
Oracle® Fusion Middleware
Understanding Stream Analytics

E93172-03
April 2019

Oracle Fusion Middleware Understanding Stream Analytics,

E93172-03

Copyright © 2018, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Related Documents vi

Conventions vii

1 Overview of Oracle Stream Analytics

About Oracle Stream Analytics 1-1

Why Oracle Stream Analytics? 1-2

How Does Oracle Stream Analytics Work? 1-2

2 Getting to Know Artifacts in Oracle Stream Analytics

Understanding Different Types of Connections 2-1

Understanding Streams 2-2

Understanding References 2-2

Understanding Geo Fences 2-3

What is a Manual Geo Fence? 2-3

What is a Database-based Geo Fence? 2-3

Understanding Pipelines 2-3

Understanding Dashboards 2-4

Understanding Cubes 2-4

Understanding Stream Analytics Patterns 2-5

What is the Spatial: Speed Pattern? 2-6

What is the Geo Code Pattern? 2-6

What is the Interaction: Single Stream Pattern? 2-6

What is the Interaction: Two Stream Pattern? 2-6

What is the Spatial: Point to Polygon Pattern? 2-7

What is the Proximity: Single Stream Pattern? 2-7

What is the Proximity: Two Stream Pattern? 2-7

What is the Proximity: Stream with Geo Fence Pattern? 2-7

What is the Direction Pattern? 2-7

iii

What is the Geo Fence Pattern? 2-7

What is the Geo Fence Filter: Inside Pattern? 2-8

What is the Reverse Geo Code: Near By Pattern? 2-8

What is the Reverse Geo Code: Near By Place Pattern? 2-8

What is the Correlation Pattern? 2-8

What is the Quantile Pattern? 2-8

What is the Detect Duplicates Pattern? 2-8

What is the Change Detector Pattern? 2-8

What is the W Pattern? 2-9

What is the ‘A’ Followed by ‘B’ Pattern? 2-9

What is the Top N Pattern? 2-9

What is the Bottom N Pattern? 2-9

What is the Up Trend Pattern? 2-9

What is the ‘A’ Not Followed by ‘B’ Pattern? 2-10

What is the Down Trend Pattern? 2-10

What is the Union Pattern? 2-10

What is the Fluctuation Pattern? 2-10

What is the Inverse W Pattern? 2-10

What is the Eliminate Duplicates Pattern? 2-10

What is the Detect Missing Heartbeat Pattern? 2-11

What is the Left Outer Join Pattern? 2-11

Understanding Shapes 2-11

Understanding Target 2-11

Understanding the Predictive Model 2-11

Understanding Custom JARs 2-12

Understanding Export and Import 2-12

3 Overview of the Components of a Pipeline

Understanding Query Stage 3-1

What is Filter? 3-2

What is Correlation? 3-2

What is Summary? 3-2

What is Group By? 3-2

What is Range? 3-3

What is Evaluation Frequency? 3-4

Understanding Rules 3-4

Understanding Rule Stage 3-4

Understanding Pattern Stage 3-5

Understanding Custom Stage 3-5

Understanding Scoring Stage 3-5

iv

Understanding Query Group 3-5

What is Query Group Stage: Stream? 3-5

What is Query Group Stage: Table? 3-5

Understanding the Live Output Table 3-6

Understanding Visualizations 3-7

What is a Bar Type of Visualization? 3-8

What is a Line Type of Visualization? 3-8

What is An Area Type of Visualization? 3-8

What is a Stacked Bar Type of Visualization? 3-8

What is a Spatial Type of Visualization? 3-8

What is a Pie Chart? 3-9

What is a Bubble Chart? 3-9

What is a Thematic Map? 3-9

What is a Scatter Chart? 3-9

Understanding the Topology Viewer 3-9

What is Immediate Family? 3-9

What is Extended Family? 3-10

Understanding Expression Builder Functions 3-10

What are Bessel Functions? 3-11

What are Conversion Functions? 3-11

What are Date Functions? 3-12

What are Geometry Functions? 3-12

What are Interval Functions? 3-13

The YM Interval Functions 3-13

What are Math Functions? 3-14

What are Null-related Functions? 3-16

What are Statistical Functions? 3-16

What are String Functions? 3-18

v

Preface

Understanding Oracle Stream Analytics describes what is Oracle Stream Analytics
and how it works. It explains the artifacts and components of a Stream Analytics
pipeline.

Topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for users who are looking to build pipelines in Oracle
Stream Analytics.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
Documentation for Oracle Stream Analytics is available on Oracle Help Center.

Also see the following documents for reference:

• Understanding Oracle Stream Analytics

• Quick Installer for Oracle Stream Analytics

• Known Issues in Oracle Stream Analytics

• Spark Extensibility for CQL in Oracle Stream Analytics

• Using Oracle Stream Analytics

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=osa181000&id=osagetstarted

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vii

1
Overview of Oracle Stream Analytics

Oracle Stream Analytics allows for the creation of custom operational dashboards that
provide real-time monitoring and analyses of event streams in an Apache Spark based
system. Oracle Stream Analytics enables customers to identify events of interest in
their Apache Spark based system, execute queries against those event streams in real
time and drive operational dashboards or raise alerts based on that analysis. Oracle
Stream Analytics runs as a set of native Spark pipelines.

Topics:

• About Oracle Stream Analytics

• Why Oracle Stream Analytics?

• How Does Oracle Stream Analytics Work?

About Oracle Stream Analytics
Stream Analytics is an in-memory technology for real-time analytic computations on
streaming data. The streaming data can originate from IoT sensors, web pipelines, log
files, point-of-sale devices, ATM machines, social media, or from any other data
source. Oracle Stream Analytics is available as a managed service in Oracle Cloud
and as an on premises installation.

Oracle Stream Analytics is used to identify business threats and opportunities by
filtering, aggregating, correlating, and analyzing high volume of data in real time.

More precisely, Oracle Stream Analytics can be used in the following scenarios:

• Build complex event processing pipelines by blending and transforming data from
disparate transactional and non-transactional sources.

• Perform temporal analytics based on time and event windows.

• Perform location-based analytics using built-in spatial patterns.

• Detect patterns in time-series data and execute real-time actions.

• Build operational dashboards by visualizing processed data streams.

• Use Machine Learning to score current event and predict next event.

• Run ad-hoc queries on results of processed data streams.

Some industry specific examples include:

• Detecting real-time fraud based on incoming transaction data.

• Tracking transaction losses and margins in real-time to renegotiate with vendors
and suppliers.

• Improving asset maintenance by tracking healthy operating parameters and pro-
actively scheduling maintenance.

1-1

• Improving margins by continuously tracking demand and optimizing markdowns
instead of randomly lowering prices.

• Readjusting prices by continuously tracking demand, inventory levels, and product
sentiment on social media etc.

• Marketing and making real-time offers based on customer location and loyalty.

• Instantly identifying shopping cart defections and improving conversion rates.

• Upselling products and services by instantly identifying customer’s presence on
company website.

• Improving asset utilization by tracking average time it takes to load and unload
merchandise.

• Improving turnaround time by preparing dock and staff based on estimated arrival
time of fleet.

• Revising schedule estimates based on actual time to enter and exit loading zones,
and so on.

Why Oracle Stream Analytics?
Various reasons and advantages encourage you to use Oracle Stream Analytics
instead of similar products available in the industry.

Simplicity

Author powerful data processing pipelines using self-service web-based tool in Oracle
Stream Analytics. The tool automatically generates a Spark pipeline along with instant
visual validation of pipeline logic.

Built on Apache Spark

Oracle Stream Analytics can attach to any version-compliant Yarn cluster running
Spark and is first in the industry to bring event-by-event processing to Spark
Streaming.

Enterprise Grade

Oracle Stream Analytics is built on Apache Spark to provide full horizontal scale out
and 24x7 availability of mission-critical workloads. Automated check-pointing ensures
exact-once processing and zero data loss. Built-in governance provides full
accountability of who did what and when to the system. As part of management and
monitoring, Oracle Stream Analytics provides a visual representation of pipeline
topology/relationships along with dataflow metrics to indicate number of events
ingested, events dropped, and throughput of each pipeline.

How Does Oracle Stream Analytics Work?
Stream Analytics starts with ingesting data from Kafka with first-class support for
GoldenGate change data capture. Examining and analyzing the stream is performed
by creating data pipelines.

A data pipeline can query data using time windows, look for patterns, and apply
conditional logic while the data is still in motion. The query language used in Stream
Analytics is called Continuous Query Language (CQL) and is similar to SQL. But CQL

Chapter 1
Why Oracle Stream Analytics?

1-2

includes additional constructs for pattern matching and recognition. Though CQL is
declarative, there is no need to write any code in Stream Analytics. The web-based
tool automatically generates queries and the Spark Streaming pipeline. Once data is
analyzed and situation is detected, the pipeline can terminate to trigger BPM
workflows in Oracle Integration Cloud or save results into a Data Lake for deeper
insights and intelligence using Oracle Analytics Cloud.

The following diagram illustrates the architecture of Stream Analytics:

The analyzed data is used to build operational dashboards, trigger workflows, and it’s
saved to Data Lakes for business intelligence and ad-hoc queries.

Chapter 1
How Does Oracle Stream Analytics Work?

1-3

2
Getting to Know Artifacts in Oracle Stream
Analytics

Stream Analytics has various artifacts like connections, references, streams, targets,
and many more. You create pipelines using these artifacts.

Topics

• Understanding Different Types of Connections

• Understanding Stream

• Understanding Reference

• Understanding Geo Fence

• Understanding Pipeline

• Understanding Dashboard

• Understanding Cube

• About Stream Analytics Patterns

• Understanding Shape

• Understanding Target

• Understanding PMML

• Understanding Custom Jar

• Understanding Export and Import

Understanding Different Types of Connections
A connection is a very basic artifact and the first entity that you need to create in the
Catalog. It is a collection of metadata (such as URLs, credential and the like) required
to connect to an external system. A connection is the basis for creation of sources
(Streams, References or Geo Fences) and Targets.

It is possible to reuse the same connection to create multiple sources and/or targets.
In other words, it can be reused to access different resources in the same system: for
example different Kafka topics in the same Kafka cluster, or different database tables
in the same Oracle database.

Kafka Connection

A Kafka connection has just a single parameter, the Zookeeper server URL above all
the standard properties (name, description, tags) of catalog objects.

The Zookeper URL is of the format host:port. If the port is not provided by the user, the
system will assume the default Zookeeper port, i.e. 2181. Authentication to Kafka is
not supported in this release.

2-1

Oracle Database Connection

To connect to an Oracle database, you must provide the following parameters:

• Service name/SID

• hostname

• port

• username

• password

Oracle Coherence Connection

Oracle Stream Analytics can use Oracle Coherence cache as a reference to look up
data to enrich a stream that is being processed.

JMS Connection

Oracle Stream Analytics can use JMS as a source of streaming data.

Understanding Streams
A stream is a source of dynamic data. The data is flowing, it is not static or frozen. For
example, stock prices of a particular company can be considered as a stream as the
data arrives in every second or even more frequently. Another example of streaming
data is the position (geographical location) of vehicles (e.g. trucks) which again can
change continuously as each vehicle is moving. Each vehicle reports its own position
to a central system periodically, e.g. every second, and the central system receives
the position messages as a stream.

Streams can be transmitted using different network protocols, messaging systems as
well as using many different message formats.

To create a Kafka stream, you must create a Kafka connection first, and then select
that connection in the stream creation wizard. In addition to the connection, the user
needs to specify the Kafka topic that represents the stream of data.

Understanding References
A reference is a source of static data that provides contextual information about the
event data. There are several different types of references, such as a reference to a
database table, or to coherence cache.

References are used to enrich data that arrives from a Stream. Referring back to the
previous example, the order stream contains order events and each event contains a
product Id and a customer Id. Assume that there are two database tables, each
containing information about the products and the customers, respectively. After
creating two references, one for the products table and one for the customer table,
Oracle Stream Analytics can use these references to enrich the incoming streams with
information from these tables, such as product name, manufacturer, customer name,
address, etc.

If references take their data from a database table, a caching mechanism can be
applied. (You can use the Coherence cache directly.) By turning on caching (a

Chapter 2
Understanding Streams

2-2

configuration option of the reference), it is possible to add a caching layer in between
the pipeline and the database table. This improves the performance of accessing static
data, at the price of higher memory consumption by the pipeline. Once the data is
loaded into cache, the reference fetches data from the cache only. Any update on the
reference table does not take effect if expiration policy is set to "Never".

Understanding Geo Fences
A geo fence is a virtual boundary in a real world geographical area. This virtual
boundary can be used to find object position with respect to the geo fence.

For example, the object position can be:

• Near to geo fence

• Exit geo fence

• Based on Stay Duration in geo fence

• Enters geo fence

• Present inside geo fence

What is a Manual Geo Fence?
User-created geo fences are called as manual geo fences. You can create, edit, and
update manual geofence using the built-in map editor. Only polygon geo fences are
allowed.

What is a Database-based Geo Fence?
Geo fences for which you import geometry from database are known as database-
based geo fences. Geo fence geometry can be seen in Geo Fence Editor. The
standard create, delete and update operations using geo fence editor are not allowed
in database-based geo fence. Polygon and circular geo fences are supported.

Understanding Pipelines
A pipeline defines the pipeline logic and is a sequence of data processing stages. A
stage can be one of the following types – Query, Pattern, Rule, Query Group, Custom,
Scoring.

A pipeline starts with a stream stage, which is the only default stage. You cannot
remove the default stage. A stage can have one or more children of any type such as
Query, Pattern, Rule, and so on. That is, the pipeline does not have to be linear. You
can have multiple branches in accordance with your use case logic. Optionally, a
branch can end with one or more targets. You cannot add other stages to a target.

You can edit any stage in your pipeline at any time. The changes affecting
downstream stages are propagated automatically.

Draft Pipelines

Pipelines in the draft state possess the following characteristics:

• Are visible only to the owner

Chapter 2
Understanding Geo Fences

2-3

• Can be edited

• Work only when the pipeline editor is open. When you exit the Pipeline editor or
close your browser, the draft pipeline is removed from the Spark cluster.

• Do not send events to a downstream target even if a target is configured

A newly created pipeline is in draft state. This is where you can explore your streams
and implement the business logic. You do not have to do the implementation all at
once; the pipeline will not run between your editing sessions.

Published pipelines

Pipelines in the published state possess the following characteristics:

• Are visible to any user

• Cannot be edited

• Will continue to run in the Spark cluster even after you exit the pipeline

• Send events to a downstream target

After you are done with the implementation and satisfied, you can add a target and
publish your pipeline. The published pipeline runs continually on the Spark Cluster.

If you want to edit a published pipeline, you must unpublish it first.

Understanding Dashboards
Dashboards are a collection of inter-related visualizations based on a common
underlying theme. For example, a Sales dashboard shows observations related to
various sales-related activities such as quarterly sales, prospective customers, and so
on. Dashboards enables the users to have a single page view of all the important and
correlated analysis that provides meaningful insights and assists in the decision
making process.

A dashboard is first class citizen of the catalog. Any user with appropriate privileges
can build the dashboards just by assembling the outcomes of the different pipeline
stages without writing a single line of code. Dashboards display the live data.

Oracle Stream Analytics consists of more than one data pipeline stages where each
stages outcome serves as input to the next stage. At the end of every stage,
supporting inline visualizations enable you to visualize the result of the active stage. In
Oracle Stream Analytics, you can visualize the outcome of the various application
stages at a single place.

Combining dashboards with cube, users can create visualizations based on the data
exploration activities performed in the analytics section of Oracle Stream Analytics.
You can include these visualizations in the dashboards. With the dashboard feature,
user can create mashup like showcases where both operational and analytics
visualizations are intermixed to present the complete picture of the underlying
business operation.

Understanding Cubes
A cube is a data structure that helps you quickly analyze data related to business
problems on multiple dimensions. Oracle Stream Analytics cubes are powered by
Druid, which is a distributed, in-memory OLAP data store.

Chapter 2
Understanding Dashboards

2-4

Oracle Stream Analytics pipelines enable users to perform realtime data processing on
the streaming data. Whereas, cube is the mechanism by which users can perform
interactive analysis on the historical data. For this purpose, the pipeline outputs the
processed data into the Kafka streams which in turn feeds the cube. Using cubes,
users can carry out univariate, bivariate, and multivariate data analysis. Cube enables
the users to carry out data exploration on the historical data with a rich set of 30
visualizations. These visualizations ranges from simple table, line, bar to the advanced
visualizations such as sankey, boxplot, maps, and so on. Users can save the result of
these cube explorations and make them available on dashboards that are embedded
with Oracle Stream Analystics visualizations. This collaboration of dashboards and
cubes serves both operational and strategic analytics needs of the business users.
The visualizations available in the cubes also have a rich set of look and feel related
properties for enhancing the value of the results of exploratory data analysis.

Understanding Stream Analytics Patterns
The visual representation of the event stream varies from one pattern type to another
based on the key fields you choose.

A pattern provides you with the results displayed in a live output stream based on
common business scenarios.

The following table lists the categories of patterns:

Category Pattern

Enrichment Reverse Geo Code: Near By

Left Outer Join

Outlier Fluctuation

Inclusion Union

Left Outer Join

Missing Event 'A' Not Followed by 'B'

Detect Missing Event

Spatial Proximity: Stream with Geo Fence

Geo Fence

Spatial: Speed

Interaction: Single Stream

Reverse Geo Code: Near By

Geo Code

Spatial: Point to Polygon

Interaction: Two Stream

Proximity: Two Stream

Direction

Reverse Geo Code: Near By Place

Proximity: Single Stream

Geo Filter

Filter Eliminate Duplicates

Fluctuation

Chapter 2
Understanding Stream Analytics Patterns

2-5

Category Pattern

State 'A' Not Followed by 'B'

Inverse W

Detect Missing Event

W

'A' Followed by 'B'

Finance Inverse W

W

Trend 'A' Not Followed by 'B

Top N

Change Detector

Up Trend

Detect Missing Event

Down Trend

'A' Followed by 'B'

Detect Duplicates

Bottom N

Shape Detector Inverse W

W

Statistical Correlation

Quantile

What is the Spatial: Speed Pattern?
This pattern lets you get the output average speed over the selected window range of
a moving object.

What is the Geo Code Pattern?
When analyzing data, you may encounter situations where you need to obtain the
latitude and longitude of a moving object based on street address, zip code, address,
etc.

You can use this pattern to get geographic coordinates (like latitude and longitude) for
an address.

What is the Interaction: Single Stream Pattern?
This pattern lets you get interaction of an object with every other object in the same
stream.

What is the Interaction: Two Stream Pattern?
Two shapes are said to interact with each other if any part of the shape overlaps. If
two shapes interact, the distance between them is zero.

You can use this pattern to get interaction of an object in one stream with objects in
another stream.

Chapter 2
Understanding Stream Analytics Patterns

2-6

What is the Spatial: Point to Polygon Pattern?
Using this pattern you can get an object shape based on geographical coordinates,
fixed length and breadth of and object.

For example, if you know the length and breadth of a ship, you can get the shape or
geofence of the ship using its position coordinates, where the coordinates keep
changing as the ship moves.

What is the Proximity: Single Stream Pattern?
You can use this pattern to get proximity of each object with every other object in a
stream.

For example, if there is a single stream of flying airplanes and the distance buffer is
specified as 1000 meters, the output in the table shows planes that are less than 1000
meters apart.

What is the Proximity: Two Stream Pattern?
You can use this pattern to get the proximity between objects of two streams.

The distance buffer acts as a filter in this pattern stage. For example, if there is a driver
and passenger stream, you can get the proximity of each passenger with every other
driver using a filter criteria of ‘within a distance of 1 km’.

What is the Proximity: Stream with Geo Fence Pattern?
You can use this pattern to get proximity of an object with a virtual boundary or geo
fence.

For example, if you have certain stores in the city of California, you can send
promotional messages as soon as the customer comes into a proximity of 1000
meters from any of the stores.

What is the Direction Pattern?
You can use this pattern to get the direction of a moving object.

For example, you can evaluate the direction of a moving truck.

What is the Geo Fence Pattern?
You can use this pattern when you want to track the relation of an object with a virtual
boundary called geo fence.

Relations can be Enter, Exit, Stay, or Near with respect to a geo fence. For example,
you can trigger an alert when an object enters the geo fence. You can also analyze a
stream containing geo-location data. It helps in determining how events are related to
a polygon in a geo fence.

The geo-location can be:

• Near to Geo Fence

Chapter 2
Understanding Stream Analytics Patterns

2-7

• Exiting Geo Fence

• Staying within Geo Fence for a specified duration

• Entering Geo Fence

What is the Geo Fence Filter: Inside Pattern?
You can use this pattern to track objects inside one or more geo fences.

For example, if users move from one geographical location to another, you can send
promotional messages to the users when they are inside a specified geo fence.

What is the Reverse Geo Code: Near By Pattern?
You can use this to obtain nearest place for the specified latitude/longitude or
geographical coordinates.

What is the Reverse Geo Code: Near By Place Pattern?
This pattern lets you obtain the near by location with granular information like city,
country, street etc. for the specified latitude and longitude.

What is the Correlation Pattern?
You can use this pattern if you need to identify correlation between two numeric
parameters. An output of 0 implies no correlation, +1 is positive correlation, and -1
implies negative correlation.

What is the Quantile Pattern?
You should use this pattern if you need to calculate the value of quantile function. For
example, when asked for the 3rd quantile of student scores, it could return a value of
80 to imply 75% of students scored less than 80.

What is the Detect Duplicates Pattern?
The Detect Duplicates pattern detects duplicate events in your stream according to the
criteria you specify and within a specified time window. Events may be partially or fully
equivalent to be considered duplicates.

You can use this pattern to understand how many duplicate events your stream has.
For example, when you suspect that your aggregates are offset, you may want to
check your stream for duplicate events.

What is the Change Detector Pattern?
The Change Detector pattern looks for changes in the values of your event fields and
reports the changes once they occur within a specified range window. For example,
and events arrives with value value1 for field field1. If any of the following incoming
events within a specified range window contains a value different from value1, an alert
is triggered. You can designate more than one field to look for changes.

Chapter 2
Understanding Stream Analytics Patterns

2-8

You can use it when you need to be aware of changes in a normally stable value. For
example, a sensor reading that is supposed to be the same for certain periods of time
and changes in readings may indicate issues.

The default configuration of this pattern stage is to alert on change of any selected
fields.

What is the W Pattern?
The W pattern, also known as a double bottom chart pattern, is used in the technical
analysis of financial trading markets.

You can use this pattern to detect when an event data field value rises and falls in “W”
fashion over a specified time window. For example, use this pattern when monitoring a
market data feed stock price movement to determine a buy/sell/hold evaluation.

What is the ‘A’ Followed by ‘B’ Pattern?
The 'A' Followed by 'B' pattern looks for particular events following one another and
will output an event when the specified sequence of events occurs.

You can use it when you need to be aware of a certain succession of events
happening in your flow. For example, if an order status BOOKED is followed by an order
status SHIPPED (skipping status PAID), you need to raise an alert.

What is the Top N Pattern?
The Top N pattern will output N events with highest values from a collection of events
arriving within a specified time window sorted not in the default order of arrival but the
way you specify.

You can use it to get the highest values of fields in your stream within a specified time
window. For example, use it to get N highest values of pressure sensor readings.

What is the Bottom N Pattern?
The Bottom N pattern will output N events with lowest values from a collection of
events arriving within a specified time window sorted not in the default order of arrival
but the way you specify.

You can use it to get the lowest values of fields in your stream within a specified time
window. For example, use it to get N lowest values of pressure sensor readings.

What is the Up Trend Pattern?
The Up Trend pattern detects a situation when a numeric value goes invariably up
over a period of time.

You can use the pattern if you need to detect situations of a constant increase in one
of your numeric values. For example, detect a constant increase in pressure from one
of your sensors.

Chapter 2
Understanding Stream Analytics Patterns

2-9

What is the ‘A’ Not Followed by ‘B’ Pattern?
The 'A' Not Followed by 'B' pattern will look for a missing second event in a particular
combination of events and will output the first event when the expected second event
does not arrive within the specified time period.

You can use it when you need to be aware of a specific event not following its
predecessor in your flow. For example, if an order status BOOKED is not followed by an
order status PAID within a certain time period, you may need to raise an alert.

What is the Down Trend Pattern?
The Down Trend pattern detects a situation when a numeric value goes invariably
down over a period of time.

You can use this pattern if you need to detect situations of a constant reduction in one
of your numeric values. For example, detect a constant drop in pressure from one of
your sensors.

What is the Union Pattern?
The Union pattern merges two streams with identical shapes into one.

You can use this pattern if you have two streams with identical shapes that you want
to merge into one, for example when you have two similar sensors sending data into
two different streams, and you want to process the streams simultaneously, in one
pipeline.

What is the Fluctuation Pattern?
You can use this pattern to detect when an event data field value changes in a specific
upward or downward fashion within a specific time window. For example, use this
pattern to identify the variable changes in an Oil Pressure value are maintained within
acceptable ranges.

What is the Inverse W Pattern?
The Inverse W pattern, also known as a double top chart pattern, is used in the
technical analysis of financial trading markets.

You can use this pattern when you want to see the financial data in a graphical form.

What is the Eliminate Duplicates Pattern?
The Eliminate Duplicates pattern looks for duplicate events in your stream within a
specified time window and removes all but the first occurrence. A duplicate event is an
event that has one or more field values identical to values of the same field(s) in
another event. It is up to you to specify what fields are analyzed for duplicate values.
You can configure the pattern to compare just one field or the whole event.

You can use it to get rid of noise in your stream. If you know that your stream contains
duplicates that might offset your aggregates, such as counts, use the Eliminate
Duplicates pattern to cleanse your data.

Chapter 2
Understanding Stream Analytics Patterns

2-10

What is the Detect Missing Heartbeat Pattern?
The Detect Missing Heartbeat pattern discovers simple situations when an expected
event is missing.

You can use this pattern if you need to detect missing events in your feed. For
example, you have a feed when multiple sensors send their readings every 5 seconds.
Use this pattern to detect sensors that have stopped sending their readings, which
may indicate that the sensor is broken or there is no connection to the sensor.

What is the Left Outer Join Pattern?
The Left Outer join pattern joins your flow with another stream or a reference using the
left outer join semantics.

You can use this pattern to join a stream or a reference using the left outer join
semantics. The result of this pattern always contains the data of the left table even if
the join-condition does not find any matching data in the right table.

Understanding Shapes
A shape is the format of the data. In Oracle Stream Analytics, each message (or
event, in stream processing terminology) in a Stream or Target must have the same
format and this format must be specified when creating the Stream or Target. You can
think of the shape as the streaming analogy of the database table structure for static
data. Each shape consists of a number of fields and each field has a name and a data
type. In the Stream creation wizard, it is possible to assign an alias to a field, so that
the field can later be referenced by this user-given alias.

Assume that the stream contains data about orders. In this case, the shape may
contain the following fields: an order id of type string, a customer id of type integer,
product id of type integer, a quantity of type integer and a unit price of type Number.

Understanding Target
A target represents an external system where the results of the stream processing is
being directed to. Just like streams, targets are the links to the outside world. Streams
are the input to a pipeline, whereas targets are the output. While a pipeline can
consume and process multiple streams.

It can have no target, but that configuration does not really make sense, as the
purpose of creating a pipeline is to process streaming data and direct the output to an
external system, i.e a target.

Understanding the Predictive Model
The predictive model is an algorithm that you apply to streaming data to predict
outcomes. In Oracle Stream Analytics, a predictive model is a model definition file that
you upload and store in the system.

Oracle Stream Analytics supports PMML versions 3.0, 3.1, 3.2, 4.0, 4.1, 4.2, and 4.3.
In a pipeline, you use a predictive model in a scoring stage to do probability scoring.

Chapter 2
Understanding Shapes

2-11

Understanding Custom JARs
A custom JAR is a Oracle Stream Analytics catalog artifact. It’s a JAR file containing a
custom event-processing algorithm implemented in Java.

You need to create your own custom event processing logic if you cannot build this
logic using the Oracle Stream Analytics web tooling. This may be required in complex
use cases in particular industries. Generally, you can address complex use cases with
patterns. A custom JAR contains one or more custom stage types and/or one or more
custom functions. You can use a custom stage type in the Custom Stage, and you can
use custom functions in calculated field expressions. For details on how to build
custom JARs, see Oracle Stream Analytics Developer’s Guide.

Understanding Export and Import
The export and import feature lets you migrate your pipeline and its contents between
Oracle Stream Analytics systems (such as development and production) in a matter of
few clicks. You also have the option to migrate only select artifacts.

To export and import a pipeline, you need admin privileges. The export will result in a
ZIP file containing the metadata for the catalog object being exported along with all its
dependencies. You can import only ZIP files that you previously exported using this
export / import functionality. Any other type of files won’t be imported successfully.

Note:

• You cannot import a pipeline developed with earlier versions of Oracle
Stream Analytics.

• On reimport, the existing metadata is overwritten with the newly imported
metadata.

• Artifacts of a published pipeline can’t be overwritten. You must first
unpublish the pipeline and then retry.

Chapter 2
Understanding Custom JARs

2-12

http://www.oracle.com/pls/topic/lookup?ctx=osa181000&id=OSAJA

3
Overview of the Components of a Pipeline

A Oracle Stream Analytics pipeline is comprised of many components that define the
pipeline.

These components are described in the following topics:

• Understanding Query Stage

• Understanding Rule

• Understanding Rule Stage

• Understanding Pattern Stage

• Understanding Custom Stage

• Understanding Scoring Stage

• Understanding Query Group

• Understanding Live Output Table

• Understanding Visualizations

• Understanding Topology Viewer

• Understanding Expression Builder Functions

Understanding Query Stage
A query stage is used to configure a SQL-like query on the data stream and comprises
additional sources for joins, filters, summaries, group by, time windows, and so on.

For example, the query below calculates hourly total sales where transaction amount
is greater than a dollar and outputs the result every 1 second.

Select sum (TransactionAmount) As HourlySales
From SalesStream [Range 1 Hour Slide 1 Second]
Where TransactionAmount > 1

Queries like above or more complex queries can all be configured in the query stage
with zero coding and with no intimate knowledge of Continuous Query Language or
CQL. The CQL language is similar to SQL but with additional constructs for temporal
analytics and pattern matching.

A query stage has the following sub sections:

• Filter

• Correlation

• Summary/Group By

• Range

• Evaluation Frequency

3-1

What is Filter?
The filter section in a query stage or query group stage allows events in the data
stream to be filtered out.

Only events which satisfy the filter condition are passed to the downstream stage. For
example, in a data stream containing SensorId and Temperature, you can filter events
where Temperature is lower than or equal to 70 degrees by setting the filter condition
to Temperature > 70.

What is Correlation?
A correlation is used to enrich the incoming event in the data stream with static data in
a database table or with data from other streams.

For example, if the event in the data stream only includes SensorId and Sensor
Temperature, the event could be enriched with data from a table to obtain SensorMake,
SensorLocation, SensorThreshold, and many more.

Correlating an event with other sources requires the join condition to be based on a
common key. In the above example, the SensorId from the stream cand be used to
correlate with SensorKey in the database table. The following query illustrates the
above data enrichment scenario producing sensor details for all sensors whose
temperature exceeds their pre-defined threshold.

Select T.SensorId, T.Temperature, D.SensorName, D.SensorLocation
From TemperatureStream[Now] T, SensorDetailsTable D
Where T.SensorId = D.SensorKey And T.Temperature > D.SensorThreshold

Queries like above and more complex queries can be automatically generated by
configuring sources and filter sections of the query stage.

What is Summary?
A data stream is a continuous sequence of events but we can summarize the data
over any time range including an unbounded range.

For example, you can continuously compute the maximum temperature for each
sensor from the beginning of time by configuring a query like the one below in a Query
stage.

Select SesnsorId, max(Temperature)
From TemperatureStream
Group By SensorId

What is Group By?
A group by collects the data of all the rows with an identical column value. Group by is
used in conjunction with Summaries (aggregate functions) to provide information about
each group.

Chapter 3
Understanding Query Stage

3-2

Here is an example configuration that generates a query for computing the average
temperature of each sensor at the end of the hour and using readings from last one
hour.

Select SesnsorId, avg(Temperature)
From TemperatureStream [Range 1 Hour Slide 1 Hour]
Group By SensorId

Example

If you add multiple group bys, the data is grouped on multiple columns. For example,
you have a stream that gives you sales numbers for geographical locations. You have
the following columns BEFORE group by:

COUNTRY CITY REVENUE
US SF 500
US NY 1000
INDIA BOMBAY 800
INDIA BOMBAY 1500
INDIA BOMBAY 700
.........

Calculate sum of revenue (summary) by country (groupby) to get:

COUNTRY SUM_OF_REVENUE
US 1500
INDIA 3000

Add CITY as another group by, to get your aggregations grouped by city in addition to
country:

COUNTRY CITY SUM_OF_REVENUE
US NY 1000
US SF 500
INDIA BOMBAY 1500
INDIA BANGALORE 1500

What is Range?
A range is a window applied on the data stream. Since data stream is an unbounded
sequence of events it is often necessary to apply a window when computing
aggregates.

Examples of ranges include – Last 1 Hour of events, Last 5 Minutes of events, Last
10 Events, and many more. Applying a range retains data in memory so be cautious
with use of window ranges. For example, if data is arriving at the rate of 2000 events
per second and if each event is 1KB then we have 2MB of data per second. Applying a
1-hour window on this data stream consumes 2MB times 3600 or 7.2GB of memory.

The supported time units in a range are:

• now

• nanoseconds

Chapter 3
Understanding Query Stage

3-3

• microseconds

• milliseconds

• seconds

• minutes

• hours

• events

What is Evaluation Frequency?
Evaluation Frequency or a Window Slide (commonly referred to) determines the
frequency at which results are desired.

For example, the configured query below outputs total sales every 1 second but using
transactions from last 1 hour.

Select sum (TransactionAmount) As HourlySales
From SalesStream [Range 1 Hour Slide 1 Second]

In other words, Evaluation Frequency determines how often you want to see the
results. In the above query, if result is only desired at the end of the hour then we set
the Evaluation Frequency to 1 hour.

Understanding Rules
A rule is a set of conditions applied to the incoming stream and a set of actions
performed on the stream when conditions are true. Each event is analyzed
independently of other events.

For example, assume that your stream is a stream from pressure sensors and has the
following fields:

• sensor_id

• pressure

• status

If you want to assign a status value based on the pressure, you can define the
following rules:

• if the pressure is less than or equal to 50, the status must be set to GREEN

• if the pressure is between 50 and 100, the status must be set to YELLOW

• if the pressure is greater than 100, the status must be set to RED.

Understanding Rule Stage
A rule stage is a stage in the pipeline where you apply conditional (IF - THEN) logic to
the events in the stream. You can check for specific conditions and assign values to
fields based on the results of your checks.

You can add multiple rules to the stage and they will get applied to pipeline in the
sequence they are added. A rule is a set of conditions applied to the incoming stream

Chapter 3
Understanding Rules

3-4

and a set of actions performed on the stream when conditions are true. Each event is
analyzed independently of other events.

Understanding Pattern Stage
Patterns are a stage within a pipeline. When working from a pattern, you need to
specify a few key fields to discover an interesting result. You can create pattern stages
within the pipeline. Patterns are not stand-alone artifacts. They need to be embedded
within a pipeline.

Understanding Custom Stage
Custom Stage is a type of stage where you can apply your custom stage type to your
streaming data in your pipeline. It behaves like any other type of stage with data
flowing into and out of it. It is close to a pattern stage in the way that you are asked to
configure a few parameters before its logic applies to the stream.

Understanding Scoring Stage
Scoring Stage is a type of stage where you apply a machine learning model to your
streaming data to do predictive analysis. Scoring Stage is the infrastructure that Oracle
Stream Analytics provides to data scientists for machine learning model deployment
against streaming data.

Understanding Query Group
A query group stage lets you do aggregations on multiple group bys and multiple
windows. It is a collection of groups, where each of the group has its own window,
filters that affect the data processing only within that group.

A query group has two types of stages:

• Stream

• Table

What is Query Group Stage: Stream?
A query group stage of the type stream is where you can apply aggregate functions
with different group-bys and window ranges to your streaming data. You can have
multiple query groups in one stage.

What is Query Group Stage: Table?
A query group stage of the type table is where you can apply aggregate functions with
different group bys and window ranges to a database table data recreated in memory.
Use this stage on a change data capture stream, such as GoldenGate. You can have
multiple query groups in one stage.

Chapter 3
Understanding Pattern Stage

3-5

Understanding the Live Output Table
The Live Output table is the main feedback mechanism from the pipelines that you
build. The Live Output table will display events that go out of your pipeline, after your
processing logic has been applied on the incoming stream or streams.

The Live Output table will be displayed for each stage of your pipeline and will include
output of that particular stage. On the source stage the Live Output table will display
events as they arrive in the stream. On the target stage, the Live Output stage will
display events as they will flow to the target.

The Live Output table is also a powerful tool for event shape manipulation. With the
Live Output table you can:

• Add new fields to the event using an extensive library of functions in the
expression builder, and remove new fields

• Change the order of the event fields

• Rename event fields

• Remove existing fields from the output of the stage

• Add a timestamp field to each event

• Hide fields from view (but retain them in the output)

• Pause and restart event display in the browser (not affecting downstream stages
or targets)

The interaction with the table should be intuitively clear to anyone who has worked
with popular spreadsheet pipelines.

Expression Builder

The expression builder provides functionality to add new fields to your output based on
existing fields. You can use a rich library of functions to manipulate your event data. A
simple example is string concatenation; you can construct a full name from first and
last names:

Note:

The event shape manipulation functionality is available on the table in the
query stage.

The expression builder has syntax highlighting and code completion. You can also see
the function signature, input parameters and the return value in the Expression Editor.

Chapter 3
Understanding the Live Output Table

3-6

Understanding Visualizations
Visualization is mapping of the data (information) to a graphical or tabular format which
can be used to answer a specific analytical question.

It translates data, its properties and relationships into an easy to interpretable visual
object consisting of points, lines, shapes and colors. It effectively represents the
results of the meaningful multi-dimensional questions. It also enables to discover the
influential patterns out of the represented data (information) using the visual analysis.

Visualizations

Visualizations are divided into two categories:

• Axis based

Axis based visualizations display series and groups of data. Series and groups are
analogous to the rows and columns of a grid of data. Typically, the rows in the grid
appear as a series in visualization, and the columns in the grid appear as groups.

Axis based visualizations enables users to visualize the data along two graph axis
x and y like sum of sales over regions or sum of sales over time period. X axis
values can be categorical in nature like regions or can be based on time series
values whereas Y axis represents the measured value like sum(sales). These
charts are useful for visualizing trends in a set of values over time and comparing
these values across series.

• Spatial

Spatial visualizations are used when geography is especially important in
analyzing an event. It represents business data superimposed on a single geo
fence.

Chapter 3
Understanding Visualizations

3-7

What is a Bar Type of Visualization?
Bar visualization is one of the widely used visualization types which represents data as
a series of vertical bars. It is best suited for comparison of the values represented
along y axis where different categories are spread across x axis. In a Bar visualization
vertical columns represent metrics (measured values). The horizontal axis displays
multiple or non-consecutive categories.

In Horizontal Bar, the axis positions are switched. The vertical axis displays multiple or
non-consecutive categories. The horizontal columns represents metrics (measured
values). It is preferable when the category names are long text values and requires
more space in order to be displayed.

What is a Line Type of Visualization?
Line visualization represents data as a line, as a series of data points, or as data
points that are connected by a line. Line visualization require data for at least two
points for each member in a group. The X-axis is a single consecutive dimension, such
as a date-time field, and the data lines are likely to cross. X axis can also have non
date-time categories. Y axis represents the metrics (measured value). It is preferred to
use line visualization when data set is continuous in nature. It is best suited for trend-
based plotting of data over a period of time. In Line visualization, emphasis is on the
continuation or the flow of the values (a trend) but individual value comparison can
also be carried out. Multiple series can also be compared with the line visualizations.

It can have a horizontal orientation where axis are switched i.e. y axis holds categories
whereas x axis shows metrics.

What is An Area Type of Visualization?
Area visualization represents data as a filled-in area. Area visualization requires at
least two groups of data along an axis. The X-axis is a single consecutive dimension,
such as a date-time field, and the data lines are unlikely to cross. Y axis represents the
metrics (measured value). X axis can also have non date-time categories. This
visualization is mainly suitable for presenting accumulative value changes over time.

It can have a horizontal orientation where axis are switched i.e. y axis holds categories
whereas x axis shows metrics.

What is a Stacked Bar Type of Visualization?
A Stacked visualization displays sets of values stacked in a single segmented column
instead of side-by-side in separate columns. It is used to show a composition. Bars for
each set of data are appended to previous sets of data. The size of the stack
represents a cumulative data total.

What is a Spatial Type of Visualization?
Geo Spatial visualization allows displaying location of an object on a geo fence and
takes user to the area where events are occurring. User can configure visualization to
specify latitude, longitude, identifier etc. Customization of visualization by specifying
different pins like arrows with different colors based on certain condition is also
allowed.

Chapter 3
Understanding Visualizations

3-8

What is a Pie Chart?
A pie chart is a circular graphic divided into slices that indicate numerical proportions.
The arc length of each slice is proportionate to the quantity it represents.

You can use Pie charts to compare parts of a whole.

What is a Bubble Chart?
A bubble chart displays three dimensions of data. Each entity with its several versions
(mostly three) of associated data is plotted as a disk. This disk shows two of the vi
values through the disk's xy location and the third through its size.

What is a Thematic Map?
A thematic map focuses on a specific theme or subject area. It includes some
locational or reference information and emphasizes spatial variation of one or a small
number of geographic distributions. These distributions may be physical phenomena
such as climate, population density, traffic congestion, and so on.

What is a Scatter Chart?
A scatter chart is a mathematical diagram that uses Cartesian coordinates to display
values for multiple variables for a set of data. You can color code the points to display
data for an additional variable. This chart shows how much one variable is affected by
another. The relationship between two variables is called their correlation.

Understanding the Topology Viewer
Topology is a graphical representation and illustration of the connected entities and
the dependencies between the artifacts.

What is Immediate Family?
Immediate Family context displays the dependencies between the selected entity and
its child or parent.

The following figure illustrates how a topology looks in the Immediate Family.

Chapter 3
Understanding the Topology Viewer

3-9

What is Extended Family?
Extended Family context displays the dependencies between the entities in a full
context, that is if an entity has a child entity and a parent entity, and the parent entity
has other dependencies, all the dependencies are shown in the Full context.

The following figure illustrates how a topology looks in the Extended Family.

Understanding Expression Builder Functions

 This topic applies only to Oracle user-managed services.

Chapter 3
Understanding Expression Builder Functions

3-10

Expression Builder is an editor that allows you to build expressions using various
existing functions. The expressions help you in achieving the required results for your
pipelines.

Topics:

• What are Bessel Functions?

• What are Conversion Functions?

• What are Date Functions?

• What are Geometry Functions?

• What are Interval Functions?

• What are Math Functions?

• What are Null-related Functions?

• What are Statistical Functions?

• What are String Functions?

What are Bessel Functions?
The mathematical cylinder functions for integers are known as Bessel functions.

The following Bessel functions are supported in this release:

Function Name Description

BesselI0(x) Returns the modified Bessel function of order 0 of the double
argument as a double

BesselI0_exp(x) Returns the exponentially scaled modified Bessel function of
order 0 of the double argument as a double

BesselI1(x) Returns the modified Bessel function of order 1 of the double
argument as a double

BesselI1_exp(x) Returns the exponentially scaled modified Bessel function of
order 1 of the double argument as a double

BesselJ(x,x) Returns the Bessel function of the first kind of order n of the
argument as a double

BesselK(x,x) Returns the modified Bessel function of the third kind of order
n of the argument as a double

BesselK0_exp(x) Returns the exponentially scaled modified Bessel function of
the third kind of order 0 of the double argument as a double

BesselK1_exp(x) Returns the exponentially scaled modified Bessel function of
the third kind of order 1 of the double argument as a double

BesselY(x) Returns the Bessel function of the second kind of order n of
the double argument as a double

What are Conversion Functions?
The conversion functions help in converting values from one data type to other.

The following conversion functions are supported in this release:

Chapter 3
Understanding Expression Builder Functions

3-11

Function Name Description

bigdecimal(value1) Converts the given value to bigdecimal

boolean(value1) Converts the given value to logical

date(value1,value2) Converts the given value to datetime

double(value1) Converts the given value to double

float(value1) Converts the given value to float

int(value1) Converts the given value to integer

long(value1) Converts the given value to long

string(value1,value2) Converts the given value to string

What are Date Functions?

The following date functions are supported in this release:

Function Name Description

day(date) Returns day of the date

eventtimestamp() Returns event timestamp from stream

hour(date) Returns hour of the date

minute(date) Returns minute of the date

month(date) Returns month of the date

nanosecond(date) Returns nanosecond of the date

second(date) Returns second of the date

systimestamp() Returns the system’s timestamp on which the application is
running

timeformat(value1,value2) Returns the provided timestamp in required time format

timestamp() Returns the current output time

year(date) Returns year of the date

What are Geometry Functions?
The Geometry functions allow you to convert the given values into a geometrical
shape.

The following interval functions are supported in this release:

Function Name Description

CreatePoint(lat,long,SRID) Returns a 2–dimensional point type geometry
from the given latitude and longitude. The
default SRID is 8307.

The return value is of the datatype sdo
geometry.

Chapter 3
Understanding Expression Builder Functions

3-12

Function Name Description

distance(lat1,long1,lat2,long2,SRID) Returns distance between the first set of
latitude, longitude and the second set of
latitude, longitude values. The default SRID is
8307.

The return value is of the datatype double.

What are Interval Functions?
The Interval functions help you in calculating time interval from given values.

The following interval functions are supported in this release:

Function Name Description

numtodsinterval(n,interval_unit) Converts the given value to an INTERVAL DAY
TO SECOND literal. The value of the
interval_unit specifies the unit of n and
must resolve to one of the string values: DAY,
HOUR, MINUTE, or SECOND.

The return value is of the datatype interval.

to_dsinterval(string) Converts a string in format DD HH:MM:SS into
a INTERVAL DAY TO SECOND data type. The
DD indicates the number of days between 0 to
99. The HH:MM:SS indicates the number of
hours, minutes and seconds in the interval
from 0:0:0 to 23:59:59.999999. The seconds
part can accept upto six decimal places.

The return value is of the datatype interval.

The YM Interval Functions
The YM Interval functions help you in calculating time interval from year to month.

The following are the YM interval functions:

Chapter 3
Understanding Expression Builder Functions

3-13

Function Name Description

to_yminterval (string) TO_YMINTERVAL converts a character string
of CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 datatype to
an INTERVAL YEAR TO MONTH type.
TO_YMINTERVAL accepts argument in one of
the two formats:

• SQL interval format compatible with the
SQL standard (ISO/IEC 9075:2003)

• ISO duration format compatible with the
ISO 8601:2004 standard

In the SQL format, years is an integer between
0 and 999999999, and months is an integer
between 0 and 11. Additional blanks are
allowed between format elements.

In the ISO format, years and months are
integers between 0 and 999999999. Days,
hours, minutes, seconds, and
frac_secs are non-negative integers, and are
ignored, if specified. No blanks are allowed in
the value.

numtoyminterval(n,interval_unit) NUMTOYMINTERVAL converts number n to
an INTERVAL YEAR TO MONTH literal. The
argument n can be any NUMBER value or an
expression that can be implicitly converted to
a NUMBER value. The
argument interval_unit can be
of CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 datatype. The value
for interval_unit specifies the unit of n and
must resolve to one of the following string
values: YEAR and MONTH

The return value is of the datatype interval.

What are Math Functions?
The math functions allow you to perform various mathematical operations and
calculations ranging from simple to complex.

The following math functions are supported in this release:

Function Name Description

IEEEremainder(value1,valu
e2)

Computes the remainder operation on two arguments as
prescribed by the IEEE 754 standard

abs(value1) Returns the absolute value of a number

acos(value1) Returns arc cosine of a value

asin(value1) Returns arc sine of a value

atan(value1) Returns arc tangent of a value

atan2(arg1,arg2) Returns polar angle of a point (arg2, arg1)

Chapter 3
Understanding Expression Builder Functions

3-14

Function Name Description

binomial(base,power) Returns binomial coefficient of the base raised to the
specified power

bitMaskWithBitsSetFromTo(
x)

BitMask with BitsSet (From, To)

cbrt(value1) Returns cubic root of the specified value

ceil(value1) Rounds to ceiling

copySign(value1,value2) Returns the first floating-point argument with the sign of the
second floating-point argument

cos(value1) Returns cosine of a value

cosh(value1) Returns cosine hyperbolic of a value

exp(x) Returns exponent of a value

expm1(x) More precise equivalent of exp(x); Returns 1 when x is
around zero

factorial(value1) Returns factorial of a natural number

floor(value1) Rounds to floor

getExponent(value1) Returns the unbiased exponent used in the representation of
a double

getSeedAtRowColumn(value1
,value2)

Returns a deterministic seed as an integer from a (seemingly
gigantic) matrix of predefined seeds

hash(value1) Returns an integer hashcode for the specified double value

hypot(value1,value2) Returns square root of sum of squares of the two arguments

leastSignificantBit(value
1)

Returns the least significant 64 bits of this UUID's 128 bit
value

log(value1,value2) Calculates the log value of the given argument to the given
base, where value 1 is the value and value 2 is the base

log1(value1) Returns the natural logarithm of a number

log10(value1) Calculates the log value of the given argument to base 10

log2(value1) Calculates the log value of the given argument to base 2

logFactorial(value1) Returns the natural logarithm (base e) of the factorial of its
integer argument as a double

longFactorial(value1) Returns the factorial of its integer argument (in the range k
>= 0 && k < 21) as a long

maximum(value1,value2) Returns the maximum of 2 arguments

minimum(value1,value2) Returns the minimum of 2 arguments

mod(value1,value2) Returns modulo of a number

mosttSignificantBit(value
1)

Returns the most significant 64 bits of this UUID's 128 bit
value

nextAfter(value1,value2) Returns the floating-point number adjacent to the first
argument in the direction of the second argument

nextDown(value1) Returns the floating-point value adjacent to the input
argument in the direction of negative infinity

Chapter 3
Understanding Expression Builder Functions

3-15

Function Name Description

nextUp(value1) Returns the floating-point value adjacent to the input
argument in the direction of positive infinity

Pow(m,n) Returns m raised to the nth power

rint(value1) Returns the double value that is closest in value to the
argument and is equal to a mathematical integer

round(value1) Rounds to the nearest integral value

Scalb(d,scaleFactor) Returns d × 2scaleFactor rounded as if performed by a single
correctly rounded floating-point multiply to a member of the
double value set

signum(value1) Returns signum of an argument as a double value

sin(value1) Returns sine of a value

sinh(value1) Returns sine hyperbolic of a value

sqrt(value1) Returns square root of a value

stirlingCorrection(value1
)

Returns the correction term of the Stirling approximation of
the natural logarithm (base e) of the factorial of the integer
argument as a double

tan(value1) Returns tangent of a value

tanh(value1) Returns tangent hyperbolic of a value

toDegrees(value1) Converts the argument value to degrees

toRadians(value1) Returns the measurement of the angle in radians

ulp(value1) Returns the size of an ulp of the argument

What are Null-related Functions?

The following null-related functions are supported in this release:

Function Name Description

nvl(value1,value2) Replaces null with a value of the same type

What are Statistical Functions?
Statistical functions help you in calculating the statistics of different values.

The following statistical functions are supported in this release:

Function Name Description

beta1(value1,value2,value
3)

Returns the area from zero to value3 under the beta density
function

betaComplemented(value1,v
alue2,value3)

Returns the area under the right hand tail (from value3 to
infinity) of the beta density function

Chapter 3
Understanding Expression Builder Functions

3-16

Function Name Description

binomial2(value1,value2,v
alue3)

Returns the sum of the terms 0 through value1 of the
Binomial probability density. All arguments must be positive.

binomialComplemented(valu
e1,value2,value3)

Returns the sum of the terms value1+1 through value2 of
the binomial probability density. All arguments must be
positive.

chiSquare(value1,value2) Returns the area under the left hand tail (from 0 to value2)
of the chi square probability density function with value1
degrees of freedom. The arguments must both be positive.

chiSquareComplemented(val
ue1,value2)

Returns the area under the right hand tail (from value2 to
infinity) of the chi square probability density function with
value1 degrees of freedom. The arguments must both be
positive.

errorFunction(value1) Returns the error function of the normal distribution

errorFunctionComplemente
d(value1)

Returns the complementary error function of the normal
distribution

gamma(value1,value2,value
3)

Returns the gamma function of the arguments

gammaComplemented(value1,
value2,value3)

Returns the integral from value3 to infinity of the gamma
probability density function

incompleteBeta(value1,val
ue2,value3)

Returns the incomplete beta function evaluated from zero to
value3

incompleteGamma(value1,va
lue2)

Returns the incomplete gamma function

incompleteGammaComplemen
t(value1,value2)

Returns the complemented incomplete gamma function

logGamma(value1) Returns the natural logarithm of the gamma function

negativeBinomial(value1,v
alue2,value3)

Returns the sum of the terms 0 through value1 of the
negative binomial distribution. All arguments must be
positive.

negativeBinomialComplemen
ted(value1,value2,value3)

Returns the sum of the terms value1+1 to infinity of the
negative binomial distribution. All arguments must be
positive.

normal(value1,value2,valu
e3)

Returns the area under the normal (Gaussian) probability
density function, integrated from minus infinity to value1
(assumes mean is zero, variance is one)

normalInverse(value1) Returns the value for which the area under the normal
(Gaussian) probability density function is equal to the
argument value1 (assumes mean is zero, variance is one)

poisson(value1,value2) Returns the sum of the first value1 terms of the Poisson
distribution. The arguments must both be positive.

poissonComplemented(value
1,value2)

Returns the sum of the terms value1+1 to infinity of the
poisson distribution

studentT(value1,value2) Returns the integral from minus infinity to value2 of the
Student-t distribution with value1 > 0 degrees of freedom

Chapter 3
Understanding Expression Builder Functions

3-17

Function Name Description

studentTInverse(value1,va
lue2)

Returns the value, for which the area under the Student-t
probability density function is equal to 1-value1/2. The
function uses the studentT function to determine the return
value iteratively.

What are String Functions?

The following String functions are supported in this release:

Function Name Description

coalesce(value1,...) Returns the first non-null expression in the list. If all
expressions evaluate to null, then the COALESCE function
will return null

concat(value1,...) Returns concatenation of values converted to strings

indexof(string,match) Returns first index of \'match\' in \'string\'or 1 if not
found

initcap(value1) Returns a specified text expression, with the first letter of
each word in uppercase and all other letters in lowercase

length(value1) Returns the length of the specified string

like(value1,value2) Returns a matching pattern

lower(value1) Converts the given string to lower case

lpad(value1,value2,value3
)

Pads the left side of a string with a specific set of characters
(when string1 is not null)

ltrim(value1,value2) Removes all specified characters from the left hand side of a
string

replace(string,match,repl
acement)

Replaces all \'match\' with \'replacement\' in
\'string\'

rpad(value1,value2,value3
)

Pads the right side of a string with a specific set of characters
(when string1 is not null)

rtrim(value1,value2) Removes all specified characters from the right hand side of
a string

substr(string,from) Returns substring of a 'string' when indices are between
'from' (inclusive) and up to the end of the string

substring(string,from,to) Returns substring of a \'string\' when indices are between
\'from\' (inclusive) and \'to\' (exclusive)

translate(value1,value2,v
alue3)

Replaces a sequence of characters in a string with another
set of characters. However, it replaces a single character at a
time.

upper(value1) Converts given string to uppercase

Chapter 3
Understanding Expression Builder Functions

3-18

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Overview of Oracle Stream Analytics
	About Oracle Stream Analytics
	Why Oracle Stream Analytics?
	How Does Oracle Stream Analytics Work?

	2 Getting to Know Artifacts in Oracle Stream Analytics
	Understanding Different Types of Connections
	Understanding Streams
	Understanding References
	Understanding Geo Fences
	What is a Manual Geo Fence?
	What is a Database-based Geo Fence?

	Understanding Pipelines
	Understanding Dashboards
	Understanding Cubes
	Understanding Stream Analytics Patterns
	What is the Spatial: Speed Pattern?
	What is the Geo Code Pattern?
	What is the Interaction: Single Stream Pattern?
	What is the Interaction: Two Stream Pattern?
	What is the Spatial: Point to Polygon Pattern?
	What is the Proximity: Single Stream Pattern?
	What is the Proximity: Two Stream Pattern?
	What is the Proximity: Stream with Geo Fence Pattern?
	What is the Direction Pattern?
	What is the Geo Fence Pattern?
	What is the Geo Fence Filter: Inside Pattern?
	What is the Reverse Geo Code: Near By Pattern?
	What is the Reverse Geo Code: Near By Place Pattern?
	What is the Correlation Pattern?
	What is the Quantile Pattern?
	What is the Detect Duplicates Pattern?
	What is the Change Detector Pattern?
	What is the W Pattern?
	What is the ‘A’ Followed by ‘B’ Pattern?
	What is the Top N Pattern?
	What is the Bottom N Pattern?
	What is the Up Trend Pattern?
	What is the ‘A’ Not Followed by ‘B’ Pattern?
	What is the Down Trend Pattern?
	What is the Union Pattern?
	What is the Fluctuation Pattern?
	What is the Inverse W Pattern?
	What is the Eliminate Duplicates Pattern?
	What is the Detect Missing Heartbeat Pattern?
	What is the Left Outer Join Pattern?

	Understanding Shapes
	Understanding Target
	Understanding the Predictive Model
	Understanding Custom JARs
	Understanding Export and Import

	3 Overview of the Components of a Pipeline
	Understanding Query Stage
	What is Filter?
	What is Correlation?
	What is Summary?
	What is Group By?
	What is Range?
	What is Evaluation Frequency?

	Understanding Rules
	Understanding Rule Stage
	Understanding Pattern Stage
	Understanding Custom Stage
	Understanding Scoring Stage
	Understanding Query Group
	What is Query Group Stage: Stream?
	What is Query Group Stage: Table?

	Understanding the Live Output Table
	Understanding Visualizations
	What is a Bar Type of Visualization?
	What is a Line Type of Visualization?
	What is An Area Type of Visualization?
	What is a Stacked Bar Type of Visualization?
	What is a Spatial Type of Visualization?
	What is a Pie Chart?
	What is a Bubble Chart?
	What is a Thematic Map?
	What is a Scatter Chart?

	Understanding the Topology Viewer
	What is Immediate Family?
	What is Extended Family?

	Understanding Expression Builder Functions
	What are Bessel Functions?
	What are Conversion Functions?
	What are Date Functions?
	What are Geometry Functions?
	What are Interval Functions?
	The YM Interval Functions
	What are Math Functions?
	What are Null-related Functions?
	What are Statistical Functions?
	What are String Functions?

