgent and the Model details.

To create the Oracle GoldenGate physical schemas from the model:

1. In the Designer Navigator expand the Models panel.

2. Expand the Models folder that contains the model from which you want to create the
physical schemas.

3. Right-click the Model and select Open.

4. Click the Journalizing tab of the Model Editor.

Chapter 27
Working with the Oracle GoldenGate JKMs

27-11



5. Click Create button next to the Capture Process field.

6. Select the appropriate JAgent and Context.

7. Fill in the Process Name and Logical Process Name.

8. Click OK to create and select the Capture process.

WARNING:

The physical schema generated for the Capture process needs to be changed
manually. The Remote Trail File Path property of the physical schema uses the
path for the Capture instance and needs to be changed to use the path for the
Delivery instance.

9. Click Create button next to the Delivery Process field.

10. Select the appropriate JAgent and Context.

11. Fill in the Process Name and Logical Process Name.

12. Select the Target Database Logical Schema for the Delivery process.

13. Click OK.

14. Similarly, click Create buttons next to the Initial Load Capture Process and Initial Load
Delivery Process fields to create physical schemas for them.

27.3.5 Configure and Start Oracle GoldenGate Processes (Offline mode
only)

Note:

• This section is applicable only if the journals are started in offline mode. That
means only if the ONLINE option for the JKM is set to false.

• Connection to a JAgent is not required to configure Oracle GoldenGate
Processes in offline mode. However, the necessary information must be available
in Topology.

The JKM generates in the LOCAL_TEMP_DIR a folder named after the source and target
object groups. This folder contains the following:

• The Readme.txt file that contains detailed instructions for configuring and starting the
Oracle GoldenGate processes.

• The src folder that contains configuration files to upload on the source server, in the
Oracle GoldenGate installation directory.

• The stg folder that contains configuration files to upload on the staging server, in the
Oracle GoldenGate installation directory.

The detailed instructions, customized for your configuration, are provided in the readme file.

These instructions include:

Chapter 27
Working with the Oracle GoldenGate JKMs

27-12



1. Uploading or copying files from the src folder to the source server.

2. Uploading or copying files from the stg folder to the staging server.

3. Running on the source server the OBEY file generated by the JKM for starting the Capture
process, using the ggsci command line.

4. Generating on the source server definition file using the defgen command line.

5. Copying this definition file to the staging server.

6. If the initial load option is used:

• Running on the staging server the OBEY file generated by the JKM for the initial load,
using the ggsci command line.

• Running on the source server the OBEY file generated by the JKM for the initial load,
using the ggsci command line.

7. Finally Running on the staging server the OBEY file generated by the JKM for the starting
the Delivery processes, using the ggsci command line.

See the Oracle GoldenGate documentation on OTN for more information on OBEY files, the
ggsci and defgen utilities.

27.3.6 Design Mappings Using Replicated Data
You can use the data in the replicated data as a source in your mappings. This process is
similar to using a source datastore journalized in consistent set mode. See Using Changed
Data: Consistent Set Journalizing in Developing Integration Projects with Oracle Data
Integrator for more information.

27.4 Advanced Configuration
This section includes the following advanced configuration topics:

• Initial Load Method

• Tuning Replication Performances

• One Source Multiple Staging Configuration (Offline mode only)

27.4.1 Initial Load Method
The staging tables contain a replica of the structure and data from the source tables. The
Oracle GoldenGate processes capture changes on the source tables and apply them to the
target. Yet the staging tables must be initially loaded with the original content of the source
tables. You can use the following methods to perform the initial load:

• Using Oracle GoldenGate: A specific GoldenGate process loads the whole content of the
source tables into the staging tables.

• Using Oracle Data Integrator: The Generate Interfaces IN option of Oracle Data
Integrator's Common Format Designer. This method uses ODI mappings to transfer the
data.

• Using database backup/restore tools to copy data and structures.

Chapter 27
Advanced Configuration

27-13



27.4.2 Tuning Replication Performances
The following KM options can be used to improve replication performances:

• COMPATIBLE: This Oracle-specific option affects the use of the PURGE key word and the
way statistics (using DBMS_STATS or ANALYZE) are collected. Set this value to the
database version of your staging server.

• NB_APPLY_PROCESS: Number of Oracle GoldenGate Delivery processes created on the
staging server.

• TRAIL_FILE_SIZE: Size of the Oracle GoldenGate trail file in Megabytes.

For the NB_APPLY_PROCESS and TRAIL_FILE_SIZE parameters, see the Oracle
GoldenGate Documentation on OTN for more information on performance tuning.

27.4.3 One Source Multiple Staging Configuration (Offline mode only)
Note that one source multiple staging configuration can be done only in the offline journalizing
mode.

It is possible to set up a configuration where changes are captured on a single source and
replicated to several staging servers. The example below illustrates how to set this up in a
typical configuration.

Replication should source from source server SRC and replicate in both STG1 and STG2
staging servers.

1. Edit the source model and ensure that the logical schema for STG1 is selected.

2. Start the journals in offline mode and follow the instructions in the readme to set up the
Oracle GoldenGate processes in SRC and STG1.

3. Edit the source model again, and select the logical schema for STG2.

4. Start the journals in offline mode and follow the instructions in the readme to set up the
Oracle GoldenGate process in SRC and STG2.

Note:

Playing the configuration on SRC again will not recreate a capture process, trail
files, or definition files. It will simply create a new Oracle GoldenGate Datapump
process to push data to STG2.

27.5 Integrated Capture
In the Integrated Capture mode, the Oracle GoldenGate extract process interacts directly with
a database logmining server, to receive data changes in the form of logical change records
(LCR).

The following are the benefits of Integrated Capture:

As the Integrated Capture uses the database logmining server to access the Oracle redo
stream, you can automatically switch between different copies of archive logs or different
mirrored versions of the online logs.

Chapter 27
Integrated Capture

27-14



• Being fully integrated with the database, no additional steps are required to work with
Oracle RAC, ASM, and TDE

• Enables faster filtering of tables

• Handles point-in-time recovery and RAC integration more efficiently

• Enables integrated log management, as the Oracle Recovery Manager (RMAN)
automatically retains the archive logs required for the extract

• Supports capture from a multi-tenant container database

• As the Integrated Capture and the Integrated Apply are both database objects, the objects
naming follows the same rules as other Oracle database objects

• For a release 11.2.0.4 source database and later (with source compatibility set to 11.2.0.4
or higher), the capture of DDL is performed by the logmining server asynchronously and
requires no special triggers, tables, or other data objects installation

• DDL trigger and supporting objects are required when extract is in Integrated mode with a
Oracle 11g source database earlier than version 11.2.0.4

• Oracle GoldenGate upgrades can be performed without stopping the user applications

• Figure 27-1    Configuration of Extract in Integrated Capture

27.5.1 Integrated Capture Deployment Options
Depending on where the mining database is deployed, you have two deployment options for
integrated capture. The mining database is the one where the logmining server is deployed.

Local Deployment

For local deployment, the source database and the mining database are the same. The source
database is the database:

• For which you want to mine the redo stream to capture changes.

• Where you deploy the logmining server.

As Integrated Capture is fully integrated with the database, this mode does not require any
special database setup.

Downstream Deployment

In downstream deployment, the source and mining databases are different databases. When
using a downstream mining configuration, the source database and mining database must be
of the same platform. For example, if the source database is running on Windows 64-bit, the
downstream database must also be on a Windows 64-bit platform.

Chapter 27
Integrated Capture

27-15



1. Create the logmining server at the downstream database.

2. Configure redo transport at the source database to ship the redo logs to the downstream
mining database for capture at that location.

Note:

Using a downstream mining server for capture is recommended to offload the capture
overhead, and any other overhead from transformation or other processing from the
production server, but requires log shipping and other configuration.

27.5.2 Deciding Which Apply Method to Use
The Replicat process enables the application of replicated data to an Oracle target database.
For more information about Oracle GoldenGate processes, see Administering Oracle
GoldenGate for Windows and UNIX.

For an Oracle target database, you can run Replicat in either nonintegrated or integrated
mode. The following section explains these modes and the database versions that each mode
supports:

27.5.2.1 Nonintegrated Replicat
In nonintegrated mode, the Replicat process uses standard SQL to apply data directly to the
target tables.

You can apply transactions in parallel with a nonintegrated Replicat, by using a coordinated
Replicat configuration. For more information, see Administering Oracle GoldenGate for
Windows and UNIX.

Use nonintegrated Replicat when:

• The target Oracle database is a version earlier than Oracle 11.2.0.4.

• You want to extensively use features that are not supported in integrated Replicat mode.

In nonintegrated mode, Replicat operates as follows:

1. Reads the Oracle GoldenGate trail.

2. Performs data filtering, mapping, and conversion.

3. Constructs SQL statements that represent source database DML or DDL transactions (in
committed order).

4. Applies the SQL to the target through Oracle Call Interface (OCI).

Chapter 27
Integrated Capture

27-16



Figure 27-2    Nonintegrated Replicat Configuration

27.5.2.1.1 Integrated Replicat

In integrated mode, the Replicat process leverages the apply processing functionality that is
available within the Oracle database. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs logical change records (LCR) that represent source database DML transactions
(in committed order). DDL is applied directly by Replicat.

• Attaches to a background process in the target database known as a database inbound
server by means of a lightweight streaming interface.

• Transmits the LCRs to the inbound server, which applies the data to the target database.

Figure 27-3    Integrated Replicat Configuration

Within a single Replicat configuration, multiple inbound server child processes known as apply
servers apply transactions in parallel, while preserving the original transaction atomicity. You
can increase this parallelism as much as your target system will support, when you configure
the Replicat process or dynamically as needed.

Chapter 27
Integrated Capture

27-17



Figure 27-4    Integrated Replicat with Two Parallel Apply Servers

Integrated Replicat applies transactions asynchronously. Transactions that do not have
interdependencies can be safely executed and committed out of order to achieve fast
throughput. Transactions with dependencies are guaranteed to be applied in the same order as
on the source.

A reader process in the inbound server computes the dependencies among the transactions in
the workload based on the constraints defined at the target database (primary key, unique,
foreign key). Barrier transactions and DDL operations are managed automatically, as well. A
coordinator process coordinates multiple transactions and maintains order among the apply
servers.

If the inbound server does not support a configured feature or column type, Replicat
disengages from the inbound server, waits for the inbound server to complete transactions in
its queue, and then applies the transaction to the database in direct apply mode through OCI.
Replicat resumes processing in integrated mode after applying the direct transaction.

The following features are applied in direct mode by Replicat:

• DDL operations

• Sequence operations

• SQLEXEC parameter within a TABLE or MAP parameter

• EVENTACTIONS processing

• UDT Note, if the extract uses USENATIVEOBJSUPPORT to capture the UDT, then
integrated Replicat will apply it with the inbound server, otherwise it will be handled by
Replicat directly.

Chapter 27
Integrated Capture

27-18



Note:

Because transactions are applied serially in direct apply mode, heavy use of such
operations may reduce the performance of the integrated Replicat mode. Integrated
Replicat performs best when most of the apply processing can be performed in
integrated mode.

User exits are executed in integrated mode. The user exit may produce unexpected
results, if the exit code depends on data in the replication stream.

27.5.2.1.2 Integrated Replicat Requirements

To use integrated Replicat, the following must be true:

• The target Oracle database must be Oracle 11.2.0.4 or later.

• Supplemental logging must be enabled on the source database to support the computation
of dependencies among tables and scheduling of concurrent transactions on the target.

• Supplemental logging can be enabled at any time up to, but before, you start the Oracle
GoldenGate processes.

27.6 Using Different Capture and Apply Modes Together
You can use the following capture and apply modes together:

• Classic capture (Oracle or non-Oracle source) and nonintegrated Replicat

• Classic capture (Oracle or non-Oracle source) and integrated Replicat

• Integrated capture and nonintegrated Replicat

• Integrated capture and integrated Replicat

You can use integrated capture and classic capture concurrently within the same source
Oracle GoldenGate instance, and you can use integrated Replicat and nonintegrated Replicat
concurrently within the same target Oracle GoldenGate instance.

This configuration requires careful placement of your objects within the appropriate process
group, because there is no coordination of DDL or DML between classic and integrated
capture modes, nor between nonintegrated and integrated Replicat modes. Each Extract group
must process objects that are suited to the processing mode, based on table data types and
attributes. No objects in one Extract can have DML or DDL dependencies on objects in the
other Extract. The same type of segregation must be applied to the Replicat configuration.

The recommended Oracle GoldenGate configuration, when supported by the Oracle version, is
to use one integrated capture on an Oracle source and one integrated Replicat per source
database on an Oracle target. Integrated capture supports certain data types more completely
than classic capture. One integrated Replicat configuration supports all Oracle data types
either through the inbound server or by switching to direct apply when necessary, and it
preserves source transaction integrity. You can adjust the parallelism settings to the desired
apply performance level as needed.

If the target database is an Oracle version that does not support integrated Replicat, or if it is a
non-Oracle database, you can use a coordinated Replicat configuration. For more information,
see Administering Oracle GoldenGate for Windows and UNIX.

Chapter 27
Using Different Capture and Apply Modes Together

27-19



27.7 Switching to Different Process Mode
You can switch between the process modes. For example, you can switch from classic capture
to integrated capture, or from integrated capture to classic capture. For instructions, see
Administering Oracle GoldenGate for Windows and UNIX.

27.8 Upgrading GoldenGate Classic Extract to Integrated
To run integrated extract in GoldenGate 11.2.1, the following requirements should be met:

• Oracle RDBMS must be 11.2.0.3 or higher

• RDBMS (Database) patches must be applied:

– 11.2.0.3 Database specific bundle patch for Integrated Extract 11.2.x

– Redo compatibility should be set to 11.2.0.3, matching the DB version

The following section explains the upgrade procedure:

1. If you are using RAC environments and OGG versions 11.2.1.0.23+, execute the steps a to
d. If you are using OGG version prior to 11.2.1.0.23, skip these steps and proceed with
step 2.

2. a. For a running extract, issue the following command:

b. SEND extract <extract name> tranlogoptions prepareforupgradetoie
c. For a stopped extract, start it after adding the following line to the parameter file:

d. TRANLOGOPTIONS PREPAREFORUPGRADETOIE
e. Monitor the ggserr.log file or corresponding extract report file for an INFO GG-01873

message, indicating that the change has taken affect, and that you can proceed with
the upgrade.

Note:

For the INFO message to be displayed, extract has to process a committed
transaction on all the RAC nodes for a table being captured. As an
alternative, a dummy table can be added to the extract parameter file, and
doing DML on this table from all the threads will give extract commit
boundary current checkpoints for all the threads.

Example from report file:
2014-06-05 17:06:09  INFO    OGG-01873  The parameter TRANLOGOPTIONS 
PREPAREFORUPGRADETOIE has taken effect. Proceed to the next step in the upgrade 
process.
Example from ggserr.log file:
2014-06-05 17:06:09  INFO    OGG-01873  Oracle GoldenGate Capture for Oracle, 
src.prm:  The parameter TRANLOGOPTIONS PREPAREFORUPGRADETOIE has taken effect.

f. Once the message appears, stop the extract, perform dblogin, and alter for conversion
to Integrated as follows:

3. Connect to the Extract database, and grant the following privilege to GG Admin user:

4. SQL>exec dbms_goldengate_auth.grant_admin_privilege('<ggadmin>')

Chapter 27
Switching to Different Process Mode

27-20



5. Login into GGSCI.

6. Check to see if upgrade is possible.

7. GGSCI> DBLOGIN USERID <ID> PASSWORD <PW>
GGSCI> INFO <extract_name> UPGRADE

8. If there are existing open transactions, the upgrade may fail:

9. GGSCI>stop extract <extract_name>
GGSCI>dblogin userid <ggadmin>,password <password>

10. Register the extract in the database, if not done already.

11. GGSCI>register extract <extract_name> database
 
GGSCI>alter extract <extract_name>,upgrade integrated tranlog
 
GGSCI>start extract <extract_name>

Chapter 27
Upgrading GoldenGate Classic Extract to Integrated

27-21



28
Oracle SOA Suite Cross References

It is important to understand how to work with Oracle SOA Suite cross references in Oracle
Data Integrator.
This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Working with XREF using the SOA Cross References KMs

• Knowledge Module Options Reference

28.1 Introduction
Oracle Data Integrator features are designed to work best with Oracle SOA Suite cross
references, including mappings that load a target table from several source tables and handle
cross references.

28.1.1 Concepts
Cross-referencing is the Oracle Fusion Middleware Function, available through the Oracle
BPEL Process Manager and Oracle Mediator, previously Enterprise Service Bus (ESB), and
leveraged typically by any loosely coupled integration built on the Service Oriented
Architecture. It is used to manage the runtime correlation between the various participating
applications of the integration.

28.1.1.1 General Principles
The cross-referencing feature of Oracle SOA Suite enables you to associate identifiers for
equivalent entities created in different applications. For example, you can use cross references
to associate a customer entity created in one application (with native id Cust_100) with an
entity for the same customer in another application (with native id CT_001).

Cross-referencing (XREF) facilitates mapping of native keys for entities across applications.
For example, correlate the same order across different ERP systems.

The implementation of cross-referencing uses a database schema to store a cross reference
information to reference records across systems and data stores.

For more information about cross references, see Working with Cross References in the
Developer's Guide for Oracle SOA Suite.

The optional ability to update or delete source table data after the data is loaded into the target
table is also a need in integration. This requires that the bulk integration provides support for
either updating some attributes like a status field or purging the source records once they have
been successfully processed to the target system.

28.1.1.2 Cross Reference Table Structures
The XREF data can be stored in multiple cross reference tables and in two formats:

28-1



• Generic (legacy) table - The table name is XREF_DATA and the table structure stores the
cross references for all entities. The table format is as follows:

XREF_TABLE_NAME  NOT NULL VARCHAR2(2000)
XREF_COLUMN_NAME NOT NULL VARCHAR2(2000)
ROW_NUMBER NOT NULL VARCHAR2(48)
VALUE  NOT NULL VARCHAR2(2000)
IS_DELETED  NOT NULL VARCHAR2(1)
LAST_MODIFIED NOT NULL TIMESTAMP(6)

This table stores cross references for multiple entities. In this table:

– XREF_TABLE_NAME is the name of the cross reference table

– XREF_COLUMN_NAME is the name of the column to be populated. This column name, for
example the application name, is used as a unique identifier for the cross reference
table.

– ROW_NUMBER stores a unique identifier (Row Number) for a given entity instance,
regardless of the application

– VALUE is the value of the record identifier for a given entity in this application

A specific XREF_COLUMN_NAME entry called COMMON exists to store a generated
identifier that is common to all applications.

For example, an ORDER existing in both SIEBEL and EBS will be mapped in a generic
table as shown below:

Table 28-1    Example of an XREF_DATA (Partial)

XREF_TABLE_NAME XREF_COLUMN_NAME ROW_NUMBER VALUE

ORDER SIEBEL 100012345 SBL_101

ORDER EBS 100012345 EBS_002

ORDER COMMON 100012345 COM_100

• Custom (new) table structure - The table is specific to one entity and has a custom
structure. For example:

ROW_ID  VARCHAR2(48) NOT NULL PK, 
APP1   VARCHAR2(100), 
APP2   VARCHAR2(100), 
...
COMMON   VARCHAR2(100), 
LAST_MODIFIED  TIMESTAMP NOT NULL

Where:

– Columns such as APP1 and APP2 are used to store PK values on different applications
and link to the same source record

– ROW_ID (Row Number) is used to uniquely identify records within a XREF data table.

– COM holds the common value for the integration layer and is passed among
participating applications to establish the cross reference

The same ORDER existing in both SIEBEL and EBS would be mapped in a custom
XREF_ORDER table as shown below:

Chapter 28
Introduction

28-2



Table 28-2    Example of a Custom Table: XREF_ORDERS (Partial)

ROW_ID SIEBEL EBS COMMON

100012345 SBL_101 EBS_002 COM_100

See Designing a Mapping with the Cross-References KMs and Knowledge Module Options
Reference for more information.

28.1.1.3 Handling Cross Reference Table Structures
The IKM SQL Control Append (SOA XREF) provides the following parameters to handle these
two table structures:

• XREF_DATA_STRUCTURE: This option can be set to legacy to use the XREF_DATA
generic table, or to new to use the custom table structure.

If using the generic table structure, you must set the following options:

• XREF_TABLE_NAME: Value inserted in the XREF_TABLE_NAME column of the
XREF_DATA table. In the example above (See Table 28-1) this option would be ORDER.

• XREF_COLUMN_NAME: Value inserted in the XREF_COLUMN_NAME column of the
XREF_DATA table. This value corresponds to the application that is the target of the
current mapping. In the example above (See Table 28-1), this option would take either the
value SIEBEL or EBS depending on which system is targeted.

If using the custom table structure, you must use the following options:

• XREF_DATA_TABLE: Name of the cross reference table. It defaults to XREF_DATA. In the
example above (See Table 28-2), this table name would be XREF_ORDER.

• XREF_DATA_TABLE_COLUMN: Name of the column that stores the cross references for
the application that is the target of the current mapping. In the example above (See 
Table 28-2), this option would take either the value SIEBEL or EBS depending on which
system is targeted.

28.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 28-3 for handling
SOA cross references (XREF).

These new Knowledge Modules introduce parameters to support SOA cross references. See 
Cross Reference Table Structures and Designing a Mapping with the Cross-References KMs
for more information on these parameters.

Table 28-3    SOA XREF KMs

Knowledge Module Description

LKM SQL to SQL (SOA XREF) This KM replaces the LKM SQL to SQL (ESB XREF).

This KM supports cross references while loading data from a standard ISO
source to any ISO-92 database.

Depending of the option SRC_UPDATE_DELETE_ACTION, this LKM can
DELETE or UPDATE source records.

The LKM SQL to SQL (SOA XREF) has to be used in conjunction with the
IKM SQL Control Append (SOA XREF) in the same mapping.

Chapter 28
Introduction

28-3



Table 28-3    (Cont.) SOA XREF KMs

Knowledge Module Description

LKM MSSQL to SQL (SOA XREF) This KM replaces the LKM MSSQL to SQL (ESB XREF).

This KM is a version of the LKM SQL to SQL (SOA XREF) optimized for
Microsoft SQL Server.

IKM SQL Control Append (SOA XREF) This KM replaces the IKM SQL Control Append (ESB XREF).

This KM provides support for cross references while integrating data in any
ISO-92 compliant database target table in truncate/insert (append) mode.
This KM provides also data control: Invalid data is isolated in an error table
and can be recycled.When loading data to the target, this KM also
populates PK/GUID XREF table on a separate database.

This IKM SQL Control Append (SOA XREF) has to be used in conjunction
with the LKM SQL to SQL (SOA XREF) or LKM MSSQL to SQL (SOA
XREF).

28.1.3 Overview of the SOA XREF KM Process
To load the cross reference tables while performing integration with Oracle Data Integrator, you
must use the SOA XREF knowledge modules. These knowledge modules will load the cross
reference tables while extracting or loading information across systems.

Note:

In order to maintain the cross referencing between source and target systems, the
LKM and IKM supporting cross referencing must be used in conjunction.

The overall process can be divided into the following three main phases:

1. Loading Phase (LKM)

2. Integration and Cross-Referencing Phase (IKM)

3. Updating/Deleting Processed Records (LKM)

28.1.3.1 Loading Phase (LKM)
During the loading phase, a Source Primary Key is created using columns from the source
table. This Source Primary Key is computed using a user-defined SQL expression that should
return a VARCHAR value. This expression is specified in the SRC_PK_EXPRESSION KM
option.

For example, for a source Order Line Table (aliased OLINE in the mapping) you can use the
following expression:

TO_CHAR(OLINE.ORDER_ID) || '-' || TO_CHAR(OLINE.LINE_ID)
This value will be finally used to populate the cross reference table.

Chapter 28
Introduction

28-4



28.1.3.2 Integration and Cross-Referencing Phase (IKM)
During the integration phase, a Common ID is created for the target table. The value for the
Common ID is computed from the expression in the XREF_SYS_GUID KM option. This
expression can be for example:

• A database sequence (<SEQUENCE_NAME>. NEXTVAL)

• A function returning a global unique Id (SYS_GUID() for Oracle, NewID() for SQL Server)

This Common ID can also be automatically pushed to the target columns of the target table
that are marked with the UD1 flag.

Both the Common ID and the Source Primary Key are pushed to the cross reference table. In
addition, the IKM pushes to the cross reference table a unique Row Number value that creates
the cross reference between the Source Primary Key and Common ID. This Row Number
value is computed from the XREF_ROWNUMBER_EXPRESSION KM option, which takes
typically expressions similar to the Common ID to generate a unique identifier.

The same Common ID is reused (and not re-computed) if the same source row is used to load
several target tables across several mappings with the Cross-References KMs. This allows the
creation of cross references between a unique source row and different targets rows.

28.1.3.3 Updating/Deleting Processed Records (LKM)
This optional phase (parameterized by the SRC_UPDATE_DELETE_ACTION KM option)
deletes or updates source records based on the successfully processed source records:

• If SRC_UPDATE_DELETE_ACTION takes the DELETE value, the source records
processed by the mapping are deleted.

• If SRC_UPDATE_DELETE_ACTION takes the UPDATE value, a source column of the
source table will be updated with an expression for all the processed source records. The
following KM options parameterize this behavior:

– SRC_UPD_COL: Name of the source column to update

– SRC_UPD_COL_EXPRESSION: Expression used to generate the value to update in
the column

It is possible to execute delete and update operations on a table different table from the source
table. To do this, you must set the following KM options in the LKM:

• SRC_PK_LOGICAL_SCHEMA: Oracle Data Integrator Logical schema containing the
source table to impact.

• SRC_PK_TABLE_NAME: Name of the source table to impact.

• SRC_PK_TABLE_ALIAS: Table alias for this table.

28.2 Installation and Configuration
Make sure you have read the information in this section before you start using the SOA XREF
Knowledge Modules:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

Chapter 28
Installation and Configuration

28-5



28.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html.

28.2.2 Technology Specific Requirements
There are no technology requirements for using Oracle SOA Suite cross references in Oracle
Data Integrator. The requirements for the Oracle Database and Microsoft SQl Server apply
also to Oracle SOA Suite cross references. For more information, see:

• Oracle Database

• Microsoft SQL Server

28.2.3 Connectivity Requirements
There are no connectivity requirements for using Oracle SOA Suite cross references in Oracle
Data Integrator. The requirements for the Oracle Database and Microsoft SQl Server apply
also to Oracle SOA Suite cross references. For more information, see:

• Oracle Database

• Microsoft SQL Server

28.3 Working with XREF using the SOA Cross References KMs
This section consists of the following topics:

• Defining the Topology

• Setting up the Project

• Designing a Mapping with the Cross-References KMs

28.3.1 Defining the Topology
The steps to create the topology in Oracle Data Integrator, which are specific to projects using
SOA XREF KMs, are the following:

1. Create the data servers, physical and logical schemas corresponding to the sources and
targets.

2. Create a data server and a physical schema for the Oracle or Microsoft SQL Server
technology as described in the following sections:

• Creating an Oracle Data Server and Creating an Oracle Physical Schema

• Creating a Microsoft SQL Server Data Server and Creating a Microsoft SQL Server
Physical Schema

This data server and this physical schema must point to the Oracle instance and schema
or to the Microsoft SQL Server database containing the cross reference tables.

Chapter 28
Working with XREF using the SOA Cross References KMs

28-6

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


3. Create a logical schema called XREF pointing to the physical schema. containing the cross
reference table.

See Creating a Logical Schema in Administering Oracle Data Integrator for more
information.

28.3.2 Setting up the Project
Import the following KMs into your project, if they are not already in your project:

• IKM SQL Control Append (SOA XREF)

• LKM SQL to SQL (SOA XREF) or LKM MSSQL to SQL (SOA XREF) if using Microsoft
SQL Server

28.3.3 Designing a Mapping with the Cross-References KMs
To create a mapping, which both loads a target table from several source tables and handles
cross references between one of the sources and the target, run the following steps:

1. Create a mapping with the source and target datastores which will have the cross
references.

2. Create joins, filters and mappings as usual.

Mapping the Common ID: If you want to map in a target column the Common ID
generated for the cross reference table, check the UD1 flag for this column and enter a
dummy mapping. For example a constant value such as'X'.

3. In the Physical diagram of the mapping, select the access point for the execution unit
containing the source table to cross reference. The Property Inspector for this object
opens.

4. In the Loading Knowledge Module tab, select the LKM SQL to SQL (SOA XREF) or LKM
MSSQL to SQL (SOA XREF) if the source data store is in Microsoft SQL Server.

5. Specify the KM options as follows:

• Specify in SRC_PK_EXPRESSION the expression representing the Source Primary
Key value that you want to store in the XREF table.

If the source table has just one attribute defined as a key, enter the attribute name (for
example SEQ_NO).

If the source key has multiple attributes, specify the expression to use for deriving the
key value. For example, if there are two key attributes SEQ_NO and DOC_DATE in the
table and you want to store the concatenated value of those attributes as your source
value in the XREF table enter SEQ_NO || DOC_DATE. This option is mandatory.

• Optionally set the SRC_UPDATE_DELETE_ACTION to impact the source table, as
described in Updating/Deleting Processed Records (LKM)

6. In the Physical diagram of the mapping, select the access point for your staging area. The
Property Inspector opens for this object.

7. In the Integration Knowledge Module tab, select the IKM SQL Control Append (SOA
XREF).

8. Specify the KM options as follows:

• XREF_DATA_STRUCTURE: Enter New to use the new XREF_DATA Table structure.
Otherwise enter Legacy to use legacy XREF_DATA Table. Default is New. Configure the

Chapter 28
Working with XREF using the SOA Cross References KMs

28-7



options depending on the table structure you are using, as specified in Handling Cross
Reference Table Structures

• XREF_SYS_GUID_EXPRESSION: Enter the expression to be used to computing the
Common ID. This expression can be for example:

– a database sequence (<SEQUENCE_NAME>.NEXTVAL)

– a function returning a global unique Id (SYS_GUID() for Oracle and NewID() for
SQL Server)

• XREF_ROWNUMBER_EXPRESSION: This is the value that is pushed into the Row
Number column. Use the default value of GUID unless you have the need to change it
to a sequence.

• FLOW_CONTROL: Set to YES in order to be able to use the CKM Oracle.

Note:

If the target table doesn't have any placeholder for the Common ID and you are
for example planning to populate the source identifier in one of the target
attributes, you must use the standard mapping rules of ODI to indicate which
source identifier to populate in which attribute.

If the target attribute that you want to load with the Common ID is a unique key of
the target table, it needs to be mapped. You must put a dummy mapping on that
attribute. At runtime, this dummy mapping will be overwritten with the generated
common identifier by the integration knowledge module. Make sure to flag this
target attribute with UD1.

28.4 Knowledge Module Options Reference
This section lists the KM options for the following Knowledge Modules:

• Table 28-4

• LKM MSSQL to SQL (SOA XREF)

• Table 28-5

Table 28-4    LKM SQL to SQL (SOA XREF)

Option Values Mandatory Description

SRC_UPDATE_DELETE_AC
TION

NONE|UPDATE|DELETE Yes Indicates what action to take on source records
after integrating data into the target. See 
Updating/Deleting Processed Records (LKM) for
more information.

SRC_PK_EXPRESSION Concatenating expression Yes Expression that concatenates values from the PK
to have them fit in a single large varchar column.
For example: for the source Orderline Table
(aliased OLINE in the mapping) you can use
expression:

TO_CHAR(OLINE.ORDER_ID) || '-' ||
TO_CHAR(OLINE.LINE_ID)

Chapter 28
Knowledge Module Options Reference

28-8



Table 28-4    (Cont.) LKM SQL to SQL (SOA XREF)

Option Values Mandatory Description

SRC_PK_LOGICAL_SCHE
MA

Name of source table's
logical schema

No Indicates the source table's logical schema. The
source table is the one from which we want to
delete or update records after processing them.
This logical schema is used to resolve the actual
physical schema at runtime depending on the
Context. For example: ORDER_BOOKING. This
option is required only when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE or DELETE.

SRC_PK_TABLE_NAME Source table name,
default is MY_TABLE

No Indicate the source table name of which we want
to delete or update records after processing them.
For example: ORDERS This option is required only
when SRC_UPDATE_DELETE_ACTION is set to
UPDATE or DELETE.

SRC_PK_TABLE_ALIAS Source table alias, default
is

MY_ALIAS

No Indicate the source table's alias within this
mapping. The source table is the one from which
we want to delete or update records after
processing them. For example: ORD. This option is
required only when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE or DELETE.

SRC_UPD_COL Aliased source column
name

No Aliased source column name that holds the
update flag indicator. The value of this column will
be updated after integration when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE with the expression literal
SRC_UPD_EXPRESSION. The alias used for the
column should match the one defined for the
source table. For example: ORD.LOADED_FLAG.
This option is required only when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE.

SRC_UPD_EXPRESSION Literal or expression No Literal or expression used to update the
SRC_UPD_COL. This value will be used to
update this column after integration when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE. For example: RECORDS PROCESSED. This
option is required only when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE.

DELETE_TEMPORARY_OB
JECTS

Yes|No Yes Set this option to NO if you wish to retain
temporary objects (files and scripts) after
integration. Useful for debugging.

LKM MSSQL to SQL (SOA XREF)

See Table 28-4 for details on the LKM MSSQL to SQL (SOA XREF) options.

Chapter 28
Knowledge Module Options Reference

28-9



Table 28-5    IKM SQL Control Append (SOA XREF)

Option Values Mandatory Description

INSERT Yes|No Yes Automatically attempts to insert data into the
Target Datastore of the Mapping.

COMMIT Yes|No Yes Commit all data inserted in the target datastore.

FLOW_CONTROL Yes|No Yes Check this option if you wish to perform flow
control.

RECYCLE_ERRORS Yes|No Yes Check this option to recycle data rejected from a
previous control.

STATIC_CONTROL Yes|No Yes Check this option to control the target table after
having inserted or updated target data.

TRUNCATE Yes|No Yes Check this option if you wish to truncate the target
datastore.

DELETE_ALL Yes|No Yes Check this option if you wish to delete all the rows
of the target datastore.

CREATE_TARG_TABLE Yes|No Yes Check this option if you wish to create the target
table.

DELETE_TEMPORARY_OB
JECTS

Yes|No Yes Set this option to NO if you wish to retain
temporary objects (tables, files and scripts) after
integration. Useful for debugging.

XREF_TABLE_NAME XREF table name Yes, if using
Legacy XREF
table
structure.

Table Name to use in the XREF table. Example:
ORDERS. See Handling Cross Reference Table
Structures for more information.

XREF_COLUMN_NAME Column name Yes, if using
Legacy XREF
table
structure.

Primary key column name to use as a literal in the
XREF table. See Handling Cross Reference Table
Structures for more information.

XREF_SYS_GUID_EXPRES
SION

SYS_GUID() Yes Enter the expression used to populate the
common ID for the XREF table (column name
"VALUE"). Valid examples are: SYS_GUID(),
MY_SEQUENCE.NEXTVAL, and so forth.

XREF_ROWNUMBER_EXP
RESSION

SYS_GUID() Yes Enter the expression used to populate the
row_number for the XREF table. For example for
Oracle: SYS_GUID(), MY_SEQUENCE.NEXTVAL
and so forth.

XREF_DATA_STRUCTURE New|Legacy Yes Enter New to use the new XREF_DATA Table
structure.. Otherwise enter Legacy to use legacy
XREF_DATA Table. Default is New. See Handling
Cross Reference Table Structures for more
information.

XREF_DATA_TABLE XREF table name No. Can be
used with
custom XREF
table
structure.

Enter the name of the table storing cross
reference information. Default is XREF_DATA. See 
Handling Cross Reference Table Structures for
more information.

XREF_DATA_TABLE_COLU
MN

XREF data table column
name

Yes, if using
custom XREF
table
structure

For new XREF data structure only: Enter the
column name of the XREF data table to store the
source key values. See Handling Cross Reference
Table Structures for more information.

Chapter 28
Knowledge Module Options Reference

28-10



29
Oracle Object Storage

This chapter describes how to work with Oracle Object Storage in Oracle Data Integrator.

NOT_SUPPORTED:

This chapter applies only to Data Integration Platform Cloud.

This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Creating and Reverse-Engineering an Object Storage Model

• Working with Oracle Object Storage Tools

• Designing a Mapping

• Setting up an Integration Project

29.1 Introduction
Oracle Object Storage is a highly secure, better performant, durable storage platform. It allows
you to store or retrieve unlimited data anytime, safely and securely using its web-based
console within the cloud platform.

Oracle Data Integrator (ODI) seamlessly integrates with Oracle Object Storage. With this
integration, you can now connect to Oracle Object Storage from ODI for uploading,
downloading and deleting files/objects onto/from local directory or HDFS.

29.1.1 Concepts

Oracle Object Storage comprises of the following components:

• Objects: All data, regardless of content type, is stored as an object in Oracle Object
Storage.

• Buckets: A bucket is a container that stores objects. You can store objects in one or
multiple buckets under a single tenancy.

• Namespace: A namespace is the logical construct that lets you own your personal bucket
namespace. Since bucket names are not global you have more freedom and flexibility with
how you assign names to buckets. Each Object Storage Cloud tenant is associated with
one default system assigned namespace.

• Compartments: A compartment is a collection of related resources that can be accessed
only by those groups that have been given permission by an administrator to access those

29-1



resources. Compartment is not necessarily a concept that is exclusively associated with
the Oracle Object Storage, but it's pertinent because all buckets exist in a compartment.

Below image helps you to understand how the Oracle Object Storage components fit together.
If a user has been granted access to Compartment A, they will only be able to access Bucket1
or Bucket2 and objects that are stored in these buckets.

Figure 29-1    Object Storage Components

Refer to https://docs.us-phoenix-1.oraclecloud.com/Content/Object/Concepts/
objectstorageoverview.htm , for more details on Oracle Object Storage.

29.2 Installation and Configuration
Make sure you have read the information in this section before you start working with the
Oracle Object Storage technology:

• System Requirements & Certifications

• Technology Specific Requirements

29.2.1 System Requirements & Certifications
Before performing any installation, you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN): 
http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html

Chapter 29
Installation and Configuration

29-2

https://docs.us-phoenix-1.oraclecloud.com/Content/Object/Concepts/objectstorageoverview.htm
https://docs.us-phoenix-1.oraclecloud.com/Content/Object/Concepts/objectstorageoverview.htm
http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


29.2.2 Technology Specific Requirements

The technology specific requirement for using Oracle Object Storage in ODI are:

• A new, dedicated pre-built technology called “Oracle Object Storage”.

• Create a new Data Server from this technology and then create corresponding Physical
and Logical schema.

Data Type mappings to and from some major platforms are defined for these data types.
Supported data types for this technology are:

– Array

– Boolean

– Bytes

– Complex

– Date

– Double

– Enum

– Fixed

– Float

– Integer

– Long

– Map

– Number

– String

– Struct

– Union

29.3 Setting up the Topology
Setting up the topology consists of:

• Creating an Oracle Object Storage Data Server

• Creating an Oracle Object Storage Physical Schema

29.3.1 Creating an Oracle Object Storage Data Server
Create a data server for the Oracle Object Storage technology using the standard procedure,
as described in Creating a Data Server in Administering Oracle Data Integrator. This section
details only the fields required or specific for defining Oracle Object Storage data server:

• In the Definition tab:

The Data Server page contains the following fields and they are grouped into different
categories such as –

– Data Server

Chapter 29
Setting up the Topology

29-3



* Name – Name of the data server that will appear in Oracle Data Integrator.

– General

* Region – Oracle Object Storage region. A region is a localized geographic area,
and an availability domain is one or more data centers located within a region. A
region is composed of several availability domains. Most Oracle Cloud
Infrastructure resources are either region-specific, such as a virtual cloud network,
or availability domain-specific, such as a compute instance.

* Tenant OCID – Tenant’s Oracle Cloud ID. Every Oracle Cloud Infrastructure
resource has an Oracle-assigned unique ID called an Oracle Cloud Identifier
(OCID). It's included as part of the resource's information in both the Console and
API. To find your tenancy's OCID, navigate to Console -> Menu -> Administration -
> Tenancy Details -> Tenancy Information -> OCID.

For example, ocid1.tenancy.oc1..aaaaaaaauwjnv47knr7uuuvqar5bs
hnspi6xoxsfebh3vy72fi4swgrkvuvq

* User OCID – Oracle Cloud ID of the user logging into Oracle Object Storage.

In the Console on the page showing the user's details. To get to that page:

* If you're signed in as the user, click the user icon present in the top-right
corner of the Console, and then click User Settings.

* If you're an administrator doing this for another user, instead click Identity, click
Users, and then select the user from the list.

– Security

* Private Key File – Click the browse button to choose the location of the private
key file (in PEM format)

* Passphrase – Passphrase is the password used while generating the private key

You can use the following OpenSSL commands to generate the key pair in the
required PEM format. If you're using Windows, you'll need to install Git Bash for
Windows and run the commands with that tool.

1. If you haven't already, create a .oci directory to store the credentials:

mkdir ~/.oci

2. Generate the private key with one of the following commands:

* To generate the key, encrypted with a passphrase you provide when
prompted:

openssl genrsa -out ~/.oci/oci_api_key.pem -aes128 2048 

* For Windows, you may need to insert -passout stdin to be prompted for
a passphrase. The prompt will just be the blinking cursor, with no text.

openssl genrsa -out ~/.oci/oci_api_key.pem -aes128 2048 

* To generate the key with no pass-phrase:

openssl genrsa -out ~/.oci/oci_api_key.pem 2048

Chapter 29
Setting up the Topology

29-4



* Ensure that only you can read the private key file:

chmod go-rwx ~/.oci/oci_api_key.pem

* Fingerprint – Fingerprint that is generated for the public key

You can get the key's fingerprint with the following OpenSSL command. If you're
using Windows, you'll need to install Git Bash for Windows and run the command
with that tool.

openssl rsa -pubout -outform DER -in ~/.oci/oci_api_key.pem | 
openssl md5 -c

When you upload the public key in the Console, the fingerprint is also
automatically displayed there. For example,
12:34:56:78:90:ab:cd:ef:12:34:56:78:90:ab:cd:ef

– Swift Connectivity

* Tenant Name – Name of the tenant

* User Name – Name of the user logging into Oracle Object Storage

* Token – Password generated for swift connectivity.

These Swift Connectivity parameters are used by the Autonomous Data
Warehouse Cloud Service to connect to Oracle Object Storage technology.

29.3.2 Creating an Oracle Object Storage Physical Schema
Create an Oracle Object Storage physical schema using the standard procedure, as described
in Creating a Physical Schema in Administering Oracle Data Integrator.
Oracle Object Storage specific parameters are:

• Name: Name of the physical schema created

• Bucket (Schema): It specifies the Oracle Object Storage Bucket name from which upload,
download or the delete operation will happen. Select the required bucket from the Bucket
Name drop-down list.

• Directory (Work Schema): This is the temporary folder on the local system used for
getting files from Oracle Object Storage bucket during reverse engineering. If the directory
does not exist it will be created. Specify the required location in the local system.

Create a logical schema for this physical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it with a
relevant context. We use the created logical schema for getting Oracle Object Storage instance
details. These details are used for connecting to Oracle Object Storage technology. It is also
used to get the bucket details associated with the physical schema which in turn is associated
to this logical schema.

29.4 Creating and Reverse-Engineering an Oracle Object
Storage Model

This section contains the following topics:

• Creating an Oracle Object Storage Model

Chapter 29
Creating and Reverse-Engineering an Oracle Object Storage Model

29-5



• Reverse Engineer an Oracle Object Storage Model

29.4.1 Creating an Oracle Object Storage Model
An Oracle Object Storage model is a set of data stores, corresponding to files stored in an
Oracle Object Storage bucket. In a given context, the logical schema corresponds to one
physical schema. You can create a model from the logical schema for the Oracle Object
Storage technology. The bucket schema of this physical schema is the Oracle Object Storage
bucket containing all the files. You can create new ODI Data store that will represent a file in
Oracle Object Storage so that it can be used in mappings.

Create an Oracle Object Storage model using the standard procedure, as described in 
Creating a Model of Developing Integration Projects with Oracle Data Integrator.

29.4.2 Reverse Engineer an Oracle Object Storage Model

Oracle Data Integrator provides specific methods for reverse-engineering Oracle Object
Storage files. Oracle Object Storage supports two types of reverse engineering:

• Reverse-Engineering Delimited Files from Oracle Object Storage

• Reverse-engineering Fixed Files from Oracle Object Storage

29.4.2.1 Reverse-Engineering Delimited Files from Oracle Object Storage

To perform a delimited file reverse engineering:

1. In the Models accordion, right click your Object Storage Model and select New Data
store. The Data Store Editor opens.

2. In the Definition tab, enter the following fields:

• Name: Name of this data store

• Resource Name: Sub-directory (if needed) and name of the file. It lists all the files
present in Oracle Object Storage for the configured bucket.

3. Go to the Storage tab, to describe the type of file. Set the fields as follows:

• File Format: Delimited

• Heading (Number of Lines): Enter the number of lines of the header. Note that if
there is a header, Oracle Data Integrator uses the first line of the header to name the
columns in the file.

• Select a Record Separator.

• Select or enter the character used as a Field Separator.

• Enter a Text Delimiter if your file uses one.

• Enter a Decimal Separator, if your file contains decimals.

4. From the File main menu, select Save.

5. In the Data Store Editor, go to the Attributes tab.

6. In the editor toolbar, click Reverse Engineer.

7. Verify the data type and length for the reverse engineered attributes. Oracle Data
Integrator infers the field data types and lengths from the file content, but may set default
values (for example 50 for the strings field length) or incorrect data types in this process.

Chapter 29
Creating and Reverse-Engineering an Oracle Object Storage Model

29-6



8. From the File main menu, select Save.

29.4.2.2 Reverse-engineering Fixed Files from Oracle Object Storage
Oracle Data Integrator provides a graphic wizard to define the columns of a fixed file.
To reverse-engineer a fixed file from Oracle Object Storage using the wizard:

1. In the Models accordion, right click your Object Storage Model and select New Data
store. The Data store Editor opens.

2. In the Definition Tab, enter the following fields:

• Name: Name of this data store

• Resource Name: Sub-directory (if needed) and name of the file. It lists all the files
present in Oracle Object Storage for the configured bucket.

3. Go to the Storage tab to describe the type of file. Set the fields as follows:

• File Format: Fixed

• Header (Number of Lines): Enter the number of lines of the header.

• Select a Record Separator.

4. From the File main menu, select Save.

5. In the Data store Editor, go to the Attributes tab.

6. In the editor toolbar, click Reverse Engineer. The Attributes Setup Wizard appears. The
Attributes Setup Wizard displays the first records of your file.

7. Click on the ruler (above the file contents) to create markers delimiting the attributes. You
can right-click within the ruler to delete a marker.

8. Attributes are created with pre-generated names (C1, C2, and so on). You can edit the
attribute name by clicking in the attribute header line (below the ruler).

9. In the properties panel (on the right), you can edit all the parameters of the selected
attribute. You should set at least the Attribute Name, Data type, and Length for each
attribute.

10. Click OK, when the attributes definition is complete.

11. From the File main menu, select Save.

29.5 Working with Oracle Object Storage Tools
You can upload, download and delete files to/ from Oracle Object Storage through Oracle Data
Integrator. The Object Storage tools that are helpful to perform the following operations are:

• Object Storage Upload tool

• Object Storage Download tool

• Object Storage Delete tool

Note:

Apart from ODI Studio, you can also work with ODI Object Storage Tools from
command line.

Chapter 29
Working with Oracle Object Storage Tools

29-7



29.5.1 Uploading Files/Objects to Oracle Object Storage
ODI Object Storage Upload tool is used to upload single, multiple files, or an entire directory
from HDFS or a local file system on to Oracle Object Storage.

Note:

The upload operation fails if the selected bucket does not exist.

To upload file(s) or directories to Object Storage,

• Create a new Project.

For more details on how to create a project, see Creating an Integration Project of
Developing Integration Projects with Oracle Data Integrator.

• Below the created Project folder, create a Package .

For more details on how to create a package, see Creating and Using Packages of
Developing Integration Projects with Oracle Data Integrator.

• Select OdiObjectStorageUpload tool available in the Toolbox. Move it to the created
package.

Note:

All the properties of the tool are displayed under General Tab.

• Configure the required properties:

Table 29-1    ODI Object Storage Upload Tool Properties

Parameter Description

Target Logical schema Target Logical schema name configured for
Oracle Object Storage Data Server.

Source Logical schema Name of the source Logical schema configured
for File or HDFS Data Server for upload of Local
or HDFS Files to Oracle Object Storage.

File Names filter Field to specify one or more files to be uploaded
to Oracle Object Storage recursively. It also
supports the list of files separated by | as a
delimiter. The pattern followed is:

– *.txt - should upload all the files ending
with .txt

– test* - uploads all the files and directories
that matches with prefix “test”

– *test* - uploads all the files and directories
having substring “test”

– test.xml | test1.xml | test2.xml - Uploads all
the files specified

– test* | test1* - Uploads all the files matching
pattern test* and test1*

– test.xml - Only one file is uploaded

Chapter 29
Working with Oracle Object Storage Tools

29-8



Table 29-1    (Cont.) ODI Object Storage Upload Tool Properties

Parameter Description

Overwrite This parameter indicates if upload operation
should overwrite an existing file or not. Default
value for this parameter is No.

Retry on error It represents the number of times the retry
attempt should occur when a failure or error
happens during upload.

Retry interval seconds Retry interval indicates after how many seconds
a retry attempt should happen.

For more details on the usage of the above parameters, refer to ODI Object Storage
Upload tool in Oracle Data Integrator Tools Reference.

• Save and execute the package.

The required files from the source directory are uploaded to the target location of Oracle
Object storage.

• Upon successful upload, you can find a detailed log of this upload operation at the Details
tab. To get to the details tab, from the Operator tab, expand the associated session for the
upload tool and open the Session task window to find the Details tab with the required log
information.

The details include:

– Source directory is : <source directory path>

– Target bucket is : < Object storage bucket name>

– Filter used is : <input filter>

– Number of files uploaded:<Total number of files that were uploaded>

– Uploaded files are:<File1, File2>

– Number of files failed:<Total number of files that were not uploaded>

– Failed files are: <File1, File2>

29.5.2 Downloading Files/Objects from Oracle Object Storage
ODI Object Storage Download tool is used to download single, multiple files, or an entire
directory to HDFS or a local file system from Oracle Object Storage.
To download file(s) or directories from Object Storage,

• Create a new Project

For more details on how to create a project, see Creating an Integration Project of
Developing Integration Projects with Oracle Data Integrator.

• Below the created Project folder, create a Package

For more details on how to create a package, see Creating and Using Packages of
Developing Integration Projects with Oracle Data Integrator.

• Select OdiObjectStorageDownload tool available in the Toolbox. Move it to the created
package.

Chapter 29
Working with Oracle Object Storage Tools

29-9



Note:

All the properties of the tool are displayed under General Tab.

• Configure the required properties:

Table 29-2    ODI Object Storage Download Tool Properties

Parameter Description

Source Logical schema Name of the Source Logical schema configured for Oracle
Object Storage Data Server.

Target Logical schema Generally, the download operation downloads the file from
Oracle Object Storage to Local or HDFS file system. The
Target logical schema specifies whether the files are
downloaded to Local or HDFS file system.

File Names filter Field to specify one or more files to be downloaded from
Oracle Object Storage recursively. It also supports delimiter |
for separated files list. The pattern followed is:

– *.txt - should download all files ending with .txt
– test* - Downloads all the files and directories that

matches with prefix “test”
– *test* - Downloads all the files and directories having

substring “test”
– test.xml | test1.xml | test2.xml - Downloads all the files

specified
– test* | test1* - Downloads all the files matching pattern

test* and test1*
– test.xml - Only one file is downloaded

Overwrite This parameter indicates, if download operation should
overwrite an existing file or not. The default value for this
parameter is No.

Retry on error It represents the number of times the retry attempt should
occur when a failure or error happens during download.

Retry interval seconds Retry interval indicates after how many seconds a retry
attempt should happen.

For more details on the usage of the above parameters, refer to ODI Object Storage
Download tool of Oracle Data Integrator Tools Reference.

• Save and execute the package

The required files from Oracle Object storage are downloaded to the configured target
location.

• Upon successful Download, you can find a detailed log of this download operation at the
Details tab. To get to the details tab, from the Operator tab, expand the associated session
for the download tool and open the Session task window to find the Details tab with the
required log information.

– Source bucket is : <Object storage bucket name>

– Target directory is : < target directory path>

– Filter used is : <input filter>

– Number of files downloaded:<Total number of files that were downloaded>

Chapter 29
Working with Oracle Object Storage Tools

29-10



– Downloaded files are:<File1, File2>

– Number of files failed:<Total number of files that were not downloaded>

– Failed files are: <File1, File2>

29.5.3 Deleting Files/Objects from Oracle Object Storage
ODI Object Storage Delete tool is used to delete single, multiple files, or an entire directory
present in Oracle Object Storage.

To delete file(s) or directories from Object Storage,

• Create a new Project

For more details on how to create a project, see Creating an Integration Project of
Developing Integration Projects with Oracle Data Integrator.

• Below the created Project folder, create a Package

For more details on how to create a package, see Creating and Using Packages of
Developing Integration Projects with Oracle Data Integrator.

• Select OdiObjectStorageDelete tool available in the Toolbox. Move it to the created
package.

Note:

All the properties of the tool are displayed under General Tab.

• Configure the required properties:

Table 29-3    ODI Object Storage Delete Tool Properties

Parameter Description

Target Logical schema Target logical schema has the details of Oracle
Object Storage Data Server which contains the
files and directories that are to be deleted.

File Names filter Field to specify one or more files or directories to
be deleted from Oracle Object Storage
recursively. It also supports delimiter | for
separated files list. The pattern followed is:

– *.txt - should delete all files ending with .txt
– test* - Deletes all the files and directories

that matches with prefix “test”
– *test* - Deletes all the files and directories

having substring “test”
– test.xml | test1.xml | test2.xml - Deletes all

the files specified
– test* | test1* - Deletes all the files and

directories matching pattern test* and test1*
– test.xml - Only one file is deleted.

Retry on error It represents the number of times the retry
attempt should occur when a failure or error
happens during delete.

Retry interval seconds Retry interval indicates after how many seconds
a retry attempt should happen.

Chapter 29
Working with Oracle Object Storage Tools

29-11



For more details on the usage of above parameters, refer to ODI Object Storage Delete
Tool of Oracle Data Integrator Tools Reference.

• Save and execute the package.

The selected files are deleted from Oracle Object Storage.

• Upon successful Deletion, you can find a detailed log of this delete operation at the Details
tab. To get to the details tab, from the Operator tab, expand the associated session for the
delete tool and open the Session task window to find the Details tab with the required log
information.

– Target bucket is : <Object storage bucket name>

– Filter used is : <input filter>

– Number of files deleted:<Total number of files that were deleted>

– Deleted files are:<File1, File2>

– Number of files failed:<Total number of files that were not deleted>

– Failed files are: <File1, File2>

29.6 Designing a Mapping
You can use a file/HDFS or SQL technology such as Oracle as a source of a mapping and its
target as Oracle Object Storage technology.

Oracle Object Storage physical schema is represented by Object Storage Bucket. Some
properties such as user name/password are retrieved from Oracle Object Storage data server.
If temporary local files are created (if needed), its location can be defined through the option
TEMP_SCHEMA KM. These temporary Object Storage files can be removed through new ODI
cleanup tools. If you use transform components, they need to be moved to the source
execution unit in case of SQL as a source. File as a source does not support source
transformations and no transformations are supported for the target as well.

The KM choice for a mapping or a check determines the abilities and performances of this
mapping or check. The recommendations listed here help in the selection of the KM for
different situations concerning an Oracle Object Storage data server.

29.7 Setting up an Integration Project
Setting up a project using the Oracle Object Storage technology follows the standard
procedure. See Creating an Integration Project of the Developing Integration Projects with
Oracle Data Integrator.
You can use the following knowledge modules for loading data into Oracle Object Storage:

• LKM File to Oracle Object Storage

• LKM File to Oracle Object Storage Direct

• LKM SQL to Oracle Object Storage

• LKM SQL to Oracle Object Storage Direct

29.7.1 LKM File to Oracle Object Storage
This LKM helps to upload data from local or HDFS File to Oracle Object Storage.The name of
the file as well as its structure remains the same. No transformation on the data can be
performed. This LKM is used in a staging area physical node.

Chapter 29
Designing a Mapping

29-12



This KM invokes the ODI tool OdiObjectStorageUpload, for uploading file(s) to Oracle Object
Storage.

For Example — OdiObjectStorageUpload "-TRG_LOGICAL_SCHEMA=Object Storage - SRC1"
"-SRC_LOGICAL_SCHEMA=FILE_GENERIC_TMP" "-FILE_NAMES_FILTER=person_upload.csv" "-
OVERWRITE=true"
This KM has the following option:

• CLEANUP_TEMPORARY_OBJECTS— It cleans-up temporary objects.

Set this property to True, if you wish to automatically clean-up the temporary objects
created.

29.7.2 LKM File to Oracle Object Storage Direct
This LKM helps to upload local or HDFS file(s) onto Oracle Object Storage target directly. The
name of the file as well as its structure remains the same. No transformation on the data can
be performed.

This KM invokes the ODI tool OdiObjectStorageUpload, for uploading file(s) to Oracle Object
Storage.

For Example — OdiObjectStorageUpload "-TRG_LOGICAL_SCHEMA=Object Storage - SRC1"
"-SRC_LOGICAL_SCHEMA=FILE_GENERIC_TMP" "-FILE_NAMES_FILTER=person_upload.csv" "-
OVERWRITE=true"
This KM has the following options:

• CLEANUP_TEMPORARY_OBJECTS— It is used to clean-up temporary objects created. Set this
property to True, if you wish to automatically clean-up the temporary objects created.

• OVERWRITE_TARGET_FILE — It is used to overwrite the target file. If set to True, the Oracle
Object Storage target files are overwritten.

• ADD_COMPRESSION— It is used to compress data before loading. Set this property to True, if
you wish to compress source data before loading it onto Oracle Object Storage. Use the
additional options COMPRESSION_TYPE and KEEP_SOURCE_FILES to define compression
preferences.

• COMPRESSION_TYPE— It is used to define the compression type. Select the type of
compression you wish to apply on source data before loading it onto Oracle Object
Storage.

• KEEP_SOURCE_FILES— It is used to retain the original source files after compression. Set
this property to True (by default), if you wish to compress the target files and retain the
original files.

Note:

gzip supports KEEP_SOURCE_FILES option, starting from version 1.6 only.

29.7.3 LKM SQL to Object Storage
This LKM helps to upload the result of a SQL query to Oracle Object Storage. Only
transformation on source are supported.SQL data is unloaded to a temporary local file, which

Chapter 29
Setting up an Integration Project

29-13



is then uploaded to Object Storage. The temporary file location is specified through the
TEMP_SCHEMA KMoption. This LKM is used in a staging area physical node.

This KM invokes the ODI tools OdiSqlUnload to unload SQL query data to a file and
OdiObjectStorageUpload for uploading the file(s) onto Oracle Object Storage.

Listed below are examples for these tools:

• OdiSqlUnload

OdiSqlUnload "-FILE=/tmp/person_upload.csv" "-
DRIVER=oracle.jdbc.OracleDriver" "-URL=jdbc:oracle:thin:@//slc03sap:1521/
flex" "-USER=system" "-PASS=<@=odiRef.getInfo("SRC_ENCODED_PASS") @>" "-
FILE_FORMAT=VARIABLE" "-FIELD_SEP=," "-ROW_SEP=

" "-DATE_FORMAT=yyyy/MM/dd HH:mm:ss" "-CHARSET_ENCODING=ISO8859_1" "-
FETCH_SIZE=2"

SELECT
  PER.PID AS PID ,
  PER.PNAME AS PNAME   
FROM
  UT_TD_D_1.PERSON PER  
WHERE
  (PER.PID = 2)

• OdiObjectStorageUpload

OdiObjectStorageUpload "-TRG_LOGICAL_SCHEMA=Object Storage - SRC1" "-
SRC_LOGICAL_SCHEMA=FILE_GENERIC_TMP" "-
FILE_NAMES_FILTER=person_upload.csv" "-OVERWRITE=true"

This KM has the following options:

• CLEANUP_TEMPORARY_OBJECTS— It is used to clean-up temporary objects created. Set this
property to True, if you wish to automatically clean-up the temporary objects created.

• TEMP_SCHEMA — It is used to specify the name of logical schema defining the location the
temporary file that will be stored before uploading the data onto Oracle Object Storage.
This is a File technology logical schema. The temporary file is stored in a local file system
where ODI agent is running.

• DATE_FORMAT — It specifies the output format used for date data types.

• CHARSET_ENCODING — It specifies the character set encoding.

• FETCH_SIZE — It specifies the number of rows (records read) requested by ODI agent on
each communication with the data server.

29.7.4 LKM SQL to Oracle Object Storage Direct
This LKM helps to upload the result of a SQL query to Oracle Object Storage. Only
transformation on source are supported. SQL data is unloaded to a temporary local file, which
is then uploaded to Oracle Object Storage. The temporary file location is specified through the
TEMP_SCHEMAKM option. Data can be uploaded in Delimited, Fixed or XML formats. This LKM is
a transparent target KM (loads data directly into target). It has to be assigned to target
execution unit AP node.

Chapter 29
Setting up an Integration Project

29-14



This KM invokes the ODI tools OdiSqlUnload to unload SQL query data to a file and
OdiObjectStorageUpload for uploading the file(s).

Listed below are examples for these tools:

• OdiSqlUnload

OdiSqlUnload "-FILE=/tmp/person_upload.csv" "-
DRIVER=oracle.jdbc.OracleDriver" "-URL=jdbc:oracle:thin:@//slc03sap:1521/
flex" "-USER=system" "-PASS=<@=odiRef.getInfo("SRC_ENCODED_PASS") @>" "-
FILE_FORMAT=VARIABLE" "-FIELD_SEP=," "-ROW_SEP=

" "-DATE_FORMAT=yyyy/MM/dd HH:mm:ss" "-CHARSET_ENCODING=ISO8859_1" "-
FETCH_SIZE=2"

SELECT
  PER.PID AS PID ,
  PER.PNAME AS PNAME   
FROM
  UT_TD_D_1.PERSON PER  
WHERE
  (PER.PID = 2)

• OdiObjectStorageUpload

OdiObjectStorageUpload "-TRG_LOGICAL_SCHEMA=Object Storage - SRC1" "-
SRC_LOGICAL_SCHEMA=FILE_GENERIC_TMP" "-
FILE_NAMES_FILTER=person_upload.csv" "-OVERWRITE=true"

This KM has the following options:

• CLEANUP_TEMPORARY_OBJECTS— It is used to clean-up temporary objects created. Set this
property to True, if you wish to automatically clean-up the temporary objects created.

• OVERWRITE_TARGET_FILE— It is used to overwrite target file. If set to True, the Oracle
Object Storage target file will be overwritten.

• TEMP_SCHEMA — It is used to specify the name of logical schema defining the location the
temporary file that will be stored before uploading the data onto Oracle Object Storage.
This is a File technology logical schema. The temporary file is stored in a local file system
where ODI agent is running.

• DATE_FORMAT — It specifies the output format used for date data types.

• STORE_AS_XML — It is used to store data as XML file. Set this property to true, if you wish
to store data as XML file in Oracle Object Storage.

• CHARSET_ENCODING — It specifies the character set encoding.

• XML_CHARSET_ENCODING— It specifies the character encoding indicated in the XML
declaration header of the export file.

• ADD_COMPRESSION — It is used to compress data before loading. Set this property to True, if
you want to compress source data before loading onto Oracle Object Storage. Use the
additional options COMPRESSION_TYPEand KEEP_SOURCE_FILES to define compression
preferences.

• FETCH_SIZE — It specifies the number of rows (records read) requested by ODI agent on
each communication with the data server.

Chapter 29
Setting up an Integration Project

29-15



• COMPRESSION_TYPE — It is used to specify the compression type. Select the type of
compression you wish to apply on source data before loading onto Oracle Object Storage.

• KEEP_SOURCE_FILES — It is used to retain the original source files after compression. Set
this property to True (by default), if you wish to compress the target files and retain the
original files.

Note:

gzip supports KEEP_SOURCE_FILES option, starting from version 1.6 only.

Chapter 29
Setting up an Integration Project

29-16



30
Oracle Storage Cloud Service

This chapter describes how to work with Oracle Storage Cloud Service in Oracle Data
Integrator.

NOT_SUPPORTED:

This chapter applies only to Data Integration Platform Cloud.

This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Working with Oracle Storage Cloud Service Tools

30.1 Introduction
Oracle Storage Cloud Service provides a reliable, secure, and scalable object storage solution
for storing unstructured data that can be accessed anytime anywhere. It serves as a gateway
for data consumption to many OPC services such as BDP, BICS and so on. These cloud
services directly picks up files from Oracle Storage Cloud Service and therefore, integration
with Oracle Storage Cloud Service becomes very essential and useful to manage end-to-end
integration flows using Oracle Data Integrator.

Oracle Data Integrator (ODI) seamlessly integrates with Oracle Storage Cloud Service. With
this integration, you can now connect to Oracle Storage Cloud Service from ODI for uploading
or downloading files/objects onto/from local directory or HDFS present in Oracle Storage Cloud
Service.

30.1.1 Concepts
Oracle Storage Cloud Service is an Infrastructure as a Service (IaaS) product, which provides
an enterprise-grade, large-scale, object storage solution for files and unstructured data.

Oracle Storage Cloud Service comprises of the following concepts:

Oracle Storage Cloud Service Hierarchy

Oracle Storage Cloud Service stores data as objects within a flat hierarchy of containers. You
can create an object within a container most commonly by uploading a file or from ephemeral
unstructured data. A single object can hold up to 5 GB of data, but multiple objects can be
linked together to hold more than 5 GB of contiguous data.

A container is a user-created resource, which can hold an unlimited number of objects, unless
you specify a quota for the container. Note that containers cannot be nested. You can define
custom metadata for both objects and containers.

30-1



Storage Types

This integration provides support for both Oracle Standard Storage and Archive Storage.

• Standard Storage - It is useful for storing one or more files that are accessed frequently.

• Archive Storage — It is ideal for storing data that are not frequently accessed such as
email archives, data backups, and digital video and so on.

30.2 Installation and Configuration
Make sure you have read the information in this section before you start working with the
Oracle Storage Cloud Service technology:

• System Requirements and Certifications

• Technology Specific Requirements

30.2.1 System Requirements & Certifications
Before performing any installation, you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN): 
http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html

30.2.2 Technology Specific Requirements
The technology specific requirement for using Oracle Storage Cloud Service in ODI are:

• You should have a dedicated pre-built technology named “Oracle Storage Cloud Service”
defined similar to Oracle Object Storage.

• As an ODI user, you should be able to create a Data Server from this technology and
corresponding Physical and Logical schemas for the created Data Server. These physical
and logical schemas are used by ODI Tools supported for Oracle Storage Cloud Service
integration, used for uploading and downloading files/objects.

Supported datatypes for this technology are:

• Numeric

• String

• Date

Datatype Mappings to and from Oracle will be defined for these data types and is similar to File
Data Server Mappings.

30.3 Setting up the Topology
Setting up the topology consists of:

• Creating an Oracle Storage Cloud Service Data Server

• Creating an Oracle Storage Cloud Service Physical Schema

Chapter 30
Installation and Configuration

30-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


30.3.1 Creating an Oracle Storage Cloud Service Data Server
Create a data server for the Oracle Storage Cloud Service technology using the standard
procedure, as described in Creating a Data Server of Administering Oracle Data Integrator
guide. This section details only the fields required or specific for defining Oracle Storage Cloud
Service data server:

• In the Definition tab:

1. Data Server

– Name – Name of the data server that will appear in Oracle Data Integrator.

2. Connection

– Service URL – Oracle Cloud Storage Service URL. For Example: https://
<identity-domain>.storage.oraclecloud.com

– Service Name – It denotes the name of the service for the created service URL.
For Example - Storage

– User Name - Name of the user logging into the Oracle Storage Cloud Service

Note:

User Names should start with upper case and should not be real server
names.

– Password – Password of the logged in user

– Identity Domain - It denotes the domain specific to the created storage instance.
For Example – https://<identity-domain>.storage.oraclecloud.com

30.3.2 Creating an Oracle Storage Cloud Service Physical Schema
Create an Oracle Storage Cloud Service physical schema using the standard procedure, as
described in Creating a Physical Schema in Administering Oracle Data Integrator guide.
Oracle Storage Cloud Service specific parameters are:

• Name— Name of the physical schema created.

• Container Name — It specifies the container to which you wish to associate the created
physical schema. Select the required container from the Container Name drop-down list.

• Directory (Work Schema) — This is the temporary folder on the local system used for
getting files from Oracle Storage Cloud Service. If the directory does not exist, it is created.
Specify the required location in the local system.

Create a logical schema for this physical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it with a
relevant context.

We use the created logical schema for getting Oracle Storage instance details. These details
are used for connecting to Oracle Storage Cloud Service technology.

.

Chapter 30
Setting up the Topology

30-3



30.4 Working with Oracle Storage Cloud Service Tools
You can upload and download files to or from Oracle Storage Cloud Service through the
following tools:

• Uploading Files/Objects to Oracle Storage Cloud Service

• Downloading File/Objects from Oracle Storage Cloud Service

Note:

Apart from ODI Studio, you can also work with ODI Storage Cloud Service Tools from
command line.

30.4.1 Uploading Files/Objects to Oracle Storage Cloud Service
ODI Storage Cloud Service Upload tool is used to upload single, multiple files, or an entire
directory from HDFS or a local file system on to Oracle Storage Cloud Service.

To upload file(s) or directories to Oracle Storage Cloud Service,

1. Create a new Project.

For more details on how to create a project, see Creating an Integration Project of
Developing Integration Projects with Oracle Data Integrator.

2. Below the created Project folder, create a Package.

For more details on how to create a package, see Creating and Using Packages of
Developing Integration Projects with Oracle Data Integrator.

3. Select OdiStorageCSUpload tool available in the Toolbox. Add it to the created package.

Note:

All the parameters of the tool are displayed under General Tab.

Configure the required parameters:

Table 30-1    ODI Storage Cloud Service Upload Tool Parameters

Parameter Description

Target Logical schema Target Logical schema name of Oracle Storage
Cloud Service instance. Container information is
obtained from Logical schema through
configured physical schema.

Source Logical schema Name of the Source Logical schema configured
for File or HDFS Data Server for upload of Local
or HDFS Files to Oracle Storage Cloud Service.
Directory structure is obtained from Logical
schema through configured physical architecture.

Chapter 30
Working with Oracle Storage Cloud Service Tools

30-4



Table 30-1    (Cont.) ODI Storage Cloud Service Upload Tool Parameters

Parameter Description

File Names filter Field to specify one or more files or directories to
be uploaded to Oracle Storage Cloud Service
recursively. It also supports the list of files
separated by | as a delimiter. The pattern
followed is:

• *.txt - should upload all the files ending
with .txt

• test* - uploads all the files and directories
that matches with prefix “test”

• *test* - uploads all the files and directories
having substring “test”

• test.xml | test1.xml | test2.xml - Uploads all
the files specified

• test* | test1* - Uploads all the files matching
pattern test* and test1*

• test.xml - Only one file is uploaded

Overwrite This parameter indicates if upload operation
should overwrite an existing file or not. Default
value for this parameter is No.

Retry on error It represents the number of times the retry
attempt should occur when a failure or error
happens during upload.

Retry interval seconds Retry interval indicates after how many seconds
a retry attempt should happen.

Encrypt Key This is the user provided key used for encrypting
objects while uploading files or directories to
Oracle Storage Cloud Service.

Note:

This parameter cannot be null, if you
want to encrypt objects while upload.

For more details on the above parameters, refer to OdiStorageCSUpload Tool in Oracle
Data Integrator Tools Reference guide.

4. Save and execute the package.

The required files from the source directory are uploaded to the target container of the
Oracle Storage Cloud Service.

5. Upon successful upload, you can find a complete log of this upload operation at the
Details tab. To get to the details tab, from the Operator tab, expand the associated session
for the upload tool and open the Session task window to find the Details tab with the
required log information.

The details include:

• Source directory is : <source directory path>
• Target container is : <Storage container name>
• Filter used is : <input filter>

Chapter 30
Working with Oracle Storage Cloud Service Tools

30-5



• Number of file uploaded:<Total number of files that were uploaded>
• Uploaded files are: <File1, File2>
• Number of files failed:<Total number of files that were not uploaded>
• Failed files are:<File1, File2>

30.4.2 Downloading File/Objects from Oracle Storage Cloud Service
ODI Storage Cloud Service Download tool is used to download single, multiple files, or an
entire directory to HDFS or a local file system from Oracle Storage Cloud Service. For HDFS
files, the files from Oracle Storage Cloud Service are first copied to the local directory (as you
specified in Directory (Work Schema) for Oracle Storage Cloud Service Physical Schema) and
then from local directory, files are downloaded to HDFS.

To download file(s) or directories from Oracle Storage Cloud Service,

• Create a new Project

For more details on how to create a project, see Creating an Integration Project of
Developing Integration Projects with Oracle Data Integrator.

• Below the created Project folder, create a Package

For more details on how to create a package, see Creating and Using Packages of
Developing Integration Projects with Oracle Data Integrator.

• Select OdiStorageCSDownload tool available in the Toolbox. Add it to the created
Package.

Note:

All the parameters of the tool are displayed under General Tab.

• Configure the required parameters:

Table 30-2    ODI Storge CS Download Tool Parameters

Parameter Description

Source Logical schema Source Logical Schema name configured for
Oracle Storage Cloud Service instance.
Container information is obtained from Logical
schema through configured physical schema.

Target Logical schema Logical Schema name configured for File or
HDFS Data Server for download of Local or
HDFS Files from Oracle Storage Cloud Service.
Directory structure is obtained from Logical
schema through configured physical architecture.

Chapter 30
Working with Oracle Storage Cloud Service Tools

30-6



Table 30-2    (Cont.) ODI Storge CS Download Tool Parameters

Parameter Description

File Names filter Field to specify one or more files or directories to
be downloaded from Oracle Storage Cloud
Service recursively. It also supports delimiter | for
separated files list. The pattern followed is:

– *.txt - should download all files ending
with .txt

– test* - Downloads all the files and directories
that matches with prefix “test”

– *test* - Downloads all the files and
directories having substring “test”

– test.xml | test1.xml | test2.xml - Downloads
all the files specified

– test* | test1* - Downloads all the files
matching pattern test* and test1*

– test.xml - Only one file is downloaded

Overwrite This parameter indicates, if download operation
should overwrite an existing file or not. The
default value for this parameter is No.

Retry on error It represents the number of times the retry
attempt should occur when a failure or error
happens during download.

Retry interval seconds Retry interval indicates after how many seconds
a retry attempt should happen.

Decrypt Key This is the user provided key used for decrypting
objects while downloading from Oracle Storage
Cloud Service. This key should be same as the
encrypt key provided during the upload of the
same file (that you had uploaded earlier) to
Oracle Storage Cloud Service. If you provide the
wrong key then the download operation fails.

Note:

This parameter cannot be null, if you
want to decrypt objects while
download.

For more details on the above parameters, refer to OdiStorageCSDownload Tool Oracle
Data Integrator Tools Reference.

• Save and execute the package.

The required files from Oracle Storage Cloud Service are downloaded to the directory
specified in the Target logical schema.

• Upon successful download, you can find a detailed log of this download operation at the
Details tab. To get to the details tab, from the Operator tab, expand the associated session
for the download tool and open the Session task window to find the Details tab with the
required log information.

The details include:

– Source container is : <Storage container name>

Chapter 30
Working with Oracle Storage Cloud Service Tools

30-7



– Target directory is : <target directory path>
– Filter used is : <input filter>
– Number of file downloaded:<Total number of files that were downloaded>
– Downloaded files are:<File1, File2>
– Number of files failed:<Total number of files that were not downloaded>
– Failed files are:< File1, File2>

Chapter 30
Working with Oracle Storage Cloud Service Tools

30-8



Part IV
SaaS Applications

It is important to understand how to work with SaaS Applications in Oracle Data Integrator.

Part IV contains the following chapters:

• Oracle Enterprise Resource Planning Cloud

• Oracle Marketing Cloud

• Oracle Sales Cloud

• Oracle Service Cloud

• Oracle Business Intelligence Cloud Connector

• Oracle NetSuite



31
Oracle Enterprise Resource Planning Cloud

It is important to understand how to work with Oracle Enterprise Resource Planning (ERP)
Cloud in Oracle Data Integrator.

This chapter includes the following sections:

• Introduction

• Prerequisites

• Installation and Configuration

• Setting up the Topology

• Creating and Reverse-Engineering an Oracle ERP Cloud Datastore

• Designing a Mapping

• Troubleshooting

31.1 Introduction
Oracle Enterprise Resource Planning (ERP) Cloud is a suite of cloud applications for finance,
project management, procurement, risk management and other core day-to-day activities
important in every business, regardless of size, industry or geography.

Oracle Data Integrator (ODI) seamlessly integrates with Oracle Enterprise Resource Planning
(ERP) Cloud. Oracle Data Integrator features are designed to work best with ERP Cloud,
including reverse-engineering and mappings.

31.1.1 Concepts
The Oracle ERP Cloud technology concepts map the Oracle Data Integrator concepts as
follows: An Oracle ERP Cloud Instance corresponds to a data server in Oracle Data Integrator.
Within this instance, a schema maps to an Oracle Data Integrator physical schema.

31.1.2 Knowledge Modules
Oracle Data Integrator provides the following Knowledge Modules (KMs) for handling Oracle
ERP Cloud data.

Table 31-1    Oracle ERP Cloud Knowledge Modules

Knowledge Module Description

LKM Oracle ERP Cloud to SQL Extracts data from an existing BI Publisher report and inserts
it into a staging table.

LKM Oracle ERP Cloud to File Direct Extracts data from an existing BI Publisher report and inserts
it into a file.

31-1



31.2 Prerequisites
The following prerequisites are essential for working with the Oracle ERP Cloud technology.

Make sure you go through the following prerequisites before working with Oracle ERP Cloud:

• Create a BI Publisher data model. For more details on BI Publisher data models, refer to 
Using the Data Model Editor section of Data Modeling Guide for Oracle Business
Intelligence Publisher.

• Create a BI Publisher report. For more details on BI Publisher reports, refer Using Oracle
BI Publisher to Extract Data From Oracle Sales and ERP Clouds.

• Export the BI Publisher report file to the schema directory defined in the Oracle ERP Cloud
physical schema. For more details on Oracle ERP Cloud physical schema, see Creating
an Oracle ERP Cloud Physical Schema.

31.3 Installation and Configuration
Make sure you have read the information in this section before you start working with the
Oracle ERP Cloud technology:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

31.3.1 System Requirements and Certifications
Before performing any installation, you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technology Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/
index.html

31.3.2 Technology Specific Requirements
There are no technology-specific requirements for using Oracle ERP Cloud in Oracle Data
Integrator.

31.3.3 Connectivity Requirements
There are no specific connectivity requirements for using Oracle ERP Cloud in Oracle Data
Integrator.

31.4 Setting up the Topology
Setting up the topology consists of:

• Creating an Oracle ERP Cloud Data Server

Chapter 31
Prerequisites

31-2

https://docs.oracle.com/middleware/bi12214/bip/BIPDM/GUID-F4CC0AF3-32D0-4F9C-AED2-5D08DE5015D0.htm#BIPDM124
http://www.ateam-oracle.com/using-oracle-bi-publisher-to-extract-data-from-oracle-sales-and-erp-clouds/
http://www.ateam-oracle.com/using-oracle-bi-publisher-to-extract-data-from-oracle-sales-and-erp-clouds/
http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html
http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


• Creating an Oracle ERP Cloud Physical Schema

31.4.1 Creating an Oracle ERP Cloud Data Server

Create a data server for the Oracle ERP Cloud technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This section
details only the fields required or specific for defining an Oracle ERP Cloud data server:

1. In the Definition tab:

a. Name : Enter a name for the data server definition

b. WSDL URL : Enter the BI Publisher web service used for the Oracle ERP Cloud
instance.

You can specify either of the following BI Publisher web services in the WSDL URL
field:

• ReportService: Provides methods to interact with BI Publisher Report object, such
as to run reports, get information about reports, define and modify reports, and
upload report templates. For more details on ReportService, refer to ReportService
section of Developer's Guide for Oracle Business Intelligence Publisher.

• ScheduleService: Provides methods for executing scheduler tasks, such as to
schedule report jobs, retrieve report outputs, and manage report history. For more
details on ScheduleService, refer to ScheduleService section of Developer's Guide
for Oracle Business Intelligence Publisher.

WSDL URL examples:

• https://efsdcr12pt05.fs.efops.example.com/xmlpserver/services/
PublicReportWSSService?wsdl

• https://efsdcr12pt05.fs.efops.example.com/xmlpserver/services/
ScheduleReportWSSService?wsdl

2. Under Connection, enter a user name and password for connecting to the Oracle ERP
Cloud instance.

31.4.2 Creating an Oracle ERP Cloud Physical Schema

Create a physical schema for the Oracle ERP Cloud data server using the standard procedure,
as described in Creating a Physical Schema in Administering Oracle Data Integrator. This
section details only the fields required or specific for defining an Oracle ERP Cloud physical
schema:

1. In the Definition tab:

a. Directory (Schema): Directory where the BI Publisher report is placed after extract.
This location is also required for reverse engineering. The ODI Agent needs access to
this location to perform the mapping, while ODI Studio requires it to perform reverse
engineering. If it is not possible for this location to be shared by the ODI Agent and
ODI Studio, then you will need to set up two separate physical schemas and have a
reverse engineering context and a runtime context.

b. Directory (Work Schema): Directory where log files and temporary files are located
(for example, responses from SOAP requests). The ODI Agent needs access to this
location.

2. Check the Default box if you want this schema to be the default one for this data server
(The first physical schema is always the default one).

Chapter 31
Setting up the Topology

31-3

https://docs.oracle.com/middleware/12213/bip/BIPDV/reportservice.htm#BIPDV824
https://docs.oracle.com/middleware/12213/bip/BIPDV/scheduleservice.htm#BIPDV004


Create for this physical schema a logical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

31.5 Creating and Reverse-Engineering an Oracle ERP Cloud
Datastore

This section contains the following topics:

• Creating an Oracle ERP Cloud Model

• Creating an Oracle ERP Cloud Datastore

• Reverse-Engineering an Oracle ERP Cloud Datastore

31.5.1 Creating an Oracle ERP Cloud Model

Create an Oracle ERP Cloud model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

31.5.2 Creating an Oracle ERP Cloud Datastore

Create a datastore for the Oracle ERP Cloud technology using the standard procedure, as
described in Creating a Datastore of Developing Integration Projects with Oracle Data
Integrator. This section details only the fields required or specific for defining an Oracle ERP
Cloud datastore:

1. In the Definition tab:

• Resource Name: Name of the BI Publisher report file (whose output format is .csv)
which is used for reverse-engineering. This name will also serve as the name of the
extract file (downloaded from UCM).

2. Select Delimited as the Storage Format in the Storage tab.

3. In the Properties tab:

a. Enter BIPReportLocation in the Key field.

b. Enter the location of the BI Publisher report file in the Value field corresponding to the
key.

Note:

The value for BIPReportLocation must not be empty. This refers to the location
of the BI publisher report on the BI server, and can be found on the BI server
once the corresponding report is open.

31.5.2.1 Defining Parameters for BI Publisher Report
The BI Publisher report can have various parameters to restrict the data coming into the report.
You can define all the parameters that are required in the format of a key/value pair in the
Properties tab. The name must match the parameter name defined in the BI Publisher report.

Chapter 31
Creating and Reverse-Engineering an Oracle ERP Cloud Datastore

31-4

https://docs.oracle.com/middleware/12213/odi/develop/creating-and-using-data-models-and-datastores.htm#ODIDG233


The value can be either a real value (for example, “PRIMARY”) or an ODI variable (for
example, “#PROJ_ERP.PARAMS1”).

31.5.3 Reverse-Engineering an Oracle ERP Cloud Datastore
Oracle ERP Cloud supports delimited file reverse-engineering. To perform a delimited file
reverse-engineering:

1. In the Datastore Editor, go to the Attributes tab.

2. In the editor toolbar, click Reverse Engineer.

3. Verify the data type and length for the reverse-engineered attributes. Oracle Data
Integrator infers the field’s data types and length from the first record of the file, but may
set default values (for example, 50 for the string field length) or incorrect data types in this
process. In case of an empty field, data type is set to String with length 50.

Attributes are created with pre-generated names (C1, C2 and so on) if the file has no
header and it is the first non-header record.

4. Select Save from the File main menu.

31.6 Designing a Mapping
You can use Oracle ERP Cloud as a source of a mapping.

The KM choice for a mapping determines the abilities and performance of this mapping. The
recommendations in this section help in the selection of the KM for different situations
concerning an Oracle ERP Cloud server.

31.6.1 Loading Data from Oracle ERP Cloud
Oracle ERP Cloud can be used as a source of a mapping. The LKM choice in the Mapping's
Loading Knowledge Module tab to load data between Oracle ERP Cloud and another type of
data server is essential for the performance of a mapping.

Use the knowledge modules listed in the below table to load data from an Oracle ERP Cloud
server to a target or staging area database.

Chapter 31
Designing a Mapping

31-5



Table 31-2    KMs for loading data from Oracle ERP Cloud

Staging Area/Target
Technology

KM Notes

SQL LKM Oracle ERP Cloud to SQL Extracts data from an existing BI
Publisher report and inserts it into
a staging table, where data can
be loaded into any target using
an IKM. The LKM will not return
until the BI Publisher job is
finished and data is loaded into
the staging table. This LKM only
supports BI Publisher reports that
output in CSV format.

The
DELETE_TEMPORARY_OBJEC
TS LKM option should be set to
Yes. This option is set in order to
delete temporary objects at the
end of the mapping, including the
staging table and all the response
files from SOAP requests.

File LKM Oracle ERP Cloud to File
Direct

Extracts data from an existing BI
Publisher report and inserts it into
a file. The LKM will not return
until the BI Publisher job is
finished and data is loaded into
the file. This LKM only supports
BI Publisher reports that output in
CSV format.

The
DELETE_TEMPORARY_OBJEC
TS LKM option should be set to
Yes. This option is set in order to
delete temporary objects at the
end of the mapping, including the
staging table and all the response
files from SOAP requests.

Remote Agent Configuration

Data extraction can be done on a remote agent. To perform data extraction on a remote agent:

1. Create the physical and logical agent using the standard procedure, as described in 
Creating a Physical Agent of Administering Oracle Data Integrator.

2. Edit the ODI_HOME/user_projects/domains/base_domain/config/fmwconfig/
components/ODI/<Agent_Name>/bin/instance.cmd(.sh) configuration file as follows:

• No proxy: Comment the following code:

#if [ ! -z $IS_AGENT_SCRIPT ] ; then 
# ODI_SSL_PROPERTIES="-Djavax.net.ssl.trustStore=${WL_HOME}/server/lib/
DemoTru 
st.jks -Djavax.net.ssl.keyStore=${DOMAIN_HOME}/security/
DemoIdentity.jks" 
#else 

Chapter 31
Designing a Mapping

31-6

https://docs.oracle.com/middleware/12213/odi/administer-develop/GUID-CA624899-BACA-45B1-B576-02D13AFCE9E9.htm#ODIDGcreatephysagent


#ODI_SSL_PROPERTIES="-Djavax.net.ssl.trustStore=${WL_HOME}/server/lib/
DemoTrust 
.jks -Djavax.net.ssl.trustStorePassword=DemoTrustKeyStorePassPhrase" 
#fi

• With proxy: Set ODI_INSTANCE_JAVA_OPTIONS as follows:

ODI_INSTANCE_JAVA_OPTIONS="$ODI_ADDITIONAL_JAVA_OPTIONS $ODI_SSL_PROPERT
IES
-Doracle.odi.standalone.agent.useauthenticator=false 
-Dhttp.proxyHost=www-proxy.us.example.com -Dhttp.proxyPort=80 
-Dhttps.proxyHost=www-proxy.us.example.com -Dhttps.proxyPort=80 
-Dhttp.nonProxyHosts=localhost|127.0.0.0/8|localhost.localdomain|
127.0.0.1|::1 
|adc01jjl.us.example.com|adc01jjl.us.example.com|10.229.118.112"

31.7 Troubleshooting
This section provides information on how to troubleshoot problems that you might encounter
when using the Oracle ERP Cloud technology in Oracle Data Integrator.

Please find below the most common problems and the ways to resolve them:

• Run the BI Publisher report as standalone from the Fusion Apps BI Console and ensure
that it executes properly.

• Execute the BI Publisher report using a SOAP client such as SoapUI to ensure that it can
be called successfully from an external client.

• Review log files in Fusion Console to ensure successful completion or find any errors.

• Ensure that the path of the BI Publisher report is provided correctly, as this is the most
common error.

• Advanced errors need to be tracked by Fusion System Administrators to look into BI server
error logs.

Chapter 31
Troubleshooting

31-7



32
Oracle Marketing Cloud

It is important to understand how to work with Oracle Marketing Cloud in Oracle Data
Integrator.

This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Creating and Reverse-Engineering an Oracle Marketing Cloud Model

• Designing a Mapping

32.1 Introduction
Oracle Marketing Cloud simplifies digital marketing by providing one place for marketing teams
to connect data, orchestrate experiences, and optimize interactions for each individual
customer.

Oracle Data Integrator (ODI) seamlessly integrates with Oracle Marketing Cloud. Oracle Data
Integrator features are designed to work best with Oracle Marketing Cloud, including reverse-
engineering and mappings.

32.1.1 Concepts
The Oracle Marketing Cloud technology concepts map the Oracle Data Integrator concepts as
follows: An Oracle Marketing Cloud Instance corresponds to a data server in Oracle Data
Integrator. Within this instance, a schema maps to an Oracle Data Integrator physical schema.

32.1.2 Knowledge Modules
Oracle Data Integrator provides no Knowledge Module (KM) specific to the Oracle Marketing
Cloud technology. You can use the generic SQL KMs to perform the data integration and
transformation operations of Oracle Marketing Cloud data. See Generic SQL for more
information.

32.2 Installation and Configuration
Make sure you have read the information in this section before you start working with the
Oracle Marketing Cloud technology:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

32-1



32.2.1 System Requirements and Certifications
Before performing any installation, you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html

32.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Oracle Marketing Cloud in Oracle
Data Integrator.

32.2.3 Connectivity Requirements
This section lists the requirements for connecting to the Oracle Marketing Cloud database.

Oracle Marketing Cloud (Eloqua) JDBC Driver

Oracle Data Integrator uses the Oracle Marketing Cloud (Eloqua) JDBC Driver to connect to
the Oracle Marketing Cloud database.

32.3 Setting up the Topology
Setting up the topology consists of:

• Creating an Oracle Marketing Cloud Data Server

• Creating an Oracle Marketing Cloud Physical Schema

32.3.1 Creating an Oracle Marketing Cloud Data Server

Create a data server for the Oracle Marketing Cloud technology using the standard procedure,
as described in Creating a Data Server of Administering Oracle Data Integrator. This section
details only the fields required or specific for defining an Oracle Marketing Cloud data server:

1. In the Definition tab, enter the following fields:

a. Name : Name of the data server that will appear in Oracle Data Integrator.

b. User: User name for connecting to the data server.

c. Password: Password for connecting to the data server.

2. In the JDBC tab, enter the following values:

a. JDBC Driver: weblogic.jdbc.eloqua.EloquaDriver
b. JDBC URL : jdbc:weblogic:eloqua:Company=<company_id>;

[;property=value[;...]]
The URL parameters are:

• company_id: Specifies the company identifier issued by Oracle Eloqua during the
registration process.

Chapter 32
Setting up the Topology

32-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


• property=value: Specifies additional connection property settings.

3. Click Test Connection, to test the established connection.

32.3.2 Creating an Oracle Marketing Cloud Physical Schema

Create a physical schema for the Oracle Marketing Cloud data server using the standard
procedure, as described in Creating a Physical Schema in Administering Oracle Data
Integrator.

Create a logical schema for this physical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator, and associate it in a
given context.

32.4 Creating and Reverse-Engineering an Oracle Marketing
Cloud Model

This section contains the following topics:

• Creating an Oracle Marketing Cloud Model

• Reverse-engineer an Oracle Marketing Cloud Model

32.4.1 Creating an Oracle Marketing Cloud Model
Create an Oracle Marketing Cloud model using the standard procedure, as described in 
Creating a Model of Developing Integration Projects with Oracle Data Integrator.

32.4.2 Reverse-engineer an Oracle Marketing Cloud Model
Oracle Marketing Cloud supports Standard reverse-engineering - which uses only the abilities
of the JDBC driver.

To perform a Standard reverse-engineering on an Oracle Marketing Cloud model, use the
usual procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator.

32.5 Designing a Mapping
You can use Oracle Marketing Cloud as a source or a target of a mapping. The KM choice for
a mapping determines the abilities and performance of this mapping.

Oracle Data Integrator does not provide specific knowledge modules for Oracle Marketing
Cloud. Use the Generic SQL KMs or the KMs specific to the technology used as the staging
area.

Chapter 32
Creating and Reverse-Engineering an Oracle Marketing Cloud Model

32-3



33
Oracle Sales Cloud

It is important to understand how to work with Oracle Sales Cloud in Oracle Data Integrator.

This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Creating and Reverse-Engineering an Oracle Sales Cloud Model

• Designing a Mapping

33.1 Introduction
Oracle Sales Cloud delivers high-value, industry-specific sales automation and sales
performance management solutions.

Oracle Data Integrator (ODI) seamlessly integrates with Oracle Sales Cloud. Oracle Data
Integrator features are designed to work best with Oracle Sales Cloud, including reverse-
engineering and mappings.

33.1.1 Concepts
The Oracle Sales Cloud technology concepts map the Oracle Data Integrator concepts as
follows: An Oracle Sales Cloud Instance corresponds to a data server in Oracle Data
Integrator. Within this instance, a schema maps to an Oracle Data Integrator physical schema.

33.1.2 Knowledge Modules
Oracle Data Integrator provides no Knowledge Module (KM) specific to the Oracle Sales Cloud
technology. You can use the generic SQL KMs to perform the data integration and
transformation operations of Oracle Sales Cloud data. See Generic SQL for more information.

33.2 Installation and Configuration
Make sure you have read the information in this section before you start working with the
Oracle Sales Cloud technology:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

33-1



33.2.1 System Requirements and Certifications
Before performing any installation, you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html

33.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Oracle Sales Cloud in Oracle Data
Integrator.

33.2.3 Connectivity Requirements
This section lists the requirements for connecting to the Oracle Sales Cloud database.

Oracle Sales Cloud JDBC Driver

Oracle Data Integrator uses the Oracle Sales Cloud JDBC Driver to connect to the Oracle
Sales Cloud database.

33.3 Setting up the Topology
Setting up the topology consists of:

• Creating an Oracle Sales Cloud Data Server

• Creating an Oracle Sales Cloud Physical Schema

33.3.1 Creating an Oracle Sales Cloud Data Server
Create a data server for the Oracle Sales Cloud technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This section
details only the fields required or specific for defining an Oracle Sales Cloud data server:

1. In the Definition tab, enter the following fields:

a. Name : Name of the data server that will appear in Oracle Data Integrator.

b. User: User name for connecting to the data server.

c. Password: Password for connecting to the data server.

2. In the JDBC tab, enter the following values:

a. JDBC Driver: weblogic.jdbc.oraclesalescloud.OracleSalesCloudDriver
b. JDBC URL : jdbc:weblogic:oraclesalescloud://<base_url>;WSCompressData=none
where base_url specifies the base URL of the Oracle Sales Cloud site to which you are
connecting (for example, mysite.custhelp.com). This value should not include an internet
protocol such as 'http://' or 'https://'.

3. Click Test Connection, to test the established connection.

Chapter 33
Setting up the Topology

33-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


Note:

In some cases, you may encounter the following error: "The configuration
options used to open the database do not match the options used to
create the database"
If such an error occurs, you need to add "CreateDB=forceNew" to the JDBC URL
(that is, jdbc:weblogic:oraclesalescloud://
<base_url>;WSCompressData=none;CreateDB=forceNew). Once the connection is
successful, you need to remove "CreateDB=forceNew" and keep only
"WSCompressData=none" in the JDBC URL.

33.3.2 Creating an Oracle Sales Cloud Physical Schema
Create a physical schema for the Oracle Sales Cloud data server using the standard
procedure, as described in Creating a Physical Schema in Administering Oracle Data
Integrator.

Create a logical schema for this physical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator, and associate it in a
given context.

33.4 Creating and Reverse-Engineering an Oracle Sales Cloud
Model

This section contains the following topics:

• Creating an Oracle Sales Cloud Model

• Reverse-engineer an Oracle Sales Cloud Model

33.4.1 Creating an Oracle Sales Cloud Model
Create an Oracle Sales Cloud model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

33.4.2 Reverse-engineer an Oracle Sales Cloud Model
Oracle Sales Cloud supports Standard reverse-engineering - which uses only the abilities of
the JDBC driver.

To perform a Standard reverse-engineering on an Oracle Sales Cloud model, use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration Projects
with Oracle Data Integrator.

33.5 Designing a Mapping
You can use Oracle Sales Cloud as a source or a target of a mapping. The KM choice for a
mapping determines the abilities and performance of this mapping.

Chapter 33
Creating and Reverse-Engineering an Oracle Sales Cloud Model

33-3



Oracle Data Integrator does not provide specific knowledge modules for Oracle Sales Cloud.
Use the Generic SQL KMs or the KMs specific to the technology used as the staging area.

Chapter 33
Designing a Mapping

33-4



34
Oracle Service Cloud

It is important to understand how to work with Oracle Service Cloud in Oracle Data Integrator.

This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Creating and Reverse-Engineering an Oracle Service Cloud Model

• Designing a Mapping

34.1 Introduction
Oracle Service Cloud delivers comprehensive customer experience applications that drive
revenue, increase efficiency, and build loyalty.

Oracle Data Integrator (ODI) seamlessly integrates with Oracle Service Cloud. Oracle Data
Integrator features are designed to work best with Oracle Service Cloud, including reverse-
engineering and mappings.

34.1.1 Concepts
The Oracle Service Cloud technology concepts map the Oracle Data Integrator concepts as
follows: An Oracle Service Cloud Instance corresponds to a data server in Oracle Data
Integrator. Within this instance, a schema maps to an Oracle Data Integrator physical schema.

34.1.2 Knowledge Modules
Oracle Data Integrator provides no Knowledge Module (KM) specific to the Oracle Service
Cloud technology. You can use the generic SQL KMs to perform the data integration and
transformation operations of Oracle Service Cloud data. See Generic SQL for more
information.

34.2 Installation and Configuration
Make sure you have read the information in this section before you start working with the
Oracle Service Cloud technology:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

34-1



34.2.1 System Requirements and Certifications
Before performing any installation, you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html

34.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Oracle Service Cloud in Oracle Data
Integrator.

34.2.3 Connectivity Requirements
This section lists the requirements for connecting to the Oracle Service Cloud database.

Oracle Service Cloud JDBC Driver

Oracle Data Integrator uses the Oracle Service Cloud JDBC Driver to connect to the Oracle
Service Cloud database.

34.3 Setting up the Topology
Setting up the topology consists of:

• Creating an Oracle Service Cloud Data Server

• Creating an Oracle Service Cloud Physical Schema

34.3.1 Creating an Oracle Service Cloud Data Server
Create a data server for the Oracle Service Cloud technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This section
details only the fields required or specific for defining an Oracle Service Cloud data server

1. In the Definition tab, enter the following fields:

a. Name : Name of the data server that will appear in Oracle Data Integrator.

b. User: User name for connecting to the data server.

c. Password: Password for connecting to the data server.

2. In the JDBC tab, enter the following values:

a. JDBC Driver: weblogic.jdbc.oracleservicecloud.OracleServiceCloudDriver
b. JDBC URL :

jdbc:weblogic:oracleservicecloud:LoginHost=<host>;interfacename=<interface
name>

The URL parameters are:

• interfacename: Specifies the name of the Oracle Service Cloud interface to which the
driver will connect. The default value is the user ID specified for the connection.

Chapter 34
Setting up the Topology

34-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


• LoginHost: Specifies the base Oracle Service Cloud URL to use for logging in.

3. Click Test Connection, to test the established connection.

34.3.2 Creating an Oracle Service Cloud Physical Schema
Create a physical schema for the Oracle Service Cloud data server using the standard
procedure, as described in Creating a Physical Schema in Administering Oracle Data
Integrator.

Create a logical schema for this physical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator, and associate it in a
given context.

34.4 Creating and Reverse-Engineering an Oracle Service Cloud
Model

This section contains the following topics:

• Creating an Oracle Service Cloud Model

• Reverse-engineer an Oracle Service Cloud Model

34.4.1 Creating an Oracle Service Cloud Model
Create an Oracle Service Cloud model using the standard procedure, as described in Creating
a Model of Developing Integration Projects with Oracle Data Integrator.

34.4.2 Reverse-engineer an Oracle Service Cloud Model
Oracle Service Cloud supports Standard reverse-engineering - which uses only the abilities of
the JDBC driver.

To perform a Standard reverse-engineering on an Oracle Service Cloud model, use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration Projects
with Oracle Data Integrator.

34.5 Designing a Mapping
You can use Oracle Service Cloud as a source or a target of a mapping. The KM choice for a
mapping determines the abilities and performance of this mapping.

Oracle Data Integrator does not provide specific knowledge modules for Oracle Service Cloud.
Use the Generic SQL KMs or the KMs specific to the technology used as the staging area.

Chapter 34
Creating and Reverse-Engineering an Oracle Service Cloud Model

34-3



35
Oracle Business Intelligence Cloud Connector

It is important to understand how to work with Oracle Business Intelligence (BI) Cloud
Connector in Oracle Data Integrator.

This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Creating and Reverse-Engineering an Oracle BI Cloud Connector Model

• Designing a Mapping

35.1 Introduction
Oracle Business Intelligence (BI) Cloud Connector facilitates to extract Business Intelligence
data from a Fusion Applications Cloud data source into an Oracle Storage Service or UCM
server.

Oracle Data Integrator (ODI) seamlessly integrates with Oracle BI Cloud Connector. Oracle
Data Integrator features are designed to work best with Oracle BI Cloud Connector, including
reverse-engineering and mappings.

35.1.1 Concepts
The Oracle BI Cloud Connector technology concepts map the Oracle Data Integrator concepts
as follows: An Oracle BI Cloud Connector Instance corresponds to a data server in Oracle
Data Integrator. Within this instance, a schema maps to an Oracle Data Integrator physical
schema.

The Oracle BI Cloud Connector data server contains a reference to the object storage used by
Oracle BI Cloud Connector to stage the extracted files. The object storage used can be either
Oracle Object Storage or Oracle Storage Cloud Service.

35.1.2 Knowledge Modules
Oracle Data Integrator provides the following Knowledge Modules (KMs) for handling Oracle BI
Cloud Connector data.

Table 35-1    Oracle BI Cloud Connector Knowledge Modules

Knowledge Module Description

LKM BICC to ADW External Table Loads data from Oracle BI Cloud Connector to Oracle ADW
using External Table method. You can use this LKM in
combination with Oracle or generic SQL IKM.

35-1



Table 35-1    (Cont.) Oracle BI Cloud Connector Knowledge Modules

Knowledge Module Description

LKM BICC to ADW Copy Loads data from Oracle BI Cloud Connector to Oracle ADW.
You can use this LKM in combination with Oracle or generic
SQL IKM.

LKM BICC to ADW Copy Direct Loads data from Oracle BI Cloud Connector to Oracle ADW.
You can use this LKM as a standalone KM as you do not
need any IKM.

35.2 Installation and Configuration
Make sure you have read the information in this section before you start working with the
Oracle BI Cloud Connector technology:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

35.2.1 System Requirements and Certifications
Before performing any installation, you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technology Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/
index.html

35.2.2 Technology Specific Requirements
The technology specific requirements for using Oracle BI Cloud Connector in Oracle Data
Integrator are:

• The Oracle BI Cloud Connector Technology and either the Oracle Object Storage or the
Oracle Storage Cloud Service Technology are used.

• A Data Server and Physical Schema representing the Object Storage used by Oracle BI
Cloud Connector to stage the extracted files is required. For more information on
configuring the object storage, see Setting up the Topology.

35.2.3 Connectivity Requirements
In order to use Oracle BI Cloud Connector in Oracle Data Integrator, you will need connection
information to the Oracle Applications Cloud and the Storage.

35.3 Setting up the Topology
Setting up the topology involves creating the following ODI topology objects:

Chapter 35
Installation and Configuration

35-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html
http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


• An Oracle Storage Service Data Server and Physical Schema representing the Object
Storage used by Oracle BI Cloud Connector to stage the extracted files. The object
storage used can be either Oracle Object Storage or Oracle Storage Cloud Service.

• An Oracle BI Cloud Connector Data Server and Physical Schema representing the Oracle
BI Cloud Connector instance.

This section contains the following topics:

• Creating Topology objects for Oracle Object Storage

• Creating Topology objects for Oracle Storage Cloud Service

• Creating Topology objects for Oracle BI Cloud Connector

35.3.1 Creating Topology objects for Oracle Object Storage

This section contains the following topics:

• Creating an Oracle Object Storage Data Server

• Creating an Oracle Object Storage Physical Schema

35.3.1.1 Creating an Oracle Object Storage Data Server
Create a data server for the Oracle Object Storage technology using the standard procedure,
as described in Creating an Oracle Object Storage Data Server section. The information you
need to fill out these properties will come from the Oracle BI Cloud Connector Console. This
section details only the fields required or specific for defining an Oracle Object Storage data
server:

1. In the Definition tab:

a. Name: Name of the data server representing the Oracle Object Storage instance used
by Oracle BI Cloud Connector to stage the extracted data.

b. Region: Oracle Object Storage region. A region is a localized geographic area, and an
availability domain is one or more data centers located within a region. A region is
composed of several availability domains. Most Oracle Cloud Infrastructure resources
are either region-specific, such as a virtual cloud network, or availability domain-
specific, such as a compute instance. The value specified in this field must be the
same as the Host configured in the Oracle BI Cloud Connector Console.

c. Tenant OCID: Tenant’s Oracle Cloud ID. Every Oracle Cloud Infrastructure resource
has an Oracle-assigned unique ID called an Oracle Cloud Identifier (OCID). It is
included as part of the resource's information in both the Console and API. The value
specified in this field must be the same as the Tenancy OCID configured in the Oracle
BI Cloud Connector Console.

d. User OCID: Oracle Cloud ID of the user logging into Oracle Object Storage. The value
specified in this field must be the same as the User OCID configured in the Oracle BI
Cloud Connector Console.

e. Tenant Name: Name of the tenant. The value specified in this field must be the same
as the Namespace configured in the Oracle BI Cloud Connector Console.

2. Click Test Connection, to test the established connection.

Chapter 35
Setting up the Topology

35-3



35.3.1.2 Creating an Oracle Object Storage Physical Schema
Create an Oracle Object Storage physical schema using the standard procedure, as described
in Creating an Oracle Object Storage Physical Schema section. This section details only the
fields required or specific for defining an Oracle Object Storage physical schema:

1. In the Definition tab:

a. Name: Name of the physical schema created.

b. Bucket Name: It specifies the Oracle Object Storage Bucket name from which upload,
download or the delete operation will happen. Select the required bucket from the
Bucket Name drop-down list. The value selected in this field must be the same as the
Bucket Name specified in the Oracle BI Cloud Connector Console.

c. Directory (Work Schema): This is the temporary folder on the local system used for
getting files from the Oracle Object Storage bucket during reverse engineering. If the
directory does not exist, it will be created. Specify the required location in the local
system.

2. Check the Default box if you want this schema to be the default one for this data server
(The first physical schema is always the default one).

35.3.2 Creating Topology objects for Oracle Storage Cloud Service

This section contains the following topics:

• Creating an Oracle Storage Cloud Service Data Server

• Creating an Oracle Storage Cloud Service Physical Schema

35.3.2.1 Creating an Oracle Storage Cloud Service Data Server
Create a data server for the Oracle Storage Cloud Service technology using the standard
procedure, as described in Creating an Oracle Storage Cloud Service Data Server section.
The information you need to fill out these properties will come from the Oracle BI Cloud
Connector Console. This section details only the fields required or specific for defining an
Oracle Storage Cloud Service data server:

1. In the Definition tab:

a. Name: Name of the data server representing the Oracle Storage Cloud Service
instance used by Oracle BI Cloud Connector to stage the extracted data.

b. Service URL: Oracle Storage Cloud Service URL. The value specified in this field
should be a combination of the Protocol and Host names configured in the Oracle BI
Cloud Connector Console. For example, protocol://hostname.

c. Service Name: It denotes the name of the service for the created service URL. You
need to specify the first part of the Service Name configured in the Oracle BI Cloud
Connector Console as the service name in this field. For example, if the Service Name
configured in the Oracle BI Cloud Connector Console is 'servicename-
identitydomain', then the value specified in this field should be 'servicename'.

d. User Name: Name of the user logging into the Oracle Storage Cloud Service. The
value specified in this field must be the same as the User Name configured in the
Oracle BI Cloud Connector Console.

e. Password: Password of the logged in user. The value specified in this field must be
the same as the Password configured in the Oracle BI Cloud Connector Console.

Chapter 35
Setting up the Topology

35-4



f. Identity Domain: It denotes the domain specific to the created storage instance. You
need to specify the second part of the Service Name configured in the Oracle BI Cloud
Connector Console as the Identity Domain in this field. For example, if the Service
Name configured in the Oracle BI Cloud Connector Console is 'servicename-
identitydomain', then the value specified in this field should be 'identitydomain'.

2. Click Test Connection, to test the established connection.

35.3.2.2 Creating an Oracle Storage Cloud Service Physical Schema
Create an Oracle Storage Cloud Service physical schema using the standard procedure, as
described in Creating an Oracle Storage Cloud Service Physical Schema section. This section
details only the fields required or specific for defining an Oracle Storage Cloud Service physical
schema:

1. In the Definition tab:

a. Name: Name of the physical schema representing the container that stores the Oracle
BI Cloud Connector files.

b. Container Name: It specifies the container to which you wish to associate the created
physical schema. Select the required container from the Container Name drop-down
list. The value selected in this field must be the same as the Container Name specified
in the Oracle BI Cloud Connector Console.

c. Directory (Work Schema): This is the temporary folder on the local system used for
getting files from Oracle Storage Cloud Service. If the directory does not exist, it is
created. Specify the required location in the local system.

2. Check the Default box if you want this schema to be the default one for this data server
(The first physical schema is always the default one).

35.3.3 Creating Topology objects for Oracle BI Cloud Connector

This section contains the following topics:

• Creating an Oracle BI Cloud Connector Data Server

• Creating an Oracle BI Cloud Connector Physical Schema

35.3.3.1 Creating an Oracle BI Cloud Connector Data Server
Create a data server for the Oracle BI Cloud Connector technology using the standard
procedure, as described in Creating a Data Server of Administering Oracle Data Integrator.
This section details only the fields required or specific for defining an Oracle BI Cloud
Connector data server:

1. In the Definition tab:

a. Under Data Server, enter the name of the data server representing the Oracle BI
Cloud Connector instance and the Oracle BI Cloud Connector web service URL (for
example, https://sam37764.fa.dc1.c9dev2.example.com).

b. Under Connection, enter a user name and password for connecting to the Oracle BI
Cloud Connector instance.

c. Under Storage, select either Oracle Storage Cloud Service or Oracle Object
Storage as per requirement.

d. Depending on the value selected in the Storage block, enter the corresponding
storage configuration details.

Chapter 35
Setting up the Topology

35-5



• If the value selected in the Storage block is Oracle Storage Cloud Service, enter
the following fields:

– Oracle Storage Cloud Service DataServer: Name of the Oracle Storage
Cloud Service data server used by Oracle BI Cloud Connector.

– Physical Schema: Name of the physical schema corresponding to the Oracle
Storage Cloud Service data server.

– External Storage Name: Name of the external storage as it appears in the
Oracle BI Cloud Connector Console.

• If the value selected in the Storage block is Oracle Object Storage, enter the
following fields:

– Oracle Object Storage DataServer: Name of the Oracle Object Storage data
server used by Oracle BI Cloud Connector.

– Physical Schema: Name of the physical schema corresponding to the Oracle
Object Storage data server.

– External Storage Name: Name of the external storage as it appears in the
Oracle BI Cloud Connector Console.

2. Click Test Connection, to test the established connection.

Note:

You can only test the Oracle BI Cloud Connector data server connection on a
local agent. It is not possible to test the data server connection using a
Standalone or JEE agent.

35.3.3.2 Creating an Oracle BI Cloud Connector Physical Schema
Create a physical schema for the Oracle BI Cloud Connector data server using the standard
procedure, as described in Creating a Physical Schema in Administering Oracle Data
Integrator. This section details only the fields required or specific for defining an Oracle BI
Cloud Connector physical schema:

1. In the Definition tab:

a. Name: Name of the physical schema corresponding to the Oracle BI Cloud Connector
data server.

b. Schema: There are thousands of View Objects (VOs) in Oracle BI Cloud Connector.
These VOs are separated into three logical schemas: CrmAnalytics, FscmTopModel
and HcmTopModelAnalyticsGlobal. You can select an appropriate schema as per
requirement.

2. Check the Default box if you want this schema to be the default one for this data server
(The first physical schema is always the default one).

Create a logical schema for this physical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator and associate it in a
given context.

Chapter 35
Setting up the Topology

35-6



35.4 Creating and Reverse-Engineering an Oracle BI Cloud
Connector Model

This section contains the following topics:

• Creating an Oracle BI Cloud Connector Model

• Reverse-engineering an Oracle BI Cloud Connector Model

35.4.1 Creating an Oracle BI Cloud Connector Model
Create an Oracle BI Cloud Connector model using the standard procedure, as described in 
Creating a Model of Developing Integration Projects with Oracle Data Integrator.

35.4.2 Reverse-engineering an Oracle BI Cloud Connector Model
Oracle BI Cloud Connector supports Customized reverse-engineering - which uses the RKM
Oracle BI Cloud Connector. To perform a Customized reverse-engineering on an Oracle BI
Cloud Connector model, use the usual procedure, as described in Reverse-engineering a
Model of Developing Integration Projects with Oracle Data Integrator.

The list of offerings that are available for reverse engineering is displayed in the Reverse
Engineer tab. The user can choose the offerings whose data stores will be brought into ODI.

The RKM Oracle BI Cloud Connector is used to reverse engineer the Oracle BI Cloud
Connector data stores. This RKM has the following options:

• EXTRACT_ATTRIBUTES: If this option is set to False, then only the Oracle BI Cloud Connector
data store names will be reverse engineered. If set to True, both the data store names and
the attributes of each data store will be reverse engineered.

• NUMBER_OF_THREADS: The number of threads that will send REST requests simultaneously
to the Oracle BI Cloud Connector data server to retrieve the data store metadata.

35.5 Designing a Mapping
You can use Oracle BI Cloud Connector as a source of a mapping.

The KM choice for a mapping determines the abilities and performance of this mapping. The
recommendations in this section help in the selection of the KM for different situations
concerning an Oracle BI Cloud Connector server.

35.5.1 Loading Data from Oracle BI Cloud Connector
Oracle BI Cloud Connector can be used as a source of a mapping. The LKM used to load data
between Oracle BI Cloud Connector and another type of data server is selected in the
Loading Knowledge Module tab of the mapping. The choice of LKM determines the abilities
and performance of this mapping.

You can use the following knowledge modules for loading Oracle BI Cloud Connector files to a
target database:

• LKM BICC to ADW External Table

Chapter 35
Creating and Reverse-Engineering an Oracle BI Cloud Connector Model

35-7



• LKM BICC to ADW Copy

• LKM BICC to ADW Copy Direct

35.5.1.1 LKM BICC to ADW External Table
This KM helps to load data from Oracle BI Cloud Connector to Oracle ADW using External
Table method. You can use this LKM in combination with Oracle or generic SQL IKM.

KM Options

This KM has the following options:

• CREDENTIAL_NAME — The name of the credential to be stored. The default value is ODI.

• CREATE_CREDENTIAL — It creates new credentials. If set to False, ODI reuses the existing
credentials.

• GENERATE_FIELD_LIST — If this KM option is set to False, then the field_list clause is
skipped and the default settings of ORACLE_LOADER access driver is applied.

• SUBMIT_BICC_JOB — Oracle BI Cloud Connector has its own scheduler which can be set up
to extract data and store it as zipped csv files in the Object Store. In ODI, you can set the
SUBMIT_BICC_JOB option to False and simply pick up the extracted data from the Object
Store (either all data or from the LAST_LOAD_DATE). If you prefer not to use the Oracle BI
Cloud Connector scheduler, or you want to ensure that there is nothing more to extract
since the last scheduled job, you can have ODI run the extract job where it will create a job
to extract the data, wait for it to finish, and then fetch the data from the Object Store.

• LAST_LOAD_DATE — This option allows to specify the date of the previous load of extracted
data.

• BICC_JOB_TIMEOUT — This option allows to specify the Oracle BI Cloud Connector job
timeout in seconds.

Formatting

• DELIMITED_FILE_FORMAT — It specifies delimited File Format and it can be CSV (default)
or common delimited format known to ORACLE_LOADER access driver. You can use this
KM option only if the source datastore File Format property is set to Delimited.

• COMPRESSION — It specifies the compression method of the source file. It can have values
nil or auto. Empty value implies no compression and AUTO implies compression type is
auto-detected.

• DATE_FORMAT — It helps to set specific date format.

• TIMESTAMP_FORMAT — It helps to set specific time format.

• REJECT_LIMIT — The query helps to display an error message after the specified number
of rows are rejected. Default value is zero.

• CONVERSION_ERRORS — It specifies the processing conversion errors. If any row throws an
error because of a conversion error, the related columns are stored as null or the row is
rejected.

• TRIM_SPACES — It helps to trim the leading and trailing spaces of the fields. If set to True, it
trims the specified spaces.

• IGNORE_BLANK_LINES — If set to True, the blank lines are ignored without throwing any
error.

Chapter 35
Designing a Mapping

35-8



• IGNORE MISSING COLUMNS — If there are more columns in the field_list than the source
files, the extra columns will be stored as null.

• TRUNCATE_COLUMNS— If the data in a file is too long for a field, then this option will truncate
the value of the field rather than rejecting the row.

Advanced

• ADD_FORMAT_PROPERTIES — This option allows adding custom format properties.

Use the following syntax: '<prop1>' VALUE '<value1>', '<prop2>' VALUE
'<value2>' ...

• OVERWRITE_FIELD_LIST — This option gives the possibility to redefine the source file field
definitions, where ODI does not have enough information about your input data. The
details that you enter here are used as the field_list parameter of
dbms_cloud.create_external_table function call.

For more details, refer to DBMS_CLOUD package documentation for more information.

Cleanup

• CLEANUP_TEMPORARY_OBJECTS — Set this property to True, if you want temporary objects to
be automatically cleaned up.

• CLEANUP_CREDENTIAL— Set this property to True, if you want the credential object to be
automatically cleaned up at the end of the every execution. Cleanup will happen only if the
CREATE_CREDENTIAL option is also set to True.

35.5.1.2 LKM BICC to ADW Copy
This KM helps to load data from Oracle BI Cloud Connector to Oracle ADW. You can use it in
combination with Oracle or generic SQL IKM.

KM Options

This KM has the following options:

• CREDENTIAL_NAME — The name of the credential to be stored. The default value is ODI.

• CREATE_CREDENTIAL — It creates new credentials. If set to False, ODI reuses the existing
credentials.

• GENERATE_FIELD_LIST — If this KM option is set to False, then the field_list clause is
skipped and the default settings of ORACLE_LOADER access driver is applied.

• SUBMIT_BICC_JOB — Oracle BI Cloud Connector has its own scheduler which can be set up
to extract data and store it as zipped csv files in the Object Store. In ODI, you can set the
SUBMIT_BICC_JOB option to False and simply pick up the extracted data from the Object
Store (either all data or from the LAST_LOAD_DATE). If you prefer not to use the Oracle BI
Cloud Connector scheduler, or you want to ensure that there is nothing more to extract
since the last scheduled job, you can have ODI run the extract job where it will create a job
to extract the data, wait for it to finish, and then fetch the data from the Object Store.

• LAST_LOAD_DATE — This option allows to specify the date of the previous load of extracted
data.

Formatting

• DELIMITED_FILE_FORMAT — It specifies delimited File Format and it can be CSV (default)
or common delimited format known to ORACLE_LOADER access driver. You can use this
KM option only if the source datastore File Format property is set to Delimited.

Chapter 35
Designing a Mapping

35-9

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/dbmscloud-reference.html#GUID-52C9974C-D95E-4E41-AFBD-0FC4065C029A


• COMPRESSION — It specifies the compression method of the source file. It can have values
nil or auto. Empty value implies no compression and AUTO implies compression type is
auto-detected.

• DATE_FORMAT — It helps to set specific date format.

• TIMESTAMP_FORMAT — It helps to set specific time format.

• REJECT_LIMIT — The query helps to display an error message after the specified number
of rows are rejected. Default value is zero.

• CONVERSION_ERRORS — It specifies the processing conversion errors. If any row throws an
error because of a conversion error, the related columns are stored as null or the row is
rejected.

• TRIM_SPACES — It helps to trim the leading and trailing spaces of the fields. If set to True, it
trims the specified spaces.

• IGNORE_BLANK_LINES — If set to True, the blank lines are ignored without throwing any
error.

• IGNORE MISSING COLUMNS — If there are more columns in the field_list than the source
files, the extra columns will be stored as null.

• TRUNCATE_COLUMNS— If the data in a file is too long for a field, then this option will truncate
the value of the field rather than rejecting the row.

Advanced

• ADD_FORMAT_PROPERTIES — This option allows adding custom format properties.

Use the following syntax: '<prop1>' VALUE '<value1>', '<prop2>' VALUE
'<value2>' ...

• OVERWRITE_FIELD_LIST — This option gives the possibility to redefine the source file field
definitions, where ODI does not have enough information about your input data. The
details that you enter here are used as the field_list parameter of
dbms_cloud.create_external_table function call.

For more details, refer to DBMS_CLOUD package documentation for more information.

Cleanup

• CLEANUP_TEMPORARY_OBJECTS — Set this property to True, if you want temporary objects to
be automatically cleaned up.

• CLEANUP_CREDENTIAL— Set this property to True, if you want the credential object to be
automatically cleaned up at the end of the every execution. Cleanup will happen only if the
CREATE_CREDENTIAL option is also set to True.

35.5.1.3 LKM BICC to ADW Copy Direct
This KM helps to load data from Oracle BI Cloud Connector to Oracle ADW. You can use this
LKM as a standalone KM as you do not need any IKM.

KM Options

This KM has the following options:

• CREDENTIAL_NAME — The name of the credential to be stored. The default value is ODI.

• CREATE_CREDENTIAL — It creates new credentials. If set to False, ODI reuses the existing
credentials.

Chapter 35
Designing a Mapping

35-10

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/dbmscloud-reference.html#GUID-52C9974C-D95E-4E41-AFBD-0FC4065C029A


• GENERATE_FIELD_LIST — If this KM option is set to False, then the field_list clause is
skipped and the default settings of ORACLE_LOADER access driver is applied.

• SUBMIT_BICC_JOB — Oracle BI Cloud Connector has its own scheduler which can be set up
to extract data and store it as zipped csv files in the Object Store. In ODI, you can set the
SUBMIT_BICC_JOB option to False and simply pick up the extracted data from the Object
Store (either all data or from the LAST_LOAD_DATE). If you prefer not to use the Oracle BI
Cloud Connector scheduler, or you want to ensure that there is nothing more to extract
since the last scheduled job, you can have ODI run the extract job where it will create a job
to extract the data, wait for it to finish, and then fetch the data from the Object Store.

• LAST_LOAD_DATE — This option allows to specify the date of the previous load of extracted
data.

Formatting

• DELIMITED_FILE_FORMAT — It specifies delimited File Format and it can be CSV (default)
or common delimited format known to ORACLE_LOADER access driver. You can use this
KM option only if the source datastore File Format property is set to Delimited.

• COMPRESSION — It specifies the compression method of the source file. It can have values
nil or auto. Empty value implies no compression and AUTO implies compression type is
auto-detected.

• DATE_FORMAT — It helps to set specific date format.

• TIMESTAMP_FORMAT — It helps to set specific time format.

• REJECT_LIMIT — The query helps to display an error message after the specified number
of rows are rejected. Default value is zero.

• CONVERSION_ERRORS — It specifies the processing conversion errors. If any row throws an
error because of a conversion error, the related columns are stored as null or the row is
rejected.

• TRIM_SPACES — It helps to trim the leading and trailing spaces of the fields. If set to True, it
trims the specified spaces.

• IGNORE_BLANK_LINES — If set to True, the blank lines are ignored without throwing any
error.

• IGNORE MISSING COLUMNS — If there are more columns in the field_list than the source
files, the extra columns will be stored as null.

• TRUNCATE_COLUMNS— If the data in a file is too long for a field, then this option will truncate
the value of the field rather than rejecting the row.

Advanced

• ADD_FORMAT_PROPERTIES — This option allows adding custom format properties.

Use the following syntax: '<prop1>' VALUE '<value1>', '<prop2>' VALUE
'<value2>' ...

• OVERWRITE_FIELD_LIST — This option gives the possibility to redefine the source file field
definitions, where ODI does not have enough information about your input data. The
details that you enter here are used as the field_list parameter of
dbms_cloud.create_external_table function call.

For more details, refer to DBMS_CLOUD package documentation for more information.

Cleanup

Chapter 35
Designing a Mapping

35-11

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/dbmscloud-reference.html#GUID-52C9974C-D95E-4E41-AFBD-0FC4065C029A


• CLEANUP_TEMPORARY_OBJECTS — Set this property to True, if you want temporary objects to
be automatically cleaned up.

• CLEANUP_CREDENTIAL— Set this property to True, if you want the credential object to be
automatically cleaned up at the end of the every execution. Cleanup will happen only if the
CREATE_CREDENTIAL option is also set to True.

Target

• CREATE_TARG_TABLE — It helps you to create the target table. Set this KM option to True, if
you want to create the target table before loading.

• TRUNCATE_TARG_TABLE — It helps you to truncate the target table. Set this KM option to
True, if you want to truncate the target table before loading.

• DELETE_TARG_TABLE — It allows you to delete the target table. Set this KM option to True, if
you want to delete data from the target table before loading.

Chapter 35
Designing a Mapping

35-12



36
Oracle NetSuite

It is important to understand how to work with Oracle NetSuite in Oracle Data Integrator.

This chapter includes the following sections:

• Introduction

• Installation and Configuration

• Setting up the Topology

• Creating and Reverse-Engineering an Oracle NetSuite Model

• Designing a Mapping

36.1 Introduction
Oracle NetSuite is the world’s leading provider of cloud-based business management software.
Oracle NetSuite helps companies manage core business processes with a single, fully
integrated system covering ERP/financials, CRM, ecommerce, inventory and more.

Oracle Data Integrator (ODI) seamlessly integrates with Oracle NetSuite. Oracle Data
Integrator features are designed to work best with Oracle NetSuite, including reverse-
engineering and mappings.

36.1.1 Concepts
The Oracle NetSuite technology concepts map the Oracle Data Integrator concepts as follows:
An Oracle NetSuite Instance corresponds to a data server in Oracle Data Integrator. Within this
instance, a schema maps to an Oracle Data Integrator physical schema.

36.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in the following table for
handling Oracle NetSuite data. It is also possible to use the generic SQL KMs with Oracle
NetSuite. See Generic SQL for more information.

Table 36-1    Oracle NetSuite Knowledge Modules

Knowledge Module Description

LKM NetSuite to Oracle Loads data from Oracle NetSuite to an Oracle
staging area.

RKM Oracle NetSuite Reverse-engineers tables, views, columns, saved
searches and creates data models to use as
sources in Oracle Data Integrator mappings.

36-1



36.2 Installation and Configuration
Make sure you have read the information in this section before you start working with the
Oracle NetSuite technology:

• System Requirements and Certifications

• Technology Specific Requirements

• Connectivity Requirements

36.2.1 System Requirements and Certifications
Before performing any installation, you should read the system requirements and certification
documentation to ensure that your environment meets the minimum installation requirements
for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network (OTN):

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html

36.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Oracle NetSuite in Oracle Data
Integrator.

36.2.3 Connectivity Requirements
This section lists the requirements for connecting to the Oracle NetSuite database.

Oracle Data Integrator uses the Oracle NetSuite JDBC Driver to connect to the Oracle
NetSuite database.

Installing Oracle NetSuite JDBC driver

To install the Oracle NetSuite JDBC driver, perform the following steps:

1. Download the JDBC driver installer from NetSuite and install it.

2. Copy the NQjc.jar file into the userlib directory. For more information on adding third-
party libraries to ODI studio, refer Adding Libraries to ODI studio section of Installing and
Configuring Oracle Data Integrator.

Gathering parameters from NetSuite Webpage

In order to define the JDBC connection, you need to retrieve certain parameters from Netsuite.
The information required to populate the NetSuite JDBC connection string is available on the
NetSuite webpage - Home/Dashboard/Set Up SuiteAnalytics Connect. On this page,
you can view the following information for the user that you logged in with:

• Service Host

• Service Port

• Service Datasource

• Account ID

• Role ID

Chapter 36
Installation and Configuration

36-2

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


36.3 Setting up the Topology
Setting up the topology consists of:

• Creating an Oracle NetSuite Data Server

• Creating an Oracle NetSuite Physical Schema

36.3.1 Creating an Oracle NetSuite Data Server

Create a data server for the Oracle NetSuite technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This section
details only the fields required or specific for defining an Oracle NetSuite data server:

1. In the Definition tab, enter the following fields:

a. Name : Name of the data server that will appear in Oracle Data Integrator.

b. User: User name for connecting to the data server.

c. Password: Password for connecting to the data server.

d. Account ID: Account ID for connecting to the data server.

e. Role ID: Role ID for connecting to the data server.

For Saved Search access, Application ID and Version are also required. The steps for
generating the application ID and finding the release version are explained below:

Generating the NetSuite Application ID

To generate a NetSuite Application ID for ODI, perform the following steps:

a. Log in to NetSuite as an administrator.

b. Navigate to Setup > Integration > Manage Integrations. Select New.

c. Fill in a name and ensure that Token-based authentication and user credentials are
checked. Uncheck any other selections if not needed. After saving the configuration,
the Application ID will be displayed on the Integrations panel.

Finding Your NetSuite Release Version

To find the version of NetSuite that your company uses, perform the following steps:

a. Log in to NetSuite.

b. On the Home page, scroll down to the bottom of the page.

c. Find the NetSuite version number in the page footer. The version number appears as
follows: NetSuite (Edition: United States) Release 2020.1 Copyright ©
NetSuite Inc. 1999-2020. So the version would be 2020_1.

2. In the JDBC tab, enter the following values:

a. JDBC Driver: com.netsuite.jdbc.openaccess.OpenAccessDriver
b. JDBC URL: NetSuite {Server Host}:{Server Port};ServerDataSource={Server

Data Source};
The mandatory URL parameters are listed below:

• Server Host: The TCP/IP address of the SuiteAnalytics Connect server, specified as a
host name.

Chapter 36
Setting up the Topology

36-3



• Server Port: The TCP/IP port on which the SuiteAnalytics Connect server is listening.
Valid parameter value is 1708.

• Server Data Source: The name of the SuiteAnalytics Connect server data source to
be used for the connection. Valid parameter values include NetSuite.com and
NetSuite2.com.

3. Click Test Connection, to test the established connection.

36.3.2 Creating an Oracle NetSuite Physical Schema

Create a physical schema for the Oracle NetSuite data server using the standard procedure,
as described in Creating a Physical Schema in Administering Oracle Data Integrator.

Create a logical schema for this physical schema using the standard procedure, as described
in Creating a Logical Schema in Administering Oracle Data Integrator, and associate it in a
given context.

36.4 Creating and Reverse-Engineering an Oracle NetSuite
Model

This section contains the following topics:

• Creating an Oracle NetSuite Model

• Reverse-engineer an Oracle NetSuite Model

36.4.1 Creating an Oracle NetSuite Model
Create an Oracle NetSuite model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

36.4.2 Reverse-engineer an Oracle NetSuite Model
Oracle NetSuite supports only Customized reverse-engineering - which uses a RKM to
retrieve the metadata.

To perform a Customized reverse-engineering on an Oracle NetSuite model, use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration Projects
with Oracle Data Integrator.

Oracle Data Integrator provides the 'RKM Oracle NetSuite' knowledge module for reverse-
engineering purposes. If you want to reverse engineer only the tables, you need to select
'Tables' in the 'Types' section. If you want to reverse engineer a Saved Search, you need to
select 'Saved Search' and then the 'Type' of the saved search must be selected.

36.5 Designing a Mapping
You can use Oracle NetSuite as a source of a mapping. The KM choice for a mapping
determines the abilities and performance of this mapping.

Chapter 36
Creating and Reverse-Engineering an Oracle NetSuite Model

36-4



If only JDBC sources are used (that is, no saved searches), you can use the generic JDBC
KMs. However, if any of the sources is a saved search, you need to use the 'LKM NetSuite to
Oracle' knowledge module.

Chapter 36
Designing a Mapping

36-5



Part V
Appendices

You can find out more information on the various drivers available for Oracle Data Integrator.
Part IV contains the following appendices:

• Oracle Data Integrator Driver for LDAP Reference

• Oracle Data Integrator Driver for XML Reference

• Oracle Data Integrator Driver for Complex Files Reference



A
Oracle Data Integrator Driver for LDAP
Reference

The Oracle Data Integrator Driver for LDAP (LDAP driver) allows Oracle Data Integrator to
manipulate complex LDAP trees using standard SQL queries.
This appendix includes the following sections:

• Introduction to Oracle Data Integrator Driver for LDAP

• LDAP Processing Overview

• Installation and Configuration

• SQL Syntax

• JDBC API Implemented Features

A.1 Introduction to Oracle Data Integrator Driver for LDAP
With Oracle Data Integrator Driver for LDAP (LDAP driver) , Oracle Data Integrator is able to
manipulate complex LDAP trees using standard SQL queries.

The LDAP driver supports:

• Manipulation of LDAP entries, their object classes and attributes

• Standard SQL (Structured Query Language) Syntax

• Correlated subqueries, inner and outer joins

• ORDER BY and GROUP BY

• COUNT, SUM, MIN, MAX, AVG and other functions

• All Standard SQL functions

• Referential Integrity (foreign keys)

• Persisting modifications into directories

A.2 LDAP Processing Overview
The LDAP driver works in the following way:

1. The driver loads (upon connection) the LDAP structure and data into a relational schema,
using a LDAP to Relational Mapping.

2. The user works on the relational schema, manipulating data through regular SQL
statements. Any changes performed in the relational schema data (insert/update) are
immediately impacted by the driver in the LDAP data.

A.2.1 LDAP to Relational Mapping
The LDAP to Relational Mapping is a complex but automated process that is used to generate
a relational structure. As LDAP servers do not provide metadata information in a standard way,

A-1



this mapping is performed using data introspection from the LDAP tree. Therefore, automatic
mapping is carried out on the contents of the LDAP tree used as a source for this process.

This section contains the following topics:

• General Principle

• Grouping Factor

• Mapping Exceptions

• Reference LDAP Tree

A.2.1.1 General Principle
The LDAP driver maps LDAP elements to a relational schema in the following way:

• Each LDAP class or combination of classes is mapped to a table. Each entry from the
LDAP tree is mapped to a record in the table.

• Each attribute of the class instances is mapped to a column.

• Hierarchical relationships between entries are mapped using foreign keys. A table
representing a hierarchical level is created with a primary key called <tablename>PK.
Records reference their parent tables through a <parent_level_tablename>FK column.
The root of the LDAP tree structure is mapped to a table called ROOT containing a ROOTPK
column in a unique record.

• Attributes with multiple values for an entry (for example, a Person entry with several email
attributes) are mapped as sub-tables called <parent_tablename><attribute_name>. Each
sub-table contains a <parent_tablename>FK column linking it to the parent table.

Figure A-1 shows an LDAP tree with OrganizationalUnit entries linking to Person instances. In
this case, certain Person entries have multiple email addresses.

Figure A-1    LDAP Tree Example

This LDAP tree will be mapped into the following relational structure:

Appendix A
LDAP Processing Overview

A-2



• The ROOT table represents the root of the hierarchy and contains one ROOTPK column.

• The ORGANIZATIONALUNIT table represents different organizationalUnit instances of the
tree. It contains the ORGANIZATIONALUNITPK primary key column and the attributes of the
organizationalUnit instances (cn, telephoneNumber, etc.). It is linked to the ROOT table by
the ROOTFK foreign key column.

• The PERSON table represents the instances of the person class. It contains the PERSONPK
primary key column and the ORGANIZATIONALUNITFK linking it to the ORGANIZATIONALUNIT
table and the attributes of PERSON instances, (telephoneNumber, description, cn).

• The email attribute appears as a PERSON_EMAIL table containing the EMAIL column and a
PERSONFK linking a list of email attributes to a PERSON record.

Figure A-2 shows the resulting relational structure.

Figure A-2    Relational Structure mapped from the LDAP Tree Example shown in 
Figure A-1

A.2.1.2 Grouping Factor
In LDAP directories, class entries are often specified by inheriting attributes from multiple class
definitions. In the relational mapping procedure, the LDAP driver translates this fact by
combining each combination of classes in an LDAP entry to generate a new table.

For example, some entries of the Person class may also be instances of either of the Manager
or BoardMember classes (or both). In this case, the mapping procedure would generate a
PERSON table (for the instances of Person) but also MANAGER_PERSON, BOARDMEMBER_PERSON,
BOARDMEMBER_MANAGER_PERSON and so forth, tables depending on the combination of classes
existing in the LDAP tree.

In order to avoid unnecessary multiplication of generated tables, it is possible to parameterize
this behavior. The Grouping Factor parameter allows this by defining the number of divergent
classes below which the instances remain grouped together in the same table. This resulting
table contains flag columns named IS_<classname>, whose values determine the class subset
to which the instance belongs. For example, if IS_<classname> is set to 1, then the instance
represented by the record belongs to <classname>.

Appendix A
LDAP Processing Overview

A-3



The behavior where one table is created for each combination of classes corresponds to a
Grouping Factor equal to zero. With a grouping factor equal to one, instances with only one
divergent class remain in the same table.

In our example, with a Grouping Factor higher than or equal to 2, all company person
instances (including Person, Manager and BoardMember class instances) are grouped in the
PERSON table. The IS_MANAGER and IS_BOARDMEMBER columns enable the determination of
PERSON records that are also in the Manager and/or BoardMember classes.

A.2.1.3 Mapping Exceptions
This section details some specific situations of the mapping process.

• Table name length limits and collisions: In certain cases, name-length restrictions may
result in possible object name collisions. The LDAP driver avoids such situations by
automatically generating 3 digit suffixes to the object name.

• Key column: It is possible to have the driver automatically create an additional
SNPSLDAPKEY column containing the Relative Distinguished Name (RDN) that can be used
as identifier for the current record (original LDAP class instance). This is done by setting
the key_column URL property to true. This SNPSLDAPKEY column must be loaded if
performing DML commands that update the LDAP tree contents. Note that this column is
created only in tables that originate from LDAP instances. Tables that correspond to
multiple valued instance attributes will not be created with these columns.

• Case sensitivity: This is set by the case_sens URL property that makes the RDBMS and
LDAP servers to enforce case-sensitivity.

• Special characters: It is possible in LDAP to have non-alphanumeric characters into
attribute or class names. These characters are converted to underscores ("_") during the
mapping. Exception: If non alphanumeric, the first character is converted to "x".

• SQL Reversed Keywords: Generated tables and columns with names that match SQL
keywords are automatically renamed (an underscore is added after their name) in the
relational structure to avoid naming conflicts between table/column names and SQL
keywords. For example, a class named SELECT will be mapped to a table named SELECT_.

A.2.1.4 Reference LDAP Tree
As LDAP servers do not provide metadata information in a standard way, the LDAP to
Relational Mapping process is performed by default using data introspection from the LDAP
tree.

With the LDAP driver it is also possible to use a Reference LDAP Tree for the LDAP to
Relational Mapping process instead of using the LDAP tree that contains the actual data.

This Reference LDAP Tree is configured using the ldap_metadata property of the driver URL.
This property specifies a.properties file that contains the connection information to a LDAP
tree whose hierarchical structure rigorously reflects that of the operational LDAP tree but
without the accompanying data volume.

This technique reveals certain advantages:

• The Reference LDAP Tree can be maintained by the directory administrator as a stable
definition of the operational LDAP tree.

• The Reference LDAP Tree contains few instances that make up the skeleton of the real
LDAP tree, and the LDAP to Relational Mapping process runs faster on this small
reference tree. This is particularly important for large operational LDAP directories, and will
result in reduced processing time and resources for running the procedure.

Appendix A
LDAP Processing Overview

A-4



The use of this technique, however, imposes a certain number of constraints in the design of
the precise structure of the Reference LDAP Tree:

• All optional LDAP instance attributes must be instantiated in the reference entries. Even if
these attributes are absent in the operational LDAP directory entries, they must be
declared in the Reference LDAP Tree if they are to be used at a later time.

• Any multiple valued attributes that exist in the operational LDAP directory must be
instantiated as such in the Reference LDAP Tree. For example, if any Person instance in
the operational LDAP directory possesses two telephoneNumber attributes, then the
generic Person class must instantiate at least two telephoneNumber attributes in the
Reference LDAP Tree.

Note:

These issues have a direct impact on the generated relational structure by forcing the
creation of additional tables and columns to map multiple attribute fields and must be
taken into consideration when designing the Reference LDAP Tree.

A.2.2 Managing Relational Schemas
This section contains the following topics:

• Relational Schema Storage

• Accessing Data in the Relational Structure

A.2.2.1 Relational Schema Storage
The relational structure resulting from the LDAP to Relational mapping may be managed by
virtual mapping or stored in an external database.

The virtual mapping stores the relational structure in the run-time agent's memory and requires
no other component. The relational structure is transparently mapped by the driver to the
LDAP tree structure. SQL commands and functions that are available for the LDAP driver are
listed in the SQL Syntax.

Note:

The virtual mapping may require a large amount of memory for large LDAP tree
structures.

The external database may be any relational database management system. The driver
connects through JDBC to this engine and uses it to store the relational schema. This method
provides the following benefits:

• Processing and storage capabilities of the selected external database engine.

• Acccess to the specific SQL statements, procedures, and functions of the external
database engine.

• Flexible persistence of the relational structure. This schema content may persist after the
connection to the LDAP driver is closed.

Appendix A
LDAP Processing Overview

A-5



See Using an External Database to Store the Data for more information on how to set up
external storage.

A.2.2.2 Accessing Data in the Relational Structure
DML operations on tables in the relational are executed with standard SQL statements.

Modifications made to the relational data are propagated to the directory depending on the
selected storage :

• In the case where the virtual mapping is used, all insert, update, and delete requests are
automatically propagated to the original LDAP server in an autocommit mode. No explicit
COMMIT or ROLLBACK statements will have any impact on the Oracle Data Integrator
driver for LDAP.

• In the case where the external database is used to store the relational structure, all types
of DML statements may be used with the driver. However, it is important to know that no
modifications will be propagated to the original LDAP server.

A.3 Installation and Configuration
The Oracle Data Integrator driver for LDAP is automatically installed during the Oracle Data
Integrator installation. The following topics cover advanced configuration topics and reference
information.

This section contains the following topics:

• Driver Configuration

• Using an External Database to Store the Data

• LDAP Directory Connection Configuration

• Table Aliases Configuration

Note:

You must add the libraries and drivers required to connect the LDAP directory using
JNDI to the Oracle Data Integrator classpath.

Note:

If using an external database engine you must also make sure that the JDBC driver
used to connect to the external database and the .properties file are in the
classpath.

Appendix A
Installation and Configuration

A-6



A.3.1 Driver Configuration

Note:

ODI LDAP driver's support for LDAP servers is limited. All the features of the driver
will work on any given instance of an LDAP server. ODI uses Java JNDI API to
interact with the LDAP servers. If the LDAP server adheres exactly with LDAP
specifications, then driver features will work. Otherwise, some of the features may not
work.

This section details the driver configuration.

• The driver name is: com.sunopsis.ldap.jdbc.driver.SnpsLdapDriver
• The driver supports two URL formats:

– jdbc:snps:ldap?<property=value>[&...]
– jdbc:snps:ldap2?<property=value>[&...]
The first URL requires the LDAP directory password to be encoded. The second URL
allows you to give the LDAP directory password without encoding it.

Note:

It is recommended to use the first URL to secure the LDAP directory password.

The LDAP driver uses different properties depending on the established connection. 
Figure A-3 shows when to use which properties.

Figure A-3    Properties Files for LDAP Driver

Appendix A
Installation and Configuration

A-7



The LDAP driver connects to the LDAP directory. You can configure this connection with
the properties that start with ldap_. For example, ldap_basedn. Instead of passing the
LDAP directory properties in the driver URL, you can use a properties file for the
configuration of the connection to the LDAP directory. This properties file must be specified
in the ldap_props property of the driver URL.

If you want to use the hierarchical structure of the LDAP tree without the accompanying
data volume, you can use the Reference LDAP tree. The connection to the Reference
LDAP tree is configured with the properties that start with lm_. For example, lm_basedn.
Instead of passing the lm_ properties in the driver URL, you can use a properties file. This
properties file must be specified in the ldap_metadata property of the driver URL. See 
Reference LDAP Tree for more information.

To configure the connection of the LDAP driver to an external database, use the properties
that start with db_. For example, db_url. Instead of passing the external database
properties in the driver URL, you can use a properties file for the configuration of the
connection to the external database. This properties file must be specified in the db_props
property of the driver URL. See Using an External Database to Store the Data for more
information.

Table A-1 describes the properties that can be passed in the driver URL.

Table A-1    URL Properties

Property Mandatory Type Default Description

db_props or
dp

No string (file
location)

Empty
string

Name of a .properties file containing the external database
connection configuration. See Using an External Database to
Store the Data for the details of this file content.

Note: This property should contain the name of the .properties
file without the file extension.

Note: This .properties file must be in the run-time agent
classpath.

Note: You can specify the external database connection
configuration using all the db_ properties listed below in this
table.

ldap_props
or lp

No string (file
location)

N/A Name of a .properties file containing the directory connection
configuration. See LDAP Directory Connection Configuration for
the details of this file content.

Note: This property should contain the name of the .properties
file without the file extension.

Note: This .properties file must be in the run-time agent
classpath.

Note: You can specify the LDAP directory connection
configuration using all the ldap_ properties listed below in this
table.

Appendix A
Installation and Configuration

A-8



Table A-1    (Cont.) URL Properties

Property Mandatory Type Default Description

ldap_metadat
a or lm

No string (file
location)

N/A Name of a .properties file containing the directory connection
configuration for the Reference LDAP Tree. See LDAP Directory
Connection Configuration for the details of this file content, and 
Reference LDAP Tree for an explanation of the reference tree.

Note: This property should contain the name of the .properties
file without the file extension.

Note: This .properties file must be in the run-time agent
classpath.

Note: You can specify the reference LDAP directory connection
configuration using all the lm_ properties listed below in this
table.

case_sens or
cs

No boolean (true |
false)

false Enable / disable case sensitive mode for both LDAP- and
RDBMS-managed objects.

alias_bundle
or ab

No string (file
location)

Empty
string

Full name of a properties file including both the absolute path to
the properties file and the file extension. The properties file is a
file that contains the list of aliases for the LDAP to Relational
Mapping. If this file does not exist, it will be created by the driver.
See Table Aliases Configuration for more information.

Note: The file extension does not need to be .properties.

alias_bundle
_encoding or
abe

No string
(encoding
code)

Default
encoding

Alias bundle file encoding. This encoding is used while reading
and overwriting the alias_bundle file. If it is not defined then the
default encoding would be used.

You will find a list of supported encoding at the following URL: 
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/
encoding.doc.html.

grouping_fact
or or gf

No integer 2 Determines how many object classes will be grouped together to
set up a single relational table mapping. See Grouping Factor for
more information.

key_column
or kc

No boolean (true |
false)

false If set to true, a technical column called SNPSLDAPKEY is created
to store the Relative Distinguished Name (RDN) for each LDAP
entry. See Mapping Exceptions for more information.

numeric_ids
or ni

No boolean (true |
false)

true If set to true, all internal Primary and Foreign Keys are of
NUMERIC type. Otherwise, they are of the VARCHAR type.

id_length or il No integer 10 / 30 The length of the internal Primary and Foreign Key columns. The
default is 10 for NUMERIC column types and 30 for VARCHAR
column types.

table_prefix
or tp

No string N/A Prefix added to relational tables of the current connection.

ldap_auth No string simple LDAP Directory authentication method. See the auth property in 
LDAP Directory Connection Configuration.

ldap_url Yes string N/A LDAP Directory URL. See the url property in LDAP Directory
Connection Configuration.

ldap_user No string Empty
string

LDAP Directory user name. See the user property in LDAP
Directory Connection Configuration.

ldap_passwo
rd

No string Empty
string

LDAP Directory user password. See the password property in 
LDAP Directory Connection Configuration.

ldap_basedn No string N/A LDAP Directory basedn. See the basedn property in LDAP
Directory Connection Configuration.

Appendix A
Installation and Configuration

A-9

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html


Table A-1    (Cont.) URL Properties

Property Mandatory Type Default Description

lm_auth No string simple Reference LDAP authentication method. See the auth property
in LDAP Directory Connection Configuration.

lm_url Yes string N/A Reference LDAP URL. See the url property in LDAP Directory
Connection Configuration.

lm_user No string Empty
string

Reference LDAP Directory user name. See the user property in 
LDAP Directory Connection Configuration.

lm_password No string Empty
string

Reference LDAP Directory user password. See the password
property in LDAP Directory Connection Configuration.

lm_basedn No string N/A Reference LDAP Directory basedn. See the basedn property in 
LDAP Directory Connection Configuration.

db_driver Yes string N/A External Database JDBC Driver. See the driver property in 
Using an External Database to Store the Data.

db_url Yes string N/A External Database JDBC URL. See the url property in Using an
External Database to Store the Data.

db_user No string Empty
string

External Database user. See the user property in Using an
External Database to Store the Data.

db_password No string Empty
string

External Database password. See the password property in 
Using an External Database to Store the Data.

db_schema No string Empty
string

External Database schema. See the schema property in Using an
External Database to Store the Data.

db_catalog No string Empty
string

External Database catalog. See the catalog property in Using
an External Database to Store the Data.

db_drop_on_
disconnect or
db_dod

No boolean (true|
false)

true Drop tables on disconnect on the external database. See the
drop_on_disconnect property in Using an External Database
to Store the Data.

db_load_mod
e or db_lm

No string ci Loading method for the external database. See the load_mode
property in Using an External Database to Store the Data.

page_size No integer 0 Read data from LDAP servers with this page size limit. Setting
this property to a positive value will cause the LDAP driver to try
to use pagination to retrieve all the results, in case the LDAP
driver has enforced pagination on search results.

Note:

The value set for page_size must
match the maximum page size
(maximum number of results) set on
the LDAP server.

transform_no
nascii or tna

No boolean (true|
false)

true Transform Non Ascii. Set to false to keep non-ascii characters.

URL Examples

The following section lists URL examples:

• jdbc:snps:ldap?lp=ldap_mir&ldap_basedn=o=tests&gf=10&lf=

Appendix A
Installation and Configuration

A-10



Connects to the LDAP directory specified in the ldap_mir .properties file, overriding the
basedn property of the ldap bundle and using a grouping factor of 10. General information
(important) is sent to the standard output.

• jdbc:snps:ldap?lp=ldap_ours&lm=generic&ab=c:/tmp/aliases.txt&gf=10&kc=true
Connects to the LDAP directory using the ldap_ours .properties file; a generic Directory
tree for relational model creation is signaled by the lm property; an alias bundle file is used
for the creation of the relational structure; a maximum grouping factor of 10 is used; key
column creation is enabled for the SNPSLDAPKEY field to allow updates requests in the
relational model.

• jdbc:snps:ldap?
lp=ldap_mir&dp=mysql_mir_ldap&ldap_basedn=dc=tests&lm=ldap_mir&lm_basedn=dc=mo
del&ab=d:/temp/mapldap.txt&
Connects to the LDAP directory using the ldap_mir .properties file; overriding ldap
basedn property; using the "dc=model" subtree of the same directory to perform mapping;
using an alias bundle; overriding the lm database property (load mode); specifying a
grouping factor of 0 to indicate no grouping (grouping disabled); Full trace logging is
activated.

• Connects to a LDAP directory on the hydraroid machine. The LDAP server connection
information - url, base dn, user and password - is specified in the URL using the ldap_xxx
properties.

jdbc:snps:ldap?ldap_url=ldap://hydraroid:389/
dc=localhost,dc=localdomain&ldap_password=KPLEKFMJKCLFJMDFDDGPGPDB&ldap_user=cn=orcla
dmin&ldap_basedn=ou=applications

A.3.2 Using an External Database to Store the Data
The relational structure resulting from the LDAP to relational mapping of the LDAP tree can be
stored in the run-time agent's memory or in an external database.

Note:

The list of technologies that support external storage is available on Oracle Technical
Network (OTN) :

http://www.oracle.com/technology/software/products/ias/files/
fusion_certification.html

The external storage is configured with a set of properties described in Table A-2.

The external storage properties can be passed in several ways:

• Passing the Properties in the Driver URL

• Setting the Properties in ODI Studio

• Setting the Properties in a Properties File

Appendix A
Installation and Configuration

A-11

http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html
http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html


A.3.2.1 Passing the Properties in the Driver URL
The properties can be directly set in the driver URL. When using this method, the properties
have to be prefixed with db_ . For example, if connecting to an Oracle database, specify the
Oracle JDBC driver name in the driver parameter as follows:

db_driver=oracle.jdbc.OracleDriver.

A.3.2.2 Setting the Properties in ODI Studio
The properties can be specified on the Properties tab of the Data Server editor in Topology
Navigator. When using this method, the properties have to be prefixed with db_. For example, if
you want to set the driver parameter:

1. In the Key column, enter db_driver
2. In the Value column, enter oracle.jdbc.OracleDriver if you are connecting to an Oracle

database.

A.3.2.3 Setting the Properties in a Properties File
The properties can be set in an external database properties file. This properties file, also
called property bundle, is a text file with the .properties extension containing a set of lines
with on each line a <property>=<value> pair.This external database porperties file contains
the properties of a JDBC connection to the relational database schema. The properties file is
referenced using the db_props property in the JDBC URL.

Note:

It is important to understand that the LDAP driver loads external property bundle files
once only at runtime startup. If errors occur in these files, it is advisable to exit Oracle
Data Integrator and then reload it before re-testing.

When using this method, note the following:

• The properties in the properties file are not prefixed and used as described in Table A-2.

• The db_props property is set to the name of the properties file without the .properties
extension. For example, if you have in your classpath the prod_directory.properties file,
you should refer to this file as follows: db_props=prod_directory.

The db_props property indicates that the schema must be loaded in a database schema
whose connection information is stored in a external database properties file.

• The properties files have to be deployed by the agent using the LDAP connection. The
location the properties file depends on the agent you are using:

– Local agent (Studio): Place the external DB properties file in the <user.dir>/odi/
oracledi/userlib folder

– Standalone Agent: Place the external DB properties file in oracledi/agent/drivers
folder

– JavaEE Agent: The external DB properties file should be packed into a JAR or ZIP file
and added to the template generated by the Java EE agent. See Deploying an Agent

Appendix A
Installation and Configuration

A-12



in a Java EE Application Server (Oracle WebLogic Server) in Administering Oracle
Data Integrator for more information.

• When using property bundle files, you must make sure that the property bundle is present
in the Oracle Data Integrator classpath. Typically, you should install this bundle in the
drivers directories.

Note:

When connecting to the external database, the LDAP driver uses JDBC connectivity.
Make sure that the JDBC driver to access this external database is also available in
the ODI classpath.

It is possible to set or override the external database properties on the URL. These properties
must be prefixed with the string db_. For example:

jdbc:snps:ldap?ldap_url=ldap://localhost:389/
&ldap_basedn=o=company&db_driver=oracle.jdbc.OracleDriver&db_url=<external_db_url>

The properties for configuring external storage are described in Table A-2.

Table A-2    External Storage Configuration Properties

Prop
erty

Mand
atory

Typ
e

Defaul
t

Description

driver Yes strin
g

N/A JDBC driver name

url Yes strin
g

N/A JDBC URL

user No strin
g

Empty
string

Login used to connect the database

passw
ord

No strin
g

Empty
string

Encrypted database user password.

Note: To encrypt the password, use the encode.bat (cmd|sh) command. See Encoding a
Password in Administering Oracle Data Integrator for more information.

sche
ma

No strin
g

Empty
string

Database schema storing the LDAP Tree. This property should not be used for Microsoft
SQLServer, and the catalog property should be used instead.

catalo
g

No strin
g

Empty
string

Database catalog storing the LDAP Tree. For Microsoft SQL Server only. This property should
not be used simultaneously with the schema property.

drop_
on_di
sconn
ect or
dod

No bool
ean
(tru
e |
fals
e)

true If true, drop the tables from the database at disconnection time. If set to false the tables are
preserved in the database.

load_
mode
or lm

No strin
g

ci The loading method. Values may be:

• n (none): the model and table mappings are created in memory only.
• dci (drop_create_insert): drop all tables that may cause name conflicts then create tables

and load the LDAP tree into the relational model.
• ci(create_insert): Create the relational tables and throw an exception for existing tables,

then load the LDAP tree into the relational model.

Appendix A
Installation and Configuration

A-13



Table A-2    (Cont.) External Storage Configuration Properties

Prop
erty

Mand
atory

Typ
e

Defaul
t

Description

unico
de

No bool
ean
(tru
e |
fals
e)

For MS SQL Server:

If unicode = true, nvarchar is used.

If unicode = false or not set, varchar is used.

varch
ar_len
gth or
vl

No inte
ger

255 Size of all the columns of the relational structure that will be used to contain string data.

The following is an example of an external database .properties file to connect to an external
Oracle database:

driver=oracle.jdbc.OracleDriver
url=jdbc:oracle:thin:@hydraro:1521:SNPTST1
user=LDAP_T_1
password=ENCODED_PASSWORD
schema=LDAP_T_1

A.3.3 LDAP Directory Connection Configuration
The Oracle Data Integrator driver for LDAP uses the properties described in Table A-3 to
connect to a directory server that contains the LDAP data or the Reference LDAP Tree. These
properties can be provided either in a property bundle file or on the driver URL.

The properties for configuring a directory connection are detailed in Table A-3.

Table A-3    Directory Connection Properties

Prop
erty

Man
dator
y

Typ
e

Defa
ult

Description

auth No strin
g

simpl
e

The authentication method

url Yes strin
g

N/A URL to connect to the directory. It is an LDAP URL.

Note: This driver supports the LDAPS (LDAP over SSL) protocol. The LDAPS URL must start
with ldaps://. To connect a server using LDAPS, you must manually install the certificate in the
java machine. See the keytool program provided with the JVM for more information.

user No strin
g

Empt
y
strin
g

The LDAP server user-login name. Mandatory only if "auth" is set.

Note: If user and password properties are provided to create the connection with the JDBC
Driver for LDAP, then they are used to connect the LDAP directory.

pass
word

No strin
g

Empt
y
strin
g

LDAP server user-login password. Mandatory only if "auth" is set.

Note: The password needs to be encrypted, unless the 'jdbc:snps:ldap2' URL syntax.

Note: To encrypt the password, use the encode.bat (cmd|sh) command. See Encoding a
Password in Administering Oracle Data Integrator for more information.

base
dn

No strin
g

N/A The base dn with which you wish to connect to the LDAP tree. The base dn is the top level of the
LDAP directory tree. If it not specified, the base dn specified in the LDAP URL is used.

Appendix A
Installation and Configuration

A-14



The following is an example of an LDAP properties file content:

url=ldap://ours:389
user=cn=Directory Manager
password=ENCODED_PASSWORD
basedn=dc=oracle,dc=com

A.3.4 Table Aliases Configuration
The LDAP driver allows a certain flexibility in the definition of the model table names in Oracle
Data Integrator by the use of table aliases. This is particularly useful when the algorithm used
to navigate the LDAP tree generates long composite names from the LDAP object class
hierarchy. To avoid issues related to RDBMS-specific object name-length constraints, the
LDAP driver can set up and use aliases.

Note:

It is also possible to change the default "Maximum Table Name Length" and
"Maximum Column Name Length" values on the Others tab of the Technology Editor
in the Physical Architecture accordion.

To create a table alias file:

1. In the LDAP Driver Data Server URL, include and set the alias_bundle (ab) property that
indicates the name of the alias text file, for example:

jdbc:snps:ldap?.....&ab=C:/tmp/aliases.txt&....

The alias file is created by the driver at connection time when the alias_bundle property is
specified. Typically, a user connects initially through the LDAP driver which creates this file
containing a list of potential table names to be created by the reverse-engineering
operation.

2. Test the connection to the LDAP data server.

3. Verify the that the text file has been created and has the expected structure. The list
consists of <original table name > = <desired alias name> values. Example A-1
shows an extract of an alias file after the user has provided shortened names. See step 4
for more information.

4. In the alias text file, add short text value aliases to replace the originally derived composite
names and save the file.

5. Reconnect to the same LDAP data server. The relational schema is created and this time
the aliases will be used for defining relational table names.

6. Now reverse-engineer the LDAP directory as described in Reverse-Engineering an LDAP
Model. Oracle Data Integrator will create datastores with the table names defined as
aliases in the alias file.

Example A-1    Alias File

INETORGPERSON_ORGANIZATIONALPERSON_PERSON_BISOBJECT_MAIL = PERSONMAIL
ORGANIZATIONALUNIT_RFC822MAILMEMBER = ORG_228MAIL
INETORGPERSON_ORGANIZATIONALPERSON_PERSON = ORG_PERSON
ORGANIZATIONALUNIT_MEMBER = ORG_UN_MEMBER
ORGANIZATIONALUNIT = ORG_UNIT
ROOT = ROOT

Appendix A
Installation and Configuration

A-15



....
 

Note:

If any modifications have been applied to the object class structure or attribute sets of
the LDAP directory, the driver will rewrite this file while including the new or modified
entries to the table name list.

A.4 SQL Syntax
The SQL statements described in SQL Statements are available when using the Oracle Data
Integrator driver for LDAP. They enable the management of relational data structure and data
through standard SQL Syntax.

Note:

• If you are using an external database you may use its proprietary query engine
syntax in place of the following commands.

• The LDAP driver works uniquely in auto commit mode. No explicit transaction
management with COMMIT or ROLLBACK commands is permitted.

• When using an external database to store LDAP tree data, DDL statements may
only be carried out on temporary tables.

Table A-4 summarizes the recommendations to apply when performing the listed DML
operations on specific key fields.

Table A-4    DML Opertaions on Key Fields

Type of Column Insert Update Delete

Foreign Key Pay attention to master table
referential constraints and
ordered table populate
operations.

Not permitted Pay attention to master table
referential constraints and
ordered delete requests.

Primary Key Pay attention to slave table
referential constraints and
ordered table populate
operations.

Not permitted Pay attention to slave table
referential constraints and
ordered delete requests

IS_xxx Pay attention to associating the
correct flag value to the original
object class.

Not permitted OK

Key_Column Pay attention to setting the
RDN value in the correct LDAP
syntax.

Not permitted OK

Appendix A
SQL Syntax

A-16



A.4.1 SQL Statements
Any number of commands may be combined. The semicolon (;) may be used to separate each
command but is not necessary.

A.4.1.1 DISCONNECT
DISCONNECT

Closes this connection.

Remarks

• It is not required to call this command when using the JDBC interface: it is called
automatically when the connection is closed.

• After disconnecting, it is not possible to execute other queries with this connection.

A.4.1.2 INSERT INTO
Insert one or more new rows of data into a table.

INSERT INTO <table_name> [ ( <column_name> [,...] ) ] 
      { VALUES (<expression> [,...]) | <SELECT Statement> }

A.4.1.3 SELECT
Retrieves information from one or more tables in the schema.

SELECT [DISTINCT] { <select_expression> | <table_name>.* | * } [, ... ]
    [ INTO <new_table> ]
      FROM <table_list>
    [ WHERE <expression> ]
    [ GROUP BY <expression> [, ...] ]
    [ ORDER BY <order_expression> [, ...] ]
    [ { UNION [ALL] | {MINUS|EXCEPT} | INTERSECT } <select_statement>
 ]

<table_list> ::=
<table_name> [ { INNER | LEFT [OUTER] } JOIN <table_name> ON <expression> ] 
   [, ...]

<select_expression> ::=
{ <expression> | COUNT(*) | {COUNT | MIN | MAX | SUM | AVG} 
  (<expression>) <column_alias>}

<order_expression> ::=
{ <column_number> | <column_alias> | <select_expression> } [ ASC | DESC ]

A.4.1.4 UPDATE
Modifies data of a table in the database.

UPDATE table SET column = <expression> [, ...] [WHERE <expression>]

Appendix A
SQL Syntax

A-17



A.4.1.5 Expressions, Condition & values
<expression> ::=
[NOT] <condition> [ { OR | AND } <condition> 
]

<condition> ::=
{ <value> [ || <value> ]
| <value> { = | < | <= | > | >= | <> | != | IS [NOT] } <value>
| EXISTS(<select_statement>)
| <value> BETWEEN <value> AND <value>
| <value> [NOT] IN ( {<value> [, ...] | selectStatement } )
| <value> [NOT] LIKE <value> [ESCAPE] value }

<value> ::=
[ + | - ] { term [ { + | - | * | / } term ]
| ( condition )
| function ( [parameter] [,...] )
| selectStatement giving one value

<term> ::=
{ 'string' | number | floatingpoint | [table.]column | TRUE | FALSE | NULL }

<string> ::=

• Starts and ends with a single '. In a string started with ' use '' to create a '.

• LIKE uses '%' to match any (including 0) number of characters, and '_' to match exactly
one character. To search for '%' itself, '\%' must be used, for '_' use '\_'; or any other
escaping character may be set using the ESCAPE clause.

<name> ::=

• A name starts with a letter and is followed by any number of letters or digits. Lowercase is
changed to uppercase except for strings and quoted identifiers. Names are not case-
sensitive.

• Quoted identifiers can be used as names (for example for tables or columns). Quoted
identifiers start and end with ". In a quoted identifier use "" to create a ". With quoted
identifiers it is possible to create mixed case table and column names. Example: CREATE
TABLE "Address" ("Nr" INTEGER,"Name" VARCHAR); SELECT * FROM "Address".
Quoted identifiers are not strings.

<values> ::=

• A 'date' value starts and ends with ', the format is yyyy-mm-dd (see java.sql.Date).

• A 'time' value starts and ends with ', the format is hh:mm:ss (see java.sql.Time).

• Binary data starts and ends with ', the format is hexadecimal. '0004ff' for example is 3
bytes, first 0, second 4 and last 255 (0xff).

A.4.2 SQL FUNCTIONS
Table A-5 describes the numeric functions.

Appendix A
SQL Syntax

A-18



Table A-5    Numeric Functions

Function Description

ABS(d) returns the absolute value of a double value

ACOS(d) returns the arc cosine of an angle

ASIN(d) returns the arc sine of an angle

ATAN(d) returns the arc tangent of an angle

ATAN2(a,b) returns the tangent of a/b

BITAND(a,b) returns a & b

BITOR(a,b) returns a | b

CEILING(d) returns the smallest integer that is not less than d

COS(d) returns the cosine of an angle

COT(d) returns the cotangent of an angle

DEGREES(d) converts radians to degrees

EXP(d) returns e (2.718...) raised to the power of d

FLOOR(d) returns the largest integer that is not greater than d

LOG(d) returns the natural logarithm (base e)

LOG10(d) returns the logarithm (base 10)

MOD(a,b) returns a modulo b

PI() returns pi (3.1415...)

POWER(a,b) returns a raised to the power of b

RADIANS(d) converts degrees to radians

RAND() returns a random number x bigger or equal to 0.0 and smaller than 1.0

ROUND(a,b) rounds a to b digits after the decimal point

SIGN(d) returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is bigger than 0

SIN(d) returns the sine of an angle

SQRT(d) returns the square root

TAN(d) returns the trigonometric tangent of an angle

TRUNCATE(a,b) truncates a to b digits after the decimal point

Table A-6 describes the string functions.

Table A-6    String Functions

Function Description

ASCII(s) returns the ASCII code of the leftmost character of s

BIT_LENGTH(s) returns the string length in bits

CHAR(c) returns a character that has the ASCII code c

CHAR_LENGTH(s) returns the string length in characters

CONCAT(str1,str2) returns str1 + str2

DIFFERENCE(s1,s2) returns the difference between the sound of s1 and s2

HEXTORAW(s1) returns the string translated from hexadecimal to raw

Appendix A
SQL Syntax

A-19



Table A-6    (Cont.) String Functions

Function Description

INSERT(s,start,len,s2) returns a string where len number of characters beginning at start has
been replaced by s2

LCASE(s) converts s to lower case

LEFT(s,count) returns the leftmost count of characters of s

LENGTH(s) returns the number of characters in s

LOCATE(search,s,[start]) returns the first index (1=left, 0=not found) where search is found in s,
starting at start

LTRIM(s) removes all leading blanks in s

OCTET_LENGTH(s) returns the string length in bytes

RAWTOHEX(s) returns translated string

REPEAT(s,count) returns s repeated count times

REPLACE(s,replace,s2) replaces all occurrences of replace in s with s2

RIGHT(s,count) returns the rightmost count of characters of s

RTRIM(s) removes all trailing blanks

SOUNDEX(s) returns a four character code representing the sound of s

SPACE(count) returns a string consisting of count spaces

SUBSTR(s,start[,len]) (alias for substring)

SUBSTRING(s,start[,len]) returns the substring starting at start (1=left) with length len.

Another syntax is SUBSTRING(s FROM start [FOR len])

TRIM TRIM([{LEADING | TRAILING | BOTH}] FROM s): removes trailing and/or
leading spaces from s.

UCASE(s) converts s to upper case

LOWER(s) converts s to lower case

UPPER(s) converts s to upper case

Table A-7 describes the date and time functions.

Table A-7    Date and Time Functions

Function Description

CURDATE() returns the current date

CURTIME() returns the current time

CURRENT_DATE returns the current date

CURRENT_TIME returns the current time

CURRENT_TIMESTAMP returns the current timestamp

DATEDIFF(s, d1,d2) returns the counts of unit of times specified in s elapsed from datetime d1
to datetime d2. s may take the following values: 'ms'='millisecond',
'ss'='second','mi'='minute','hh'='hour', 'dd'='day', 'mm'='month', 'yy' = 'year'.

DAYNAME(date) returns the name of the day

DAYOFMONTH(date) returns the day of the month (1-31)

DAYOFWEEK(date) returns the day of the week (1 means Sunday)

Appendix A
SQL Syntax

A-20



Table A-7    (Cont.) Date and Time Functions

Function Description

DAYOFYEAR(date) returns the day of the year (1-366)

EXTRACT EXTRACT ({YEAR | MONTH | DAY | HOUR | MINUTE | SECOND} FROM
<datetime>): extracts the appropriate part from the <datetime> value.

HOUR(time) return the hour (0-23)

MINUTE(time) returns the minute (0-59)

MONTH(date) returns the month (1-12)

MONTHNAME(date) returns the name of the month

NOW() returns the current date and time as a timestamp

QUARTER(date) returns the quarter (1-4)

SECOND(time) returns the second (0-59)

WEEK(date) returns the week of this year (1-53)

YEAR(date) returns the year

Note that A date value starts and ends with ', the format is yyyy-mm-dd (see java.sql.Date). A
time value starts and ends with ', the format is hh:mm:ss (see java.sql.Time).

Table A-8 describes the system functions.

Table A-8    System Functions

Function Description

IFNULL(exp,value) if exp is null, value is returned else exp

CASEWHEN(exp,v2,v2) if exp is true, v1 is returned, else v2

CONVERT(term,type) converts exp to another data type

COALESCENCE(e1,e2,e3,...) if e1 is not null then it is returned, else e2 is evaluated. If e2 is null,
then is it returned, else e3 is evaluated and so on.

NULLIF(v1,v2) returns v1 if v1 is not equal to v2, else returns null

CASE WHEN There are two syntax for the CASE WHEN statement:

CASE v1 WHEN v2 THEN v3 [ELSE v4] END: if v1 equals v2 then
returns v3 [otherwise v4 or null if ELSE is not specified].

CASE WHEN e1 THEN v1[WHEN e2 THEN v2] [ELSE v4] END: when
e1 is true return v1 [optionally repeated for more cases] [otherwise v4
or null if there is no ELSE]

CAST(term AS type) converts exp to another data type

Table A-9 describes the system and connection functions.

Table A-9    System and Connection Functions

Function Description

DATABASE() returns the name of the database of this connection

USER() returns the user name of this connection

IDENTITY() returns the last identity values that was inserted by this connection

Appendix A
SQL Syntax

A-21



A.5 JDBC API Implemented Features
Table A-10 lists the JDBC API features of the Oracle Data Integrator driver for LDAP.

Table A-10    JDBC API Features

Feature Groups JDBC Version Support

Batch Update 2.0 Core Yes

Blob/Clob 2.0 Core No

JNDI DataSources 2.0 Optional No

Failover support - No

Transaction SavePoints 3.0 No

Unicode support - No

Disributed Transaction 2.0 Optional No

Connection Pooling 2.0 Optional No

Cluster support - No

The following table identifies the JDBC classes supported by the Oracle Data Integrator driver
for LDAP.

Table A-11    JDBC Classes

JDBC Classes JDBC Version Support

Array 2.0 Core No

Blob 2.0 Core No

Clob 2.0 Core No

CallableStatement 1.0 Yes

Connection 1.0 Yes

ConnectionPoolDataSource 2.0 Optional No

DatabaseMetaData 1.0 Yes

DataSource 2.0 Optional No

Driver 1.0 Yes

PreparedStatement 1.0 Yes

Ref 2.0 Core No

RowSet 2.0 Optional No

ResultSet 1.0 Yes

ResultSetMetaData 1.0 Yes

Statement 1.0 Yes

Struct 2.0 Core No

XAConnection 2.0 Optional No

XADataSource 2.0 Optional No

Appendix A
JDBC API Implemented Features

A-22



B
Oracle Data Integrator Driver for XML
Reference

The Oracle Data Integrator Driver for XML (XML driver) allows Oracle Data Integrator to use
XML documents as data servers.
This appendix includes the following sections:

• Introduction to Oracle Data Integrator Driver for XML

• XML Processing Overview

• Installation and Configuration

• Detailed Driver Commands

• SQL Syntax

• JDBC API Implemented Features

• Rich Metadata

• XML Schema Supported Features

B.1 Introduction to Oracle Data Integrator Driver for XML
Oracle Data Integrator Driver for XML (XML driver) handles an XML document as a JDBC data
source. This allows Oracle Data Integrator to use XML documents as data servers.

With Oracle Data Integrator Driver for XML, Oracle Data Integrator can query XML documents
using standard SQL syntax and perform changes in the XML files. These operations occur
within transactions and can be committed or rolled back.

The Oracle Data Integrator driver for XML supports the following features:

• Standard SQL (Structured Query Language) Syntax

• Correlated subqueries, inner and outer joins

• ORDER BY and GROUP BY

• COUNT, SUM, MIN, MAX, AVG and other functions

• Standard SQL functions

• Transaction Management

• Referential Integrity (foreign keys)

• Saving Changes made on XML data into the XML files

B.2 XML Processing Overview
The XML driver works in the following way:

1. The driver loads (upon connection or user request) the XML structure and data into a
relational schema, using a XML to SQL Mapping.

B-1



2. The user works on the relational schema, manipulating data through regular SQL
statements or specific driver commands for driver operations.

3. Upon disconnection or user request, the XML driver synchronizes the data and structure
stored in the schema back to the XML file.

B.2.1 XML to SQL Mapping
The XML to SQL Mapping is a complex process that is used to map a hierarchical structure
(XML) into a relational structure (schema). This mapping is automatic.

Elements and Attributes Mapping

The XML driver maps XML elements and attributes the following way:

• Elements are mapped as tables with the same name.

• Attributes are mapped as columns named like the attributes. Each column is created in the
table representing the attribute's element.

Hierarchy & Order Mapping

Extra data may appear in the relational structure as follows:

• In order to map the hierarchy of XML elements, or a one-to-many relation between
elements, the XML driver generates in each table corresponding to an element the
following extra columns:

– <element_name>PK: This column identifies the element.

– <parent_element_name>FK: This column links the current element to its parent in the
hierarchy. It contains a value matching the parent element's <element_name>PK value.
In case of XML recursion the parent element or ancestors of the parent element can
be located in the same table.

• Records in a table, unlike elements in an XML file, are not ordered, unless a specific
column is used to define the order. The driver generates also a column named
<element_name>ORDER to preserve the order of the elements. When adding new rows in
the relational schema, make sure that the ORDER column is correctly set to have the
elements correctly ordered under the parent element.

• The root of the hierarchy is identified by a root table named after the root element. This
table contains a single record with the following columns:

– <root_element_name>PK: All level 1 sub-elements will refer to this PK entry.

– SNPSFILENAME: This column contains the names of the XML file loaded into this
schema.

– SNPSFILEPATH: This column contains the XML file path.

– SNPSLOADDATE: This column contains the date and time when the file was loaded into
the schema.

The values in this table are managed by the driver and should not be modified.

Mapping Exceptions

This section details some specific situations for the mapping of extra data.

• Elements containing only #PCDATA are not mapped as tables, but as columns of the table
representing their parent element. These columns are named <element_name>_DATA.

Appendix B
XML Processing Overview

B-2



• List Attributes are mapped as a new table with a link (PK, FK) to the table representing the
element containing the list.

• XML elements and attributes with names that match SQL reserved keywords are
automatically renamed (an underscore is added after their name) in the relational structure
to avoid naming conflict between table/column names and SQL reserved keywords. For
example, an element named SELECT will be mapped to a table named SELECT_. Such
elements are restored in the XML file with their original naming when a synchronize
operation takes place.

Note that extra objects created by the driver are used to keep the XML file consistency. These
records must be loaded in the relational schema before it is synchronized to an XML file.

B.2.2 XML Namespaces
The XML driver supports XML namespaces (xmlns:) specified for XML attributes and
elements.

Elements or attributes specified with a namespace (using the syntax <namespace>:<element
or attribute name>) are mapped as tables or columns prefixed with the namespace using the
syntax: <namespace>_<element or attribute name>. When synchronizing the XML data back
to the file, the namespace information is automatically generated.

Note:

In v3 mode, the table names are not prefixed with <namespace>_.

B.2.3 Managing Schemas
A schema corresponds to the concept used in Oracle database and other RDBM systems and
is a container that holds a set of relational tables. A schema is a generic relational structure in
which an entire set of XML file instances may be successfully parsed and extracted. The
identified elements and attributes are inserted in the appropriate relational tables and fields.

This schema is generated by the XML driver from either an XML instance file, a DTD file, or an
XSD file. It is recommended to generate the schema from a DTD or XSD file.

Note that only a single DTD or XSD file may be referenced in definition of an XML data server
URL. In this case, this DTD or XSD may be considered as a master DTD or XSD file if the
artifact includes references to other DTD / XSD files. Note that in certain cases multiple
schemas may be required. In this case use the add_schema_bundle property.

B.2.3.1 Schema Storage
The schema may be stored either in a built-in engine or in an external database.

• The built-in engine requires no other component to run. The XML schema is stored in
memory within the driver. The SQL commands and functions available on this driver are
detailed in the SQL Syntax.

• The external database can be a relational database management system. The driver
connects through JDBC to this engine, and uses it to store the schema. This enables the:

– Use of the processing and storage power of the RDBMS engine

– Use of the statements and functions of the RDBMS

Appendix B
XML Processing Overview

B-3



– Persistence of schema storage

See Using an External Database to Store the Data for more information.

B.2.3.2 Multiple Schemas
It is possible to handle, within the same JDBC connection, multiple schemas and to load
multiple XML files simultaneously. It is possible to CREATE, TRUNCATE, SET, and LOAD FILE
INTO schemas. When connecting to the JDBC driver, you connect to the schema that is
specified on the URL. It is possible to set the current schema to another one using the SET
SCHEMA command. See Detailed Driver Commands for more information.

The default schema is a specific schema that is used for storing temporary data. The default
schema is read-only and cannot be used to store XML files. It is recommeded to create a
schema for each XML file.

It is also possible to automatically create additional schemas with different XML structures
when creating the connection to the driver. See Driver Configuration for more information.

B.2.3.3 Accessing Data in the Schemas
Data in the schemas is handled using the SQL language.

It is possible to access tables in a schema that is different from the current schema. To access
the tables of a different schema, prefix the table name with the schema name, followed by a
period character (.). For example:

SELECT col1, schema2.table2.col2, table1.col3 FROM table1, schema2.table2.

This query returns data from table1 in the current schema, and from table2 from schema2.

Note:

Note that the other schema must be located on the same storage space - built-in
engine or external database - as than the current schema.

B.2.3.4 Case Sensitivity
A schema cannot be case-sensitive. All elements in the schema (tables and columns) are in
UPPERCASE. If the XML file element names contain lowercase letters, they are converted to
upper case. When the elements are synchronized to the XML file, their names are created with
their original case.

B.2.3.5 Loading/Synchronizing
A schema is usually automatically created when connecting to an XML file, and loaded with the
data contained in the XML file. It is possible to force the schema creation and the data loading
in the schema using specific driver commands. See Detailed Driver Commands for more
information. It is also possible to force a synchronization process of the data by using the
SYNCHRONIZE command, as described in SYNCHRONIZE.

Appendix B
XML Processing Overview

B-4



B.2.4 Locking
When accessing an XML file, the driver locks it in order to prevent other instances of the driver
to connect to the file. The lock file has the same name as the XML file but an .lck extension.

If the driver is incorrectly disconnected, a lock may remain on the file. To remove it, delete
the .lck file. It is also possible to unlock an XML file with the UNLOCK FILE command.

B.2.5 XML Schema (XSD) Support
XSD is supported by the XML driver for describing XML file structures. See XML Schema
Supported Features for more information.

In addition, the XML driver supports document validation against XSD schemas specified
within the XML file. This operation may be performed using the VALIDATE driver specific
command.

B.3 Installation and Configuration
The Oracle Data Integrator driver for XML is automatically installed with Oracle Data Integrator.
The following topics cover advanced configuration topics and reference information.

This section contains the following topics:

• Driver Configuration

• Automatically Create Multiple Schemas

• Using an External Database to Store the Data

Note:

If using an External Database storage, you must also make sure that the JDBC driver
used to connect the external database, as well as the.properties file are in the
classpath.

B.3.1 Driver Configuration
This section details the driver configuration.

• The driver name is: com.sunopsis.jdbc.driver.xml.SnpsXmlDriver
• The URL Syntax is: jdbc:snps:xml
The properties to be entered in Properties table are detailed in Table B-1.

Table B-1    Driver Properties

Property Default
Value

Mandatory Description

blank_attribute_as_co
lumn

False No If this property is set to true, any empty element in the XML file that
does not have child element of its own is considered as a column rather
than a table.

Appendix B
Installation and Configuration

B-5



Table B-1    (Cont.) Driver Properties

Property Default
Value

Mandatory Description

file - Yes XML file name. Use slash "/" in the path name instead of back slash "\".
It is possible to use an HTTP, FTP or File URL to locate the file. Files
located by URL are read-only.

For an XML file, if this property is missing, a relational schema is
created by the XML driver from the DTD/XSD file and no XML file is
searched for.

dtd - No Description file: This file may be a DTD or XSD file. It is possible to use
an HTTP, FTP or File URL to locate the file. Files located by URL are
read-only.

Note that the DTD or XSD file that is specified in the URL takes
precedence over the DTD or XSD file that is specified within the XML
file. References should be made with an absolute path.

For an XML file, if this property is missing, and no DTD or XSD is
referenced in the XML file, the driver will automatically consider a DTD
file name similar to the XML file name with .dtd extension.

A DTD file may be created from the XML file structure depending on
the generate_dtd URL property.

Note that when no DTD or XSD file is present, the relational structure is
built using only the XML file content. It is not recommended to reverse-
engineer the data model from such a structure as one XML file instance
may not contain all the possible elements described in the DTD or XSD,
and data model may be incomplete.

root_elt - No Name of the element to take as the root table of the schema. This value
is case sensitive. This property can be used for reverse-engineering for
example a specific message definition from a WSDL file, or when
several possible root elements exist in a XSD file.

Important: This property is used to designate ONLY the Element in the
XSD / DTD file which will serve as the Root Element DEFINITION of
any XML instance file Root Element.

read_only False No Open the XML file in read only mode.

schema - No It is the database schema storing the relational schema and the XML
data. Name of the schema where the XML file will be loaded. If this
property is missing, a schema name is automatically generated from
the XML file name.

If this property is not specified in the XML data Server URL, the XML
Driver will automatically create a schema name. This schema will be
named after the five first letters of the XML file name.

Note: It is not possible to make more than one connection to a schema.
Subsequent connections fail if trying to connect to a schema already in
use.

Important: The schema name should be specified in uppercase.

Important: It is forbidden to have a schema name identical to an XML
ELEMENT name.

Appendix B
Installation and Configuration

B-6



Table B-1    (Cont.) Driver Properties

Property Default
Value

Mandatory Description

standalone False No If this option is set to true, the schema for this connection is completely
isolated from all other schemas. With this option, you can specify the
same schema name for several connections, each schema being kept
separated. When using this option, tables in this schema cannot be
accessed from other schemas, and this connection cannot access
tables from other schemas. The schema is restricted to this connection
and only this one. Other connections cannot see this schema. This
option is active only for In-Memory HSQL intermediate database. Using
this option causes increased memory consumption by the agent, as for
every staging schema, an entirely new HSQL instance is created in the
in-memory. Useful for parallel jobs with the same topology in order to
avoid that the jobs overlap each other. Note: This option is not
applicable when an external database is used. If a data server has its
'standalone' property set to 'true,' then it cannot be used as a target
data store(s) to store data, and then write it out. This is because of the
complete isolation of 'standalone' instances.

Note: The property 'standalone' can be used:

• When f= parameter is not present in the JDBC connection URL/
properties.

• And you are not trying to load the same file using 'LOAD FILE'
command in parallel.

This is because, before reading a source file, it is locked by the
driver, until all operations on it are done. Hence, if you have parallel
sessions, the first session will lock the file, until the session is
complete.

Caution: If f= parameter is present, immediately on opening
connection, the driver will lock the file and read from it. It will be
unlocked only when all connections to the file are closed. There is
an explicit 'UNLOCK' command, but use it with extreme caution
after you are sure of what you are doing.

ns_prefix_generation auto No This option defines how namespace prefixes are generated and written
in the XML file.

• auto (default): Prefixes are automatically generated from the
namespace names themselves when possible or generated as
ns1, ns2, etc.

• xml: Namespace prefixes are taken from the source XML file, if
any.

• xsd: Namespace prefixes are taken from the XSD file, if any.
Note that the xsd option value assumes that a similar prefix is not used
in several XSD files to reference a different namespace.

no_default_ns False No If this property is set to true, the driver generates the target file with no
default namespace entry.

no_closing_tags False No If this property is set to true, the driver generates the empty tags
without their closing tags (for example <element/>). If set to false the
driver generates an empty element as <element></element>. This
property is true by default if the v1_compatibility property is used.

Appendix B
Installation and Configuration

B-7



Table B-1    (Cont.) Driver Properties

Property Default
Value

Mandatory Description

db_props - No This property is used to use an external database instead of the
memory engine to store the schema.

The db_props property indicates that the schema must be loaded in a
database schema whose connection information are stored in a
external database property file named like the db_props property
with the extension .properties. This property file must be located in
the application's classpath.

load_data_on_conne
ct

True No Load automatically the data in the schema when performing the JDBC
connection. If set to false, a SYNCHRONIZE statement is required after
the connection to load the data.

This option is useful to test the connection or browse metadata without
loading all the data.

drop_on_disconnect False No Drop automatically the schema when closing the JDBC connection.

If true, the schema is stored in the built-in engine, it is always dropped.

If true and the data is on an external database, only the current
reference to the schema in memory will be dropped, but the tables will
remain in the external database. This means that if you try to connect
to this schema again, it will reuse the tables in the external database
rather than starting from scratch (as it would when the data is loaded in
memory).

ignore_unknown_ele
ments

True No Ignore all elements in the XML file that do not exist in the associated
DTD (Document Type Definition) or XSD (XML Schema Definition) file.

useimplicitmaxvalue False No When this property is set to true, elements for which maxOccurs is not
specified in the XSD are considered as maxOccurs ="unbounded".
Otherwise, the driver assumes that maxOccurs=1 when maxOccurs is
not specified.

generate_dtd auto No Defines if a DTD file must be created from the XML file structure:

• auto: create the DTD file if the it does not exist. if the DTD exists,
does nothing.

• yes: always create the DTD file. An existing DTD will be
overwritten.

• no: never create the DTD file. The DTD file must exist.
Warning: DTD files created using this option contain only the definition
of XML elements appearing in the XML file, and may not be complete.

java_encoding UTF8 No Target file encoding (for example: ISO8859_1). You will find a list of
supported encoding at the following URL: https://docs.oracle.com/
javase/8/docs/technotes/guides/intl/encoding.doc.html.

Note that if the Java encoding is specified, the XML encoding should
also be specified.

useimplicitmaxvalue False No With this property set to yes, an elements for which maxOccurs is not
specified in the XSD is considered as multivalued
(maxOccurs="unbounded").

xml_encoding UTF8 No Encoding specified in the generated XML File, in the tag (for example
ISO-8859-1: <?xml version="1.0" encoding="ISO-8859-1"?>.
You will find a list of supported encoding at the following URL: http://
download.oracle.com/javase/6/docs/technotes/guides/
intl/encoding.doc.html.

Note that if the XML encoding is specified, the Java encoding should
also be specified.

Appendix B
Installation and Configuration

B-8

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html


Table B-1    (Cont.) Driver Properties

Property Default
Value

Mandatory Description

v1_compatibility False No With this property set to true, the driver performs the XML to SQL
mapping as if in version 1.x. This property is provided for compatibility.

compat_mode v3 No Indicates the compatibility with mapping modes. This property can take
the following values:

• v1 is equivalent to v1_compatibility=true which is the 1.x
compatibility mode

• v2 indicates the 10g/11g compatibility mode where the custom
written XSD parser is used

Please note that when you use a DTD or only a XML file, you must
specify compat_mode=v2 in the JDBC URL. For example:

jdbc:snps:xml?file=/tmp/myfile.xml&compat_mode=v2
jdbc:snps:xml?f=/tmp/myfile.xml&compat_mode=v2

• v3 indicates the compability with the XDK XSD parser.

Please note that compat_mode=v3 is not supported when you use
a DTD or only a XML file. For example, the following syntaxes are
not supported:

jdbc:snps:xml?file=/tmp/myfile.xml&compat_mode=v3
jdbc:snps:xml?f=/tmp/myfile.xml&compat_mode=v3

If compat_mode=v3, the v1_compatibility property will be ignored.

numeric_ids True No If set to true, all internal Primary and Foreign Keys are of NUMERIC
type. Otherwise, they are of the VARCHAR type.

id_length - No The length of the internal Primary and Foreign Key columns. The
default is 10 for NUMERIC column types and 30 for VARCHAR column.

no_batch_update False No Batch update is not used for this connection. The command to set the
batch update is not sent. This prevents errors to occur for external
databases that do not support this JDBC feature, or allows to debug
errors related to batch update usage.

add_schema_bundle - No Additional schemas bundle file. This property indicates that additional
schemas must be created at connection time. The description for these
extra schemas are located in an additional schemas property file
named like the add_schema_bundle property with the extension
".properties". The additional schemas property file contains a list of
valid JDBC driver's URL. In this file, the property names are ignored.
Only the list of values is taken into account.

All these additional schemas are created with the drop_on_disconnect
option set to true by default.

Example of additional schemas property files contents:

addschema_1=jdbc:snps:xml?f=c:/
myfile.xml&ro=true&s=myschema1
addschema_2=jdbc:snps:xml?file=c:/
myfile2.xml&s=myschema2 addschema_3=jdbc:snps:xml?d=c:/
myfile3.dtd&s=myschema3

Appendix B
Installation and Configuration

B-9



Table B-1    (Cont.) Driver Properties

Property Default
Value

Mandatory Description

add_schema_path - No Directory containing a set of XSD files. For each XSD file in this
directory, an additional schema is created in the built-in engine or
external database storage, based on this XSD. Note that no object is
created in the external database storage for these additional schemas.
The schema names are default generated named (5 first characters of
the file name, uppercased).

Note: This option is not supported in v3 mode.

transform_nonascii True No Transform Non Ascii. Set to false to keep non-ascii characters.

max_table_name_len
gth

- No Maximum length of table names irrespective of the value as supported
by internal/external DB.

max_column_name_l
ength

- No Maximum length of column names irrespective of the value as
supported by internal/external DB.

case_sens True No Indicates whether the table and column names are case sensitive or
not. Name comparisons are carried out accordingly.

default_length_varch
ar

255 No Indicates the default length of the VARCHAR column used for storing
XML annotation and documentation elements.

default_type_varchar False No If this property is set to true, the default datatype will be VARCHAR of
size 255 else on false, the LONG datatype is used.

pipeline_config_file - - Pre/post processing configuration file.

B.3.2 Automatically Create Multiple Schemas
It is possible to automatically create additional schemas with different XML structures when
creating the connection with the driver. This is performed by:

• Declaring in the add_schema_bundle URL property a property file that contains a list of
JDBC URLs corresponding to the different additional schemas to create.

• Declaring in the add_schema_path URL property a directory that contains a set of XSD
files. For each XSD file an additional schema is created in the built-in engine, based on the
XML schema description.

• Specifying additional valid driver URLs as JDBC properties, named addschema_X (X is a
number). An additional schema will be created for each URL found in a JDBC property
called addschema_X.

Note that all these additional schemas are automatically dropped when their last connection is
closed.

B.3.3 Using an External Database to Store the Data
In most cases, the XML driver stores the relational schema mapping of the XML schema in a
built-in engine. It is also possible to store the relational schema in an external relational
database.

Appendix B
Installation and Configuration

B-10



Note:

The use of the In-Memory Engine is not a best practice, and may cause issues, when
using the Complex File Technology.

Cause of the error: In-memory HSQL is not recommended for production use. It has
memory leaks, beyond the scope of ODI that will eventually bring the JVM down. It is
only meant for development use. Oracle recommends you to switch to external DB
such as Oracle, MySQL, or MS SQLServer.

Use external storage:

• When loading very large XML files with the XML driver into the relational schema derived
by the XML driver

• To reduce the overall time taken to process the files with the built-in engine of the XML
driver

• To avoid timeouts to the ODI repositories. Please note that the time taken to process an
XML file is dependent on:

– The complexity of the XML file structure

– The length of XML file content

– The host server RAM resources

– The host server CPU resources

• For security reasons, Oracle recommends to use external database instead of in-memory
engine as this prevents you from accessing the internal memory associated with the
default schema created.

Before using external storage, ensure that you have understood the impacts of its usage and
that you have increased the ODI timeout to values which conform to your performance
requirements.

Note:

Supported RDBMS for external storage include Oracle, Microsoft SQL Server,
MySQL, and Hypersonic SQL 2.0. The complete list of technologies that support
external storage is available on Oracle Technical Network (OTN) :

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/
index.html.

These schemas are created in addition to the one that may be created with the properties
specified in the JDBC driver URL.

The external storage is configured with a set of properties described in Table B-2. These
properties can be passed in several ways:

• Passing the Properties in the Driver URL

• Setting the Properties in ODI Studio

• Setting the Properties in a Properties File

Appendix B
Installation and Configuration

B-11

http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html
http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html


Passing the Properties in the Driver URL

The properties can be directly set in the Properties table as detailed in Table B-2 table.

Setting the Properties in ODI Studio

The properties can be specified on the Properties table below the JDBC URL of the JDBC tab
in Topology Navigator. The properties can be directly set in the Properties table as detailed in 
Table B-2 table.

Setting the Properties in a Properties File

The properties can be set in an external database properties file. This properties file, also
called property bundle, is a text file with the .properties extension containing a set of lines
with on each line a <property>=<value> pair. This external database porperties file contains
the properties of a JDBC connection to the relational database schema. The properties file is
referenced using the db_props property in the JDBC URL. When using this method, note the
following:

• The properties in the properties file are not prefixed and used as described in Table B-2.

• The db_props property value is the name of the properties file without its extension and /
or path. The file is named as set in the db_props property with a .properties extension.
The property file must be located in the application's classpath.

• The properties files has to be deployed by the agent using the XML connection. The
location of the properties file depends on the agent you are using:

– Local agent (Studio): Place the external DB properties file in the <user.dir>/odi/
oracledi/userlib folder

– Standalone Agent: Place the external DB properties file in a folder on the ODI
classpath.

– JavaEE Agent: The external DB properties file should be packed into a JAR or ZIP file
and added to the template generated by the Java EE agent containing only the DB
properties file. Place the JAR file on the location: ODI classpath, for example-
domain_home/lib. For more information on this, refer Deploying an Agent in a Java EE
Application Server in Administering Oracle Data Integrator .

• The properties file must be set in the classpath of Oracle Data Integrator that uses the
XML driver. Typically, you can install it with your custom drivers.

Note:

When connecting to the external database, the XML driver uses JDBC connectivity.
Make sure that the JDBC driver to access this external database is also available in
the ODI classpath.

It is possible to set or override the external database properties on the URL. You can use the
Properties table below the URL to override the file. For example:

jdbc:snps:xml?file=/temp/
payload.xml&dp_driver=<external_db_driver>&dp_url=<external_db_url>

The properties for configuring external storage are described in Table B-2.

Appendix B
Installation and Configuration

B-12



Table B-2    Properties of the External Database Properties File

Property Defau
lt
Value

Mand
atory

Description

dp_driver - Yes JDBC driver name.

Important: The driver class file must be in the classpath of the java application.

dp_url - Yes JDBC URL

dp_user - Yes Login used to connect the database

dp_passw
ord

- Yes Encrypted password of the user.

Note: To encrypt the password, use the encode.bat (cmd|sh) command. See Encoding a
Password in Administering Oracle Data Integrator for more information.

dp_schem
a

- Yes Database schema storing the relational schema and the XML data.

Note for MS SQLServer that:

• If schema is not specified, tables will be created under the default schema of the user
• If schema is specified, tables will be created under this schema
Limitation when using v3 mode: When using an external database, make sure that the
provided or calculated schema name exists. The schema driver property value must match the
schema property value of the external database. Otherwise an error is raised.

dp_catalo
g

- Yes For Microsoft SQL Server only. Database catalog storing the XML data & information.

dp_drop_
on_conne
ct

False No Drop the tables from the in-memory database schema if they already exist. The tables in the
external database remain as is. If set to N, the existing in-memory schema tables are
preserved.

dp_create
_tables

auto No Y: create systematically the tables in the schema.

N: never create the tables in the schema

AUTO: Create the tables if they do not exist.

dp_create
_indexes

True No Y: create indexes on tables' PK and FK

N: do not create the indexes. This value provides faster INSERT but dramatically slows
SELECT in the data. It also saves storage space on your RDB.

dp_numer
ic_scale

- No Scale of the numeric columns generated during the XML to SQL mapping.

dp_trunca
te_before
_load

True No True: truncate all data when connecting

False: preserve existing data

dp_ids_in
_db

True No True: preserve identifiers (counters) in the database for a future append connection

False: do not preserve identifiers. Future append is not possible.

dp_drop_t
ables_on_
drop_sche
ma

True No True: a DROP SCHEMA does not only causes the reference to the database schema to be
erased from the driver, but also causes all tables to be dropped.

False: DROP SCHEMA erases the reference to the database schema from the driver, but the
tables are kept in the database schema.

dp_use_p
repared_s
tatements

True No True: use the prepared statements with the database connection to perform driver operation
(load/unload files).

False: do not use the prepare statement.

Processing is usually faster with prepare statement. The database and driver must support
prepared statements in order to use this option.

Appendix B
Installation and Configuration

B-13



Table B-2    (Cont.) Properties of the External Database Properties File

Property Defau
lt
Value

Mand
atory

Description

dp_use_b
atch_upda
te

True No True: use batch update with the database connection.

False: do not use batch update.

Inserting data is usually faster with batch update. Should be set to true only if the following
conditions are met:

• The database and driver support batch update
• The database supports prepared statements
• The use_prepared_statements parameter is set toYes
Note: The batch update options specified here are only used to load the data in the schema.
To use batch update when manipulating data in the schema, you must specify batch update
options in your Java application.

dp_batch_
update_si
ze

30 No Batch update size. Records will be written in the database schema by batches of this size, if
the use_batch_update property is set to true.

dp_commi
t_periodic
ally

True No A COMMIT will be sent regularly when loading data from the XML file into the database
schema. This regular COMMIT avoids overloading of the database log when loading large XML
data files.

Should be set to true only if the following conditions are met:

• The database supports batch update
• The database supports prepared statements
• The use_prepared_statements parameter is set to Yes
• The use_batch_updates parameters is set to Yes
Note: The commit options specified here are only used to load the data in the schema. To
commit when performing transactions in the schema, you must specify the commit in your Java
application.

dp_num_i
nserts_be
fore_com
mit

1000 No Interval in records between each COMMIT, if the commit_periodically property is set to true.

dp_reserv
e_chars_f
or_column

3 No Long XML names are truncated to fit the maximum allowed size on the RDBMS, according to
the maximum allowed size for column names returned by the JDBC driver.

However, there are some situations when you will want to reserve characters to make the
driver-generated names shorter. The number of reserved character is defined in the
reserve_chars_for_column value.

For example, on a database with a maximum of 30 characters and with this property set to 3
(which is the default), all column names will not be larger than 27 characters.

dp_reserv
e_chars_f
or_table

3 No Same as reserve_chars_for_column (rcfc) property but applies to names of the table created in
the RDBMS schema.

dp_varcha
r_length

255 No Size of all the columns of the relational structure that will be used to contain string data.

This property does not apply to Annotation or Documentation elements. For those elements
dp_default_length_varchar property should be used instead.

dp_default
_type_var
char

N No If set to Yes, the default datatype used in the relational schema for columns storing XML
annotation and documentation elements is VARCHAR of size 255. The length of this column is
specified using the dp_default_length_varchar property. If set to false, the LONG datatype if
used. This property should be set to yes for technologies that do not support multiple LONG
columns within the same table, such as Oracle.

Appendix B
Installation and Configuration

B-14



Table B-2    (Cont.) Properties of the External Database Properties File

Property Defau
lt
Value

Mand
atory

Description

dp_default
_length_v
archar

255 No Default length of the VARCHAR column used for storing XML annotation and documentation
elements. This properties is valid only if dp_default_type_varchar property is set to yes.

For example:

default_length_varchar=2000 where 2000 is the new desired default column size.

dp_numer
ic_length

10 No Size of all the columns of the relational structure that will be used to contain numeric data.

dp_unicod
e

False No For MS SQL Server:

If unicode = true, nvarchar is used.

If unicode = false or not set, varchar is used.

dp_multi_
user_safe

False No Its usage controls the way row ids are generated. If multi_user_safe is set to true, then each ID
generation is tasked to the DB. If set to false at the very beginning of the data load, retrieve the
IDs which are stored in the ID table and then work off that stored data in-memory. At the end of
the data load this is then pushed to the DB.

The following sample is an example of a property file for using an Oracle Database as the
external storage:

driver=oracle.jdbc.OracleDriver
url=jdbc:oracle:thin:@HOST:PORT:SID
user=USER_NAME
password=ENCODED_PASSWORD
schema=USER_NAME
drop_on_connect=Y
create_tables=AUTO
create_indexes=Y
truncate_before_load=Y
ids_in_db=Y
drop_tables_on_drop_schema=Y
use_prepared_statements=Y
use_batch_update=Y
batch_update_size=30
commit_periodically=Y
num_inserts_before_commit=1000
reserve_chars_for_column=3
reserve_chars_for_table=3

The following sample is an example of a property file for using a Microsoft SQL Server
database as the external storage:

driver=com.microsoft.jdbc.sqlserver.SQLServerDriver
url=jdbc:microsoft:sqlserver://SERVER_NAME:PORT;SelectMethod=cursor
user=USER_NAME
password=ENCODED_PASSWORD
schema=OWNNER_NAME
drop_on_connect=Y
create_tables=AUTO
create_indexes=Y
truncate_before_load=Y
ids_in_db=Y
drop_tables_on_drop_schema=Y
use_prepared_statements=Y
use_batch_update=Y

Appendix B
Installation and Configuration

B-15



batch_update_size=30
commit_periodically=Y
num_inserts_before_commit=1000
reserve_chars_for_column=3
reserve_chars_for_table=3

B.4 Detailed Driver Commands

Note:

The notion of SCHEMA referred to in these commands refers to the string value set
with the s=.... parameter in the XML Driver Data Server URL present in the physical
architecture.

The following statements are specific to the XML driver, and allow to manage XML files and
schemas. They can be launched as standard SQL statements on the JDBC connection to the
XML driver.

To manipulate the data stored in the schemas, you may use standard SQL syntax. This syntax
is either the built-in engine's SQL Syntax, or the SQL Syntax of the External Database engine
you use.

Conventions

The following conventions are used within this document:

• [ A ] means A is optional

• [ A | B ] means A or B but the parameter is optional.

• { B | C } means B or C must be used.

• [A] [B] means a set of arguments that are not ordered.

• ( and ) are the characters '(' and ')'.

• keywords are in UPPERCASE

This section details the following driver specific commands:

• CREATE FILE

• CREATE FOREIGNKEYS

• CREATE XMLFILE

• CREATE SCHEMA

• DROP FOREIGNKEYS

• DROP SCHEMA

• LOAD FILE

• SET SCHEMA

• SYNCHRONIZE

• UNLOCK FILE

• TRUNCATE SCHEMA

• VALIDATE

Appendix B
Detailed Driver Commands

B-16



• WRITE MAPPING FILE

• COMMIT

• CREATE TABLE

• DELETE

• DISCONNECT

• DROP TABLE

• INSERT INTO

• ROLLBACK

• SELECT

• SET AUTOCOMMIT

• UPDATE

B.4.1 CREATE FILE
If the EMPTY option is specified, create an empty XML instance file containing all ELEMENTS
(including optional ELEMENTS) present in the related XSD or DTD file. However, no XML
ATTRIBUTES declared in these files will be referenced in the created XML instance file.

The attributes are handled differently between compat_mode v1/v2 and v3. In v1/v2 mode
attributes are not written, while in v3 mode attributes are also written out.

CREATE [EMPTY] FILE <file_name> [FROM SCHEMA <schema_name>] 
    [JAVA_ENCODING <java_encoding>  XML_ENCODING <xml_encoding>] 
    [NO_CLOSING_TAGS] [NO_DEFAULT_NS]

Parameters

FROM SCHEMA
Specify the schema in which data will be written in the XML file.

JAVA_ENCODING
Encoding of the generated File.

XML_ENCODING
Encoding generated in the file's xml tag.
Example of generated tag: <?xml version="1.0" encoding="ISO-8859-1"?>
Note that Java and XML encoding should always be specified together.

NO_CLOSING_TAGS
If this parameter is specified, the driver generates the empty tags with closing tag. By default,
the driver generates an empty element as <element></element>. with the no_closing_tags
parameter, it generates <element/>.

NO_DEFAULT_NS
If this parameter is specified, the driver generates the target file without a default namespace
entry.

Remarks

• If the file name contains spaces, enclose it in double quotes

• The encoding values should be enclosed in double quotes as they may contain special
characters.

Appendix B
Detailed Driver Commands

B-17



B.4.2 CREATE FOREIGNKEYS
Create physically all the foreign keys joining the tables from the relational schema in the
database. This command is helpful to enforce integrity constraints on the schema.

Note:

When requested, the driver always returns "virtual" foreign keys, corresponding to the
relational structure mapping. It does not return the real foreign keys enforced at
database level.

CREATE FOREIGNKEYS

Remarks

After using CREATE FOREIGNKEYS, it is not possible any longer to perform a LOAD FILE.

B.4.3 CREATE XMLFILE
Generate an XML file called <file_name> from the default schema data, or from a specific
schema.

CREATE XMLFILE <file_name> [FROM SCHEMA <schema_name>] 
    [JAVA_ENCODING <java_encoding> XML_ENCODING <xml_encoding>] 
    [NO_CLOSING_TAGS][NO_DEFAULT_NS] 

Parameters

FROM SCHEMA
Specify the schema in which data will be written in the XML file.

JAVA_ENCODING
Encoding of the generated File.

XML_ENCODING
Encoding generated in the file's xml tag. Example of generated tag: <?xml version="1.0"
encoding="ISO-8859-1"?>.
Note that Java and XML encoding should always be specified together.

NO_CLOSING_TAGS
If this parameter is specified, the driver generates the empty tags with closing tag. By default,
the driver generates an empty element as <element></element>. with the no_closing_tags
parameter, it generates <element/>.

NO_DEFAULT_NS
If this parameter is specified, the driver generates the target file without a default namespace
entry.

Remarks

• If the file name contains spaces, enclose it in double quotes

• The encoding values should be enclosed in double quotes as they may contain special
characters.

Appendix B
Detailed Driver Commands

B-18



B.4.4 CREATE SCHEMA
Create in <schema_name> an empty schema or a schema with tables mapping the structure of
the description file specified as <dtd/xsd_name>.

Note:

This command cannot be used on an external database.

CREATE SCHEMA <schema_name> [WITH DTD <dtd/xsd_name>] [REPLACE] 
   [ROOTELT <root element>] [READONLY] [COMPAT_MODE <compatibility mode>]
   [JAVA_ENCODING <java_encoding> XML_ENCODING <xml_encoding>]

Parameters

WITH DTD
Specify the description file (DTD or XSD) which structure will be created in the schema.

REPLACE
Specify if an existing schema structure must be replaced with the new one.

ROOTELT
Element in the description file considered as the root of the XML file. This element name is
case sensitive.

READONLY
The schema loaded cannot have data inserted, deleted or updated.

COMPAT_MODE
Indicates the compatibility with mapping modes. This property can take the following values:

• v1 is equivalent to v1_compatibility=true wich is the 1.x compatibility mode

• v2 is the 10g/11g mode. This is the defa ult mode.

Please note that when you use a DTD or only a XML file, you must specify
compat_mode=v2 in the JDBC URL. For example:

jdbc:snps:xml?d=/tmp/myDTD.dtd&compat_mode=v2
jdbc:snps:xml?f=/tmp/myfile.xml&compat_mode=v2

• v3 indicates the compatibility with the XDK XSD parser. Please note that compat_mode=v3
is not supported when you use a DTD or only a XML file. For example, the following
syntaxes are not supported:

– jdbc:snps:xml?d=/tmp/myDTD.dtd&compat_mode=v3
– jdbc:snps:xml?f=/tmp/myfile.xml&compat_mode=v3
If compat_mode=v3, the v1_compatibility property will be ignored.

Appendix B
Detailed Driver Commands

B-19



Note:

When using the SYNCHRONIZE command, only those DB schemas that have been
created with 'v3' option will parse the DTD/XSD in the 'v3' mode. In 'v3' mode all the
restrictions on schema name value corresponding with DB property for schema
name etc. will apply.

JAVA_ENCODING
Encoding of the target XML file(s) generated from schema.
Note: Java and XML encoding should always be specified together.

XML_ENCODING
Encoding generated in the target files' XML tag. Example of generated tag: <?xml
version="1.0" encoding="ISO-8859-1"?>.

Remarks

• The XML file data is not loaded. This command is similar to LOAD FILE but does not load
the XML file data.

• The schema is created in READONLY mode since no XML file is associated with it.

• The connection schema does not automatically switch to the newly created schema.

• If the file name contains spaces, enclose the name in double quotes.

• The encoding values should be enclosed in double quotes as they may contain special
characters.

B.4.5 DROP FOREIGNKEYS
Drop all the foreign keys on the tables of the relational schema in the database. This command
is helpful to drop all integrity constraints on the schema.

DROP FOREIGNKEYS

B.4.6 DROP SCHEMA
Drop an existing schema. If <schema_name> is not specified, the current schema is dropped. It
is not possible to drop a schema if there are pending connections to this schema. Trying to
drop a schema with existing connections causes an exception.

DROP SCHEMA [<schema_name>]

B.4.7 LOAD FILE
Load the <file_name> XML file into the specified <schema_name> XML schema. If a schema
name is not specified with the ON SCHEMA parameter, one is generated with the XML file
name. If a schema with the specified or generated name is found, then the properties of that
schema are inherited. If a schema with the specified or generated name does not exist at
runtime, a new XML JDBC URL with only the properties specified in the LOAD FILE command
is created. This schema does not inherit any of the properties of the current schema.

LOAD FILE <file_name> [WITH DTD <dtd/xsd_name> | INSERT_ONLY] [ON SCHEMA <schema_name>] 
[REPLACE] [READONLY] [ROOTELT <root element>] [AUTO_UNLOCK] [DB_PROPS <external database 
properties>]

Appendix B
Detailed Driver Commands

B-20



If INSERT_ONLY is absent,

i) Check to see if schema identifier is provided in the command via ON SCHEMA

ii) If not, use XML file name to generate a schema identifier (first 5 characters)

If this schema is already present and REPLACE option is not present in the command, driver
raises error. If the schema is already present, and REPLACE option is present, it drops the
existing schema and recreates it, loading the data from the FILE into it.

If schema is not present, create new schema and load FILE.

If INSERT_ONLY is present,

i) Use current schema

ii) If ON SCHEMA is provided, check if schema of that name exists. If it does, use it, otherwise
continue with the current schema. Read FILE into this schema.

Parameters

WITH DTD
Specify the description file (DTD or XSD) which structure will be created in the schema.

INSERT_ONLY
Adds the data from the XML file in the schema if it already exists. The new XML file should
have valid description file for the existing schema.
The INSERT_ONLY option just inserts data from the XML file. Existing data is not touched.
If existing data is same as the data being inserted, it may raise an error.

ON SCHEMA
Force the file to be loaded in <schema_name>. Note that the current schema is not set after
the command automatically to <schema_name>.

REPLACE
Specify if an existing schema structure with the same name must be replaced with the one
that is being loaded.
REPLACE option causes 'drop' of the entire schema. When schema is dropped, all
connections are also closed.
For 'standalone' dataserver, when all connections are closed, in-memory HSQL DB itself is
destroyed.
Then an entirely new database instance is created for 'standalone' dataserver.
In all cases, an entirely new schema and tables are created and data from the XML file is
inserted.
This option is to be used, only when same schema name is to be used for an entirely different
XML structure.
Using this option is very non-performant as may be deduced.
It will also cause problems, if the dataserver is in 'standalone' mode and the same dataserver
is being used again, after LOAD FILE command.

READONLY
The schema loaded cannot have data inserted, deleted or updated.

ROOTELT
Element in the description file considered as the root of the XML file. This element name is
case sensitive.

Appendix B
Detailed Driver Commands

B-21



AUTO_UNLOCK
If the XML file is already locked by another driver instance, an exception occurs unless the
AUTO_UNLOCK is specified. This parameter unlocks automatically the file if it is locked.

DB_PROPS
Loads the file in the external database identified by the properties file called <external
database properties>.properties.

Remarks

• Enclose the file name in double quotes.

• When no schema is specified, the driver automatically generates a schema name from the
file name.

• The connection schema does not automatically switch to the loaded schema.

• If the XML file is already open in another schema, an exception occurs.

B.4.8 SET SCHEMA
Set the current schema to <schema_name>.

SET SCHEMA <schema_name>

Remarks

It is necessary to specify a name for the schema.

B.4.9 SYNCHRONIZE
Synchronize data in the schema with the file data.

SYNCHRONIZE [ALL | SCHEMA <schema_name>] [FROM FILE/FROM DATABASE] 
 [IGNORE CONFLICTS]

Parameters

ALL
Synchronizes all schemas

SCHEMA
Synchronizes only <schema_name>

FROM FILE
Forces the data to be loaded from the file to the schema. Erases all changes in the schema.

FROM DATABASE
Forces the data to be loaded from the schema to the file. Erases all changes in the file.

IGNORE CONFLICTS
If FROM FILE/DATABASE are not specified, the driver automatically determines where data
have been modified (in the FILE or DATABASE) and updates the unmodified data. If both the
FILE and the DATABASE have been modified, the driver issues a Conflict Error. if the
IGNORE CONFLICTS parameter is used, no error is issued, and if performing a
SYNCHRONIZE ALL, the following schemas will be synchronized.

Appendix B
Detailed Driver Commands

B-22



Note:

A schema is marked updated only when a data modification (update, delete, insert,
drop) is executed in a connection to that schema. It is not marked as updated, when
the order is launched from a connection to another schema.

B.4.10 UNLOCK FILE
Unlocks <file_name> if it is locked by another instance of the driver.

UNLOCK FILE <file_name>

B.4.11 TRUNCATE SCHEMA
Clears all data from the current schema, or from <schema_name>.

TRUNCATE SCHEMA [<schema_name>]

The TRUNCATE command merely deletes all data from all tables of the schema. Nothing is
dropped. Connections are not closed.

B.4.12 VALIDATE
Verifies that the XML file <file_name> is well-formed and validates the content of the XML file
<file_name> against the XML Schema (XSD) if the schema is referenced in the XML file. This
command returns an exception if the file is not valid. For a full description of the validation
performed, see:

http://xerces.apache.org/xerces2-j/features.html#validation.schema
VALIDATE [FILE <file_name>] [ERROR_ON_WARNING|IGNORE_ON_WARNING] 
   [ERROR_ON_ERROR|IGNORE_ON_ERROR] 
   [ERROR_ON_FATAL_ERROR|IGNORE_ON_FATAL_ERROR] [VERBOSE]

Parameters

FILE <file_name>
Name of the XML file to validate.

ERROR_ON_WARNING | IGNORE_ON_WARNING
Ignore or generate errors on XSD validation warnings, such as values out of range. The
default value is IGNORE_ON_WARNING.

ERROR_ON_ERROR | IGNORE_ON_ERROR
Ignore or generate errors on XSD validation errors, such as non conform attribute or element.
The default value is ERROR_ON_ERROR.

ERROR_ON_FATAL_ERROR | IGNORE_ON_FATAL_ERROR
Ignore or generate errors on XSD validation fatal errors, such as malformed XML. The default
value is ERROR_ON_FATAL_ERROR.

Appendix B
Detailed Driver Commands

B-23

http://xerces.apache.org/xerces2-j/features.html#validation.schema


VERBOSE
Displays on the Java console the detailed errors and number of the line causing the error.
Nothing is displayed by default on the console.

B.4.13 WRITE MAPPING FILE
Writes out the element/attribute name to table/table.column name mapping for each element/
attribute to the specified file. The mapping file helps to understand the relational structure that
has been created for the XSD/DTD file. This command can be used only when the schema
was created in v3 mode. Otherwise exception is thrown.

WRITEMAPPINGFILE FILE <file-path> [FROM SCHEMA <schema-name>] 
       [JAVA_ENCODING <java_encoding> XML_ENCODING <xml-encoding>]

Parameters

file_p ath
Name of the generated mapping file

FROM_SCHEMA
If the optional FROM SCHEMA parameter is not provided, the current schema will be used.

JAVA_ENCODING
Encoding of the generated file, for example: ISO8859_1. You will find a list of supported
encoding at the following URL: http://download.oracle.com/javase/6/docs/technotes/
guides/intl/encoding.doc.html.
Note that if the Java encoding is specified, the XML encoding should also be specified.

XML_ENCODING
Encoding in the xml tag of the generated file.
Example of generated tag: <?xml version="1.0" encoding="ISO-8859-1"?>
You will find a list of supported encoding at the following URL: http://download.oracle.com/
javase/6/docs/technotes/guides/intl/encoding.doc.html.
Note that if the XML encoding is specified, the Java encoding should also be specified.

Example B-1    Mapping File

<?xml version = '1.0' encoding = 'UTF-8'?>
<personnel xmlns:x2r="http://www.oracle.com/odi/xml-mapping" x2r:tableName="PERSONNEL"> 
   <person x2r:tableName="PERSON" id="ID" select="SELECT_">   
      <email x2r:tableName="EMAIL"></email>
      <link x2r:tableName="LINK" manager="MANAGER" subordinates="SUBORDINATES"></link>
      <name x2r:tableName="NAME">
         <given x2r:columnName="GIVEN"></given>
         <family x2r:columnName="FAMILY"></family>
      </name>
      <url x2r:tableName="URL" href="HREF"></url>
   </person>
</personnel>

B.5 SQL Syntax
The following statements are available when using the built-in engine to store the XML
schema. They enable the management of the data and data structure in the schema through
Standard SQL Syntax.

This section contains the following topics:

Appendix B
SQL Syntax

B-24

http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html


• SQL Statements

• SQL FUNCTIONS

Note:

If you are using an external database, you may use the database engine querying
syntax instead of this one.

B.5.1 SQL Statements
Any number of commands may be combined. You can optionally use the semicolon character
(;) to separate each command.

This section details the following commands:

• COMMIT

• CREATE TABLE

• DELETE

• DISCONNECT

• DROP TABLE

• INSERT INTO

• ROLLBACK

• SELECT

• SET AUTOCOMMIT

• UPDATE

• Expressions, Condition and Values

B.5.1.1 COMMIT
Ends a transaction on the schema and makes the changes permanent.

COMMIT [WORK]

B.5.1.2 CREATE TABLE
Create a tables and its constraints in the relational schema.

CREATE TABLE <table_name> 
  ( <columnDefinition> [, ...] [, <constraintDefinition>...])

<columnDefinition> ::=
    <column_name> <datatype> [(anything)] [[NOT] NULL] [IDENTITY] [PRIMARY KEY]

<constraintDefinition> ::=
[ CONSTRAINT <constraint_name> ]
    UNIQUE ( <column_name> [,<column>...] ) |
    PRIMARY KEY ( <column_name> [,<column_name>...] ) |
    FOREIGN KEY ( <column_name> [,<column_name>...] ) 
    REFERENCES <referenced_table> ( <column_name> [,<column_name>...] )

Appendix B
SQL Syntax

B-25



Remarks

• IDENTITY columns are automatically incremented integer columns. The last inserted value
into an identity column for a connection is available using the IDENTITY() function.

• Valid datatypes are: BIT, TINYINT, BIGINT, LONGVARBINARY, VARBINARY, BINARY,
LONGVARCHAR, CHAR, NUMERIC, DECIMAL, INTEGER, SMALLINT, FLOAT, REAL,
DOUBLE, VARCHAR, DATE, TIME, TIMESTAMP, OBJECT

B.5.1.3 DELETE
Remove rows in a table in the relational schema. This function uses a standard SQL Syntax.

DELETE FROM <table_name> [ WHERE <expression> ]

B.5.1.4 DISCONNECT
Closes this connection.

DISCONNECT

Remarks

• It is not required to call this command when using the JDBC interface: it is called
automatically when the connection is closed.

• After disconnecting, it is not possible to execute other queries with this connection.

B.5.1.5 DROP TABLE
Remove a table, the data and indexes from the relational schema.

DROP TABLE <table_name>

B.5.1.6 INSERT INTO
Insert one or more new rows of data into a table.

INSERT INTO <table_name> [ ( <column_name> [,...] ) ] 
    { VALUES (<expression> [,...]) | <SELECT Statement> }

B.5.1.7 ROLLBACK
Undo the changes made since the last COMMIT or ROLLBACK.

ROLLBACK

B.5.1.8 SELECT
Retrieves information from one or more tables in the schema.

SELECT [DISTINCT] { <select_expression> | <table_name>.* | * } [, ... ]
[  INTO <new_table> ]
   FROM <table_list>
[  WHERE <expression> ]
[  GROUP BY <expression> [, ...] ]
[  ORDER BY <order_expression> [, ...] ]
[  { UNION [ALL] | {MINUS|EXCEPT} | INTERSECT } <select_statement> ]

Appendix B
SQL Syntax

B-26



<table_list> ::=
     <table_name> [ { INNER | LEFT [OUTER] } JOIN <table_name> 
     ON <expression> ]  [, ...]

<select_expression> ::=
      { <expression> | COUNT(*) | {COUNT | MIN | MAX | SUM | AVG} 
       (<expression>) <column_alias>}

<order_expression> ::=
      { <column_number> | <column_alias> | <select_expression> } [ ASC | DESC ]

B.5.1.9 SET AUTOCOMMIT
Switches on or off the connection's auto-commit mode. If switched on, then all statements will
be committed as individual transactions. Otherwise, the statements are grouped into
transactions that are terminated by either COMMIT or ROLLBACK. By default, new
connections are in auto-commit mode.

SET AUTOCOMMIT { TRUE | FALSE }

B.5.1.10 UPDATE
Modifies data of a table in the database.

UPDATE table SET column = <expression> [, ...] [WHERE <expression>]

B.5.1.11 Expressions, Condition and Values
<expression> ::=
     [NOT] <condition> [ { OR | AND } <condition> ]

<condition> ::=
     { <value> [ || <value> ]
      | <value> { = | < | <= | > | >= | <> | != | IS [NOT] } <value>
      | EXISTS(<select_statement>)
      | <value> BETWEEN <value> AND <value>
      | <value> [NOT] IN ( {<value> [, ...] | selectStatement } )
      | <value> [NOT] LIKE <value> [ESCAPE] value }

<value> ::=
      [ + | - ] { term [ { + | - | * | / } term ]
      | ( condition )
      | function ( [parameter] [,...] )
      | selectStatement_giving_one_value

<term> ::=
      { 'string' | number | floatingpoint | [table.]column | TRUE | FALSE | NULL }

<string> ::=

• Starts and ends with a single '. In a string started with ' use '' to create a '.

• LIKE uses '%' to match any (including 0) number of characters, and '_' to match exactly
one character. To search for '%' itself, '\%' must be used, for '_' use '\_'; or any other
escaping character may be set using the ESCAPE clause.

<name> ::=

Appendix B
SQL Syntax

B-27



• A name starts with a letter and is followed by any number of letters or digits. Lowercase is
changed to uppercase except for strings and quoted identifiers. Names are not case-
sensitive.

• Quoted identifiers can be used as names (for example for tables or columns). Quoted
identifiers start and end with ". In a quoted identifier use "" to create a ". With quoted
identifiers it is possible to create mixed case table and column names. Example: CREATE
TABLE "Address" ("Nr" INTEGER, "Name" VARCHAR); SELECT * FROM "Address".
Quoted identifiers are not strings.

<values> ::=

• A 'date' value starts and ends with ', the format is yyyy-mm-dd (see java.sql.Date).

• A 'time' value starts and ends with ', the format is hh:mm:ss (see java.sql.Time).

• Binary data starts and ends with ', the format is hexadecimal. '0004ff' for example is 3
bytes, first 0, second 4 and last 255 (0xff).

B.5.2 SQL FUNCTIONS
Table B-3 lists the numerical functions.

Table B-3    Numerical Functions

Function Description

ABS(d) returns the absolute value of a double value

ACOS(d) returns the arc cosine of an angle

ASIN(d) returns the arc sine of an angle

ATAN(d) returns the arc tangent of an angle

ATAN2(a,b) returns the tangent of a/b

CEILING(d) returns the smallest integer that is not less than d

COS(d) returns the cosine of an angle

COT(d) returns the cotangent of an angle

DEGREES(d) converts radians to degrees

EXP(d) returns e (2.718...) raised to the power of d

FLOOR(d) returns the largest integer that is not greater than d

LOG(d) returns the natural logarithm (base e)

LOG10(d) returns the logarithm (base 10)

MOD(a,b) returns a modulo b

PI() returns pi (3.1415...)

POWER(a,b) returns a raised to the power of b

RADIANS(d) converts degrees to radians

RAND() returns a random number x bigger or equal to 0.0 and smaller
than 1.0

ROUND(a,b) rounds a to b digits after the decimal point

SIGN(d) returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is bigger than
0

SIN(d) returns the sine of an angle

SQRT(d) returns the square root

Appendix B
SQL Syntax

B-28



Table B-3    (Cont.) Numerical Functions

Function Description

TAN(d) returns the trigonometric tangent of an angle

TRUNCATE(a,b) truncates a to b digits after the decimal point

BITAND(a,b) return a & b

BITOR(a,b) returns a | b

Table B-4 lists the string functions.

Table B-4    String Functions

Function Description

ASCII(s) returns the ASCII code of the leftmost character of s

CHAR(c) returns a character that has the ASCII code c

CONCAT(str1,str2) returns str1 + str2

DIFFERENCE(s1,s2) returns the difference between the sound of s1 and s2

INSERT(s,start,len,s2) returns a string where len number of characters beginning at start
has been replaced by s2

LCASE(s) converts s to lower case

LEFT(s,count) returns the leftmost count of characters of s

LENGTH(s) returns the number of characters in s

LOCATE(search,s,[start]) returns the first index (1=left, 0=not found) where search is found in
s, starting at start

LTRIM(s) removes all leading blanks in s

REPEAT(s,count) returns s repeated count times

REPLACE(s,replace,s2) replaces all occurrences of replace in s with s2

RIGHT(s,count) returns the rightmost count of characters of s

RTRIM(s) removes all trailing blanks

SOUNDEX(s) returns a four character code representing the sound of s

SPACE(count) returns a string consisting of count spaces

SUBSTRING(s,start[,len]) returns the substring starting at start (1=left) with length len

UCASE(s) converts s to upper case

LOWER(s) converts s to lower case

UPPER(s) converts s to upper case

Table B-5 lists the date/time functions.

Note that a date value starts and ends with a single quote ('), the format is yyyy-mm-dd (see
java.sql.Date). A time value starts and ends with a single quote ('), the format is hh:mm:ss (see
java.sql.Time).

Appendix B
SQL Syntax

B-29



Table B-5    Date/Time Functions

Function Description

CURDATE() returns the current date

CURTIME() returns the current time

DAYNAME(date) returns the name of the day

DAYOFMONTH(date) returns the day of the month (1-31)

DAYOFWEEK(date) returns the day of the week (1 means Sunday)

DAYOFYEAR(date) returns the day of the year (1-366)

HOUR(time) return the hour (0-23)

MINUTE(time) returns the minute (0-59)

MONTH(date) returns the month (1-12)

MONTHNAME(date) returns the name of the month

NOW() returns the current date and time as a timestamp

QUARTER(date) returns the quarter (1-4)

SECOND(time) returns the second (0-59)

WEEK(date) returns the week of this year (1-53)

YEAR(date) returns the year

Table B-6 lists the system functions.

Table B-6    System Functions

Function Description

IFNULL(exp,value) if exp is null, value is returned else exp

CASEWHEN(exp,v2,v2) if exp is true, v1 is returned, else v2

CONVERT(term,type) converts exp to another data type

CAST(term AS type) converts exp to another data type

B.6 JDBC API Implemented Features
Table B-7 lists the JDBC API features that are implemented in the Oracle Data Integrator
Driver for XML:

Table B-7    JDBC API Features

Feature Groups JDBC Version Support

Batch Update 2.0 Core Yes

Blob/Clob 2.0 Core Yes

JNDI DataSources 2.0 Optional Yes

Failover support - Yes

Transaction SavePoints 3.0 Yes

Unicode support - No

Appendix B
JDBC API Implemented Features

B-30



Table B-7    (Cont.) JDBC API Features

Feature Groups JDBC Version Support

Distributed Transaction 2.0 Optional No

Connection Pooling 2.0 Optional No

Cluster support - No

Table B-8 lists JDBC Java classes.

Table B-8    JDBC Java Classes

JDBC Class JDBC Version Support

Array 2.0 Core No

Blob 2.0 Core Yes

CallableStatement 1.0 Yes

Clob 2.0 Core Yes

Connection 1.0 Yes

ConnectionPoolDataSource 2.0 Optional No

DatabaseMetaData 1.0 Yes

DataSource 2.0 Optional No

Driver 1.0 Yes

Ref 2.0 Core No

ResultSet 1.0 Yes

ResultSetMetaData 1.0 Yes

RowSet 2.0 Optional No

Statement 1.0 Yes

Struct 2.0 Core No

PreparedStatement 1.0 Yes

XAConnection 2.0 Optional No

XADataSource 2.0 Optional No

B.7 Rich Metadata
When creating RDB structures based on XML schema, there must be flexibility to supply the
driver with metadata. For example, in situations where RDB table/column names can conflict if
element/attributes have same local names.

The ODI XML driver attaches an attribute in the x2r namespace (http://
www.oracle.com/odi/xml-mapping) to the elements/attribute namely: x2r:tableName/
x2r:columnName. If conflicting names do not have the metadata attribute, then they are
appended with an incrementing number until a non-conflicting table/column name is obtained.

The new object model maintains a map between xpath and table/table.column names for each
element/attribute.

Appendix B
Rich Metadata

B-31



If two elements with same name and same type exist in two different locations, same table is
used for storing the data but FK reference to parent element is used to differentiate the data.
The new implementation creates new tables. Table B-9 lists the table attributes.

Table B-9    Table Attributes

Attribute Type Description

x2r:tableName String To be attached to elements that resolve to RDB tables/attributes
that are lists or enumerations whose local names match.

x2r:columnName String To be attached to attributes whose local names match or for
elements that map to columns, but whose local names match
with each other or with an attribute of the containing type.

x2r:columnDataType String Lets you provide the datatype information as a string from a
mapping table that we will provide.

May only be attached to elements that the driver will map to
columns or to attributes. If this parameter is provided user must
also supply x2r:columnLength and/or x2r:columnPrecision as
required for the datatype.

x2r:columnLength integer Length of the column.

By default the values hard-coded in the driver are used.
VARCHAR and NUMERIC have global override option in JDBC
URL. This attribute, if provided, overrides both the default value
and the global overrride.

May only be attached to elements that the driver will map to
columns or to attributes.

x2r:columnPrecision integer Precision of the column. Used by driver only for those datatypes
that allow it. Same logic as for columnLength is used when
determining the value to be applied.

May only be attached to elements that the driver will map to
columns or to attributes.

The following sample is an example of an XSD enriched with metadata.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:x2r="http://
www.oracle.com/odi/xml-mapping">
 <xs:element name="root">
  <xs:complexType>
   <xs:sequence>
     <!--  Example for redefining table name  -->
    <xs:element name="person" maxOccurs="unbounded" x2r:tableName="CUSTOMER">
     <xs:complexType>
      <xs:sequence>
       <!--  Example for redefining column name  -->
       <xs:element name="given" type="xs:string" x2r:columnName="FIRST"/>
       <xs:element name="last" type="xs:string"/>
       <!--  Example for redefining column length  -->
       <xs:element name="address" type="xs:string" x2r:columnLength="400"/>
       <!--  Example for redefining column type  -->
       <xs:element name="notes" type="xs:string" x2r:columnDataType="CLOB"/>
      </xs:sequence>
     </xs:complexType>
    </xs:element>
   </xs:sequence>
  </xs:complexType>
 </xs:element>
</xs:schema>

Appendix B
Rich Metadata

B-32



B.7.1 Supported user-specified types for different databases
Table B-10 provides the details of the supported user-specified types for different databases.
Using any other type name will raise exception.

Table B-10    Supported user-specified types for databases

Type HSQL Oracle MySQL MS SQL Server

SMALLINT X X X

INTEGER X X

REAL X X

NUMERIC X X

NUMBER X

FLOAT X X X

DOUBLE X X

DECIMAL X X

CHAR X X X X

NCHAR X X X

VARCHAR X X X X

VARCHAR2 X

NVARCHAR2 X

BLOB X X X

CLOB X X

NCLOB X

TEXT X X

DATE X X X

TIME X X X

TIMESTAMP X X X X

B.8 XML Schema Supported Features
The driver supports part of the XML Schema (XSD) specification. Supported elements are
listed in this section.

For more information on the XML Schema specification, see the W3C specification at http://
www.w3.org/TR/xmlschema-1/.

This section contains the following topics:

• Datatypes

• Supported Elements

• Unsupported Features

B.8.1 Datatypes
The following datatypes are supported:

Appendix B
XML Schema Supported Features

B-33

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/


• These datatypes are converted to String columns: string, normalizedString, token,
nmtoken, nmtokens, anyUri, id, idref, date, datetime, time, hexBinary

• These datatypes are converted to Integer columns: int, positiveInteger, negativeInteger,
nonNegativeInteger, onPositiveInteger, long, unsignedLong, unsignedInt, short,
unsignedShort, byte, unsignedByte, boolean (Boolean are converted to a numeric column
with 0 or 1, but they can take "true" or "false" values from the input files)

• These datatypes are converted to Decimal (with 2 decimal places) columns: decimal, float,
double

B.8.2 Supported Elements
This section lists all schema elements. Supported syntax elements are shown in bold.
Unsupported syntax elements are shown in regular font. They are ignored by the driver.

This section details the following schema elements:

• All

• Any

• AnyAttribute

• AnyType

• Attribute

• AttributeGroup

• Choice

• ComplexContent

• ComplexType

• Element

• Extension

• Group

• Import

• Include

• List

• Restriction

• Schema

• Sequence

• SimpleContent

• SimpleType

Note:

XML files generated or updated using the XML driver should ideally be validated
against their corresponding XSD files using the VALIDATE command after
generation.

Appendix B
XML Schema Supported Features

B-34



B.8.2.1 All
This element specifies that child elements can appear in any order and that each child element
can occur zero or one time.

Note that child elements mandatory properties (minOccurs=1) are not managed by the driver.
This should be handled by checks on the data, and by validating the XML contents against the
XSD.

<all
    id=ID
    maxOccurs=1
    minOccurs=0|1
    any attributes
>
(annotation?,element*)
</all>

B.8.2.2 Any
This element enables you to extend the XML document with elements not specified by the
schema.

<any
    id=ID
    maxOccurs=(nonNegativeInteger|unbounded):1
    minOccurs=nonNegativeInteger:1
    namespace=((##any|##other)|List of (anyURI|(##targetNamespace|##local))):##any
    processContents=(lax|skip|strict):strict
    any attributes
>
(annotation?)
</any>

B.8.2.3 AnyAttribute
This element enables you to extend the XML document with attributes not specified by the
schema.

<anyAttribute
    id=ID
    namespace=((##any|##other)|List of (anyURI|(##targetNamespace|##local))):##any
    processContents=(lax|skip|strict):strict
    any attributes
>
(annotation?)
</anyAttribute>

B.8.2.4 AnyType
This XML Schema type is the root type for all XML Schema types.

<xsd:element name="something" type="xsd:anyType"/>

B.8.2.5 Attribute
This element defines an attribute.

Appendix B
XML Schema Supported Features

B-35



<attribute
    default=string
    id=ID
    name=NCName
    type=QName
    use=optional|prohibited|required
    ref=QName
    fixed=string
    form=qualified|unqualified
    any attributes
>
(annotation?,(simpleType?))
</attribute>

Note that the use attribute of this element defines the column mapped by the driver for the
attribute as mandatory or not.

B.8.2.6 AttributeGroup
This element defines a set of attributes.

<attributeGroup
    id=ID
    name=NCName
    ref=QName
    any attributes
>
(annotation?),((attribute|attributeGroup)*,anyAttribute?))
</attributeGroup>

B.8.2.7 Choice
This element allows one and only of the elements to be present within the containing element.

<choice
    id=ID
    maxOccurs=nonNegativeInteger|unbounded
    minOccurs=nonNegativeInteger
    any attributes
>
(annotation?,(element|group|choice|sequence|any)*)
</choice>

Note that the child element's unique nature are not managed by the driver. This should be
handled by checks on the data, and by validating the XML contents against the XSD.

B.8.2.8 ComplexContent
This element defines extensions or restrictions on a complex type.

<complexContent
    id=ID
    mixed=true|false
    any attributes
>
(annotation?,(restriction|extension))
</complexContent>

Appendix B
XML Schema Supported Features

B-36



B.8.2.9 ComplexType
This element defines a complex type.

<complexType
    name=NCName
    id=ID
    abstract=true|false
    mixed=true|false
    block=(#all|list of (extension|restriction))
    final=(#all|list of (extension|restriction))
    any attributes
>
(annotation?,(simpleContent|complexContent|((group|all|choice|sequence)?,((attribute|
attributeGroup)*,anyAttribute?))))
</complexType>

B.8.2.10 Element
This element defines an element of the XML file.

<element
    name=NCName
    maxOccurs=nonNegativeInteger|unbounded
    minOccurs=nonNegativeInteger
    type=QName
    id=ID
    ref=QName
    substitutionGroup=QName
    default=string
    fixed=string
    form=qualified|unqualified
    nillable=true|false
    abstract=true|false
    block=(#all|list of (extension|restriction))
    final=(#all|list of (extension|restriction))
    any attributes
>
annotation?,((simpleType|complexType)?,(unique|key|keyref)*))
</element>

Note:

The maxOccurs and minOccurs attributes of the element are used in the XML-to-SQL
mapping. If a child element is of a simple type and is monovalued (one occurrence
only), then this element is mapped to a simple column in the table corresponding to
its parent element. Otherwise, a table linked to the parent element's table is created.

Note that if no reference to either minOccurs or maxOccurs is mentioned in an
element then the element is consider as monovalued and is transformed to a column.
This behavior can be changed using the useImplicitMaxValue URL property. When
this property is set to yes, an elements for which maxOccurs is not specified in the
XSD is considered as multivalued (maxOccurs ="unbounded").

Appendix B
XML Schema Supported Features

B-37



Note:

Using different sub-elements with the same name but with different types is not
supported by XML driver. An XSD with such a structure will not be processed
correctly.

B.8.2.11 Extension
This element extends an existing simpleType or complexType element

<extension
    id=ID
    base=QName
    any attributes
>
(annotation?,((group|all|choice|sequence)?,((attribute|attributeGroup)*,anyAttribute?)))
</extension>

B.8.2.12 Group
The group element is used to define a group of elements to be used in complex type
definitions.

<group
    id=ID
    name=NCName
    ref=QName
    maxOccurs=nonNegativeInteger|unbounded
    minOccurs=nonNegativeInteger
    any attributes
>
(annotation?,(all|choice|sequence)?)
</group>

B.8.2.13 Import
This element is used to add multiple schemas with different target namespace to a document.

<import
    id=ID
    namespace=anyURI
    schemaLocation=anyURI
    any attributes
>
(annotation?)
</import>

B.8.2.14 Include
This element is used to add multiple schemas with the same target namespace to a document.

<include
    id=ID
    schemaLocation=anyURI
    any attributes
>

Appendix B
XML Schema Supported Features

B-38



(annotation?)
</include>

B.8.2.15 List
This element defines a simple type element as a list of values of a specified data type.

<list
    id=ID
    itemType=QName
    any attributes
>
(annotation?,(simpleType?))
</list>

B.8.2.16 Restriction
This element defines restrictions on a simpleType, simpleContent, or a complexContent.

<restriction
     id=ID
     base=QName
     any attributes
>
Content for simpleType:
(annotation?,(simpleType?,(minExclusive|minInclusive|maxExclusive|maxInclusive|
totalDigits|fractionDigits|length|minLength|maxLength|enumeration|whiteSpace|
pattern)*))
Content for simpleContent:
(annotation?,(simpleType?,(minExclusive|minInclusive|maxExclusive|maxInclusive|
totalDigits|fractionDigits|length|minLength|maxLength|enumeration|whiteSpace|
pattern)*)?, ((attribute|attributeGroup)*,anyAttribute?))
Content for complexContent:
(annotation?,(group|all|choice|sequence)?, ((attribute|attributeGroup)*,anyAttribute?))
</restriction>

B.8.2.17 Schema
This element defines the root element of a schema.

<schema
     id=ID
     attributeFormDefault=qualified|unqualified
     elementFormDefault=qualified|unqualified
     blockDefault=(#all|list of (extension|restriction|substitution))
     finalDefault=(#all|list of (extension|restriction|list|union))
     targetNamespace=anyURI
     version=token
     xmlns=anyURI
     any attributes
>
((include|import|redefine|annotation)*,(((simpleType|complexType|group|
attributeGroup)|element|attribute|notation),annotation*)*)
</schema>

B.8.2.18 Sequence
This element specifies that the child elements must appear in a sequence. Each child element
can occur 0 or more times.

Appendix B
XML Schema Supported Features

B-39



<sequence
     id=ID
     maxOccurs=nonNegativeInteger|unbounded
     minOccurs=nonNegativeInteger
     any attributes
>
(annotation?,(element|group|choice|sequence|any)*)
</sequence>

Note the following:

• The Sequence order is not managed by the driver. The sequence order should be handled
by loading the xxx_ORDER column generated by the driver.

• The maxOccurs and minOccurs attributes are not managed by the driver. This should be
handled by checks on the data, and by validating the XML contents against the XSD.

B.8.2.19 SimpleContent
This element contains extensions or restrictions on a text-only complex type or on a simple
type as content.

<simpleContent
     id=ID
     any attributes
>
(annotation?,(restriction|extension))
</simpleContent>

B.8.2.20 SimpleType
This element defines a simple type element.

<simpleType
     name=NCName
     id=ID
     any attributes
>
(annotation?,(restriction|list|union))
</simpleType>

B.8.3 Unsupported Features
The following elements and features are not supported or implemented by the XML driver.

B.8.3.1 Unsupported Elements
The following schema elements are not supported by the XML driver.

• Key/keyRef/Unique: These elements allow the definition of constraints in the schema.
These elements and their child elements (selector, field) are ignored.

• Redefine: The redefine element redefines simple and complex types, groups, and attribute
groups from an external schema. This element is not supported.

In v3 mode an error is raised, if any unsupported XSD element is encountered.

Appendix B
XML Schema Supported Features

B-40



WARNING:

Elements and attributes allowed in an XML file due to an Any or AnyAttribute clause
in the XSD may cause errors when the file is loaded.

B.8.3.2 Unsupported Features
Multipass parsing is supported in v3 mode. The other modes do not support multipass parsing.

B.8.3.3 Unsupported Datatypes
The following datatypes are not supported:

• gYear

• gYearMonth

• gMonth

• gMonthDay

• gDay

• language

• ENTITY

• ENTITIES

• NOTATION

• IDREFS

Appendix B
XML Schema Supported Features

B-41



C
Oracle Data Integrator Driver for Complex
Files Reference

The Oracle Data Integrator Driver for Complex Files (Complex File driver) allows Oracle Data
Integrator to use complex files as data servers.
This appendix includes the following sections:

• Introduction to Oracle Data Integrator Driver for Complex Files

• Complex Files Processing Overview

• Driver Configuration

• Detailed Driver Commands

• JDBC API and XML Schema Supported Features

C.1 Introduction to Oracle Data Integrator Driver for Complex
Files

The Oracle Data Integrator Driver for Complex Files (Complex File driver) handles files in a
Complex (or Native) Format as a JDBC data source. This allows Oracle Data Integrator to use
complex files as data servers.

With the Complex File driver, Oracle Data Integrator can query complex files using standard
SQL syntax and perform changes in the complex files. These operations occur within
transactions and can be committed or rolled back.

The Oracle Data Integrator driver for Complex Files supports the following features:

• Standard SQL (Structured Query Language) Syntax

• Correlated subqueries, inner and outer joins

• ORDER BY and GROUP BY

• COUNT, SUM, MIN, MAX, AVG and other functions

• Standard SQL functions

• Transaction Management

• Referential Integrity (foreign keys)

• Saving changes into the complex files

C.2 Complex Files Processing Overview
The Complex File driver uses a Native Schema file. This file, written in the nXSD format
describes the structure of the Native File and how to translate it to an XML file.

The Complex File driver translates internally the native file into an XML structure, as defined in
the Native Schema (nXSD) description and from this XML file it generates a relational schema
that is consumed by Oracle Data Integrator. The overall mechanism is shown in Figure C-1.

C-1



Figure C-1    Complex File Driver Process

The second part of the process, starting from the XML structure, corresponds precisely to the
capabilities of the Oracle Data Integrator Driver for XML.

The Complex Files driver works in the following way:

1. The complex file is translated to an intermediate XML file using the Native Schema (nXSD)
file. Note that no physical file is created for the intermediate XML file but a streaming XML
structure.

2. The driver loads the XML structure and data into a relational schema, using a XML to SQL
Mapping.

3. The user works on the relational schema, manipulating data through regular SQL
statements or specific driver commands for driver operations.

4. Upon disconnection or user request, the Complex Files driver synchronizes the data and
structure stored in the schema back to the complex file.

C.2.1 Generating the Native Schema
The Native Schema can be created manually, or generated using the Native Format Builder
Wizard available as part of Fusion Middleware Technology Adapters. See Native Format
Builder Wizard in the User's Guide for Technology Adapters for more information on the Native
Schema format and the Native Format Builder Wizard.

C.2.2 XML to SQL Mapping
The XML to SQL Mapping is a complex process that is used to map a hierarchical structure
(XML) into a relational structure (schema). This mapping is automatic. See XML to SQL
Mapping for more information.

C.2.3 JSON Support
Flat files in JSON format are supported through the nXSD format. The nXSD file can be
created manually or through the Native Format Builder Wizard (See Generating the Native
Schema for details). If an XSD file with no nXSD annotation is used, you need to provide
additional JDBC property: tt=json or translator_type=json, which will enable the driver to
use the JSON translator for parsing the input file.

C.2.4 Supported Features
The Complex File driver supports the same features as the XML driver:

• Schema Storage in a built-in engine or external database is supported in the same way as
the XML Driver. See Schema Storage and Using an External Database to Store the Data
for more information.

• Multiple Schemas are supported, with the following differences:

Appendix C
Complex Files Processing Overview

C-2



– Only a single schema can be created at connection time, based on the Native Schema
file.

– Parameters allowing creating multiple schemas at connection time as indicated in 
Automatically Create Multiple Schemas are not supported. This includes
add_schema_bundle, add_schema_path, and addschema_X.

– Additional schemas can be created after the connection using the CREATE SCHEMA
and LOAD FILE commands.

• Case-sensitivity is managed similarly to the XML driver. See Case Sensitivity for more
information.

• Loading/Synchronizing with the Complex File driver works the same way as the XML
Driver. Loading/Synchronizing operations automatically propagate to the Native file. See 
Loading/Synchronizing for more information.

• Locking is supported. When connected, the complex file is locked and when disconnected,
it is unlocked. The UNLOCK FILE command is supported.

C.3 Driver Configuration
The Oracle Data Integrator driver for Complex Files is automatically installed with Oracle Data
Integrator. The following topics cover advanced configuration topics and reference information.

This section details the driver configuration.

• The driver name is: oracle.odi.jdbc.driver.file.complex.ComplexFileDriver
• The URL Syntax is: jdbc:snps:complexfile?f=<native file location>&d=<native

schema>&re=<root element name>[&s=<schema name>&<property>=<value>...]
The properties for the URL are detailed in Oracle Data Integrator Driver for Complex Files
Reference.

Table C-1    Driver Properties

Property Mandatory Type Default Description

file or f Yes string (file
location)

- Native file location. Use slash "/" in the path name instead of
back slash "\". It is possible to use an HTTP, FTP or File URL
to locate the file. Files located by URL are read-only. This
parameter is mandatory.

dtd or d Yes string (file
location)

- Native Schema (nXSD) file location. This parameter is
mandatory.

root_elt or re Yes String - Name of the element to take as the root table of the schema.
This value is case sensitive. This property can be used for
reverse-engineering for example a specific section of the
Native Schema. This parameter is mandatory.

read_only or ro No boolean (true |
false)

false Open the native file in read only mode.

Appendix C
Driver Configuration

C-3



Table C-1    (Cont.) Driver Properties

Property Mandatory Type Default Description

schema or s No string - Name of the relational schema where the complex file will be
loaded. This parameter is mandatory.

This schema will be selected when creating the physical
schema under the Complex File data server.

Note: It is not possible to make more than one connection to
a schema. Subsequent connections fail if trying to connect to
a schema already in use.

Important: The schema name should be specified in
uppercase, and cannot be named like an existing XML
element.

standalone No boolean (true |
false)

false If this option is set to true, the schema for this connection is
completely isolated from all other schemas. With this option,
you can specify the same schema name for several
connections, each schema being kept separated. When
using this option, tables in this schema cannot be accessed
from other schemas, and this connection cannot access
tables from other schemas.

Note: This option is not applicable when an external
database is used.

translator_type or
tt

No string (json) - If this option is set to json, the xsd does not require nXSD
annotations and will automatically use the JSON translator
for parsing the input file.

db_props or dp No string - This property is used to use an external database instead of
the memory engine to store the schema.

See Using an External Database to Store the Data for more
information.

load_data_on_con
nect or ldoc

No boolean (true |
false)

true Automatically load the data in the schema when performing
the JDBC connection. If set to false, a SYNCHRONIZE
statement is required after the connection to load the data.

This option is useful to test the connection or browse
metadata without loading all the data.

drop_on_disconne
ct or dod

No boolean (true |
false)

false Automatically drop the schema when closing the JDBC
connection.

If true, the schema is stored in the built-in engine, it is always
dropped.

If the schema is stored in an external database, the driver
attempts to drop the database schema, but might fail if
tables still exist in this schema. The
drop_tables_on_drop_schema property can be specified in
the external database property file to ensure that all tables
are automatically dropped when the schema is dropped. See 
Using an External Database to Store the Data for more
information.

useimplicitmaxval
ue

No boolean (true |
false)

false When this property is set to true, elements for which
maxOccurs is not specified in the schema are considered as
maxOccurs ="unbounded". Otherwise, the driver assumes
that maxOccurs=1 when maxOccurs is not specified.

java_encoding or
je

No string (encoding
code)

UTF8 Target file encoding (for example: ISO8859_1). You will find
a list of supported encoding at the following URL: https://
docs.oracle.com/javase/8/docs/technotes/guides/intl/
encoding.doc.html.

Appendix C
Driver Configuration

C-4

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html


Table C-1    (Cont.) Driver Properties

Property Mandatory Type Default Description

numeric_ids or ni No boolean (true |
false)

true If set to true, all internal Primary and Foreign Keys are of
NUMERIC type. Otherwise, they are of the VARCHAR type.

id_length or il No integer 10 / 30 The length of the internal Primary and Foreign Key columns.
The default is 10 for NUMERIC column types and 30 for
VARCHAR column.

numeric_scale or
ns

No integer empty Scale of the numeric columns generated in the relational
schema.

no_batch_update
or nobu

No boolean (true |
false)

false Batch update is not used for this connection. The command
to set the batch update is not sent. This prevents errors to
occur for external databases that do not support this JDBC
feature, or allows to debug errors related to batch update
usage.

transform_nonasci
i or tna

No boolean (true|
false)

true Transform Non Ascii. Set to false to keep non-ascii
characters.

The following example illustrates these properties:

Connects to the PROD20100125_001.csv file described by products.nxsd and expose this file
as a relational structure in the PRODUCT Schema.

jdbc:snps:complexfile?f=/infiles/PROD20100125_001.csv&d=/infiles/
products.nxsd&re=root&s=PRODUCTS

C.4 Detailed Driver Commands
The Complex File driver supports the same driver commands as the XML driver. See Detailed
Driver Commands for the driver commands supported by the XML Driver.

The exceptions to this rule are the following:

• In the Complex File driver syntax, the commands that are related to the XML file such as
CREATE FILE or LOAD FILE, are applied to the Native File. For example, the command
CREATE FILE creates a native format file from the schema content.

• VALIDATE is not supported.

• CREATE FILE is supported but the NO_CLOSING_TAGS and NO_DEFAULT_NS
parameters are ignored.

• CREATE SCHEMA requires the WITH DTD parameter.

• LOAD FILE requires the WITH DTD parameter.

C.5 JDBC API and XML Schema Supported Features
The Complex File driver supports the same JDBC features as the XML driver. See SQL Syntax
for more information.

Appendix C
Detailed Driver Commands

C-5



D
Pre/Post Processing Support for XML and
Complex File Drivers

It is possible to customize the way in which data is fed to the XML and Complex File drivers.
You can set up intermediate processing stages to process the data that is retrieved from an
external endpoint using Oracle Data Integrator, or to write the data out to an external endpoint.
This appendix includes the following sections:

• Overview

• Configuring the processing stages

• Implementing the processing stages

• Example: Groovy Script for Reading XML Data From Within a ZIP File

• Example: Groovy Script for Transforming XML Data and Writing to a Different Format

• Example: Java Class for Reading Data From HTTP Source Requiring Authentication

• Example: Groovy Code Embedded in Configuration XML File

D.1 Overview
You can now customize the way data is fed to the XML and Complex File drivers. You can set
up intermediate processing stages to process the data that is retrieved from an external
endpoint using Oracle Data Integrator, or to write the data out to an external endpoint.

You can configure one Terminal stage and zero or multiple Junction stages. The terminal stage
can read data from external endpoints and write data to external endpoints. The terminal stage
reads the source data from an external endpoint and passes it to the junction stage for
processing. The junction stages can be configured to process the data passed by the terminal
stage.

The source data can be in any format, not necessarily XML or Complex File, until it reaches
the XML driver or the Complex File driver. However, when the data is finally handed off to the
XML driver or the Complex File driver, the data must be in the required format. That is, when
the data is handed off to the XML driver, it must be a valid XML that adheres to the XSD that
has been configured for the data server. Similarly, when the data is handed off to the Complex
File driver, the data must exactly match the pattern as defined by the nXSD file.

D.2 Configuring the processing stages
The complete configuration of the intermediate processing stages to the ODI JDBC driver in
the form an XML file. The XSD for the configuration XML file must also be included.

For an input pipeline configuration, the first stage would be the one that first processes the
input. The last stage would be the one that feeds data to the driver. This last stage must
provide an output that adheres to the format expected by the XML or the Complex File driver.

For an output pipeline configuration, the last stage would be the one that writes out the output.
The first stage would be the one that accepts the data from the driver. This data would have
the same shape as the XSD of the dataserver.

D-1



After you create the XML file that contains the configuration, ensure that the
pipeline_config_file or pcf property of the XML driver or the Complex File driver points to
the absolute file location of the XML file.

Example D-1 shows a sample configuration XML file.

Example D-1    Sample Configuration XML File

<?xml version="1.0" encoding="UTF-8"?>
<pipeline xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:noNamespaceSchemaLocation="pre-post.xsd">
 
   <input-stages>
      <io-stage name="restInput">
         <codeDefinition>
            <javaClass>com.company.org.InputProcessor</javaClass>
         </codeDefinition>
         <debugOutput>http://tempuri.org</debugOutput>
      </io-stage>
      <stage name="BufferInputStage">
         <codeDefinition>
            <javaClass>com.company.org.BufferingClass</javaClass>
         </codeDefinition>
         <props>
            <property name="bufferSizeBytes">2340</property>
         </props>
      </stage>
      <stage name="UnzipStage">
         <codeDefinition>
            <code>[Groovy text in Base64 encoded form]</code>
         </codeDefinition>
      </stage>
   </input-stages>
   <output-stages>
      <io-stage name="restOut">
         <codeDefinition>
            <javaClass>com.company.org.OutputProcessor</javaClass>
         </codeDefinition>
         <debugOutput>http://tempuri.org</debugOutput>
      </io-stage>
      <stage name="SevenZipOutputStage">
         <codeDefinition>
            <code>[Groovy text in Base64 encoded form]</code>
         </codeDefinition>
      </stage>
      <stage name="BufferOutputStage">
         <codeDefinition>
            <javaClass>com.company.org.PushOutput</javaClass>
         </codeDefinition>
         <debugOutput>/scratch/jsmith/view_storage/tmp/bufferout.txt</debugOutput>
      </stage>
   </output-stages>
</pipeline>

D.3 Implementing the processing stages
Pre or post data processing support for XML driver and Complex File driver may be
implemented in three different ways.

• Groovy Code

Appendix D
Implementing the processing stages

D-2



By supplying the Groovy code directly into the configuration XML file. This Groovy code is
a part of the dataserver configuration and cannot be re-used. You can supply the Groovy
code as a Base64 encoded string or as a plain text string within a CDATA section.

For an example, see Example: Groovy Code Embedded in Configuration XML File.

• Java Class

By providing the fully qualified name of a Java class. This Java class must be available on
the ODI Agent classpath at runtime.

For ODI Studio it might be made into a JAR and placed in USER_HOME/odi/oracledi/
userlib directory.

For Standalone or Collocated agents this JAR must either be placed in DOMAIN_HOME/lib
directory or should be coded into the classpath using one of the scripts.

For JEE Agents it must be deployed as a shared library and ODI Agent application must
depend on this shared library.

For an example, see Example: Java Class for Reading Data From HTTP Source Requiring
Authentication.

• Groovy Script

By providing the name of a Groovy script. All the requirements of Java class apply to this
Groovy script as well. As an exception you may provide either the name of the script, for
example, MyGroovySource.groovy or an absolute path to the script, for example, /home/
groupuser/name/MyCustomGroovy.groovy.

In the former case, the script is looked up as a Java Class resource using the ClassLoader.
The usual locator pattern for class resources applies for this. For example, if the file is not
in a JAR, the file name must be provided as /MyGroovySource.groovy. If it is in a
subdirectory of a JAR, then the locator will be /com/foo/MyGroovySource.groovy. If using
absolute path, the Groovy script is accessed as a plain Java File.

For examples, see the following sections:

– Example: Groovy Script for Reading XML Data From Within a ZIP File

– Example: Groovy Script for Transforming XML Data and Writing to a Different Format

Note:

Take a note of the following:

• The changes in the embedded Groovy code or Groovy script file located via
absolute path will not be picked up unless the XML driver schema is dropped. In
the case of Java class or Groovy script file located via classpath, you must
restart the JVM to pick up the changes.

• The inline Groovy code, Groovy script, or Java class must all conform to the Java
interfaces as provided in the Public APIs. ODI driver will apply chaining to the
resultant code with the ordering as set up in the configuration and the data will
flow through the multiple stages as configured.

Appendix D
Implementing the processing stages

D-3



D.4 Example: Groovy Script for Reading XML Data From Within
a ZIP File

Following is an example of a Groovy script to read XML data from within a ZIP file.

Example D-2    Groovy Script: Read XML Data from within a ZIP file

import java.io.IOException
import java.io.InputStream;
import java.util.Properties;
import java.util.logging.Logger;

import oracle.odi.jdbc.drivers.common.pipeline.api.Stage;
import oracle.odi.jdbc.drivers.common.pipeline.api.TerminalStreamInputStage;

class FileFromZip extends TerminalStreamInputStage {

   public FileFromZip(Properties pStageProperties, String pDataserverUrl,
                 Properties pDataserverProperties, String pJavaEncoding,
     Logger pLogger, String pDebugLocation, String pDebugEncoding, String pStageName) {

   super(pStageProperties, pDataserverUrl, pDataserverProperties,
    pJavaEncoding, pLogger, pDebugLocation, pDebugEncoding, pStageName);
   }

   @Override
   public InputStream readSource() throws IOException {
     def zipFile = new java.util.zip.ZipFile(new 
File(getStageProperties().get("ZIP_FILE")))
     def zipEntry = zipFile.entries().find { !it.directory && 
getStageProperties().get("XML_FILE").equalsIgnoreCase(it.name)}
     return zipFile.getInputStream(zipEntry)
   }

   @Override
   public void close() throws IOException {
     // TODO Auto-generated method stub

   }

}

D.5 Example: Groovy Script for Transforming XML Data and
Writing to a Different Format

Following is an example of a Groovy script to transform XML data and write it out to a different
format.

Example D-3    Groovy Script: Transform XML data and write it to a different format

package oracle.odi.jdbc.driver
 
import groovy.xml.MarkupBuilder;
 
import java.io.IOException;

Appendix D
Example: Groovy Script for Reading XML Data From Within a ZIP File

D-4



import java.io.OutputStream
import java.util.Properties;
import java.util.logging.Logger;

import oracle.odi.jdbc.drivers.common.pipeline.api.JunctionStreamOutputStage;
import oracle.odi.jdbc.drivers.common.pipeline.api.Stage;
 
class TransformXmlOutput extends JunctionStreamOutputStage {
 
      private OutputStream output
    
  public TransformXmlOutput(Properties pStageProperties, String pDataserverUrl,
      Properties pDataserverProperties, String pJavaEncoding, Logger pLogger, String 
pDebugLocation,
      String pDebugEncoding, String pStageName) {
           super(pStageProperties, pDataserverUrl, pDataserverProperties, pJavaEncoding, 
pLogger,
           pDebugLocation, pDebugEncoding, pStageName);
      }

  @Override
      public OutputStream writeOutput(OutputStream out) {
           System.out.println("In TransformXmlOutput writeOutput")
           def Writer w = new BufferedWriter(new OutputStreamWriter(out))
           System.out.println("Created writer")
           output = pipeInput { input ->
                 // Perform transformation
                System.out.println("Piping")
                def builder = new MarkupBuilder (w);
                def cars = new XmlSlurper().parse(input)
 
                System.out.println("Parsed XML")
 
                builder.mkp.xmlDeclaration(version: "1.0", encoding: "utf-8")
 
                builder.html(xmlns:"http://www.w3.org/1999/xhtml") {
                     head {
                          title "Cars collection"
                     }
                     body {
                          h1("Cars")
                          ul(){
                               cars.car.each{car ->
                                    li(car.@name.toString() + "," + car.country + "," + 
car.description + ", Age: " + (2012 - car.@year.toInteger()) + " years")
                               }
                          }
                     }
                }
                w.flush()
                System.out.println("Closing connectedStage")
                closeConnectedStage();
           }
      }
 
      @Override
      public void close() throws IOException {
           System.out.println("Closing TransformXmlOutput")
           if(output!= null) {
                output.flush();
                output.close()
           }

Appendix D
Example: Groovy Script for Transforming XML Data and Writing to a Different Format

D-5



      }
 
      public static OutputStream pipeInput(Closure read) {
 
           PipedInputStream input = new PipedInputStream()
           PipedOutputStream output = new PipedOutputStream(input)
           getThreadsSource.submit {
                try{
                     read(input)
                } catch (Exception e) {
                     System.out.println("Exception in thread")
                     e.printStackTrace();
                     throw e;
                } finally {
                     output.flush()
                }
           }
           return output
      }
}

D.6 Example: Java Class for Reading Data From HTTP Source
Requiring Authentication

Following is an example of a Java class to read data from an HTTP source that requires
authentication.

Example D-4    Java Class: Read Data From HTTP Source Requiring Authentication

/**
 * 
 */
package oracle.odi.jdbc.driver.xml;
 
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import java.net.URLConnection;
import java.util.Properties;
import java.util.logging.Logger;
 
import oracle.odi.jdbc.drivers.common.pipeline.api.TerminalStreamInputStage;
 
/**
 * @author jsmith    
 *
 */
public class FromHttpBasicAuthJava extends TerminalStreamInputStage {
 
   /**
    * @param pStageProperties
    * @param pDataserverUrl
    * @param pDataserverProperties
    * @param pJavaEncoding
    * @param pLogger
    * @param pDebugLocation
    * @param pDebugEncoding
    * @param pStageName
    */

Appendix D
Example: Java Class for Reading Data From HTTP Source Requiring Authentication

D-6



    public FromHttpBasicAuthJava(Properties pStageProperties, String pDataserverUrl,
            Properties pDataserverProperties, String pJavaEncoding,
            Logger pLogger, String pDebugLocation, String pDebugEncoding,
            String pStageName) {
        super(pStageProperties, pDataserverUrl, pDataserverProperties,
                pJavaEncoding, pLogger, pDebugLocation, pDebugEncoding,
                pStageName);
    }
 
    /* (non-Javadoc)
     * @see 
oracle.odi.jdbc.drivers.common.pipeline.api.TerminalStreamInputStage#readSource()
     */
    @Override
    public InputStream readSource() throws IOException {
        String username = (String)(getStageProperties().get("username"));
        String password = (String)(getStageProperties().get("password"));
        byte[] credential = org.apache.commons.codec.binary.Base64.encodeBase64(
                (username + ":" + password).getBytes());
 
        //pass encoded user name and password as header
        URL url = new URL ("http://localhost:18000/get");
        URLConnection conn = url.openConnection();
        conn.setRequestProperty ("Authorization", "Basic " + new String(credential));
        urlStream = conn.getInputStream();
        StringBuilder result = new StringBuilder();
        byte[] read;
        int bytesRead;
        while(true) {
            read = new byte[1024];
            if((bytesRead = urlStream.read(read)) == -1) {
                break;
            } else
                result.append(new String(read, 0, bytesRead));
        }
        
        return new ByteArrayInputStream(result.toString().getBytes());
    }
 
    /* (non-Javadoc)
     * @see oracle.odi.jdbc.drivers.common.pipeline.api.Stage#close()
     */
    @Override
    public void close() throws IOException {
        if(urlStream != null)
            urlStream.close();
    }
 
    private InputStream urlStream = null;
}

D.7 Example: Groovy Code Embedded in Configuration XML File
Following is an example of a configuration XML with Groovy code embedded as Base64 string.

Example D-5    Configuration XML file with Groovy code embedded as Base64 string

<?xml version="1.0" encoding="UTF-8"?>
 
<pipeline xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:noNamespaceSchemaLocation="pre-post.xsd">

Appendix D
Example: Groovy Code Embedded in Configuration XML File

D-7



 
  <input-stages>
    <io-stage name="fromZip">
      <codeDefinition>
<code>
CgppbXBvcnQgamF2YS5pby5JT0V4Y2VwdGlvbgppbXBvcnQgamF2YS5pby5JbnB1dFN0cmVhbTsKaW1wb3J0IGphd
mEudXRpbC5Qcm9wZXJ0aWVzOwppbXBvcnQgamF2YS51dGlsLmxvZ2dpbmcuTG9nZ2VyOwoKaW1wb3J0IG9yYWNsZS
5vZGkuamRiYy5kcml2ZXJzLmNvbW1vbi5waXBlbGluZS5hcGkuU3RhZ2U7CmltcG9ydCBvcmFjbGUub2RpLmpkYmM
uZHJpdmVycy5jb21tb24ucGlwZWxpbmUuYXBpLlRlcm1pbmFsU3RyZWFtSW5wdXRTdGFnZTsKCmNsYXNzIEZpbGVG
cm9tRnJvbVppcCBleHRlbmRzIFRlcm1pbmFsU3RyZWFtSW5wdXRTdGFnZSB7CgoJcHVibGljIEZpbGVGcm9tRnJvb
VppcChQcm9wZXJ0aWVzIHBTdGFnZVByb3BlcnRpZXMsIFN0cmluZyBwRGF0YXNlcnZlclVybCwKCQkJUHJvcGVydG
llcyBwRGF0YXNlcnZlclByb3BlcnRpZXMsIFN0cmluZyBwSmF2YUVuY29kaW5nLAoJCQlMb2dnZXIgcExvZ2dlciw
gU3RyaW5nIHBEZWJ1Z0xvY2F0aW9uLCBTdHJpbmcgcERlYnVnRW5jb2RpbmcsIFN0cmluZyBwU3RhZ2VOYW1lKSB7
CgkJc3VwZXIocFN0YWdlUHJvcGVydGllcywgcERhdGFzZXJ2ZXJVcmwsIHBEYXRhc2VydmVyUHJvcGVydGllcywKC
QkJCXBKYXZhRW5jb2RpbmcsIHBMb2dnZXIsIHBEZWJ1Z0xvY2F0aW9uLCBwRGVidWdFbmNvZGluZywgcFN0YWdlTm
FtZSk7Cgl9CgoJQE92ZXJyaWRlCglwdWJsaWMgSW5wdXRTdHJlYW0gcmVhZFNvdXJjZSgpIHRocm93cyBJT0V4Y2V
wdGlvbiB7CgkJZGVmIHppcEZpbGUgPSBuZXcgamF2YS51dGlsLnppcC5aaXBGaWxlKG5ldyBGaWxlKGdldFN0YWdl
UHJvcGVydGllcygpLmdldCgiWklQX0ZJTEUiKSkpCgkJZGVmIHppcEVudHJ5ID0gemlwRmlsZS5lbnRyaWVzKCkuZ
mluZCB7ICFpdC5kaXJlY3RvcnkgJiYgZ2V0U3RhZ2VQcm9wZXJ0aWVzKCkuZ2V0KCJYTUxfRklMRSIpLmVxdWFsc0
lnbm9yZUNhc2UoaXQubmFtZSl9CgkJcmV0dXJuIHppcEZpbGUuZ2V0SW5wdXRTdHJlYW0oemlwRW50cnkpCgl9Cgo
JQE92ZXJyaWRlCglwdWJsaWMgdm9pZCBjbG9zZSgpIHRocm93cyBJT0V4Y2VwdGlvbiB7CgkJLy8gVE9ETyBBdXRv
LWdlbmVyYXRlZCBtZXRob2Qgc3R1YgoKCX0KCn0K
</code>
      </codeDefinition>
      <props>
        <property name="ZIP_FILE">/home/myuser/files/personal.zip</property>
        <property name="XML_FILE">personal.xml</property>
      </props>
    </io-stage>
  </input-stages>
</pipeline>

Appendix D
Example: Groovy Code Embedded in Configuration XML File

D-8


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	1.1 Terminology
	1.2 Using This Guide
	1.3 Accessing Data in the Relational Structure
	1.4 Accessing Data in the Schemas

	Part I Databases, Files, and XML
	2 Oracle Database
	2.1 Introduction
	2.1.1 Concepts
	2.1.2 Knowledge Modules

	2.2 Installation and Configuration
	2.2.1 System Requirements and Certifications
	2.2.2 Technology Specific Requirements
	2.2.2.1 Using the SQL*Loader Utility
	2.2.2.2 Using External Tables
	2.2.2.3 Using Oracle Wallet

	2.2.3 Connectivity Requirements

	2.3 Setting up the Topology
	2.3.1 Creating an Oracle Data Server
	2.3.1.1 Creation of the Data Server

	2.3.2 Creating an Oracle Physical Schema

	2.4 Setting Up an Integration Project
	2.5 Creating and Reverse-Engineering an Oracle Model
	2.5.1 Create an Oracle Model
	2.5.2 Reverse-engineer an Oracle Model

	2.6 Setting up Changed Data Capture
	2.7 Setting up Data Quality
	2.8 Designing a Mapping
	2.8.1 Loading Data from and to Oracle
	2.8.1.1 Loading Data from Oracle
	2.8.1.2 Loading Data to Oracle

	2.8.2 Integrating Data in Oracle
	2.8.3 Designing an ETL-Style Mapping

	2.9 Troubleshooting
	2.9.1 Troubleshooting Oracle Database Errors
	2.9.2 Common Problems and Solutions


	3 Oracle Autonomous Data Warehouse Cloud
	3.1 Introduction
	3.1.1 Concepts
	3.1.2 Knowledge Modules

	3.2 Prerequisites
	3.3 Setting up the Topology
	3.3.1 Creating an Oracle Data Server
	3.3.2 Creating an Oracle Physical Schema

	3.4 Creating and Reverse-Engineering an Oracle Model
	3.4.1 Create an Oracle Model
	3.4.2 Reverse Engineer an Oracle Model

	3.5 Designing a Mapping
	3.5.1 Loading data
	3.5.1.1 Loading Data using Oracle KMs
	3.5.1.2 Loading Data using SQL* Loader KMs
	3.5.1.3 Loading Data directly into ADWC
	3.5.1.3.1 LKM SQL to ADWC External Table
	3.5.1.3.2 LKM SQL to ADWC Copy
	3.5.1.3.3 LKM SQL to ADWC Copy Direct
	3.5.1.3.4 LKM File to ADWC External Table
	3.5.1.3.5 LKM File to ADWC Copy
	3.5.1.3.6 LKM File to ADWC Copy Direct
	3.5.1.3.7 LKM Oracle to ADWC Datapump

	3.5.1.4 Loading Oracle Object Storage files into ADWC
	3.5.1.4.1 LKM Object Storage to ADWC Copy
	3.5.1.4.2 LKM Object Storage to ADWC Copy Direct
	3.5.1.4.3 LKM Object Storage to ADWC External Table


	3.5.2 Extracting data

	3.6 Best Practices for Working with ADWC
	3.6.1 Caching Oracle Sequences in ADWC


	4 Files
	4.1 Introduction
	4.1.1 Concepts
	4.1.2 Knowledge Modules

	4.2 Installation and Configuration
	4.2.1 System Requirements and Certifications
	4.2.2 Technology Specific Requirements
	4.2.3 Connectivity Requirements

	4.3 Setting up the Topology
	4.3.1 Creating a File Data Server
	4.3.1.1 Creation of the Data Server

	4.3.2 Creating a File Physical Schema

	4.4 Setting Up an Integration Project
	4.5 Creating and Reverse-Engineering a File Model
	4.5.1 Create a File Model
	4.5.2 Reverse-engineer a File Model
	4.5.2.1 Delimited Files Reverse-Engineering
	4.5.2.2 Fixed Files Reverse-engineering using the Wizard
	4.5.2.3 COBOL Copybook reverse-engineering
	4.5.2.4 Customized Reverse-Engineering


	4.6 Designing a Mapping
	4.6.1 Loading Data From Files
	4.6.2 Integrating Data in Files
	4.6.2.1 IKM SQL to File Append
	4.6.2.2 IKM File to File (Java)



	5 Generic SQL
	5.1 Introduction
	5.1.1 Concepts
	5.1.2 Knowledge Modules

	5.2 Installation and Configuration
	5.2.1 System Requirements and Certifications
	5.2.2 Technology-Specific Requirements
	5.2.3 Connectivity Requirements

	5.3 Setting up the Topology
	5.3.1 Creating a Data Server
	5.3.2 Creating a Physical Schema

	5.4 Setting up an Integration Project
	5.5 Creating and Reverse-Engineering a Model
	5.5.1 Create a Data Model
	5.5.2 Reverse-engineer a Data Model

	5.6 Setting up Changed Data Capture
	5.7 Setting up Data Quality
	5.8 Designing a Mapping
	5.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology
	5.8.1.1 Loading Data from an ANSI SQL-92 Compliant Technology
	5.8.1.2 Loading Data to an ANSI SQL-92 Compliant Technology

	5.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology
	5.8.3 Designing an ETL-Style Mapping


	6 XML Files
	6.1 Introduction
	6.1.1 Concepts
	6.1.2 Pre/Post Processing Support for XML Driver
	6.1.3 Knowledge Modules

	6.2 Installation and Configuration
	6.2.1 System Requirements
	6.2.2 Technologic Specific Requirements
	6.2.3 Connectivity Requirements

	6.3 Setting up the Topology
	6.3.1 Creating an XML Data Server
	6.3.1.1 Creation of the Data Server

	6.3.2 Creating a Physical Schema for XML

	6.4 Setting Up an Integration Project
	6.5 Creating and Reverse-Engineering a XML File
	6.5.1 Create an XML Model
	6.5.2 Reverse-Engineering an XML Model

	6.6 Designing a Mapping
	6.6.1 Notes about XML Mappings
	6.6.1.1 Targeting an XML Structure
	6.6.1.2 Synchronizing XML File and Schema
	6.6.1.3 Handling Large XML Files

	6.6.2 Loading Data from and to XML
	6.6.2.1 Loading Data from an XML Schema
	6.6.2.2 Loading Data to an XML Schema

	6.6.3 Integrating Data in XML

	6.7 Troubleshooting
	6.7.1 Detect the Errors Coming from XML
	6.7.2 Common Errors


	7 Complex Files
	7.1 Introduction
	7.1.1 Concepts
	7.1.2 Pre/Post Processing Support for Complex File Driver
	7.1.3 Knowledge Modules

	7.2 Installation and Configuration
	7.2.1 System Requirements
	7.2.2 Technology Specific Requirements
	7.2.3 Connectivity Requirements

	7.3 Building a Native Schema Description File Using the Native Format Builder
	7.4 Setting up the Topology
	7.4.1 Creating a Complex File Data Server
	7.4.1.1 Creation of the Data Server

	7.4.2 Creating a Complex File Physical Schema

	7.5 Setting Up an Integration Project
	7.6 Creating and Reverse-Engineering a Complex File Model
	7.6.1 Create a Complex File Model
	7.6.2 Reverse-engineer a Complex File Model

	7.7 Designing a Mapping

	8 Microsoft SQL Server
	8.1 Introduction
	8.1.1 Concepts
	8.1.2 Knowledge Modules

	8.2 Installation and Configuration
	8.2.1 System Requirements and Certifications
	8.2.2 Technology Specific Requirements
	8.2.2.1 Using the BULK INSERT Command
	8.2.2.2 Using the BCP Command
	8.2.2.3 Using Linked Servers

	8.2.3 Connectivity Requirements

	8.3 Setting up the Topology
	8.3.1 Creating a Microsoft SQL Server Data Server
	8.3.1.1 Creation of the Data Server

	8.3.2 Creating a Microsoft SQL Server Physical Schema

	8.4 Setting Up an Integration Project
	8.5 Creating and Reverse-Engineering a Microsoft SQL Server Model
	8.5.1 Create a Microsoft SQL Server Model
	8.5.2 Reverse-engineer a Microsoft SQL Server Model

	8.6 Setting up Changed Data Capture
	8.7 Setting up Data Quality
	8.8 Designing a Mapping
	8.8.1 Loading Data from and to Microsoft SQL Server
	8.8.1.1 Loading Data from Microsoft SQL Server
	8.8.1.2 Loading Data to Microsoft SQL Server

	8.8.2 Integrating Data in Microsoft SQL Server


	9 Microsoft Excel
	9.1 Introduction
	9.1.1 Concepts
	9.1.2 Knowledge Modules

	9.2 Installation and Configuration
	9.2.1 System Requirements and Certifications
	9.2.2 Specific Requirements
	9.2.3 Connectivity Requirements

	9.3 Setting up the Topology
	9.3.1 Creating a Microsoft Excel Data Server
	9.3.2 Creating a Microsoft Excel Physical Schema

	9.4 Setting Up an Integration Project
	9.5 Creating and Reverse-Engineering a Microsoft Excel Model
	9.5.1 Create a Microsoft Excel Model
	9.5.2 Reverse-engineer a Microsoft Excel Model

	9.6 Designing a Mapping
	9.6.1 Loading Data From and to Microsoft Excel
	9.6.1.1 Loading Data from Microsoft Excel
	9.6.1.2 Loading Data to Microsoft Excel

	9.6.2 Integrating Data in Microsoft Excel

	9.7 Troubleshooting
	9.7.1 Decoding Error Messages
	9.7.2 Common Problems and Solutions


	10 Microsoft Access
	10.1 Introduction
	10.2 Concepts
	10.3 Knowledge Modules
	10.4 Specific Requirements

	11 Netezza
	11.1 Introduction
	11.1.1 Concepts
	11.1.2 Knowledge Modules

	11.2 Installation and Configuration
	11.2.1 System Requirements and Certifications
	11.2.2 Technology Specific Requirements
	11.2.3 Connectivity Requirements

	11.3 Setting up the Topology
	11.3.1 Creating a Netezza Data Server
	11.3.1.1 Creation of the Data Server

	11.3.2 Creating a Netezza Physical Schema

	11.4 Setting Up an Integration Project
	11.5 Creating and Reverse-Engineering a Netezza Model
	11.5.1 Create a Netezza Model
	11.5.2 Reverse-engineer a Netezza Model

	11.6 Setting up Data Quality
	11.7 Designing a Mapping
	11.7.1 Loading Data from and to Netezza
	11.7.1.1 Loading Data from Netezza
	11.7.1.2 Loading Data to Netezza

	11.7.2 Integrating Data in Netezza


	12 Teradata
	12.1 Introduction
	12.1.1 Concepts
	12.1.2 Knowledge Modules

	12.2 Installation and Configuration
	12.2.1 System Requirements and Certifications
	12.2.2 Technology Specific Requirements
	12.2.3 Connectivity Requirements

	12.3 Setting up the Topology
	12.3.1 Creating a Teradata Data Server
	12.3.1.1 Creation of the Data Server

	12.3.2 Creating a Teradata Physical Schema

	12.4 Setting Up an Integration Project
	12.5 Creating and Reverse-Engineering a Teradata Model
	12.5.1 Create a Teradata Model
	12.5.2 Reverse-engineer a Teradata Model

	12.6 Setting up Data Quality
	12.7 Designing a Mapping
	12.7.1 Loading Data from and to Teradata
	12.7.1.1 Loading Data from Teradata
	12.7.1.2 Loading Data to Teradata

	12.7.2 Integrating Data in Teradata
	12.7.3 Designing an ETL-Style Mapping

	12.8 KM Optimizations for Teradata
	12.8.1 Primary Indexes and Statistics
	12.8.2 Support for Teradata Utilities
	12.8.3 Support for Named Pipes
	12.8.4 Optimized Management of Temporary Tables


	13 Hypersonic SQL
	13.1 Introduction
	13.1.1 Concepts
	13.1.2 Knowledge Modules

	13.2 Installation and Configuration
	13.2.1 System Requirements and Certifications
	13.2.2 Technology Specific Requirements
	13.2.3 Connectivity Requirements

	13.3 Setting up the Topology
	13.3.1 Creating a Hypersonic SQL Data Server
	13.3.2 Creating a Hypersonic SQL Physical Schema

	13.4 Setting Up an Integration Project
	13.5 Creating and Reverse-Engineering a Hypersonic SQL Model
	13.5.1 Create a Hypersonic SQL Model
	13.5.2 Reverse-engineer a Hypersonic SQL Model

	13.6 Setting up Changed Data Capture
	13.7 Setting up Data Quality
	13.8 Designing a Mapping

	14 IBM Informix
	14.1 Introduction
	14.2 Concepts
	14.3 Knowledge Modules
	14.4 Specific Requirements

	15 IBM DB2 for iSeries
	15.1 Introduction
	15.1.1 Concepts
	15.1.2 Knowledge Modules

	15.2 Installation and Configuration
	15.2.1 System Requirements and Certifications
	15.2.2 Technology Specific Requirements
	15.2.3 Connectivity Requirements

	15.3 Setting up the Topology
	15.3.1 Creating a DB2/400 Data Server
	15.3.1.1 Creation of the Data Server

	15.3.2 Creating a DB2/400 Physical Schema

	15.4 Setting Up an Integration Project
	15.5 Creating and Reverse-Engineering an IBM DB2/400 Model
	15.5.1 Create an IBM DB2/400 Model
	15.5.2 Reverse-engineer an IBM DB2/400 Model

	15.6 Setting up Changed Data Capture
	15.6.1 Setting up Trigger-Based CDC
	15.6.2 Setting up Log-Based CDC
	15.6.2.1 How does it work?
	15.6.2.2 CDCRTVJRN Program Details
	15.6.2.3 Installing the CDC Components on iSeries
	15.6.2.4 Using the CDC with the Native Journals
	15.6.2.5 Problems While Reading Journals


	15.7 Setting up Data Quality
	15.8 Designing a Mapping
	15.8.1 Loading Data from and to IBM DB2 for iSeries
	15.8.1.1 Loading Data from IBM DB2 for iSeries
	15.8.1.2 Loading Data to IBM DB2 for iSeries

	15.8.2 Integrating Data in IBM DB2 for iSeries

	15.9 Specific Considerations with DB2 for iSeries
	15.9.1 Installing the Run-Time Agent on iSeries
	15.9.2 Alternative Connectivity Methods for iSeries
	15.9.2.1 Using Client Access
	15.9.2.2 Using the IBM JT/400 and Native Drivers


	15.10 Troubleshooting
	15.10.1 Troubleshooting Error messages
	15.10.2 Common Problems and Solutions
	15.10.2.1 Connection Errors



	16 IBM DB2 UDB
	16.1 Introduction
	16.2 Concepts
	16.3 Knowledge Modules
	16.4 Specific Requirements

	17 Salesforce.com
	17.1 Introduction
	17.1.1 Concepts
	17.1.2 Knowledge Modules

	17.2 Installation and Configuration
	17.2.1 System Requirements and Certifications
	17.2.2 Technology Specific Requirements
	17.2.3 Connectivity Requirements

	17.3 Setting up the Topology
	17.3.1 Creating a Salesforce.com Data Server
	17.3.2 Creating a Physical Schema for Salesforce.com Data Server

	17.4 Setting Up an Integration Project
	17.5 Creating and Reverse-Engineering a Salesforce.com Model
	17.5.1 Create a Salesforce.com Model
	17.5.2 Reverse-engineer a Salesforce.com Model

	17.6 Designing a Mapping
	17.6.1 Loading Data from and to Salesforce.com
	17.6.1.1 Loading Data from Salesforce.com
	17.6.1.2 Loading Data to Salesforce.com

	17.6.2 Integrating Data in Salesforce.com


	18 Sybase IQ
	18.1 Introduction
	18.2 Concepts
	18.3 Knowledge Modules
	18.4 Specific Requirements


	Part II Business Intelligence
	19 Oracle Business Intelligence Enterprise Edition
	19.1 Introduction
	19.1.1 Concepts
	19.1.2 Knowledge Modules

	19.2 Installation and Configuration
	19.2.1 System Requirements and Certifications
	19.2.2 Technology Specific Requirements
	19.2.3 Connectivity Requirements

	19.3 Setting up the Topology
	19.3.1 Creating an Oracle BI Data Server
	19.3.1.1 Creation of the Data Server

	19.3.2 Creating an Oracle BI Physical Schema

	19.4 Setting Up an Integration Project
	19.5 Creating and Reverse-Engineering an Oracle BI Model
	19.5.1 Create an Oracle BI Model
	19.5.2 Reverse-engineer an Oracle BI Model

	19.6 Setting up Data Quality
	19.7 Designing a Mapping
	19.7.1 Loading Data from and to Oracle BI
	19.7.1.1 Loading Data from Oracle BI
	19.7.1.2 Loading Data to Oracle BI

	19.7.2 Integrating Data in Oracle BI


	20 Oracle Business Intelligence Cloud Service
	20.1 Introduction
	20.2 Setting up the Topology
	20.2.1 Creating an Oracle BICS Data Server
	20.2.2 Creating an Oracle BICS Physical Schema

	20.3 Reverse Engineering a BICS Model
	20.4 Designing a Mapping

	21 Oracle Hyperion Planning
	21.1 Introduction
	21.1.1 Integration Process
	21.1.2 Knowledge Modules

	21.2 Installation and Configuration
	21.2.1 System Requirements and Certifications
	21.2.2 Technology Specific Requirements
	21.2.3 Connectivity Requirements

	21.3 Setting up Hyperion Planning Adapter
	21.3.1 Setting up Adapter for ODI Studio
	21.3.2 Setting up Adapter for ODI Standalone Agent

	21.4 Setting up the Topology
	21.4.1 Creating an Hyperion Planning Data Server
	21.4.2 Creating an Hyperion Planning Physical Schema

	21.5 Creating and Reverse-Engineering a Planning Model
	21.5.1 Create a Planning Model
	21.5.2 Reverse-engineer a Planning Model

	21.6 Designing a Mapping
	21.6.1 Loading Metadata
	21.6.2 Loading Data
	21.6.3 Load Options

	21.7 Datastore Tables and Data Load Columns
	21.7.1 Accounts
	21.7.2 Employee
	21.7.3 Entities
	21.7.4 User-Defined Dimensions
	21.7.5 Attribute Dimensions
	21.7.6 UDA
	21.7.7 Data Load Columns


	22 Oracle Hyperion Essbase
	22.1 Introduction
	22.1.1 Integration Process
	22.1.2 Knowledge Modules

	22.2 Installation and Configuration
	22.2.1 System Requirements and Certifications
	22.2.2 Technology Specific Requirements
	22.2.3 Connectivity Requirements

	22.3 Setting up Hyperion Essbase Adapter
	22.3.1 Setting up Adapter for ODI Studio
	22.3.2 Setting up Adapter for ODI Standalone Agent

	22.4 Setting up the Topology
	22.4.1 Creating an Hyperion Essbase Data Server
	22.4.2 Creating an Hyperion Essbase Physical Schema

	22.5 Creating and Reverse-Engineering an Essbase Model
	22.5.1 Create an Essbase Model
	22.5.2 Reverse-engineer an Essbase Model

	22.6 Designing a Mapping
	22.6.1 Loading Metadata
	22.6.2 Loading Data
	22.6.3 Extracting Data
	22.6.3.1 Data Extraction Methods for Essbase
	22.6.3.2 Extracting Essbase Data
	22.6.3.3 Extracting Members from Metadata




	Part III Other Technologies
	23 JMS
	23.1 Introduction
	23.1.1 Concepts
	23.1.1.1 JMS Message Structure
	23.1.1.2 Using a JMS Destination

	23.1.2 Knowledge Modules

	23.2 Installation and Configuration
	23.2.1 System Requirements and Certifications
	23.2.2 Technology Specific Requirements
	23.2.3 Connectivity Requirements

	23.3 Setting up the Topology
	23.3.1 Creating a JMS Data Server
	23.3.1.1 Creation of the Data Server

	23.3.2 Creating a JMS Physical Schema

	23.4 Setting Up an Integration Project
	23.5 Creating and Defining a JMS Model
	23.5.1 Create a JMS Model
	23.5.2 Defining the JMS Datastores

	23.6 Designing a Mapping
	23.6.1 Loading Data from a JMS Source
	23.6.2 Integrating Data in a JMS Target

	23.7 JMS Standard Properties
	23.7.1 Using JMS Properties
	23.7.1.1 Declaring JMS Properties
	23.7.1.2 Filtering on the Router
	23.7.1.3 Filtering on the Client
	23.7.1.4 Using Property Values as Source Data
	23.7.1.5 Setting Properties when Sending a Message



	24 JMS XML
	24.1 Introduction
	24.1.1 Concepts
	24.1.1.1 JMS Message Structure
	24.1.1.2 Using a JMS Destination

	24.1.2 Knowledge Modules

	24.2 Installation and Configuration
	24.2.1 System Requirements and Certifications
	24.2.2 Technology Specific Requirements
	24.2.3 Connectivity Requirements

	24.3 Setting up the Topology
	24.3.1 Creating a JMS XML Data Server
	24.3.1.1 Creation of the Data Server

	24.3.2 Creating a JMS XML Physical Schema

	24.4 Setting Up an Integration Project
	24.5 Creating and Reverse-Engineering a JMS XML Model
	24.5.1 Create a JMS XML Model
	24.5.2 Reverse-Engineering a JMS XML Model

	24.6 Designing a Mapping
	24.6.1 Loading Data from a JMS XML Source
	24.6.2 Integrating Data in a JMS XML Target


	25 LDAP Directories
	25.1 Introduction
	25.1.1 Concepts
	25.1.2 Knowledge Modules

	25.2 Installation and Configuration
	25.2.1 System Requirements
	25.2.2 Technologic Specific Requirements
	25.2.3 Connectivity Requirements

	25.3 Setting up the Topology
	25.3.1 Creating an LDAP Data Server
	25.3.1.1 Creation of the Data Server

	25.3.2 Creating a Physical Schema for LDAP

	25.4 Setting Up an Integration Project
	25.5 Creating and Reverse-Engineering an LDAP Directory
	25.5.1 Create an LDAP Model
	25.5.2 Reverse-Engineering an LDAP Model

	25.6 Designing a Mapping
	25.6.1 Loading Data from and to LDAP
	25.6.1.1 Loading Data from an LDAP Directory
	25.6.1.2 Loading Data to an LDAP Directory

	25.6.2 Integrating Data in an LDAP Directory

	25.7 Troubleshooting

	26 Oracle TimesTen In-Memory Database
	26.1 Introduction
	26.1.1 Concepts
	26.1.2 Knowledge Modules

	26.2 Installation and Configuration
	26.2.1 System Requirements and Certifications
	26.2.2 Technology Specific Requirements
	26.2.3 Connectivity Requirements

	26.3 Setting up the Topology
	26.3.1 Creating a TimesTen Data Server
	26.3.1.1 Creation of the Data Server

	26.3.2 Creating a TimesTen Physical Schema

	26.5 Creating and Reverse-Engineering a TimesTen Model
	26.5.1 Create a TimesTen Model
	26.5.2 Reverse-engineer a TimesTen Model

	26.6 Setting up Data Quality
	26.7 Designing a Mapping
	26.7.1 Loading Data from and to TimesTen
	26.7.1.1 Loading Data from TimesTen
	26.7.1.2 Loading Data to TimesTen

	26.7.2 Integrating Data in TimesTen

	26.4 Setting Up an Integration Project

	27 Oracle GoldenGate
	27.1 Introduction
	27.1.1 Overview of the GoldenGate CDC Process
	27.1.2 Knowledge Modules

	27.2 Installation and Configuration
	27.2.1 System Requirements and Certifications
	27.2.2 Technology Specific Requirements
	27.2.3 Connectivity Requirements

	27.3 Working with the Oracle GoldenGate JKMs
	27.3.1 Define the Topology
	27.3.1.1 Define the Source Data Server
	27.3.1.2 Create the Source Physical Schema
	27.3.1.3 Define the Staging Server
	27.3.1.4 Create the Staging Physical Schema
	27.3.1.5 Define the Oracle GoldenGate Data Servers
	27.3.1.6 Create the Oracle GoldenGate Physical Schemas
	27.3.1.7 Create the Oracle GoldenGate Logical Schemas

	27.3.2 Create the Replicated Tables
	27.3.3 Set Up an Integration Project
	27.3.4 Configure CDC for the Source Datastores
	27.3.4.1 Create Oracle GoldenGate Physical Schemas from the model

	27.3.5 Configure and Start Oracle GoldenGate Processes (Offline mode only)
	27.3.6 Design Mappings Using Replicated Data

	27.4 Advanced Configuration
	27.4.1 Initial Load Method
	27.4.2 Tuning Replication Performances
	27.4.3 One Source Multiple Staging Configuration (Offline mode only)

	27.5 Integrated Capture
	27.5.1 Integrated Capture Deployment Options
	27.5.2 Deciding Which Apply Method to Use
	27.5.2.1 Nonintegrated Replicat
	27.5.2.1.1 Integrated Replicat
	27.5.2.1.2 Integrated Replicat Requirements



	27.6 Using Different Capture and Apply Modes Together
	27.7 Switching to Different Process Mode
	27.8 Upgrading GoldenGate Classic Extract to Integrated

	28 Oracle SOA Suite Cross References
	28.1 Introduction
	28.1.1 Concepts
	28.1.1.1 General Principles
	28.1.1.2 Cross Reference Table Structures
	28.1.1.3 Handling Cross Reference Table Structures

	28.1.2 Knowledge Modules
	28.1.3 Overview of the SOA XREF KM Process
	28.1.3.1 Loading Phase (LKM)
	28.1.3.2 Integration and Cross-Referencing Phase (IKM)
	28.1.3.3 Updating/Deleting Processed Records (LKM)


	28.2 Installation and Configuration
	28.2.1 System Requirements and Certifications
	28.2.2 Technology Specific Requirements
	28.2.3 Connectivity Requirements

	28.3 Working with XREF using the SOA Cross References KMs
	28.3.1 Defining the Topology
	28.3.2 Setting up the Project
	28.3.3 Designing a Mapping with the Cross-References KMs

	28.4 Knowledge Module Options Reference

	29 Oracle Object Storage
	29.1 Introduction
	29.1.1 Concepts

	29.2 Installation and Configuration
	29.2.1 System Requirements & Certifications
	29.2.2 Technology Specific Requirements

	29.3 Setting up the Topology
	29.3.1 Creating an Oracle Object Storage Data Server
	29.3.2 Creating an Oracle Object Storage Physical Schema

	29.4 Creating and Reverse-Engineering an Oracle Object Storage Model
	29.4.1 Creating an Oracle Object Storage Model
	29.4.2 Reverse Engineer an Oracle Object Storage Model
	29.4.2.1 Reverse-Engineering Delimited Files from Oracle Object Storage
	29.4.2.2 Reverse-engineering Fixed Files from Oracle Object Storage


	29.5 Working with Oracle Object Storage Tools
	29.5.1 Uploading Files/Objects to Oracle Object Storage
	29.5.2 Downloading Files/Objects from Oracle Object Storage
	29.5.3 Deleting Files/Objects from Oracle Object Storage

	29.6 Designing a Mapping
	29.7 Setting up an Integration Project
	29.7.1 LKM File to Oracle Object Storage
	29.7.2 LKM File to Oracle Object Storage Direct
	29.7.3 LKM SQL to Object Storage
	29.7.4 LKM SQL to Oracle Object Storage Direct


	30 Oracle Storage Cloud Service
	30.1 Introduction
	30.1.1 Concepts

	30.2 Installation and Configuration
	30.2.1 System Requirements & Certifications
	30.2.2 Technology Specific Requirements

	30.3 Setting up the Topology
	30.3.1 Creating an Oracle Storage Cloud Service Data Server
	30.3.2 Creating an Oracle Storage Cloud Service Physical Schema

	30.4 Working with Oracle Storage Cloud Service Tools
	30.4.1 Uploading Files/Objects to Oracle Storage Cloud Service
	30.4.2 Downloading File/Objects from Oracle Storage Cloud Service



	Part IV SaaS Applications
	31 Oracle Enterprise Resource Planning Cloud
	31.1 Introduction
	31.1.1 Concepts
	31.1.2 Knowledge Modules

	31.2 Prerequisites
	31.3 Installation and Configuration
	31.3.1 System Requirements and Certifications
	31.3.2 Technology Specific Requirements
	31.3.3 Connectivity Requirements

	31.4 Setting up the Topology
	31.4.1 Creating an Oracle ERP Cloud Data Server
	31.4.2 Creating an Oracle ERP Cloud Physical Schema

	31.5 Creating and Reverse-Engineering an Oracle ERP Cloud Datastore
	31.5.1 Creating an Oracle ERP Cloud Model
	31.5.2 Creating an Oracle ERP Cloud Datastore
	31.5.2.1 Defining Parameters for BI Publisher Report

	31.5.3 Reverse-Engineering an Oracle ERP Cloud Datastore

	31.6 Designing a Mapping
	31.6.1 Loading Data from Oracle ERP Cloud

	31.7 Troubleshooting

	32 Oracle Marketing Cloud
	32.1 Introduction
	32.1.1 Concepts
	32.1.2 Knowledge Modules

	32.2 Installation and Configuration
	32.2.1 System Requirements and Certifications
	32.2.2 Technology Specific Requirements
	32.2.3 Connectivity Requirements

	32.3 Setting up the Topology
	32.3.1 Creating an Oracle Marketing Cloud Data Server
	32.3.2 Creating an Oracle Marketing Cloud Physical Schema

	32.4 Creating and Reverse-Engineering an Oracle Marketing Cloud Model
	32.4.1 Creating an Oracle Marketing Cloud Model
	32.4.2 Reverse-engineer an Oracle Marketing Cloud Model

	32.5 Designing a Mapping

	33 Oracle Sales Cloud
	33.1 Introduction
	33.1.1 Concepts
	33.1.2 Knowledge Modules

	33.2 Installation and Configuration
	33.2.1 System Requirements and Certifications
	33.2.2 Technology Specific Requirements
	33.2.3 Connectivity Requirements

	33.3 Setting up the Topology
	33.3.1 Creating an Oracle Sales Cloud Data Server
	33.3.2 Creating an Oracle Sales Cloud Physical Schema

	33.4 Creating and Reverse-Engineering an Oracle Sales Cloud Model
	33.4.1 Creating an Oracle Sales Cloud Model
	33.4.2 Reverse-engineer an Oracle Sales Cloud Model

	33.5 Designing a Mapping

	34 Oracle Service Cloud
	34.1 Introduction
	34.1.1 Concepts
	34.1.2 Knowledge Modules

	34.2 Installation and Configuration
	34.2.1 System Requirements and Certifications
	34.2.2 Technology Specific Requirements
	34.2.3 Connectivity Requirements

	34.3 Setting up the Topology
	34.3.1 Creating an Oracle Service Cloud Data Server
	34.3.2 Creating an Oracle Service Cloud Physical Schema

	34.4 Creating and Reverse-Engineering an Oracle Service Cloud Model
	34.4.1 Creating an Oracle Service Cloud Model
	34.4.2 Reverse-engineer an Oracle Service Cloud Model

	34.5 Designing a Mapping

	35 Oracle Business Intelligence Cloud Connector
	35.1 Introduction
	35.1.1 Concepts
	35.1.2 Knowledge Modules

	35.2 Installation and Configuration
	35.2.1 System Requirements and Certifications
	35.2.2 Technology Specific Requirements
	35.2.3 Connectivity Requirements

	35.3 Setting up the Topology
	35.3.1 Creating Topology objects for Oracle Object Storage
	35.3.1.1 Creating an Oracle Object Storage Data Server
	35.3.1.2 Creating an Oracle Object Storage Physical Schema

	35.3.2 Creating Topology objects for Oracle Storage Cloud Service
	35.3.2.1 Creating an Oracle Storage Cloud Service Data Server
	35.3.2.2 Creating an Oracle Storage Cloud Service Physical Schema

	35.3.3 Creating Topology objects for Oracle BI Cloud Connector
	35.3.3.1 Creating an Oracle BI Cloud Connector Data Server
	35.3.3.2 Creating an Oracle BI Cloud Connector Physical Schema


	35.4 Creating and Reverse-Engineering an Oracle BI Cloud Connector Model
	35.4.1 Creating an Oracle BI Cloud Connector Model
	35.4.2 Reverse-engineering an Oracle BI Cloud Connector Model

	35.5 Designing a Mapping
	35.5.1 Loading Data from Oracle BI Cloud Connector
	35.5.1.1 LKM BICC to ADW External Table
	35.5.1.2 LKM BICC to ADW Copy
	35.5.1.3 LKM BICC to ADW Copy Direct



	36 Oracle NetSuite
	36.1 Introduction
	36.1.1 Concepts
	36.1.2 Knowledge Modules

	36.2 Installation and Configuration
	36.2.1 System Requirements and Certifications
	36.2.2 Technology Specific Requirements
	36.2.3 Connectivity Requirements

	36.3 Setting up the Topology
	36.3.1 Creating an Oracle NetSuite Data Server
	36.3.2 Creating an Oracle NetSuite Physical Schema

	36.4 Creating and Reverse-Engineering an Oracle NetSuite Model
	36.4.1 Creating an Oracle NetSuite Model
	36.4.2 Reverse-engineer an Oracle NetSuite Model

	36.5 Designing a Mapping


	Part V Appendices
	A Oracle Data Integrator Driver for LDAP Reference
	A.1 Introduction to Oracle Data Integrator Driver for LDAP
	A.2 LDAP Processing Overview
	A.2.1 LDAP to Relational Mapping
	A.2.1.1 General Principle
	A.2.1.2 Grouping Factor
	A.2.1.3 Mapping Exceptions
	A.2.1.4 Reference LDAP Tree

	A.2.2 Managing Relational Schemas
	A.2.2.1 Relational Schema Storage
	A.2.2.2 Accessing Data in the Relational Structure


	A.3 Installation and Configuration
	A.3.1 Driver Configuration
	A.3.2 Using an External Database to Store the Data
	A.3.2.1 Passing the Properties in the Driver URL
	A.3.2.2 Setting the Properties in ODI Studio
	A.3.2.3 Setting the Properties in a Properties File

	A.3.3 LDAP Directory Connection Configuration
	A.3.4 Table Aliases Configuration

	A.4 SQL Syntax
	A.4.1 SQL Statements
	A.4.1.1 DISCONNECT
	A.4.1.2 INSERT INTO
	A.4.1.3 SELECT
	A.4.1.4 UPDATE
	A.4.1.5 Expressions, Condition & values

	A.4.2 SQL FUNCTIONS

	A.5 JDBC API Implemented Features

	B Oracle Data Integrator Driver for XML Reference
	B.1 Introduction to Oracle Data Integrator Driver for XML
	B.2 XML Processing Overview
	B.2.1 XML to SQL Mapping
	B.2.2 XML Namespaces
	B.2.3 Managing Schemas
	B.2.3.1 Schema Storage
	B.2.3.2 Multiple Schemas
	B.2.3.3 Accessing Data in the Schemas
	B.2.3.4 Case Sensitivity
	B.2.3.5 Loading/Synchronizing

	B.2.4 Locking
	B.2.5 XML Schema (XSD) Support

	B.3 Installation and Configuration
	B.3.1 Driver Configuration
	B.3.2 Automatically Create Multiple Schemas
	B.3.3 Using an External Database to Store the Data

	B.4 Detailed Driver Commands
	B.4.1 CREATE FILE
	B.4.2 CREATE FOREIGNKEYS
	B.4.3 CREATE XMLFILE
	B.4.4 CREATE SCHEMA
	B.4.5 DROP FOREIGNKEYS
	B.4.6 DROP SCHEMA
	B.4.7 LOAD FILE
	B.4.8 SET SCHEMA
	B.4.9 SYNCHRONIZE
	B.4.10 UNLOCK FILE
	B.4.11 TRUNCATE SCHEMA
	B.4.12 VALIDATE
	B.4.13 WRITE MAPPING FILE

	B.5 SQL Syntax
	B.5.1 SQL Statements
	B.5.1.1 COMMIT
	B.5.1.2 CREATE TABLE
	B.5.1.3 DELETE
	B.5.1.4 DISCONNECT
	B.5.1.5 DROP TABLE
	B.5.1.6 INSERT INTO
	B.5.1.7 ROLLBACK
	B.5.1.8 SELECT
	B.5.1.9 SET AUTOCOMMIT
	B.5.1.10 UPDATE
	B.5.1.11 Expressions, Condition and Values

	B.5.2 SQL FUNCTIONS

	B.6 JDBC API Implemented Features
	B.7 Rich Metadata
	B.7.1 Supported user-specified types for different databases

	B.8 XML Schema Supported Features
	B.8.1 Datatypes
	B.8.2 Supported Elements
	B.8.2.1 All
	B.8.2.2 Any
	B.8.2.3 AnyAttribute
	B.8.2.4 AnyType
	B.8.2.5 Attribute
	B.8.2.6 AttributeGroup
	B.8.2.7 Choice
	B.8.2.8 ComplexContent
	B.8.2.9 ComplexType
	B.8.2.10 Element
	B.8.2.11 Extension
	B.8.2.12 Group
	B.8.2.13 Import
	B.8.2.14 Include
	B.8.2.15 List
	B.8.2.16 Restriction
	B.8.2.17 Schema
	B.8.2.18 Sequence
	B.8.2.19 SimpleContent
	B.8.2.20 SimpleType

	B.8.3 Unsupported Features
	B.8.3.1 Unsupported Elements
	B.8.3.2 Unsupported Features
	B.8.3.3 Unsupported Datatypes



	C Oracle Data Integrator Driver for Complex Files Reference
	C.1 Introduction to Oracle Data Integrator Driver for Complex Files
	C.2 Complex Files Processing Overview
	C.2.1 Generating the Native Schema
	C.2.2 XML to SQL Mapping
	C.2.3 JSON Support
	C.2.4 Supported Features

	C.3 Driver Configuration
	C.4 Detailed Driver Commands
	C.5 JDBC API and XML Schema Supported Features

	D Pre/Post Processing Support for XML and Complex File Drivers
	D.1 Overview
	D.2 Configuring the processing stages
	D.3 Implementing the processing stages
	D.4 Example: Groovy Script for Reading XML Data From Within a ZIP File
	D.5 Example: Groovy Script for Transforming XML Data and Writing to a Different Format
	D.6 Example: Java Class for Reading Data From HTTP Source Requiring Authentication
	D.7 Example: Groovy Code Embedded in Configuration XML File


